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Abstract

We give a new proof of the generalized Minkowski identities relating the higher degree mean

curvatures of orientable closed hypersurfaces immersed in a given constant sectional curvature mani-

fold. Our methods rely on a fundamental differential system of Riemannian geometry introduced by

the author. We develop the notion of position vector field, which lies at the core of the Minkowski

identities.
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1. Introduction

The celebrated integral identities of Minkowski type ([4, 7, 8, 9]) read as follows. Let N be a closed

orientable immersed hypersurface of Euclidean space and let Hi denote the ith mean curvatures of N .

Let P be the position vector field from the origin. Then, for any 0 ≤ i ≤ n− 1, we have∫
N

(Hi − 〈P,~n〉Hi+1) volN = 0. (1)

These identities were found by Hsiung and generalize the result of Minkowski for i = 0.

The assertion that (1) is easy to prove using the exterior differential system of the “θ, α0, . . . , αn” is a

challenge proposed to the reader of [1]. The theory of what we regard as a fundamental differential system

of Riemannian geometry is introduced in [1]. We give here the solution to the challenge, in Theorem 1.1,

and continue to further develop the applications of the differential system.

In the first references above, the notion of the position vector field P is quite obscure and the attempted

generalization of the Minkowski identities to constant sectional curvature ambient M yields a different

result from what is found today in [5] and [6]. The latter recently discovered ‘Hsiung-Minkowski’ identities

are proved again in the present article. They appear either as a new formula or as a most important remark

to add to Hsiung’s assertions on space forms. The question surely depends on the notion of P . We propose

here a definition and show that every warped product metric admits a position vector field.

We also prove in a global and invariant theory the generalized Minkowski identities for Killing vector

fields, found by Katsurada in [9]. These are vanishing theorems which are not so well-known today,

perhaps due to the same difficulties pointed above.

Our framework is that of the tangent sphere bundle of M , where the differential system lives. Though

proves not enough to contain the identities known for any vector fields, rather than just the Killing.

Killing vector fields do lift as extended vector fields to the sphere bundle. The theory must hence be

extended to the whole Riemannian phase space and its SO(n+ 1)-structure.
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Let us start by resuming with some definitions and notations from [1].

Throughout the text we let (M, g) denote a smooth oriented Riemannian (n+1)-dimensional manifold.

Quite often we use the notation 〈 , 〉 for the metric.

We consider the unit tangent sphere bundle π : SM −→ M with its natural metric and SO(n)

structure. This theory is surveyed in [1, 2, 3]. We denote by e0, e1, . . . , en, en+1, . . . , e2n an adapted frame

on SM , meaning the first n+ 1 vectors are horizontal and the remaining vectors are vertical, each one a

mirror of the respective e1, . . . , en. Let us recall θ = e0 is the canonical contact 1-form due to Sasaki. e0
is the restriction of the geodesic flow vector field S to SM .

We have two useful ways of defining the αi for each i = 0, . . . , n. Namely, letting ni = 1
i!(n−i)! and

αn = en+1 ∧ · · · ∧ en+n be the volume-form of the fibers, we have

αi = ni αn ◦ (Bn−i ∧ 1i)

= ni
∑
σ∈Sn

sg(σ) eσ1 ∧ · · · ∧ eσn−i ∧ e(n+σn−i+1) ∧ · · · ∧ e(n+σn). (2)

We also define α−1 = αn+1 = 0. The mirror endomorphism B of TTM is well-defined, as it sends the

horizontal lifts to the respective vertical and sends verticals to 0. The ◦ denotes an alternating operator.

We need to recall the canonical vertical vector field ξ ∈ XTM , defined by ξu = u ∈ TTM , ∀u ∈ TM
and the geodesic flow vector field on TM , the horizontal S = Btξ.

Given an orientable hypersurface f : N ↪→ M , let us recall the second fundamental form A = ∇~n,

where ~n is the unit-normal to N with the induced orientation. Then the ith-mean curvature Hi is defined

by
(
n
i

)
Hi being the elementary symmetric polynomial of degree i on the eigenvalues λ1, . . . , λn of A, the

so-called principal curvatures of N . In other words,
(
n
i

)
Hi =

∑
1≤j1<···<ji≤n λj1 · · ·λji . One also defines

H0 = 1.

On N we have the canonical lift f̂ : N ↪→ SM of f to SM , defined by f̂(x) = ~nf(x), and hence the

formulas

f̂∗θ = 0 (3)

and

f̂∗αi =

(
n

i

)
Hi volN . (4)

Next we let M = Rn+1. Then the structural equations on the unit tangent sphere bundle of M read,

∀0 ≤ i ≤ n,

dαi = (i+ 1) θ ∧ αi+1. (5)

We stress the above alternating operator ◦ and mirror map B, the fundamental formulas (3) and (4)

and this last structure equation (5) are described, respectively, in Section 2, in Proposition 3.2 and in

Example 3 of [1].

Theorem 1.1 (Hsiung-Minkowski identities). Let f : N → Rn+1 be a closed orientable immersed C2

hypersurface of Euclidean space. Let P be the position vector field. Then, for any 0 ≤ i ≤ n− 1, we have∫
N

(Hi − 〈P,~n〉Hi+1) volN = 0. (6)

Proof. Let (x, u) denote the natural coordinates of SRn+1 = Rn+1 × Sn ⊂ TRn+1. The position vector

field P , defined by Px = x, is lifted to a horizontal vector field P(x,u) = (x, 0), clearly tangent to the

sphere bundle. Since the 1-parameter subgroup of diffeomorphisms induced by P on the base is given by

φt(x) = etx, the one induced on the total space of the bundle is given by

ψt(x, u) = (etx, u).
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Trivially we have that B(x,u)(∂xj ) = ∂uj and B(x,u)(∂uj ) = 0. Two easy computations with the two types

of coordinate vector fields yield ψt
∗B = etB. Hence the Lie derivative satisfies

LPB =
d

dt

∣∣∣∣
0

ψt
∗B = B.

Now, since αn = u0du1···n − u1du02···n + · · · is independent of x, we have LPαn = 0. By definition of the

αi and the basic technique with differential forms introduced in [1, Section 4.1], on one hand we have a

Leibniz rule

LPαi = ni (LPαn) ◦ (Bn−i ∧ 1i) + ni αn ◦ (LPB ∧B ∧ · · · ∧B ∧ 1i) + · · ·
· · ·+ ni αn ◦ (B ∧ · · · ∧B ∧ LPB ∧ 1i) = (n− i)αi.

On the other hand, by Cartan’s formula and (5), we find

LPαi = d(Pyαi) + Pydαi

= d(Pyαi) + (i+ 1)
(
θ(P )αi+1 − θ ∧ Pyαi+1

)
.

Finally, let us bring N into context. We have f̂(x) = (f(x), ~nf(x)) and the formulas f̂∗θ = 0 and

f̂∗(θ(P ))x = 〈P, S〉f̂(x) = 〈P,~n〉f(x). By Stokes theorem, the two sides of the equations above yield

(n− i)
∫
N

(
n

i

)
Hi volN = (i+ 1)

∫
N

〈P,~n〉
(

n

i+ 1

)
Hi+1 volN ,

redundant in case i = n. Finally we note that (i+ 1)
(
n
i+1

)
= (n− i)

(
n
i

)
. �

Case i = 0 is due to Minkowski. The higher order formula is due to Hsiung, cf. [7].

The same and several other Hsiung-Minkowski type identities for any closed submanifolds of Euclidean

space are deduced in [4, 9, 11].

2. Some general identities

In the above theorem, if N is a C2 submanifold with boundary, then a slightly more general identity of

Hsiung-Minkowski is immediately found. Furthermore, the integral
∫
N

d(Xyαi) appears often in similar

settings below, so we continue to assume throughout that N is closed.

The following lemma, besides its formulation, relies entirely on multilinear algebra; it does not owe to

the differentiable structure of π : SM →M .

Lemma 2.1. The following identity is always satisfied:

αn−1 ◦ (Bn−i ∧ 1i) = i!(n− i+ 1)!αi−1. (7)

Proof. Letting B1 = · · · = Bn−i = B and Bn−i+1 = · · · = Bn = 1, we have an easy identity, αi =

ni αn ◦ (Bn−i ∧ 1i) = ni
∑
σ∈Sn

en+1 ◦Bσ1
∧ · · · ∧ e2n ◦Bσn

, which follows immediately from definitions,

cf. [1, Section 4.3]. In particular, we have that αn−1 = e1(n+2)(n+3)···(2n) + e(n+1)2(n+3)···(2n) + · · · +
e(n+1)(n+2)···(2n−1)n. Here we notice the identity we wish to prove is true for i = 0, because ej ◦ B = 0,

∀0 ≤ j ≤ n, and α−1 = 0. We then proceed with the case i > 0. First,

e(n+1)···(n+j−1)j(n+j+1)···(2n) ◦ (Bn−i ∧ 1i) =

=
∑
σ∈Sn

en+1 ◦Bσ1 ∧ · · · ∧ en+j−1 ◦Bσj−1 ∧ ej ◦Bσj ∧ en+j+1 ◦Bσj+1 ∧ · · · ∧ e2n ◦Bσn

=

n∑
k=n−i+1

∑
σ∈Sn: σj=k

en+1 ◦Bσ1
∧ · · · ∧ en+j−1 ◦Bσj−1

∧ ej ∧ en+j+1 ◦Bσj+1
∧ · · · ∧ e2n ◦Bσn

=

n∑
k=n−i+1

∑
σ: σj=k

en+1 ◦Bσ1
∧ · · · ∧ en+j−1 ◦Bσj−1

∧ en+j ◦B ∧ en+j+1 ◦Bσj+1
∧ · · · ∧ e2n ◦Bσn
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since ej = en+j ◦B. The sum is then equal to the following, where B1 = · · · = Bn−i = B and Bn−i+1 =

· · · B̂k · · · = Bn = 1, Bk = B,

=

n∑
k=n−i+1

∑
σ: σj=k

en+1 ◦Bσ1
∧ · · · ∧ en+j−1 ◦Bσj−1

∧ en+j ◦Bσj
∧ en+j+1 ◦Bσj+1

∧ · · · ∧ e2n ◦Bσn
.

Then we may assume B1 = · · · = Bn−i+1 = B and Bn−i+2 = · · · = Bn = 1, so that the sum becomes

= i
∑

σ: σj=n−i+1

en+1 ◦Bσ1
∧ · · · ∧ en+j−1 ◦Bσj−1

∧ en+j ◦Bσj
∧ en+j+1 ◦Bσj+1

∧ · · · ∧ e2n ◦Bσn
.

Returning to αn−1 =
∑n
j=1 e

(n+1)···(n+j−1)j(n+j+1)···(2n), we find

αn−1 ◦ (Bn−i ∧ 1i) = i

n∑
j=1

∑
σ∈Sn: σj=n−i+1

en+1 ◦Bσ1
∧ · · · ∧ e2n ◦Bσn

= i(i− 1)!(n− (i− 1))!αi−1

= i!(n− i+ 1)!αi−1,

the desired formula. �

In the following, ∇∗ denotes the linear connection respecting the canonical splitting of TTM '
π∗TM ⊕ π?TM , and therefore respecting the Sasaki metric. It is a double pull-back to the tangent

manifold of the Levi-Civita connection ∇ of M , cf. [1, 3].

Recall the horizontal distribution is given by ker∇∗· ξ and that ∇∗Y ξ = Y v and, moreover, that B is

parallel for ∇∗. The connection ∇∗ is reducible to SO(n+ 1). Notice it does not comply with the further

SO(n)-reduction to the structure group of the submanifolds TM\0 or SM .

Proposition 2.1. For any vector field X over an open subset π−1(U) ⊂ TM , for open U ⊂M , and any

Y ∈ TTM , we have

(LXB)Y = B∇∗YX −∇∗BYX. (8)

Moreover, LXhB = λB for a horizontal vector field Xh and some real function λ on π−1(U) if and only if

λ is constant along the fibers and Xh is the horizontal lift of a vector field X on U such that ∇YX = λY .

Proof. The torsion of the connection ∇∗ has vertical part only; namely, the vertical lift π?R( , )ξ of

the curvature of M applied to ξ. Since both tensors π?R( , )ξ and B vanish when applied on vertical

directions, we find

(LXB)Y = LXBY −BLXY
= [X,BY ]−B[X,Y ]

= ∇∗XBY −∇∗BYX −B(∇∗XY −∇∗YX)

= B∇∗YX −∇∗BYX.

We remark for X vertical this is just −∇∗BYX. Now, if X = Xh and LXhB = λB, then the horizontal

part of the formula vanishes, ∇∗BYXh = 0, and so Xh does not vary along the fibers. Thus Xh = π∗X is

a lift of X ∈ XM . Henceforth satisfying the identity ∇YX = λY on U . �

The case where X is the horizontal lift of the position vector field Px = x on the manifold Rn+1, hence

lifted as Px = (x, 0), is quite interesting. Clearly, ∇∗Y P = Y h, for any Y ∈ TTM . So the new formula

yields immediately LPB = B, precisely as deduced for Theorem 1.1.

We give the name of λ-mirror to the vector fields on TM satisfying LXB = λB, for some scalar λ.

For constant λ, they are all found as λX1, with X1 a particular solution of the 1-mirror equation, plus

the Lie algebra of 0-mirror vector fields. Indeed a Lie algebra.

The previous statements are verified mutatis mutandis with the notion of λ-adjoint-mirror vector field

on TM , ie. those X such that LXBt = λBt.

Other details on mirror vector fields can be found in [3].
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3. On constant sectional curvature

Let us assume that M has constant sectional curvature c. From [1, Example 3, Section 2.4], cf. (5),

we have the magic formula

dαi = θ ∧
(
(i+ 1)αi+1 − c(n− i+ 1)αi−1

)
. (9)

Before considering a particular vector field arising from M we may study the geodesic spray S = θ] =

Btξ. We find the following results.

Proposition 3.2. Let M have constant sectional curvature c. Then:

(i) LSB = 1− 2BtB

(ii) LSαi = (i+ 1)αi+1 − c(n− i+ 1)αi−1.

Proof. (i) The canonical vector field ξ induces a projection of TTM onto the vertical tangent subbundle

ker dπ, through ∇∗Y ξ = Y v, ∀Y ∈ TTM , with kernel the horizontal tangent subbundle. Therefore

(LSB)Y = B∇∗Y S −∇∗BY S = Y v − Y h, ∀Y ∈ TTM .

(ii) Notice Syαi = 0, ∀0 ≤ i ≤ n for there is no θ factor. Using Cartan formula we deduce LSαn =

Sydαn = −c αn−1. Of course the same argument, together with (9), applies to any αi, proving immediately

the desired formula. We wish to take a different path, somehow strength testing the exterior differential

system. First, by an already seen Leibniz rule, we have

LSαi = ni (LSαn) ◦ (Bn−i ∧ 1i) + ni αn ◦ (LSBn−i ∧ 1i).

Using Lemma 2.1, the first term is

ni (LSαn) ◦ (Bn−i ∧ 1i) = −cni αn−1 ◦ (Bn−i ∧ 1i)

= −cnii!(n− i+ 1)!αi−1

= −c(n− i+ 1)αi−1.

Regarding the second term, with any k ∈ N we have

LSBk = (1− 2BtB) ∧Bk−1 +B ∧ (1− 2BtB) ∧Bk−2 + · · ·

and, since ej+n ◦BtB = 0, ∀j = 1, . . . , n, we find

ni αn ◦ (LSBn−i ∧ 1i) =

= ni αn ◦ (1 ∧Bn−i−1 ∧ 1i) + ni αn ◦ (B ∧ 1 ∧Bn−i−2 ∧ 1i) + · · ·

=
1

i!(n− i)!
(n− i)αn ◦ (Bn−(i+1) ∧ 1i+1)

= (i+ 1)αi+1

as we wished. �

The last result gives a work-around to obtain a complicated basic structural equation:

αj ∧ αn−j = (−1)j
(
n

j

)
α0 ∧ αn, ∀0 ≤ j ≤ n. (10)

The following results are independent of the above introduction.

We shall see that a constant sectional curvature c manifold M admitting a horizontal constant λ-mirror

vector field must be flat.

In order to generalize the Hsiung-Minkowski identities to curved spaces we require a position vector

field. In order to prove them, we need the λ-mirror condition.
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A position vector field P exists on M and yields a horizontal λc-mirror vector field π∗P . We refer to

[5, 6, 10] for the previous assertion, where we see that P in polar coordinates is given by P = sc(r)∂r,

with r the geodesic distance function from a base point in M . Such vector field P satisfies, ∀Y ∈ TM ,

∇Y P = λcY, (11)

with sc, λc = s′c the functions

sc(r) =


1√
c

sin(
√
cr), c > 0

r, c = 0
1√
−c sinh(

√
−cr), c < 0

, λc(r) =


cos(
√
cr), c > 0

1, c = 0

cosh(
√
−cr), c < 0

. (12)

In Corollary 4.1 below we generalize the construction of local position vector fields.

The next theorem is found in the works of P. Guan and J. Li [5] and C. Guidi and V. Martino [6]. In

their proofs, the authors recur to Newton’s identities for symmetric polynomials, which play a central role

just like they played originally in Reilly’s proof, in [11], of the Hsiung-Minkowski identities for Euclidean

space.

Theorem 3.2 (cf. [5, 6]). Let M be an oriented (n + 1)-dimensional manifold of constant sectional

curvature c. Let P be a position vector field (∇Y P = λcY ) defined on a neighborhood of a given closed

oriented immersed hypersurface f : N →M . Then, for any 0 ≤ i ≤ n− 1, we have∫
N

(λcHi − 〈P,~n〉Hi+1) volN = 0. (13)

Proof. The function λc on M gives rise to another function on TM such that ∇∗π∗Y π
∗P = λcπ

∗Y , for

all Y ∈ TM . Recurring to Proposition 2.1 it follows easily that Lπ∗PB = λcB. Let us denote also by

P = π∗P the horizontal lift of P . In the following, notice Pyαn = 0 and recall αn+1 = 0 by definition.

Then

LPαi = ni (LPαn) ◦ (Bn−i ∧ 1i) + ni αn ◦ (LPBn−i ∧ 1i)

= ni (Pydαn) ◦ (Bn−i ∧ 1i) + (n− i)λcni αn ◦ (Bn−i ∧ 1i)

= ni
(
−cθ(P )αn−1 + c θ ∧ Pyαn−1

)
◦ (Bn−i ∧ 1i) + (n− i)λc αi.

With the induced map f̂ : N → SM , since θ ◦B = 0 and f̂∗θ = 0, we have again by Lemma 2.1

f̂∗LPαi = −nicf̂∗
(
θ(P )αn−1 ◦ (Bn−i ∧ 1i)

)
+ (n− i)λc f̂∗αi

= −c(n− i+ 1)〈P,~n〉 f̂∗αi−1 + (n− i)λc f̂∗αi.

On the other hand, by Cartan’s formula, LPαi = d(Pyαi) + Pydαi. Then we recall (9) and integrate on

the hypersurface with empty boundary N :∫
N

f̂∗LPαi =

∫
N

f̂∗(Pydαi)

=

∫
N

f̂∗
(
Py((i+ 1) θ ∧ αi+1 − c(n− i+ 1) θ ∧ αi−1)

)
=

∫
N

〈P,~n〉f̂∗
(
(i+ 1)αi+1 − c(n− i+ 1)αi−1

)
. (14)

Comparing with the above me deduce (n− i)
∫
N
λcf̂
∗αi = (i+ 1)

∫
N
〈P,~n〉f̂∗αi+1, ∀0 ≤ i ≤ n. The result

follows, for all i < n, just as in the Euclidean case. �

Case c = 0 gives again the Hsiung-Minkowski identities.

Our proof clearly depends on the intrinsic geometry of M and SM . The magic formula (9) plays the

role of Newton’s identities in other proofs, yet the latter are required in such proofs after the hypersurface

appears in context.
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When we replace (3) in (14), as remarked in [1], we see our formula is similar to a variational calculus

derivative of the ith-mean curvature functional N  
(
n
i

) ∫
N
Hi volN first found by R.C. Reilly.

We remark that taking vertical lifts in the above proof, instead of π∗P , seems worthless; for all sides

vanish identically.

Since any constant vector field v0 is parallel on Euclidean space, one finds a very particular case of a

formula of Katsurada, cf. Theorem 5.5 below: for every closed oriented immersed hypersurface N ⊂ Rn+1,

∀j = 1, . . . , n, ∀v0 ∈ Rn+1, we have ∫
N

〈v0, ~n〉Hj volN = 0. (15)

The proof of this formula is straightforward as the above. Of course, other constant curvature spaces do

not admit parallel vector fields.

What we wish to observe is that the Hsiung-Minkowski identities, as expected, are invariant too of

any base point and position vector field Px = x− v0.

4. Position vector fields

Here we prove that warped product metrics admit a position vector field, this is, a vector field P on

M such that ∇XP = λX, ∀X ∈ XM , for some function λ, cf. Theorem 3.2.

On any Riemannian manifold M, g, a position vector field is conformal-Killing: LP g = 2λg.

Regarding the tangent manifold we may draw the following conclusion.

Proposition 4.3. There exists a horizontal λ-mirror vector field P if and only if P is the lift of a position

vector field P on M . In this case, R(X,Y )P = dλ(X)Y − dλ(Y )X and, if λ is a constant, then every

plane containing P is flat.

Proof. The first part combines previous definitions with Proposition 2.1: P is a horizontal lift and on the

base M we have∇Y P = λY , for all Y ∈ TM . Then we find R(X,Y )P = ∇X∇Y P−∇Y∇XP−∇[X,Y ]P =

∇XλY −∇Y λX − λ[X,Y ] = dλ(X)Y − dλ(Y )X. �

Any metric g on an (n+ 1)-Riemannian manifold M may be locally written as R+ × Sn with

g = dr2 + gSn(r). (16)

Indeed, each geodesic ray or, equivalently, each exponential map line with the direction of ∂r, is orthogonal

to the sphere {r} × Sn = Sn(r), ∀r. Such is the conclusion of the well-known Gauss Lemma.

We now consider a milder situation, where M = R × Y with (Y, gY) a given Riemannian manifold.

We further assume there is a positive function ψ = ψ(r, y) on M such that the metric on M is

g = dr2 + (ψ(r, y))2gY . (17)

We may then describe the Levi-Civita connection in terms of the Levi-Civita connection ∇(r) of Y(r).

Let us call X ∈ XM a horizontal lift if X is tangent to Y and does not depend of r.

Theorem 4.3. The Levi-Civita connection ∇ of g satisfies:

∇∂r∂r = 0, ∇∂rY = ∇Y ∂r = fY, ∇ZY = ∇(r)
Z Y − fg(Y,Z)∂r (18)

where Y,Z are horizontal lifts and f = f(r, y) is a function such that

∂ψ

∂r
− fψ = 0. (19)

Proof. One may restrict to ∂r and to Y, Z horizontal lifts in the analysis of the torsion equation, which is

trivial, and in the six cases verification of ∇g = 0. �

Recall warped product metrics are defined as above with ψ just a function of r. Hence Y (ψ) = 0, Y ∈
TY and the following application takes place.



R. Albuquerque 8

Corollary 4.1. Let P denote the vector field P = ψ∂r. Then

∇∂rP =
∂ψ

∂r
∂r and ∇Y P = Y (ψ)∂r +

∂ψ

∂r
Y. (20)

If g is a warped product metric, then P is a position vector field.

Example: Let us see the last result in a different perspective. Let M = M(c) = Sn+1(R0) ⊂ Rn+1+1

denote the sphere of radius R0 with coordinates (x, t). As it is well known, c = 1
R2

0
. Let Nt ⊂ M(c)

denote the n-spheres ‖x‖2 = R2
0 − t2 =: R2

t along the obvious axis, for each t ∈] − R0, R0[. Then

~n(x,t) = 1
R0Rt

(−tx,R2
t ) is a unit normal of Nt in M(c); of course, TNt = {Y = (Y, 0) : Y ⊥ x}. Notice

~N = 1
R0

(x, t) is the unit normal to M(c) at (x, t) ∈ Nt. We have d~n(Y ) = − t
R0Rt

Y , also because

d(‖x‖)(Y ) = 0. Then d~n(Y ) ⊥ ~N and therefore ∇MY ~n = − t
R0Rt

Y . We conclude the hypersurfaces Nt are

umbilic, with all λi = − t
R0Rt

:= λ. Henceforth Hi = (−1)i ti

Ri
0R

i
t
, for all 0 ≤ i ≤ n.

We also find ∂t~n − 〈∂t~n, ~N〉 ~N = t3

R2
0R

2
t
~n and d~n(x) − 〈d~n(x), ~N〉 ~N = t2

R2
0
~n. It follows that ∇M~n ~n = 0.

Next we search for a position vector field of the kind P = a~n with a function of t; it will be sufficient to

find that ∇M~n P = b~n and ∇MY P = bY := − ta
R0Rt

Y , because dt(Y ) = 0 for all Y ⊥ x. Immediately we

verify the space form Minkowski identity bHi − 〈P,~n〉Hi+1 = 0 over the hypersurface Nt. Now, another

computation yields dt(x) = −R
2
t

t and thus ∇M~n P = da(~n)~n + a∇M~n ~n = 2∂a∂t
Rt

R0
~n. Hence, we must have

b = − ta
R0Rt

= 2∂a∂t
Rt

R0
. Up to a constant factor, a =

√
Rt = 4

√
R2

0 − t2.

5. Extended vector fields and Katsurada identities

In the celebrated article on the geometry of tangent bundles, Sasaki introduces along with his famous

metric the notion of extended vector field X̃ ∈ XTM of any given vector field X ∈ XM , cf. [3] and the

references therein. It is a definition of the most natural kind, not requiring any metric or any connection

defined on the given manifold. The extended vector field X̃ is also known as the complete lift of X.

In a coordinate chart (x1, . . . , xn+1) of M , giving1 the coordinates (xj , vj) on TM , we have X = Xj∂j

and X̃ = Xj∂j+vj ∂X
k

∂xj ∂vk . This shows the following formula is independent of the torsion free connection

(recall the notation for horizontal and vertical lifts):

X̃ = π∗X +∇∗Sπ?X. (21)

It follows that LX̃B = 0, cf. [3, Proposition 3.2]. This is immediate by Proposition 2.1 and by recalling

S = vjπ∗∂j = vj∂j − vjviΓkij∂vk , ξ = vk∂vk and ∇∗Y ξ = Y v and ∇∗BY∇∗Sπ?X = ∇∗Y π?X.

We give here a more elementary proof. In truth, the mirror map B satisfies the identity B = dxj⊗∂vj .

In other words, B does not depend on the connection either (fact which is not true for Bt). Therefore

LX̃(dxj ⊗ ∂vj ) = d(X̃ydxj)⊗ ∂vj + dxj ⊗ [X̃, ∂vj ] =
∂Xj

∂xk
dxk ⊗ ∂vj − dxj ⊗ ∂Xk

∂xj
∂vk = 0. (22)

Let us recall the torsion of ∇∗ on TM . We have ∇∗XY −∇∗YX − [X,Y ] = π?R(X,Y )ξ. For instance,

[S, ξ] = ∇∗Sξ −∇∗ξS = −Bt∇∗ξξ = −Btξ = −S. This result is also easily deduced with coordinates.

Additional properties are found with Killing vector fields.

Proposition 5.4 (Sasaki). Suppose X is a Killing vector field on M . Then X̃ is Killing for the Sasaki

metric on TM . Moreover, X̃ is tangent to SM and Killing for the induced metric.

Proof. The deduction of the first part can be seen in [3]: infinitesimal isometries lift as infinitesimal

isometries. The fact that X̃ is tangent to SM is also due to Sasaki, but we provide an immediate proof.

Recall SM is the locus of ‖ξ‖2 = 1 and thus TSM = ξ⊥; then, regarding the vertical side of X̃, we find

〈∇∗Sπ?X, ξ〉 = 〈∇∗Sπ∗X,S〉 = 0 by skew-symmetry. �

1N.B.: One may consistently use the notation: ∂j = ∂xj , π∗∂j = ∂j − viΓk
ji∂vk , π?∂k = ∂vk .
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We may now legitimately use LX̃ over the submanifold SM , for sections of any vector bundle of tensors

a priori defined over TM .

Theorem 5.4. Let X ∈ XM be Killing. Then:

(i) LX̃B
t = 0 and LX̃B = 0

(ii) LX̃π
∗vol = 0 and LX̃π

?vol = 0

(iii) LX̃S = [X̃, S] = 0 and LX̃ξ = [X̃, ξ] = 0

(iv) LX̃αi = 0, ∀0 ≤ i ≤ n.

Proof. (i) Since X is an infinitesimal affine transformation, the 0-adjoint-mirror equation follows from [3,

Proposition 3.5]. Now 0-adjoint-mirror implies 0-mirror by [3, Proposition 3.4]. If one prefers, as seen

above, we have always LX̃B = 0.

(ii) Since X is divergent free, LX̃π
∗vol = d(X̃yπ∗vol) = d(π∗Xyπ∗vol) = π∗LXvol = 0. Then we have

π?vol =
1

n!
π∗vol ◦ (Bt ∧ · · · ∧Bt)

and the result follows.

(iii) [X̃, S] = ∇∗
X̃
S − ∇∗SX̃ − π?R(X̃, S)ξ = Bt(∇∗Sπ?X) − ∇∗Sπ∗X − ∇∗S∇∗Sπ?X − π?R(π∗X,S)ξ =

−∇∗S∇∗Sπ?X−π?(R(X,π∗S)π∗S) = −π?(∇2X(π∗S, π∗S)+R(X,π∗S)π∗S) = 0, following from the equa-

tion of X being an infinitesimal affine transformation. Finally [X̃, ξ] = ∇∗
X̃
ξ − ∇∗ξX̃ − π?R(X̃, ξ)ξ =

∇∗Sπ?X −∇∗Sπ?X = 0.

(iv) The result can be checked in two different ways, both requiring LX̃B
t = 0. Recall the formula for

the αi = 1
i!(n−i)!αn ◦ (Bn−i ∧ 1i); thus essentially we have to compute LX̃αn. We have

αn = ξyπ?vol =
1

n!
(Syπ∗vol) ◦ (Bt ∧ · · · ∧Bt).

Since LX̃(Syπ∗vol) = (LX̃S)yπ∗vol + SyLX̃π
∗vol, the result follows. Notice Syπ∗vol = α0, so we could

equally focus on αi = ni α0 ◦ (1n−i ∧Bti). �

Finally, let us resume with (M, g) an (n+ 1)-dimensional Riemannian manifold of constant sectional

curvature c.

Let X be a Killing vector field on the neighborhood of an oriented closed immersed hypersurface

f : N →M . Then, for all i = 0, . . . n,∫
N

〈X,~n〉((i+ 1)f̂∗αi+1 − c(n− i+ 1)f̂∗αi−1) = 0. (23)

Indeed, applying formula (9) we have 0 = LX̃αi = d(X̃yαi)+(θ(X̃)−θ∧X̃y)
(
(i+1)αi+1−c(n−i+1)αi−1

)
and the result follows. Now recalling α−1 = αn+1 = 0, we obtain the following particular case of the

generalized Minkowski identities of Katsurada, partly by induction.

Theorem 5.5 (Katsurada identities). In the previous conditions,

(i) If c = 0 or n is odd, then all
∫
N
〈X,~n〉Hj = 0.

(ii) If n is even, then all odd
∫
N
〈X,~n〉H2j+1 = 0 and∫
N

〈X,~n〉Hi+1 vol =
ic

n− i

∫
N

〈X,~n〉Hi−1 vol. (24)

Katsurada’s result, [9, Formulas (I)i and (II)i], found for a Killing vector field on a hypersurface of

a constant sectional curvature manifold M , goes farther: it makes no restrictions, neither in order or in

dimension, and asserts all integrals vanish identically. Our methods have not yield to such generality.

No counter-example is known yet of non-vanishing (24).
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