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Chapter

Coumarins as Fluorescent Labels 
of Biomolecules
António Pereira, Sérgio Martins and Ana Teresa Caldeira

Abstract

Important areas such as environmental sciences, medicine, pharmacy, and 
cellular biology are dependent on very sensitive analytical techniques. One of the 
most common methodologies used for their bioanalytical purposes is the fluo-
rescent labelling. The synthesis of new fluorophores and the great development 
of  fluorescent-labelling techniques combined with the enormous technological 
advances in the field of fluorescence microscopy allowed to deepen the structural 
knowledge of biomolecules. This new organic fluorophores form covalent bonds 
with the sample to be analyzed, producing stable bioconjugates that show fluo-
rescence in a wide range of wavelengths, depending on the label used. Coumarin 
derivatives represent one of the most important chemical classes of organic fluo-
rescent materials being one of the most extensively investigated and commercially 
significant groups of organic fluorescent materials. In this chapter, it is reviewed 
the use of fluorescent coumarin derivatives and their application to labelling 
biomolecules. These fluorescent labels allow researchers to study, and understand, 
biomolecular assemblies that exhibit complex sensitivity and selectivity. Reactive 
fluorescent coumarin derivatives are actually widely used in labelling biomolecules 
as peptides, proteins, oligonucleotides, nucleic acids, and carbohydrates, among 
other biological molecules.
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1. Introduction

Important areas such as environmental sciences, medicine, medicinal chem-
istry, and cellular biology are dependent on very sensitive analytical techniques 
to detect and track biomolecules (amino acids, peptides, proteins, antibodies, 
oligonucleotides, nucleic acids, carbohydrates, and other biological molecules). 
Many of these techniques often require labelling with reporters or sensors, such as 
isotope labels [1], radioactive tracers [2], colorimetric biosensors [3], photoswitch-
able biomaterials [4], photochromic compounds [5, 6], electrochemical sensors 
[7], or fluorescent labels [8, 9]. The fluorescent labelling presents numerous 
advantages, when compared to the other techniques, due to the high sensitivity of 
the fluorescence technique and also due to its non-destructive nature that allows 
the use of small sample quantities and their fluorescent labels. The fluorescence 
process occurs in certain molecules called fluorophores or fluorescent dyes, and a 
fluorescent probe is nothing more than a fluorophore enabled to detect particular 
components of complex biomolecular assemblies, including live cells, with com-
plex sensitivity and selectivity [10]. The organic fluorophores may form covalent 
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or non-covalent linkages with the sample to be analyzed, producing the respec-
tive bioconjugates (or complexes) that can show fluorescence, from short to very 
long wavelengths, depending on the label used. The bioconjugation technique 
depends on two interrelated chemistries: the reactive functionality present on the 
fluorescent label and the functional groups present on the target biomolecules to 
be labeled. The knowledge of the basic mechanisms by which the reactive groups 
couple to target functionalities provides the means to intelligently design the 
bioconjugation strategy. Choosing the correct fluorescent label that can react with 
the chemical groups available on target biomolecules forms the basis for successful 
labelling [11].

In general, the fluorescent label should be small in size and chemically stable, 
with minimal interference on the structure and biological functions of the unla-
beled biomolecules, producing high fluorescence quantum yield bioconjugates.

On the other hand, the labelling reaction should be extremely efficient with high 
yields, preferably establishing a stable covalent linkage between the fluorescent 
label and a specific residue in the target biomolecule. The efficiency and selectivity 
of several fluorescent-labeled biomolecules have been used to study and understand 
their dynamics, kinetics, and photophysical properties [12–18].

The amine reactive fluorescent labels are the most frequently used to prepare 
stable bioconjugates to a great number of biological applications since amino groups 
are either abundant or easily introduced into biomolecules. In contrast, to study 
some particular protein structures and functions, thiol-reactive reagents are chosen 
due to the smaller presence of thiol groups, when compared with lysine, in biomole-
cules [19]. In this context, cysteine is generally the amino acid chosen to label when 
it is desired to label selectively a protein in vitro, due to its relatively low abundance 
and high nucleophilicity compared to other amino acid side chains. Specific and 
noninterfering dual fluorescent labelling in a peptide or protein molecule allows 
conformational investigations in terms of intramolecular distances [20].

The expeditious development of the fluorescent-labelling techniques allowed to 
explore and discover several cellular functions. To study, and understand, the activity 
of signal transduction by visualizing protein binding or folding, the fluorescence cor-
relation spectroscopy (FCS) and the fluorescence resonance energy transfer (FRET) 
are widely used [21]. Molecular tags that specifically bind to particular membrane-
permeable dyes [22] allow to study protein dynamics and trafficking by fluorescence 
recovery after photobleaching (FRAP) as well the protein turnover [23, 24].

The great development of fluorescent-labelling techniques combined with the 
enormous technological advances in the field of fluorescence microscopy allowed to 
study, in vivo and in vitro systems, the protein distribution as well as their transloca-
tion and their interactions [25]. With specific and efficient fluorescent labelling, 
the proteins can be visualized in real time for the elucidation of their functions in a 
complex biological network, which also allows the detection of the protein-protein 
interactions, fundamental to understand intra- and intercellular communications [26].

Coumarins (benzopyranones or 2H-chromen-2-ones), whether natural products 
or synthetic ones, have also aroused a growing interest of the scientific com-
munity in the last decades due to their very significant pharmacological activity 
[27–37]. The nature and substitution pattern in the coumarins grant them diversi-
fied and exceptional optical properties with high fluorescence quantum yields 
[38]. Coumarins constitute the major class of fluorescent dyes [39–63], used as 
fluorescent labels and probes for physiological measurement [43–47], fluorescent 
whiteners [48], optical brighteners [49, 50], nonlinear optical chromophores 
[51–53], emission layers in organic light-emitting diodes (OLED) [54–57], and 
more recently, in caging [58–61], and labelling [62, 63]. Due to strong blue fluo-
rescence of coumarin, it is easy to distinguish its light from green, yellow, and red, 
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an enormous advantage in multicolored fluorescence investigation. Developments 
from the last decade show that the introduction of appropriated substituents into 
the coumarin ring contributes to structures with improved photophysical and spec-
troscopic properties [64–66]. The synthesis of new fluorophores, with absorption 
and emission at long wavelengths, is of extreme importance for biological purposes, 
and the coumarins may play a leading role in this field.

2. Chemical labelling

Of all different fluorescent-labelling techniques, the chemical labelling is actu-
ally one of the most used as it allows novel types of experiments in biomolecules 
using a wider range of reactive fluorescent chromophores available. The covalent 
attachment of the chemical probes with specific amino acid has the advantage of 
being an irreversible process when compared to the non-covalent binding [67]. 
The chemical labelling methodology produces very stable bioconjugates, easy to 
manipulate with high efficiency, in a great number of available fluorophores that 
can be coupled covalently to the target biomolecule. Chemical labelling methods 
produce better results in in vitro studies rather than in vivo [18]. The most used 
methods in chemical labelling, in the biomolecules’ native functional groups, under 
mild aqueous conditions, and using fluorescent coumarins, are discussed below.

2.1 Amine reactive fluorescent coumarins

Presently, amine reactive fluorescent coumarins are widely used to label 
biomolecules, as peptides, proteins, oligonucleotides, and nucleic acids, among 
others. The fluorescent bioconjugates obtained are very useful in fluorescence in 
situ hybridization (FISH), receptor labelling immunochemistry, cell tracing, and 
fluorescent analog cytochemistry studies. Almost all of the techniques used in these 
tests implicate a robust fluorescent conjugate able to support rigorous incubation, 
hybridization, and washing steps, which is provided by the stability of the covalent 
bond between the amine reactive dye and biomolecule. Chemically, the amine 
labelling reaction proceeds usually through acylation pathway producing stable 
amide (or thiourea) bonds. The “ideal” reactions are those which require the same 
conditions as proteins, like functional group tolerance, compatibility, selectivity, 
water as solvent (or pH ~ 7), room temperature, high reaction rates, low reactant 
concentration, and nontoxic reagents.

A number of fluorescent amino-reactive coumarins have been developed to label 
various biomolecules, and the resultant conjugates are widely used in biological 
applications. Four major classes of amine-reactive fluorescent reagents are currently 
used to label biomolecules: succinimidyl esters (SE), 4-sulfotetrafluorophenyl 
(STP) esters, sulfonyl chlorides, and isothiocyanates [68]. Figure 1 represents, in 
a general schematic diagram, the referred labelling reactions, between an amine 
group of a biomolecule and a fluorescent amino-reactive coumarin.

2.1.1 Fluorescent coumarin succinimidyl esters

Succinimidyl esters (SE) are proven to be very good reagents for amine modi-
fications. These kinds of reagents are generally stable and show good reactivity 
and selectivity with aliphatic amines, such as the amine group of lysine side chain. 
Some of these kinds of reactive dyes are hydrophobic molecules and should be 
previously dissolved in anhydrous dimethylformamide (DMF) or dimethylsulfoxide 
(DMSO), but the sulfo-succinimidyl esters are water soluble. The amine labelling 
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reaction with succinimidyl esters has a handicap, due to its great pH dependence. 
Succinimidyl esters react with non-protonated aliphatic amine groups, and the 
amine acylation reaction must be carried out at pH > 7.5. In the specific case of 
protein labelling by succinimidyl esters, the reactions require a pH between 7.5 and 
8.5. Buffers used in labelling reactions shall not contain nucleophilic compounds 
because they may react with the labelling reagent to form unstable intermedi-
ates that could destroy the reactive dye. Most conjugations are done at room 
temperature, but either high or low temperature may be required for a particular 
labelling reaction. Some of the fluorescent coumarin succinimidyl esters contain a 
seven-atom aminohexanoyl spacer between the fluorophore and the reactive group, 
providing better solubility and spatial separation between the fluorophore and 
the target molecule being labeled. This separation potentially reduces the quench-
ing that typically occurs upon conjugation and makes the dye more available for 
recognition by secondary detection reagents [68]. The most important fluorescent 
coumarin succinimidyl esters used for labelling biomolecules are shown in Table 1, 
as the corresponding values of maximal excitation (Ex) and emission (Em) wave-
lengths and their physicochemical features and biological applications [19, 68].

2.1.2 Fluorescent coumarin 4-sulfotetrafluorophenyl (STP) esters

Some succinimidyl esters may not be compatible with a specific application 
due to their insolubility in aqueous solution. To overcome these limitations, the 
4- sulfotetrafluorophenyl (STP) ester can be used. These sulfonated esters have higher 
water solubility than simple succinimidyl esters and sometimes eliminate the need for 
organic solvents in the conjugation reaction, which is a great advantage to maintain 
the native characteristics of biomolecules. They are, however, more polar than suc-
cinimidyl esters, which makes them less likely to react with buried amines in proteins 
or to penetrate cell membranes [68, 94]. Table 2 presents the single fluorescent 
coumarin 4-sulfotetrafluorophenyl (STP) ester used for labelling biomolecules, as the 
corresponding values of maximal excitation (Ex) and emission (Em) wavelengths 
and their physicochemical features and biological applications [95, 96].

2.1.3 Fluorescent coumarin sulfonyl chlorides

Sulfonyl chlorides (SC) are highly reactive and are unstable in water, especially 
at high pH required for reaction with aliphatic amines. The labelling reactions with 
sulfonyl chlorides must be performed, carefully, at very low temperature in a place 
with local exhaust ventilation. Sulfonyl chlorides present a major reactive handicap 
as they can also easily react with other reactive groups present in biomolecules as 
phenols, thiols, aliphatic alcohols, imidazoles, and many others. Fortunately, this 

Figure 1. 
Schematic diagram of amine labelling techniques using succinimidyl esters (A), 4-sulfotetrafluorophenyl esters 
(B), sulfonyl chlorides (C), and isothiocyanates (D).
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kind of reactions rarely occurs in proteins or in aqueous solution, allowing the use 
of this type of chromophores to label proteins. Sulfonyl chloride dyes are generally 
hydrophobic molecules and should be dissolved in anhydrous dimethylformamide 
(DMF), but never in dimethylsulfoxide (DMSO) due to their highly instability in 
this solvent.

The labelling reactions of amines with SC reagents are strongly pH dependent, 
and the sulfonylation-based conjugations may require a pH 9.0–10.0 for optimal 
conjugations, which potentiates the sulfonyl chlorides’ degradation by hydrolysis 
reactions. In general, sulfonylation-based conjugations have much lower yields 
than the succinimidyl ester-based conjugations. As in the case of succinimidyl 
esters, the buffers used in sulfonyl chloride reactions shall not contain nucleophilic 
compounds, because they may react with the labelling reagent to form unstable 

Coumarin Ex/Em 

(nm)

Physicochemical features 

and biological applications

Ref.

2,5-dioxopyrrolidin-1-yl-7-
diethylaminocoumarin-3-carboxylate (DEAC 
SE)

432/472 Strong blue-fluorescent 
bioconjugates. Quite 

hydrophobic fluorescent dye, 
used for labelling live cells

[19, 
69–72]

2,5-dioxopyrrolidin-1-yl 
7-hydroxycoumarin-3-carboxylate

363/447 One of the most popular 
blue-fluorescent dyes for 

labelling proteins and nucleic 
acids and increasingly used 

to label peptides, nucleotides, 
and carbohydrates

[19, 73]

2,5-dioxopyrrolidin-1-yl 2-(7-hydroxy-4-
methylcoumarin) acetate

364/458 Widely used for 
preparing bioconjugates 

of blue fluorescence 
but pH-dependent and 
environment-sensitive 

fluorescence

[19, 74, 
75]

2,5-dioxopyrrolidin-1-yl 
7-methoxycoumarin-3-carboxylate

358/410 Used to label peptides and 
nucleotides with strong blue 
fluorescence and also used 

to label cell membranes 
although its fluorescence is 

quite short

[19, 72, 
76, 77]

2,5-dioxopyrrolidin-1-yl 2-(7-amino-4-
methylcoumarin-3-yl)acetate

350/450 Used for fluorohistochemical 
examination of human 

kidney glomeruli. Reacts 
under mild conditions

[78, 79]
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Coumarin Ex/Em 

(nm)

Physicochemical features 

and biological applications

Ref.

7-amino-3-(2-((2,5-dioxo-pyrrolidin-1-yl)
oxy)-2-oxoethyl)-4-methylcoumarin-6-sulfonic 
acid (Alexa Fluor™ 350 SE)

346/442 Blue-fluorescent dye, water 
soluble and pH insensitive 

from pH 4 to pH 10, used for 
stable signal generation in 

imaging and flow cytometry

[68, 
80–83]

Triethylammonium (9-(6-((2,5-dioxopyrrolidin-
1-yl)oxy)-6-oxohexyl)-8,8-dimethyl-2-oxo-4-
(trifluoromethyl)-8,9-dihydro-2H-pyrano[3,2-g]
quinolin-6-yl)methanesulfonate (Alexa Fluor™ 
430 SE)

430/545 Bright green-fluorescent 
dye, water soluble and pH 
insensitive from pH 4 to 

pH 10. Used for stable signal 
generation in imaging and 

flow cytometry

[68, 80, 
81, 84, 

85]

2,5-dioxopyrrolidin-1-yl 6,8-difluoro-7-
hydroxycoumarin-3-carboxylate (Pacific Blue™ 
SE)

410/455 Conjugates of this dye are 
strongly fluorescent even at 
neutral pH. Ideally suited 

for 405 nm violet diode laser 
excitation on the Applied 

Biosystems® Attune™ 
Acoustic Focusing cytometer 

and similarly equipped 
fluorescence microscopes

[68, 
86–88]

2,5-dioxopyrrolidin-1-yl 2-(6,8-difluoro-7-
hydroxy-4-methylcoumarin-3-yl)acetate 
(Marina Blue™ SE)

365/460 Conjugates that are strongly 
fluorescent, even at neutral 

pH. Optimally detected using 
optical filters configured 

for 4′,6-diamidino-2-
phenylindole (DAPI)

[68]

2,5-dioxopyrrolidin-1-yl 6-(2-(7-amino-4-
methylcoumarin-3-yl)acetamido)hexanoate 
(AMCA-X SE)

353/442 Conjugates yield blue 
fluorescence that can be 

used as a contrasting color 
in multicolor applications. 

Because its fluorescence 
may not be as bright 
as that of other dyes 

or may be obscured by 
autofluorescence, it is only 
recommended for use with 

highly abundant targets

[68, 
89–91]
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intermediates that could destroy the reactive dye [19, 97–99]. Table 3 shows 
fluorescent coumarin sulfonyl chlorides used for labelling biomolecules, as the 
corresponding values of maximal excitation (Ex) and emission (Em) wavelengths 
and their physicochemical features and biological applications. In addition to 
the coumarins presented in Table 3, new sulfonyl chloride coumarins have been 
developed, with high potential as fluorescent probes [100, 101].

2.1.4 Fluorescent coumarin isothiocyanates

Isothiocyanates form thioureas upon reaction with amines, but some thiourea 
products are much less stable than the conjugates that are prepared from the 
corresponding succinimidyl esters. Most part of isothiocyanate-reactive dyes are 
 hydrophobic molecules and should be dissolved either in anhydrous dimethylfor-
mamide (DMF) or in dimethylsulfoxide (DMSO), and their reactions may require 
a pH 9.0–10.0 for optimal conjugations. As in the previous cases, the buffers used 
shall not contain nucleophilic compounds. The isothiocyanate conjugations are 
done at room temperature, but either high or low temperature may be required for 
a particular labelling reaction [19, 102]. The unique fluorescent coumarin isothio-
cyanate used for labelling biomolecules is shown in Table 4, but new isothiocya-
nate coumarins have been synthesized, with high potential as fluorescent probes 
[103, 104].

2.2 Thiol-reactive fluorescent coumarins

Cysteine is, in comparison with lysine, a rare amino acid present in biomol-
ecules, and, for this reason, thiol-reactive reagents are used to label selectively a 
biomolecule at a defined site, probing their function, interaction, and biological 
structure. A great number of thiol-reactive dyes have been developed to analyze the 
proteins’ topography in biological membranes, to measure the distances within (or 
between) proteins, and to observe and understand the changes in protein confor-
mation using environmental sensitive probes.

Maleimides and iodoacetamides are the principal types of thiol-reactive coumarin 
dyes reported in the literature. Despite many similarities in their reactivity and selec-
tivity toward thiol-reactive moieties, maleimides have a great advantage in relation to 
iodoacetamides, due to their high stability, solubility in simple solvent mixtures, and 
their high reactivity in the neutral pH range. Air oxidation of thiol compounds (to 

Coumarin Ex/Em 

(nm)

Physicochemical features 

and biological applications

Ref.

2,5-dioxopyrrolidin-1-yl 6-(11-oxo-2,3,5,6,7,11-
hexahydro-1H-pyrano[2,3-f]pyrido[3,2,1-ij]
quinoline-10-carboxamido)hexanoate 
(Coumarin 343 X SE)

437/477 Blue-emitting coumarin can 
be used to design fluorescence 

resonance energy transfer 
(FRET)-based assays with 
fluorescein amidite (FAM) 
as acceptor and to construct 
systems which harvest blue 

light energy

[92, 93]

Table 1. 
Fluorescent coumarin succinimidyl esters used for biomolecule labelling.
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disulfides) is a major competing reaction for the iodoacetamide modifications of thiol 
compounds [18, 19, 105]. Due to the disinterest on the development of new coumarin 
iodoacetamides, for the above reasons, only the fluorescent coumarin maleimides will 
be focused in this section. Figure 2 represents, in a general schematic diagram, the 
thiol-labelling reaction with fluorescent coumarin maleimides.

Coumarin Ex/Em 

(nm)

Physicochemical features and 

biological applications

Ref.

Coumarin-6-sulfonyl chloride

360/460 Used to label amines, amino acids, 
and phenols in mild conditions. 

Fluorescence produced in alkaline 
solution or in the presence of 

β-cyclodextrin

[99, 
100]

2-(benzo[d]thiazol-2-yl)-3-oxo-3H-
benzo[f]chromene-9-sulfonyl chloride

405/435 Biosensor sensitive toward polarity 
changes in bio environments

[101]

Table 3. 
Fluorescent coumarin sulfonyl chlorides used for biomolecule labelling.

Coumarin Ex/Em 

(nm)

Physicochemical features and 

biological applications

Ref.

Sodium (E)-4-((4-(2-(6,7-
dimethoxycoumarin-3-yl)vinyl)benzoyl)
oxy)-2,3,5,6-tetrafluorobenzenesulfonate

392/490 Used to label proteins and 
nucleotides with strong blue 

fluorescence. Blue-fluorescent 
dye, water soluble and pH 
insensitive with excellent 

photostability

[95, 
96]

Table 2. 
Fluorescent coumarin 4-sulfotetrafluorophenyl (STP) ester used for biomolecule labelling.

Coumarin Ex/Em 

(nm)

Physicochemical features 

and biological applications

Ref.

3-(benzo[d]
thiazol-2-yl)-7-isothiocyanatocoumarin

485/535
(conjug.)

Selective determination of flu 
antigen

[102]

Table 4. 
Fluorescent coumarin isothiocyanate used for biomolecule labelling.
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2.2.1 Fluorescent coumarin maleimides

Maleimides readily react with thiol moieties of biomolecules to form thioether 
conjugates even under neutral conditions. The thioether bond formed is quite 
stable and is known to be responsible for the light produced, especially in the 
solution. Maleimides require conjugation conditions less rigorous than those of 
iodoacetamides and do not react with histidine and methionine under physiological 
conditions. Most labelling reactions can be done at room temperature at neutral 
pH. However, either elevated or reduced pH or temperature may be required for a 
particular labelling reaction [18, 19, 68]. In Table 5, the most important fluorescent 
coumarin maleimides used for labelling biomolecules are presented, as the cor-
responding values of maximal excitation (Ex) and emission (Em) wavelengths and 
their physicochemical features and biological applications.

2.3 Tyrosine-reactive fluorescent coumarins

The hydroxyl groups of the amino acids can be labeled with the same reagents used 
for the lysine residues, but the labelling reaction is carried out in organic solvent, like 
anhydrous dimethylformamide (DMF) or dimethylsulfoxide (DMSO), which absorbs 
the formed water molecule avoiding possible hydrolysis reactions. The amino acid 

Figure 2. 
Schematic diagram of thiol-labelling technique using maleimides.

Coumarin Ex/Em 

(nm)

Physicochemical features 

and biological applications

Reference

Triethylammonium 7-amino-3-(2-((5-(2,5-
dioxo-2,5-dihydro-1H-pyrrol-1-yl)pentyl)
amino)-2-oxoethyl)-4-methylcoumarin-6-
sulfonate (Alexa Fluor™ 350 C5 Maleimide)

345/444 Blue-fluorescent dye, with 
moderate photostability, 

water soluble and pH 
insensitive from pH 4 to 

pH 10, used for stable signal 
generation in imaging and 

flow cytometry

[68, 
80, 81, 

106–108]

N-(5-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)
pentyl)-6,8-difluoro-7-hydroxycoumarin-3-
carboxamide (Pacific Blue™ C5-Maleimide)

410/455 Excellent reagent for 
thiol-selective modification, 

quantitation, and analysis 
and usually requires a 

higher pH than reaction of 
maleimides with thiols. Does 
not react with methionine, 

histidine, or tyrosine

[68, 80, 
109]
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hydroxyl groups do not allow highly specific labelling reactions due to the existence of 
several hydroxyl groups in biomolecules (serine, threonine, and tyrosine) [113].

One of the well-known labelling methods is the reaction with diazonium salts 
resulting in the formation of azo compounds, as 4-trifluoromethylcoumarin-
7-diazonium chloride [114]. Although these aryl diazonium ions are promising for 
the desired application, their storage and delivery are challenging, and they often 
require in situ generation. The pH range should be between 8 and 10 for the forma-
tion of a phenolate anion [115].

3. Concluding remarks

Reactive fluorescent coumarins have been increasingly attracting special interest 
as fluorescent labels, with a wide range of applications in bioimaging and biolabel-
ling, due to their extremely attractive and stable scaffold. Coumarins will allow the 
development of new low-cost fluorescent dyes due to its easy synthesis with high 
yields, large Stokes shift, pH independence of absorbance and emission, and excel-
lent photostability, which represents a great value for the biological fluorescence 
imaging techniques.
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Coumarin Ex/Em 

(nm)

Physicochemical features 

and biological applications

Reference

1-(4-(7-(diethylamino)-4-methylcoumarin-
3-yl)phenyl)-1H-pyrrole-2,5-dione

391/472 Labelling of protein thiol 
groups in tissue sections. 
Fluorescence probe for 

glutathione intact cells Used 
to monitor release of thiols, to 
quantitate thiol in microplate 
reactions, and to distinguish 
proliferating cancer cells by 

nuclear protein staining

[68, 105]

7-(diethylamino)-N-(2-(2,5-dioxo-2,5-dihydro-
1H-pyrrol-1-yl)ethyl)coumarin-3-carboxamide

419/467 Used as a fluorescent 
biological sensing device and 
for real-time measurements 
for the release of inorganic 

phosphates during enzymatic 
reaction. Also, used for 

intramolecular fluorescence 
energy transfer (FRET) 

experiments

[68, 
110–112]

Table 5. 
Fluorescent coumarin maleimides used for biomolecule labelling.
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