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Abstract

Modelling tra�c �ow has been around since the appearance of tra�c jams. Ideally, if we can

correctly predict the behavior of vehicle �ow given an initial set of data, then adjusting the

�ow in crucial areas can maximize the overall throughput of tra�c along a stretch of road.

We consider a mathematical model for tra�c �ow on single land and without exits or

entries. So, we are just observing what happens as time evolves if we �x at initial time (t = 0)

some special distribution of cars (initial datum u0). Because we do approximations, we need

the notion of convergence and its corresponding topology. The numerical approximation of

scalar conservation laws is carried out by using conservative methods such as the Lax-Friedrichs

and the Lax-Wendro� schemes.

The Lax-Friedrichs scheme gives regular numerical solutions even when the exact solution

is discontinuous (shock waves). We say the scheme is di�usive meaning that the scheme is

solving in fact an evolution equation of the form ut+f(u)x = εuxx, where ε is a small parameter

depending on ∆x and ∆t.

The Lax-Wendro� scheme is more precise than the Lax-Friedrichs scheme, and give the

right position of the discontinuities for the shock waves. But it develop oscillations. We say the

scheme is dispersive what means the scheme is solving approximatively an evolution equation

of the form ut + f(u)x = δuxxx, where δ is a small parameter depending on ∆x and ∆t.

An elaboration and an implementation of Lax-Friedrichs schemes and of Lax-Wendro�

schemes even extended to second order provided numerical solutions to the problem of tra�c

�ows on the road. Since along the roads the schemes present the same features as for conser-

vation laws, the new and original aspect is given by the treatment of the solution at junctions.

Our tests show the e�ectiveness of the approximations, revealing that Lax-Wendro� schemes

is more accurate than Lax-Friedrichs schemes.
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Chapter 1

Introduction

Interest in modelling tra�c �ow has been around since the appearance of tra�c jams. Ideally, if

we can correctly predict the behavior of vehicle �ow given an initial set of data, then adjusting

the �ow in crucial areas can maximize the overall throughput of tra�c along a stretch of road.

This is of particular importance in regions of high tra�c density, which may be caused by high

volume peak time tra�c, accidents, closure of some road lanes, etc.. Also this is an important

issue as its impact in pollution, well-being or economy are huge.

More recently, following tra�c �ow theory, people are developing too pedestrian evacuation

dynamic systems. In many ways both problems are similar. Thus it is natural that similar

mathematical approaches could be applied to model the vehicle tra�c �ows and the pedes-

trian evacuation �ows. E.g., in our case we are concerned with systems of partial di�erential

equations and escape exit strategies are modelled as sink terms in those equations.

So, from the mathematical point of view we want to model such dynamical systems as

partial di�erential equations (for short, PDEs) of evolution type (with time variable; thus):

parabolic or hyperbolic PDEs like the ones in use to model �uid dynamics. But since we

want to capture tra�c jam phenomena, we are mainly concerned with hyperbolic PDEs as

they develop shocks which provide our jam mathematical description. To be more speci�c,

we will work with macroscopic balance models given by �rst order PDEs having divergence

form, called hyperbolic conservation laws. It is well known that such models have solutions

that develop discontinuities (shocks) at �nite time, providing the jam prevision.

Meanwhile, the calculus and analysis with discontinuous functions is a hard task. From the

functional analysis point of view we need work with spaces of discontinuous functions. And

the theory for systems of hyperbolic conservation laws is an almost full open area of PDEs.
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Actually both mathematical and numerical analysis of those problems are very active areas of

research.

It is the goal of this dissertation to introduce me at this area. Then to achieve that goal,

our study will be focused in a few and fundamental aspects. We will simplify as much as

possible the technical and theoretical non essential di�culties, e.g., we will look for the case

of just one equation, in 1-dimension of space, without source or sink terms. Of course, such

mathematical assumptions are related with severe restrictions on real tra�c problems: we

consider just a single-lane without either cross points, exits or entries... In fact, even in such

simple situation jams occur (according experiences) and the mathematical essential di�culty

(discontinuities) is still there.

In chapter 2 we will brie�y present a toy model for such simpli�ed tra�c �ow, in chapter 3

we will be concerned with the role of a number of important, basic, inequalities in functional

analysis of normed spaces, then in the last chapter 4 we will work with the Lax-Friedrich and

Lax-Wendro� numerical schemes, specially drawn to deal with discontinuous solutions.
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Chapter 2

Modelling tra�c

2.1 Conservation Laws

Consider a �ow of mass, heat, ..., in a long narrow region (a tube) of space (the x-axis)

and let u(x, t) and φ(x, t) denote respectively its density ([quantity] [volume]−1) and its �ux1

([quantity] [area]−1[time]−1), both functions of position x and time t assuming that density

and �ux keep constant in each perpendicular section of the tube2.

The amount of that quantity (mass, heat, ...) in a tube interval, say a ≤ x ≤ b, at

each instant of time, t, is given by the
∫ b
a u(x, t) dx. So, its rate of variation is given by the

d
dt

∫ b
a u(x, t) dx. But, this is the net �ux into the interval a ≤ x ≤ b which is also given by

φ(b, t)− φ(a, t):

we deduce that

d

dt

∫ b

a
u(x, t) dx = φ(b, t)− φ(a, t) ⇐⇒ (2.1)∫ b

a

∂u

∂t
(x, t) dx =

∫ b

a

∂φ

∂x
(x, t) dx ⇐⇒ (2.2)∫ b

a
ut + φx dx = 0 (2.3)

1The product of density by velocity ([quantity] [volume]−1×[length][time]−1).
2Each section corresponds to a �xed value of x for which u and φ have no variation in the (y, z) directions.
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and, because [a, b] is arbitrary, this implies the next conservation law holds at every (x, t)

ut + φx = 0 .

Now to close the equation we do the assumption that φ = f(u), meaning that the �ux

depends solely upon the density. It is given by some known, physical, constitutive law, in

general nonlinear. Our model, PDE, to rule this kind of phenomena is then given by the

nonlinear transport equation

ut + f(u)x = 0 . (2.4)

2.2 The Model of tra�c �ow

Following the ideas in the last section, we will apply here the nonlinear transport equation

as a toy model for tra�c �ow: we are looking for a long road with a single lane and without

exits or entries. So, we are just observing what happens as time evolves if we �x at initial

time (t = 0) some spacial distribution of cars (initial datum u0).

We consider then the initial value problem for the conservation law of cars number density
∂tu+ ∂xf(u) = 0, (x, t) ∈ R× R+

u(x, 0) = u0(x), x ∈ R
(2.5)

where:

• u = u(x, t) ∈ [0, umax] represents the density of cars which cannot overpass a maximum

value of cars on the road, the saturation point umax;

• f(u) = u v is the �ux of cars because v = v(x, t) is the local speed of the cars, which

to full accomplish with the assumptions in the previous section must depend upon the

density: v = v(u). And it is natural to assume that v is a decreasing function of the

density such that v(umax) = 0.

If v = v(u) is regular enough, then f : [0, umax] → [0,+∞[ as u, v ≥ 0 implies f(u) =

u v(u) ≥ 0. Then f(0) = 0 = f(umax), f ′(u) = v(u) + u v′(u), f ′′(u) = 2v′(u) + u v′′(u).

So f ′(0) = v(0) = vmax > 0, f ′(umax) = umax v
′(umax) ≤ 0, f ′′(0) = 2v′(0) ≤ 0.

• for simplicity take v(u) = vmax

(
1− u

umax

)
, then f(u) = uvmax

(
1− u

umax

)
is a concave

function. In fact doing a normalization we can just �x our attention in the model:
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ut + (u(1− u))x = 0, (x, t) ∈ R× R+

u(x, 0) = u0(x), x ∈ R
. (2.6)

Because the PDE is hyperbolic, for general initial datum its solutions develop discontinuities

and are nonunique. We need a criterium to select a unique solution (the physically meaningful

one):

Entropy criterium: A solution u of Problem 2.5 is said an entropy solution if for any pair

(η, q) with a convex function η such that η′(u)f ′(u) = q′(u) it veri�es the following entropy

inequalities

η(u)t + q(u)x ≤ 0 . (2.7)

This criterium can be justi�ed in the following manner. In our tra�c model if we consider

the e�ect on drivers of the increasing density of cars in the road (given by ux), we must wait

that drivers will decrease the velocity. Then, in the right-hand side of the PDE we must add

a term like εuxx3 with a small positive ε coe�cient (say a coe�cient of �viscosity�):
∂tu+ ∂xf(u) = εuxx, (x, t) ∈ R× R+

u(x, 0) = u0(x), x ∈ R
. (2.8)

This a parabolic PDE having regular solutions. When ε → 0 the equation (2.8) converges to

the equation (2.5) and so it is for their solutions: the solutions of (2.8) as ε → 0 converge to

the entropy solution of (2.5). (This is the celebrated `vanishing viscosity method').

2.3 Riemann Problem

2.3.1 Case of the general hyperbolic equation

We will consider the Riemann problem

ut + f(u)x = 0, (x, t) ∈ R× R+ (2.9)

with initial condition

u(x, 0) = u0(x) =


ul, x < 0,

ur, x > 0.

(2.10)

3Actually we are considering instead of the term ∂xf(u), the term ∂x (f(u)− εux).
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It is a conservation law together with piecewise constant data having a single discontinuity.

If u(x, t) is a solution, then u(λt, λx) is also a solution.

Thus, it is natural to consider solutions of the form

u(x, t) = U(x/t)

It turns out there are three cases (when f is concave):

• If ul = ur, then u = u0 is the entropy solution.

• If ul < ur, (f ′(ul) > f ′(ur)), then

u(x, t) =


ul, x < σt,

ur, x > σt,

where σ satis�es the jump condition (Rankine-Hugoniot)

σ =
f(ul)− f(ur)

ul − ur
.

Such a solution is called shock wave.

• If ul > ur (f ′(ul) < f ′(ur)), then we try to �nd a smooth solution of the form U(x/t).

The equation becomes

U ′(x/t)

[
− x
t2

+ f ′(U)
1

t

]
= 0

which reduces to

−x
t

+ f ′(U) = 0

if we assume that U ′ 6= 0 everywhere, we get U = (f ′)−1 and

u(x, t) =


ul, x ≤ f ′(ul)t,

U(x/t), f ′(ul)t < x < f ′(ur)t,

ur, x ≥ f ′(ur)t.

Such a solution is called a rarefaction wave.
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2.3.2 Application to the tra�c �ow model

Here we consider the Riemann problem (2.9)-(2.10) where the �ux function is given by f(u) =

u(1 − u). This function is concave since f ′′(u) = −2 < 0. Thus, following the previous

paragraph the exact entropy solution of the Riemann problem is given as follows:

• If ul = ur, then u = u0 is the entropy solution.

• If ul < ur, (f ′(ul) > f ′(ur)), the entropy solution is a shock wave with speed σ where

σ =
f(ur)− f(ul)

ur − ul

=
ur(1− ur)− ul(1− ul)

ur − ul
= 1− (ur + ul).

Thus, u writes

u(x, t) =


ul, x < (1− (ur + ul))t,

ur, x > (1− (ur + ul))t,

• If ul > ur (f ′(ul) < f ′(ur)), then the entropy solution is a rarefaction wave. Following

the notations given for general case we have

x

t
= f ′(U) = 1− 2U.

Thus,

U(x/t) =
1− x

t

2
=
t− x

2t

and u is given by

u(x, t) =


ul, x ≤ (1− 2ul)t,

t−x
2t , (1− 2ul)t < x < (1− 2ur)t,

ur, x ≥ (1− 2ur)t.

Such a solution is called a rarefaction wave.
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Chapter 3

Inequalities in Banach Spaces

In our study the functions we are working with are often discontinuous, still we have to operate

between such functions, approximate them, etc.. So, we need concern with the algebra and the

topology of such classes of functions (functional analysis). Here, we will consider appropriate

vector subspaces of the real vector space F of all the applications f : R→ R (by `application'

we mean a function de�ned in the full R) with the usual operations of addition between

functions and product of functions by real numbers.

To be explicit, we would like to work with the spaces of Lebesgue integrable functions

Lp (R) =

{
f : R→ R |

∫
R
|f(x)|p dx < +∞

}
( p ∈ [1,+∞] ) .

However, to avoid the technicalities related with the Lebesgue integral and just retain the

essentials behind the construction of Banach spaces, we will instead study the case of the

�small� Lebesgue spaces lp(R) which we will de�ne a few lines bellow in Prop. 3.1.6.

The emphasis in this chapter is on the ubiquitous role of inequalities as a basic tool to

introduce an develop both algebraic and topological concepts we need to de�ne and to work

in Banach spaces.

Before to start that study we want to keep here just two basic and �frustrating� examples

enrolling continuous functions. They are a simultaneous motivation of how natural it is to

work with discontinuous functions and why we need the more general theory of Lebesgue

integrable functions.

Example 3.0.1 Let {fn}n∈N be the sequence of continuous functions fn : [0, 1] → R de�ned

8



by fn(x) = xn. This sequence converges pointwise to the limit function f : [0, 1]→ R given by

f(x) =


0, if 0 ≤ x < 1

1, if x = 1

,

which is a discontinuous function.

Example 3.0.2 Consider the sequence {fn}n≥2 of continuous functions fn : [0, 1]→ R de�ned

by

fn(x) =


n2x, if 0 ≤ x ≤ 1

n

n2
(
2
n − x

)
, if 1

n ≤ x ≤
2
n

0, if 2
n ≤ x ≤ 1

.

This sequence converges pointwise to the continuous limit function f : [0, 1] → R given by

f(x) ≡ 0. Now, because these functions are continuous on [0, 1] they are Riemann integrable

Figure 3.1: Riemann integrable functions

functions on [0, 1], in fact we compute the integrals
∫ 1
0 fn(x) dx ≡ 1 and

∫ 1
0 f(x) dx = 0, but

1 = lim
n→+∞

∫ 1

0
fn(x) dx 6=

∫ 1

0
lim

n→+∞
fn(x) dx = 0 .

3.1 Linear spaces

Now, we want to remember from linear algebra the de�nitions of vector (or linear) space and

subspace as to �x some notation and results which will be in use.

9



De�nition 3.1.1 We say (V,+, ·) is a real vector space if V is a set and + : V × V → V ,

· : R× V → V are operations1 subjected to the following axioms:

Commutative law: ∀u, v ∈ V u+ v = v + u.

Associative law: ∀u, v, w ∈ V u+ (v + w) = (u+ v) + w.

Zero vector: ∃0 ∈ V : ∀v ∈ V v + 0 = v, i.e., there exists in V an additive identity

element, named `zero' and noted 0.

Symmetric vector: ∀v∈V ∃x ∈ V : v+x = 0, such vector x is called the symmetric

of v and its notation is −v.

Distributive law: ∀k ∈ R ∀u, v ∈ V k(u+ v) = ku+ kv.

Distributive law: ∀k, λ ∈ R ∀v ∈ V (k + λ)v = kv + λv.

Associative law: ∀k, λ ∈ R ∀v ∈ V k(λv) = (kλ)v.

Unit: ∀v ∈ V 1v = v.

De�nition 3.1.2 Given two real vector spaces (V,+, ·) and (S,+, ·), we say that (S,+, ·) is

a vector or linear subspace of (V,+, ·), notation (S,+, ·) ≤ (V,+, ·) or for shortness S ≤ V ,

when S is a subset of V , S ⊂ V , and both the operations on S are the restrictions of the

operations on V to S (we say �the same� of V ).

Proposition 3.1.3 Let (V,+, ·) and S be respectively a vector space and a non-empty subset

of V , ∅ 6= S ⊂ V . Then (S,+, ·) is a subspace of the vector space (V,+, ·) i�

S is closed about the addition: ∀u, v ∈ S u+ v ∈ S.
1Abstract ones but still named `addition' and `multiplication by scalars' to keep our intuition about. In

the same line, instead of the notation +(u, v) for the addition of u, v ∈ V we will use u + v and for a given

scalar k ∈ R and vector v ∈ V we will write kv instead of ·(k, v). Remark that using the original notation

the commutative law should be written as +(u, v) = +(v, u) and the associative law as +(u,+(v, w)) =

+(+(u, v), w), somewhat hard to decipher. Finally, `operations' are applications, meaning that the domain in

the case of addition is the full V × V and of multiplication it is the full R× V .
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S is closed about the multiplication: ∀k ∈ R ∀v ∈ S kv ∈ S.

Proposition 3.1.4 Consider the set of all the real applications with domain R,

F = {f : R→ R | the domain of f is R} .

Given a subset A ⊂ R and f ∈ F , de�ne the application with domain A, called the restriction

of f to A, f |A : A→ R by f |A(x) = f(x) for any x ∈ A. Finally let, for a �xed subset A, be

F|A = {f |A : A→ R | f ∈ F} .

Assuming that (F ,+, ·) is a real vector space, then (F|A,+, ·) is too a real vector space for

�the same� operations.

As a consequence of this last proposition, if we �x the subset A = {1, 2, 3, · · · , n} for some

natural number n or A = N, then we conclude at once that both the sets of �nite and in�nite

sequences of real numbers, with the usual operations, are real vector spaces.

Most usually we represent such �nite sequences, applications f : {1, 2, 3, · · · , n} → R

with y = f(x), in extension as (f(1), f(2), f(3), · · · , f(n)) or to simplify (y1, y2, y3, · · · , yn).

Analogously, for in�nite sequences f : N → R we use commonly the notation (yi)i∈N as

synonym of the in�nite sequence (y1, y2, y3, · · · , yi, · · · ). Thus the notation we will keep for

the set of all the real �nite sequences is, as usually, Rn and for the set of all the real in�nite

sequences it is R∞. Using Prop. 3.1.4 we have the following useful2 result

Corollary 3.1.5 For the usual operations, (Rn,+, ·) and (R∞,+, ·) are real vector spaces.

Now lets introduce the �small� Lebesgue spaces (lp(R),+, ·) as subspaces of the real vector

space (R∞,+, ·).

2More generally and usefully, we could do such construction using any �eld (F,+, ·) instead of the real �eld

(R,+, ·). Then using abstract algebra we would be doing (a beginning of) abstract functional analysis.
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Proposition 3.1.6 For the usual operations and p ∈ ]0,+∞], (lp(R),+, ·) is a real vector

space where

lp(R) =
{

(xi)i∈N ∈ R∞|
+∞∑
i=1

|xi|p < +∞
}

(p > 0) ;

l∞(R) =
{

(xi)i∈N ∈ R∞| ∃L > 0: ∀i ∈ N |xi| ≤ L
}

(p = +∞) .

Proof: We use Prop. 3.1.3 together with the last Cor. 3.1.5. Consider the real vector space

(R∞,+, ·) and his subset lp(R) ⊂ R∞ which is a non empty set (as the null sequence shows).

Let k ∈ R and (xi), (yi) ∈ lp(R) be arbitrary3, then in (R∞,+, ·) we have k (xi) = (kxi),

(xi) + (yi) = (xi + yi), and we have to prove that lp(R) is closed about those operations.

When p = +∞, the sequences in l∞(R) are the bounded sequences and then the sequences

k (xi) and (xi) + (yi) are still bounded, meaning that l∞(R) is closed about the operations +

and ·, done for p = +∞.

When p > 0 (�nite), by hypothesis

+∞∑
i=1

|xi|p < +∞ ,
+∞∑
i=1

|yi|p < +∞ ,

thus lp(R) is closed about the multiplication because

+∞∑
i=1

|kxi|p = |k|p
+∞∑
i=1

|xi|p < +∞ (p > 0) (3.1)

and it is closed too about the addition because for 0 < p ≤ 1

+∞∑
i=1

|xi + yi|p ≤
+∞∑
i=1

|xi|p +
+∞∑
i=1

|yi|p < +∞ (0 < p ≤ 1), (3.2)

where we just need remark that each term in the series veri�es |xi + yi|p ≤ |xi|p + |yi|p if

0 < p ≤ 1, and for p ≥ 14

+∞∑
i=1

|xi + yi|p ≤ 2p−1

(
+∞∑
i=1

|xi|p +

+∞∑
i=1

|yi|p
)
< +∞ (p ≥ 1), (3.3)

where we apply the inequality
∣∣1
2 xi + 1

2 yi
∣∣p ≤ 1

2 (|xi|p + |yi|p) to each term in the series, which

is a consequence of the fact that for p ≥ 1 the function ϕ(x) = |x|p is convex (see below the

Def. 3.2.1).

3We abbreviate the notation using (xi) instead of (xi)i∈N.
4The constant 2p−1 is the best (the smaller) we can get as we see if we consider the case where (xi) = (yi).
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Actually the lp(R) spaces are forming an increasing chain of (sub)spaces (see the next propo-

sition) with maximum term l∞(R) but without minimum term (q ↘ 0+):

· · · < lq(R) < · · · < l1(R) < · · · < lp(R) < · · · < l∞(R).

Proposition 3.1.7 If 0 < p1 ≤ p2 ≤ +∞, then the (lp1(R),+, ·) space is a subspace of the

(lp2(R),+, ·) space, lp1(R) ≤ lp2(R). Moreover they are proper subspaces as lp1(R) $ lp2(R)

for p1 < p2 :

lp1(R) < lp2(R) (p1 < p2). (3.4)

Proof: First we will prove the case for p2 = +∞, each (lp(R),+, ·) space is a subspace of

the (l∞(R),+, ·) space, then we will prove the remaining cases for �nite p1 and p2.

If (xi) ∈ lp(R), then by de�nition
∑
|xi|p is convergent and necessarily limi→+∞ |xi|p = 0.

Such (xi) is a bounded sequence. So lp(R) ⊂ l∞(R) and we proved (by Def. 3.1.2 of subspace)

that (lp(R),+, ·) ≤ (l∞(R),+, ·) for p > 0.

Now if (xi) ∈ lp1(R), let L > 0 be a bound for the sequence (xi) (∀i∈N |xi| ≤ L). Take

p2 ≥ p1, then ∑
i∈N
|xi|p2 =

∑
i∈N
|xi|p1 |xi|p2−p1 ≤ Lp2−p1

∑
i∈N
|xi|p1 < +∞.

Necessarily (xi) ∈ lp2(R), as we had to prove.

Finally, to prove the inclusions are proper we will use the Dirichlet criterium for series.

Remember it: the series
∑

i∈N
1
iα converge for α > 1 and diverge for α ≤ 1. Then we consider

the sequence

(xi)i∈N =

((
1

i

) 1
p1

)
i∈N

for which
∑
i∈N
|xi|p =

+∞∑
i=1

1

iα
with α =

p

p1
.

So (xi) belongs to lp2(R) if p1 < p2 because α = p2
p1
> 1, but (xi) do not belongs to lp1(R)

because α = p1
p1

= 1.

Proposition 3.1.8 For any p ∈ ]0,+∞] and n ∈ N the space (Rn,+, ·) is isomorphic to a

subspace of (lp(R),+, ·).

Proof: There we have the obvious isomorphism between (Rn,+, ·) and the subspace of

(lp(R),+, ·) de�ned by ϕ ((x1, x2, x3, · · · , xn)) = (x1, x2, x3, · · · , xn, 0, · · · , xi, · · · ) such that
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xi = 0 for i ≥ n+ 1.

Because of this isomorphism we do the usual identi�cation of (x1, x2, x3, · · · , xn) ∈ Rn with

(x1, x2, x3, · · · , xn, 0, 0, 0, · · · ) ∈ lp(R). Thus we got the increasing in�nite chain of subspaces:

R < R2 < · · · < Rn < · · · < lq(R) < · · · < l1(R) < · · · < lp(R) < · · · < l∞(R) (3.5)

and notice that the subchain before l1(R) is bi-in�nite having the in�nite discrete part (n ∈ N)

of all the linear spaces Rn preceding all the lq(R) of the in�nite continuum part (0 < q < 1).

The chain has a minimum, R, and a maximum, l∞(R).

As a �nal remark in this section we want to make explicit that all the real linear spaces

lp(R), 0 < p ≤ +∞, have in�nite dimension. This being clear as we exhibit the in�nite set of

linearly independent vectors {(δni )i∈N}n∈N ⊂ l
p(R), where δni is the Kronecker's delta (δni = 1

if i = n and δni = 0 if i 6= n): for each n ∈ N we have a vector (xi)i∈N = (δni )i∈N with all its

xi terms equal to zero but one, in coordinate number n, which has the value one).

3.2 Convex inequalities

In the last section, inside the proof of Prop. 3.1.6 to get the inequality (3.2), we used the

notion of convex function which we will now remember here.

De�nition 3.2.1 A real function ϕ de�ned in an open interval ]a, b[⊂ R, ϕ : ]a, b[→ R, is

called a convex function if the following inequality is satis�ed:

∀ x, y ∈ ]a, b[ ∀α ∈ [0, 1] ϕ((1− α)x+ α y) ≤ (1− α)ϕ(x) + αϕ(y) . (3.6)

If we reverse the sense of the inequality (as ≥ instead of ≤), then we call ϕ a concave function.

Graphical interpretation of convex (concave) function: while t = (1 − α)x + α y describes

the segment [x, y] ⊂ ]a, b[, as α ∈ [0, 1], the left-hand side of inequality (3.6) describes the

graphic of the function ϕ in between the points (x, ϕ(x)) and (y, ϕ(y)) and the right-hand

side describes the (straight) segment line connecting these two points. Thus, the meaning of
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inequality (3.6) is that each such portion of the graphic of ϕ should be always bellow (above)

those corresponding segment lines.

Alternatively, we can interpret (3.6) in terms of slopes: still with t = (1 − α)x + α y

we have α = t−x
y−x and 1 − α = y−t

y−x , then (3.6) is equivalent to (the reverse one for concave

functions)

∀ x, y ∈ ]a, b[ ∀t ∈ ]x, y[
ϕ(t)− ϕ(x)

t− x
≤ ϕ(y)− ϕ(t)

y − t
. (3.7)

Proposition 3.2.2 For regular enough functions, ϕ : ]a, b[→ R, ϕ is a convex (concave) func-

tion i�

di�erentiable ϕ: when ϕ is di�erentiable in ]a, b[, ϕ′ is a nondecreasing (nonincreasing)

function in ]a, b[;

twice di�erentiable ϕ: when ϕ is twice di�erentiable in ]a, b[, ϕ′′ is a nonnegative (non-

positive) function in ]a, b[.

Proof: To prove the �rst we use the mean value theorem of di�erentiation to show that (3.7)

is equivalent to the condition that ϕ′ is a nondecreasing (nonincreasing) function in ]a, b[:

ϕ′(ξ1) =
ϕ(t)− ϕ(x)

t− x
≤ ϕ(y)− ϕ(t)

y − t
= ϕ′(ξ2) with x < ξ1 < t < ξ2 < y.

To prove the second it is enough to remember that for a regular function (ϕ′), she is a non-

decreasing (nonincreasing) function in ]a, b[ i� its derivative (ϕ′′) is a nonnegative (nonpositive)

function in ]a, b[.

Another, direct, proof can be done if we de�ne the auxiliary twice di�erentiable func-

tion g(s) = ϕ((1 − α) s + α y) − (1 − α)ϕ(s) for s ∈ [x, y]. Compute g(x) = ϕ((1 − α)x +

α y) − (1 − α)ϕ(x) and g(y) = αϕ(y). Then (3.6) translates as g(x) − g(y) ≤ 0. But,

by the mean value theorem of di�erentiation, g(x) − g(y) = g′(ξ)(x − y) for some ξ ∈ ]x, y[

and because x − y < 0 (3.6) is equivalent to g′(ξ) ≥ 0 for ξ ∈ ]x, y[. Now we compute,

using again the mean value theorem of di�erentiation applied to the di�erentiable ϕ′ func-

tion, g′(ξ) = (1 − α)ϕ′((1 − α) ξ + α y) − (1 − α)ϕ′(ξ) = (1 − α)ϕ′′(η)α (y − ξ) for some

η ∈ ]ξ, (1 − α) ξ + α y[. And because y − ξ > 0, (3.6) becomes equivalent to ϕ′′(η) ≥ 0 for

η ∈ ]a, b[ (as x and y are arbitrary in ]a, b[).

15



Corollary 3.2.3 A di�erentiable function ϕ : ]a, b[→ R with strictly positive (negative) deriva-

tive ϕ′ in ]a, b[ is an invertible convex (concave) function which inverse function is a concave

(convex) function.

Proof: This is real analysis, using the elementary derivative rule for the inverse function

(
ϕ−1

)′
(y) = − 1

ϕ′(x)
,

where x = ϕ(y).

Proposition 3.2.4 Any convex (concave) function ϕ : ]a, b[→ R is a continuous function on

the open interval ]a, b[5.

Proof: For an arbitrary x0 ∈ ]a, b[, using the de�nition of convexity we show that both the

limx→x±0
ϕ(x) = ϕ(x0).

Theorem 3.2.5 Suppose ϕ : ]a, b[→ R is a convex function and, for some n ∈ N, there are

given ∀1≤i≤n xi ∈ ]a, b[ and αi ≥ 0 such that
∑n

i=1 αi = 1. Then, the following inequality

holds

ϕ

(
n∑
i=1

αi xi

)
≤

n∑
i=1

αiϕ(xi).

Proof: Use the de�nition of convexity taking three points xi with coe�cients αi (i = 1, 2, 3)

such that
∑3

i=1 αi = 1. Just remark that α1 + α2 = 1− α3 and

ϕ (α1x1 + α2x2 + α3x3) = ϕ

(
(1− α3)

(
α1

1− α3
x1 +

α2

1− α3
x2

)
+ α3x3

)
.

Then do induction for any n ∈ N.

Corollary 3.2.6 (Young's inequality) Let for n ∈ N be ∀1≤i≤n yi, αi ≥ 0 with
∑n

i=1 αi =

1, then

y1 y2 · · · yn ≤ α1 y
1
α1
1 + α2 y

1
α2
2 + · · ·+ αn y

1
αn
n .

5Remark that we could de�ne convex and concave functions in a closed interval [a, b], but then this theorem

should be false as the counterexample given by ϕ : [0, 1] → R such that ϕ(x) = 0 for x ∈ [0, 1[ and ϕ(1) = 1

show us.
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Proof: It is enough to take ϕ(x) = ex and to de�ne conveniently the yi's from the exi 's.

Corollary 3.2.7 (Jensen's inequality) Suppose ϕ : R → R is a convex function and there

are given ∀i∈N xi ∈ R and αi ≥ 0 such that
∑∞

i=1 αi = 1. Then

ϕ

( ∞∑
i=1

αi xi

)
≤
∞∑
i=1

αiϕ(xi).

Proof: We use �rst the continuity of ϕ given by Prop. 3.2.4, to reduce this case to the �nite

case:

ϕ

( ∞∑
i=1

αi xi

)
= ϕ

(
lim

n→+∞

n∑
i=1

αi xi

)
= lim

n→+∞
ϕ

(
n∑
i=1

αi xi

)
.

Remark that if
∑∞

i=1 αi = 1, then
∑n

i=1 αi < 1 and6 we cannot use immediately the

Theor. 3.2.5 in the last term above. But de�ne An =
∑n

i=1 αi, then ∀1≤i≤n
αi
An
≥ 0 and∑n

i=1
αi
An

= 1. Now we can use the Theor. 3.2.5:

ϕ

(
n∑
i=1

αi xi

)
= ϕ

(
n∑
i=1

αi
An

Anxi

)
≤

n∑
i=1

αi
An

ϕ (Anxi)

and

ϕ

( ∞∑
i=1

αi xi

)
= lim

n→+∞
ϕ

(
n∑
i=1

αi xi

)
≤ lim

n→+∞

n∑
i=1

αi
An

ϕ (Anxi) .

To conclude it is enough to prove that

lim
n→+∞

n∑
i=1

αi
An

ϕ (Anxi) = lim
n→+∞

n∑
i=1

αi ϕ (xi) + lim
n→+∞

n∑
i=1

αi
An

(ϕ (Anxi)−An ϕ (xi)) ,

where the last limit is zero. To see this notice that

0 ≤
n∑
i=1

αi
An

(ϕ (Anxi)−An ϕ (xi)) ≤ sup
1≤i≤n

{ϕ (Anxi)− ϕ (xi)} ,

where An → 1, so An xi → xi and by continuity ϕ(An xi) → ϕ(xi) for all 1 ≤ i ≤ n. In fact

because we can restrict ourselves to some closed interval, we can use the uniform continuity

of ϕ to eliminate the dependence in n. The conclusion follows.

3.3 Normed spaces

Because we want to do approximations, we need the notion of convergence. And, �xed a linear

space, each notion of convergence is introduced by its corresponding topology. A common way

6For the same reason we are handling the case of ϕ : R→ R and not that of ϕ : ]a, b[→ R.
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to de�ne topologies is using semi-norms. Actually some vector spaces of in�nite dimension

and suitable for important applications, called locally convex spaces, have a topology making

use of a necessarily in�nite number of semi-norms. Here, we will be occupied with the case of

vector spaces with a single semi-norm, in fact the normed linear spaces and the Banach spaces.

Our main examples will be constructed upon the linear spaces (Rn,+, ·) and (lp(R),+, ·),

abbreviated as Rn and lp(R). So, our next goal is to show that the lp(R) are normed spaces.

Before we will de�ne and discuss the notion of semi-norm and norm. Along the exposi-

tion of this chapter we use a long list of inequalities. A major objective of this dissertation

is to understand the role and meaning of those inequalities as tools of (real) functional analysis.

De�nition 3.3.1 A real application de�ned on a vector space V , q : V → R, is called a

semi-norm on V if it satis�es the following axioms

subadditivity: ∀u, v ∈ V q(u+ v) ≤ q(u) + q(v);

positive homogeneity: ∀k ∈ R ∀v ∈ V q(kv) = |k|q(v).

Moreover, if the following axiom is also satis�ed

separation: for v ∈ V , q(v) = 0 =⇒ v = 0,

we say that q is a norm and that ((V,+, ·), q) or abbreviated (V, q) is a normed space.

In the case of normed spaces we will use the more common notation ‖v‖ instead of q(v). The

‖v‖ should be interpreted as the length of the vector v and then, with the usual interpretations

in vector spaces, the distance between u and v is given by d(u, v) = ‖u− v‖.

In fact by the de�nition of norm and the next proposition we see that ‖v‖ is a nonnegative

number which is zero i� v is the zero vector (or d(u, v) = 0 i� u = v) such that (by homogene-

ity) the length of a positive multiple of a vector v or its symmetric is that positive multiple

of the length of ±v. The subadditivity is the triangle inequality saying that the length of any

side of a triangle is smaller than the addition of the lengths of the remaining two sides.

Proposition 3.3.2 A semi-norm veri�es the following properties
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semide�nite: if v = 0, q(v) = 0;

continuous: ∀u, v ∈ V q(u− v) ≥ |q(u)− q(v)|;

positive: ∀v ∈ V q(v) ≥ 0.

Proof: The �rst property is an immediate consequence of the homogeneity taking k = 0

and v = 0. Now use the subadditivity: q(u) = q ((u− v) + v) ≤ q(u − v) + q(v), then

q(u−v) ≥ q(u)−q(v). By homogeneity and the previous: q(u−v) = |−1|q(v−u) ≥ q(v)−q(u).

So we proved the second property. Finally, the third one is a consequence of the second taking

v = 0.

We remember the notion of distance or metrics and that of metric space:

De�nition 3.3.3 (M,d), where M is a set and d : M ×M → R, is said to be a metric space

if d is an application, called a metric or distance in M , satisfying the axioms

positive de�nite: ∀x, y ∈M d(x, y) ≥ 0 and d(x, y) = 0 i� x = y;

symmetry: ∀x, y ∈M d(x, y) = d(y, x);

triangle inequality: ∀x, y, z ∈M d(x, y) ≤ d(x, z) + d(z, y).

Proposition 3.3.4 A normed space with norm ‖ · ‖ is always a metric space with the metric

de�ned by d(u, v) = ‖u− v‖.

Proof: We already proved it in the paragraph before proposition 3.3.2.

Our next goal is to prove that the linear spaces lp(R) are normed spaces, where the

candidate applications to norms are given in the following de�nition.

De�nition 3.3.5 For p ∈ ]0,+∞] we de�ne on lp(R) the real applications ‖ · ‖p : lp(R)→ R
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given by the expressions

‖(xi)‖p =

∞∑
i=1

|xi|p , for 0 < p ≤ 1; (3.8)

‖(xi)‖p =

( ∞∑
i=1

|xi|p
) 1

p

, for 1 ≤ p < +∞; (3.9)

‖(xi)‖∞ = sup
i∈N
{|xi|} , for p = +∞. (3.10)

Theorem 3.3.6 For 0 < p ≤ 1 the (lp(R), ‖ · ‖p) is a normed space.

Proof: From the de�nition of the ‖ · ‖p given by (3.8), the veri�cation of the separation and

positive homogeneity axioms of Def. 3.3.1 is trivial and that of the subadditivity is a direct

consequence of the inequality |x + y|p ≤ |x|p + |y|p, true because 0 < p ≤ 1, which we apply

to each term of the series
∑∞

i=1 |xi + yi|p, (cf. inequality (3.2)).

To prove that (lp(R), ‖ · ‖p) are normed spaces for p ∈ ]1,+∞[ we will need an important

auxiliary inequality, the Hölder inequality. To prove the lp(R) are linear spaces, see Prop. 3.1.6,

we already used an inequality coming from convexity (cf. inequality (3.3)). The Hölder

inequality is too a consequence of convexity. In fact we will use the

Lemma 3.3.7 (Young's inequality) Let a, b ≥ 0 and p, p′ > 0 such that p+ p′ = pp′, then

ab ≤ 1

p
ap +

1

p′
bp
′
,

1

p
+

1

p′
= 1 and p, p′ > 1 . (3.11)

The p and p′ are called conjugate (or dual) numbers. Moreover, the equality occurs i� ap = bp
′
.

Proof: The �rst inequality is a particular case for n = 2 of Young's inequality in Cor. 3.2.6

because p + p′ = pp′ is equivalent to 1
p + 1

p′ = 1 (by hypothesis p, p′ 6= 0). From the last

equation we see that forcibly p, p′ > 1 (by hypothesis p, p′ > 0).

A direct proof is given considering the concave function log : ]0,+∞[→ R and 1
p + 1

p′ = 1:

log

(
1

p
ap +

1

p′
bp
′
)
≥ 1

p
log(ap) +

1

p′
log(bp

′
) = log(ab).

Then apply to the extremes the exponential function which is an order preserving function (as

its derivative is nonnegative).
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From now on, because p ↘ 1 ⇐⇒ p′ ↗ +∞ (keeping the equality 1
p + 1

p′ = 1 true), we

will admit p = 1 and p′ = +∞ as conjugate (or dual) numbers too.

Theorem 3.3.8 (Hölder's inequality) Let p, p′ ∈ [1,+∞] be dual numbers and (xi) ∈

lp(R), (yi) ∈ lp
′
(R), then (xi yi) ∈ l1(R) and

‖(xi yi)‖1 ≤ ‖(xi)‖p ‖(yi)‖p′ or

∞∑
i=1

|xi yi| ≤

( ∞∑
i=1

|xi|p
) 1

p
( ∞∑
i=1

|yi|p
′

) 1
p′

. (3.12)

Moreover the equality holds i� the l1(R) vectors (xpi ) and (yp
′

i ) are parallel.

Proof: The case where p = 1 and p′ = +∞ is trivial, so let just consider the case where

p > 1. De�ne A = ‖(xi)‖pp and B = ‖(yi)‖p
′

p′ . If A = 0 or B = 0, then the vector (xi) = ~0 or

the vector (yi) = ~0 and the vector (xi yi) = ~0. The equality (3.12) is proved in these cases. It

remains to prove the inequality for A 6= 0 and B 6= 0. In this case (3.12) writes as

∞∑
i=1

|xi yi| ≤ A
1
p B

1
p′ ⇐⇒

∞∑
i=1

|xi|

A
1
p

|yi|

B
1
p′
≤ 1 .

De�ne ai = |xi|

A
1
p

and bi = |yi|

B
1
p′
, we have to show that

∑∞
i=1 ai bi ≤ 1. To do so, use the

Lemma 3.3.7 for each i ∈ N:

ai bi ≤
1

p
api +

1

p′
bp
′

i ⇒
∞∑
i=1

ai bi ≤
1

p

( ∞∑
i=1

api

)
+

1

p′

( ∞∑
i=1

bp
′

i

)
=

1

p
+

1

p′
= 1

where, because of the de�nition of A and B,

∞∑
i=1

api =
1

A

( ∞∑
i=1

|xi|p
)

=
A

A
,

∞∑
i=1

bp
′

i =
1

B

( ∞∑
i=1

|yi|p
′

)
=
B

B
.

Theorem 3.3.9 For 1 ≤ p < +∞, (lp(R), ‖ · ‖p) is a normed space.

Proof: As before, the positive homogeneity and the separation axioms are easy to prove

from the expression (3.9) de�ning ‖(xi)‖p, Def. 3.3.5. To prove the subadditivity lets consider

the ‖(xi + yi)‖pp together with

|xi + yi|p = |xi + yi||xi + yi|p−1 ≤ (|xi|+ |yi|) |xi + yi|p−1 ≤ |xi||xi + yi|p−1 + |yi||xi + yi|p−1 ,

21



then adding each term

‖(xi + yi)‖pp =

∞∑
i=1

|xi + yi|p

≤
∞∑
i=1

|xi||xi + yi|p−1 +

∞∑
i=1

|yi||xi + yi|p−1 (3.13)

and using Hölder's inequality (3.12), remark that (p− 1)p′ = p and p
p′ = p− 1,

∞∑
i=1

|xi||xi + yi|p−1 ≤

( ∞∑
i=1

|xi|p
) 1

p
( ∞∑
i=1

(
|xi + yi|p−1

)p′) 1
p′

= ‖(xi)‖p ‖(xi + yi)‖p−1p <∞ ,

so, doing analogous to both the right-hand side terms in (3.13), we have that

‖(xi + yi)‖pp ≤ ‖(xi)‖p ‖(xi + yi)‖p−1p + ‖(yi)‖p ‖(xi + yi)‖p−1p

= ‖(xi + yi)‖p−1p (‖(xi)‖p + ‖(yi)‖p) .

If ‖(xi + yi)‖p 6= 0, the last inequality writes exactly as the subadditivity

‖(xi + yi)‖p ≤ ‖(xi)‖p + ‖(yi)‖p .

If ‖(xi + yi)‖p = 0, by the positiveness of the norm, the subadditivity is immediate.

This subadditivity property has commonly the name of Minkowski inequality. We have just

proved it and let put it in evidence:

Theorem 3.3.10 (Minkowski's inequality) If 1 ≤ p < +∞ and (xi), (yi) ∈ lp(R), then( ∞∑
i=1

|xi + y1|p
) 1

p

≤

( ∞∑
i=1

|xi|p
) 1

p

+

( ∞∑
i=1

|yi|p
) 1

p

. (3.14)

Moreover the equality holds i� (xi) and (yi) are parallel vectors in the linear space lp(R).

Notice that, as a consequence of inequality (3.3), we already knew that

‖(xi + yi)‖p ≤ 2
p−1
p
(
‖(xi)‖p + ‖(yi)‖p

)
but here the best (smaller) constant is 1 (by Minkowski inequality) and not 2

p−1
p (even if in

the inequality (3.3) the best constant is 2p−1).
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Theorem 3.3.11 (l∞(R), ‖ · ‖∞) is a normed space.

Proof: The proof is almost trivial using the properties of the supremum.

Proposition 3.3.12 If (V, ‖ · ‖) is a normed space and S is a linear subspace of V , then S

endowed with the same application ‖·‖, or more accurately with the application ‖·‖|S : S → R,

is too a normed space (S, ‖ · ‖|S ), which we will abbreviate as (S, ‖ · ‖).

Because of this Proposition and Prop. 3.1.7, for p1 < p2 the space lp1(R) (which is a subspace

of lp2(R)) is endowed with its own norm ‖ · ‖p1 and the norm ‖ · ‖p2 |lp1 (R)
induced from lp2(R).

But for (xi) ∈ lp1(R) < lp2(R) < l∞(R) we have that:

if p1 < p2 ≤ 1, then p2 − p1 > 0 and

‖(xi)‖p2 =

∞∑
i=1

|xi|p2 =

∞∑
i=1

|xi|p1 |xi|p2−p1 ≤
∞∑
i=1

|xi|p1‖(xi)‖p2−p1∞ = ‖(xi)‖p2−p1∞ ‖(xi)‖p1 ;

if 1 ≤ p1 < p2, then
p2
p1
> 1 and

‖(xi)‖p2 =

( ∞∑
i=1

|xi|p2
) 1

p2

=

( ∞∑
i=1

(|xi|p1)
p2
p1

) 1
p2

≤

( ∞∑
i=1

|xi|p1
) p2

p1

1
p2

= ‖(xi)‖p1 ;

if p1 < 1 < p2, then using the previous two cases for 1 = p1 < p2 and p1 < p2 = 1 we have

‖(xi)‖p2 ≤ ‖(xi)‖1 ≤ ‖(xi)‖1−p1∞ ‖(xi)‖p1 ;

if 0 < p < +∞, then 1 < p + 1 < +∞ and by de�nition of supremum for any ε > 0 (we do

the choice of ε =
∑∞

i=1 |xi|p+1 we have a xi∗ ∈ (xi) such that

‖(xi)‖∞ =

(
sup
i∈N

{
|xi|p+1

}) 1
p+1

≤
(
|xi∗ |p+1 + ε

) 1
p+1 ≤

(
2
∞∑
i=1

|xi|p+1

) 1
p+1

= 2
1
p+1 ‖(xi)‖p+1;

thus, we just proved the

Theorem 3.3.13 If 0 < p1 < p2 ≤ +∞, then there exist some constant C, just depending on

p1 and p2, such that

∀ (xi) ∈ lp1(R) ‖(xi)‖p2 ≤ C‖(xi)‖p1 . (3.15)
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De�nition 3.3.14 Consider a normed space (V, ‖ · ‖) and a sequence {vn}n∈N ⊂ V , we say

the sequence {vn}n∈N converges to v ∈ V and we write limn→+∞ vn = v, when

∀ε>0 ∃N∈N : n > N ⇒ ‖vn − v‖ < ε .

Or, equivalently, when limn→+∞ ‖vn − v‖ = 0 in R.

So by inequality (3.15), if {(xi)n}n∈N ⊂ lp1(R) is a sequence which converges under norm

‖ · ‖p1 it converges too under norm ‖ · ‖p2 for any p2 > p1.

The convergence in the lp(R) subspaces of our chain (3.5) is then �compatible� (meaning

that the injection of (lp1(R), ‖·‖p1) into (lp2(R), ‖·‖p2) is a continuous application) and we say

that the normed space (lp1(R), ‖·‖p1) is a normed subspace of the normed space (lp2(R), ‖·‖p2).

Thus we got again, now as normed spaces, the increasing in�nite chain

R < R2 < · · · < Rn < · · · < lq(R) < · · · l1(R) < · · · < lp(R) < · · · < l∞(R). (3.16)

In particular, each space Rn is endowed with an in�nite set of norms, those induced from each

normed space lp(R) for p ∈ [0,+∞]. Meanwhile, because of the �nite dimension of Rn it is

easy to prove that

Theorem 3.3.15 In the space Rn all two norms are equivalent7.

Where the meaning of equivalence of norms is that they give the same notion of convergence,

the de�nition, after our words above, being no surprise:

De�nition 3.3.16 Two norms, say ‖ · ‖1 and ‖ · ‖2, de�ned in a same linear space V are

equivalent if there exist constants C, c > 0 such that

∀ v ∈ V c‖v‖1 ≤ ‖v‖2 ≤ C‖v‖1 . (3.17)

7More generally, in each real linear space of �nite dimension any two norms are equivalent.
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Proof of Theor. 3.3.16: Fix a basis in the vector space Rn and write down any vector in

such basis as some linear combination, then apply the subadditivity property to it.

A �nal remark before to �nish this section is a justi�cation of the notation l∞(R) for the

space of the bounded sequences:

Proposition 3.3.17 If for some p1 > 0 we have (xi) ∈ lp1(R), then

lim
p→+∞

‖(xi)‖p = ‖(xi)‖∞.

Proof: We saw that if (xi) ∈ lp1(R), then (xi) ∈ lp(R) for any p ≥ p1 and for p big enough

‖(xi)‖∞ ≤ 2
1
p+1 ‖(xi)‖p+1. Now we remark that ‖(xi)‖p+1 ≤ ‖(xi)‖

p+1−p1
p+1
∞ ‖(xi)‖

p1
p+1
p1 . So

‖(xi)‖∞ ≤ lim
p→+∞

2
1
p+1 ‖(xi)‖p+1 ≤ lim

p→+∞
2

1
p+1 ‖(xi)‖

1− p1
p+1

∞ ‖(xi)‖
p1
p+1
p1 = ‖(xi)‖∞ .

3.4 Euclidean spaces

Euclidean spaces are real vector spaces with an inner product. In the �inverse sense� of

Prop. 3.3.4 we have:

Proposition 3.4.1 A Euclidean space with inner product 〈·, ·〉 is always a normed space with

the norm de�ned by ‖v‖ =
√
〈v, v〉.

Next we remember, �rst the notion of inner product and then the proof of the last proposition.

De�nition 3.4.2 An inner product on a real vector space V is a real application 〈·, ·〉 : V ×

V → R satisfying the axioms

de�nite positive ∀v ∈ V v 6= 0 =⇒ 〈v, v〉 > 0;

symmetry: ∀u, v ∈ V 〈u, v〉 = 〈v, u〉;

homogeneity: ∀k ∈ R ∀u, v ∈ V 〈ku, v〉 = k〈u, v〉;

additivity: ∀u, v, w ∈ V 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉.
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Proof (of Prop. 3.4.1): The positive homogeneity of the norm: ‖kv‖ =
√
〈kv, kv〉 =√

k2〈v, v〉, using the de�nition of the norm and the homogeneity and symmetry of the inner

product.

The separation: if v 6= 0 then by the de�nite positivity of the inner product ‖v‖ =√
〈v, v〉 > 0.

The subadditivity is a consequence of the Schwarz inequality (3.18) (see the next lemma),

the additivity and the symmetry of the inner product: ‖u + v‖2 = 〈u + v, u + v〉 = ‖u‖2 +

2〈u, v〉+ ‖v‖2 ≤ (‖u‖+ ‖v‖)2.

Lemma 3.4.3 (Schwarz inequality) Let V be an Euclidean space with inner product 〈·, ·〉

and de�ne for v ∈ V the application ‖v‖ =
√
〈v, v〉, then

∀u, v ∈ V |〈u, v〉| ≤ ‖u‖ ‖v‖ . (3.18)

Proof: Consider the function in the variable k ∈ R de�ned by

φ(k) = 〈ku+ v, ku+ v〉 .

This is a nonnegative application on R because of the de�nite positivity and homogeneity

properties of the inner product (by the homogeneity ‖0‖ = 0). Moreover, using the additivity

and homogeneity properties of the inner product we see that

φ(k) = k2〈u, u〉+ 2k〈u, v〉+ 〈v, v〉 = ‖u‖2k2 + 2〈u, v〉k + ‖v‖2 .

So, φ is a second order polynomial in the variable k which never has negative values. It has

at most one root. So, the coe�cients of φ must verify the condition (2〈u, v〉)2−4‖u‖2‖v‖2 ≤ 0.

The next result gives a characterization of which normed spaces are Euclidean spaces:

Theorem 3.4.4 A normed space is an Euclidean space i� the norm satis�es the parallelogram

law:

‖u+ v‖2 + ‖u− v‖2 = 2
(
‖u‖2 + ‖v‖2

)
.

Moreover the inner product is given by:

〈u, v〉 = 4−1
(
‖u+ v‖2 + ‖u− v‖2

)
.
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Corollary 3.4.5 The space lp(R) is an Euclidean space i� p = 2. If (xi), (yi) ∈ l2(R) the

inner product is de�ned by 〈(xi), (yi)〉 = (
∑∞

i=1 xi yi)
1
2 , in particular, the Cauchy-Schwarz

inequality is the Hölder inequality for p = 2.

Proof: Using the Def. 3.4.2 of inner product or the last Theor. 3.4.4 it is easy to verify that

l2(R) is an Euclidean space.

If p 6= 2, then lp(R) cannot be an Euclidean space as the parallelogram law is false: let

u = (1, 0) and v = (0, 1), then ‖u‖p = ‖v‖p = 1, ‖u+ v‖p = ‖u− v‖p = 2
1
p . So, we have that

‖u+ v‖2 + ‖u− v‖2 6= 2
(
‖u‖2 + ‖v‖2

)
.

We are using the fact that R2 is a subspace of any lp(R) space.

3.5 Banach Spaces

In metric spaces, like for real numbers, a very useful theoretical and computational criterium to

show that a sequence converges is to show that the sequence is a Cauchy sequence. In general

this is not an equivalence. While each convergent sequence is always a Cauchy sequence the

reciprocal is false. We are then interested to work with metric spaces having that property

(each Cauchy sequence is convergent), called complete metric spaces.

One example of the relevance of this concept comes from the Banach �xed-point theorem

which is the usual tool we use to prove, e.g., the existence and uniqueness theorems (Picard's

theorem) for ordinary di�erential equations, but which can be still proved in more general

frameworks as that of Lp(R) spaces.

In Prop. 3.3.4 we saw that each normed space is a metric space where the metric is de�ned

by the norm as d(u, v) = ‖u− v‖. Lets translate these concepts in the setting of the normed

spaces and state two last results. Before we give the following de�nitions.

De�nition 3.5.1 Let (V, ‖ · ‖) be a normed space.

Cauchy sequence: A sequence {vn}n∈N ⊂ V is a Cauchy sequence when

∀ε>0 ∃N∈N : n > N,m > N ⇒ ‖vn − vm‖ < ε .

Banach space: (V, ‖ · ‖) is a Banach space if it is complete (meaning that each Cauchy se-

quence is convergent).
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Contractive application: An application A : V → V is said to be contractive when there

exists a constant 0 < L < 1 :

∀u,v∈V ‖A(u)−A(v)‖ ≤ L ‖u− v‖ .

Theorem 3.5.2 Each lp(R) space (p ∈ ]0,+∞]) is a Banach space.

Theorem 3.5.3 (Banach �xed-point theorem) Let A : V → V be a contractive applica-

tion de�ned in a Banach space V , then A has one �xed point (u0 ∈ V : A(u0) = u0) which

moreover is unique.

Proof: Recalling the notation A : V → V is a contraction with contraction constant c. We

want to showA has a unique �xed point, which can be obtained as a limit through iteration of

A from any initial value. To show A has at most one �xed point in V , let u0 and u′0 be �xed

points of A. Then

d(u0, u
′
0) = d(A(u0), A(u′0) ≤ cd(u0, u

′
0)

If u0 6= u′0 then d(u0, u
′
0) > 0 so we can divide by d(u0, u

′
0) to get 1 ≤ c which is false. Thus

u0 = u′0.

Next we want to show for any u0 ∈ V , that the recursively de�ned iterates un = A(un−1)

for n ≥ 1 converge to the �xed point of A. How close is un to un+1? for any n ≥ 1

d(un, un+1) = d(A(un−1), A(un)) ≤ cd(un−1, un). therefore

d(un, un+1) ≤ cd(un−1, un) ≤ c2d(un−2, un−1) ≤ · · · ≤ cnd(u0, u1)

Using the expression on the far right as an upper bound on d(un, un+1) show the un's are

getting consecutively close at a geometric rate. This implies to the un's are Cauchy: for any

m > n using the triangle inequality several time show:

d(un, um) ≤ d(un, un+1) + d(un+1, un+2) + · · ·+ d(um−1, um)

≤ cnd(u0, u1) + cn+1d(u0, u1) + · · ·+ cm−1d(u0, u1)

= (cn + cn+1 + cn+2 + · · ·+ cm−1)d(u0, u1)

≤ (cn + cn+1 + cn+2 + cn+2 + · · · )d(u0, u1)

≤ cn

1− c
d(u0, u1) (3.19)
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To prove from this bound that the un's are Cauchy choose ε > 0 and then pick N > 1 such

that (cN/(1− c))d(uo, u1) < ε then for any m > n ≥ N

d(un, um) ≤ cn

1− c
d(u0, u1) ≤

cN

1− c
d(u0, u1) < ε

The prove un is a Cauchy sequence since V is complete the un's converge in V , set u =

limn→∞ un in V .

To show A(u0) = u0 we need to know that contraction are continuous. In fact, a contraction

is uniformly continuous, this is clear when c = 0. Since then A is a constant function, if c > 0

and we are given ε > 0, setting δ =
ε

c
implies that if d(u0, u

′
0) < δ then d(A(u0), A(u′0)) ≤

cd(u0, u
′
0) < cδ = ε. That prove A is uniformly continuous. Since A is then continuous from

un → u0 we get A(un)→ A(u0) since A(un) = un+1, A(un)→ u0 as n→∞ then A(u0) and

u0 are both limit of unn≥0. From the uniqueness of limit u0 = A(u0) this conclude the proof

of the Banach �xed-point theorem.
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Chapter 4

Numerical Schemes and Simulations

4.1 Characteristic Method

The characteristic method gives generally an implicit formula for the solution. It is interesting

to use it when the initial condition is continuous and a�ne to get an explicit formula of the

solution.

We take v(u) = 1− u to obtain the model
ut + (u(1− u))x = 0

u(x, 0) = ϕ(x)

(4.1)

Let Γ be parametrized by r, such that Γ = (r, 0). Now Γ will be Characteristic as long

as γ′1(r) − γ′2(r) 6= 0 but γ′1(r) = 1 and γ′2(r) = 0, Therefore, Γ is noncharacteristic. Our

characteristic equation are given by

dt

ds
= 1

dx

ds
= 1− 2z

dz

ds
= 0

(4.2)

With initial condition
t(r, 0) = 0

x(r, 0) = r

z(r, 0) = ϕ(r)

(4.3)
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We solve this system as follows

t(r, s) = s+ c1(r)

z(r, s) = c3(r)

x(r, s) = (1− 2c3(r))s+ r

Now using the initial condition we have

t(r, s) = s

z(r, s) = ϕ(r)

x(r, s) = (1− 2ϕ(r))s+ r

Now x(r, s) = (1 − 2ϕ(r))s + r and t = s implies r = 2ϕ(r)s − s + x = x + 2zt − t therefore

letting u(x, t) = z(r, s) we have u(x, t) = ϕ(x+ 2ut− t) and implicit formula for a solution to

(4.1).

Example 4.1.1 We consider the Cauchy problem with the continuous initial data

ϕ(x) =



3

4
, x ≤ −a,

1

2
− x

4a
, −a < x < a,

1

4
, x > a.

Sine u0 is continuous we use the characteristic method:

u(x, t) = ϕ(x+ 2ut− t) =
1

2
− x+ 2ut− t

4a
(4.4)

provide

−a < x+ 2ut− t < a (4.5)

from (4.4) we have

u(1 +
t

2a
) =

1

2
+

t

4a
− x

4a

thus u =
1

2
− x

4a+ 2t
, now the condition (4.5) writes −a < x − 2xt

4t+ 2a
< a that give

−a− t

2
< x < a+

t

2
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Finally, the solution u(x, t) is continuous and given by

u(x, t) =



3

4
, x ≤ −a− t

2
,

1

2
− x

4a+ 2t
, −a− t

2
< x < a+

t

2
,

1

4
, x ≥ a+

t

2
.

(a) Piecewise plots u0 (b) Piecewise plots u(x, t)

Figure 4.1: Piecewise plots Solution

Facing the tra�c light the density is high, while on the other side of the light there is a

small constant density.

Remark 4.1.2 We note that if we consider the advection equation ut + cux = 0 the charac-

teristics are parallel and given by x− ct = constant. The solution is given simply by

u(x, t) = ϕ(x− ct)

Graphically as t increases the initial function u(x, 0) will move with speed c to the right if

c > 0 and to the left if c < 0 (see Fig4.2 for the case c > 0).
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x

t

x− ct =constant

(a) Characteristic Line (b) Evolution

Figure 4.2: Characteristic and solution for the advection equation ut + cux = 0, c > 0

4.2 Lax-Friedrichs scheme

4.2.1 Case of the advection equation

Let us consider the advection equation

ut + cux = 0.

We introduce a time step ∆t and a space step ∆x and we set tn = n∆t and xi = i∆x. when

∆t and ∆x are small we can write

ut(xi, tn) =
un+1
i − uni

∆t
+O(∆t)

ux(xi, tn) =
uni+1 − uni−1

2∆x
+O(∆x2).

An exact solution satis�es

ut(xi, tn) + cux(xi, tn) = 0

so that we can write

un+1
i = uni − c

∆t

2∆x
(uni+1 − uni−1) +O(∆t2,∆x2∆t)

Thus, allows us to introduce the numerical method FTCS (Forward-Time-Centered-space)

that writes

un+1
i = uni − c

∆t

2∆x
(uni+1 − uni−1)
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Unfortunately, this scheme is unconditionally unstable i.e. the numerical solution can be

destroyed by numerical errors, which will be produced and grow exponential independently of

the relative size of ∆t and ∆x.

The basis idea to get a stable scheme is based on replacing in the previous FTCS formulas

the term uni with the spatial average

uni =
uni+1 + uni−1

2

to obtain for the advection equation

un+1
i =

1

2
(uni+1 + uni−1)−

c∆t

2∆x
(uni+1 − uni−1).

This scheme is called the Lax-Friedrichs scheme. It is a �rst order scheme which is stable

provide the so-called CFL condition | c∆t

∆x
|< 1 is satis�ed.

4.2.2 Case of the general hyperbolic equation

We consider here a general hyperbolic conservation law

ut + f(u)x = 0.

We introduce a conservative scheme, i.e., a scheme of the form

un+1
i = uni −

∆t

∆x
[F
(
uni−p, u

n
i−p+1, · · · , uni+q

)
− F

(
uni−p−1, u

n
i−p, · · · , uni+q−1

)
] (4.6)

for some function F of p + q + 1 arguments. F is called the numerical �ux function. In the

simplest case, p = 0 and q = 1, F is a function of only two variables and the scheme (4.6)

becomes

un+1
i = uni −

∆t

∆x
[F
(
uni , u

n
i+1

)
− F

(
uni−1, u

n
i

)
] (4.7)

This form is very natural if we view uni as an approximation to the cell average

uni =
1

∆x

∫ x
i+1

2

x
i− 1

2

u(x, tn)∆x, (4.8)

where u(x, tn) represents the exact weak solution at time tn = n∆t. Also, this exact solution

satis�es the following integral form of the conservation law
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∫ x
i+1

2

x
i− 1

2

u(x, tn+1)dx =

∫ x
i+1

2

x
i− 1

2

u(x, tn)dx

−
[∫ tn+1

tn

f(u(xi+ 1
2
, t))dt−

∫ tn+1

tn

f(u(xi− 1
2
, t))dt

] (4.9)

Dividing the last equality by ∆x and using the cell averages de�ned in (4.8) this gives

un+1
i = uni −

1

∆x

[∫ tn+1

tn

f(u(xi+ 1
2
, t))dt−

∫ tn+1

tn

f(u(xi− 1
2
, t))dt

]
(4.10)

Comparing this to (4.7) we see that the numerical �ux function F (ui, ui+1) plays the role of

an average �ux through xi+ 1
2
over the time interval [tn, tn+1]

F (ui, ui+1) ∼
1

∆t

∫ tn+1

tn

f(u(xi+ 1
2
, t))dt (4.11)

One way to derive numerical methods in conservation form is to use standard �nite di�erence

discretizations but to start with the conservative form of the PDE rather than the quasilinear

form.

The generalization of the Lax-Friedrichs method given for the advection equation (f(u) =

cu) to the general non-linear hyperbolic equation consists in taking the numerical �ux F in

(4.7) of the form:

F (uni , u
n
i+1) =

1

2
(f(uni ) + f(uni+1)−

∆t

2∆x
(uni+1 − uni )

to obtain

un+1
i =

1

2

(
uni+1 + uni−1

)
− ∆t

2∆x

(
f(uni+1)− f(uni−1)

)
This method is conservative and �rst order accurate, hence quite dissipative. It can, however

be used as a building block for building high-order numerical schemes for solving hyperbolic

partial di�erential equations.

4.2.3 Application to the tra�c �ow model

In the case of the tra�c �ow model we have f(u) = u(1− u).

Example 4.2.1 First, we consider the case where f(u) = u(1 − u) with a Gaussian initial

data:

u0(x) = exp(−x
2

2
)
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Fig4.3 shows the numerical solution with the Lax-Friedrichs scheme with ∆t = 0.004 and

∆x = 0.04 obtained at time t = 1 when Fig4.4 shows the evolution of the solution with respect

to time.

(a) (b)

Figure 4.3: Gaussian plots of Lax-Friedrichs scheme u0(x) = exp(−x2

2 )

(a) Some solution of Lax-Friedrichs scheme (b) Gaussian3D plots of Lax-Friedrichs scheme

Figure 4.4: Gaussian plots of Lax-Friedrichs scheme u0(x) = exp(−x2

2 )

Example 4.2.2 We consider the Riemann problem in the case f(u) = u(1−u) with the initial

data

u0(x) =


1
6 , x < 0,

1
3 , x > 0.
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f is concave ul = 1/6 < ur = 1/3, The exact entropy solution is the shock wave given by

u(x, t) =


1
6 , x < 1

2 t,

1
3 , x > 1

2 t.

Fig4.5 shows the numerical solution with the Lax-Friedrichs scheme with ∆t = 0.002 and

∆x = 0.02 obtained at time t = 4.81 when Fig4.6 shows the evolution of the solution with

respect to time.

(a) (b)

Figure 4.5: Shock plots of Lax-Friedrichs scheme ul = 1
6 and ur = 1

3

(a) Shock plot of Lax-Friedrichs scheme (b) Shock plots 3D of Lax-Friedrichs scheme

Figure 4.6: Shock plots of Lax-Friedrichs scheme ul = 1
6 and ur = 1

3
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Example 4.2.3 We consider the Riemann problem in the case f(u) = u(1−u) with the initial

data

u0(x) =


1
2 , x < 0,

1, x > 0.

f is concave ul = 1/2 < ur = 1, The exact entropy solution is the shock wave given by

u(x, t) =


1
2 , x < −1

2 t,

1, x > −1
2 t.

Fig4.7 shows the numerical solution with the Lax-Friedrichs scheme with ∆t = 0.00408

and ∆x = 0.02004 obtained at time t = 5 when Fig4.8 shows the evolution of the solution with

respect to time.

(a) (b)

Figure 4.7: Shock plots with Lax-Friedrichs scheme ul = 1
2 and ur = 1

Example 4.2.4 We consider the Riemann problem in the case f(u) = u(1−u) with the initial

data

u0(x) =


1, x < 0,

1
2 , x > 0.

f is concave ul = 1 > ur = 1/2, the exact entropy solution now is the rarefaction wave given

38



(a) Shock plots with Lax-Friedrichs scheme (b) Shock plots 3D with Lax-Friedrichs scheme

Figure 4.8: Shock plots with Lax-Friedrichs scheme ul = 1
2 and ur = 1

by

u(x, t) =


ul, x < f ′(1)t,

U(xt ), f ′(1)t < x < f ′(1/2)t,

ur, x > f ′(1/2)t.

u(x, t) =


1, x ≤ −t,
t− x

2t
, −t ≤ x ≤ 0,

1
2 , x ≥ 0.

Fig4.9and Fig 4.10 shows the numerical solution with the Lax-Friedrichs scheme with ∆t =

0.004008 and ∆x = 0.02004 obtained at di�erent times.

Example 4.2.5 We consider the Cauchy problem with the continuous initial data

u0(x) =



3

4
, x ≤ −a,

1
2 −

x

4a
, −a < x < a,

1

4
, x > a.
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(a) (b)

Figure 4.9: Rarefaction plots with Lax-Friedrichs scheme ul = 1 and ur = 1
2

(a) Shock plots with Lax-Friedrichs scheme (b) Shock left plots 3D with Lax-Friedrichs

scheme

Figure 4.10: Rarefaction plots with Lax-Friedrichs scheme ul = 1 and ur = 1
2
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The exact solution u(x, t) we �nd that

u(x, t) =



3

4
, x ≤ −a− t

2
,

1
2 −

x

4a+ 2t
, −a− t

2
< x < a+

t

2
,

1

4
, x ≥ a+

t

2
.

(a) Shock plots with Lax-Friedrichs scheme (b) Shock left plots 3D with Lax-Friedrichs scheme

Figure 4.11: Piecewise plots with Lax-Friedrichs scheme

(a) Shock plots with Lax-Friedrichs scheme (b) Shock left plots 3D with Lax-Friedrichs

scheme

Figure 4.12: Piecewise plots with Lax-Friedrichs scheme

Facing the tra�c light the density is high, while on the other side of the light there is a

small constant density.
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Following the numerical results we can see that the Lax-Friedrichs scheme gives regular

numerical solutions even when the exact solution is discontinuous (shock waves). We say that

the scheme is di�usive that means that the scheme is solving approximatively an evolution

equation of the form

ut + f(u)x = εuxx,

where ε is a small parameter depending on ∆x and ∆t.

4.3 Lax-Wendro� scheme

4.3.1 Case of the advection equation

The Lax-Wendro� scheme is a correction of the Lax-Friedrichs scheme to get a second order

accuracy. For the advection equation ut + cux = 0 it writes

un+1
i = uni −

c∆t

2∆x

(
uni+1 − uni−1

)
+

1

2

(
c∆t

∆x

)2 (
uni+1 − 2uni + uni−1

)
(4.12)

4.3.2 Case of the general hyperbolic equation

The generalization of the Lax-Friedrichs method given for the advection equation (f(u) = cu)

to the general non-linear hyperbolic equation consists in taking the numerical �ux F in (4.7)

of the form:

F (uni , u
n
i+1) =

1

2
(f(uni ) + f(uni+1) +

∆t

∆x
f ′(ui+ 1

2
)(f(uni+1)− f(uni ))

to obtain

un+1
i = uni −

∆t

2∆x

(
f(uni+1)− f(uni−1)

)
+

1

2

(
∆t

∆x

)2 [
f ′(ui+ 1

2
)(f(uni+1)− f(uni ))− f ′(ui− 1

2
)(f(uni )− f(uni−1))

] (4.13)

4.3.3 Application to the tra�c �ow model

In the case of the tra�c �ow model we have f(u) = u(1− u) and f ′(u) = 1− 2u

Example 4.3.1 First, as for the Lax-Friedrichs scheme, we consider a Gaussian initial data:

u0(x) = exp(−x
2

2
)
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Fig4.13 shows the numerical solution with the Lax-Wendro� scheme with ∆t = 0.004 and

∆x = 0.04 obtained at di�erent times.

(a) (b)

Figure 4.13: Gaussian plot for the Lax-Wendro� scheme u0(x) = exp(−x2

2 )

Example 4.3.2 We consider the Riemann problem with the initial data

u0(x) =


1
6 , x < 0,

1
3 , x > 0.

f is concave ul = 1/6 < ur = 1/3, The exact entropy solution is the shock wave given by

u(x, t) =


1
6 , x < 1

2 t,

1
3 , x > 1

2 t.

Fig4.14 shows the numerical solution with the Lax-Wendro� scheme with ∆t = 0.0024 and

∆x = 0.02 obtained at time t = 1 when Fig4.15 shows the evolution of the solution with respect

to time.

Example 4.3.3 We consider the Riemann problem with the initial data

u0(x) =


1
2 , x < 0,

1, x > 0.

f is concave ul = 1/2 < ur = 1, The exact entropy solution is the shock wave given by

u(x, t) =


1
2 , x < −1

2 t,

1, x > −1
2 t.
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(a) (b)

Figure 4.14: Sock plot for the Lax-Wendro� scheme ul = 1
6 and ur = 1

3

(a) (b)

Figure 4.15: Sock plot for the Lax-Wendro� scheme ul = 1
6 and ur = 1

3
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Fig4.16 shows the numerical solution with the Lax-Wendro� scheme with ∆t = 0.002004

and ∆x = 0.02004 obtained at time t = 1 when Fig4.17 shows the evolution of the solution

with respect to time.

(a) (b)

Figure 4.16: Sock plot for the Lax-Wendro� scheme ul = 1
2 and ur = 1

(a) (b)

Figure 4.17: Sock plot for the Lax-Wendro� scheme ul = 1
2 and ur = 1

Example 4.3.4 We consider the Riemann problem with the initial data

u0(x) =


1, x < 0,

1
2 , x > 0.
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f is concave ul = 1 > ur = 1/2, the exact entropy solution now is the rarefaction wave given

by

u(x, t) =


ul, x < f ′(1)t,

U(xt ), f ′(1)t < x < f ′(1/2)t,

ur, x > f ′(1/2)t.

u(x, t) =


1, x ≤ −t,
t− x

2t
, −t ≤ x ≤ 0,

1
2 , x ≥ 0.

Fig4.18 shows the numerical solution with the Lax-Wendro� scheme with ∆t = 0.002004

and ∆x = 0.02004 obtained at time t = 1 when Fig4.19 shows the evolution of the solution

with respect to time.

(a) (b)

Figure 4.18: Rarefaction plot for the Lax-Wendro� scheme ul = 1 and ur = 1
2

Example 4.3.5 We consider the Riemann problem with the initial data

u0(x) =



3

4
, x ≤ −a,

1

2
− x

4a
, −a < x < a,

1

4
, x > a.
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(a) (b)

Figure 4.19: Rarefaction plot for the Lax-Wendro� scheme ul = 1 and ur = 1
2

The solution u(x, t) we �nd that

u(x, t) =



3

4
, x ≤ −a− t

2
,

1

2
− x

4a
, −a− t

2
< x < a+

t

2
,

1

4
, x ≥ a+

t

2
.

This solution models a situation where the tra�c density initially is small positive x and high

for negative x, if we let a tend to zero the solution reads

u(x, t) =



3

4
, x ≤ − t

2
,

1

2
− x

4a
, − t

2
< x <

t

2
,

1

4
, x ≥ t

2
.

As the reader may check directly, this is also a classical solution everywhere except at x =
t

2
it takes discontinuous initial value

u0(x) =


3

4
, x < 0

1

4
, otherwise.

This initial function may model the situation when at tra�c light turn green at t = 0 see the

Fig 4.20 and Fig 4.21 .

Facing the tra�c light the density is high, while on the other side of the light there is a

small constant density.
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(a) Shock plots with Lax-Wendro� scheme (b) Shock left plots 3D with Lax-Wendro� scheme

Figure 4.20: Piecewise plots with Lax-Wendro� scheme

(a) Shock plots with Lax-Wendro� scheme (b) Shock left plots 3D with Lax-Wendro� scheme

Figure 4.21: Piecewise plots with Lax-Wendro� scheme
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Following the numerical results we can see that the Lax-Wendro� scheme is more precise that

the Lax-Friedrichs scheme, and give the right position of the discontinuities for the shock

waves. But it gives oscillations. We say that the scheme is dispersive that means that the

scheme is solving approximatively an evolution equation of the form

ut + f(u)x = δuxxx,

where δ is a small parameter depending on ∆x and ∆t.

4.4 Conclusion

An elaboration and an implementation of Lax-Friedrichs schemes and of Lax-Wendro� schemes

even extended to second order provided numerical solutions to the problem of tra�c �ows on

the road. Since along the roads the schemes present the same features as for conservation laws,

the new and original aspect is given by the treatment of the solution at junctions. Our tests

show the e�ectiveness of the approximations, revealing that Lax-Wendro� schemes is more

accurate than Lax-Friedrichs schemes.
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