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Abstract 
New insight on south western Iberian rock art by non-invasive analytical approaches – the 

cases of Ardales and Escoural Cave 

This thesis focuses on Escoural Cave, in southwestern Iberia, known as the only cave within 

Portugal to contain Palaeolithic rock art. Estimated to be roughly 20,000 years old, the 

paintings and engravings found inside the hypogeal environment face possible degradation 

due to natural and anthropogenic factors. Although previously well documented, the 

importance of continuous monitoring and documentation of at-risk cultural heritage, 

specifically rock art, is important for its survival and for the implementation of future 

conservation efforts. One aim of this thesis was to use non-invasive techniques and methods 

to document and analyze the rock art at Escoural Cave. Various imaging techniques were used 

to further reveal parts of the hidden rock art found within Escoural Cave while also 

documenting the current state of preservation of the eight most well-known paintings. The 

work completed for this thesis also investigated the effectiveness and reliability of Vis-NIR 

FORS and hyperspectral imaging in their usefulness and applicability for non-invasive rock art 

research. The Vis-NIR FORS and hyperspectral camera were determined to be periodically 

useful for the work completed at Escoural Cave; many factors from, lighting, location of the 

rock art, and extensive amounts of calcite coverage over the paintings created non-ideal 

conditions within the cave for the complete effectiveness of these approaches. These 

methods were useful for non-invasive pigment identification and proved less reliable for the 

interpretation of possible organic binders. Lastly, the eight locations sampled throughout 

Escoural Cave for microbial growth showed - through the use of culture-dependent and the 

culture-independent method of NGS - that the majority of microorganisms in Escoural Cave 

are naturally found within karstic systems. However, the presence of some strains of 

Enterobacter sp. raises concerns as it can be pathogenic to visitors with compromised immune 

systems; additionally, the presence of lampenflora is of concern for the protection of the rock 

art and is a contender for future preventive conservation efforts through its removal.  
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Resumo 

Um novo olhar sobre a arte rupestre ibérica do sudoeste por adordagens analíticas não 

invasivas – os casos das grutas de Ardales e Escoural 

Esta tese centra-se na gruta do Escoural, no sudoeste da península  Ibérica, conhecida como 

a única com arte rupestre Paleolítica, em Portugal. Estima-se que tenham cerca de 20.000 

anos de idade, as pinturas e gravuras encontradas na gruta e enfrentam uma possível 

degradação devido a fatores naturais e antropogénicos. Embora previamente bem 

documentada, a importância do acompanhamento contínuo e da documentação do 

património cultural em risco, especificamente a arte rupestre, é importante para a sua 

sobrevivência e para a implementação de futuros esforços de conservação. Um dos objetivos 

desta tese foi usar técnicas e métodos não invasivos para documentar e analisar a arte 

rupestre da gruta do Escoural. Usaram-se várias técnicas de imagem para revelar ainda mais 

partes da arte escondida na rocha, no interior da gruta, permitindo também documentar o 

estado atual de preservação das oito pinturas mais conhecidas. Este trabalho também 

permitiu avaliar a eficácia e a aplicabilidade de FORS Vis-NIR e imagem híper-espectral como 

metodologias  não invasiva em arte rupestre, revelando-se metodologias úteis para o trabalho 

desenvolvido nesta gruta; muitos fatores, iluminação, localização da arte rochosa, e extensas 

quantidades de cobertura de calcite sobre as pinturas criaram condições não-ideais dentro 

da gruta para a completa eficácia destas abordagens. Estes métodos foram úteis para a 

identificação não invasiva de pigmentos e revelaram-se menos eficazes para a interpretação 

de possíveis aglutinantes orgânicos. Finalmente, os oito locais amostrados para o crescimento 

microbiano mostraram-através do uso de cultura-dependente e do método cultura - 

independente de NGS-que a maioria do microrgnismos na gruta Escoural são naturalmente 

encontrados em ambientes hipogénicos. No entanto, a presença de algumas estirpes, por 

exemplo de Enterobacter sp. podem apresentar patogenicidade para os visitantes com 

sistemas imunológicos comprometidos; além disso, a presença de lampenflora é uma 

preocupação para a proteção da arte rupestre e é um candidato para futuros esforços de 

conservação preventiva através de sua remoção. 
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I. INTRODUCTION 

1.1 ROCK ART 

Rock art is one of the oldest expressions of humankind and one of the oldest forms of cultural 

heritage, a true living testimony of the past human experience. Cave art, rock art, petroglyphs, 

pictographs, rock carvings, rock paintings, parietal art, and rock imagery are just some of the 

terms that have been used to describe one of the most visible parts of the archaeological 

record.  

Rock art, simply put, consists of symbolic markings found on rock surfaces; these rock surfaces 

can range from caves to rock shelters to open-air sites (Smith, 2014). The graphic markings or 

pictures are made with many diverse techniques from fingers, paintbrushes, and pencils, to 

paint sprayed from the mouth, etching, pecking, and engravings made with burins and flint 

points (Rogerio-Candelera, 2016; Smith, 2014).  

As Dr. David S. Whitley, a specialist in North American prehistoric archaeology shares, “rock 

art is common in all regions worldwide with landscapes containing natural rock 

surfaces”(Whitley, 2001, p.7).  It is found in Europe, with some of the more well-known sites 

being Lascaux and Chauvet in France and Altamira in Spain. European rock art sites are more 

commonly found in France and the Iberian regions where some of the oldest rock art exists 

dating to 40,000 years old (Agnew et al., 2015). In places like Australia’s Kakadu National Park, 

rock art is still being traditionally made and protected by the Aboriginal communities living 

there, where their artistic tradition has been passed down for generations within the local 

culture (Agnew et al., 2015). Rock art can be found in Africa, a continent of 54 countries in 

which more than half contain rock art sites and eight are listed as UNESCO world heritage 

sites (TARA, n.d.). South eastern Asia contains a remarkable collection of motifs and sites that 

display their rich cultural heritage spanning from Siberia to India (Agnew et al., 2015). Lastly, 

rock art has a great expanse across the Americas, from Alaska to Argentina there are many 

sites that reflect humankind’s rich culture.  

Traditional rock art was created with an assortment of different materials and techniques. 

The pigments used to create the majority of rock art were usually from raw materials which 

were locally sourced from nearby areas of the actual images. The main pigments of rock art 

were black, red, and yellow (Chalmin, Menu, & Vignaud, 2003). Black is usually found to be 
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charcoal, bone black, or manganese oxide (Chalmin et al., 2003). Red colors can be from 

materials rich in ferric oxides like hematite (red ochre), while goethite (yellow ochre) provides 

a good source for yellow (Smith, 2014). In order to enhance these pigments, the paints were 

prepared using extenders, binders, and/or various heating methods (Chalmin et al., 2003). 

After grinding the raw materials; various binders of water, animal fat, plant-derived material, 

blood, saliva, or urine could have been used; while extenders of feldspar, biotite, talc, or clay 

could have been added to the mixture to ensure the wet pigment stuck to the substrate of 

the rock surface (Gunn, 2004; Smith, 2014; Whitley, 2001). Other methods of rock art included 

drawings with charcoal sticks or ochre crayons (Smith, 2014). Stencils were also a common 

method found in rock art; for example, the creation of negative hands was produced by 

spitting paint over the hand which in turn left an outline (Smith, 2014). Engravings were 

created through abrasion or chipping away at the substrate’s surface with tools of flint, or if 

the substrate was soft enough, such as clay, fingers could have been used to design the motifs 

(Rogerio-Candelera, 2015). 

The humans that created the rock art had many different themes ranging from figurative and 

abstract imagery to hand imagery (Smith, 2014). Figurative imagery is a theme which depicts 

animals and humans. In Europe, horses, bison, mammoth, ibex, and deer are the most 

common figures found depicted in rock art (Smith, 2014). Abstract imagery includes 

geomorphic signs from dots to lines and shapes like tectiforms or scalariforms (Smith, 2014). 

Hand imagery is also an important theme seen regularly throughout rock art; negative hand 

stencils, positive handprints, and stylized hands drawn (Smith, 2014). 

Although the tangible aspects of this common cultural phenomenon are easy enough to 

describe from their geological location, the raw materials used to create them, and the 

techniques of production, it is harder to describe the intangible aspects. Rock art is not only 

the physical but the symbolic dynamics of past societies, it includes the emotional impacts 

felt by those who view it and those who created it (Gallinaro, 2018). The purposes for creating 

rock art – although most likely not to convey artistic ability like the term ‘art’ is used today  – 

is believed to have been for a myriad of different possibilities. Many original hypotheses 

believed rock art to have be created for shamanistic purposes (Smith, 2014). Rock art, 

especially those images depicting animals were usually connotated with displays of ‘hunting 
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magic’, ‘fertility magic’, shamanism, or trophyism (Smith, 2014). New theories are continually 

introduced whenever new archaeological and anthropological movements are developed.  

However, the profound importance and wealth of information that can be gathered from rock 

art is greatly diminished if one only considers the aesthetic feelings the imagery provides; rock 

art can also be an important documentation of history, giving insight into the past as a first 

form of storytelling and dare I say, language.  The images depicted on the rock’s surface shares 

information about the people who once lived there, providing a deeper understanding about 

past cultures, environments, and climates. In figure 1, image (A) and (B), an engraving from 

Libya depicts the sacrificing of a bull, where an upside-down bull is surrounded by masked 

humans (Gallinaro, 2018). Particularly fascinating, this ritual is still practiced today in local 

communities residing nearby (Gallinaro, 2018). Image (C) is believed to be a Megaloceros, an 

extinct type of giant moose, painted in black pigment found in Chauvet Cave, France 

(Brandshaw Foundation, n.d.). The cattle etched in image (D) is found in the Ennedi Highlands 

of Chad, a region now engulfed by the Sahara Desert; however, the highlands were once 

home to pastoralists and grazing cattle when rainfall was more frequent (Heyd & Lenssen-erz, 

2012). Now in the Ennedi Highlands, only camels can survive in the harsh environment (Heyd 

& Lenssen-erz, 2012).  

   

   

Figure 1: Rock art from around the world depicting various insights into past cultural events, environments, and climate. 

C 

A B 

D 
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As uniquely diverse as rock art is, from what it depicts and what methods were used to create 

it, it is also uniquely universal when considered as part of the collective human past; in that, 

rock art can be found all across the world, in all corners of human habitation and has been 

continuously created for thousands of years. Rock art’s importance as a piece of humankind’s 

identity and cultural heritage cannot be understated; and therefore, the efforts to document, 

analyze, preserve, and create awareness about them should not be either.   

1.2 SITE CONTEXT 
This thesis focuses on rock art found in the Iberian Peninsula, specifically the Palaeolithic site 

of Escoural Cave in Portugal. Iberia contains a rich history of rock art dating as far back as the 

Upper Palaeolithic period. For roughly 30,000 years during the Upper Palaeolithic period, the 

Iberian Peninsula became a thriving location for rock art, with about 200 Palaeolithic sites 

found in Portugal and Spain alone (Bicho, Carvalho, Gonz, & Sanchidri, 2007). During the 

Pleistocene, Palaeolithic hunter gatherers were beginning to create the first tools while at the 

same time creating relatively remarkable and complex graphics on the side of rock shelters 

and caves.  

The oldest rock art in Europe which occurs in the Upper Palaeolithic can be divided into four 

time periods based on stylistic techniques employed during each period; the oldest is 

Aurignacian art from 40,000-25,000 BCE; Gravettian art from 25,000-20,000 BCE; followed by  

Solutrean art from 20,000-15,000 BCE; and lastly Magdalenian art from 15,000-10,000 BCE 

(see appendix 1) (Whitley, 2001). Typical Upper Palaeolithic rock art consisted of animals and 

geometric signs, while humans were rarely depicted (Whitley, 2001). Although the Upper 

Palaeolithic rock art tradition would end during the last ice age, the rock art that was created 

then can still be found today, some having survived nearly 30,000 years since their creation 

(Whitley, 2001).  

1.2.1 ESCOURAL CAVE 
Escoural Cave is located in the municipality of Montemor-o-Novo in the town of Santiago do 

Escoural, Portugal (Silva, 2011; Silva & Araújo, 1995). Lying between the Tagus and Sado 

rivers, Escoural Cave finds its home in a natural basin within the Alentejo peneplain (figure 2) 

(Silva, 2011). Due to the natural ‘roads’ of the rivers, it is surmised that past prehistoric 

communities would have travelled inland on these roads and found the grotto of Escoural; 

the only cave within a 50-kilometer radius (Silva, 2011). Escoural’s limestone cavern is also 
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unique within the Alentejo region, which is naturally formed of mostly granite outcrops (Silva, 

2011).  

  

 

 

 

 

 

 

 

Figure 2: Map of Portugal with location of Escoural Cave and other Palaeolithic sites in south western Iberia; shown below is 
Escoural Cave in relation to nearby megalithic monuments. Adapted from Silva A.C., Escoural; uma gruta a pré-histórica no 
Alentejo, 2011.  

  Gruta do Escoural  
1.  Anta Capela de S. Brissos 
2.  Antas de Vale Rodrigo 
3.  Antas do Barrocal e Mitra 
4.  Anta Grande do Zambujeiro 
5.  Antas do Pinheiro do Campo 

6.  Anta do Gato 
7.  Anta do Patalim 
8.  Anta dos Tourais 
9.   Cromeleque dos Almendres 
10. Cromeleque da Portela do Mogos 
11. Cromeleque de Vale Maria 
12. Cromeleque do Tajal 
13. Cromeleque do Sideral 

14. Cromeleque de Cuncos 
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The Alentejo region in central Portugal is notable for its many megalithic sites and long 

occupational history. Found nearby to the Cave of Escoural are fourteen other distinct 

megalithic sites constructed during the Neolithic period (Silva, 2011). These sites include the 

notably famous, Great Dolmen of Zambujeiro and the Almendres Cromlech (figure 2). 

Escoural Cave itself is known to have been occupied since the Middle Palaeolithic (50,000 

BCE) when Neaderthals used the cave as a shelter; during the Upper Palaeolithic (35,000-

8,000 BCE) when modern humans used the cave as a sort of ‘shrine’ where they painted and 

engraved the walls; to the Neolithic (5,000-3,000 BCE) when it was used as a necropolis to 

bury the dead (Silva, 2011). Afterwards, outside the cave a Chalcolithic settlement (2,000 BCE) 

appeared and the nearby megalithic monuments were built (Silva, 2011). However, sometime 

during the Neolithic settlement, for reasons unknown, the entrance to the cave was sealed 

preserving the rock art and artifacts inside and would not be reopened until the 17 of April, 

1963 when a mining accident in the nearby quarry, Herdade dos Santos, blew open a new 

entrance to the grotto of Escoural (Marques, 2001). 

Escoural Cave itself is a rather small and superficial cave. The natural layout consists of three 

rooms and narrow passages connecting the rooms and numerous galleries found inside. The 

main room is approximately twelve by fifteen meters and contains an abundance of the rock 

art found inside the cave.  

Esocural cave is particularly significant due to the fact that it is the only cave in Portugal with 

Palaeolithic rock art, and one of the few found within the whole of the Iberian Peninsula (Silva 

& Araújo, 1995). There are nearly 100 figures recorded at Escoural Cave, mostly engravings, 

but also 30 distinct figures painted in red and black (Mauran, Mirao, Candeias, & Caldeira, 

2017). The figures, both engraved and painted, generally consist of animals such as horses, 

bovines, and bovids; geometric shapes ranging from dots to lines; and a number of 

unidentified shapes that have either been greatly altered through deterioration, left 

unfinished, or are simply unrecognizable. Most of the paintings found within Escoural Cave 

are dated to the Solutrean period (22,000-17,000 BCE), while the majority of the engravings 

are believed to have been created during the Soluntrean and Magdaleneian periods (18,000-

10,000 BCE) (Araújo & Gomes, n.d.).  
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Originally, the paintings and engravings were dated through a relative dating method of 

analyzing the rock art stylistically. As appendix 1 portrays, the Upper Palaeolithic rock art 

found in Europe displays common themes in regards to the period of when it was created. 

Older rock art displays a simplistic sense of depiction while the younger images have shifted 

towards a more anatomically accurate depiction and contain more intricate detailing. Rock 

art can also be dated directly; however, acquiring funding, permission, and finding enough 

material to sample are some of the key limitations when it comes to direct dating of rock art. 

The first attempts to use absolute dating on the paintings of Escoural Cave were undertaken 

in 2011 using U-Th dating of the calcium carbonate crusts near the paintings; the results 

obtained confirmed the previously thought age range of approximetly 22,000-17,000 BCE 

(Mauran et al., 2017). 

Other previous analyses at Escoural Cave have included the original analysis in 1997,  when 

projects aimed at the study of the rock art began; the work focused on the recording and 

deciphering of each painting and engraving found (Peyroteo-stjerna, 2018). Some climatic 

studies were implemented in the years of 2002-2004 (Barquín, 2015). Between 2010-2012, 

climatic studies were also conducted at Escoural Cave to monitor the microclimate and 

implement visitor regulations for preventive conservation of the rock art; calcium carbonate 

crusts were also removed in attempts to improve visualization of the rock art panels (see 

appendix 2) (Barquín, 2015). Lastly, a campaign in 2016 was conducted to study the pigments 

and painting techniques used in Escoural Cave; imaging analysis such as infra-red 

reflectography was used along with microsampling of the pigments (Mauran et al., 2017). In 

the same campaign of 2016, biofilm sampling was also conducted to analyze the various 

microorganisms inhabiting the cave (Mauran et al., 2017).  

Unfortunately, the rock art at Escoural Cave has struggled to withstand the test of time, 

having endured for nearly 20,000 years it is astonishing that some of the artwork still remains; 

nevertheless, the cave and the graphic images themselves face continuous degradation and 

damaging effects from natural processes to human interventions every single day. Everyday, 

the cave must balance the unique fragile ecosystem that it supports and still remain open for 

visitors to explore the rock art. From the visitor regulations implemented in 2012 through a 

partnership between the Directorate of Regional Culture of Alentejo and the Cabinet of 

Archaeology and Heritage Management Culture, Escoural Cave has permitted entrance to a 
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maximum of 40 persons per day; with a maximum of 10,000 visitors per year (Barquín, 2015; 

Contador, 2019). However, current visitation rates average lower at approximately 3,700 

visitors for the previous year of 2018 (Contador, 2019). The work from this thesis will continue 

to explore the factors threatening the rock art at Escoural Cave and the effects they are 

causing.  

1.3 DETERIORATION AND DEGRADATION 

Other than those briefly mentioned earlier, there are a myriad of complex natural and human 

impacts that can threaten rock art sites; this section will delve deeper into the causes and 

effects that damage the world’s rock art, an irreplaceable form of cultural heritage. Not only 

can rock art be found all across the globe, they can be discovered on many different surfaces. 

Rock art is not only limited to the inside of caves and rock shelters, but they can be found on 

ceilings and floors. Carved images of prehistoric fauna and other abstract imagery can be seen 

in open-air landscapes as well, like those in the Foz Côa Valley in north eastern Portugal (Silva, 

2011). Although these motifs are interesting in their design, they are better known for their 

survival. As David Lambert, a rock art conservator from Australia’s Department of 

Environment and Climate Change, simply states, “rock art is paradoxically both fragile and 

enduring” (Lambert, 2007). The unique and marvelous engravings found at the UNESCO 

World Heritage site of Foz Côa may have miraculously survived these past 25,000 years, but 

they - along with all rock art encompassing the globe - will continue to face daily threats to 

their survival; whether it be from natural processes or from anthropogenic factors. In order 

to save these cultural heritage sites, it is necessary to start with understanding the processes 

that they undergo. 

1.3.1 NATURAL IMPACTS 

Natural systems that are present in sites with rock art, whether they be open-air sites or 

karstic cave systems, contain two basic groups; biotic elements and abiotic elements 

(Rogerio-candelera, 2015). Both biotic and abiotic elements continue to degrade the rock art 

surfaces and contribute to the deterioration of the paintings and engravings found there. 

Biotic elements include natural factors such as microorganisms, insects, and plants.  Abiotic 

elements consist of radiation, air, water, temperature, and rock art itself (Rogerio-candelera, 

2015). All sites face specific problems, open-air sites are particularly vulnerable to wind and 
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rain, while show caves have fragile ecosystems and climates that can be easily disrupted by 

visitors viewing the rock art (V Jurado et al., 2010; Smith, 2014).  

The main natural impacts affecting rock art sites around the world include: weathering and 

erosion of rock surface and substrate, dust and mineral accretions, vegetation growth, animal 

and insect impacts, changing climatic conditions, major environmental events, and 

microorganism growth (Whitley, 2001).  

Weathering of rocks is defined as the disintegration and decomposition of rock (Earle, 2019). 

There are two forms of weathering, mechanical and chemical. Mechanical weathering occurs 

when a rock is disintegrated into smaller pieces by physical forces usually due to temperature 

and pressure changes (Earle, 2019). Chemical weathering is when minerals inside a rock are 

altered through the addition or removal of varying elements; such as water and oxygen (Earle, 

2019). Common examples of mechanical weathering that can easily harm rock art painted on 

the surface include: frost wedging when water freezes and expands causing cracks and 

fissures, and mechanical exfoliation when water, salts, and changes in temperature and 

humidity causes the rock to be stripped (see figure 3) (Earle, 2019). Chemical weathering 

includes dissolution; when acidic waters, whether natural or not, dissolve rocks especially 

limestone (Earle, 2019). Oxidation is also a common form of chemical weathering; when 

oxygen reacts with ferrous iron to cause rust; oxidation can react with common rock art 

minerals such as hematite and goethite (Earle, 2019). Hydrolysis, another form of chemical 

weathering, is when a substance is broken down when combined with water (Earle, 2019). 

Many factors can influence the process of chemical weathering on rock surfaces; these 

include changes in climate, the presence of organisms and microorganisms, growth of 

vegetation, and time.  

Erosion can be defined as the weathering of rocks through the transportation of products by 

mobile agents such as water, wind, or ice (Earle, 2019). Open-air sites like those found at Foz 

Côa Valley are particularly prone to erosion. 

Dust and mineral accretions, such as salt deposits continuously piling on rock art can slowly 

begin to obscure the paintings and engravings found (see figure 3). Another harmful natural 

impact that can be especially damaging for open-air sites and rock shelter sites includes 

vegetation growth. Various shrubs and trees near sites can also cause damage such as organic 



10 

weathering; when weeds and shrubs rub against the rock surface and when tree roots split 

rocks (“Documentation and Conservation of Rock Art,” n.d.). The presence of plants near rock 

art can also be potential fire hazards, in which the exposed rock art can be darkened from fire 

and smoke, effectively destroying any paintings (see figure 3). Plants are not the only forms 

of organic weathering that can harm rock art; animals and insects can also contribute to the 

problem. Many birds and insects, such as mud wasps, are often a problem at rock shelter sites 

where they build their nests on the rock surface (see figure 3) (Agnew et al., 2015).  

Other natural factors include geological and geomorphological risks pertaining to the 

structural stability of the rock art support which can be affected by landslides, collapses from  

earthquakes, and other events like flash floods (Ontañón, 2014). 

 

 

 

 

 

 

 

 

 

 

Figure 3: A) Cracks and fissures breaking rock art in half, due to mechanical weathering processes (59); B) water run-off from 
precipitation of cave causing pigment to run and the buildup of calcite crusts; C) nearby vegetation growth is a fire safety risk, 
especially for adjacent rock art that would be tarnished by the flames and smoke (97); D) Mud wasps nest covering rock art 
featuring cattle (59). 

Lastly, as mentioned above, microorganisms can be a cause of chemical weathering on rock 

surfaces. Biodegradation and biodeterioration, usually a secondary process to the weakening 

of rock substrate by weathering, is caused by both heterotrophic and phototrophic 

microorganisms that can be found at many rock art sites, especially in closed environments 

like caves (Rosado et al., 2017). These microorganisms are the result of various interactions 

A B 

C D 
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between the other cave organisms, the rock substrate, and the environmental conditions of 

the site (Gallinaro, 2018; Rosado et al., 2017).  

These microorganisms can include various bacteria, fungi, algae, and lampenflora. 

Microorganisms thrive in rock surfaces where they are able to obtain nutrients essential for 

their metabolism, such as calcium, aluminum, silicon, iron, and potassium (Rosado et al., 

2017) in turn, the metabolic activities of the microorganisms induce more chemical 

weathering (Earle, 2019).  

Microorganisms are naturally found in all rock art sites. However, some microorganisms are 

introduced to rock art sites by other means and can prove extremely harmful for the rock art 

residing there. Some methods of microorganism introduction found inside show caves include 

formation due to artificial illumination (Stomeo, Gonzalez, & Saiz-Jimenez, 2007)(1); 

underground air renewal from opening vaulted cave doors for visits can also disperse fungi 

spores throughout a cave (Fernandez-Cortes et al., 2011; Stomeo et al., 2007); human shoes 

can track in new organic material to feed microorganisms, while human hairs and clothing 

fibers can also act as nutrient sources for biota growth (Fernandez-Cortes et al., 2011; 

Novakova, Hubka, Saiz-Jiménez, & Kolarik, 2012; Whitley, 2001); bats and insects also create 

and distribute organic matter and fungal spores throughout caves (Fernandez-Cortes et al., 

2011; Whitley, 2001); lastly, the instability of certain climatic conditions like relative humidity, 

CO2, and also the occurrence of organic and inorganic material can promote the growth of 

fungi, bacteria, and biofilms (V Jurado et al., 2010; Rosado et al., 2017).  

There are a few indications that signify if microbial growth is damaging the rock art nearby. 

Microorganisms, like fungi, can cause both chemical and mechanical processes to occur due 

to rhizine penetration of the substrate (Rosado et al., 2017). The root-like rhizine attach into 

the substrate and can cause exfoliation of the substrate walls and detachment of painted 

layers; while chemically, fungi can also cause discoloration of paintings due to metabolic 

processes (Gallinaro, 2018; Gonzalez, Laiz, Hermosin, Caballero, & Incerti, 1999; Olivares et 

al., 2013; Rosado et al., 2017). Biodeterioration is a continual cycle of transformation due to 

the microorganisms that use the substrate walls as a nutrient source, their metabolic 

processes that then damage the  substrate by the acceleration of the dissolution of carbonate 

rocks, the releasing of acids furthers the biodeterioration, and this leads to further nutrients 
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for microorganisms to grow (Olivares et al., 2013; Rogerio-candelera, 2015; Rogerio-

Candelera et al., 2018).  

In order to preserve and further protect rock art, it is important to be wary of all the natural 

damages that can occur on rock art and the supporting substrate. Unfortunately, many 

natural impacts cannot be altered and will continue to happen (e.g. mechanical weathering). 

On the other hand, the observation, analysis, and prevention of harmful natural impacts - like 

invasive microorganisms - can be conducted in order to help preserve these cultural heritage 

sites. The monitoring and analysis of show caves is especially useful due to their fragile 

climates and environments. In order to analyze the type of microbes thriving in a rock art site, 

it is necessary to sample various areas of the site to learn what species are naturally found 

and those that are endangering the site. By identifying the microorganisms that reside near 

the rock art it is then possible to create a preservation and removal strategy that target 

specific groups of extremely harmful microorganisms and biofilms (Stomeo et al., 2007).  

1.3.2 HUMAN IMPACTS 

Rock art could neither exist, nor be given meaning without humans, yet we remain one of the 

main forces behind its deterioration. It is generally well known the impact tourists can have 

on rock art sites, especially caves containing rock art (Saiz-Jimenez, 2014). Currently, two of 

the most famous Upper Palaeolithic rock art caves in the world, Lascaux in France and 

Altamira in Spain, are permanently closed to tourism (Saiz-Jimenez, 2014). In their place 

replicas of the caves were created and are used for the masses of tourists that still visit these 

sites daily (Saiz-Jimenez, 2014). The forced closures of these caves were due to the extreme 

advanced deterioration observed since their original rediscovery; caused mainly by the 

staggering number of tourists visiting each year and the required modifications of the caves 

needed for their convenience and safety (Saiz-Jimenez, 2014). At the time, in 1935, only 56 

years following the ‘discovery’ Altamira, two members of the Conservation and Defense 

Board for the Cave of Altamira, Henri Breuil and Hugo Obermuier concluded that “the 

paintings had suffered more in the last fifty years than they had since they were painted 

[nearly 20,000 years ago]” due to the irreversible stabilization efforts on the cave’s galleries 

and the quickening of  biodeterioration rates due to increase in CO2 levels, temperature, and 

relative humidity occurring with the surges of tourist visits (Saiz-Jimenez, 2014). 
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Human impacts consist of two forms, internal factors and external factors. Internal 

anthropogenic factors include events that occur directly at rock art sites ranging from 

uncontrolled visits and deliberate destruction like graffiti and theft; to installation of support 

walls, stairs, lighting systems; also, archaeological excavations and poor attempts at rock art 

conservation (“Documentation and Conservation of Rock Art,” n.d.; Gallinaro, 2018; Ontañón, 

2014; Whitley, 2001). These internal human factors can not only lead to the direct destruction 

of rock art from actions like theft, but also through the introduction of microbial growth 

through actions like the installation of artificial lighting that can create a food source for 

phototrophic microorganisms (Mulec & Kosi, 2009). External anthropogenic factors are 

harder to control, but still threaten the survival of rock art. External factors can include nearby 

mining and construction works, encroaching urbanization and the pollution that comes with 

it, agricultural practices located nearby, and fires (Gallinaro, 2018; Ontañón, 2014; Whitley, 

2001). Nearby factories or other forms of air pollutants can cause the growth of gypsum crusts 

that cover the vulnerable rock art; while construction works can encroach into impluvium 

areas of show caves and potentially endanger the entire karstic systems (Rogerio-Candelera 

et al., 2018; Saiz-Jimenez, 2014). 

Unlike artworks found in museums, artworks that have monetary value and therefore insured 

protection against all potential threats, rock art is uninsured yet priceless. As Jeffrey Levin, 

The Getty Conservation Institute, states, “[rock art] is a public art in the very original sense 

that it can’t be acquired. It must remain where it is, or otherwise you destroy it” (Conservation 

Perspectives: Rock Art Conservation, 2019, p.22). As artworks in museums are guarded by 

security measures and advanced state-of-the-art environmental monitoring systems, rock art 

is protected by indigenous peoples, local communities, rock art researchers, and conservation 

professionals; but unfortunately it is common to find that they lack communication and 

information between them; they lack recognition, funding, and support; and they can lack 

consistent and set practice standards that follow agreed-upon protocols (Agnew et al., 2015).  

The proper management of rock art sites are crucial for their protection. However, many sites 

are caught between protecting the rock art and allowing the public to enjoy the sites. The 

consequences of cultural tourism can create rifts between competing interests of the people 

protecting the sites and those promoting and creating revenue from it (Smith, 2014).  
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Another factor acting as a double-edged sword is the documentation and analysis of rock art. 

Many things can be learned from the analysis of rock art, however the methods used for these 

analyses need to be taken under careful consideration. Analysis methods can range from non-

invasive to invasive sampling and complete destruction of a sample. Non-invasive methods 

can include various imaging techniques like photogrammetry, while destructive techniques 

involving sampling can be used to date the rock art.   

In order to ensure a future for the survival of rock art these local and broader communities 

need to work together, not only so they can benefit from these invaluable pieces of cultural 

heritage, but to also manage and conserve them better (Agnew et al., 2015).  The long-term 

survival of rock art is dependent on many factors, some which are controllable and some 

which are not. This multi-analytical thesis aims to be carried out in a non-invasive manner in 

order to help prevent further unnecessary damage to the priceless cultural heritage site of 

Escoural Cave. 

1.4 THESIS TOPIC  

This project intends to cast new light on the south west Iberian rock art site of Escoural Cave, 

in the Alentejo region of Portugal through the use of in-situ, non-invasive complementary 

analytical techniques to document and analyse the rock art and the surrounding environment.  

The non-invasive documentation and material study of the rock art and their state of 

preservation will combine surface imaging techniques with point analysis techniques. Imaging 

techniques will include visible and raking light photography to document the rock art’s visible 

features and surface irregularities; IR photography with different band-pass filters to observe 

under calcite coverage of at-risk paintings and to see the superposition of any paintings; UV 

fluorescence photography to detect materials with varying response to UV, distinguishing 

them with the naked eye; hyperspectral imaging in the visible range to identify differences in 

the material’s response to different wavelengths including hidden details and images  and the 

ability to identify pigment components; digital enhancement software such as DStretch and 

Photoshop that enable photographs to be altered in order to enhance the presence of eroded 

and degraded rock art; and lastly, photogrammetry to create a 3D digital model of the wall 

surfaces and a continuous picture of the rock art panels for complete documentation of the 
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current level of preservation. Vis-NIR FORS supported with EDXRF will be used to identify 

pigment compositions and possible organic binders used in the paintings. 

Furthermore, non-destructive microbial sampling will be taken for culture-dependent and 

culture-independent analysis for the identification of biofilms in Escoural Cave. Molecular 

analysis of biofilm DNA will be carried out for the identification of microbial genera and 

species found residing near the at-risk rock art. 

1.4.1 AIMS 

This master’s thesis aims to further the current knowledge of the rock art found inside 

Escoural Cave. Using non-invasive multi-analytical techniques, this thesis aims to provide new 

information regarding the rock art including recording their current state of preservation, 

identifying factors that could potentially be causing damage to the sites such as biofilms and 

microorganism growth, and using various imaging techniques to possibly reveal previously 

unknown art. This thesis also aims to determine if two non-invasive techniques new to rock 

art analysis, hyperspectral imaging and the Vis-NIR FORS, are useful in rock art analysis and 

documentation. 

The purpose of the thesis is to document and analyse rock art in hypogeal environments 

without the use of destructive techniques on these rare and invaluable pieces of prehistoric 

art. The methods mentioned above will allow for a qualitative and semi-quantitative analysis 

of the rock art.  As rock art is inherently fragile and is known to face continuous damage, 

degradation, and deterioration it is therefore a necessity to use non-destructive and non-

invasive methods that are portable for fieldwork and are able to provide results that are fast 

and reliable in the fight to conserve and document the world’s remaining rock art narratives. 

This project was chosen through an interest in preventive conservation of cultural heritage 

through minimally invasive campaigns.  The use of non-invasive techniques and analyses not 

only can allow for a deep understanding of the physical and chemical aspects of an 

archaeological object, but also ensures the preservation of these cultural heritage objects for 

future generations to enjoy and take meaning from.  

1.5 LITERATURE REVIEW 

The importance of using non-invasive methods to analyze cultural heritage has been well 

known for decades (Inés Domingo, Villaverde, López-montalvo, Luis, & Cabrelles, 2013; 
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General Method Policies for All Site Recordation, 2018; Olivares et al., 2013; Whitley, 2001).  

Although the benefits of invasive and sometimes destructive analysis through sampling are 

numerous when it comes to cultural heritage objects, it is foremost imperative to perform as 

many analyses as possible using methods and techniques that will not harm or alter the 

objects in any way especially if they are at-risk objects.  In the case of rock art, many invasive, 

destructive techniques can be quite useful from absolute dating using Uranium-Thorium 

dating and Carbon-14 dating to learn the age of the rock art, or sampling of pigment to learn 

more about the various compositions of the paint and painting techniques used in the 

prehistoric rock art. However, it is also well known that rock art is an extremely fragile area 

of cultural heritage due to their physical locations, extreme age, and sometimes unique 

ecosystems; they suffer from natural deterioration of mechanical weathering and human 

caused interference like microorganism attacks similar to those see in Lascaux Cave which 

rapidly began to degrade the pigments of the infamous polychrome wall after the cave was 

opened to public visits (Saiz-Jimenez, 2014).  

Well known non-invasive methods used throughout rock art analysis and documentation 

include various imaging techniques like IR photography, photogrammetry, and DStretch 

(“Documentation and Conservation of Rock Art,” n.d.; Domingo Sanz, 2014; Whitley, 2001). 

More and more studies are being published that involve intensive monitoring of caves that 

contain rock art - analyzing everything from their climate, relative humidity, to their levels of 

CO2, and also the microorganisms residing in the caves (“Documentation and Conservation of 

Rock Art,” n.d.; V Jurado et al., 2010; Ontañón, 2014). Research on these microorganisms are 

mostly centered around the impact they can cause on the rock art or the supporting substrate, 

but new publications are finding interest if any of these show caves contain pathogenic 

microorganisms that could cause potential risks for visitors (Valme Jurado et al., 2010).  

As the factors affecting rock art survival and rock art deterioration are well outlined in section 

1.3, this project was created with the intent to focus on using only non-invasive methods to 

analyze and document the rock art at Escoural Cave. Therefore, this thesis will be using the 

traditional methods that are now commonplace in work involving rock art research including 

imaging techniques and microbiological analysis.  
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However, this thesis will also be venturing out to determine if two techniques, which have yet 

to be published in works related to rock art analysis, hyperspectral imaging and Vis-NIR FORS, 

would in fact be useful for non-invasive analysis of rock art.  Relatively few published works 

can be found where multispectral imaging has been used on rock art, but none in so far 

regarding a portable hyperspectral camera (Liang, 2011; Robinson & Ware, 2002). That being 

said, there has also been only three published articles in which a FORS in the NIR range has 

been used to analyze historical works of art, including illuminated manuscripts and 

renaissance paintings, but not to my knowledge has the instrument been used on rock art 

(Cavaleri, Giovagnoli, & Nervo, 2013; Cheilakou, Troullinos, & Koui, 2014; Pronti, Ferrarai, 

Uccheddu, Pelagottii, & Piva, 2015).  

Although other authors have noted the limitations of these instruments (Yivlialin, Galli, 

Raimondo, Martini, & Sassella, 2019), especially regarding the Vis-NIR FORS - from extremely 

difficult to read NIR regions, the necessity to create as accurate as possible reproductions for 

a database, the ability of the NIR to penetrate directly through to the support, or the bands 

to become altered from chemical alterations due to interaction with each material- it is still 

of interest to see how these instruments fare when used on rock art. Possible difficulties that 

could arise with the use of the Vis-NIR FORS and the hyperspectral camera during rock art 

analysis include difficulties due to the uneven limestone substrate, the extreme calcite 

coverage found throughout the cave and on top of the paintings, and limited visibility of the 

paintings. Nevertheless, it is necessary to test these non-invasive in-situ methods in order to 

prove their effectiveness in working with rock art or to evaluate and expand upon their 

limitations regarding certain parameters that affect rock art.  
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II. MATERIALS AND METHODS 

2.1 IMAGING ANALYSIS  

The Iberian rock art site analyzed for this thesis was Escoural Cave in the Alentejo region of 

Portugal. Permission to carry out non-invasive analyses at Escoural Cave was given by the 

Alentejo Regional Directorate of Culture. The majority of the analyses for this thesis were 

done in-situ during organized field campaigns at the rock art site. Microbial analysis was 

carried out at the Laboratorio Biotecnologia at the Universidade de Évora and the Laboratorio 

HERCULES in Évora, Portugal. 

Escoural Cave contains nearly 100 documented engravings and paintings, however, due to 

the limited time available for this research, only the most visible and easily accessible 

engravings and paintings were analyzed. In total, 8 painted panels (#1-8), with singular or 

multiple figures, and 4 engraved panels (#1E-4E) were analyzed using imaging techniques and 

multi-analytical approaches. Figures 4-6 show a map of Escoural Cave with the location of 

each panel and a scaled photograph of each rock art panel that was analyzed for this thesis 

(all scales are in 5 cm increments unless otherwise specified). The in-situ analyses were 

carried out during multiple return trips to Escoural Cave taking place on 22 May, 31 May, 21 

June, and 8 July 2019. Below, table 1 shows which methods and techniques were used on 

each panel at Escoural Cave. 
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Figure 4: Map of Escoural Cave marking locations of each painting and engraving analyzed for this thesis. Red circles indicate 
paintings, blue circles indicate engravings (Adapted from Araújo C.A., Lejeune M., Gruta do Escoural: Necrópole Neolítica e 
Arte Rupest Paleolítica, 1995). 

As displayed in the map above, new labels were given to the already existing numbered rock 

art at Escoural Cave. Shown below, in figure 5-6, are the original number(s) in brackets along 

with the new labels given for ease of the analysis of this thesis. 
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Figure 5: Paintings #1-4 analyzed at Escoural Cave. 
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Figure 6: Paintings #5-8 and engravings #1E-4E analyzed at Escoural Cave.  
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Escoural Cave paintings 

#1          

#2          

#3          

#4          

#5          

#6          

#7          

#8          

Escoural Cave engravings 

#1E          

#2E          

#3E          

#4E          

Table 1: Imaging and multi-analytical techniques used on paintings and engravings at Escoural Cave. 

2.1.1 VISIBLE AND RAKING LIGHT PHOTOGRAPHY  

All rock art paintings were photographed using visible light photography, while all rock art 

engravings were photographed with raking light photography.  Visible and raking light 

photography were implemented to document the paintings’ visible features and surface 

irregularities, such as enhancing the cut marks in the engraved rock art. Visible light and raking 

light photography operate within the visible spectrum with wavelengths of 400-700 nm (see 

figure 7). Raking light photography requires light sources to illuminate the object – in this case 

the engravings – at an obtuse angle while the camera is placed perpendicular. The angle of 

light allows for surface irregularities to be exposed and enhanced. 

A Nikon D3100 DSLR camera with AF-S DX NIKKOR 18-55MM F / 3.5-5.6G VR lens in manual 

mode was used on a tripod to capture the rock art photographs in visible and raking light. 1-
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3 halogen lamps were placed accordingly in the cave in order to sufficiently illuminate the 

rock wall or to enhance the cut marks of the engraved rock art. All photos were taken with a 

scale marked off at 5cm increments. Angles of lighting and camera stations were dependent 

upon the accessibility of each engraving and painting.  

 

 

 

 

 

 

Figure 7: Diagram of the electromagnetic spectrum. (Adapted from Columbia University). 

2.1.2 INFRARED PHOTOGRAPHY WITH BAND-PASS FILTERS  

Infrared analysis of the rock art paintings in the 780-1300 nm range was collected using 

infrared photography with band-pass filters. All consumer-grade DSLR cameras are equipped 

to capture wavelengths from the UV to visible to NIR regions, however, factory set cameras 

are built with an IR blocking filter so to only produce visible light photographs (Williams & 

Shee, 2015). Through an affordable modification the IR cut filter can be removed and 

therefore transforming the camera for IR use with the appropriate band-pass filters attached 

and the use of halogen or incandescent light source (Williams & Shee, 2015). IR photography 

is useful in cultural heritage conservation for seeing the underdrawings of paintings made of 

charcoal or carbon-based inks; IR wavelengths are also able to pass under calcium carbonate 

crusts found in caves, allowing for the possibility of hidden charcoal paintings to be revealed 

in rock art sites. 

A transformed, infrared sensitive Nikon D3100 was partnered with three band-pass filters; X-

Nite780-850, X-Nite850-950nm, and X-Nite1000-13000 nm (LDP LLC MaxMax) for this thesis. 

Photographs were taken using 1-3 halogen lamps to properly illuminate the rock art surface. 

A tripod was used for camera stabilization. Distance of halogen lamps and infrared camera 

depend on the accessibility of paintings within the cave. Photoshop software was used to 

process all IR photos. Photoshop channel mixer was used to modify the IR photos in grayscale.  
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2.1.3 UVF PHOTOGRAPHY 

Ultra-violet fluorescence photography was used throughout Escoural Cave to help document 

the degradation factors affecting the rock art. UVF is used as a surface identification method; 

through emitting wavelengths in the 350-360 nm range UVF can create a visible fluorescence 

in some minerals like calcite (Stuart, 2007).  

UVF photography of painting #5, Escoural Cave. 

UVF can be achieved with a normal consumer-grade camera. This thesis was equipped with 

the same Nikon D3100 camera which was used for the visible and raking light photography. 

UVF photography requires completely dark surroundings to allow the camera to record as 

much UV fluorescence light as possible. For Escoural Cave, efforts were made to cover and 

turn off as many of the cave’s artificially installed lighting as possible. The camera was placed 

on a tripod at varying distances depending again upon the accessibility of each painting and 

set to manual mode with shutter a speed of 5-10 seconds to capture maximum fluorescence. 

A Labino MPXL UV light was used in a sweeping motion on the rock surface as the camera 

captured the photograph. Protective glasses were worn during the photography.  
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2.1.4 PHOTOGRAMMETRY   

3D photogrammetry is another technique which requires only a consumer-grade DSLR 

camera, proper lighting, and the appropriate computing software. 3D models of rock art not 

only encapsulate the current state of preservation of each painting or engraving, but also 

documents the rock art support allowing for conservators and documenters to see the 

stability and at-risk elements nearby to the rock art. 

3D models of all rock art paintings and engravings were conducted using structure from 

motion (SFM) photogrammetry. Photographs were taken without tripod; however, due to 

minimal lighting in Escoural Cave, 1-3 halogen lamps were used for each painting and 

engraving for extra lighting. A minimum of 20 to a maximum of 100 photographs in sweeping 

arches from left to right were taken for each rock art panel, making sure each photo contained 

30% overlap of the last photo taken. Again, closeness and angel of lighting of each rock art 

panel depended upon accessibility of each panel. Agisoft PhotoScan Professional software 

was used to align the photographs taken of each panel, create a dense cloud of matching 

points, tie points together with a mesh of triangles, and overlap with a texture to match that 

of the rock art surface.  

2.1.5 DSTRETCH  

Decorrelation stretch, DStretch, is a plugin for ImageJ software; using the Karhunen-Loève 

theorem (I Domingo, Carrión, Blanco, & Lerma, 2015), this software was created by Jon 

Harman in 2005 specifically for rock art. The plugin takes photographs and visually enhances 

them through the modification of hue and value and through manipulation of false colors (I 

Domingo et al., 2015; Harman, 2006; Quellec, Duquesnoy, & Defrasne, 2015). The software 

user is able to remove and correlate between spectral bands in order to optimized and 

highlight the differences in the photo, therefore enhancing deteriorated and faded pigments 

for better visualization (I Domingo et al., 2015).  

Regular visible light photographs of each rock art painting were modified with the DStretch 

plugin. Relative to each painting’s original attributes (e.g. pigment color) different scales and 

colorspace options were used to achieve maximum enhancement for each painting. 



26 

2.1.6 HYPERSPECTRAL IMAGING  

Hyperspectral imaging is a non-invasive technique that allows for the acquisition of a full 

spectrum for each individually recorded pixel (Balas, Epitropou, Tsapras, & Hadjinicolaou, 

2018; Bonifazi, Capobianco, Pelosi, & Serranti, 2019; Zucco, Pisani, & Cavaleri, 2017). This 

diagnostic tool was originally used for remote sensing conducted in military and remote space 

settings (Harman, 2006). Hyperspectral imaging can obtain high spatial and spectral 

resolution for each image captured (Balas et al., 2018). The Specim IQ portable hyperspectral 

camera was used for in-situ imaging at Escoural Cave. The Specim IQ hyperspectral camera 

records light intensity as a function of wavelength from the visible to NIR range of 400-1000 

nm and as a function of location.  

Hyperspectral camera being set up at Escoural Cave; painting #2. Lighting and white reference are being adjusted for 

optimal conditions. 

The hyperspectral camera was placed as close as possible to each painting in order to fill the 

viewfinder with the image; however, due to lengthy integration time of a few seconds to a 

few minutes, a tripod is necessary for image acquisition, therefore limiting which paintings 

could be analyzed with this technique and how close the camera could be safely positioned. 

2-3 halogen lamps were used to artificially illuminate the paintings inside Escoural Cave in 

order to achieve the maximum reflectance of light. The camera was used in default recording 

method (DRM) with simultaneous or custom white reference collection; after adjusting for 

focus and approving integration time, the spectral data is recorded, followed by the manual 

calibration of white reference and lighting approval, the image is captured and the spectral 

wavelengths are available. Following the acquisition of the hyperspectral images, the data is 
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imported to Specim IQ studio where a model and application are created for the detection of 

similar wavelengths throughout each photograph.  

2.2 MULTI-ANALYTICAL APPROACHES  

2.2.1 Vis-NIR FORS  

Fiber optics reflectance spectra in the visible to near infra-red regions allows for rapid 

acquisition of data in a portable in-situ instrument (Cheilakou et al., 2014; Rosi, Daveri, 

Miliani, Verri, & Benedetti, 2009). The flexible optical fibers are used to convey 

electromagnetic radiation from the instrument to the target and vice versa, without sampling 

(Stuart, 2007). There are many applications of diffuse reflectance, the Vis-NIR FORS can 

effectively be used for colorimetric analysis, such as monitoring changes in color due to 

degradation; identification of chromophores and pigments; and identification of selected 

molecular groups such as organic binders (Cheilakou et al., 2014; Fischer & Kakoulli, 2013; 

Leona & Winter, 2019; Stuart, 2007). Depending upon the reflectance properties of a material 

the reflectance spectrum will show the ratio between the intensity of the incident light and 

that of the reflected light for each wavelength (Stuart, 2007). 

The BWTEK i-Spec 25, a broadband portable spectrometer in combination with a handheld 

reflectance probe of trifurcated fiber optic bundle series integrated with a 5W tungsten 

halogen source with a focal aperture of 5mm and extended InGaAs array sensor, was used for 

analysis at Escoural Cave. The spectrometer measures across the UV-Vis-NIR range from 400-

2500 nm, and the analysis is compiled through the supporting iSpec4 program.  

After initial setup of the i-Spec 25 FORS with a portable field laptop, the 3 detectors (Detector 

1: BRC711U-512 [345.6nm-1061.3nm]; Detector 2: BTC261P-512-OEM61 [883.0nm-

1718.0nm]; Detector 3: BTC263E-256-OEM61 [1482.4nm-2654.9nm]) were set to the 

previously optimized settings of Detector 1: integration time 95ms, average 25, smoothing 

none; Detector 2: integration time 240μs, average 50, smoothing of Boxcar +1, detector mode 

of high sensitivity; Detector 3: integration time 332μs, average 100, smoothing of Boxcar +1, 

detector mode of high sensitivity. Detectors were calibrated based on standards made using 

traditional Palaeolithic pigments and binders; see appendix 4. The dark reference was 

collected as was the white reference with a barium sulfate disk. Next, the handheld probe 

was placed on the rock art pigment ensuring that the aperture was as flat as possible against 
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the rock art in order to reduce the interference of ambient light. The sample point was 

illuminated with a broad band radiation source, and the backscattered diffuse light was then 

collected by the detectors. For each pigment analyzed, 3-5 points were collected for reliable 

and representative results of each painting’s pigment (see appendix 5 for point analysis 

locations). All points were chosen based on the amount of visible pigment available and 

surface evenness. Calcite points were also taken for controls.  

Following the collection of all data, the results were configured to TXT format and transferred 

to MATLAB for Principal Component Analysis for the creation of non-calibrated and calibrated 

models1. Spectral pre-0 was used to remove baseline drifts and unwanted light-scattering 

effects using MATLAB (version R2016a) and PLS toolbox (version 8.2.1) from Eigenvector 

Research Inc. The 62 FORS spectra of the Escoural cave paintings and lab standards were pre-

processed with standard normal variate (SNV) scaling of samples (weighted normalization) 

followed by mean center for removing mean offset from each variable. PCA was applied to 

the Vis and NIR regions based on the three detector cut-offs of [400-1018 nm], [1031-1633 

nm], [1655-2485 nm]. Spectra of the rock art painting samples were projected on a PCA model 

calibrated against spectra of pure binders subtracted from their background support of glass 

(parchment glue, Arabic gum, lime water, saliva, bone marrow, chicken blood, human blood, 

and urine).  

2.2.2 EDXRF 

The portable Energy dispersive x-ray fluorescence (EDXRF) instrument was used to 

compliment FORS analysis at the site of Escoural Cave. EDXRF is another in-situ instrument 

that allows for the non-invasive point analysis of rock art (Bonizzoni, Caglio, Galli, & Poldi, 

2008; Liang, 2011). EDXRF is capable of elemental identification in elements with atomic 

numbers higher than sodium (Liang, 2011; Stuart, 2007). EDXRF obtains elemental 

information through x-ray fluorescence whereby electrons are displaced from their atomic 

orbital positions, and thereby releasing characteristic energy of a specific element allowing 

for the identification of said element (Stuart, 2007). As reflectance spectroscopy, EDXRF is 

able to detect main and trace elements used in rock art pigments (Liang, 2011). EDXRF is a 

                                                           
1 PCA analysis was performed by Catarina Miguel PhD. of HERCULES Laboratory. 
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technique well suited for the preservation of rock art through the qualitative chemical 

analysis it can provide (Alberti, Fiorini, Guazzoni, Klatka, & Longoni, 2007; Gay et al., 2016). 

A handheld Bruker Tracer III with silicon drift detector and rhodium x-ray source was used for 

the X-ray fluorescence analysis at Escoural Cave. Following instrument calibration of 

standards, the XRF Actual High Voltage and Actual Anode Current were set to kV 40.00/ μV 

30.00 and 30 seconds for data acquisition at each point analysis. Point analysis locations were 

the same as those taken for the FORS in order to confirm results (see appendix 4).  

2.3 MICROBIAL ANALYSIS  

Microbial analyses were also conducted in Escoural Cave. A total of 8 locations throughout 

the cave were sampled for biofilms and microbial growth using sterile cotton swabs for 

culture-dependent and culture-independent methods of DNA sequencing for genera and 

species identification. Samples A; A1, B, C1, C2, D, and M were collected on 29 March on the 

first visit to Escoural Cave; while samples Y and G were collected during a return visit on 22 

May 2019. No samples were taken directly from any paintings or engravings; however, 

samples A; A1 were taken nearby to painting #5. Figure 8 shows the sample locations taken 

at Escoural cave, and figure 9 shows each sample during the sampling process.  

Microbial analysis was carried out in order to determine what biofilms were residing within 

Escoural Cave. As previously mentioned, hypogeal environments constitute extremely unique 

environmental niches, those that favor the development of many different microbes from 

bacteria, fungi, algae, and cyanobacteria (Mitova, Iliev, & Groudeva, 2015). As single 

microorganisms can form biofilms or colonies that then cause serious negative effects for rock 

art in hypogeal environments, it is necessary to analyze the type and number of 

microorganisms in order to create an effect preservation strategy to target these specific 

groups (Rosado et al., 2017; Stomeo et al., 2007; Stomeo, Portillo, Gonzalez, & Laiz, 2008).  

Microorganism analysis at Escoural Cave was conducted with culture-dependent methods 

and culture-independent methods.  
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Figure 8: Map of Escoural Cave marking locations of microbial sampling and location of cave entrance. (Adapted from Araújo 
C.A., Lejeune M., Gruta do Escoural: Necrópole Neolítica e Arte Rupestre Paleolítica, 1995).

Entrance 
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Figure 9: Sampling locations of microbial samples. 

A; A1 B 

C1 (Moonmilk) C2  

D M (mushrooms) 

G (algae) Y (mushroom) 
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2.3.1 CULTURE-DEPENDENT METHODS  

i) ISOLATION OF MICROORGANISMS  

Following sample collection at Escoural Cave, samples A; A1, B, C1, C2, and D were immersed 

in 1 ml (sterile) solution of MRD (maximum recovery diluent) to promote the extraction of 

cells; samples were kept in IKA KS 4000 i Control agitation machine for 48 hours. Following 

agitation, samples A; A1, B, C1, C2, and D were inoculated. Each sample was divided into one 

pure sample and two samples 1/10 diluted with MRD. Pure and diluted samples were then 

inoculated on four different mediums; MEA (Malt Extract Agar), NA (Nutrient Agar), TSA 

(Trypticase Soy Agar), and CRB (Cook Rose Bengal). A total of 12 petri dishes for each sample 

were created. MEA and CRB dishes were placed in fungi incubator at 27 °C for 7 days; NA and 

TSA dishes were placed in bacteria incubator for 30 °C for 1-2 days.  

After allotted incubation time, plates were analyzed for further isolation. After first inspection 

following incubation, all samples were again diluted with MRD to 1/100 in order to isolate 

more homogeneous results. Following full isolation of bacteria strains, samples were 

inoculated for the final time in ramps with NA medium and incubated at 30 °C for 48 hours 

for DNA extraction. A total of 43 bacteria stains were isolated from the 6 original samples for 

DNA extraction.  

Sample M, a mushroom sample, was cut into 2mm pieces and placed inside four petri dishes 

with MEA medium and three petri dishes with CRB medium. M samples were incubated for 

48 hours at 27 °C. After isolation of mushroom and fungi strains, samples were inoculated for 

final time in petri dishes with MEA medium and incubated for 5 days at 27 °C for DNA 

extraction. A total of 13 mushroom and fungi stains were isolated from the 7 original samples 

for DNA extraction.  

All procedures described above were performed under aseptic conditions. Analysis of Y and 

G samples, collected at a later date, were conducted with culture-independent methods only.  

ii) EXTRACTION OF BACTERIAL DNA 

Bacterial colonies grown in new ramps with NA medium were used for DNA extraction. Cells 

were resuspended in 100 μl of buffer TE (Tris-10 mM, EDTA-1 mM, pH 8). Thereafter, 15 μl of 

2 mg/ml lysozyme (in sterile H2O mil) was added to the cell suspension. The samples are 

gently vortexed and subsequently incubated at 37 °C for 40 min. 15 μl of 4 mg / ml α-
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chymotrypsin was added in 10% SDS. The samples are shaken gently and incubated at 50 °C 

for 35 min. 100 μl of phenol/chloroform/isoamyl alcohol (25:24:1) was added to the aqueous 

phase. The samples were gently shaken manually and a spin was made. The supernatant was 

transferred to a new microtube, measuring the volume withdrawn. One volume of 

chloroform/iso-amyl alcohol (24:1) was added. The aqueous phase was transferred by 

measuring the volume withdrawn, and two volumes of absolute ethanol and 0.3 volumes of 

3M sodium acetate were added. The samples were stored overnight at -20 °C. The following 

day, these were centrifuged at 11900 g for 25 min. The supernatant was discarded and the 

DNA was air dried (in the laminar flow chamber). Finally, the DNA pellets were resuspended 

with 100 μl sterile TE (Tris-10 mM, EDTA-1 mM, pH 8) and stored at -20 °C. 

iii) EXTRACTION OF FUNGAL DNA  

The previous fungi strains grown in MEA medium for five days at 27 °C were used for DNA 

extraction. For promotion of cell lysis, the cells were resuspended in 700 μl lysis buffer (Tris-

HCl - 50 mM, NaCl - 250 mM, EDTA - 50 mM, SDS - 0.3%, pH = 8) in an Eppendorf tube of 2 ml, 

with the addition of 300 μl of microspheres in the suspension. Tubes were vortexed at full 

speed, in 30 second cycles on ice followed by 30 seconds in the vortex, for 3 minutes. The 

suspension was then incubated at 65 °C for 60 minutes. After incubation, suspension was 

vortexed again at full speed, in 30 second cycles on ice followed by 30 seconds in the vortex, 

for 3 minutes; then centrifuged at 14,000 rpm for 10 minutes at 4 °C. The maximum 

supernatant was collected into a new 2 ml Eppendorf tube in which 700 μl of TE (Tris-10 mM, 

EDTA-1 mM, pH = 8) buffer containing RNase (50 μg / ml) was added. Microtubes were then 

incubated again at 37 °C for 60 minutes in order to solubilize the nucleic acids. 500 μl of the 

chloroform/isoamyl alcohol solution (24:1) was then added to the mixture by mixing the 

phases by inversion. 

After centrifugation at 4 °C at 10,000 rpm for 10 minutes, the supernatant was collected into 

another 2 ml Eppendorf tube and cold 3M sodium acetate buffer (pH = 5.2) was added, at the 

ratio of 1/10 volume obtained and mixed by inversion. Next, 2.5 volumes of cold absolute 

ethanol (-20 °C) were added, promoting the mixing of the phases by inversion. The mixture 

was centrifuged at 4 °C at 13,000 rpm for 15 minutes with subsequent decantation of the 

supernatant. The obtained pellet was washed with 1 ml of 70% (v/v) ethanol by slowly adding 

the ethanol to the Eppendorf wall, again centrifuging at 4 °C at 10,000 rpm for 10 minutes. 
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The supernatant maximum was removed and a spin was then performed to remove excess 

supernatant. The obtained pellet was air dried at room temperature for 30-60 minutes (in the 

laminar flow chamber). DNA was solubilized in 100 μl of TE buffer solution and stored at -4 

°C. 

iv) DNA QUANTIFICATION BY MOLECULAR ABSORPTION SPECTROMETRY 

The extracted DNA was quantified by molecular absorption spectrometry on a Thermo 

Scientific μDrop Plate MultiScan Go spectrophotometer coupled to a SkanTY for MultiScan 

3.2 software. 2 μl of each DNA sample and a TE buffer (blank) sample were applied with 

absorbance readings at 230, 260 and 280 nm. The concentration of DNA was calculated by 

the expression: [DNA] (μg/ml) = Abs260 nm x 50 μg/ml/cm x (10/0.51) cm. 

At 50 μg/ml/cm the inverse of the molar absorptivity coefficient for double-stranded DNA and 

10/0.51 cm is the inverse of the optical path characteristic of the equipment. The ratios given 

for the purity of the samples were also calculated: 

Abs260

Abs280
  e  

Abs260

Abs230
 

v) DNA AMPLIFICATION OF BACTERIA AND FUNGI STANDS  

Bacteria DNA samples were amplified by the polymerase chain reaction (PCR) method, using 

a set of primers (518F/785R) encoding of the 16s rDNA region (see table 2). Fungi DNA 

samples were also amplified by the same PCR technique, however using a different set of 

primers (ITS1/ITS4) encoding the 18s rDNA region (see table 2). 

 Primer Sequence 5’-3’ 

Bacterial Analysis 518F CCA GCA GCC GCG GTA ATA CG 

785R CTA CCA GGG TAT CTA ATC C 

Fungal Analysis ITS1(F) TCC GTA GGT GAA CCT GCG G 

ITS4(R) TCC TCC GCT TAT TGA TATGC 

Table 2: Primers used for the amplification of bacterial and fungal DNA.  

Reaction mixtures were prepared for DNA amplification with the composition shown in table 

3.  
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Volume (μl) 

 Blank Microtube sample 

H2O RNAse free 19.6 18.6 

Buffer reaction 10x with MgCl2 (25mM) 2.5 2.5 

dNTPs (2mM) 2.5 2.5 

Primer F 0.1 0.1 

Primer R 0.1 0.1 

Taq DNA Polymerase 0.2 0.2 

Sample DNA - 1.0 

Vf=25 μl 

Table 3: Preparation of mixture for PCR. 

A microtube was prepared by replacing the DNA with 1 μl of H2O and used as a negative 

control. The samples were then centrifuged and placed in the MJ Mini Bio-Rad thermocycler 

with the PCR amplification program according to the following procedures. For PCA analysis 

of Bacteria in the 16S rDNA the program was set to 3 minutes at 95 °C (initial denaturation), 

followed by 36 cycles of denaturation from 50 seconds at 94 °C, annealing from 50 seconds 

at 56 °C, and extension of 1 minute at 72 °C. The final 10-minute extension was made at 72 

°C. For fungi, the region of interest was the ITS region with the PCR program set at 5 minutes 

at 94 °C (initial denaturation), followed by 40 cycles of denaturation of 1 minute at 94 °C, 

annealing for 1 minute at 50 °C, and extension of 2 minutes at 72 °C. The final extension of 6 

minutes was made at 72 °C. 

vi) DNA DETECTION 

Analysis of the PCR amplification products was performed by 1.5% agarose gel 

electrophoresis, which confirms the amplification, integrity of the DNA as well as the presence 

of contaminants. 

A 1.5% agarose gel in 0.5x TBE solution was prepared with the addition of 5 μl of GreenSafe 

Premium (MB13201, NZYTech), allowing polymerization for 15 minutes at room temperature. 

The gel was placed in the electrophoresis tub, containing 0.5x TBE buffer. Samples were 

applied to each well of the gel; 2 μl of Loading buffer 1x and 5 μl of the DNA marker NZYDNA 

Ladder VII (0.5 μg.μl-1, MB06101 NZYTech ) was applied to the first well of the gel  followed 

by 5 μl  of sample with 2 μl of Loading buffer 6x (15081, NZYTech) applied to the remaining 
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wells. Electrophoretic separation was carried out by applying a potential difference of 75 V. 

Finally, the analysis of the bands was carried out in an Ultraviolet (Molecular Imager, Gel-XR 

+ Imaging System, Bio-Rad) chamber with the use of the software Image Lab 5.0. 

vii) QUANTIFICATION OF DNA AMPLIFICATION FROM PCR 

PCR products were quantified by spectrofluorimetry using the Quantus Fluorometer (E6150, 

Promega). The DNA quantification kit, QuantiFluor One dsDNA (E487, Promega) was used. 

Samples were prepared with 199 μl QuantiFluor One dsDNA and 1 μl of sample, incubated for 

5 minutes at room temperature in the dark. The concentration of the samples was 

determined by calibration with blank of 199 μl QuantiFluor One dsDNA and 1 μl if TE, and a 

standard prepared with 199 μl QuantiFluor One dsDNA and 1 μl of Lambda DNA. 

vii) SEQUENCING OF DNA SAMPLES 

PCR products were sequenced through an external service by capillary electrophoresis with 

the ABI PRISM 3730 xl sequencer (Applied Biosystems) using the BDT v1.1 Kit (Applied 

Biosystems). The sequences obtained were then analyzed and aligned with GenBank 

deposited sequences (NCBI) for homology analysis via the BLAST search engine. Construction 

of dendrograms was done through the MEGA software (Version 7.0.25), through the 

Neighbor-Joining grouping method. 

2.3.2 CULTURE-INDEPENDENT METHOD: NGS2  

i) EXTRACTION OF DNA  

The DNA from samples A; A1, B, C1, C2, D, M, Y, and G were extracted through the EZNA Stool 

DNA Kit (OMEGA bio-tek). 100 mg of each sample, 200 mg of Glass Beads X and SLX-Mlus 

Buffer were added to a microfuge tube. Mixture was vortexed for 10 minutes at full speed 

until completely homogeneous. DS Buffer and 20 μl of Proteinase K were then added, mixed, 

and incubated at 70 °C for 1 hour. Next, the SP2 buffer was added, vortexed, and stood at 

room temperature for 5 minutes, followed by centrifugation at 13500 rpm for 5 minutes. 

After centrifugation, the supernatant was transferred to a new microtube, the cHTR Reagent 

added, vortexed, and the mixture centrifuged again, and the supernatant was collected in a 

                                                           
2 NGS was performed by Professor Ana Teresa Caldeira, Cátia Salvador PhD., and Sriradha Bhattacharya PhD. 

candidate. 
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new microtube. BL Buffer and 100% Ethanol are added to the microtube and centrifuged. 

Next, the HiBind DNA Mini Column is inserted with the previous solution into a new 2 ml 

Collection Tube; centrifuged for 1 minute at full speed, the filtrate and tube are discarded. 

The HiBind DNA Mini Column is transferred to a new Collection Tube with VHB Buffer. After 

centrifuging the tube, the filtrate is discarded and 700 μl of Washer Buffer DNA is added. The 

tube is centrifuged again and filtrate is discarded (repeat this step 2x). HiBind DNA Mini 

Column is centrifuged empty at room temperature for 2 minutes (to dry the column before 

elution), column is transferred to a microfuge tube and preheated elution buffer of 65 °C is  

added to the center of the HiBind matrix. Finally, the column is centrifuged at full speed for 1 

minute and the DNA is stored at -20 °C. 

ii) PCR AMPLIFICATION   

Extracted DNA was amplified through Polymerase Chain Reaction. PCR reaction mixture 

consists of 2.5μl extracted DNA, a pair of Forward and Reverse primers (table 4) and a 2x KAPA 

HiFi HotStart ReadyMix buffer. Amplification was performed in the MJ Mini (Bio-Rad) thermal 

cycler under precise conditions; denaturation for 3 minutes at 95 °C, 25 cycles of 30 seconds 

(at 95 °C, 55 °C and 72 °C) and finally 5 minutes at 72 °C. The amplified DNA was stored at 4 

°C. 

 Primer Sequence 5’-3’ 

Prokaryotic Bakt_341F CCT ACG GGN GGC WGC AG 

Bakt_805R GAC TAC HVG GGT ATC TAA TCC 

Amplicon PCR Forward Primer (Illumina Protocol) 

Amplicon PCR Reverse Primer (Illumina Protocol) 

Table 4: Primers used for the amplification of prokaryotic DNA. 

iii) GEL ELECTROPHORESIS  

Confirmation of PCR amplification was conducted with gel electrophoresis. 1% agarose gel 

electrophoresis with Green Safe DNA dye was performed. Samples were applied to the gel 

well and electrophoretic run was performed at 75 V. DNA marker at 100 bp. After 

electrophoresis completion, gel analysis was performed with Bio-RAD system. 

iv) PURIFICATION OF PCR AMPLIFICATION  

Following amplification analysis, the PCR amplification was purified by the total Mag-Bind 

Pure NGS Protocol. Magnetic beads were placed at room temperature for 5 minutes, then 
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vortexed.  27.6 μl of magnetic beads were placed in each sample Eppendorf and were then 

shaken and re-incubated for 5 minutes at room temperature. Following the incubation time, 

tubes were placed in the Magnetic Separation Device; the supernatant was cleared and 

removed. The same process was completed for the two required washes with 80% Ethanol 

(freshly prepared with H2O RNase free).  Tubes were then kept on the Magnetic Device holder 

for approximately 15 minutes; residual liquid was then discarded after the tubes were 

removed from the carrier. 35 μl of 10mM Tris pH 8.5 was added to tubes and stirred and 

incubated at room temperature for 5 minutes. Tubes were places upon the Magnetic Device 

again until the supernatant became clear. 25 μl of supernatant was transferred to new tubes 

and stored at 2-8 °C (for short-term storage) or at 4 °C (for long-term storage). 

v) QUANTIFICATION OF PCR AMPLIFICATION 

The purified PCR amplification was quantified by fluorescence through QuantiFluor® ONE 

DNA (Promega) in the Quantus Fluorometer quantification equipment (Promega). 

vi)  INDEX PCR AND PRODUCT ANALYSIS  

Following quantification, the Index PCR was done in order to label each of the samples in the 

study. 

Reaction mixture used for PCR contained 5 μl of each purified sample, one pair of primers - 

Nextera XT Index Primer 1 (N7xx) and Nextera XT Index Primer 2 (S5xx) and the 2x KAPA HiFi 

HotStart ReadyMix enzyme. Amplification was performed through the following conditions: 

3 minutes at 95 °C, 8 cycles of 30 seconds (at 95 °C, 55 °C and 72 °C), and finally 5 minutes at 

72 °C. Products stored at 4 °C.  

Index PCR products were analyzed by 1% agarose gel electrophoresis (according to 2.4.1 c) 

Followed by the purification procedure of Index PCR products (as described in 2.4.1 d, with 

56 μl of magnetic beads) and the quantification of Index PCR products with the Quantus 

Fluorometer quantification equipment, as described in 2.4.1 e. 

vii)  BUILDING OF LIBRARY (POOL) AND DENATURATION  

Prepared libraries were normalized to 4 nM, followed by the preparation of Pool of libraries 

(4 nM). Simultaneously, 4 nm Phix was prepared; functioning as an internal control. Pool and 

Phix were denatured with 0.2 N NaOH and incubated for 5 minutes at room temperature. 

Denatured Pool and Phix were diluted with HT1 (10 pM), pooled (Pool library + 5% Phix) and 
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incubated for 2 minutes at 96 °C to terminate the denaturation process. Mixture was then 

kept on ice for 5 minutes. 

viii) ANALYSIS OF LIBRARIES BY NGS  

Previously prepared libraries were analyzed by NGS using MiSeq, Illumina equipment with the 

Nano Kit V2. Following the finished sequencing, data analysis was conducted through the 

MiSeq Reporter Software (classification based on the Greengenes database). 
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III. RESULTS AND DISCUSSION 
This chapter aims to present the results from the various imaging techniques, multi-analytical 

approaches, and microbial analysis methods conducted at Escoural Cave, and to discuss the 

interpretations of the findings. The results and discussion shown are laid out in order 

according to the aims presented in the introduction of this thesis, section 1.4.1.  

3.1 CURRENT STATE OF PRESERVATION 
This section describes the results of the first aim of this thesis - to document the current state 

of preservation of the rock art found inside Escoural Cave. To properly study the rock art at 

Escoural Cave, it was necessary to document the current state of preservation as of 

spring/summer 2019, in order for future research to determine if any substantial new 

deterioration or damage has occurred since the time of this thesis. Almost all methods 

contributed to this goal. Visually, the imaging techniques were able to provide a  digital 

database for the rock art’s current state. The methods pertaining to microorganism analysis 

were useful for understanding which biotas were thriving inside the cave at the time of this 

thesis and if they were responsible for contributing to further degradation of the rock art.  

Photogrammetry was useful for viewing not only the rock art itself, but also the surrounding 

context of the rock art support in the natural three-dimensional form. Figures 10-11 are two 

examples of the photogrammetric models created of the rock art in Escoural Cave. Image (A) 

is of engraving #1E, and image (B) is of painting #1; size, orientation, and location are also 

displayed.3 Figure 10 shows an example of an engraved panel that has remained relatively 

undisturbed from heavy degradational processes, in this case an engraving of horse heads. 

The location of this engraving is relatively well protected and has yet to be severely impacted 

by calcite coverage as compared to other paintings and engravings inside the cave. In figure 

11, it is possible to see large calcite vein formations covering the upper region of the rock art 

panel and continuing down. Water stains are also visible where the limestone appears to have 

been heavily saturated with percolating water. 

 

 

                                                           
3 The remaining complete photogrammetric models can be viewed in virtual format at the sharing platform, 
Sketchfab. Follow the link provided to view complete models in a virtual setting:  
https://sketchfab.com/shruban/models. 

https://sketchfab.com/shruban/models
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Figure 10: Screenshot of 3D model of engraving #1E at Escoural Cave. Size, orientation, location and sketch are also displayed. 

 

 

 

 

 

 

 

 

 

 

Figure 11: Screenshot of 3D model of painting #1 at Escoural Cave. Size, orientation, and location are also displayed. 

UVF photography also contributed to documenting the current state of preservation of the 

paintings in Escoural Cave. Below, in figure 12, the extensive leaching stains and drip lines can 

be seen in full extent due to the fluorescence of calcite along with the corresponding visible 

light photograph showing what painting #4 currently looks like. As described by 

archaeologists, painting #4 depicts an Equidae figure (Araújo & Gomes, n.d.). 

 

 

A 

B 
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Figure 12: UVF and visible light photographs of Escoural Cave painting #4. 

Lastly, all visible light and raking light photographs taken at Escoural Cave, as those shown in 

figure 13, helped to record the state of preservation the paintings and engravings at Escoural 

Cave are currently maintaining. Limited visibility of painting #3 can be seen in image (A), while 

image (B) shows engraving #2E with a calcite formation deposited in the middle of the rock 

art. Not all photographs that contributed to documenting Escoural Cave’s current state of 

preservation are included in this results section, however, all the relevant photographs have 

been compiled and given to the Escoural Cave Interpretation Center in the village of Santiago 

do Escoural to be stored with their records for future reference.  

 

 

 

 

 

 

 

 

Figure 13: In painting #3 (A), the lower body and legs of a bovine or horse can slightly be seen. In engraving #2E (B), the tail 
and hind legs of a horse can be seen. 

The importance of conservation work involving cultural heritage cannot be trivialized; even 

though Escoural Cave has previously been subject to many analysis campaigns before, it is 

necessary with all cultural heritage objects especially those most at risk, to make a record of 

how these objects are changing throughout time in order to determine their degradation 

processes and learn how to best protect them from further deterioration. As reviewed in 

section 1.3, rock art is particularly prone to degradation usually out of the control of those 

who monitor and protect it. Natural mechanical and chemical weathering processes and 

A B 

A B 
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external anthropogenic impacts are often beyond the scope of control when it comes to 

protecting most rock art; therefore, the record keeping of theses site can be instrumental in 

the fight for their preservation. 

3.2 THROUGH THE USE OF VARIOUS TECHNIQUES WERE ANY PREVIOUSLY UNKNOWN 
ROCK ART PAINTINGS UNCOVERED OR MADE MORE VISIBLE? 
All imaging techniques were employed to answer this research question; although, no new 

panels or paintings were uncovered, a number of existing panels did benefit from the various 

techniques used, as new hidden details began to emerge in the paintings. Shown below in 

figures 14-17, are two of the more difficult panels to interpret in Escoural Cave. Reasons for 

uncertainty in their interpretation are due to the state of their condition and the degradation 

they have undergone for thousands of years.  

PAINTING #2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Letters A-F represent the complete panel of painting #2. (A) Visible light photography; (B) Visible photo with 
DStretch software colorspace LRE applied at 20% scale; (C) Original sketch of panel by Manuel Farinha dos Santos in 1963 
(Adapted from Araújo C.A., Lejeune M., Gruta do Escoural: Necrópole Neolítica e Arte Rupestre Paleolítica, 1995); (D) IR 
photography with 780nm filter. 
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Figure 15: Continued panel of painting #2. (E-F) Hyperspectral images from Specim IQ studio (Painting #2). 

Displayed above in figure 14-15 are the various imaging techniques employed on painting #2 

in Escoural Cave. In photograph (A), the visible light photo shows how degraded the rock art 

currently is with the majority of the painting barely visible; (B) the corresponding DStretch 

altered photo reveals many pairs of red parallel lines across the panel. (C) is a depiction by 

the original archaeologist, Manuel Farinha dos Santos, of a bird like figure he believed the 

panel represented. (D) using IR photography, we can see that Santos’ depiction of a bird is 

slightly similar, however still controversial as the IR image reveals more details. (E-F) are final 

outputs from the Specim IQ studio - the results were formulated by picking individual pixels 

with the same wavelengths, identifying them with a color marker, and selecting a range of 

sensitivity. Red pigment wavelengths are shown in red, while black pigment wavelengths are 

shown in blue. The darker the pixel the more similar the wavelength is to the original pixel 

selected.  

PAINTING #3 

 

 

 

 

 

 

Figure 16: Letters A-D represent the complete panel of painting #3. (A) Visible light photography; (B) Original sketch of panel 
by André Glory in 1965 (Adapted from Araújo C.A., Lejeune M., Gruta do Escoural: Necrópole Neolítica e Arte Rupestre 
Paleolítica, 1995). 

A B 
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Figure 17: Continued panel of painting #3. (C) DStretch software applied with colorspace YBK at 30% scale; (D) IR photography 
with 780 nm filter (Painting #3). 

Above in figures 16-17 we can see the various imaging techniques employed on painting #3 

in Escoural Cave. Although photograph (A) is taken in visible light, it is extremely difficult to 

make out the figure in the panel. (B) is the original sketch by rock art specialist, André Glory, 

depicting an animal in the Bovidae family, similar looking to a modern-day goat perhaps. 

Lastly, (C-D), although one photograph is altered with DStretch and the other taken with IR 

photography, both reveal similar results. (C-D) seem to depict a head on the right side of the 

body and possibly to include horns, which directly contradict the original sketch from Glory. 

The hyperspectral camera was not used due to the distance of the painting from a stable 

location which was needed to acquire the image. 

All of the imaging techniques used for this thesis were relatively affordable and easy to learn. 

3D photogrammetry is an affordable technique which requires only a consumer grade 

camera, proper lighting, and a processing software. 3D photogrammetry is valuable for the 

3D images they acquire instead of limiting the recording to a 2D image, allowing for a 

complete and detailed documentation of the position of the rock art on the substrate. IR 

photography, another affordable technique, can be extremely useful in penetrating calcite 

crusts and exposing superimposed carbon-based pigments such as charcoal. DStretch plug-in 

is another affordable, fast, and user-friendly technique. DStretch results can improve user 

objectivity of rock art interpretations and can allow for higher rates of precision as the 

alteration choices are fixed settings (Quellec et al., 2015).  

However, with all these techniques, the accompanying limitations are also necessary to 

acknowledge. Imaging results were highly dependent upon the conditions inside Escoural 

C D 
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Cave. The location of each painting and their relative distance from the stable walking 

platform limited which techniques could be used on which paintings; while lighting conditions 

also had to be taken into account, not only for visibility of certain techniques  (e.g. IR 

photography), but also for their continued use, which is known to increase the presence of 

various phototrophic microorganisms that thrive in the presence of direct light (Mulec & Kosi, 

2009; Saiz-Jimenez, 2014).  

Overall, the usefulness of non-invasive analysis is key for this research question. Due to the 

extreme fragile nature of rock art, non-invasive methods are the only examples of acceptable 

techniques to use when trying to reveal hidden rock art. Calcite penetrating IR methods and 

other pigment enhancing imaging techniques were enormously useful for the enhancement 

of the extremely degraded rock art found at Escoural Cave, some of which is no longer fully 

visible to the naked eye. Although other invasive techniques do exist, e.g. physical calcite 

removal from rock art substrate, they are not typically recommended due to the potential 

harm they can cause in the process. Many papers site the destructiveness that calcite removal 

can cause despite the original intentions to save the art risk rock art (Whitley, 2001). Damages 

can range from unintentional removal of pigment alongside the calcite, and opening up new, 

more vulnerable substrate for bio-colonization of unknown microbials.  

3.3 ARE THE SPECIM IQ HYPERSPECTRAL CAMERA AND BWTEK i-SPEC 25 VIS-NIR FORS 
USEFUL FOR ROCK ART ANALYSIS?  

3.3.1 HYPERSPECTRAL CAMERA RESULTS 
The Specim IQ hyperspectral camera was attempted on paintings #1-2 and #5-8, at Escoural 

Cave; painting #3-4 were not analyzed with the hyperspectral camera due to the distance of 

the rock art from the camera. Out of these six paintings at least three hyperspectral photos 

were taken of each with varying angles and positioning of the camera and lighting. Only four 

of the six painted panels achieved limited results, the other two failing to match the various 

pixels with corresponding wavelengths. The paintings that were able to achieve results with 

the Specim IQ studio were paintings #2, #5, #7, and #8; the hyperspectral images can be seen 

in corresponding sections within appendix 3. As mentioned, the majority of the hyperspectral 

imaging results did not reveal any more details of the degraded paintings than other, simpler 

and more affordable imaging techniques. The exception was painting #2. Below in figure 18, 

is a compilation of nine hyperspectral images taken of painting #2 with the use of PhotoShop 

software. 
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Figure 18: Compilation of hyperspectral camera results from painting #2. Compiled using Photoshop. 

Each of the nine photographs taken for the compilation of figure 18 focused on a different 

section of the panel with white reference and lighting moved to accommodate the camera 

location. Out of the 9 photographs, 27 AOIs were selected with a total of 7 classes, 5 red and 

2 black; sensitivity of the classmark ranged from 0.9986 to 0.9998.  

Although painting #2 was one of the more difficult panels to view in visible light (see figure 

14), the hyperspectral camera was able to capture higher quality results when compared to 

the other painted panels; this is believed to be a result of the flatter, more homogeneous 

surface of the panel’s rock substrate and the ideal location which allowed for a reasonable 

distance for camera and lighting setup.  

Hyperspectral imaging is also able to identify pigment material based on wavelengths 

acquired for each pixel of the photograph. Ranging from 420.4-1000.5 nm, the wavelengths 

can determine characteristic pigment spectra in the visible region, while not encompassing 

enough of the NIR region to determine additional pigment components such as organic 

binders. The Specim IQ hyperspectral camera was able to successfully collect the spectra of 

pigments in a limited number of photographs taken, most likely due to the unevenness of the 

limestone substrate, the unfortunate irregularity of the lighting, the undesirable distance of 

the camera from the panels, and the extreme degradation of many of the paintings due to 
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the calcite coverage. The spectra collected from selected points of Painting #5 , figure 19, 

represented by geometric lines, was successfully identified as red ochre due to the 

characteristic shape of the spectra and bands seen at 615 nm and 740 nm (Cosentino, 2014; 

Daniel & Mounier, 2016). These results were further confirmed with EDXRF and Vis-NIR FORS. 

No black pigments were able to be identified due to the high absorbance of the color, leaving 

the spectra difficult to ascribe to charcoal, bone black, or manganese oxide.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Hyperspectral imaging results from Painting #5. (A) Hyperspectral photograph taken with selected areas of 
interested indicated with squares, yellow circle indicates pixel wavelength in image (C). (B) Mask created using 1 photograph, 

6 AOIs with a total of 5 classes, all red points, sensitivity of the classmark ranged from 0.9920 to 0.9993. (C) Spectra of red 

pigment pixel using Savitzky–Golay smoothing with polynomial order of 2. 

Overall, the portable hyperspectral camera from Specim IQ had varying results throughout 

Escoural Cave. Many variables factored into the acquisition of each photograph. Due to the 

nature of the hyperspectral camera, a focal length of 1.8, i.e. a distance of 12 cm is 

recommended for capturing wavelengths. Multiple halogen lamps are also required for 

obtaining proper levels of illumination on the rock art panels. Finally, a tripod is necessary for 
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stabilization of the portable camera as the integration time for capturing data is dependent 

upon lighting and distance – ranging from seconds to minutes for data capture. Unfortunately, 

as mentioned in previous sections, many of the rock art panels analyzed for this thesis were 

located in difficult to reach locations and furthermore, not only were many of the panels 

extremely degraded and facing severe calcite coverage, they also were not located on ideally 

flat substrates. All of these factors influenced not only the position of the camera, halogen 

lamps, and white reference, but also the ability for precision and accuracy of data acquisition. 

Although the recommended focal distance is 12 cm, none of the rock art panels were able to 

be photographed at that close of a distance, and two panels were not able to be 

photographed at all due to poor resolution of pixels.  

This method allows for the acquisition of wavelengths for each pixel ranging from 400 nm to 

1,000nm. However, due to the image capturing process and the photograph alteration 

software, Specim IQ studio, the procedure for selecting wavelengths is highly subjective to 

the user, allowing for a range of results for the final output depending on which pixel was 

chosen and the level of sensitivity applied. Although the portable hyperspectral camera allows 

for insitu use, dependent upon each individual case a tradeoff has to be made. Either a priority 

is made to focus on the pixel size (spatial sampling) of your sample or on the width of the 

spectral sampling (Delaney et al., 2015). Overall, although Escoural Cave suffers from severely 

degraded rock art, the portable hyperspectral camera showed the capability of conducting 

promising results, however, this is believed to be highly dependent upon the rock art itself. 

This hyperspectral camera may be useful on other rock art locations where the conditions for 

setting up the equipment and acquiring the photographs are more favorable.  

3.3.2 Vis-NIR FORS RESULTS 
Optimization of the BWTEK i-Spec 25 Vis-NIR FORS along with creation of standards for 

replication of traditional Palaeolithic pigments and binders was conducted in order to acquire 

a database for comparison against spectra acquired from the paintings in Escoural Cave. 

EDXRF was also performed in order to confirm the results given by the FORS. See appendix 4 

for optimization of FORS, creation of standards, and database; see appendix 5 for sample 

location of FORS and EDXRF points.  
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i) SPECTRA OF ESCOURAL CAVE  

Below in figures 20-22, are all spectra collected from Escoural Cave using the Vis-NIR FORS. 

The Spectra have been separated based on pigment sample; figures 20-22 shows all red 

spectra collected from Escoural Cave, followed by all black spectra collected, and all limestone 

blank spectra collected. All spectra displayed are shown to include full range of the Vis-NIR 

FORS detectors, from 350-2500 nm in transmission mode. 

 

Figure 20: FORS spectra of all red pigments from Escoural Cave. Main= Painting #1, Bird= Painting #2, Lines= Painting #5, 
MM= Painting #6, 3 Horses= Painting #7, Unknown= Painting #8. 

The spectra shown in figure 20, a total of 24 spectra from four different paintings, identify the 

red point locations to be red ochre, an extremely common source for red pigment in 

Palaeolithic rock art (Smith, 2014). The reflected visible region from 400-800 nm is extremely 

useful in identification of pigment. Prominent bands displayed in spectrum of pure red ochre 

include predictable broad reflectance bands at 615 nm and 740 nm (Cosentino, 2014; Daniel 

& Mounier, 2016). Identification of these speaks were found in both the standards taken of 

known red ochre and the spectra of the red points as seen above in figure 20. EDXRF analysis 

acquired on the same points were able to corroborate the results as each red location 

contained high quantities of iron, as those found in hematite – a common iron oxide mineral 

in red ocher to which the red chromophore is obtained from.  Organic binder materials are 

known to absorb in the NIR region, however the high noise ratio seen in the far NIR region of 

1600-2500 nm was impossible to detect any characteristic binders that could have been 

possibly used the in Palaeolithic rock art.  
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Figure 21: FORS spectra of all black pigments from Escoural Cave. Main= Painting #1, Bird= Painting #2, Lines= Painting #5, 
MM= Painting #6, 3 Horses= Painting #7, Unknown= Painting #8. 

The spectra shown in figure 21 are a compilation of a total of 32 spectra from five different 

paintings in Escoural Cave. As found in research and through the analysis done of the 

standards created (Cosentino, 2014; Daniel & Mounier, 2016), the traditional black 

Palaeolithic pigments of charcoal, bone black, and manganese oxide have high absorption 

rates and are unable to reflect light back to create characteristic bands in the visible region, 

therefore it is impossible to identify them based solely on the spectra between 350-800 nm. 

Although the pigments samples were considered black pigment, there was a considerable 

amount of interference in the spectra due to the reflection of the nearby limestone and or 

calcium carbonate; as seen in figure 21, the bands are shown to elevate diagonally from 400 

nm to 700 nm. One interesting result obtained from the black pigments was that of painting 

#8, otherwise known as painting ‘unknown’. Spectrum seen in figure 21 display five relatively 

flat bands between 1050 nm and 650 nm. Although inconclusive at first, EDXRF was able to 

take samples of in the same location as those taken for the FORS analysis and provide 

information that the pigment composition in painting #8 contained higher levels of 

Manganese than any other pigment samples analyzed; therefore, leading to the conclusion 

that the blank pigment found on painting #8 is from Manganese Oxide. Again, similar to the 

spectra collected for the red points, no clear absorption bands belonging to binders can be 

determined from the spectra in figure 21 due to the extensive interference of noise. 
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Figure 22: FORS spectra of all limestone blanks from Escoural Cave. Main= Painting #1, Bird= Painting #2, Lines= Painting #5, 
MM= Painting #6, 3 Horses= Painting #7, Unknown= Painting #8. 

As shown in appendix 4, and due to many factors such as thin and degraded painted pigments, 

unevenness of the limestone surface structure, extreme calcite formations nearby or on top 

of sampling locations, and size of aperture used on the FORS of 5mm, it is recognized that the 

spectra collected in Escoural Cave were heavily influenced by the nearby surroundings; 

therefore, limestone blanks spectra were also taken to determine how similar the results 

obtained were to the collected red and black pigments spectra. 

As seen above in figure 22, the reflectance of the limestone blank spectra were quite 

reflective, and somewhat similar in nature to the black spectra points complied in figure 21. 

However, interestingly, the NIR regions of 800-2500 nm appear relatively the same in all 

spectra taken from Escoural Cave – most likely attributed to interference when trying to 

collect only red and black sample locations near calcite. Interference of background material 

can be supported through the EDXRF results which indicate all samples locations in Escoural 

Cave to contain high levels of calcium.  

Three prominent defining bands of absorption are seen at roughly 1450 nm, 1900 nm, and 

2350 nm in nearly all spectra from Escoural Cave. These three bands differ slightly, but are 

believed to be attributed to the saturation of the limestone support. NIR spectroscopy 

conducted on limestone in a South Korean mine were able to determine CaO content in 

limestone dependent upon wet and dry conditions of the rock (Oh, Hyun, & Park, 2017). Oh 
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et al. demonstrated in dry limestone that the characteristic calcite absorption bands can be 

seen at 1850 nm, 2000 nm, 2350 nm, and 2500 nm while the intensity of the CaO can affect 

the absorption features; however, if the limestone is saturated with water, broad water 

features can be observed at 1900 nm and limit the calcite absorption bands to only 2350 nm 

and 2500 nm. Therefore, due to the water feature found at 1900 nm in all spectra from 

Escoural Cave, it is reasonable to conclude that the limestone surface was heavily inundated 

with water during the FORS analysis. Another factor to bear in mind, that short wavelength 

infrared light is very penetrating, and therefore could display higher amounts of the limestone 

background if the penetration was able to pass through the paint layer with ease.  

Overall, due to the highly sensitive nature of the Vis-NIR-FORS, the instrument was able to 

successfully relay characteristic red ochre spectra despite the high interference from the 

background limestone. Unfortunately, the instrument was less successful in attempts to 

identify the addition of possible organic binders. The lack of characteristic binder bands could 

be attributed to a wide variety of influences; is it possible that the high noise-to-signal ratio, 

despite optimization efforts to minimize noise, could have made identification of possible 

binders impossible to interpret; it is quite possible that the original binders have partially or 

completely degraded or bio-deteriorated over time; even the mixture of various pigment, 

filler, and binder could have caused a chemical reaction in which the original spectral behavior 

could be modified, and even the heterogenous nature of the limestone surface could have 

caused the diffuse light to interact in an irregular manner (Cavaleri et al., 2013; Clark, 1999; 

Dooley et al., 2013; Oh et al., 2017; Yivlialin et al., 2019). Overall, due to the high sensitivity 

of NIR spectroscopy, the complexity of the spectra proved to be quite intricate for 

interpretation (Clark, 1999; Dooley et al., 2013; Yivlialin et al., 2019). Therefore, principal 

component analysis was used in order to determine if the NIR region did in fact register the 

presence of binders in the paintings at Escoural Cave.  

ii) PCA RESULTS OF ESCOURAL CAVE SPECTRA  

62 Vis-NIR-FORS spectra from Escoural Cave’s rock art paintings were used with principal 

component analysis to determine the presence of possible binders. The PCA was separated 

into various regions of interests. Regions of interest included the Vis-NIR region from 400-

1018 nm, the NIR region from 1031-1633 nm, and the far NIR region of 1655-2485 nm. While 

optimal calibration of the FORS instrument was set to the conditions of various parameters, 
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cutoffs for each of the three detectors still occurred; therefore, the three regions of interest 

were set to avoid the cutoffs in order for them to not interfere with the PCA results; refer to 

section 2.2.1 for PCA methodology. Below, figure 23 shows all 62 spectra collected from 

Escoural Cave and the regions selected for PCA analysis based on the cutoffs of the three 

detectors.  

 

Figure 23: All 62 spectra collected from Escoural Cave. Different analyzed regions indicated by the three different rectangles 
(turquoise, violet, and red). 

Uncalibrated PCA analysis of Escoural Cave Spectra 

Uncalibrated PCA analysis of the turquoise region (400-1018 nm) is shown in figure 24. 

Clusters have formed according to pigment chromophores of black, red, and 

limestone/calcite. Outliers are seen in the corresponding yellow circle and in the overlapped 

region between the black and gray circles. Based on EDXRF results, the outliers circled in 

yellow – three limestone/calcite samples taken from painting #5 – are shown to contain larger 

amounts of iron than all other limestone/calcite points taken in the cave. These outliers can 

be easily explained, the region in which they were analyzed had previously undergone calcite 

removal in attempts to make the painting more visible (see appendix 2) – perhaps remaining 

iron rich pigment was distributed during the cleaning, or the cleaning process accidentally 

removed the iron pigment from the location. Overlapping of the black and gray circles can be 
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clarified due to interference of limestone/calcite background when trying to sample the 

limited black pigment locations on some paintings.  

 

Figure 24: Score plot of uncalibrated 351-1018 nm region from Escoural Cave spectra. Colored circles indicating clustered 
groups and outliers; black circle indicates black pigments, red circle indicates red pigment, gray circle indicated 
limestone/calcite, and yellow circle indicates outliers. Main= Painting #1, Bird= Painting #2, Lines= Painting #5, MM= Painting 
#6, 3 Horses= Painting #7, Unknown= Painting #8. 

Shown in figure 25, are the loading plots used for the PCA of the turquoise region (400-1018 

nm). Loading plots indicate which wavelength regions contain the most variance (Varmuza & 

Filzmoser, n.d.). Principal component 1 (PC1) contains 65.79% of the variance, while PC2 is 

25.95%; for an overall total of 91.74%.  

 

   

Figure 25: Loadings plots left to right of PC1 (65.79%) and PC2 (25.95%). 
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Uncalibrated PCA analysis of the violet region (1032-1633 nm) is shown in figure 26. Clusters 

are believed to have formed according to either varying amounts of calcite detected in each 

sample and/or the water saturation of the limestone background of each sample. While 

outliers in the yellow circle are indicative of large amounts of manganese oxide in the sample 

location of painting #8, which is confirmed with EDXRF results as well. Painting #8 is the only 

painting found in Escoural Cave with substantial amounts of manganese oxide. The spectra 

samples with the most limestone/calcite samples determined through EDXRF and FORS 

results are found in the red square indicating that the PC2 loading (figure 27) is discriminating 

based on amount of limestone/calcite, specifically the band found at 1450 nm on almost all 

spectra expect those from painting #8 containing manganese oxide. 

 

Figure 26: Score plot of 1031-1633 nm region. Colored circles indicating clustered groups, colored squares indicating similar 
regions. Main= Painting #1, Bird= Painting #2, Lines= Painting #5, MM= Painting #6, 3 Horses= Painting #7, Unknown= 
Painting #8. 

Shown in figure 27, are the loading plots used for the PCA of the violet region (1032-1633 

nm). PC1 contains 80.92% of the variance, while PC2 is 11.04%; totally to a combined score 

of 91.96%.  
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Figure 27: Loadings plots left to right of PC1 (80.92%) and PC2 (11.04%). 

Uncalibrated PCA analysis of the red region (1655-2485 nm) is shown in figure 28. Clusters 

are believed to have formed according to varying amounts of calcite detected in each sample. 

While outliers in the yellow circle are indicative of large amounts of manganese oxide in the 

sample locations from painting #8. Clusters seen in the green circle are revealing of samples 

containing higher amounts of iron, manganese oxide, and calcite, according to XRF results. 

Clustering could potentially be occurring based on binder; however, in order to determine 

this the PCA from Escoural Cave needs to be calibrated against the Palaeolithic database 

created using traditional Palaeolithic binders.  

Shown in figure 29, are the loading plots used for the PCA of the red region (1655-2485 nm). 

PC1 contains 62.37% of the variance, while PC2 is 31.67%; with an overall amount of 94.04% 

indicating high discrimination. 
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Figure 28: Score plot of 1655-2485 nm region. Colored circles indicating clustered groups. Main= Painting #1, Bird= Painting 
#2, Lines= Painting #5, MM= Painting #6, 3 Horses= Painting #7, Unknown= Painting #8. 

     

Figure 29: Loadings plots left to right of PC1 (62.37%) and PC2 (31.67%). 

Calibrated PCA analysis of Escoural Cave spectra vs. Palaeolithic binders’ spectra 

As previously stated, through creation of a FORS pigment and binder database and the spectra 

results from Escoural Cave it was clear that the background support from the sampling 

process heavily influenced the resulting spectra. Therefore, it was decided that a calibrated 

PCA analysis should be completed where results from Escoural Cave were calibrated against 

the Palaeolithic binder database in order to determine if binders are in fact discernable in the 

spectra from the rock art paintings.  
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As characteristic bands are only found in the NIR region, a calibrated PCA of the Vis region is 

not included in the results. Calibrated PCA analysis of the violet region (1031-1633 nm) is 

shown in figure 30. In general, the results formed indicate that the majority of the cave 

samples are similar in nature once the detection leaves the visible range; however, as 

indicated by the blue arrow, the black samples taken at painting #8 remain outliers from the 

rest of the Escoural Cave samples. The red circle indicated in figure 30 is highlighted to show 

the main clustering of samples from Escoural Cave; additionally, the yellow circle indicates 

the grouped cluster of the urine binder.  

Shown in figure 31, are the loading plots used for the calibrated PCA of the violet region. PC1 

contains 63.31% of the variance, while PC2 is 15.73%; with an overall amount of 79.04%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Calibrated PCA of Escoural Cave samples against Palaeolithic binders with glass background subtracted. Score plot 
of 1031-1633 nm region. Main= Painting #1, Bird= Painting #2, Lines= Painting #5, MM= Painting #6, 3 Horses= Painting #7, 
Unknown= Painting #8. 
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Figure 31: Loadings plots left to right of PC1 (63.31%) and PC2 (15.73%). 

Calibrated PCA analysis of the red region (1655-2485 nm) is shown in figure 32. Two main 

clusters seem to stand out; the yellow circle is again highlighting the unique outlier samples 

of painting #8 from the rest of the samples taken at Escoural. While the red circle expresses 

the grouping of the majority of samples from Escoural Cave along with the nearby inclusion 

of the urine binder once again.  

Shown in figure 33, are the loading plots used for the calibrated PCA of the red region. PC1 

contains 37.35% of the variance, while PC2 is 30.23%; with an overall amount of 67.58%. 

 

 

 

 

 

 

 

 

 

Figure 32: Calibrated PCA of Escoural Cave samples against Palaeolithic binders with glass background subtracted. Score plot 
of 1655-2485 nm region. Main= Painting #1, Bird= Painting #2, Lines= Painting #5, MM= Painting #6, 3 Horses= Painting #7, 
Unknown= Painting #8. 
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Figure 33: Loadings plots left to right of PC1 (37.35%) and PC2 (30.23%). 

Interesting results were obtained through the calibration PCA of the Escoural Cave samples 

against the Palaeolithic binders. Merely from looking at the clustering effects, one may be 

persuaded that urine is the most likely binder used in the paintings at Escoural Cave. Although, 

this could be true, the correlation that is shown in the PCA does not take all factors into 

account and cannot be used as definitive evidence that urine was used as a binder in Escoural 

Cave. Further work needs to be conducted in order to confirm or deny the correlation seen in 

the PCA scatter plots of figure 30 and 32. A possible next step could be the chemical analysis 

of the components of not only urine, but all the possible Palaeolithic binders, through 

analytical methods such as GC-MS. These methods would reveal the chemical components 

such as functional groups found in the binders while a comparison of the results could be 

further investigated through, after exhausting all the possible non-invasive methods, the 

destructive method of micro sampling the paintings at Escoural Cave. However, finding viable 

pigment samples is more easily said than done.  

Finally, it may be concluded that the Vis-NIR FORS is an extremely sensitive technique that 

easily allows for the identification of pigments through short wave infrared spectroscopy. This 

technique however, is limited and extremely difficult to use when analyzing binders in rock 

art paintings. As shown in appendix 4, even the creation of a database in laboratory conditions 

proved to be difficult when trying to interpret the results, let alone efforts to read the NIR 

region in samples from the field.  

Although the idea of a portable, fast, and non-invasive yet highly sensitive NIR spectrometer 

seemed ideal, the limitations and conditions faced during the procedure in Escoural Cave 

could be partially to blame for the results achieve specifically inside Escoural. That being said, 

this technique could be more useful and applicable for identifying binders in rock art that face 
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better preservation conditions and are not highly influenced by calcium crusts. Below in figure 

34, a close-up image can be seen of the current condition of the rock art pigments, in this case 

a black pigment is surrounded and is extremely at risk from the overlapping calcite crusts 

found throughout the cave.   

 

Figure 34: Close up photography of painting #1. In the upper half of the photograph the black pigment is barely visible due to 
the calcite intrusion. 

3.4 WHICH BIOTA ARE THRIVING INSIDE ESCOURAL CAVE, AND ARE THEY 
CONTRIBUTING TO THE BIODETERIORATION OF THE PAINTINGS AT ESCOURAL CAVE? 
As reviewed in section 1.3.1, the growth and study of microorganisms and biofilms residing 

on and near rock art found in hypogeal environments can reveal important insights into the 

deterioration and degradation of that rock art and can be enormously useful in future 

mitigation strategies for the preservation of at-risk rock art.  

Lascaux Cave has one of the most well-known instances of biological outbreak inside a show 

cave; after the sealed off hypogeal environment was rediscovered in 1940 for tourism, a rapid 

biodeterioration process began with the accidental introduction of new nutrient sources that 

allowed for harmful biofilms to spread and damage the Palaeolithic rock art inside. These 

biofilms are now well known in the rock art community and have been a source of fear among 

those intent on protecting rock art sites; these extremely harmful fungi include Fusarium, 

Bracteacoccus minor, and Ochroconis lascauxensis (Saiz-Jimenez, 2014). As this thesis pertains 

to rock art found inside Escoural Cave, a cave, that similar to Lascaux was sealed off for a 
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majority of its existence from the Neolithic period to the 20th century, the sampling and 

identification of the microbial populations residing inside Escoural Cave is imperative. 

Microbial identification can help protect the rock art and those who visit it by giving insight 

into the natural environment; through microbial analysis this thesis will be able to reveal if 

any microorganisms are causing rapid deterioration of the paintings, and potentially expose 

the presence of any microorganisms which are pathogenic to those who visit the show caves. 

3.4.1 CULTURE-DEPENDENT METHODS 

i) CHARACTERIZATION OF THE MICROBIAL ISOLATES 

In total, 40 colonies of bacteria were isolated through culturing processes, whose DNA was 

extracted and then quantified. Based on further examination, 28 bacteria strains were then 

selected for DNA sequencing (isolation charts represented in full in appendix 6), in which all 

28 bacterial strains were identified. Table 5 is the bacterial isolation chart showing the most 

abundant bacterial genus found inside Escoural Cave, Bacillus.  

In total, 13 different fungi colonies were also isolated. Based on their microscopic and 

macroscopic appearance only 8 fungi strains were selected for DNA sequencing and 

identified. Table 6 is the fungi isolation chart. Through the use of culture-dependent methods, 

there was no one fungi genus that was found to be more abundant in the samples taken from 

Escoural Cave. (Underlined letters indicate original sample location, see section 2.3 for 

sampling locations). 

Sample 
Strain 

Genus 
Macroscopic features Microscopic features (100x) 

C1.4-2 

B
a
ci

ll
u

s 
sp

.1
5

 

 
 

Table 5: Bacterial isolates. See appendix 6 for rest of bacterial isolates. 
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Sample 
Strain 

Genus 
Macroscopic features Microscopic features (100x) 
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 C
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https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1564307011
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1628768538
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A1-1 

(A10.2-

1*) 
L

ec
a

n
ic

il
li

u
m

 s
p
. 
1

 

 

 

C1.1-1 
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Table 6: Fungal isolates. * Sample A10.2-1 was not extracted for DNA sequencing as the macroscopic and microscopic features 
were identical to those of sample A1-1. 

ii) DNA ANALYSIS OF ISOLATED STRAINS 

After extraction of DNA from the pure isolates, quantification using molecular absorption 

spectrometry was performed on each sample. Table 7 shows the mean values obtained as 

well as the relation Abs260 / Abs280 for the bacterial isolates, and table 8 shows the mean 

values obtained as well as the ratio Abs260 / Abs280 for the fungal isolates. Purity values 

lower than 1.7 indicate a contamination of proteins, due to the cleaning process not fully 

removing the proteins from the sample. Phenols, unless properly removed during cleaning 

processes, are another common contaminate that absorb in the same region (260-280 nm).  
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Sample Mean ± Standard Deviation Purity 

A1-1 456.62 ± 17.13 1.64 

A1-1* 513.87 ± 10.75 1.70 

A1-2 489.75 ± 19.93 1.62 

A1-2* 367.27 ± 15.77 1.52 

A1-2--2 1129.98 ± 9.08 1.85 

A1-2--2* 1756.09 ± 33.86 1.59 

A2-1 520.34 ± 12.16 1.63 

A2-1* 667.99 ± 10.15 1.66 

A-3 958.09 ± 15.90 1.46 

A-3* 1283.42 ± 16.55 1.56 

A3-1 274.69 ± 6.42 1.74 

A3-1* 395.70 ± 16.71 1.52 

A100-1 112.45 ± 5.78 1.57 

A100-1* 130.13 ± 12.22 1.35 

A100-2 650.20 ± 24.79 1.61 

A100-2* 429.75 ± 7.45 1.63 

A1.1-1 677.09 ± 24.22 1.61 

A1.1-1* 604.22 ± 16.05 1.56 

A1.100-1 692.57 ± 16.96 1.70 

A1.100-1* 87.79 ± 1.11 1.59 

A1.100-2 740.29 ± 28.07 1.40 

A1.100-2* 647.39 ± 25.44 1.69 

B1-1 703.19 ± 16.34 1.74 

B1-1* 1200.18 ± 102.41 1.79 

B2-1 431.32 ± 7.61 1.51 

B2-1* 358.01 ± 9.06 1.40 

B3-1 308.28 ± 16.04 1.39 

B3-1* 444.89 ± 24.96 1.54 

B100-1-2 177.09 ± 8.35 1.53 

B100-1-2* 153.17 ± 6.00 1.42 

C1.1-1 687.52 ± 2.36 1.83 

C1.1-1* 476.49 ± 3.67 1.83 

C1.2-1 261.08 ± 20.70 1.77 

C1.2-1* 546.34 ± 32.07 1.56 

C1.3-1-1 411.06 ± 22.47 1.72 

C1.3-1-1* 371.21 ± 8.21 1.67 

C1.3-1-2 387.32 ± 72.81 1.77 

C1.3-1-2* 488.95 ± 5.11 1.81 

C1.4-1 939.80 ± 25.99 1.38 

C1.4-1* 882.06 ± 22.95 1.50 

C1.4-1 727.58 ± 21.87 1.78 

C1.4-1* 620.92 ± 10.98 1.71 

C1.5-1 257.99 ± 10.10 1.34 

C1.5-1* 207.76 ± 6.62 1.64 

C1.5-2 746.70 ± 35.64 1.47 

C1.5-2* 335.07 ± 8.05 1.36 

C1.100-1 297.61 ± 4.29 1.38 

C1.100-1* 297.55 ± 15.22 1.49 

C2.1-1 367.04 ± 12.15 1.71 

C2.1-1* 360.42 ± 11.13 1.73 

C2.2-1 437.19 ± 11.65 1.58 

C2.2-1* 627.45 ± 9.73 1.64 

C2.3-1 232.53 ± 6.08 1.53 

C2.3-1* 411.59 ± 5.61 1.46 

C2.4-1 483.81 ± 28.46 1.51 

C2.4-1* 847.86 ± 40.11 1.51 

C2.5-1 342.45 ± 14.88 1.51 

C2.5-1* 328.35 ± 22.52 1.52 

C2.100-1 582.27 ± 13.30 1.73 

C2.100-1* 901.09 ± 15.45 1.54 

D1-1 771.24 ± 30.34 1.63 

D1-1* 1265.36 ± 5.93 1.73 

D1-2 114.00 ± 2.55 1.72 

D1-2* 217.11 ± 2.75 1.69 

D2-1 953.27 ± 20.93 1.40 

D2-1* 808.58 ± 0.68 1.43 

D2-2 966.09 ± 16.60 1.65 

D2-2* 1167.60 ± 13.16 1.44 

D3-1-1 405.15 ± 9.45 1.58 

D3-1-1* 350.05 ± 16.87 1.64 

D3-1-2 277.83 ± 11.02 1.72 

D3-1-2* 978.12 ± 31.14 1.59 

D3-2 526.23 ± 34.73 1.66 

D3-2* 763.19 ± 11.44 1.57 

D4-1 382.50 ± 85.01 1.26 

D4-1* 1058.38 ± 15.05 1.69 

D100-1 1427.17 ± 45.83 1.80 

D100-1* 1033.77 ± 42.01 1.87 

D100-2 1517.16 ± 51.40 1.65 

D100-2* 1888.92 ± 27.05 2.02 

Table 7: DNA quantification of bacterial isolates with molecular absorption spectrometry. 
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Sample Mean ± Standard Deviation Purity 

A1-1 394.05 ± 18.29 1.70 

A1-1* 200.64 ± 4.85 1.71 

A1.1-1 228.46 ± 11.10 1.20 

A1.1-1* 156.83 ± 6.66 1.20 

A1.1-2 135.78 ± 1.27 1.09 

A1.1-2* 108.95 ± 0.83 1.05 

A100-1 168.91 ± 3.06 1.13 

A100-1* 189.56 ± 12.89 1.17 

C1.1-1 311.49 ± 16.37 1.23 

C1.1-1* 293.06 ± 5.75 1.23 

C2.1-1 95.93 ± 1.41 1.03 

C2.1-1* 147.92 ± 7.60 1.08 

M 73.99 ± 3.36 1.09 

M* 78.43 ± 4.97 1.12 

M1-1 232.71 ± 13.11 1.39 

M1-1* 202.17 ± 7.40 1.41 

M1-3B 163.87 ± 44.59 1.13 

M1-3B* 264.40 ± 11.91 1.13 

M2-1 94.77 ± 3.93 1.39 

M2-1* 109.31 ± 5.42 1.36 

M3-1 185.78 ± 1.19 1.10 

M3-1* 161.31 ± 10.93 1.11 

M4-1 180.44 ± 2.78 1.21 

M4-1* 278.22 ± 7.29 1.37 

Table 8: DNA quantification of fungal isolates with molecular absorption spectrometry. 

iii) AMPLIFICATION OF THE 16S REGION 

DNA of bacterial colonies were amplified during PCR using primers 518F/785R and further 

analyzed by agarose gel electrophoresis. Figure 35, displays the resulting bands obtained from 

the electrophoresis for the bacterial colonies. 

Quantification of final PCR products which successfully displayed bands in electrophoresis was 

performed by fluorimetry; see table 9. Based on the results of quantification of the PCR products, 

only the duplicates with the highest amount of DNA were sent on for sequencing. 

Sequencing results allowed for the identification of the bacterial isolates. The results are shown 

in table 10. Furthermore, the sequencing results of the 28 bacterial isolates were used to create 

a phylogenetic tree using the neighbor-joining method; see figure 36. 
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Figure 35: Gel electrophoresis for amplification of 16S region in bacterial colonies (Legend = BP: DNA NZYDNA Ladder VII; B:  blank; 1:  D100-1; 2: D1-1; 3: A1. 100-1; 4: A100-2; 5: 
B100-1-2; 6:  A1-2--2; 7: B1-1; 8: D1-1*; 9: A1.100-1*; 10: C2.3-1*; 11: A100-2*; 12: C1.4-2*; 13: B1-1*; 14: C2.1-1; 15: C2.100-1; 16: C1.2-1; 17: A3-1; 18: C2.2-1; 19: C1.1-1; 20: D100-
2; 21: C1.3-1-2; 22: C1.3-1-1; 23: A1-1; 24: C1.2-1*; 25: A1-2; 26: C1.100-1; 27: D3-2; 28: A100-1; 29: D2-2*; 30: D1-2*; 31: D3-1-1*; 32: A100-1*; 33: C1.4-2).
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Bacteria Sample Quantification 

C2.1-1 21.00 

C2.100-1 13.00 

C1.2-1 4.95 

C1.2-1* 15.00 

A3-1 11.00 

C2.2-1 13.00 

C1.1-1 9.50 

D100-2 10.00 

C1.3-1-2 9.80 

C1.3-1-1 8.80 

A1-1 10.00 

D100-1 3.98 

D1-1 8.70 

D1-1* 2.28 

A1.100-1 20.00 

A1.100-1* 5.90 

C2.3-1 20.00 

A100-2 10.00 

A100-2* 10.00 

B100-1-2 3.18 

A1-2--2 11.00 

C1.4-2* 12.00 

B1-1 11.00 

B1-1* 6.30 

B3-1 4.49 

D1-2* 7.30 

A1-2 13.00 

D3-1-1* 12.00 

C1.100-1 18.00 

D3-2 6.80 

A100-1 13.00 

A100-1* 11.00 

C1.4-2 13.00 

  

Table 9: Quantification results of bacterial DNA by 
fluorimetry. Quantification measured in ng/μl. Duplicates 
with highest quantity of DNA were sent to sequencing.



70 

Sample 

Name 
Isolated Strain 

Most similar 

species 
Identity GenBank access number 

A1.100-1 Enterobacter sp.1 

Enterobacter 

hormaechei 

98.77% 

JQ832555.1 

Enterobacter 

cloacae 
JQ832546.1 

Enterobacter 

asburiae 
JQ830553.1 

A100-2 Bacillus sp.1 Bacillus simplex 99.58% 

 

JQ834713.1 

 

A1-2--2 
Stenotrophomonas 

sp.1 

Stenotrophomona

s rhizophila  
99.60% MF111399.1 

A3-1 Bacillus sp.2 Bacillus simplex 99.21% 
 

MF965139.1 

A1-1 Bacillus sp.3 Bacillus simplex 98.81% MF965139.1 

A1-2 Bacillus sp.13 Bacillus simplex 100.00% JQ834713.1 

A100-1 Solibacillus sp.1 

Solibacillus 

silvestris 
98.81% 

MK830724.1 

Solibacillus 

isronesnsis 
MK484463.1 

B1-1 Enterobacter sp.2 
Enterobacter 

cloacae 
96.28% JQ830680.1 

B100-1-2 Citrobacter sp.1 
Citrobacter 

farmeri 
95.87% JQ830050.1 

B3-1 Enterobacter sp.3 
Enterobacter 

cloacae 
93.72% 

 

JQ832864.1 

 

C1.4-1 Bacillus sp.4 Bacillus simplex 99.21% MF965139.1 

C2.3-1 Bacillus sp.5 Bacillus simplex 99.19% MF965139.1 

https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1486857775
https://www.ncbi.nlm.nih.gov/nucleotide/JQ832555.1?report=genbank&log$=nucltop&blast_rank=4&RID=JC02WBP7014
https://www.ncbi.nlm.nih.gov/nucleotide/JQ832546.1?report=genbank&log$=nucltop&blast_rank=5&RID=JC02WBP7014
https://www.ncbi.nlm.nih.gov/nucleotide/JQ830553.1?report=genbank&log$=nucltop&blast_rank=10&RID=JC02WBP7014
https://www.ncbi.nlm.nih.gov/nucleotide/JQ834713.1?report=genbank&log$=nucltop&blast_rank=29&RID=JC0KA070015
https://www.ncbi.nlm.nih.gov/nucleotide/JQ834713.1?report=genbank&log$=nucltop&blast_rank=29&RID=JC0KA070015
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1193824795
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1193824795
https://www.ncbi.nlm.nih.gov/nucleotide/MF111399.1?report=genbank&log$=nucltop&blast_rank=3&RID=EB5W8U8N015
https://www.ncbi.nlm.nih.gov/nucleotide/MF965139.1?report=genbank&log$=nucltop&blast_rank=15&RID=JC0KP51N015
https://www.ncbi.nlm.nih.gov/nucleotide/MF965139.1?report=genbank&log$=nucltop&blast_rank=15&RID=JC0KP51N015
https://www.ncbi.nlm.nih.gov/nucleotide/MF965139.1?report=genbank&log$=nucltop&blast_rank=45&RID=JC0KZX65014
https://www.ncbi.nlm.nih.gov/nucleotide/JQ834713.1?report=genbank&log$=nucltop&blast_rank=29&RID=HVX8FBYU014
https://www.ncbi.nlm.nih.gov/nucleotide/MK830724.1?report=genbank&log$=nucltop&blast_rank=2&RID=HVX9J86F015
https://www.ncbi.nlm.nih.gov/nucleotide/MK484463.1?report=genbank&log$=nucltop&blast_rank=11&RID=HVX9J86F015
https://www.ncbi.nlm.nih.gov/nucleotide/JQ830680.1?report=genbank&log$=nucltop&blast_rank=3&RID=JC079BPG014
https://www.ncbi.nlm.nih.gov/nucleotide/JQ830050.1?report=genbank&log$=nucltop&blast_rank=1&RID=JC0JXWB4015
https://www.ncbi.nlm.nih.gov/nucleotide/JQ832864.1?report=genbank&log$=nucltop&blast_rank=1&RID=HVX7ZH2C014
https://www.ncbi.nlm.nih.gov/nucleotide/JQ832864.1?report=genbank&log$=nucltop&blast_rank=1&RID=HVX7ZH2C014
https://www.ncbi.nlm.nih.gov/nucleotide/MF965139.1?report=genbank&log$=nucltop&blast_rank=11&RID=ESGUTEKF015
https://www.ncbi.nlm.nih.gov/nucleotide/MF965139.1?report=genbank&log$=nucltop&blast_rank=38&RID=ESHGR4ME015
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C2.1-1 Bacillus sp.6 Bacillus simplex 99.21% MF965139.1 

C2.100-1 
Bacillus sp.7 

 

Bacillus muralis 
98.42% 

MK823372.1 

Bacillus simplex MK229043.1 

C1.2-1 
Bacillus sp.8 

 

Bacillus nealsonii 

100.00% 

JQ833487.1 

Bacillus circulans JQ319541.1 

C2.2-1 Bacillus sp.9 
Bacillus muralis 

99.80% 
MH630010.1 

Bacillus simplex MK229043.1 

C1.1-1 Bacillus sp.10 Bacillus nealsonii 98.80% KY126832.1 

C1.3-1-2 Bacillus sp.11 Bacillus simplex 99.19% MF965139.1 

C1.3-1-1 Bacillus sp.12 

Bacillus nealsonii 

100.00% 

JQ833487.1 

Bacillus circulans JQ833511.1 

Bacillus flexus JQ835119.1 

C1.100-1 Bacillus sp.14 Bacillus simplex 99.60% MF965139.1 

C1.4-2 Bacillus sp.15 

Bacillus muralis 

98.80% 

MH630010.1 

Bacillus simplex MK229043.1 

D1-1 Acinetobacter sp.1 
Acinetobacter 

calcoaceticus 
99.60% KF374680.1 

D100-1 Pseudomonas sp.1 

Pseudomonas 

kilonensis 
100.00% 

MF111295.1 

Pseudomonas 

putida 
MF111822.1 

D100-2 Pseudomonas sp.2 
Pseudomonas 

fluorescens 
93.78% KJ194131.1 

D3-2 Pseudomonas sp.3 
Pseudomonas 

putida 
100.00% MF111272.1 

D2-2 
Stenotrophomonas 

sp.2 

Stenotrophomona

s maltophilia 
98.74% AM421782.1 

https://www.ncbi.nlm.nih.gov/nucleotide/MF965139.1?report=genbank&log$=nucltop&blast_rank=15&RID=ESHP2RDU015
https://www.ncbi.nlm.nih.gov/nucleotide/MK823372.1?report=genbank&log$=nucltop&blast_rank=7&RID=ESHTVHAJ015
https://www.ncbi.nlm.nih.gov/nucleotide/MK229043.1?report=genbank&log$=nucltop&blast_rank=9&RID=EX4C65MZ015
https://www.ncbi.nlm.nih.gov/nucleotide/JQ833487.1?report=genbank&log$=nucltop&blast_rank=4&RID=ESJ0KRU6014
https://www.ncbi.nlm.nih.gov/nucleotide/JQ319541.1?report=genbank&log$=nucltop&blast_rank=2&RID=ESJ0KRU6014
https://www.ncbi.nlm.nih.gov/nucleotide/MH630010.1?report=genbank&log$=nucltop&blast_rank=28&RID=EX4JB5HS014
https://www.ncbi.nlm.nih.gov/nucleotide/MK229043.1?report=genbank&log$=nucltop&blast_rank=29&RID=EX4JB5HS014
https://www.ncbi.nlm.nih.gov/nucleotide/KY126832.1?report=genbank&log$=nucltop&blast_rank=1&RID=EX4X3E3K015
https://www.ncbi.nlm.nih.gov/nucleotide/MF965139.1?report=genbank&log$=nucltop&blast_rank=24&RID=EX52WJPB015
https://www.ncbi.nlm.nih.gov/nucleotide/JQ833487.1?report=genbank&log$=nucltop&blast_rank=2&RID=EX56UEW3014
https://www.ncbi.nlm.nih.gov/nucleotide/JQ833511.1?report=genbank&log$=nucltop&blast_rank=4&RID=EX56UEW3014
https://www.ncbi.nlm.nih.gov/nucleotide/JQ835119.1?report=genbank&log$=nucltop&blast_rank=9&RID=EX56UEW3014
https://www.ncbi.nlm.nih.gov/nucleotide/MF965139.1?report=genbank&log$=nucltop&blast_rank=12&RID=HVX8WUYH014
https://www.ncbi.nlm.nih.gov/nucleotide/MH630010.1?report=genbank&log$=nucltop&blast_rank=38&RID=HVXB2EGP015
https://www.ncbi.nlm.nih.gov/nucleotide/MK229043.1?report=genbank&log$=nucltop&blast_rank=39&RID=HVXB2EGP015
https://www.ncbi.nlm.nih.gov/nucleotide/KF374680.1?report=genbank&log$=nucltop&blast_rank=1&RID=EX6AERY2014
https://www.ncbi.nlm.nih.gov/nucleotide/MF111295.1?report=genbank&log$=nucltop&blast_rank=2&RID=EX6DPA72015
https://www.ncbi.nlm.nih.gov/nucleotide/MF111822.1?report=genbank&log$=nucltop&blast_rank=5&RID=EX6DPA72015
https://www.ncbi.nlm.nih.gov/nucleotide/KJ194131.1?report=genbank&log$=nucltop&blast_rank=90&RID=EX6Y5BJY014
https://www.ncbi.nlm.nih.gov/nucleotide/MF111272.1?report=genbank&log$=nucltop&blast_rank=3&RID=HVX98J2Y014
https://www.ncbi.nlm.nih.gov/nucleotide/AM421782.1?report=genbank&log$=nucltop&blast_rank=3&RID=HVXA0BGT014
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D1-2 
Stenotrophomonas 

sp.3 

Stenotrophomona

s maltophilia 
99.16% AM421782.1 

D3-1-1 Lysinibacillus sp.1 

Lysinibacillus 

fusiformis 
100.00% 

KT757231.1 

Lysinibacillus 

sphaericus 
HQ334982.1 

 

Table 10: Sequencing results of bacterial colonies. 

  

https://www.ncbi.nlm.nih.gov/nucleotide/AM421782.1?report=genbank&log$=nucltop&blast_rank=3&RID=HVXABK70015
https://www.ncbi.nlm.nih.gov/nucleotide/KT757231.1?report=genbank&log$=nucltop&blast_rank=5&RID=HVXARX5C014
https://www.ncbi.nlm.nih.gov/nucleotide/HQ334982.1?report=genbank&log$=nucltop&blast_rank=7&RID=HVXARX5C014
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Figure 36: Evolutionary relationships of taxa inferred using the Neighbor-Joining method. The optimal tree with the sum of branch 
length = 0.68579748 is shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary 
distance used to infer the phylogenetic tree. Analysis involved 28 nucleotide sequences. There was a total of 245 positions in the 
final dataset. 

Out of 40 isolated bacterial cultures, 28 isolates were successfully identified for a total of 70%. 

The most prominent bacterial genus identified from culture-dependent methods was Bacillus 

followed by Enterobacter, Stenotrophomonas, and Pseudomonas.   
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iv) AMPLIFICATION OF THE ITS REGION 

DNA of fungal colonies were amplified during PCR using primers ITS1F/ITS4R and further analyzed 

by agarose gel electrophoresis. Figure 37, displays the resulting bands obtained from the 

electrophoresis for the fungal colonies. 

Quantification of final PCR products which successfully displayed bands in electrophoresis was 

performed by fluorimetry; see table 11. Based on the results of quantification of the PCR 

products, only the duplicates with the highest amount of DNA were sent on for sequencing.  

Sequencing results allowed for the identification of the fungal isolates. The results are shown in 

table 12. Furthermore, the sequencing results of the 8 fungal isolates were used to create a 

phylogenetic tree using the neighbor-joining method. See figure 38. 

 

 

 

 

 

 

 

 

 

 

 

Figure 37: Gel electrophoresis for amplification of ITS/18S  region in fungal colonies (Legend = BP: DNA NZYDNA Ladder VII; B:  
blank; 1: A1-1; 2: A1-1*; 3: A100-1; 4: A100-1*; 5: M*; 6: C1.1-1; 7: C1.1-1*; 8: M1-1*; 9: M1-3B; 10: M1-3B*; 11: M2-1; 12: M1-
1).
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Table 11: Quantification results of fungal DNA by fluorimetry. Quantification measured in ng/μl. Duplicates with highest quantity 
of DNA were sent to sequencing. 

 

Sample 

Name 
Isolated Strain Most similar species Identity GenBank access number 

A1-1 Lecanicillium sp. 1 Lecanicillium coprophilum 99.62% MH177615.1 

A100-1 Trichoderma sp. 1 Trichoderma harzianum  99.66% KY750444.1 

M Cladosporium sp.1 
Cladosporium allicinum  

99.80% 
MK460808.1 

Cladosporium herbarum MK211240.1 

C1.1-1 Polyporus sp.1 Polyporus arcularius 99.50% KU863052.1 

M1-1* 
Paecilomyces 

marquandii 
- - - 100% JQ013003.1 

M1-3B Mortierella sp.1 Mortierella alpina 99.37% KY465758.1 

M2-1 Bionectria sp. 1 Bionectria ochroleuca 99.62% HM113485.1 

Table 12: Sequencing results of fungal colonies. 

Fungi Sample Quantification 

A1-1 23.00 

A1-1* 22.00 

A100-1 25.00 

A100-1* 27.00 

M* 7.60 

C1.1-1 20.00 

C1.1-1* 26.00 

M1-1 1.30 

M1-1* 2.66 

M1-3B 16.00 

M1-3B 12.00 

M2-1 1.99 

https://www.ncbi.nlm.nih.gov/nucleotide/MH177615.1?report=genbank&log$=nucltop&blast_rank=38&RID=HKRWMX1701N
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1628768538
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1158583767
https://www.ncbi.nlm.nih.gov/nucleotide/KY750444.1?report=genbank&log$=nucltop&blast_rank=7&RID=HKRWWT6P01N
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1564307011
https://www.ncbi.nlm.nih.gov/nucleotide/MK460808.1?report=genbank&log$=nucltop&blast_rank=12&RID=HKRX673S01N
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1050550490
https://www.ncbi.nlm.nih.gov/nucleotide/MK211240.1?report=genbank&log$=nucltop&blast_rank=7&RID=HKRX673S01N
https://www.ncbi.nlm.nih.gov/nucleotide/KU863052.1?report=genbank&log$=nucltop&blast_rank=4&RID=HKRXFTC401N
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_379996857
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_379996857
https://www.ncbi.nlm.nih.gov/nucleotide/JQ013003.1?report=genbank&log$=nucltop&blast_rank=3&RID=M0BMZA0P01R
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_1216715393
https://www.ncbi.nlm.nih.gov/nucleotide/KY465758.1?report=genbank&log$=nucltop&blast_rank=2&RID=M0BN0URJ01R
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_297598762
https://blast.ncbi.nlm.nih.gov/Blast.cgi#alnHdr_297598762
https://www.ncbi.nlm.nih.gov/nucleotide/HM113485.1?report=genbank&log$=nucltop&blast_rank=12&RID=M0BNFSGZ01R
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Figure 38: Evolutionary relationships of taxa inferred using the Neighbor-Joining method. The optimal tree with the sum of branch 
length = 1.27848468 is shown. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary 
distance used to infer the phylogenetic tree. Analysis involved 7 nucleotide sequences. There was a total of 423 positions in the 
final dataset. 

Out of 13 isolated fungal cultures, 8 isolates were successfully identified for a total of 62%. All 

species and genera groups identified were different with no majority genus or species found.  

3.4.2 CULTURE-INDEPENDENT METHOD: NGS 
NGS analysis using prokaryotic primers of Bakt_341F, Bakt_805R, Amplicon PCR Forward Primer 

(Illumina Protocol), and Amplicon PCR Reverse Primer (Illumina Protocol) was performed on 8 of 

the samples taken from Escoural Cave; A, B, C1, D divided into two samples of D(1) and D(12), M, 

G, and Y (see section 2.3 for sample locations).  656 different genera and 1,612 species were 

identified for all samples listed; however, only the top 40 genera and species are shown in the 

results section.  

Shown in figures 39-40 are phylogenetic trees depicting which samples contained the most 

similar genera and species results and their abundance of each. Samples C1, A, and G are closely 

aligned, as are D(1), B, and D(12), samples Y and M show similar results as well. A PCA graph, 

figure 41, also indicating correlation between samples confirms the results displayed in the 

phylogenetic tree. 
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Figure 39: Phylogenetic tree of most abundant genera from NGS analysis of Escoural Cave samples A, B, C1, D(1), D(12), M, G, and Y. 

 

Sample G 
 Sample Y 
 Sample C1 
 Sample A1 
 Sample B 
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Figure 40: Phylogenetic tree of most abundant species from NGS analysis of Escoural Cave samples A, B, C1, D(1), D(12), M, G, and Y. 
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Figure 41: PCA graph of samples A, B, C1, D(1), D(12), M, G, and Y from Escoural Cave. 

Indicated in the graphs shown in figure 42, Bacillus and Pseudomonas were the most prevalent 

genera found in the Escoural Cave samples. Samples D(1), B, and D(12) contained a majority of 

the Bacillus seen. Samples Y and M contain a majority of the Pseudomonas seen. 

Figure 43, Bacillus sp., Paenibacillus vortex, and Pseudomonas vancouverensis are shown as some 

of the most prevalent species found in the Escoural Cave samples.  
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Figure 42: Most abundant genus determined by NGS in Escoural Cave samples A, B, C1, D(1), D(12), M, G, and Y.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M

Y

D(12)

B

D(1)

G

A

C1

Most Abundant Genus

Bacillus Pseudomonas Sphingomonas Paenibacillus

Geodermatophilus Micrococcus Propionibacterium Pseudonocardia

Nitrospira Ralstonia Conexibacter Streptomyces

Achromobacter Gluconacetobacter Bradyrhizobium Yersinia

Modestobacter Luteimonas Solirubrobacter Gemmata

Phenylobacterium Kaistobacter Saccharopolyspora Pirellula

Candidatus Scalindua Aeromicrobium Streptococcus Methylobacterium

Singulisphaera Variovorax Megasphaera Agrobacterium

Dokdonella Stenotrophomonas Lactococcus Actinomycetospora

Calothrix Corynebacterium Rhizobium
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Figure 43: Most abundant species determined by NGS in Escoural Cave samples A, B, C1, D(1), D(12), M, G, and Y.  
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D(12)
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Most Abundant Species

Bacillus simplex Paenibacillus vortex Pseudomonas vancouverensis

Bacillus atrophaeus Propionibacterium acnes Bacillus arbutinivorans

Sphingomonas yabuuchiae Pseudonocardia kongjuensis Pseudomonas viridiflava

Modestobacter marinus Micrococcus yunnanensis Ralstonia insidiosa

Bacillus mucilaginosus Micrococcus luteus Pseudomonas umsongensis

Pirellula staleyi Pseudomonas brenneri Pseudomonas azotoformans

Candidatus Scalindua brodae Yersinia nurmii Pseudomonas lutea

Ralstonia pickettii Megasphaera hominis Sphingomonas dokdonensis

Sphingomonas oligophenolica Dokdonella fugitiva Bacillus litoralis

Bacillus cereus Calothrix parietina Variovorax paradoxus

Bacillus coahuilensis Bacillus oryzae Solirubrobacter soli

Saccharopolyspora gregorii Bifidobacterium bombi Bacillus nealsonii

Bacillus muralis Sphingomonas insulae Stenotrophomonas retroflexus
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3.4.3 MICROBIAL RESULTS DISCUSSION 
The majority of bacterial isolates identified through culture-dependent methods included the 

genera of Bacillus, Enterobacter, and Pseudomonas; while the most cultured bacteria species 

was Bacillus sp. All isolates are commonly found in soil and are able to find a natural habitat 

in hypogeal environments (Gaálová, Donauerová, Seman, & Bujdáková, 2014; Mitova et al., 

2015; Yasir, 2017). The Bacillus genus is able to form endospores and remain dormant for a 

long time if suitable nutrients are lacking (Mitova et al., 2015). Enterobacter genus are able 

to survive on wet and dry surfaces and can be a sign of fecal contamination; specifically, the 

cloacae species can be a source of human disease and can cause infections like pneumonia 

(Hennings, Baumann, Sobottka, Schmiedel, & Klose, 2009) Gaálová et al. (2014) found, while 

studying microbiota in the Slovakia cave of Domica, that E. cloacae is questionable when 

found in cave environments and can be traced to sources of fecal contamination due to 

possible bat guano found or infiltration of contaminated livestock fecal runoff from nearby 

farmland. Lastly, Pseudomonas genus are also able to colonize and survive in a wide range of 

niches due to their metabolic diversity; and again, are commonly found within soil 

environments (Gaálová et al., 2014). The various cultured fungi isolated from Escoural Cave 

are also readily found within the soil and rhizosphere environments and can be expected 

within karstic environments.  

Culturing bacteria and fungi is an affordable, however time-consuming method useful for 

creating isolate samples of certain species found inside Escoural Cave; these isolates can be 

further stored and placed in cryopreservation for future analysis. Mitigation strategies can be 

developed and tested on these pure isolates if deemed necessary and then used to further 

protect the cultural heritage inside Escoural Cave. However, there are also limitations for 

traditional culturing methods. It is commonly known that only a small fraction of bacteria and 

fungi are able to be cultured from the original existing diverse ecosystem that the samples 

originated from (Amann, Ludwig, & Schleifer, 1995; Groth & Saiz-Jimenez, 2010). There are a 

number of reasons why a species cannot be grown within laboratory settings - possibly the 

bacteria or fungi are not grown in suitable conditions, or it is possible they have entered into 

a non-culturable state (Amann et al., 1995). Therefore, it can be assumed that the real amount 

of biodiversity found inside Escoural Cave or any cultural heritage site is much greater than 

what was originally identified through traditional culturing methods. As shown above in 

sections 3.41 and 3.4.2., the total amount of bacterial isolates identified through culture-
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dependent methods was only eight distinct genera, while the culture-independent method of 

NGS was able to sequences 656 different genera from the same samples within Escoural Cave. 

NGS method is a powerful, extremely fast, however expensive method allowing for the 

sequencing of large amounts of microbial communities from relatively small sample amounts 

(Ster et al., 2018).  

NGS primers used for sequencing were prokaryotic identifiers and therefore are only used for 

identification of bacteria and cyanobacteria. Similar to the cultured isolates, the main genera 

of Bacillus and Pseudomonas were identified. Other more prevalent genera identified through 

NGS, that were not isolated through culturing procedures include Shingomonas – found in 

various environments and able to survive under low nutrient conditions (Leys et al., 2004); 

and  Paenibacillus – an anaerobic, endospore forming bacteria which is found in soil 

environments, with the ability to promote biofertilization and act as biopesticides (Grady, 

MacDonald, Liu, Richman, & Yuan, 2016). The majority phylum of all the samples taken from 

Escoural Cave and analyzed with NGS were Actinobacteria – commonly found in soil and 

usually unrepresented in cultures, however typically represent a larger total amount of 

bacteria in samples (Valme Jurado et al., 2010); and Proteobacteria – a phylum of bacteria 

that is typical of nitrogen fixing and contains common pathogenic bacteria, while also 

processing the ability to thrive at low nutrient levels (Yasir, 2017) (see appendix 7 for charts 

depicting different taxonomic regions of each sample analyzed with NGS). 

Through the analyses completed at Escoural Cave, from observations of biological outbreaks 

and results determined from the culture-dependent and culture-independent methods, a few 

recommendations can be given for the continued promotion of safety – for the rock art itself 

and the visitors touring the cave – within Escoural Cave. A safety recommendation due to the 

presence of certain species and genera found inside Escoural Cave, especially due to the 

presence of Enterobacter cloacae, it is recommended to limit hand contact with any objects 

inside the cave, to avoid contact with the face and mouth, and to wash hands immediately 

following each visit. For those with compromised immune systems whom are prone to 

respiratory problems, the wearing of protective face masks is also advised. Furthermore, for 

protection regarding the rock art inside Escoural Cave, it is recommended that more 

precautions are taken to reduce human induced organic nutrients that are easily transported 

by tourists throughout the cave. Safety precautions include the verbal restriction for visitors 
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not to touch the rock surfaces inside the cave, to limit contact to only handrails when 

necessary, and a safety precaution of necessary shoe covers for all visitors inside the cave to 

reduce the transportation of surface nutrients into the cave. 
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V. CONCLUSION 
This research aimed to document the current state of preservation of the 20,000-year-old 

rock art found inside Escoural Cave, while using only non-invasive methods. The thesis also 

aimed to determine if two new to rock art analysis instruments, the Specim IQ hyperspectral 

camera and the Vis-NIR FORS are useful techniques when performing analyses on rock art. 

Lastly, this research used culture-dependent and culture-independent methods to determine 

which microbial populations are living inside Escoural Cave and if those microbes were 

potentially harmful to the rock art inside the cave.  

Through the use of multiple imaging techniques, the foremost rock art paintings and 

engravings in Escoural Cave were successfully documented in their current state of 

preservation; these imaging techniques were also able to reveal and uncover some of the 

images in paintings #2, 3, and 7 which are currently hidden to the naked eye due to extreme 

deterioration and degradation.   

Based on optimization of both the Specim IQ hyperspectral camera and Vis-NIR FORS, 

alongside the creation of specific standards and rock art replications for the construction of a 

representative database of Palaeolithic pigments and potential binders to supplement the 

FORS analysis, this research was able to determine that both these instruments are extremely 

sensitive in nature and require near perfect laboratory conditions for optimal operation; 

therefore, these methods cannot be fully recommended for use on all rock art research. Those 

sites with high visibility, limited deterioration or damage, and preferred smooth surfaces may 

be able to achieve more desirable results.  

The Specim IQ hyperspectral camera was able to improve visibility of one highly degraded 

painting inside Escoural Cave, painting #2. Additionally, results from the Vis-NIR FORS were 

able to identify pigment chromophores in the visible region and predict correlation between 

the Escoural Cave paintings and a potential Palaeolithic binder of urine.  Important factors to 

consider when using these instruments include distance from the hyperspectral camera and 

adequate lighting conditions in order to acquire suitable data of wavelengths. Important 

factors for the Vis-NIR FORS include consideration of the evenness of the rock support surface, 

thickness and evenness of painted lines due to the extreme penetrating ability of the IR light 

source, creation of accurate Palaeolithic databases for comparison of results, and optimal 

integration time of the instrument in order to obtain the best results.  
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Results from the microbiological analyses preformed on eight sample locations from Escoural 

Cave indicate the presence of characteristic soil and subterranean microbial genera and 

species; however, analyses also uncovered the presence of potential disease carrying 

microbes i.e. Enterobacter cloacae and harmful to rock art biofilms of lampenflora in relatively 

close proximity to nearby rock art.  

Overall, the results from this thesis were significant and enlightening into the extent of 

deterioration and damage the rock art at Escoural Cave is facing. The research was also able 

to explore the use of only non-invasive methods in documentation and analysis efforts and 

the implementation of two instruments that never before have been used for the 

examination of rock art. The work completed for this thesis will also be able to inform future 

works at Escoural Cave, especially those aimed at preventive conservation efforts. Lastly, the 

efforts and results of this thesis will hopefully provide inspiration and encouragement for 

other researchers and archaeologists to continue the use of non-invasive and non-destructive 

techniques when they document and analyze rock art in the future.  

5.1 FUTURE WORK  

As mentioned in the previous section of 1.2.1, many campaigns and analyses have been 

previously completed in regards to the rock art at Escoural Cave, therefore, future work 

should continue to maintain innovative and original research. Possible future work could 

involve the use of newly developed methodology to gain further insight into the cultural 

heritage at Escoural Cave. Preferably in the future, as this thesis has done, each new campaign 

held at Escoural Cave would also include allotted time to document the current state of 

preservation found inside the cave in order to maintain a continuous documentation of any  

deterioration or damage found on the rock art.  

Currently, it is believed that the rock art inside Escoural Cave has been analysed and 

documented thoroughly since it’s rediscovery in 1963 and that any future work on Escoural 

Cave should aim towards preventive conservation of the rock art. Preventive conservation 

could range from long term monitoring of temperature, relative humidity, and CO2 levels 

inside and outside the cave, to the implementation of stricter regulations for tourists entering 

the cave. Further work regarding analysis of Palaeolithic binders at Escoural Cave could 

involve micro-sampling of various paintings in order to chemically analyze the components 
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and to perform chemical analyses on sample binders, such as urine, to determine if in fact 

urine was a binding material used on the rock art.  

Future work involving microbial analysis could include interest in completing NGS analysis on 

the same eight sample locations taken for this thesis while using Eukaryotic primers in order 

to sequence fungi species. Other areas of interest for future work could include fungi air spore 

analysis in order to determine how fungal strains are spreading throughout the cave. Lastly, 

future work could include projects to mitigate harmful microfilms that are flourishing inside 

Escoural Cave; particular interest would be in preventing the growth of the lampenflora found 

at sample location ‘G’ in Escoural Cave. The algae growth is a clear result of the artificial 

illumination residing nearby to the rock’s substrate. Possibly mitigation strategies could 

involve removing the nearby lighting fixture or investigating the use of varying wavelengths 

for the reduction or elimination of the lampenflora found there; for example, blue light 

emission at 460 nm has been found to successfully limit the growth of phototrophs (Mulec & 

Kosi, 2009; Saiz-Jimenez, 2014).  

Overall, there is much potential for future analyses to be carried out in Escoural Cave, whether 

efforts are intended to mitigate harmful biofilms or efforts to deeper understand the artistic 

techniques behind the binders and pigments used in Escoural Cave.  
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APPENDICES 

 

 

View from original southeast facing entrance of Escoural Cave where evidence of a Neolithic settlement remains.  
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Appendix 1 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

The stylistic evolution of Palaeolithic rock art. (Adapted from Gourhan A. L. in Roteiros da 

Arqueologia Portuguesa 4; Gruta do Escoural, 1995). The chart shown above depicts the 

stylistic progression of the chronology of rock art in Palaeolithic Europe. Rock art begins in the 

earliest Aurignacian period 30,000 BCE where depictions of simplistic animal figures appear 

alongside symbolistic abstract forms. Next, during the Gravettian period of 25,000 BCE, the 

figures have evolved to include anthropomorphic representations with more detail. The 

illustrations continue to the Solutrean art of 20,000 BCE where illustrations are more details 

and representative of the figures, while also introducing geometric designs. Lastly 

Magdalenian period of 15,000 BCE achieves the most realistic depictions of animal and human 

forms.  
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Appendix 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Scale is in 5cm increments.) 

Images (A) and (B) were taken prior to 2010 when a campaign was undertaken through a 

partnership between the Directorate Regional Culture of Alentejo and the Cabinet of 

Archaeology and Heritage Management Culture (GAEM) to improve the state of conservation 

at Escoural Cave, while also working to improve the visualization of the paintings found within 

the cave (Barquín, 2015). Image (C) represents the geometric motif today. There is a strong 

debate whether cleaning calcite crusts from rock art do more harm than good 

(“Documentation and Conservation of Rock Art,” n.d.; Whitley, 2001). Although the complete 

paintings can be revealed by removing calcite crusts, the potential to remove fragile pigments 

attached to the said crusts is also very high. Coatings that form over paintings, whether 

calcium carbonate, lichens, or fungi can sometimes act as a protective layer for the rock art; 

although they are slightly covered, a crust can help stabilize a deteriorating surface of the 

supporting rock. 

A B 

C 
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Appendix 3 

PAINTING #1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Letters A-F represent the complete panel of painting #1.(A) Visible light photograph compared with (B) matching 
DStretch photograph using colorspace YBR applied at 10% scale; (C-D) IR photography with 780nm filter; (E) visible light 
photograph compared with (F), matching DStretch photograph using colorspace YDS at 25% scale. 

E F 

A B 

C D 
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Displayed above in figure 1 of this appendix, are the various imaging techniques employed on 

painting #1 in Escoural Cave. (A) is the visible light photograph of the upper part of the panel, 

while in image (B) we have the same photo altered with DStretch software using the YRB 

colorspace at 10% scale; visible is potentially the underbelly, front, and back leg of a mammal. 

Therefore, it is possible to suggest a red Bovidae or Equidae figure was once painted in this 

location, however is no longer visible due to the loss of pigment from the leaching processes 

occurring and the calcite vein formation on top of it. In photos (C-D), IR photography helped 

establish hidden features painted with carbon-based pigments that are difficult to see with 

the naked eye. In (C), the tail and rear end of the Equidae figure can be seen and a new  shape 

is also seen in the lower half of the panel; while in (D) another possible figure emerges. Lastly, 

photos (E-F) show the visible light and corresponding photo altered with DStretch to enhance 

not only the black pigments but also the red pigments within the panel. See figure 11 for full 

photogrammetry view of painting #1. Additionally, the Specim IQ hyperspectral camera was 

used on this painting, however, the resulting hyperspectral image did not produce any 

valuable results.  

PAINTING #4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B

C

 
Figure 2: Letters A-C represent the complete panel of 
painting #4. (A) Visible light photography; (B) DStretch 
software applied with colorspace LDS at 10% scale; (C) 
Original sketch of panel by by Manuel Farinha dos Santos 
in 1963 (Adapted from Araújo C.A., Lejeune M., Gruta do 
Escoural: Necrópole Neolítica e Arte Rupestre Paleolítica, 
1995). 
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The above photographs in figure 2, are from the panel of painting #4. Due to the location of 

this painting, only a few imaging techniques could be applied. Not only is the painting large, 

roughly 1 meter in length, the rock wall containing the painting is about 2.5 meters from the 

stable walkway. Photograph (A), again shows the extremely limited appearance of the 

painting due to the calcite that is forming on the rock’s surface; (B) is the DStretch altered 

photograph in which the Equidae figure can be made out, along with other red pigments that 

appear. However, two large red pigment spots appear to have spread down the painting as a 

result of the calcite leaching; (C) is the original sketch depicted by the archaeologist, André 

Glory. The hyperspectral camera was placed too far away and the resulting photographs could 

not identify pixels with much accuracy. IR photography could not reveal any additional 

information either. 

PAINTING #5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Letters A-D represent the complete panel of painting #5. (A) Visible light photography; (B) IR photography with 
780nm filter; (C) DStretch software applied with colorspace LRB, auto color balance, and auto contrast at 7.5% scale; (D) 
Hyperspectral image from Specim IQ studio. 

Shown above in figure 3, is the panel representing painting #5. This painting is unique within 

Escoural Cave as it is the only painting with attempted calcite removal; as mentioned in 

A B

C D
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appendix 2, during a previous campaign in 2010-2012, efforts were made to clean a portion 

of the calcite covering this geometric painting. Photograph (A) is a visible light photograph, 

marked with a red box is the location of the calcite removal. (B) is an IR photo in which the 

painting can be seen, however it does not reveal any more than the visible photo. (C) is a 

photograph altered by DStretch in which the three vertical lines can be seen continuing into 

the cleaned calcite region; (C) has also enhanced the three red dots found in the lower left 

corner of the painting. Lastly, (D) is the hyperspectral results from the Specim IQ studio, 

however, the results do not reveal any more than those seen from the DStretch photograph.  

PAINTING #6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Letters A-D represent the complete panel of painting #6. (A) Visible light photography; (B) UVF photography; (C) IR 
photography with 780nm filter; (D) DStretch software applied with colorspace YRB, auto color balance, and auto contrast at 
20% scale.   

Above in figure 4, are the various imaging techniques employed on painting #6 in Escoural 

Cave. Photograph (A) is taken in visible light where three figures, possibly the rear end of an 

Equidae animal, the upper torso and neck of a Bovidae, and the head of another Bovidae can 

be made out depending upon the lighting and the precipitation within the cave. A prominent, 

well covering calcite crust can be seen covering parts of the painted panel. (B) is a photograph 

in using UVF - although not fluorescing, the third figure can be seen more clearly as a head of 

A B

C D
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a Bovidae. (C) a photograph in IR was not able to see under the thickly laid calcite crust. (D) is 

a photo altered with DStretch software in which the third figure of the Bovidae head is again, 

more clearly seen, while the top most figure is nicely enhanced. Hyperspectral imaging was 

not able to produce a quality image based on matching wavelengths.  
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PAINTING #7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

Figure 5: Letters A-H represent the complete panel of painting #7. (A) Visible light photography; (B-C) IR photography with 
780nm filter; (D) DStretch software applied with colorspace YBK and auto contrast at 5% scale; (E) DStretch colorspace YBK 
at 12.5% scale; (F) DStretch colorspace YBK and auto contrast at 10% scale. 
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Figure 5(continued): (G-H) Hyperspectral image from Specim IQ studio (Painting #7). 

Above in figure 5, are the various imaging technique results from painting #7. Photograph (A) 

is from visible light photography. As this painting is very difficult to see, the main figures have 

been highlighted with corresponding matching colored boxes. Photos (B) and (C) are both 

from IR photography and begin to reveal the hidden paintings. Overlapping Equidae heads 

can be seen in the upper half of (B), while the lower half resembles a small mammal, perhaps 

of the Bovidae family. The IR results for photo (C) can be shown to reveal another possible 

Equidae head. Photos (D-F) are altered with the DStretch plugin and depicts similar results to 

the IR photographs; however, an additional curved line, possibly a belly, of another Equidae 

can be seen above the lower Equidae head in photo (F); in photo (D) an additional head can 

be spotted with the alterations from DStretch. Lastly, photos (G-H) are from the hyperspectral 

Specim IQ studio; these photos reveal similar results to the IR and DStretch photographs.  

PAINTING #8 

   

 

 

 

 

 

Figure 6: Letters A-B represent the complete panel of painting #8. (A) Visible light photography; (B) Hyperspectral image from 
Specim IQ studio. 

G H 

A B 
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Figure 6 shows photos of the final painting, #8, analyzed at Escoural Cave. (A) is a visible light 

photo of an unknown figure. The majority of techniques used on this painting could not 

enhance it any further than the original visible light. (B) is a hyperspectral image from the 

Specim IQ studio which, as seen above, does not reveal any further details of painting #8.  

ENGRAVNIGS #1E-4E 

Raking light photography technique used on all engravings analyzed for this thesis at Escoural 

Cave did not reveal any new hidden elements of the rock art. The location and surrounding 

unevenness of the rock surface for most of the engravings analyzed were not ideal and proved 

extremely difficult to capture a proper raking light photograph (figure 7). Lighting positions of 

halogen lamps and tripod stabilization were difficult to set up in the confined positions 

determined by the location of the engravings. Engravings are best seen in the 3D models 

created. 

 

Figure 7: Raking light photograph of engraving #1E. 
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Appendix 4 

Standards were created for calibration of the BWTEK i-Spec 25 Vis-NIR FORS detectors and 

for the creation of a spectral database to confirm field point analysis results. Research of 

traditional Palaeolithic rock art pigments and binders was conducted to determine which 

pigments, binders, and quantities would be best suited for the replication (Gay et al., 2016; 

Olivares et al., 2013; Ontañón, 2014; Rogerio-candelera, 2015; Smith, 2014). Previous 

research conducted at Escoural Cave in 2016 with pigment micro-sampling and EDXRF, 

weighed considerably into the decision of which pigments to use as well (Mauran, 2016).  

Vis-NIR FORS investigations were conducted to determine whether or not the detectors could 

identify characteristic bands of Palaeolithic binders in the resulting spectra. These 

investigations were conducted through the use of reproductions created in a laboratory 

setting. The reproductions included various Palaeolithic pigments mixed with various 

Palaeolithic binders (see table 1). All colorants were painted in a ratio of 80% binder, 20% 

pigment for reproducibility; although, authentic Palaeolithic paint recipes are not believed to 

have followed a specific ratio. Reproductions were painted on substrates of various mediums 

including parchment paper, limestone, and glass slides (see figures 1-2). 

Results from the various investigations determined that firstly, the Vis-NIR FORS was able to 

identify characteristic pigment bands in the visible range, but could not differentiate binders 

in the NIR range. Secondly, the resulting spectra were highly influenced by the substrate 

material which the reproductions were painted on.  

Due to the results acquired from the laboratory investigations, efforts to reveal the possible 

binder spectra continued with the help of PCA. Binders alone were thickly painted on glass 

slides and allowed to dry for one day. Spectra were taken of the binders on glass and of the 

glass without a binder present, converted to TXT, and transferred to MATLAB. Using a set of 

mathematical equations, the standard deviation of all glass spectra was subtracted from the 

standard deviation of all binder on glass spectra and then plotted using a Savitzky–Golay 

smoothing with order=2 and framelen=7 4. Results showed that each binder contained a 

distinct spectrum but was found in extremely low levels of absorbance (see figure 3). All 

                                                           
4 MATLAB calculations to subtract glass medium background from spectra with binder was devised by Silvia 
Bottura PhD. Candidate. 
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spectra of Palaeolithic binders subtracted from glass medium were converted to TXT for PCA 

and calibrated against the spectra from Escoural Cave. 

CATEGORY COLORANT/ BINDER REFERENCE  

RED PIGMENT Red Ochre 
Cinnabar (Mercury (II) Sulfide) 

Kremer 40090 
Aldrich 243566-50G 

YELLOW PIGMENT Yellow Ochre Kremer 40010 

BLACK PIGMENTS Charcoal (Beech) 
Bone Black 
Manganese Oxide 

Kremer 47800 
Kremer 47100 
Local Pyrolusite (powdered) 

BINDERS Arabic gum 
Parchment glue 
Saliva 
Lime water 
Chicken Blood 
Human Blood 
Urine 
Bone marrow 

 

 

Table 1: List of pigments and binders analysed for the spectral database. 

 

 

 

 

 

 

Figure 1: Reproduction of Palaeolithic pigment and binders on parchment paper. 

 

 

 

 

 

 

 

 

Figure 2: Reproduction of Palaeolithic pigment and binders on limestone. 

Red Ochre        Yellow Ochre        Charcoal         Manganese           Bone               Cinnabar         Plain 
       Oxide                 Black 

Red Ochre        Yellow Ochre        Charcoal         Manganese           Bone               Cinnabar         Plain 
       Oxide                 Black 

P
ar

ch
m

en
t 

G
lu

e 
A

ra
b

ic
 G

u
m

 

Red 
Ochre 

Yellow 
Ochre Charcoal 

Manganese  
Oxide 

Bone 
Black 

Parchment 
Glue 

Lime 
Water 

Arabic 
Gum 

Saliva 

Urine 

Bone 
Marrow 



101 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Spectra of Palaeolithic binder subtracted from glass medium. Smoothed with Savitzky–Golay.
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Appendix 5 

Below are the Vis-NIR FORS and EDXRF point analysis locations for each painting analyzed with these techniques. 3-5 points were taken at each 

location for reliability and representative sample results. White dots represent a limestone point, red dots represent a red pigment point, black 

dots represent a black pigment point.
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Painting #1 (Main) 
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Painting #2 (Bird) 
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Painting #8 (Unknown) 
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Painting #7 (3 Horses) 
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Painting #8 with additional XRF sample locations. 
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Appendix 6 

The remaining 27 of 28 bacteria isolates from Escoural Cave using culture-dependent 

methods. 

 Strain Genus Macroscopic features Microscopic features (100x) 

A1-1 

B
a
ci

ll
u

s 
sp

.3
 

 

 

A1-2 

B
a
ci

ll
u

s 
sp

.1
3
 

 

 

A1-2--2 

S
te

n
o
tr

o
p
h
o

m
o
n
a

s 
sp

.1
 

 

 

A3-1 

B
a
ci

ll
u

s 
sp

.2
 

 
 



106 
 

A100-1 

S
o
li

b
a

ci
ll

u
s 

sp
.1

 
 

 

A100-2 

B
a
ci

ll
u

s 
sp

.1
 

  

A1.100-1 

S
tr

ep
to

m
yc

es
 s

p
.1

 

 
 

B1-1 

E
n
te

ro
b

a
ct

er
 s

p
.2

 

 
 

B3-1 

E
n
te

ro
b

a
ct

er
 s

p
.4

 

 
 



107 
 

B100-1--2 

E
n
te

ro
b

a
ct

er
 s

p
.3

 
 

 

C1.1-1 

B
a
ci

ll
u

s 
sp

.1
0

 

  

C1.2-1 

B
a
ci

ll
u

s 
sp

.8
 

 

 
 

C1.3-1-1 

B
a
ci

ll
u

s 
sp

.1
2

 

 
 

C1.3-1-2 

B
a
ci

ll
u

s 
sp

.1
1

 

 
 



108 
 

C1.4-1 

B
a
ci

ll
u

s 
sp

.4
 

 
 

C1.4-2 

B
a
ci

ll
u

s 
sp

.1
5

 

 
 

C1.100-1 

B
a
ci

ll
u

s 
sp

.1
4

 

 
 

C2.1-1 

B
a
ci

ll
u

s 
sp

.6
 

 
 

C2.2-1 

B
a
ci

ll
u

s 
sp

.9
 

 
 



109 
 

C2.3-1 

B
a
ci

ll
u

s 
sp

.5
 

 
 

C2.100-1 

B
a
ci

ll
u

s 
sp

.7
 

 

 
 

D1-1 

A
ci

n
et

o
b
a
ct

er
 s

p
.1

 

 
 

D1-2 

S
te

n
o
tr

o
p
h
o

m
o
n
a

s 
sp

.3
 

 
 

D2-2 

S
te

n
o
tr

o
p
h
o

m
o
n
a

s 
sp

.2
 

 
 



110 
 

D3-2 

P
se

u
d
o

m
o

n
a

s 
sp

.3
 

  

D3-1-1 

L
ys

in
ib

a
ci

ll
u
s 

sp
.1

 

  

D100-1 

P
se

u
d
o

m
o

n
a

s 
sp

.1
 

 
 

D100-2 

P
se

u
d
o

m
o

n
a

s 
sp

.2
 

 
 

 

 

 

 

 

 

 



111 
 

Appendix 7 

Pie charts depicting different taxonomic regions of each sample analyzed with NGS in Escoural Cave.  
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