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vector with llull— + co. This class contain the polynomials in y + X. An application to
the case of normal X is presented. This application includes a new central limit theorem
which is connected with the increase of non-centrality for samples of fixed size.

Keywords: Moreover upper bounds for the suprema of the differences between exact and
Asymptotic linearity approximate distributions and their quantiles are obtained.
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1. Introduction

Linear and quadratic forms as well as other low degree polynomials play an important role in statistics (e.g. Ito, 1980;
Lazraq and Cleroux, 2001; Oliveira and Mexia, 2007a, 2007b; Sabatier and Traissac, 1994; Scheffé, 1959). In Areia et al.
(2008) it is pointed out that low degree polynomials in normal independent variables, with sufficiently small variation
coefficients, are approximately normal. Moreover, also in Areia et al. (2008), are presented simulations suggesting that,
when llull - + oo, a polynomial P(u + X) has a leading component linear in X. This linear component will be normal.

We will obtain asymptotic approximations and limit distributions for a class of statistics containing P(u + X).

In the next section we will present the concept of asymptotic linear functions which will play a central role in our study.
We will also introduce the relevant notations and point out that polynomials are asymptotically linear functions. Next we
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use a variant of the 6 method (e.g. Lehmann and Casella, 2001) to obtain asymptotic and limit results. In the last section we
will consider the case when u+ X will be normal with mean vector u. This variant will display a good control of the
approximation errors both for distribution functions and their quantiles.

If V* is the Moore-Penrose matrix inverse of the variance-covariance matrix V of u + X, the quadratic form (u +
X)'V* (1 + X) will have a chi-square distribution with r = rank(V) degrees of freedom and non-centrality parameter
é = utvty, (e.g. Mexia, 1990). Thus we may use 6 to measure the non-centrality of the sample. In our study of the normal
case we will obtain a central limit theorem, for fixed size samples whose non-centrality parameter diverges to +oo.
Moreover 6 may be used to measure sample non-centrality whenever V, the variance-covariance matrix of X is defined,
and 60— + oo will imply llull — + oo. Since our asymptotic and limit results are derived assuming that lull - + oo, they are

connected with the increase of non-centrality in samples, normal or not, with fixed size. When the components Xi, ..., Xn
of X are iid. with mean value u and variance ¢?> we have u=ul, and V=o0?l, so V' =(1/0®)l, and
6 =m(u?/c%) = m/VC?, with VC = ¢/u the variation coefficient. Thus when the Xj,...,X,, are observations with low

variation coefficients we have a sample with large J. The variation coefficient with high precision observations are used.
2. Notations and concepts

Given a sufficiently regular function g : R R, let g and g be the gradient and the Hessian matrix of g. Then, with ry(X)
the supremum of the spectral radius r(y) of g(y), when lly — Xl <d, the function g is asymptotically linear, if whatever d>0,
we have -

kd(”)u jOOO,
with

T4(X)

kq(u) = sup{ g s Il zu}.

Since the first and second order partial derivatives of polynomials are themselves polynomials with degree decreasing with
successive derivations, polynomials will be asymptotically linear.

Given a random vector X and an asymptotically linear function g(-), we will show that, when I ull - oo, the distribution Fy
of

Y =gu+X)
approaches the distribution of
Z=gmw+gmw'X
With [, the p th quantile of the random variable L, given

._Z-&mw)
gl

and

. (Y —gw)
gl

we will obtain upper bounds for |y, — z,|. Moreover, when
1
gl 8w, b

we will establish that Fz. converges to Fz., with Z° = b'X.
As we shall see these results are easy to apply when X is normal. Then Z® will also be normal and a central limit theorem
will apply.
3. Asymptotic results
If g : RK SR is sufficiently regular we have, see Khuri (2003)
1
Y=gu+X) =gmw+gmwX+ /0 (1 - hX'g(u+hX)X)dh.

Thus, when 11Xll<d,

1
Y —Z = ‘ /0 1- h)(xfg (u + hX)X) dh‘ <rg(uwyd?
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as well as
IY* = Z°| <kgq(Iullyd?.

We now establish

.S

Proposition 3.1. If g(-) is asymptotically linear, then |Y° —Z°| % 0, where a.s. indicates almost sure convergence.

Il — 00

Proof. If g(-) is asymptotically linear, whatever £¢>0 and d>0, there is u(¢) such that, for u>u(e), k4(u)<e. Thus, when
lul>u(e), 1Xll<d implies |Y° — Z°| <e. Whatever 6 >0, we may choose d>0 to ensure that Pr(iIXll<d)>1 — ¢, thus when
lull > u(e), we will also have Pr(|Y° —Z°|<&)>1 —  which establishes the thesis. O

Since k4(u) decreases with u we may define
u(d, &) = Min{u; ky(u)d? < e}
thus, with I, the p th quantile of the distribution of L = IIXII?>, whenever L<l,, llull >uq(¢) = u(ly, &) implies
Y —Z|<e.
So, if g(¢) is the probability of the event A(e) = {|Y* — Z°| <&} we see that q(¢)>q, when llull >ug(e).
Let A°(¢) be the complement of A(¢) and g°(¢) = 1 — q(¢). We now have
Proposition 3.2. Whatever z and ¢>0, Fz.(z — €) — q°(6) <Fy.(2) <Fz.(z + &) + q°(¢).

Proof. The thesis follows from

Fy (2) = Pr(Y° <2) = q(e)Pr(Y" <z|A(g)) + q°(e)Pr(Y° <z|A°(e)) <q(e)Pr(Z° <z + ¢|A(€)) + (&)
and from

Fz.(z— &) — q°(e)<q(e)Pr(Z° <z — ¢|A(e)) < q(e)Pr(Y° <z|A(e)) < Pr(Y° <2) = Fy.(2). O
Corollary 3.1. When Fz.(z) has density f;(z) bounded by C, we have Sup{|Fy — F;|} = Sup{|Fy- — Fz.|}<d(e) with
d(e) = 2(Ce + q(¢)).
Proof. Since

_ x—gp
Fy() =Fy < g >

and

_ X—g(w
Fz(x) =F; (W)

we have Sup{|Fy — Fz7|} = Sup{|Fy. — Fz.}. To complete the proof we have only to apply Proposition 3.1 remembering that,
since f7 is bounded by C,F;.(z+¢) — Fz.(z — &)<2Ce. O

Corollary 3.2. When f; is bounded by C and g(-) is asymptotically linear, Sup{|Fy — F7|} —

Il —>+o0
This last corollary gives conditions for F; to approach Fy uniformly when Il ull—s occ.
Next we have
Proposition 3.3. If f; is bounded by C and if fz (2)=m(0)>0, whenever z;_, . <z<z; ; 4., we have
d(e)

Sup{ly, — zpl;0<p<1- 5}£2(8+%>.

Proof. According to Corollary 3.1 of Proposition 3.2, we have

Fz (v, — &) — d(&)<Fy (yp) = p<Fz (y, + &) + d(¢)
so Fz(y, —e)<p+d(e) and p — d(e)<Fz (y, +¢). Thus y, — €<z, 4, and Zy ey <Yp T & SO Z, g —ESY,<Z, 4
complete the proof we have only to point out that

2d(e)
Zp—d(g) < m .

)+ & To

o

Zprdee) — U

Corollary 3.3. If lul >uq(e), fz is bounded by C and f7.(z)>=m(6)>0, then whenever z;_, . <z<zj ; dey We have

©
Sup{ly, — z,l,0<p<1— 0} <2(¢ + dg(&))m(9)),

with dg(e) = 2(Ce + q°) where ¢ =1 —q.
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Proof. The thesis follows from Proposition 3.3 since uq4(¢)>q, when llull >ug(e). O
We also have

Proposition 3.4. If

1
IIg(,u)Hg(”)Huu oob’ Fz Hu\:ooFZ
this convergence being uniform when f7. is bounded by C and g(.) is asymptotically linear.

Proof. The first part of the thesis follows from

t
1 ass.
(g(,u)lg(ﬂ) - b) X im0

whenever

o),

Il »o0

llg(ﬂ)\

The second part of the thesis follows from Proposition 3.3 since ug(¢)>q, when llull >ug(e). O
4. Application: the normal case

Let X be normal with null mean vector and regular variance-covariance matrix M. Then

o181 Z—g(w)* /g (Mg (10

g ()l
\/27g (1) Mg (p)

Ig(p)!

\/27g ()" Mg(p) '

If 0 is the smallest eigenvalue of M we have

fz(@ =

is bounded by

G =

C(u)<C =

1
RV 27T9k '

With x, the quantile for probability p of the standardized normal density, the quantiles for fz- will be

\/&(w'Mg(n)

gl

while the minimum of f7. in 1Z5_ ey (W3 21 5. gy (W] will be

Z,(p) = g(1) + Xp

s

efngdm/z
m(é|p) = ——=1g(w|
\/27g () Mg ()
so that

Cw _ & o/
m(o|p)

and

delw _ 2CWe+9°E) _ e, 0|, TOIBWI ) e (8 N qf(s))

m@\u) m(o|u) B [27g () Mg (n) V210, )

We thus obtain bounds that do not depend on u, both for f7 (z) and for d(e|u)/m(d|p). It is now easy to apply the previous
results to this case.

Moreover if X is normal with null mean vector and variance-covariance matrix M and if 0;>,..., >0, are the
eigenvalues of M with multiplicities g1,..., g,
L =IXI?

may be written (see Imhof, 1961) as a linear combination Z}Ll Oj)(gj, of independent chi-square variates. When M is known
it is easy to compute the quantiles I, (Fonseca et al., 2007).
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5. Final remarks

In this work we derived asymptotic and limit results for samples, with fixed size, whose non-centrality diverges to +oo.
In the case of normal samples a central limit theorem of a new type is established. Our approach is a variant of the
method. This variant will apply to asymptotically linear statistics g(u + X) such as the polynomials P(u + X) and leads to a
good control of the approximation involved (see Corollary 3.1, Proposition 3.2 and Corollary 3.3).
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