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A B S T R A C T

A finite-strain tetrahedron with continuous stresses is proposed and analyzed. The complete stress tensor is now a
nodal tensor degree-of-freedom, in addition to displacement. Specifically, stress conjugate to the relative Green-
Lagrange strain is used within the framework of the Hellinger-Reissner variational principle. This is an extension
of the Dunham and Pister element to arbitrary constitutive laws and finite strain. To avoid the excessive conti-
nuity shortcoming, outer faces can have null stress vectors. The resulting formulation is related to the nonlocal
approaches popularized as smoothed finite element formulations. In contrast with smoothed formulations, the
interpolation and integration domain is retained. Sparsity is also identical to the classical mixed formulations.
When compared with variational multiscale methods, there are no parameters. Very high accuracy is obtained
for four-node tetrahedra with incompressibility and bending benchmarks being successfully solved. Although the
ad-hoc factor is removed and performance is highly competitive, computational cost is high, as each tetrahedron
has 36 degrees-of-freedom. Besides the inf-sup test, four benchmark examples are adopted, with exceptional
results in bending and compression with finite strains.

1. Introduction

Numerical analysis [8] and applied mathematics analysis [12]
have long agreed on the solutions for locking of low-order elements
under quasi-incompressible (and incompressible) conditions. Mixed
displacement-pressure formulations passing the inf-sup stability condi-
tion are currently well established, as are solutions for circumventing
this condition, cf. [26], which developed into the variational multiscale
techniques [1,32,50] now in widespread use with virtually all consti-
tutive laws. More traditional formulations, such as the MINI formula-
tion (continuous pressure + bubble-enriched displacement) [6] and its
variants [46] are now still adopted [4] in combination with other tech-
niques, see also [31,41].

Accuracy and stability in the quasi-incompressible case are now well
understood (see, e.g. Ref. [7]). Another related goal is the high coarse-
mesh accuracy in the sense of Belytschko and Bachrach [10] in partic-
ular when bending is involved. For hexahedra, high coarse-mesh accu-
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rate elements for finite strains are available [5,43,49] and only incre-
mental developments are being performed to improve specific aspects,
for example stability under compression.

High coarse-mesh accurate tetrahedra are difficult to produce as
bending modes cannot be directly added with the incompatible mode
method. The closest to a bending-enhanced tetrahedron is the rotation-
based tetrahedron by Nodargi et al. [35].

An alternative to enrichment consists in increasing the integra-
tion domain by creating pseudo-elements based on tetrahedra shar-
ing a node, an edge or a face. This smoothed finite element tech-
nology has been extensively explored recently. For node smoothing,
stabilization is required [14,19,21,29,38], for edge smoothing [23,37]
and face smoothing [33] stabilization is not required. However, in all
three smoothing options, Jacobian densification occurs (cf. Fig. 8 of
[21]) and the conventional finite element implementation is disrupted.
Although intricate to implement, smoothing strategies result in greatly
improved bending performance. Incompressibility is however a differ-
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Algorithm 1 Relative Lagrangian formulation (Voigt notation adopted) for elasto(visco)
plastic materials. Frame b, reference configuration Ωb and equilibrium configuration Ωa.

Input data

Given eb
ab (Voigt form) R00′ and R0b

Recover from storage S0
b0 and e0

b0

Frame change from 0 to b and stress/strain updating

Accumulated Green-Lagrange strain in frame b eb
b0 =  e

(
RT

0b
)

e0
b0

Right stretch tensor for configuration Ωb Ub
b0 =

√
2eb

b0 + I Jb0 = det Ub
b0

Deformation gradient in frames b − b Fbb
b0 = RT

00′
R0bUb

b0

Deformation gradient in frames b − 0 Fb0
b0 = Fbb

b0RT
0b

Update total strain in frame b eb
a0 = eb

b0 +  e

[(
Fbb

b0

)T
]

eb
ab

Stress in frame b Sb
bb =

1
Jb0

 s

(
Fb0

b0

)
S0

b0

Determine stress Sb
ab = Sb

bb +ΔŠa

(
eb

ab

)
and sensitivity ab =

𝜕ΔŠa
𝜕eb

ab

Determine the total strain in frame 0 e0
a0 =  e (R0b) eb

a0

Determine the second Piola-Kirchhoff stress in frame 0 S0
a0 = Jb0 s

[(
Fb0

b0

)−1
]

Sb
ab

Store S0
a0 and e0

a0

Return to the element Sb
ab, ab

ent matter and some of the recent smoothed finite elements include
internal bubbles to avoid locking in the incompressible limit, see Refs.
[34,36].

We here take a different approach. By using the Hellinger-Reissner
variational principle (cf [8,24]), we proposed a stress and displacement-
based element for finite strains which can be viewed as an exten-
sion of the linear formulation by Dunham and Pister [20] to deal
with any constitutive law in finite strains. With that goal, a spe-
cific constitutive updating algorithm is used, filling the technical
aspects required to extend the small strain formulation to finite strains.
Although computational cost is significant, and the stiffness matrix
is unsymmetrical, at the node level, system sparsity is the same as
with a displacement-based element and implementation is straightfor-
ward.

The manuscript is organized as follows: Section 2 presents the con-
stitutive updating algorithm, which is adopted by our tetrahedron for-
mulation, described in Section 3. Section 3 also shows the convergence
of the inf-sup parameter for a block mesh. Section 4 presents 4 bench-
marks to assess the performance of the new element and finally, in
Section 5 draws the conclusions, with a discussion on the advantages
and shortcomings of the present element.

2. Constitutive updating

To use a common equilibrium formulation for hyperelasticity and
rate-based finite-strain elasto-plasticity is a difficult task, especially
when using mixed formulations. For specific pressure/displacement
[45] or enhanced strain formulations [5,42,43], this can be performed
with multiplicative decomposition of the deformation gradient, FeFp
[44]. It is intricate to ensure frame-invariance as sharply noted by
Glaser and Armero [22]. However, when stress nodal degrees-of-

freedom are present, ambiguities would occur due to the required trans-
formations performed at the element level.

Relative strain measures are therefore convenient for the assumed
stress formulation employed in this work. Configuration Ω0 is the ini-
tial configuration, Ωb as the reference configuration and Ωa as the equi-
librium configuration. To these three configurations we associate three
frames 0, b and a, respectively. We introduce local frame 0′ correspond-
ing to the local undeformed configuration Ω0. Therefore, for configura-
tion Ω00 is the global frame and 0′ is the local frame. A given tensor T is
written, in frame c for reference configuration Ωb and equilibrium con-
figuration Ωa as Tc

ab. When the frame is obvious or of no consequence,
we omit the superscript c.

After introducing the relative deformation gradient between config-
urations Ωb and Ωa as Fab we have:

Fab = Fa0F−1
b0 (1)

The Green-Lagrange strain between configurations is obviously eab =
1
2

(
FT

abFab − I
)

and therefore we can write:

ea0 = eb0 + FT
b0eabFb0 (2)

If a frame b is identified by the basis vectors g1b, g2b and g3b written
in frame 0 by column, we can write the frame matrix for b as R0b =[
g1b ∣ g2b ∣ g3b

]
. This frame matrix for the reference configuration is of

course relevant for structural elements, but also anisotropic continuum
elements where a frame-of-reference is required. An initial frame (0′)
is used for structural elements so that in general R00′ ≠ I. Of course,
although frames are distinct, configurations coincide Ω0 ≡ Ω0′ . Change
of frame of a given second-order tensor T is obtained in general as:
Ta = RabTbRT

ab. Polar decomposition of the deformation gradient Fa0 is
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obtained from the rotation and stretch Ua0:

Fa0 = R0′aUa0 (3)

In the particular case of the deformation gradient, which is a two-point
tensor, we have the following change of frames transformation, see also
[30]:

Fcd
ab = RceF

ef
abRfd (4)

Which allows the writing of Fa0 in frames b − 0 as

Fb0
a0 = Rb0F00

a0 (5)

This formula is relatively standard [47] and supports the classical coro-
tational method, which here is identified as: Fb0

b0 = U0
b0. Having defined

the relative Green-Lagrange strain eab, which is the traditional Green-
Lagrange strain assuming that the initial configuration is Ωb, we now
use the power conjugacy between the Green-Lagrange strain rate (ė)
and the second Piola-Kirchhoff stress (S) to obtain:

∫Ωa

S ∶ ėdΩa = ∫Ω0

Sa0 ∶ ėa0dΩ0 = ∫Ωb

Sab ∶ ėabdΩb (6)

from which we obtain the following relation:

Sab =
1

Jb0
Fb0Sa0FT

b0 (7)

where Jb0 = detFb0. Generalizing, we have:

Sac =
1

Jcb
FcbSabFT

cb (8)

The Cauchy stress, for example, is identified as Saa and follows the
traditional formula:

Saa =
1

Jab
FabSabFT

ab (9)

We therefore have two choices concerning the constitutive updating at
finite strains within this framework:

• Hyperelasticity with frame b: Sb
a0

(
eb

a0

)
• Hypoelasticity/inelastic materials with frame b: Sb

ab = Sb
bb +

ΔŠa

(
eb

ab

)
where ΔŠa is the incremental stress.

Algorithm 1 summarizes the steps (here only for hypoelasticity),
where use is made of Voigt form for symmetric tensors:

Voigt
⎡⎢⎢⎢⎣
S11 S12 S13

S12 S22 S23

S13 S23 S33

⎤⎥⎥⎥⎦ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S11

S22

S33

S12

S13

S23

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⇔ (10)

Voigt [S] = S (11)

We use upright bold format for symmetric tensors represented in Voigt
format and the usual slanted bold format for tensors in conventional
format.

Omitting the configuration and frame indices, the term  s(F) is cal-
culated as:

 s(F) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F2
11 F2

21 F2
31 2F21F11 2F31F11 2F31F21

F2
12 F2

22 F2
32 2F22F12 2F32F12 2F32F22

F2
13 F2

23 F2
33 2F23F13 2F33F13 2F33F23

F11F12 F21F22 F31F32 F21F12 + F11F22 F31F12 + F11F32 F31F22 + F21F32

F11F13 F21F23 F31F33 F21F13 + F11F23 F31F13 + F11F33 F31F23 + F21F33

F12F13 F22F23 F32F33 F22F13 + F12F23 F32F13 + F12F33 F32F23 + F22F33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and  e(F) = 
T
s (F

T).

3. Stress-displacement formulation for the tetrahedron

Specific applications, as well as quasi-incompressible constitutive
laws, expose the limitations of low-order displacement-based tetrahe-
dra. For an extensive period of time, traditional low-order mixed ele-
ments were a solution for avoiding locking in quasi-incompressible
problems. Although quasi-incompressible and incompressible materials
are well served by mixed u − p elements satisfying the inf-sup condi-
tion (see, the description by Bathe [8]), bending and torsion are not.
If only quasi-incompressible materials are of interest, the MINI formu-
lation by Douglas Arnold ([6]), see also Bathe [8] and Cao [15] is a
reliable solution with low-order interpolation.

However, to improve on results in bending, we use stress tensor
interpolation in a form not distinct from the work of Dunham and Pis-
ter [20] in finite strains. Here the two-field Hellinger-Reissner varia-
tional principle [24] is adopted. Stress and displacement, as in the orig-
inal Hellinger-Reissner principle, are the independent fields, with stress
being the primary. We therefore introduce the independent stress S̃ab as
a nodal degree-of-freedom.

• Stresses are linearly interpolated using the corner nodes.
• Relative strain rates and conjugate stresses are employed.

We start with the complementarity strain energy density Uc
(

S̃ab

)
which is used in the Hellinger-Reissner functional (in Voigt form [48]):

ΠHR

(
S̃ab,u

)
= −∫Ωb

Uc
(

S̃ab

)
dΩb + ∫Ωb

S̃ab · eab (u)dΩb − Wext (u)

(12)

where dependence on the stress S̃ab and the displacement u is made
explicit. In (12), Wext (u) is the work of conservative external forces.
Stationarity of (12) with respect to S̃ab and u is made here by using a
time-derivative. Hence,

Π̇HR

(
S̃ab,u

)
= ∫Ωb

[
eab (u) − ẽab

]
· ̇̃SabdΩb

+ ∫Ωb

S̃ab · ėab (u)dΩb − Ẇext (u) = 0 (13)

with ẽab =
dUc

(
S̃ab
)

dS̃ab
. Partitioning the terms dependent on u̇ and the

terms dependent on ̇̃Sab, we obtain (omitting the argument u):

∫Ωb

S̃ab · ėabdΩb = Ẇext (14)

∫Ωb

[
eab (u) − ẽab

]
· ̇̃SabdΩb = 0 (15)

We now make use of a tangent relation ̇̃Sab =  · ̇̃eab where the tan-

gent modulus  is obtained from Uc as  =
[

d2Uc
(
S̃ab
)

dS̃2
ab

]−1

. By using
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Fig. 1. Inf-sup test (𝛾h), free boundary conditions. Convergence curve for 𝛾h .

�̇� = −
̇̃
eab we obtain, by using eab (u) − ẽab = 0 ⇒ Sb

ab − S̃ab = 0,

∫Ωb

[(
S̃ab − Sb

ab

)
· �̇�
]

dΩb = 0 (16)

In terms of power balance, we use the following relation, where S̃ab is
independent of the displacement field. Weak form corresponds to the
following stationarity condition:

∫Ωb

S̃ab · ėabdΩb + ∫Ωb

[(
S̃ab − Sb

ab

)
· �̇�
]

dΩb

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ẇ int

= Ẇext (17)

where Sb
ab is the constitutive-based stress and 𝝀 is now identified as

the Lagrange multiplier required to impose, in the weak form, the con-
straint

S̃abweak=̃Sb
ab (18)

In (17), Ẇext is the external work power, obtained by the internal prod-
uct of external forces with the corresponding velocities:

Ẇext = ∫Ωb

u̇ · bdΩb + ∫Γt

u̇ · tdΓt (19)

where u̇ is the velocity vector, b is the external body force and t is the
stress vector at boundary Γt . Using time-derivatives, in (17), we have �̇�
as the Lagrange multiplier “velocity” conjugate to the stress.

Table 1
Values of 𝛾h for 𝜈 = 0.3, 𝜈 = 0.499 and
h = 6,3,1.5,0.75

𝜈 = 0.3 𝜈 = 0.499

h = 6 7.1478 × 10−5 7.1478 × 10−5

h = 3 4.1122 × 10−5 4.1122 × 10−5

h = 2 3.6516 × 10−5 3.6516 × 10−5

h = 1.75 2.9895 × 10−5 2.9895 × 10−5

h = 1.5 2.7571 × 10−5 2.7571 × 10−5

h = 1.375 2.6827 × 10−5 2.6827 × 10−5

h = 1.25 2.6521 × 10−5 2.6521 × 10−5

h = 1.125 2.6267 × 10−5 2.6267 × 10−5

h = 1 2.6104 × 10−5 2.6104 × 10−5

Using (17), we observed near-singularity in certain problems and
therefore modify the equations in weak form to stabilize it while retain-
ing the fully mixed pressure part of the stress:

∫Ωb

Šab · ėabdΩb + ∫Ωb

[(
S̃ab − Sb

ab

)
· �̇�
]

dΩb

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ẇ int

= Ẇext (20)

Šab =
[
Tp + (1 − 𝜀)Td

]
S̃ab + 𝜀TdSb

ab (21)

where

Td = 1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Tp =
1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

In all examples, we use 𝜀 = 5%. The purpose of this modification is to
allow a solution during the Newton iteration, and no effort was made
in tuning this parameter. Since the pressure term TpS̃ab is independent
of the interpolated displacement, no locking occurs for any value of 𝜀.

The variation of (20) is required in the application of Newton-
Raphson process:

dẆint = ∫Ωb

[
Tp + (1 − 𝜀)Td

]
dsS̃ab · ėabdΩb (23)

+∫Ωb

𝜀TdduSb
ab · ėabdΩb + ∫Ωb

Šab · duėabdΩb (24)

+∫Ωb

[(
dsS̃ab − duSb

ab

)
· �̇�
]

dΩb (25)

where dS indicates the variation with respect to the stress degrees-of-
freedom and du indicates the variation with respect to the displacement
degrees-of-freedom. For a close inspection of the quantities involved in
(17) and (23), we have the relative deformation gradient as a product
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Fig. 2. Cube test to assess the computing time.

of the Jacobian for configuration Ωa with the inverse of the Jacobian
for configuration Ωb:

Fab = JaJ−1
b (26)

Which, introducing the positions at configuration Ωa and configuration
Ωb as xa and xb, along with a set of curvilinear coordinates 𝝃, we obtain:

Ja = 𝜕xa
𝜕𝝃

(27)

Jb =
𝜕xb
𝜕𝝃

(28)

with the relative displacement being uab = xa − xb. Of course, from
(26), we obtain:

eab =
1
2

(
FT

abFab − I
)

(29)

The variation of (29) is given by

dueab =
1
2

[
J−T

b

(
duJT

a Ja + JT
a duJa

)
J−1

b

]
(30)

where

duJa = 𝜕duxa
𝜕𝝃

(31)

In terms of constitutive stress variation, we have:

duSb
ab= abdueab (32)

where ab is the constitutive tangent modulus. We now introduce the
interpolations for u, S̃ab and 𝝀 as:

u(𝝃) =
4∑

K=1
NK (𝝃)uK (33)

S̃ab(𝝃) =
4∑

K=1
NK (𝝃) S̃abK (34)

𝝀(𝝃) =
4∑

K=1
NK (𝝃)𝝀K (35)

We remark that, according to Zienkiewicz, Taylor and Zhu [51], page
296, “… identical interpolation of N𝜎 and Nu is acceptable from the point
of view of stability.” Shape functions NK(𝝃) for each tetrahedron node K
are written according to their definition (cf [25]):

N1(𝝃) = 1 − 𝜉1 − 𝜉2 − 𝜉3 (36a)

N2(𝝃) = 𝜉2 (36b)

N3(𝝃) = 𝜉3 (36c)

N4(𝝃) = 𝜉1 (36d)

Not all quantities are determined by hand-derivation, and we use
Mathematica [40] with the AceGen (cf [28]) add-on to calculate some
derivatives. Making use of the concepts of Sobolev spaces and norms
[13], along with the inf-sup results, we assess the convergence of this
element for a simple verification test. We require the L2 norm of S̃ab
and the Sobolev norm ‖•‖W1,2(Ωb) of u:

‖‖‖S̃ab
‖‖‖L2(Ωb)

=

√
𝔸
e

(‖S̃ab‖2
L2(Ωe

b)

)
e

(37)

‖u‖W1,2(Ωb) =

√√√√√𝔸
e

( 1∑
|𝜶|=0

‖𝜕𝜶u‖2
L2(Ωe

b)

)
e

(38)

where 𝜕𝜶u = 𝜕|𝜶|u
𝜕x𝛼1

1 𝜕x𝛼2
2 𝜕x𝛼3

3
with |𝜶| = 𝛼1 + 𝛼2 + 𝛼3. In (37), 𝔸

e
is

the assembling operation, described by Hughes [25] with Ωe
b being the

reference configuration for element e. In terms of components, we have

‖S̃ab‖2
L2(Ωe

b)
= ∫Ωe

b

3∑
i,j=1

(
S̃ab

)2

ij
dΩb (39)

1∑
|𝜶|=0

‖𝜕𝜶u‖2
L2(Ωe

b)
= ∫Ωe

b

{ 3∑
i=1

[
[u]2i +

3∑
k=1

(
𝜕[u]i
𝜕Xk

)2
]}

dΩb (40)

With (37–38) along with (39–40), we have two discrete quadratic forms
for the norms:
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Fig. 3. Cantilever beam: relevant data (geometry, boundary conditions and material properties). Contour plot of S0
11 stress is also shown for formulations.

‖‖‖S̃ab
‖‖‖2

L2(Ωb)
= S̃T

h GS̃h (41)

‖u‖2
W1,2(Ωb)

= uT
h Tuh (42)

where uh and S̃h are the displacement and stress global degrees-of-
freedom. We note that G and T are global matrices, similar in terms
of assembling to the stiffness matrix. We use the assembling operation
to perform this task, as well as AceGen [28] to determine the cliques. To
that goal, we use the Hessians of ‖‖‖S̃ab

‖‖‖2

L2(Ωb)
and ‖u‖2

W1,2(Ωb)
to obtain

G and T, respectively. Since stress is the primary field, we assess the
stability of this formulation in detail, using the inf-sup parameter fol-
lowing Brezzi and Fortin [13] (see Y. Ko and K.-J. Bathe [9,18,27]):

𝛾h = inf
uh

sup
S̃h

uT
h KuSS̃h√

S̃T
h GS̃h ·

√
uT

h Tuh

(43)

This definition provides a number 𝛾h that measures the crossed-term in
the stiffness matrix and therefore the strength with which the constraint
is imposed. We intentionally omit the spaces in (43) to avoid overload-
ing the notation. We now make use of the proof provided by Brezzi
and Fortin [11,13] that equates 𝛾h to the square-root of the smallest
nonzero eigenvalue 𝜆k of the following generalized problem, where 𝝓k
are the corresponding eigenvectors:(

KT
uST−1KuS

)
𝝓k = 𝜆2

kG𝝓k (44)

We equate 𝛾h to min
𝜆k>0

𝜆k, see Brezzi and Fortin [13], proposition 3.1. The

inf-sup condition is now verified for the geometry shown in Fig. 1. We

use a characteristic mesh parameter h with values from 1 to 6. Table 1
and Fig. 1b show the results. Two conclusions are drawn:

• An horizontal asymptote in 𝛾h is detected showing the convergence
of this formulation.

• The Poisson coefficient does not affect the value of 𝛾h, a fact that is
confirmed in the numerical examples.

In terms of computational cost, we select the most demanding case
for sparsity, a cube represented in Fig. 2. A single linear analysis is
performed, with upper and bottom faces of the cube being clamped.
Meshes with up to 35 elements per edge are adopted. A Clevo Laptop is
used, with a 6-core Intel i7-8700 K processor and 32 GB of 2400 MT/s
RAM. Our linear frontal solver is used, cf [3]. Fig. 2b shows the relation
between the number of degrees-of-freedom and the number of elements
per edge with elements T4, MINI, and our formulation. We note that
in the MINI element, internal degrees-of-freedom are accounted. Clock
time vs the number of elements per edge is shown in Fig. 2c. We note
that computational cost is significant, which is consequence of using 9
degrees-of-freedom for each node and the stiffness matrix is unsymmet-
rical.

4. Numerical tests

Four numerical experiments are now performed, with a cantilever
beam, Cook’s membrane, asymmetric compression and the classical
drilled plate under tension. The objective is two-fold: verification of the
implementation and benchmarking. For comparison, results from the
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Fig. 4. Cantilever beam: load/displacement results.
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Fig. 5. Cook’s membrane: geometry, boundary conditions and constitutive properties.

literature are shown, and critically compared with the ones produced
by our formulation. Our SimPlas software (cf [2]) is employed for all
examples.

4.1. Cantilever beam, Kirchhoff/Saint-Venant constitutive law

Bending tests are especially demanding for tetrahedra element tech-
nology when coarse meshes and incompressibility are present. With the
goal of assessing the improvements resulting from the current formula-

tion, we present a cantilever beam, see Fig. 3 with prescribed vertical
displacement at the top edge of the beam extremity. Also shown in
Fig. 3 are contour plots of the stress component S̃0

11.
Results for increasingly coarse meshes are shown in Fig. 4. Meshes

with 3 × 6 × 30, 2 × 4 × 20, 1 × 2 × 10 and 1 × 2 × 5 ele-
ments are employed, with two Poisson coefficients: 𝜈 = 0.3 and
𝜈 = 0.499. We observe that, for coarse meshes, the present formu-
lation clearly outperforms the T4 (textbook implementation of the
displacement-based tetrahedron element) and Arnold’s MINI element.
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Fig. 6. Cook’s membrane results.

Coarser meshes greatly benefit the present formulation, especially for
𝜈 = 0.499.

4.2. Cook’s membrane

We now apply the formulation to the Cook’s membrane problem (the
2D version is common, cf [32,42]). A 3D linear version was adopted
by Mahnken, Caylak, and Laschet [31]. This problem combines incom-
pressibility and bending, which are both especially demanding for low-
order tetrahedra. We use two constitutive laws: Neo-Hookean elasticity
and J2 elasto-plasticity, as described by Simo and Armero [42] to inves-
tigate the relative merits when compared with classical formulations.
Fig. 5 shows the relevant data and contour plots for the stress degrees-
of-freedom S̃ in the elastic and also 𝜀p in the elasto-plastic case. Very
smooth stress contour plots are obtained (obviously continuous) which

benefits the elasto-plastic analysis. A comparison with the nodally inte-
grated tetrahedra, see Ref. [38], for the same example shows an advan-
tage in terms of stress smoothness. In Fig. 6, we present the results
for Neo-Hookean elasticity (sub-Fig. 6a) and J2 elasto-plasticity (sub-
Fig. 6b). For the new formulation, a standard discretization is used
and we also test a crossed-mesh (hexahedra divided into 24 tetrahe-
dra) with the same density. Fig. 6a shows the tip displacement con-
vergence results for the Neo-Hookean case, where a comparison with
Arnold’s MINI element [6] and the hexahedron version of Simo, Tay-
lor and Pister element [45], here denoted F, is performed. The new
formulation produces high quality results, with the crossed-mesh ver-
sion outperforming the F hexahedron. As expected by the continuity
of stresses, the elasto-plastic benchmark produces excellent results, as
Fig. 6b shows. With the crossed-mesh version, our formulation clearly
outperforms the F hexahedron in the elasto-plastic test.

60



P. Areias et al. Finite Elements in Analysis and Design 165 (2019) 52–64

Fig. 7. Quasi-incompressible Neo-Hookean compression test.

Fig. 8. Quasi-incompressible Neo-Hookean compression test.

4.3. Quasi-incompressible block under compression

Using a quasi-incompressible hyperelastic law, we test the new for-
mulation with a well-known benchmark where an asymmetric compres-
sion of a block is performed. The large strain compression test by Reese,
Wriggers and Reddy [39] and hyper-elastic a quasi-incompressible Neo-
Hookean material law was selected, with the following strain energy
density function:

Ψ = 1
2
𝜇
(

tr
[
Ĉ
]
− 3

)
+ 1

2
𝜅(log [J])2 (45)

In (45), Ĉ = J−
2
3 C and C = FTF with 𝜅 = 400889.806 and

𝜇 = 80.194 (consistent units). In this example, compressive strains and
high strain gradients are combined and this poses severe constraints on
the element formulation to use. Geometry, constitutive properties and
boundary conditions for this example are shown in Fig. 7. One quar-
ter of the system is discretized due to the presence of two symmetry
planes. In addition, the upper surface is prescribed in the x and z direc-
tions. Relevant properties and dimensions for this problem are shown in
Fig. 7. We also show the deformed configurations and the contour plot
for the normal stress S̃0

22. The stress is contour plot is extremely smooth,
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Fig. 9. Drilled plate under tension. Contour plots and loading region comparison.

even in the highly deformed region, confirming the effectiveness of our
formulation. Comparing with the results of Masud and Truster [32], our
stress contour plots are smoother. Six different meshes are employed,
with 2, 4,6, 8, 10 and 12 elements per edge. Results are shown in Fig. 8
for these meshes and also our implementation of MINI element.

Mesh convergence is excellent, as from 4 elements per edge up all
curves coincide. Overall, the results by Caylak and Mahnken [17], using
the reduced integration hexahedron Q1R and 8 elements per edge, coin-
cide with our own, as Fig. 8 shows. However, we can use 4 elements
per edge and still obtain similar results.

4.4. Drilled plate under tension

We now consider an elastic perfectly-plastic benchmark which was
employed by Castellazzi, Artioli and Krysl [16] to validate their nodally
integrated (element patch-based) NICE-T4 element. This is especially
relevant, since their nodally integrated elements entail fewer degrees-
of-freedom than the present element but produce denser Jacobian
matrices. This can be observed in Fig. 2 in Ref. [16]. Krysl’s group ele-
ments exhibit high performance in demanding problems, such as incom-
pressible and bending-dominated problems. The problem is depicted in
Fig. 9 and agrees with the data reported in Ref. [16]. The data also cor-
responds to the original problem by Zienkiewicz, Vallippan and King
[52], who show results for the plastic region in the perfectly-plastic
case. Contour plots for 𝜀p and S̃0

22 are shown, as well as a comparison of
the plasticized region near the hole are also shown in Fig. 9. There are
differences in the domain, when compared with the plot reported by
Zienkiewicz, Vallippan and King. Both contour plots are very smooth,
a consequence of the use of continuous stress interpolation. In terms

of reaction-displacement results, we compare our element and imple-
mentation of MINI and T4 elements with that of Castellazzi, Artioli and
Krysl. Two meshes are employed (respectively 142 elements and 2998
elements). We can observe in Fig. 10a that the new element perfor-
mance for the coarse mesh is on-par with a much finer mesh by Castel-
lazzi, Artioli and Krysl. Both MINI and T4 show stiffer results with the
coarse mesh. Refining the mesh dilutes the advantage of our present
formulation, however it still can be confirmed in Fig. 10b.

5. Conclusions

By using the Hellinger-Reissner variational principle (cf [8]), we
proposed a stress and displacement-based element for finite strains
which can be viewed as an extension of the linear formulation by Dun-
ham and Pister [20] for finite strains. A simple inf-sup numerical test is
performed and an horizontal asymptote was obtained, indicating con-
vergence for this formulation.

Compared with alternatives such as the stabilized nodal integra-
tion [14,19,21,29,38] and smoothed edges [23,37] and faces [33], no
densitification occurs (cf. Fig. 8 of [21]) and the conventional imple-
mentation is retained. In contrast with formulations based on bubbles
[4,31,41], bending performance is greatly improved. Our formulation
follows the traditional finite element assembling process, while excel-
lent results are obtained in bending and incompressibility situations.
Under this perspective, it is similar in approach to the nodal rotation
technique by Nodargi et al. [35]. Computational cost is significant, but
convergence curves show excellent behavior.

Compared with F formulations for hexahedra (cf [45]), crossed-
mesh configurations typically outperform that formulation, even in
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Fig. 10. Drilled plate under tension. Comparison with MINI, T4 and NICE-T4 elements for two distinct meshes.

bending-dominated situations. In addition, compared with hexahedra,
tetrahedra have the advantage of being suitable for fracture problems
and other non-smooth problems.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.finel.2019.07.003.
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