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A B S T R A C T

Industrial heat is important in Europe’s energy consumption and dominated by fossil fuels. Therefore, promoting
renewables in this sector is vital to move Europe towards a low-carbon economy. Since solid biomass is the only
renewable with significant industrial use, it is crucial to know the status of its present use and to analyze the
prospects of its future utilization by the industry. The current European industrial energy consumption is re-
viewed, with a focus on bioheat. The available solid biomass feedstock and energy conversion alternatives are
examined, along with future perspectives for further biomass consumption in several industrial sectors. Defining
global strategies for industrial heat is not easy because of the diversity of industrial processes. Combustion
dominates industrial heat production from biomass, but gasification systems are already commercially available.
Combined heat and power production is mainly based on steam cycles. The full temperature range required by
industry can be attained with biomass efficiently. The use of biomass-fired systems is generalized in the in-
dustries that generate solid biomass by-products, but the implementation of additional, more efficient and al-
ternative biomass uses should be sought. Biomass penetration into sectors with no own biomass resources is
more difficult. Major barriers are the high investment costs of biomass systems, strong competition with fossil
fuels, and feedstock availability and security of supply. Although Europe’s solid biomass production and con-
sumption are almost balanced, the pressure on resources is increasing. Therefore, it is important that resources
are monitored and that sustainability is taken into consideration.

1. Introduction

The industrial sector accounted for 29% of the global total final
energy consumption, having seen a 44% increase in the energy use of
fossil fuels between 1973 and 2016 [1]. Despite the relatively higher
increase in the consumption of waste and renewables (128% rise in the
same period), fossil fuels still dominate the world’s final energy con-
sumption in industry, and coal is the most used energy source (30%
share in 2016, with a growth of 132% from 1973 to 2016).

In the European Union (EU), the industrial energy consumption also
plays a significant role (10929 PJ, 23% of the EU's final energy con-
sumption in 2017 [2]), but contrary to what has been globally hap-
pening in the world, it has been decreasing because of structural
changes in the economy and efficiency improvements. Presently, most
of the demand for energy in the EU28 industry is met through the direct
use of fossil fuels and electricity, which, for its part, continues to sig-
nificantly rely on fossil fuels [2]. The share of the direct use of

renewable energy sources (RES) for the EU28 industrial final energy
consumption was small (9% in 2017) and biomass was the only RES
with significant use (93% of the RES used in the industry was solid
biomass, 3% municipal waste and 2% biogas). This renewable fuel of-
fers the possibility, sometimes through pre-processing technologies, of
greater industrial uptake of clean, low-carbon technologies, and is
especially well suited for heat and combined heat and power (CHP)
production and therefore for industrial use (around two thirds of the
final energy demand of the EU28 industry is in the form of heat [3,4]).
However, several barriers hamper an increased use of biomass by the
industry, and although many bioenergy projects are technically fea-
sible, they are not implemented [5].

With the current policies, the EU will not reach the proposed 80%
reduction in its domestic greenhouse gas (GHG) emissions by 2050
compared to 1990 [6]. New policies and major investments, both pri-
vate and public, are needed in the next decades to achieve this goal, and
all sectors (electricity, heat and transport) need to contribute. In this
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context, market-based mechanisms and subsidies are important in-
struments; however, today’s reality shows that subsidies are not di-
rected to heat: In the world, around 80% of the subsidies to renewables
are directed to the power sector and only 1% to heat [7].

Promoting the deployment of RES for heat production, including in
industry, is important to achieving the EU28 goal of moving towards a
competitive, sustainable low-carbon economy. There is a large un-
tapped potential to increase the penetration of RES, biomass included,
in industry. To realize this potential, a clear picture of the current in-
dustrial energy use is required, along with an assessment of the en-
vironmental and economic performance of the current and future uti-
lization of RES. This review focuses on solid biomass, because it is the
foremost RES in industry and is expected to remain in that position in
the future [8,9]. The analysis focuses on heating, but also considers
CHP, because of its importance in several of the EU28 manufacturing
sectors. The conversion of biomass into electricity alone is not con-
sidered in this review.

Some studies analyze the potential for renewable energy in in-
dustrial applications [9–12], or the technologies, economics or policy
instruments for driving a shift to a sustainable industry [13–18]. When
the studies focus on the industrial use of biomass, they usually address
specific industries [19–24] or technologies [8,25]. To the authors’ best
knowledge, none of the existing papers analyzes the current status of
biomass energy consumption by industry and the perspectives for its
future use, together with a review of the technologies available for its
conversion and of the feedstock production, consumption and char-
acteristics. This work combines these issues into a single review, pro-
viding the reader with an integrated, synthesized overview and al-
lowing a comprehensive understanding of the perspectives for
additional use of biomass by industry. Although this is done in a Eur-
opean context, several topics covered in this paper are also relevant
when assessing the potential of further industrial biomass use in other
regions. Additionally, the deployment of further biomass by the EU28
industry is likely to be linked to imports and to affect other world

regions that export biomass, increasing the pressure on their natural
resources.

2. Energy consumption by the EU28 industry

In the EU industry, there was a 24% decrease of the final energy
consumption from 1990 to 2017 (Fig. 1). The importance of the sector
in EU28 final energy consumption has also been declining, from a 34%
share in 1990 to 23% in 2017. There was a decrease in the industrial
final energy consumption of all fossil fuels and derived heat, with a
marked decrease for solid fuels (by 70%) and oil (by 56%), and a less
pronounced decrease for gaseous fuels (by 22%) and derived heat (by
20%). Inversely, the consumption of RES and non-renewable wastes
(municipal and industrial) has been steadily increasing (Fig. 1). The
former increased by 76%, while the latter increased by more than four
times. The industrial electricity consumption presents a non-monotonic
behavior, with identical consumption in 2017 and 1990.

The biggest share (84%) of the EU28 final energy consumption in
industry in 2017 was met through the direct use of fossil fuels, such as
natural gas, coal and oil, and electricity, which still greatly relies on
fossil fuels (mainly coal and natural gas). Natural gas and electricity are
the most commonly used energy carriers, with more than two thirds of
the final energy consumption (Fig. 2). RES had a relatively small ex-
pression.

2.1. Heat demand

Unlike electricity or transport fuels, heat is rarely sold off-site, not
requiring metering, which results in a generalized lack of heat demand
data [26]. The Eurostat statistics do not disaggregate the energy con-
sumed in industry into its end-uses (e.g., process heat, power), and most
of the EU countries do not provide national end-use balances for in-
dustry. The inexistence of official data that allows understanding the
structure of heat demand in industry hinders demand-oriented energy
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Fig. 1. Temporal evolution of the final energy consumption in industry by energy carrier for EU28 from 1990 to 2017 (Data source: [2]).
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strategies. The European Commission is aware of the importance of
having more knowledge on the heating and cooling sector and of its
important contribution to the EU’s energy and climate objectives.
Consequently, recent efforts have been made to characterize and define
strategies for this sector (e.g., Ref. [27]).

In EU28, most of the energy consumed in industry is in the form of
heat. Survey methods were combined with bottom-up models by Ref.
[3] to determine the energy demand of industrial end-users and es-
tablish a full end-use energy balance by country. It was concluded that
the share of heating in the final energy demand of the EU28 industry in
2012 was 71%, of which 60% for process heating and 11% for space
heating [3] (Fig. 3). Another study estimated that eight important and
energy-intensive sectors of the EU28 industry used 66% of their final
energy for process heating in 2013 [4].

The industrial processes and energy conversion technologies used in
the several manufacturing sectors (and also sub-sectors) are very di-
verse, and so is the share of heat consumption. Heating takes the largest
share in the most energy-intensive industrial sectors (Fig. 4). In EU28,
84% of the process heat is consumed in five industrial sectors, specifi-
cally in the iron and steel; chemical and petrochemical; non-metallic

minerals; pulp, paper and printing; and food, beverages and tobacco
industries. The promotion of energy efficiency and of the deployment of
RES, namely biomass, in these manufacturing sectors has a big influ-
ence on the overall reduction of the energy consumption and on the
environmental impact of the EU28 industry.

In 2012, 76% of the process heat demand was met through the di-
rect use of fossil fuels (Fig. 5). Natural gas alone was responsible for
36% of the industrial final energy consumption, and was mainly used to
produce heat above 500 °C. Coal, the second most used fuel for process
heat production, was almost entirely utilized in the generation of high
temperature heat (like “other fossil fuels”). Biomass was the fourth most
used fuel with a share of 11%. Even though biomass can be used to
produce high temperature heat, in 2012 it was mainly utilized to supply
heat at temperatures below 200 °C. The deployment of other RES is
minimal in the EU28 industry.

Most of the process heat demand in EU28 was above 500 °C (Fig. 5).
The same conclusion was drawn by Ref. [29] for 2015. The iron and
steel, chemical and petrochemical, and non-metallic mineral industries
are important consumers of heat at high temperatures. High tempera-
ture heat is usually provided by direct heat produced by industrial
furnaces [3]. To deliver heat at lower temperatures, individual boilers
and CHP units are used [29]. Although only 38% of the heat delivered
to the EU28 industry is characterized by temperatures below 200 °C,
important energy consuming sectors, such as the pulp, paper and
printing; and food, beverages and tobacco are dominated by low tem-
perature industrial processes.

When looking at the geographical distribution of process heat con-
sumption in EU28, Germany has the highest consumption, followed by
Italy, the United Kingdom, France and Spain [3]. These five countries
accounted for almost 60% of EU28’s process heat in 2012 [28], and also
have the biggest share of industrial final energy consumption (57%)
[2]. Natural gas is relevant for process heat production in most EU
countries (Cyprus, Finland, Iceland, Malta and Sweden are exceptions).
Coal is particularly significant in eastern European countries and in
countries with an important iron and steel industry. As far as RES are
concerned, biomass has particular relevance for process heat produc-
tion in Sweden, Latvia, Finland and Portugal.

2.2. Solid biomass

Eurostat reports biomass final energy consumption in the EU28 in-
dustry, but does not disaggregate this consumption into end-use.
Looking at the estimates of Ref. [3] for EU28 and 2012, all industrial
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solid biomass final energy was directed to process heat production
(none for cooling, space heating or other uses). Also Ref. [29] con-
cluded that in 2015, EU28 industry used almost virtually all biomass for
process heat. Assuming that all biomass is used for process heating and
using Eurostat statistics [2], Fig. 6 presents the solid biomass final en-
ergy consumption for process heat in different EU28 industrial sectors
in 2017.

In 2017, the EU industry final energy consumption of solid biomass
was around 898 PJ [2]. The EU28 industrial sectors that consumed the
most solid biomass for process heat are those that generated biomass
residues, such as the pulp, paper and printing; and the wood and wood
products industries, which were responsible for 85% of the industrial
biomass final energy consumption. Of some relevance is the non-me-
tallic mineral sector, which, despite not generating biomass residues,
accounted for 6% of the EU28 biomass consumption for process heat.

Some industrial establishments are autoproducers and produce
electricity and heat, which is in part delivered to users outside the
plant. This is common, for example, in the pulp and paper industry, and
in the production of wood-based panels, where solid biomass is often
used in CHP systems [30–34].

3. Feedstock

Generically, solid biomass for energy purposes can be obtained
from: residual organic matter extracted from forests and uncultivated
lands; energy crops; wastes and residues produced in industrial, agri-
cultural and forestry activities; and municipal wastes. It is mostly used
directly by the industry (e.g., wood chips, bark or nut shells), but up-
graded solid biofuels are also used (e.g., pellets, charcoal or torrefied
biomass). One of the reasons for the use of upgraded biomass is effi-
ciency. In some industries (e.g., iron and steel) it is not efficient to use
raw biomass; therefore it suffers a thermal treatment that increases its
energy density. Another reason for biomass upgrading is that it is easier
and cheaper to transport and store biomass that was previously densi-
fied, which is particularly important when biomass is consumed in a
place other than that of its generation.

The most recognized technologies available to convert biomass into
upgraded solid biofuels are pelletization, pyrolysis and torrefaction
[35]. The first two are mature and commercially available, while tor-
refaction entered the commercial demonstration phase and is on the
verge of commercialization [36]. Reviews on solid biomass upgrading
can be found, for example, in Refs. [36–41]. Solid biomass can also be
converted to liquid or gaseous biofuels [42–45], which however are not
often used in the processing industry today [2].

3.1. Current production and consumption of solid biomass

In EU28, the energy production from solid biomass increased by
134% from 1990 to 2017 (Fig. 7). In 2017, the primary energy pro-
duction from solid biomass (excluding charcoal) was 3986 PJ, which
corresponded to 12.5% of the total primary energy production and 69%
of the biomass primary energy production [2].

The largest contribution for solid biomass fuels comes from the
woody biomass. Forest products are used for many different purposes,
energy being only one of them. 78% of the EU28 roundwood produc-
tion in 2017 was used in wood-based industries for sawnwood and
veneers; or for pulp and paper production, while the remaining 22%
was used as fuelwood [2]. The share of primary wood products used for
energy may be underestimated in some countries, because of existing
informal ways of getting the biomass.

To date, pellets are the upgraded biofuel mostly used in Europe,
although with a relatively small expression. In 2016, they represented
9% of the total solid biomass energy consumed in EU28, corresponding
to around 21.7Mt [46]. The largest producers of wood pellets are
Germany, Sweden and Latvia, but France, Estonia, Austria, Portugal,
Poland, Romania and the Czech Republic play also a relevant role [2].
The structure of the wood energy markets has changed with the growth
of solid biomass use for energy purposes [47,48]. Today, there are
several established markets for the trade of solid biofuels. Particularly
relevant for industrial applications are wood chips and refined fuels
such as wood pellets and wood briquettes [49–51]. Industrial pellet
[52] and charcoal [53] markets depend on imports outside the EU.

In 2017, 22% of the EU28 solid biomass energy corresponded to
final energy consumption in the industry (Fig. 8). Most of the solid
biomass was used in households and by the energy sector in main ac-
tivity producers. Autoproducers in industry also consumed a significant
part of the EU28 biomass [2].

3.2. Potential production and consumption of solid biomass

EU28 is presently almost self-sufficient in terms of solid bioenergy.
However, the region has been a net importer in the last decades, passing
from a dependency rate of 0.5% in 1996 to 4.8% in 2017 [2]. The
expected increase in solid biomass consumption both from energy and
non-energy markets and a limited capacity for sustainable domestic
biomass production raises concerns about the future biomass avail-
ability in EU28. Many studies are focused on the future availability of
sustainable biomass in Europe (e.g., Refs. [54–58]). Other focus on the
different possible uses of biomass and their future implications either in
terms of energy-demand, economics and/or environment (e.g., Refs.
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[59–62]).
According to Ref. [58], in Europe in 2030, the total energy available

from forest biomass alone will vary between 119 and 186 Mtoe. These
values are above the today’s gross inland consumption of solid biomass
and the projected total solid biomass primary demand to meet the 2020
targets defined in the National Renewable Energy Action Plans pro-
jections (118 Mtoe [57]). However, they are not above the expected
demand in 2030 [63]. A significant future contribution to solid biomass
availability could come from agriculture and forest energy crops. Ref.
[58] estimate that in 2030 the European potential of agricultural bio-
mass production will remain untapped, concluding that the demand for
bioenergy will be clearly lower than the potential. Several other studies
(e.g., Refs. [24,54–57,64–68]) quantify the biomass that can be pro-
duced in Europe. The range of estimates is wide and results are primary
influenced by the approaches and methodologies used, which are not
harmonized [68–74]. Relevant sources of difference between the stu-
dies are: type of potential (e.g., theoretical, technical, economic and
sustainable) [68,70–75] and of biomass (e.g., agriculture and forest
residues, energy crops) considered [68–71], spatial resolution
[71,73,75], data used (e.g., crop yields, biophysical data, categories of
land use, other non-energy indicators) [69–71,73,74,76,77] and time-
frame [69,71,77].

Most of the wood used for energy purposes in Europe originates
from uncertified forests [78]. If sustainability criteria are imposed to
solid biofuels, the future expected availability of biomass that can be
used by the industry could lower. So far, EU countries rely on their
sustainable forest management rules and some on additional sustain-
ability criteria to determine if projects are eligible for subsidies [79].
However, the European Commission has already considered binding
sustainability criteria for solid biomass in its proposal for a recast of the
Directive on the promotion of the use of energy from renewables [80].
The impacts of different policy options for EU action on bioenergy
sustainability are discussed by Ref. [58].

Different energy and non-energy markets compete for biomass. This
competition could change the amount of biomass available to the in-
dustry. According to Ref. [11], if the current transport policy is main-
tained, the industry will have limited access to biomass resources and a
further electrification of the industrial sector will be promoted (Ref.
[81] discusses the implications of the electrification of key energy-in-
tensive industrial sectors). Apart from its use for biofuel and electricity

production, biomass gains increasing interest as feedstock for the che-
mical industry, since it can replace fossil fuels for the production of bulk
chemicals (e.g., acetic acid, ethylene, methanol, ethanol or acetone)
[82]. The uncertainties in sustainable biomass supply and the existence
of many markets competing for a limited resource make planning dif-
ficult [10], and thus biomass resources should be monitored in relation
to their demand, taking into account sustainability constrains [55].

The amount of biomass that can be dedicated to the world industry
by 2050 was estimated by Ref. [11] based on a sustainable biomass
supply projection of 150 EJ/a and the assumption that no more than 1/
3 of the biomass is directed to industry. In another study, Ref. [61]
estimated the future global energy use of biomass and concluded that
secondary bioenergy demand is driven by the building and transport
sectors, while industry and non-energy uses will grow moderately.
According to this study, the most effective use of bioenergy for emission
reduction is in the electricity sector. The study of Ref. [62] compares
the use of biomass for the production of liquid biofuels, heat and power,
and biomaterials and, differently from Ref. [61], concludes that none of
the pathways has a decisive advantage as far as GHG emissions are
concerned. Several other studies discuss possible future developments
of the consumption of biomass (e.g., [59,60,83–90]), but show diver-
ging pictures. Moreover, not all consider its energy use by the industry.

A relevant factor for biomass utilization by the industry is its price.
There is a large variation of prices according to the energy system lo-
cation, or biomass type, quality and quantity acquired. Additionally,
predicting future costs of biomass is challenging and dependent on
many factors such as local supply chains, resource availability, sus-
tainability criteria, policy choices or competing uses for biomass.
Currently, different entities such as Argusmedia, FOEX and Propellets
Austria report several commercial price indexes, which cover different
European regions and fuels (e.g., wood pellets, wood chips, forest
biomass residues, saw logs and birch logs). As far as future biomass
prices are concerned, and just to give some examples, Ref. [56] estimate
that in Europe in 2020 the price of farm gate domestic solid biomass
ranges from 1.0 to 11.8 €/GJ (respectively, wood processing residues
and energy crops). Other study states that, in a low energy price sce-
nario in OECD Europe in 2030, the prices of biomass waste and biomass
from energy plantations are 5 and 13 USD/GJ, respectively [9].
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3.3. Solid biomass by member state

The previous section refers to the EU as a unique entity; however
the reality of the different member states differs in the potential of solid
biomass, its use and policies.

In 2017, the different EU countries consumed solid biomass for
energy in different ways (Fig. 9). Many used most of it in the residential
sector (in Malta, Croatia, Romania and Greece more than 80%), while
others for electricity production in main activity producers (Denmark
and Estonia more than 50%). Ireland was the only country that used
more than half of its solid biomass in industry (53%), but in Finland,
Sweden, Slovakia and Portugal the share of this sector was above 40%.
On the other extreme, Malta, Estonia, Croatia and Italy consumed less
than 5% of its biomass in industry.

In 2017 (Fig. 10), the largest EU28 producer of energy from solid
biomass was Germany (503 PJ), followed by France, Sweden, Finland
and Italy (328–452 PJ each). These five countries accounted for 51.2%
of the total solid biomass primary energy production of the EU28. Po-
land, Spain, Austria, Romania and the United Kingdom had a share of
25.3%, and the Czech Republic, Portugal, Hungary and Latvia 10.5%.
The remaining fourteen countries have productions lower than 75 PJ.
Most countries are net importers of solid biomass for energy. Malta
imported all solid biomass it consumed for energy, but the quantity was
small. The second most import-dependent country was Denmark, whose
primary production accounted for 46.3% of the gross inland con-
sumption. The country with the largest imports was the United
Kingdom and the largest exporters Latvia and Germany [2].

The availability of woody biomass for energy in 2012 by member
state was calculated, for example, by Ref. [24] based on Ref. [91]. The
countries with largest (> 1100 PJ) availability are Germany, Sweden
and France and those with the lowest Luxembourg and the Netherlands
(< 20PJ, excluding Cyprus and Malta that do not produce woody
biomass for energy). Five of the remaining countries present values
below 100 PJ (Ireland, Denmark, Greece, Belgium and Croatia), six
between 100 and 200 PJ (Slovenia, Bulgaria, Estonia, Lithuania, Slo-
vakia and Hungary), eight between 200 and 400 PJ (Latvia, Portugal,
the Czech Republic, the United Kingdom, Spain, Italy, Austria and
Romania) and two between 500 and 900 PJ (Poland and Finland). The
countries with the largest production are also the largest consumers
(Germany, France, Sweden, Italy, Finland, United Kingdom, Poland,
Spain, Austria and Romania).

To express the possibility of additional local supply of solid biomass
for process heat generation by member state, Fig. 11 presents the ratio
of the biomass potentials calculated by Ref. [24] and the biomass gross
inland consumption reported by Ref. [2] for 2017. Important potential
exists in Slovenia, Slovakia, Latvia, Estonia, Ireland, Sweden, Lux-
embourg, Romania, Portugal, France, Bulgaria, Finland, Lithuania, the
Czech Republic, Poland, Germany and Austria.

3.4. Biomass characterization for energy use

Solid biomass for energy purposes presents favorable characteristics
like renewability, carbon-neutrality, versatility, high reactivity, high
specific surface area and, for some types of biomass, low sulphur and

Fig. 9. Gross inland consumption and share of the different end-uses of solid biomass for energy for EU28 in 2017. The diameters of the pies are proportional to the
gross inland consumption of solid biomass of the member states (Data source: [2]).
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Fig. 10. Primary production, gross inland consumption, imports and exports of energy from solid biomass for EU28 in 2017 (Data source: [2]).

Fig. 11. Ratio between biomass potentials and biomass gross inland consumption for EU28 (Data source: [2,24]).

I. Malico, et al. Renewable and Sustainable Energy Reviews 112 (2019) 960–977

967



ash contents, local availability and low cost. However, it also presents
the following disadvantages when compared to fossil fuels: low heating
value, low bulk density, poor grindability, low energy density and high
moisture content. These disadvantages can be circumvented by the
upgrading of biomass. Among the available upgraded biofuels, charcoal
has the highest percentage of fixed carbon and heating value [35].

To use solid biomass as a fuel, one needs to know and understand its
physical, chemical and combustion properties; the last are also depen-
dent on the oxidizer and process. The properties considered the most
important in terms of biomass thermochemical conversion are: ele-
mental composition, ash content, volatile matter content, moisture
content, heating value and bulk density [92]. Table 1 presents a com-
pilation of properties for some relevant solid biomass fuels taken from
an online database maintained by ECN [93]. The properties of a
medium rank coal are also shown, since biomass has high potential for
co-firing with coal and/or for its substitution. The fuels presented in
Table 1 were chosen to illustrate what is written below.

Typically, the most abundant element of dry solid biomass is carbon
(30–60wt%), followed by oxygen and hydrogen [94]. Nitrogen, sul-
phur and chlorine are also found, usually in quantities less than 1wt%
[94], and despite their small concentrations, they are important be-
cause of the related air pollutant emissions. Inorganic elements are also
found in solid biomass: wood (illustrated in Table 1 by poplar, willow,
pine or generically wood) contains low ash contents (from less than 1 to
3 wt%), while some agricultural materials (in Table 1 wheat straw and
rice hulls) high ash content (20 wt% for straw and husks) [95]. The
composition and total ash content of biomass influence the design and
operation of combustion systems because of the contribution of some
elements to ash fouling and slagging [96–98], while others to corrosion
and pollution [95,99].

Generally, raw solid biomass (first 6 fuels in Table 1) has high vo-
latile matter content and relatively low carbon content (compared to
coal) [99], which leads to relevant advantages of biomass fuels for
thermochemical energy conversion [100]. The high volatile matter
content is responsible for the high reactive nature of solid biomass fuels
[100] and makes biomass a good potential feedstock for, for example,
indirect gasification processes [99] and pulverized combustion [101].
However, the comparatively high oxygen content contributes to low
heating values, which in conjunction with typically low bulk densities
leads to low energy densities. The bulk density of solid biomass is an
important parameter because it influences the necessary storage vo-
lume and the process control of the fuel supply systems [102]. The bulk
density range of solid biomass is wide, from about 20 kg/m3 for loose
materials [103] to around 900 kg/m3 for solid wood [92].

Another disadvantage of raw biomass can be a high moisture con-
tent, which leads to a decrease in the heating value and combustion
efficiency. Most biomass fuels cannot sustain combustion with moisture

contents above around 65% and, when burning fuels with a moisture
content above 50–55%, most combustors require a supplemental fuel
and may emit products of incomplete combustion, like CO [94]. Besides
influencing the combustion behavior and the adiabatic flame tem-
perature, the moisture content of biomass also affects the volume of flue
gas produced per unit energy, and the size of the combustion chambers
[102]. Wet biomass fuels need longer residence time, which result in
larger furnaces. The moisture content of biomass fuels shows extreme
variations, ranging from less than 10% for cereal grain straw for up to
50–70% for forest residues [92].

The low heating value and bulk density of biomass can be improved
through thermal treatment and densification. Densification, such as
pelletization or briquetting, increases the bulk density of biomass to
above 700 kg/m3 [103]. Thermal treatments make biomass more si-
milar to coal and globally more attractive for thermochemical conver-
sion (this is the case of charcoal and torrefied biomass; see Table 1).
Torrefaction, a mild thermal treatment, results in a partially carbonized
fuel with lower volatile matter content and moisture than the original
feedstock. Whereas, charcoal production, which involves higher tem-
peratures, results in a feedstock with much lower volatile matter and
moisture than the initial biomass. They can be combined with densifi-
cation, improving significantly also the bulk density of biomass fuels
[104]. Another biomass property that can be improved by thermal
treatment is grindability [105–108], which is important to reduce the
energy consumption required for grinding (because of their fibrous
nature, most biomass materials are more difficult to grind than coal
[105,109]).

4. Biomass-based heat and CHP production

Biomass can be converted into bioenergy by thermochemical, bio-
logical and chemical processes. The thermochemical conversion of
biomass is the most common [109] and well suited for solid biomass
conversion into energy. There are mainly five thermochemical paths
available for heat and CHP production: combustion, gasification, pyr-
olysis, hydrothermal processing and hydrolysis to sugars (Fig. 12).

Fast pyrolysis is mostly suited for the production of bio-oil [110].
However, the cost, corrosiveness and instability during storage have
impeded its commercial utilization [111] (In Europe only a few com-
mercial pyrolysis plants are in operation [112]). Bio-oil can also be
produced by hydrothermal processing of biomass, especially of wet
feedstocks such as grain wet-milling by-products [113]. However, this
technology is still in a demonstration phase [60,113,114]. Thermal
depolymerization of biomass followed by catalytic upgrading of the
sugar to fuel molecules is still under-investigation [111]. Slow pyrolysis
is traditionally used to produce charcoal, which does not have a sig-
nificant industrial use in Europe [2]. As far as gasification is concerned,

Table 1
Solid biomass fuel properties (Data source: [93]).

Poplar
wood

Willow
wood

Wood chips
(hybrid poplar)

Bark
(pine)

Wheat
straw

Rice hulls Pellets
(wood)

Wood torrefied at
250-290 °C

Char (willow,
550 °C)

Bituminous coal

Proximate Analysis (wt% dry)
Fixed carbon 13.71 15.01 20.30 26.60 17.71 37.83 17.58 24.68 82.20 56.18
Volatile matter 85.07 83.40 77.90 71.80 75.27 38.80 82.20 72.20 11.60 34.23
Ash 1.22 1.59 1.80 1.60 7.02 23.37 0.22 3.12 6.20 9.59
Ultimate Analysis (wt% dry)
Carbon 49.42 50.19 44.00 53.90 44.92 37.86 47.30 53.00 81.70 74.14
Hydrogen 6.00 5.90 5.50 5.80 5.46 4.75 6.76 5.50 2.40 4.79
Oxygen 43.07 42.22 47.70 38.26 41.77 33.49 46.02 37.87 8.60 9.85
Nitrogen 0.23 0.10 1.00 0.40 0.44 0.23 0.15 0.45 0.40 1.27
Sulphur 0.05 - 0.00 0.03 0.16 0.31 0.01 0.04 0.04 0.36
Moisture content (wt%,

wet basis, as received)
4.80 43.50 9.20 5.00 8.15 8.00 7.00 8.00 0.10 3.00

Higher Heating Value (MJ/
kg) (dry)

19.50 18.56 16.40 21.37 17.94 13.3 19.32 20.70 34.90 30.13
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the technology is still in an early commercial stage [60], but is currently
used, to a small extent, for electricity or CHP production [99]. From the
thermochemical paths presented in Fig. 12, combustion is the most
widely used and mature [115,116] (over 90% of the bioenergy gen-
eration relies on combustion [109]).

The above mentioned technologies are primary conversion tech-
nologies, which convert solid biomass into heat or fuels. When heat is
generated by combustion, it can be used directly or, alternatively,
converted into electricity. For the latter, secondary energy conversion
technologies are needed. In this process, not only the electricity gen-
erated, but also the rejected heat can be used. There are various sec-
ondary conversion technologies available (steam turbines, steam en-
gines, organic Rankine cycles (ORC), Stirling engines, internal
combustion engines (ICE), gas turbines and micro-turbines), and their
use depends also on the primary conversion technologies.

4.1. Heat production technologies

4.1.1. Combustion
Typical process heat generators are boilers, dryers, kilns, furnaces

and ovens. The full range of temperatures required by industrial pro-
cesses can be covered by different types of biomass [10]. Some in-
dustrial processes require continuous heating of large amounts of ma-
terial, others require precise heating of small batches. Combustion
technologies span, therefore, a wide range of scales, from a few kilowatt
to multi-megawatt. The choice of the combustion system depends not
only on the energy demand, but also on the fuel characteristics, cost and
performance of technologies and legislation (for a detailed analysis see
for example Refs. [103,109,117–119]).

4.1.1.1. Direct heating. Certain industrial processes require high
temperatures and specific combustion equipment that transfers heat
directly from the flue gases to the process [8]. Direct heating is also
used to produce low or medium temperature heat (e.g., in the cork
industry [120]). The reader is directed to the following references for a
description of the details of specific combustion equipment used in the
following industrial sectors: iron and steel [35,121], chemical and
petrochemical [122–126], non-metallic minerals [127–130], pulp and
paper [33], food, beverage and tobacco [131], and non-ferrous metals
[132].

An option for the production of high temperature heat with biomass
is co-firing with coal (simultaneous burning of these two fuels). It is
potentially applied in existing coal-fired facilities with little modifica-
tions and better environmental performance [133,134]. Although it is
mostly used for the generation of electricity, it is also adopted by in-
dustrial users (e.g., in the cement industry [135]), expanding the in-
dustrial use of biomass [103]. Co-firing of biomass with coal is a low
cost strategy to ensure reduction in net CO2, SOx, and often NOx

emissions [136]. When compared to dedicated biomass facilities, co-
firing can increase the efficiency with no need for a continuous supply
of biomass [137].

4.1.1.2. Indirect heating. Low and medium temperature heat is usually
transferred to the process through a heat delivery medium (typically
steam) [8]. Even though biomass is not widely used for process steam
production, there is a large potential to produce low and medium
temperature steam (< 400 °C) from biomass [9]. Combustion boilers
are the most used technology for the conversion of solid biomass into
thermal energy in the majority of the industries [118]. The technologies

Fig. 12. Thermochemical paths for production of fuels, heat and CHP (solid fill indicates the technologies that are in a commercial stage and generally used).
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usually used for the systems with the lowest capacities (< 20 MWth) are
fixed bed boilers and for the highest fluidized bed boilers (> 20–30
MWth) [8]. Biomass pulverized combustion can also be utilized, as in
the chipboard industry [109], but this is not so common, and the
technology is usually used in thermal power stations for electricity
generation [101].

Depending on the properties of the biomass, the fuel feeding tech-
nique and the type of grate used, fixed bed combustion systems have
different configurations. Examples of mature technologies are sta-
tionary, reciprocating, travelling or vibrating grate firing furnaces,
underfeed stoker or cigar furnaces (a description of these technologies
can be found in Refs. [109,138–140]).

Fluidized bed combustion relies on two mature technologies: bub-
bling and circulating fluidized bed combustion [141,142]. Both systems
operate at atmospheric pressures, but pressurized versions that operate
at higher pressures exist. The current research is not focused on pres-
surized fluidized bed combustion [143].

Typically, fixed bed boilers are used for smaller capacities than
fluidized bed boilers, present lower costs and lower efficiencies. The
efficiency of the conversion system is essential to determine the per-
formance of bioenergy systems. Fuel type and excess air have a decisive
effect on efficiency (fuels with low heating values and high moisture
content can result in efficiencies 25% lower than fuels having low
moisture content and high energy content and each 15% reduction in
excess air can result in around 1% increase in efficiency [144]).

The costs of biomass combustion systems for the production of heat
are quite variable depending on the conversion technology and type of
emission control equipment used, feedstock storage capacity and
whether or not pre-processing of biomass occurs (e.g., size or moisture
reduction). Other factors that can influence the total cost of the biomass
systems are related to piping, electrical and civil works [145–147].
According to Ref. [148], the investment costs in wood-fired heating
systems is in the range of 323-827 USD/kWth and the annual operating
and maintenance costs (excluding fuel costs) vary between 69 and 127
USD/kWth. Fig. 13 presents the compilation of specific investment costs
of biomass heating systems versus installed capacity. The data refers to
different locations and years and is presented in nominal values (i.e.,
the original data was used, only converted to Euros when needed). The
values are illustrative, but clearly indicate that higher system capacities
lead to lower specific investments. We have compared nominal with
real costs (calculated with consumer price [2] and CEPCI [149] in-
dexes) and basically the same conclusions can be drawn.

4.1.2. Gasification
Gasification is used to convert biomass into a low molecular weight

gas combustible mixture (syngas), which can then be burned. Even
though coal was the first fuel to be gasified, biomass is more readily
gasified than coal because of its higher volatile matter content [111]. A
review on biomass gasification can be found, for example, in Refs.
[99,116,154–157].

Solid biomass gasification in a closed-coupled biomass gasification-
boiler is a technology commercially available [150]. Two types of ga-
sifiers exist: directly and indirectly heated gasifiers. They differ in the
way heat is provided to the gasification reactions. In the former, partial
oxidation is promoted to generate the required heat, in the latter heat is
transferred by a heat exchanger. The calorific value of the syngas is
higher in indirectly heated gasifiers (typically 18–20 MJ/Nm3) com-
pared to directly heated gasifiers (typically 5–14 MJ/Nm3) [99].

In directly heated gasifiers, air is the most used oxidant, but dif-
ferent combinations of nitrogen, steam and oxygen have also been used
[99]. As in combustion, gasification can occur in fixed or fluidized bed
reactors. Entrained-flow reactors were also developed, but have limited
applicability with biomass [99]. Fixed-bed reactors were developed for
smaller scale applications and are simple to operate and maintain [99].
They can be divided in updraft and downdraft gasifiers. In updraft
gasifiers, the oxidizer and biomass flow in counterflow and, despite

their simplicity, large quantities of tars are formed, which may cause
operating problems [99]. In the cocurrent design (downdraft gasifiers)
tars are much more efficiently converted [99]. Fluidized bed gasifiers
are divided into bubbling and circulating fluidized bed reactors [157].

Biomass gasification and subsequent syngas combustion can pro-
duce high temperature process heat [9]. However, the production of
process heat through gasification is among the lowest value applica-
tions of syngas, so it is more common to combine gasification with a
secondary technology to produce CHP [99]. Heat production with ga-
sification is less expensive than electricity production because syngas
quality requirements are not so tight. One of the advantages over direct
biomass combustion is that syngas can be used with minimal clean-up
[111]. Apart from heat and/or power, gasification can be used to pro-
duce fuels and chemicals, which offers the prospect of gasification-
based biorefineries [111,158].

4.1.3. Pyrolysis
Pyrolysis is the decomposition of organic matter in the absence of

oxygen to produce liquids, gases and char. The percentage of these
products depends on the biomass composition and rate and duration of
heating [111,112]. The process is generally optimized for the produc-
tion of solids or liquids [103]. The traditional slow pyrolysis process
produces mainly charcoal, while fast pyrolysis bio-oil [110,112]. Tor-
refied biomass is obtained through light pyrolysis. Apart from charcoal
production [38], pyrolysis is not in a mature commercial stage and
efforts are needed to optimize the process to increase its techno-eco-
nomic attractiveness [112]. A review on biomass pyrolysis can be
found, for example, in Refs. [108,110,112,159–162].

4.2. CHP production technologies

When compared to conventional power plants, biomass fuels are
more efficiently used when generating simultaneously heat and power
(typical overall efficiencies are above 80%, e.g., Refs. [163,164]). In
Europe, CHP systems are widely used in the pulp, food processing or
chemical industries [165]. Presently, industrial CHP power plants
predominantly rely on natural gas, but biomass is becoming more im-
portant (13% share in total transformation input in 2017 and the
second most used source) [2].

4.2.1. Primary conversion technologies
The primary conversion technologies commercially available for

biomass conversion into CHP are combustion and gasification.
Combustion is used to produce both heat and CHP, while gasification is
mostly used to produce CHP (also electricity alone, but this is outside
the scope of the present review). Combustion is the most common
conversion route in CHP systems [166]. One of the main advantages of
CHP production through gasification, compared to direct biomass
combustion, is the higher electric efficiency for smaller plants [167].
Tar and char contents of syngas are usually high and require gas
cleaning before use in ICEs or gas turbines [99].

As in the case of heating-only applications, co-firing with coal is also
an interesting option. It is gaining popularity for CHP applications and
can be applied to a large variety of combustor types [118]. A descrip-
tion of co-firing of biomass in coal-fired boiler plants can be found, for
example, in Refs. [109,136].

4.2.2. Secondary conversion technologies
Secondary conversion technologies can be classified into those

where the combustion products are used as the working fluid (e.g.,
direct-fired gas turbines) and those where a second fluid acts as the
working fluid (e.g., steam turbines). The latter are well suited for direct
biomass combustion since the engine will not be damaged by fly-ash
particles and metals contained in the flue gases, while the former re-
quire gas cleaning [109].
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4.2.2.1. Steam turbines. Conventional steam turbines are the most
utilized technology in combustion-based biomass-fired CHP plants
[118,144]. They are mature, typically below 50 MWe [144] and can
operate economically from a capacity of 1 MWe [168]. The electric
efficiency of steam turbines is dependent on the installed capacity
(large capacities have relatively high efficiencies, while small capacities
low [109]). Typically, electric efficiencies are in the range of 15–35%
[118].

Organic Rankine cycles are similar to conventional steam cycles, but
operate at lower temperatures. They can recover waste heat or use a
dedicated heat source [169]. Biomass ORC CHP plants are commer-
cially available and used for capacities of up to 8 MWe [170]. They are
the most widespread biomass technology based on combustion below 1
MWe [171]. ORCs have lower investment and maintenance costs [109],
better partial load operation [172] and better electric efficiencies than
steam turbines with the same capacities [109], but still the efficiencies
are relatively low (10–20%) [172]. A compilation of specific investment
costs of several biomass-fired CHP technologies versus installed capa-
city in presented in Fig. 14. The data refers to different locations and
years and is presented in nominal values. As in the case of Fig. 13,
nominal and real costs were compared and the same conclusions can be
drawn. The values are illustrative, but show that ORCs have lower
specific investment costs than steam turbines. Typically, steam turbines
gain economic advantage for high capacities.

Steam turbines are also a mature technology for biomass-fired CHP
plants based on gasification [60].

4.2.2.2. Internal combustion engines. Syngas can also be burned in
internal combustion engines, generally in small systems [144]. ICEs
are simple and relatively robust to syngas impurities [99]. This results
in simpler and cheaper cleaning systems when compared to other
options (see Fig. 14 for specific investment costs). However, the
operation and management costs are high, as well as NOx emissions
[99]. Gasification combined with ICEs is commercially available [99]
and the most common option for the gasification route [185]. However,
complexity of operation leads to the current low cumulative installed
capacity [184]. Typical electric efficiencies range from 15 to 40%
[186].

4.2.2.3. Other cycles. Another commercially available technology for
biomass CHP are Stirling engines. They are appropriate for small
capacities up to slightly more than 100 kWe and with typical electric
efficiencies of 15-30% [109]. Their electricity output and heat-to-power

ratio make them more suited for residential and commercial
applications [187]. Important advantages over ICEs are the possibility
to use flue gases directly (though they must be as clean as possible)
[109] and the lower maintenance requirements [187].

Steam engines are a mature technology for small powers (25 kWe-
1.5 MWe) with efficiencies comparable or slightly higher than steam
turbines [109]. They have higher part-load efficiency than steam tur-
bines [109], but have been replaced by more economical applications
in some countries [188].

The use of solid biomass in indirect-fired and direct-fired gas tur-
bines is still in a development stage [109], as are fuel cell-gasification
systems [189].

5. Future perspectives for European industrial biomass
consumption

The promotion of a sustainable industrial use of biomass should
consider various technological, economic, environmental and social
aspects [21]. Since these aspects vary significantly in different world
regions and countries, there is no unique global solution for biomass use
for process heat [21]. Additionally, each industrial sector has its own
specific challenges for further deployment of solid biomass energy.

Deep decarbonization of energy-intensive industries for the pro-
duction of basic materials will not be driven by improved economic
performance, but by long-term climate policies [17]. Many energy-in-
tensive industries for the production of basic materials operate in in-
ternational commodity markets, based on standard products, large vo-
lumes and price competition. They are, therefore, affected if differences
in carbon cost arise because of different national policies, which may
lead to industry relocation and loss of competitiveness [17].

The type of policy to increase the rate of deployment of bioenergy in
industry needs to be identified and developed for each conversion
technology and location. The maturity stage of the different technolo-
gies can affect the choice of policies [26]. In the case of mature tech-
nologies, like combustion, incentives and education policies can en-
courage the deployment of biomass, educate potential users and train
installers. Technologies close to mass market, like gasification, are
suited for regulatory policies to promote the increase of the technology
reliability and the decrease of costs. Technologies at an earlier maturity
stage, like fast pyrolysis, call for incentives for further research and
development, demonstration, sharp cost reduction and performance
increase.

The next sections briefly describe, in a European context, the
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current energy consumption and future perspectives for the use of solid
biomass in the most relevant sectors in terms of energy demand and/or
biomass utilization.

5.1. Pulp and paper

In 2017, the final energy consumption of the EU28 pulp, paper and
printing industry was 1438 PJ (13% of the final energy consumption in
industry) [2]. Manufacturing of pulp, paper and paperboard consumes
more than 98% of the energy demand of this sector [190]. The industry
requires essentially heat between 100 and 200 °C (83% of the process
heat demand is within this level) [3]. CHP production is common in this
sector (in 2016, the electricity produced at site, 96.0% of which with
CHP, bought from the grid and sold were, respectively, 51.2, 56.8 and
11.6 TWh [191]).

This sector already uses a significant amount of solid biomass. For
example, recovery boilers are both used to recover chemicals contained
in black-liquor and to produce process steam [33,192]. In EU28, the
share of biomass in the final energy consumption of this sector was 38%
in 2017 [2]. When adding the share of biomass utilized in generating
electricity and part of the heat sold to third parties (quantities not ac-
counted for in the final energy consumption), the biomass share in 2016
was 59% [191]. Among EU28 countries, the biomass incorporation in
the pulp and paper sector varies from 0% in Italy to 89% in Sweden
[193]. This fact alone indicates that there might still be room for further
biomass incorporation in this sector.

The pulp and paper industries can buy biomass instead of fossil fuels
and extend their traditional products to ‘green’ power and torrefied
biomass in order to increase the efficiency and profitability of their
traditional core business [25]. In fact, importing biomass for self-con-
sumption may not be needed in some pulp mills. Modern chemical pulp
mill designs will allow the mills to become self-sufficient in energy and
produce surplus energy from their residues [14]. Also [194], refer that
implementing new separation and drying technologies can reduce the
energy intensity of the pulp and paper industry and that better energy
intensity and utilization of by-products can result in a carbon neutral
sector. A more radical change that challenge core ideas in the industry
is the conversion of the pulp and paper mills into biorefineries produ-
cing not only conventional fibers for paper products, but also chemicals,
materials and energy [195].

5.2. Wood and wood products

In 2017, the final energy consumption of the EU28 wood and wood
product industry was 371 PJ (3% of the final energy consumption in
industry) [2]. The sector integrates three main sub-sectors: sawmilling
and planning of wood, manufacture of furniture, and manufacture of
products of wood and cork. The last accounts for more than half of the
purchases of energy products within the whole sector [2]. Within the
wood and wood products industry, several operations are energy-in-
tensive, namely those of drying, pressing and heat treatment, with re-
quired temperatures up to 500 °C [34,120].

The industry generates large quantities of solid biomass residues, a
fraction of these being used internally to produce energy or traded in
the bioenergy market (e.g., pellet production). It is the EU28 industrial
sector with the highest percentage of solid biomass incorporation for
energy purposes (57% of sectoral final energy consumption in 2017
[2]). In almost all EU countries the share of solid biomass in the final
energy consumption of the sector was over 30% in 2017, and in Bel-
gium, Denmark, Ireland and Luxemburg this share was above 70% [2].

The prospects of further increasing the use of bioenergy in this
sector are limited; however, opportunities exist to use biomass more
efficiently [196] and industry should develop strategies on energy ef-
ficiency in order to improve its competitiveness [197]. CHP systems
play a relevant role in reducing GHG emissions, and are already used in
large capacity systems, up to 50 MWth, mostly supplied by residues and

recovered wood [34]. One of the key research areas is the development
and demonstration of biomass gasification systems to produce elec-
tricity more efficiently [196,198]. Also, waste heat recovery is pointed
out as an energy efficiency measure with high potential of application
within the wood processing activity [34,196].

5.3. Non-metallic minerals

The final energy consumption of the EU28 non-metallic mineral
industry in 2017 was 1431 PJ (13% of the final energy consumption in
industry) [2]. In terms of energy consumption, this sector is dominated
by the cement industry, with a share of almost 60% in final energy
demand [4], but glass, brick, tile and refractory production is also very
important [199]. Almost 73% of the process heat demand within this
sector is above 500 °C [3]. The temperatures required by the key en-
ergy-intensive processes (melting, sintering or thermal decomposition
of raw materials) are often above 1000 °C [190].

In EU28, the share of solid biomass in final consumption is 3% in
this sector [2]. The main cement producers are already using solid
biomass as a substitute for fossil fuels [135]. For cement kilns, a 20%
substitution rate of fossil fuels by biomass is recommended; however,
higher values have been used with very satisfactory results [130]. The
cement industry presents no technical barriers to an increase in the use
of solid biomass [199]. The main constrains are related to the necessity
of a biomass pre-treatment stage, economic and local availability of
biomass [130]. A possible strategy to decrease the environmental im-
pacts of cement production (and of waste disposal) is the use of ash
resulting from biomass combustion [200–202]. Another possible route
to increase the use of biomass in the non-metallic mineral sector is
through biomass gasification or co-gasification with coal. Examples can
be found in the ceramic [203,204] or glass [205] industries. Major
barriers are high capital cost, sourcing suitable feedstock or storage of
biomass on-site [206].

5.4. Food and beverages

The final energy consumption in 2017 in the European food, bev-
erages and tobacco sector was 1254 PJ (11% of the final energy con-
sumption in industry) [2]. The energy consumption of the tobacco
subsector is estimated to be less than 1% of the energy consumption of
the whole sector [190]. The food and beverages industry was the largest
EU manufacturing sector in terms of turnover (15.4%), value added
(12.8%) and employment (15%) in 2014 [207]. The sector is very di-
verse and uses varied manufacturing processes [199], which makes a
global analysis more difficult. The industry requires essentially heat
below 200 °C (83% of the process heat demand is below this level) [3].

Presently, the industry does not obtain much of its energy through
solid biomass (3%) [2]. The sector produces significant amounts of bio-
wastes that can be converted into energy; however, in most cases, these
feedstocks have high moisture content [208] and are unsuitable for
thermo-chemical conversion processes. In this case, anaerobic digestion
is a very interesting possibility [42,209], but outside the scope of this
review. Nevertheless, within this sector there are industries that have
abundant low-moisture solid biomass resources suitable for combustion
(e.g., rice husks [20], olive stones [210], nut shells [211] or pine cones
[212]).

Although some projects are economically attractive, generally, a
major barrier for the implementation of solid biomass energy systems in
the food and beverages industries are the high investment costs [19].
Also, the supply infrastructure is insufficient or non-existing and bio-
mass availability and security of supply are not guaranteed [19].

5.5. Chemical and petrochemical

The chemical and petrochemical industry was the EU industrial
sector with the highest final energy consumption in 2017 (2206 PJ,
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20% of the final energy consumption in industry) [2]. A decade before,
this place was occupied by the iron and steel industry, having these two
sectors similar final energy consumptions. The chemical and petro-
chemical sector is very diverse, but in terms of energy use and emissions
the following processes stand out: ammonia production, steam cracking
of naphtha and gas oil, chlor-alkali, nitric acid, adipic acid, hydrogen/
synthesis gas, soda ash, aromatics and carbon black production [199].
The industry requires essentially heat above 500 °C (67% of the process
heat demand is above this level) [3].

Presently, the industry does not obtain much of its energy through
biomass (0.5%) [2]. The conversion of conventional plants into bior-
efineries producing bio-based chemicals offers the possibility of the
industry to face the challenges imposed by the future carbon-con-
strained world [14] and a wider use of bioenergy within this sector
[11]. Undesirable physicochemical properties, such as high oxygen
content of bio-oils [161,213], still arise when using solid biomass as
feedstock in this sector. Currently, sugar and starch based biomass is the
most widely used route to produce chemical feedstock from biomass.
However, in the future, woody biomass has to be used in order to re-
place the large quantity of petrochemicals currently produced [14]. The
conventional production of chemicals and polymers is in some cases
more energy efficient than that of bio-based chemicals [11]. None-
theless, in the latter, biomass by-products can be converted to heat and
power, decreasing the non-renewable energy used [11]. Biorefineries
have the potential to increase profitability and de-risk the investments
in bioenergy [11]. According to Ref. [214], the large-scale use of bio-
mass as feedstock by the chemical industry will drastically alter the
market and biomass availability will be a major challenge. Large sto-
rage capacities will also be needed, thus the use of upgraded biomass is
a good solution.

5.6. Iron and steel

In the iron and steel industry, the final energy consumption in 2017
was 1166 PJ (11% of the final energy consumption in industry) [2].
Note that the Eurostat does not report energy consumed in blast fur-
naces as final energy consumption but as transformation input. Within
the iron and steel sector, the manufacture of basic iron and steel and of
ferro-alloys is the most significant energy consumer, accounting for
73% of the energy demand of the sector [190]. The industry requires
primarily heat above 500 °C (94% of the process heat demand is above
this level) [3], and the use of direct heating dominates the sector.

In EU28, almost no biomass is used for energy in the iron and steel
industry [2]. However, there are countries outside this group with a
sustained incorporation of biomass in this sector. In Brazil, 34% of the
fuels consumed in the iron and steel industry is biomass [11]. The
partial substitution of coal and coke with biomass in ironmaking pro-
cesses is one of the few options that are both economically and tech-
nically viable in the short and medium-term [21]. Iron making requires
carbon-containing fuels and biomass is the only source of renewable
carbon [10]. There is a high potential of biomass use in the sector, and
in certain conditions with benefits over the use of coal. The most pro-
mising ways are by: i) gasifying biomass to generate gas for reduction or
heating, ii) injecting it into the blast furnace, Corex or electric arc
furnace, iii) incorporating biomass into coal blend for cokemaking, fuel
for sintering, composites and self-reducing pellets for direct reduction
processes and blast furnace [21]. According to Ref. [22], the greatest
potential for fossil fuel replacement in the iron and steel industry is in
the charcoal injection into the blast furnace. Many of the routes to in-
corporate biomass into the iron and steel industry still need further
research [35].

It is inefficient to use raw biomass in the steel industry because of its
chemical, physical and mechanical properties. Therefore, it is better to
use charcoals, semi-charcoals or torrefied biomass [21] (e.g., the higher
reactivity of biomass has a negative impact on substituting coal/coke in
a sintering process [215]). Note that when biomass is inserted in the

coal blend to produce coke, it can be used as raw material [35], but it
suffers a thermal treatment afterwards.

Today in Europe, biomass cannot compete with fossil fuels in eco-
nomic terms [22,35]. Recent studies conclude that carbon taxes would
be important for the use of biomass in the iron and steel industry [23],
as well as a reduction of the costs of upgraded biomass [35]. Synergies
between biomass-based sectors, biomass upgrading sectors and the iron
and steel industry are vital to enhance sustainable biomass use [35].
Steel plants could be integrated with biomass upgrading and production
of chemicals to lower the cost of using biomass and enhancing CO2

reductions [216].

6. Conclusions

Presently, fossil fuels dominate energy production in industry and
biomass is the only RES with relevant (but limited) use. Reducing GHG
emissions from process heat generation, which corresponds to the lar-
gest share of the industrial energy consumed, is crucial to reaching the
EU28 climate targets and deserves more political attention. Yet, de-
veloping global strategies to generate sustainable process heat is diffi-
cult because of the lack of detailed knowledge of the structure of heat
demand, and because the industrial processes and energy conversion
technologies are very diverse among the different industries.

Since EU28 industrial energy consumption is dominated by 5 sectors
(iron and steel, chemical and petrochemical, non-metallic minerals,
pulp and paper, and food and beverages), acting on these sectors has
major environmental impacts. One possible strategy to help achieving
the EU28 climate targets is increasing solid biomass use for energy
production in these five sectors. This review shows that it is technically
feasible.

Both biomass combustion and gasification equipment can provide
the full range of temperatures required by industrial processes. Certain
industrial sectors, though, cannot efficiently use raw biomass and
benefit from the use of upgraded biomass. Charcoal and pellets are
commercially available on the European market, but they are often
sourced outside the EU. The most widely used and mature biomass
industrial conversion technology is combustion, although gasification
(followed by combustion) is already in commercial stage (currently
mainly used for electricity and CHP production). In the case of CHP
applications, steam turbines are mostly utilized. The choice of the most
suitable technology for a specific application depends on many factors,
such as the size of the systems or the associated costs.

The industrial facilities that generate considerable amounts of solid
biomass by-products have often already implemented bioenergy pro-
jects. There is still margin, however, for further bioenergy valorization
and/or different biomass uses. In the industrial sectors where solid
biomass is not available as a by-product, biomass competes with fossil
fuels and economic viability is a key-issue. The high investment costs
for biomass conversion systems and the fact that the availability of the
feedstock and the security of the supply are not guaranteed are issues
that hinder the implementation of bioenergy projects.

Future sustainable biomass availability is one of the main un-
certainties when considering a greater industrial biomass uptake. In
EU28, solid biomass production has been increasing, and currently
production and consumption are almost balanced. However, the in-
creased pressure on the limited European biomass resources raises the
need for monitoring biomass resources in relation to demand and to
choose the most sustainable options for their use. Policies to promote
further substitution of fossil fuels with solid biomass in industry should
be designed, but include strong sustainability measures and consider
the risk of market distortion and carbon leakage.

The highlighted research directions aimed at further bioenergy
uptake by the industry are: develop and demonstrate advanced tech-
nologies to convert biomass to energy and fuels and optimize and deal
with the challenges still faced in the operation of several biomass-based
systems; pursue and develop strategies to further incorporate the use of
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industrial biomass where it is technically viable; develop and optimize
cost-effective and sustainable biomass supply-chains; and design
market-based mechanisms to foster investments in bioenergy.
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