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Over the last few years, the use of porous volumetric receivers in concentrated solar power (CSP) plants is be-
ing extensively investigated. In this work, a three-dimensional solver is developed in OpenFOAM to model the
solar radiation absorption, thermal and hydrodynamic performance of porous volumetric receivers coupled to
solar concentration systems. The porous structure is assimilated to a continuous semi-transparent medium, and
the volume averaged mass, momentum and energy conservation equations are solved using the local thermal
non-equilibrium (LTNE) approach [1]. The absorbed solar radiation in the solid matrix structure is modelled
by coupling a 3D in-house algorithm based on the Monte Carlo Ray Tracing (MCRT) method [2] with the CFD
mesh, while the thermal radiation transfer is described by P1 spherical harmonics method. To test the model, a
cylindrical receiver element (5 cm of diameter and 5 cm of height) made of open-cell SiC ceramic foam cou-
pled to a parabolic dish with a concentration ratio of 500 is considered. The global model (MCRT and CFD) is
designed to have as input the concentrated solar radiation and angle of incidence fields at the receiver inlet, and
the main results are the spatial distributions of the absorbed solar radiation, temperature of the fluid and solid
matrix structure and fluid velocity. The thermal efficiency, mean fluid temperature at the outlet and pressure
drop across the receiver for the test conditions are 85.46%, 474.22 K and 103.10 Pa, respectively. The solver
can be easily adapted to model the performance of porous volumetric receivers in different CSP systems.
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Figure 1: Solar radiation absorption and CFD modelling of porous volumetric receivers in CSP plants
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Introduction

Porous structure as solar thermal receivers
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Figure 1: Porous volumetric receivers in concentrated solar power (CSP) systems
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Model development
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Figure 2: Fluid flow and heat transfer processes in a porous volumetric receiver element
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Model development

Solar radiation absorption (Monte Carlo ray tracing method)

Figure 3: Solar radiation transport and
absorption in the porous structure of the
thermal receiver

Path length of rays, lβ = − 1
β
ln ξ

Albedo, ω =
κs
β

ξ ≤ ω, scattering
ξ > ω, absorption

β − extinction coefficient ω − single scattering albedo
κs − scattering coefficient ξ − random number

Henyey-Greenstein phase function [1]

p(θ) =
1
4π

1− g2

(1+ g2 − 2g cos θ)3/2

g − asymmetry factor θ − scattering angle
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Model development

Fluid flow and heat transfer (Steady state conditions)

Continuity equation

∇ · (ρf ~U) = 0

Momentum equation

1
φ
∇
(
ρf
~U · ~U
φ

)
= −∇p +∇ ·

(µf
φ
∇ ~U

)
+ ~Ms

Energy equation
Heat transfer fluid

∇ ·
(
ρf cp ~UTf

)
= ∇ · (λfe∇Tf ) + hv (Ts − Tf )

Solid matrix structure

0 = ∇ · (λse∇Ts) + hv (Tf − Ts) + Qsolar + Qir Qir = −κa
(
4σT 4

s − G
)

−∇ ·
( 1
3 (κa + κs)

∇G
)
= κa

(
4σT 4

s − G
)
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Model development

Boundary conditions

Inlet (z = 0):
~U = ~Uin

~n · ∇p = 0
Tf = Tin

(1−φ)λs(~n ·∇Ts)+(1−φ)εσ(T 4
s −T 4

in) = 0
1
2

(
4σT 4

in − G
)
=

1
3β
~n · ∇G

Outlet (z = L):

~n · ∇( ~U · ~n) = 0
p = pout
~n · ∇Tf = 0
(1−φ)λs(~n ·∇Ts)+(1−φ)εσ(T 4

s −T
4
f ) = 0

1
2

(
4σT 4

f − G
)
=

1
3β
~n · ∇G

Wall:
~U = ~0
~n · ∇p = 0
Tf = Ts

(1− φ)λs(~n · ∇Ts) + φλf (~n · ∇Tf ) = 0
εw

2(2− εw )
(
4σT 4

s − G
)
=

1
3β
~n · ∇G
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Figure 4: Boundary patch of the
porous volumetric receiver element
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Model development

OpenFOAM coding

// Counter of the number of solar rays inside each cell of the CFD mesh
forAll (positionList, i) {
        if (positionList[i].y() < 0) {
                frontFace += 1;
        }else if (positionList[i].y() >= hMax) {
                backFace += 1;
        }else if (Foam::sqrt(pow(positionList[i].x(), 2)
                        + pow(positionList[i].z(), 2)) >= rMax) {
                        positionParede.append(positionList[i]);
        }else {
                cellID = mesh.findCell (positionList[i]);
                if (cellID == -1) {
                        positionBetweenParede.append(positionList[i]);
                        cellID = mesh.findNearestCell(positionList[i]);
                }
                cellsCounted[cellID] += 1;
        }
}

𝑄𝑠𝑜𝑙𝑎𝑟 =  
𝑁𝑒𝑣𝑒

𝑉𝑒𝑣
 

Final position of the solar rays 

(obtained through the MCRT method)

rrec

CFD mesh

Porous volumetric 
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Figure 5: OpenFOAM code to obtain the distribution of absorbed solar radiation
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Model development

OpenFOAM coding

Qsolar from the MCRT method

Momentum source

rrec

CFD mesh

case/0/solarFluxRun

// Define the energy conservation equation for the fluid
fvScalarMatrix TfEqn
(
     fvc::div(phi, hef) – fvm::laplacian(kfe, Tf)
   - hconv*Ts + fvm::Sp(hconv, Tf)
);

// Define the energy conservation equation for the solid
fvScalarMatrix TsEqn
(
     fvm::laplacian(kse, Ts)
   + hconv*Tf - fvm::Sp(hconv, Ts) + solarFluxRun
   + radiation->Ru() – radiation->Rp()*pow(Ts, 4.0)
);

// Define the equation for U
tmp<fvVectorMatrix> UEqn
(
     (1.0/por)*fvm::div(phi/por, U)     
   - fvm::laplacian(muf/por, U)
   + fvm::Sp((1039-1002*por)*muf/sqr(dp), U)
   + fvm::Sp(0.5138*pow(por,-5.739)*rho*mag(U)/dp, U)
);

// Solve the momentum predictor
Solve(UEqn() == -fvc::grad(p));

Figure 6: OpenFOAM code for fluid flow and heat transfer modelling
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Model validation and main results

Model validation and testing
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Model validation and main results

Effect of porosity on the spatial distribution of temperature
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Figure 11: Ts for φ = 0.7
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Figure 12: Ts for φ = 0.8
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Figure 13: Tf for φ = 0.7
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Figure 14: Tf for φ = 0.8
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Model validation and main results

Effect of pores size on the spatial distribution of temperature
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Figure 15: Ts for dp = 1 mm
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Figure 16: Ts for dp = 2 mm

425

550

675

300

800

Figure 17: Tf for dp = 1 mm

425

550

675

300

800

Figure 18: Tf for dp = 2 mm
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Future work

Add the MCRT method to the OpenFOAM solver;

Experimental validation (under progress);

Use different concentration systems (e.g. tower type concentrators);

Optimization of geometric parameters and fluid flow conditions.
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H I G H L I G H T S

• Convergent incidence and large pores sizes creates a peak flux near the focal point.

• Higher absorption efficiencies are obtained for forward scattering in porous media.

• The wall properties are more important in the case of low optical thicknesses.

• A even distribution and high wall absorption are obtained by moving the focal plane.

• Higher slope errors of concentrator result in lower energy absorption.

A R T I C L E I N F O

Keywords:
Solar energy
Solar concentration
Volumetric receiver
Porous media
Monte Carlo ray tracing

A B S T R A C T

This work addresses the three-dimensional modelling and analysis of solar radiation absorption in a porous
volumetric receiver using the Monte Carlo Ray Tracing (MCRT) method. The receiver is composed of a solid
matrix of homogeneous porous material and isotropic properties, bounded on its side by a cylindrical wall that is
characterized through a diffuse albedo. The Henyey-Greenstein phase function is used to model the radiation
scattering inside the porous media. The effect of the angle of incidence, optical thickness (porosity, pores size
and height of the receiver), asymmetry factor of the phase function and wall properties on the solar radiation
absorption in the porous media is studied in order to obtain the receiver efficiency as a function of these
parameters. The model was validated by comparing the results for a simple geometry composed of a long slab of
finite thickness with the values available in the literature, and then tested with a cylindrical receiver using a
parabolic dish as concentration system with a concentration factor of 500. A peak of absorbed solar radiation of
156MWm−3 and an absorption efficiency of 90.55% were obtained for a phase function asymmetry factor of 0.4
(forward scattering) and scattering albedo and extinction coefficient of 0.54 and 100m−1, respectively. The
results for the diffuse reflectance, diffuse transmittance and absorption are also presented. The model developed
in this work is useful to obtain and understand the energy absorption distribution in porous volumetric receivers
coupled to solar concentration systems, when different porous structures and geometric parameters are used.

1. Introduction

Non-linear solar concentration systems are promising technologies
to replace the conventional generation of electricity based on fossil
fuels [1]. In recent years, a notable progress in concentrating solar
thermal energy was achieved in terms of improving reflector designs,
materials and heat transfer fluids, thermal to electric energy conversion
and energy storage [2]. In these systems, two important components
are the solar concentrators, which should concentrate the solar radia-
tion on the thermal receiver, and the thermal receiver itself, where solar

radiation is converted to thermal energy. In the recent work of Ho and
Iverson [3], a description of typical configurations of solar thermal
receivers is made and, according to that work, the volumetric thermal
receivers present great challenges from the point of view of their nu-
merical modelling and optimization. The volumetric receivers with
solid matrix (porous media) have been under investigation, mainly due
to their capability to achieve high values of temperature and thermal
efficiency, being one of the most promising technologies to improve the
thermal efficiency of solar concentration power systems [4–7]. In the
work of Ávila-Marín [8], a chronological review of volumetric receivers

https://doi.org/10.1016/j.apenergy.2018.02.065
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Three-dimensional CFD modelling and thermal
performance analysis of porous volumetric receivers

coupled to solar concentration systems
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Abstract

Porous volumetric receivers is a promising technology to improve the ther-
mal performance of a new generation of concentrated solar power (CSP)
plants. In this sense, this work addresses the Computational Fluid Dynam-
ics (CFD) modelling and thermal performance analysis of porous volumetric
receivers coupled to solar concentration systems. A cylindrical receiver ele-
ment made of open-cell SiC ceramic foam was considered. The fluid flow and
heat transfer processes in the porous media are modelled through volume
averaged mass, momentum and energy conservation equations, considering
the local thermal non-equilibrium (LTNE) approach, while the thermal ra-
diation transfer is described by the P1 spherical harmonics method, using
an open source software (OpenFOAM). An in-house algorithm based on the
Monte Carlo Ray Tracing (MCRT) method was developed and coupled to
the CFD mesh to model the propagation and absorption of solar radiation.
The modelling of the receiver boundary conditions were improved, and a
detailed analysis of a reference configuration of the receiver was conducted
using a parabolic dish with a concentration ratio of 500 to generate the con-
centrated solar radiation field and a receiver element with diameter 5 cm,
height 5 cm, pore size 3 mm and porosity 0.9. The thermal power output,
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