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Abstract

This thesis is devoted to the study of the theory of numerical semigroups. First,

the focus is on saturated numerical semigroups. We will give algorithms that allows

us to compute, for a given integer g (respectively integer F), the set of all saturated

numerical semigroups with genus g (respectivaly with Frobenius number F). After

that, we will solve the Frobenius problem for three particular classes of numerical

semigroups: Mersenne, Thabit and Repunit numerical semigroups. Lastly, we will

characterize and study the digital semigroups and the bracelet monoids.
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Resumo

Problemas Combinatórios em Semigrupos Numéricos

Esta tese é dedicada ao estudo da teoria dos semigrupos numéricos. O primeiro

foco é o estudo dos semigrupos numéricos saturados. Daremos algoritmos que nos

irão permitir calcular, dado um inteiro g (repectivamente, um inteiro F), o conjunto de

todos os semigrupos numéricos saturados com género g (respectivamente, com número

de Frobenius F). Depois disso, iremos resolver o problema de Frobenius para três

classes particulares de semigrupos numéricos: semigrupos numéricos de Mersenne,

de Thabit e de Repunit. Por fim, iremos caracterizar e estudar os semigrupos digitais e

os monóides braceletes.
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Introduction

Let N denote the set of nonnegative integers. A numerical semigroup is a subset S

ofN that is closed under addition, contains the zero element and has finite complement

in N. The greatest integer that does not belong to S (respectively, the cardinal of N\S)

is called the Frobenius number of S (respectively, genus of S), and it is denoted by

F(S) (respectively, g(S)).

In literature we can find a long list of works that study one dimensional analyti-

cally irreducible local domains via their value semigroups (see for instance [2] and the

references given there). One important property studied for this kind of ring is of being

saturated.

Saturated rings were introduced in three different ways in [9], [23] and in [53]

and the three definitions coincide for algebraically closed fields of zero characteristic.

From the characterization of a saturated ring through its value semigroups it arose the

concept of saturated semigroup (see [13] and [22]).

Given a non empty subset A from N and a ∈ A we denote by dA(a) =

gcd{x ∈ A | x≤ a}. From [9] we say that a numerical semigroup S is saturated if

s+dS(s) ∈ S for all s ∈ S.

Chapter 2 of this thesis is devoted to the study of saturated numerical semigroups.

The results of Section 2 were published in [31] and the main result is an algorithm

that allows us to compute, for a given integer g, the set of all saturated numerical

semigroups of genus g. The methodology used in this algorithm is based in sorting
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6 INTRODUCTION

the set of all saturated numerical semigroups in a tree rooted in N and describing the

childs of the vertices of that tree.

The results of Section 3 were published in [32] and the main result is an algorithm

that allows us to compute, for a given integer F , the set of all saturated numerical se-

migroups with Frobenius number F . The efficiency of this algorithm is fundamentally

based in the description of a algorithmic method that allows us to calculate, for a given

k-tuple of positive integers (d1,d2, . . . ,dk) were d1 > d2 > · · · > dk = 1 and di+1 | di

for all i ∈ {1, . . . ,k−1}, the set of all nonnegative integer solutions from the equation

d1x1 + · · ·+dkxk = c were c is a nonnegative integer.

During the early part of the last century, Ferdinand Georg Frobenius (1849-1917)

raised, in his lectures the problem of giving a formula for the largest integer that is

not representable as a linear combination with nonnegative integer coefficients of a

given set of positive integers whose greater common divisor is one. He also raised the

question of determining how many positive integers do not have such a representation.

By using our terminology, the first problem is equivalent to give a formula, in terms of

the elements in a minimal system of generators of a numerical semigroups S, for the

greatest integer not in S known, as we have seen before, as the Frobenius number. The

second problem consist on finding the cardinality of the set of gaps of that numerical

semigroup, that is, the genus of S (see [24] for a nice state of art on this problem).

At first glance, the Frobenius Problem may look deceptively specialized. Nevert-

heless it crops up again and again in the most unexpected places. It turned out that

the knowledge of Frobenius number has been extremely useful to investigate many

different problems.

This problem was solved by Sylvester and Curran Sharp (see [47], [48] and [49])

for numerical semigroups with embedding dimension two. It was demonstrated that if

{n1,n2} is a minimal system of generators of S, then F(S) = n1n2−n1−n2 and g(S) =
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1
2
(n1− 1)(n2− 1). The Frobenius problem remains open for numerical semigroups

with embedding dimension greater than or equal to three.

In Chapter 3 we will solve the Frobenius problem for three particular classes of

numerical semigroups: Mersenne, Thabit and Repunit numerical semigroups. The

results of this chapter were published in [34], [36] and [35].

A positive integer x is a Mersenne number if x = 2n−1 for some n ∈ N\{0}. We

say that a numerical semigroup S is a Mersenne numerical semigroup if there exist n ∈

N\{0} such that S =
〈{

2n+i−1 | i ∈ N
}〉

. The main purpose of Section 1 is to study

this class of numerical semigroups and will denoted by S(n) =
〈{

2n+i−1 | i ∈ N
}〉

.

We give formulas for the embedding dimension, the Frobenius number, the type and

the genus for a numerical semigroup generated by the Mersenne numbers greater than

or equal to a given Mersenne number. We see that the minimal system of generators of

S(n) is equal to
{

2n−1,2n+1−1, . . . ,22n−1−1
}

and thus e(S(n)) = n. We will solve

the Frobenius problem for the Mersenne numerical semigroups, in fact, we will prove

that F(S(n)) = 22n−2n−1 and g(S(n)) = 2n−1(2n +n−3).

Two numbers m and n are called amicable numbers if the sum of proper divisors

(the divisors excluding the number itself) of one number equals the other. A positive

integer x is a Thabit number if x = 3.2n− 1 for some n ∈ N (named so in honor of

the mathematician, physician, astronomer and translator Al-Sabi Thabit ibn Qurra al-

Harrani 826- 901). These numbers expressed in binary representation are n+ 2 bits

long being ”10” by n 1′s. Thabit ibn Qurra was the first to study these numbers and

their relation to amicable numbers. He discovered and proved that if p = 3 · 2n− 1,

q= 3 ·2n−1−1and r = 9 ·2n−1−1 are prime numbers, then M = 2n pq and N = 2nr are a

pair of amicable numbers. Thus, for n = 2, n = 4 and n = 7 we have the amicable pairs

(220,284), (17296,18416) and (9363584,9437056), respectively, but no other such

pairs are known. We say that a numerical semigroup S is a Thabit numerical semigroup
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if there exist n ∈N such that S =
〈{

3.2n+i−1 | i ∈ N
}〉

, and will be denoted by T (n).

The main purpose of Section 2 is to study this class of numerical semigroups. In

this setting, we will see that the minimal system of generators of T (n) is equal to

{3 ·2n+ i−1 | i ∈ {0,1, . . . ,n+1}} and therefore e(T (n)) = n+ 2. If n is a positive

integer, we will prove here that F(T (n)) = 9 ·22n−3 ·2n−1 and g(T (n)) = 9 ·22n−1+

(3n−5)2n−1.

In Section 3, we will study the Repunit numerical semigroups. In number theory,

a Repunit is a number consisting of copies of the single digit 1. The numbers 1,

11, 111 or 1111, etc., are examples of Repunits. The term stands for repeated unit

and was coined by Albert H. Beiler in [3]. In general, the set of Repunits in base b

is
{

bn−1
b−1 | n ∈ N\{0}

}
. In binary, these are known like Mersenne numbers. In the

literature there are many problems related to this kind of numbers (see, for example,

[45] and [52]). A numerical semigroup S is a Repunit numerical semigroup if there

exist integers b ∈ N\{0,1} and n ∈ N\{0} such that S =
〈{

bn+i−1
b−1 | i ∈ N

}〉
and it

will denoted by S (b,n). We will prove that
{

bn+i

b−1 | i ∈ {0, . . . ,n−1}
}

is the minimal

system of generators of S(b,n) and so e(S(b,n)) = n. We will solve Frobenius problem

for the Repunit numerical semigroup, specifically, we will prove that F(S(b,n)) =
bn−1
b−1

bn−1 and g(S(b,n)) =
bn

2

(
bn−b
b−1

+n−1
)

.

Chapter 4 is dedicated to the study of the digital semigroups (Section 1) and the

bracelet monoids (Section 2). These results were published in [33] and [30], respecti-

vely. Given a positive integer n, we denote by `(n) the number of digits of n writen

in decimal expansion. For example `(137) = 3 and `(2335) = 4. Given A a subset of

N\{0}, we also denote by L(A) = {`(a) | a ∈ A}. A digital semigroup D is a subsemi-

group of (N\{0}, ·) such that if d ∈ D then {x ∈ N\{0} | `(x) = `(d)} ⊆ D and a nu-

merical semigroup S is called LD-semigroup if there exist a digital semigroup D such
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that S = L(D)∪{0}. Our main goal in Section 1 is to find the smallest digital semi-

group containing a set of positive integers. We characterize the LD-semigroups in the

following way: a numerical semigroup S is a LD-semigroup if and only if a+b−1∈ S

for all a,b ∈ S\{0}. This fact allows us prove that the set of all LD-semigroups is a

Frobenius variety.

In order to clarify a bit more the study of LD-semigroups, we refer two papers that

motivate their study. By using the terminology of [6] a LD-semigroup is a numerical

semigroup that fulfills a nonhomogeneous pattern x1 + x2− 1. As a consequence of

[[6], Example 6.4] LD-semigroups can be characterized by the fact that the minimum

element in each interval of nongaps is a minimal generator.

A (v,b,r,k)-configuration is a connected bipartite graph with v vertices on one

side, each of them of degree r, and b vertices on the other side, each of them of degree

k, and with no cycle of length 4. We say that the tuple (v,b,r,k) is configurable if

a (v,b,r,k)-configuration exists. In [7] it is proved that if (v,b,r,k) is configurable

then vr = bk and consequently there exists d such that v = d k
gcd(r,k) and b = d r

gcd(r,k) .

The fundamental result in [7] states that if r and k are integers greater than or equal

to two, then S(r,k) =
{

d ∈ N |
(

d k
gcd(r,k) ,d

r
gcd(r,k) ,r,k

)
is configurable

}
is a numerical

semigroup. Moreover, in [46] it is shown that for balanced configurations, i.e. when

r = k, it follows that {x+ y−1,x+ y+1}⊆ S(r,r) for all x,y∈ S(r,r)\{0}, and thus S(r,r)

is a LD-semigroup.

Suppose that a plumber has an unlimited number of pipes with lengths l1, . . . , lq.

To join two pipes he can solder them or he cans use pipe joints J1, . . . ,Jp. In the first

case the total length is equal to the sum of the lengths of the used pipes and if he uses

a pipe joint Ji the total length is the sum of lengths of pipes plus ni (where ni is the

positive length of Ji ). The main purpose of Section 2 is to study the set of lengths of

pipes that the plumber can make.
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The previous situation leads us to the following definition. Let S be a set of seg-

ments and let C be a set of circles. A (S,C)-bracelet is a finite sequence b of the

elements in the set S∪C fulfilling the following conditions:

(1) b begins and ends with a segment;

(2) in b there are no two consecutive circles.

| | | | | | |

The length of a (S,C)-bracelet b is equal to the sum of all lengths of its segments

and all diameters of its circles, and it is denoted `(b).

Let B(S,C) = {b | b is a (S,C)−bracelet} and let LB(S,C) = {`(b) | b ∈ B(S,C)}.

Suppose that /0 is a (S,C)-bracelet and `( /0) = 0.

If S is a set of segments and C is a set of circles, where their lengths and diameters

are positive integers, then it is easy to prove that LB(S,C) is a submonoid of (N,+).

Note that if c∈C then diameter(c) may not be in LB(S,C). But if `1, `2 ∈ LB(S,C)\{0}

then `1+`2+diameter(c) ∈ LB(S,C). From here the following definition comes natu-

rally. Let n1, . . . ,np be positive integers and let M be a submonoid of (N,+). We say

that M is a (n1, . . . ,np)-bracelet if a+b+
{

n1, . . . ,np
}
⊆M for every a,b ∈M\{0}.

From this we obtain that the set of lengths of pipes that the plumber can make is the

smallest (with respect to the set inclusion order) (n1, . . . ,np)-bracelet containing a set{
l1, . . . , lq

}
of positive integers (it is the smallest (n1, . . . ,np)-bracelet that contains a

finite subset X of N).

Recall that a numerical semigroup is a submonoid S of (N,+) such that gcd(S) =

1. This fact motivates the following definition. A numerical (n1, . . . ,np)-bracelet is

a (n1, . . . ,np)-bracelet M such that gcd(M) = 1. Therefore, following the notation

introduced in [6], a numerical (n1, . . . ,np)-bracelet is a numerical semigroup fulfilling
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nonhomogeneous patterns x1 + x2 + n1,x1 + x2 + n2, . . . ,x1 + x2 + np. And thus by

using again [Example 6.4 [6]] (1)-bracelets can be characterized by the numerical

semigroups fulfilling that the maximum element in each interval of non-gaps is one of

its minimal generators. The notion of pattern for numerical semigroups was introduced

in [5]. Recently, the study of (1)-bracelets has been done in [25] and also suggested in

[7] and [46].





Introdução

Seja N o conjunto dos inteiros não negativos. Um semigrupo numérico é um

subconjunto S deN que é fechado para a adição, contém o elemento zero e tem comple-

mento finito em N. O maior inteiro que não pertence a S (respectivamente, o cardinal

de N\S) é chamado o número de Frobenius de S (respectivamente, o género de S), e

denota-se por F(S) (respectivamente, g(S)).

Na literatura podemos encontrar uma longa lista de trabalhos dedicados ao estudo

de domı́nios locais analiticamente irredutı́veis de dimensão 1 via um semigrupo de

valores (ver por exemplo [2] e as referências aı́ dadas). Uma propriedade importante

estudada para este tipo de anéis é a de ser saturado.

Os anéis saturados foram introduzidos de três formas distintas em [9], [23] e em

[53] e as três definições dadas coincidem para corpos algebricamente fechados de ca-

racterı́stica 0 (zero). Desta caracterização de um anel saturado via um semigrupo de

valores surgiu o conceito de semigrupo saturado (ver [13] and [22]).

Dado um subconjunto não vazio A de N e a ∈ A denotamos por dA(a) =

gcd{x ∈ A | x≤ a}. De [9] dizemos que um semigrupo numérico S é saturado se

s+dS(s) ∈ S para todo s ∈ S.

O Capı́tulo 2 desta tese é dedicado ao estudo dos semigrupos numéricos. Os resul-

tados da Secção 2 foram publicados em [31] e o seu principal resultado é um algoritmo

que nos permite calcular, para um dado inteiro g, o conjunto de todos os semigrupos

numéricos saturados com género g. A metodologia usada neste algoritmo é baseada na

13



14 INTRODUÇÃO

ordenação do conjunto destes semigrupos numéricos saturados numa árvore com raı́z

em N e na descrição dos filhos dos vértices dessa árvore.

Os resultados da Secção 3 foram publicados em [32] e o seu principal resultado é

um algoritmo que nos permite calcular, para um dado inteiro F , o conjunto de todos

os semigrupos numéricos saturados com número de Frobenius F . A eficiência deste

algoritmo é fundamentalmente baseada na descrição de um método algorı́tmico que

nos permite calcular, para uma dada k-tupla de inteiros positivos (d1,d2, . . . ,dk) onde

d1 > d2 > · · · > dk = 1 e di+1|di para todo i ∈ {1, . . . ,k−1}, o conjunto de todas as

soluções inteiras não negativas da equação d1x1 + · · ·+ dkxk = c onde c é um inteiro

não negativo.

Durante a primeira parte do século passado, Ferdinand Georg Frobenius (1849-

1917) levantou, nas suas palestras, o problema de dar uma fórmula para o maior in-

teiro que não pode ser representado como a combinação linear de um dado conjunto

de inteiros positivos cujo máximo divisor comum é igual a 1 e em que os coeficientes

sejam inteiros não negativos. Ele também levantou a questão de determinar quantos

inteiros positivos não têm tal representação. Usando a nossa terminologia, o primeiro

problema é equivalente a dar uma fórmula, em termos dos elementos do sistema mi-

nimal de geradores de um semigrupo numérico S, para o maior inteiro que não está

em S, conhecido, como já vimos anteriormente, por número de Frobenius. O segundo

problema consiste em determinar a cardinalidade do conjunto dos buracos desse semi-

grupo numérico, ou seja, o género de S (ver [24] para uma boa referência do estado de

arte deste problema).

À primeira vista,o problema de Frobenius pode parecer especializado. No entanto

ele surge-nos nos lugares mais inesperados. O conhecimento do número de Frobenius

é-nos extremamente útil para investigar diversos problemas.
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Este problema foi resolvido por Sylvester e Curran Sharp (ver [47], [48] e [49])

para semigrupos númericos com dimensão de imersão dois. Foi demonstrado que se

{n1,n2} é um sistema minimal de geradores de S, então F(S) = n1n2−n1−n2 e g(S) =
1
2
(n1− 1)(n2− 1). O problema de Frobenius continua em aberto para semigrupos

numéricos com dimensão de imersão maior ou igual que três.

No Capı́tulo 3 iremos resolver o problema de Frobenius para três classes particula-

res de semigrupos numéricos: os semigrupos numéricos de Mersenne, de Thabit e de

Repunit. Os resultados deste capı́tulo foram publicados em [34], [36] and [35].

Um inteiro positivo x é um número de Mersenne se x = 2n − 1 para algum

n ∈ N\{0}. Dizemos que um semigrupo numérico S é um semigrupo numérico de

Mersenne se existir um n ∈ N\{0} tal que S =
〈{

2n+i−1 | i ∈ N
}〉

. O objectivo

principal da Secção 1 é estudar esta classe de semigrupos numéricos que denotare-

mos por S(n) =
〈{

2n+i−1 | i ∈ N
}〉

. Daremos fórmulas para a dimensão de imersão,

o número de Frobenius, o tipo e o género de um semigrupo numérico gerado por

números de Mersenne maiores ou iguais a um dado número de Mersenne. Veremos

que o sistema minimal de geradores de S(n) é igual a
{

2n−1,2n+1−1, . . . ,22n−1−1
}

e portanto e(S(n)) = n. Iremos resolver o problema de Frobenius para os semi-

grupos numéricos de Mersenne, de facto, provamos que F(S(n)) = 22n − 2n − 1 e

g(S(n)) = 2n−1(2n +n−3).

Dois números m e n dizem-se amigáveis se a soma dos divisores próprios (os

divisores à excepção do próprio número) de um dos números for igual à do outro.

Um inteiro positivo x é um número de Thabit se x = 3.2n − 1 para algum n ∈ N

(chamado assim em honra ao matemático, fı́sico, astrónomo e tradutor Al-Sabi Tha-

bit ibn Qurra al-Harrani 826- 901). Estes números expressos em representação

binária têm n+ 2 bits de comprimento sendo compostos por ”10” seguidos de n 1′s.

Thabit ibn Qurra foi o primeiro a estudar esses números e a sua relação com os
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números amigáveis. Ele descobriu e provou que se p = 3 · 2n− 1, q = 3 · 2n−1− 1

e r = 9 · 2n−1− 1 são números primos, então M = 2n pq e N = 2nr são um par de

números amigáveis. Portanto, para n = 2, n = 4 e n = 7 temos os pares de amigáveis

(220,284), (17296,18416) e (9363584,9437056), respectivamente, mas não são con-

hecidos mais nenhuns pares. Diremos que um semigrupo numérico S é um semi-

grupo numérico de Thabit se existir um n ∈ N tal que S =
〈{

3.2n+i−1 | i ∈ N
}〉

, e

iremos denotá-los por T (n). O objectivo principal da Secção 2 é estudar esta classe

de semigrupos numéricos. Assim, iremos ver que o sistema minimal de geradores

de T (n) é igual a {3 ·2n+ i−1 | i ∈ {0,1, . . . ,n+1}} e portanto e(T (n)) = n + 2.

Seja n é um inteiro positivo, iremos provar que F(T (n)) = 9 · 22n − 3 · 2n − 1 e

g(T (n)) = 9 ·22n−1 +(3n−5)2n−1.

Na Secção 3, iremos estudar os semigrupos numéricos Repunit. Na teoria dos

números, um Repunit é um número composto pela repetição do dı́gito 1. Os números

1, 11, 111 ou 1111, etc., são exemplos de Repunits. O termo significa a repetição

da unidade e foi introduzido por Albert H. Beiler em [3]. Em geral, o conjunto dos

Repunit na base b é
{

bn−1
b−1 | n ∈ N\{0}

}
. Em linguagem binária, estes são conheci-

dos como os números de Mersenne. Na literatura existem diversos problemas rela-

cionados com este tipo de números (ver, por exemplo, [45] e [52]). Um semigrupo

numérico S é um semigrupo numérico Repunit se existirem inteiros b ∈ N\{0,1} e

n ∈ N\{0} tais que S =
〈{

bn+i−1
b−1 | i ∈ N

}〉
e serão denotados por S (b,n). Iremos

provar que
{

bn+i

b−1 | i ∈ {0, . . . ,n−1}
}

é o sistema minimal de geradores de S(b,n) e

assim e(S(b,n)) = n. Iremos resolver o problema de Frobenius para os semigrupos

numéricos Repunit, mais concretamente, iremos provar que F(S(b,n)) =
bn−1
b−1

bn−1

e g(S(b,n)) =
bn

2

(
bn−b
b−1

+n−1
)

.
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O Capı́tulo 4 é dedicado ao estudo dos semigrupos digitais (Secção 1) e aos

monóides braceletes (Secção 2). Estes resultados foram publicados em [33] e [30], re-

spectivamente. Dado um inteiro positivo n, denotamos por `(n) o número de dı́gitos de

n escrito em representação decimal. Por exemplo `(137) = 3 e `(2335) = 4. Dado um

subconjunto A de N\{0}, vamos denotar por L(A) = {`(a) | a ∈ A}. Um semigrupo

digital D é um subsemigrupo de (N\{0}, ·) tal que se d ∈D então {x ∈N\{0} | `(x) =

`(d)} ⊆ D. Um semigrupo numérico S é chamado semigrupo-LD se existir um se-

migrupo digital D tal que S = L(D)∪ {0}. O nosso objetivo principal na Secção 1

é determinar o menor semigrupo digital que contém um conjunto de inteiros positi-

vos. Caracterizamos os semigrupos-LD da seguinte forma: um semigrupo numérico

S é um semigrupo-LD se e só se a+ b− 1 ∈ S para todos os a,b ∈ S\{0}. Este facto

permite-nos provar que o conjunto de todos os semigrupos-LD são uma variedade de

Frobenius.

Com o intuito de clarificar um pouco mais o estudo dos semigrupos-LD, referi-

mos dois trabalhos que motivam o seu estudo. Usando a terminologia de [6], um

semigrupo-LD é um semigrupo numérico que verifica um padrão não homogéneo

x1 + x2 − 1. Como consequência de [[6], Exemplo 6.4] os semigrupos-LD podem

ser caracterizados pelo facto de que o menor elemento em cada intervalo de elementos

não-buracos é um gerador minimal.

Uma configuração-(v,b,r,k) é um grafo bipartido conectado, com v vértices de um

lado, cada um deles de grau r, e b vértices no outro lado, cada um deles de grau k, e

sem nenhum ciclo de comprimento 4. Dizemos que a tupla (v,b,r,k) é configurável se

existir uma configuração-(v,b,r,k). Em [7] é provado que se (v,b,r,k) é configurável

então vr = bk e consequentemente existe um d tal que v= d k
gcd(r,k) e b= d r

gcd(r,k) . O re-

sultado principal em [7] afirma que se r e k são inteiros maiores ou iguais a dois, então

S(r,k) =
{

d ∈ N |
(

d k
gcd(r,k) ,d

r
gcd(r,k) ,r,k

)
é configurável

}
é um semigrupo numérico.
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Mais, em [46] é mostrado que para configurações equilibradas, i.e. quando r = k, tem-

se que {x+ y−1,x+ y+1} ⊆ S(r,r) para todos os x,y ∈ S(r,r)\{0}, e portanto S(r,r) é

um semigrupo-LD.

Suponhamos que um canalizador tem um número ilimitado de tubos de compri-

mentos l1, . . . , lq. Para unir dois tubos ele pode soldá-los ou pode usar juntas de tubos

J1, . . . ,Jp. No primeiro caso, o comprimento total é igual à soma dos comprimentos

dos tubos que ele usa e se ele usar uma junta de tubos Ji o comprimento é a soma dos

comprimentos dos tubos mais ni (onde ni é o comprimento de de Ji ). O principal ob-

jectivo da Secção 2 é estudar o conjunto dos comprimentos dos tubos que o canalizador

pode fazer.

A situação anterior conduz-nos à seguinte definição. Seja S um conjunto de seg-

mentos e seja C um conjunto de cı́rculos. Uma bracelete-(S,C) é uma sequência finita

b dos elementos no conjunto S∪C que verifica as seguintes condições:

(1) b começa e acaba com um segmento;

(2) em b não há dois cı́rculos consecutivos.

| | | | | | |

O comprimento de uma bracelete-(S,C) b é igual à soma de todos os comprimentos

dos seus segmentos e todos os diâmetros dos seus cı́rculos, e denota-se por `(b).

Seja B(S,C) = {b | b é uma (S,C)−bracelet} e seja LB(S,C) =

{`(b) | b ∈ B(S,C)}. Suponhamos que /0 é uma bracelete-(S,C) e `( /0) = 0.

Se S é um conjunto de segmentos e C é um conjunto de cı́rculos, onde os seus

comprimentos e diâmetros são inteiros positivos, então é fácil de provar que LB(S,C)

é um submonóide de (N,+). Note que se c ∈ C então diâmetro(c) pode não estar

em LB(S,C). Mas se `1, `2 ∈ LB(S,C)\{0} então `1 + `2 + diâmetro(c) ∈ LB(S,C).
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Daqui, a seguinte definição vem naturalmente. Sejam n1, . . . ,np inteiros positivos e

seja M um submonóide de (N,+). Dizemos que M é uma bracelete-(n1, . . . ,np) se

a+ b+
{

n1, . . . ,np
}
⊆ M para todos os a,b ∈ M\{0}. De onde obtemos que o con-

junto dos comprimentos dos tubosque o canalizador pode fazer é a menor (no que diz

respeito à ordem de inclusão de conjuntos) bracelete-(n1, . . . ,np) que contém um con-

junto
{

l1, . . . , lq
}

de inteiros positivos (é a menor bracelete-(n1, . . . ,np) que contém

um subconjunto finito X de N).

Recordemos que um semigrupo numérico é um submonóide S de (N,+) tal que

gcd(S) = 1. Este facto motiva a seguinte definição. Uma bracelete-(n1, . . . ,np)

numérica é uma bracelete-(n1, . . . ,np) M tal que gcd(M) = 1. Assim, seguindo a

notação introduzida em [6], uma bracelete-(n1, . . . ,np) numérica é um semigrupo

numérico que satisfaz o padrão não homogéneo x1 + x2 + n1,x1 + x2 + n2, . . . ,x1 +

x2 + np. E portanto, usando novamente o [Exemplo 6.4 [6]] as braceletes-(1) podem

ser caracterizadas pelos semigrupos numéricos que verificam que o elemento máximo

em cada intervalo de elementos não-buracos é um dos seus geradores minimais. A

noção de padrão para semigrupos numéricos foi introduzida em [5]. Recentemente, o

estudo de braceletes-(1) foi feito em [25] e também sugerida em [7] e [46].





CHAPTER 1

Preliminaries

In this chapter we present some basic definitions and known results, needed later

in this work, related to the numerical semigroups. Some more specific definitions and

known results may be presented locally when needed.

1. Notable elements

We useN and Z to denote the set of nonnegative integers and the set of the integers,

respectively.

A semigroup is a pair (S,+), where S is a nonempty set and + is a binary ope-

ration defined on S verifying the associative law, that is, for all a,b,c ∈ S we have

a+(b+ c) = (a+ b)+ c. If there exists an element t ∈ S such that t + s = s+ t = s

for all s ∈ S we say that (S,+) is a monoid. This element is usually denoted by 0. In

addition, S is a commutative monoid if for all a,b ∈ S, a+ b = b+ a. An example

of a commutative monoid is (N,+). All semigroups and monoids considered in this

work are commutative. A submonoid of a monoid S is a subset A of S such that 0 ∈ A

and for every a,b ∈ A we have that a+b ∈ A.

Given a nonempty subset A of a monoid S, the monoid generated by A is the least

(with respect to set inclusion) submonoid of S containing A, which turns out to be the

intersection of all submonoids of S containing A. It follows easily that

〈A〉= {λ1x1 + · · ·+λnxn | n ∈ N\{0},x1, . . . ,xn ∈ A and λ1, . . . ,λn ∈ N}.

The set A is a system of generators of S if < A >= S, and we will say that S is

generated by A. A monoid S is finitely generated if there exists a system of generators
21
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of S with finitely many elements. Moreover, we say that A is a minimal system of

generators of S if no proper subset of A generates S.

Given two monoids X and Y , a map f : X → Y is a monoid homomorphism if

f (a+ b) = f (a) + f (b) for all a,b ∈ X and f (0) = 0. We say that f is a monoid

isomorphism if f is bijective.

A numerical semigroup is a submonoid of (N,+) such that the greatest common

divisor of its elements is equal to one, that is, < A > is a numerical semigroup if and

only if gcd(A) = 1.

PROPOSITION 1. Every nontrivial submonoid of N is isomorphic to a numerical

semigroup.

The following result gives us alternative ways of defining a numerical semigroup.

PROPOSITION 2. Let S a submonoid ofN. The following conditions are equivalent:

(1) S is a numerical semigroup,

(2) the group spanned by S is Z,

(3) N\S is finite.

If a1 < a2 < · · · < ak are integers, we denote by {a1,a2, . . . ,ak,→} the set

{a1,a2, . . . ,ak}∪{z ∈ Z | z > ak}. The submonoid < 3,7 >= {0,3,6,7,9,10,12,→}

is an example of a numerical semigroup.

Let A and B be subsets of integer numbers. To denote the set

{a+b : a ∈ A, b ∈ B} we use A+B.

LEMMA 3. Let S be a numerical semigroup. Then (S\{0})\(S\{0}+ S\{0}) is

a system of generators of S. Furthermore, every system of generators of S contains

(S\{0})\(S\{0}+S\{0}).

Taking in account Proposition 2 it makes sense to consider the greatest integer not

belonging to S. We call this element the Frobenius number of S and it is denoted by
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F(S). The cardinality of the set N\S is called the genus of S (or gender of S) and is

denoted by g(S). The elements in this set are called the gaps of a numerical semigroup.

The next lemma appears in [38] and is easy to prove.

LEMMA 4. Let S and T be numerical semigroups. Then

(1) S∩T is a numerical semigroup;

(2) if S 6= N then S∪{F(S)} is a numerical semigroup.

Given n ∈ S\{0}, the Apéry set (named so in honour of [1]) of S with respect to n

is defined by

Ap(S,n) = {s ∈ S | s−n 6∈ S}.

It is easy to prove (see for instance [38]) the following result.

LEMMA 5. Let S be a numerical semigroup and let n be a nonzero element of S.

Then, Ap(S,n) = {0 = w(0),w(1), . . . ,w(n−1)}, where w(i) is the least element of S

congruent with i modulo n, for all i ∈ {0, . . . ,n−1}.

Observe that the above lemma in particular implies that the cardinality of Ap(S,n)

is n. With this result, we easily deduce the following.

LEMMA 6. Let S be a numerical semigroup and let n ∈ S\{0}. Then for all s ∈ S,

there exists a unique (k,w) ∈ N×Ap(S,n) such that

s = kn+w.

The set Ap(S,n) determines completely the semigroup S, since S =< Ap(S,n)∪

{n} >. Moreover, Ap(S,n) contains in general more information that an arbitrary set

of generators of S.

REMARK 7. If S is a numerical semigroup, x ∈ S\{0} then Ap(S,x) =

{w(0) = 0,w(1), . . . ,w(x−1)}. From Lemma 6 we have that an integer z is in S if

and only if z≥ w(z mod x).



24 1. PRELIMINARIES

As Lemma 3 states that (S\{0})\(S\{0}+ S\{0}) is the minimal system of ge-

nerators and as S =< Ap(S,n)∪ {n} >, for any n ∈ S\{0}, we have the following

result.

THEOREM 8. Every numerical semigroup admits a unique minimal system of ge-

nerators. This minimal system of generators is finite.

From Proposition 1 and Theorem 8 we obtain the following consequence.

COROLLARY 9. Let S be a submonoid of (N,+). Then S has a unique minimal

system of generators, which in addiction is finite.

Let S be a numerical semigroup. The cardinality of the minimal system of genera-

tors of S is called embedding dimension of S, and is denoted by e(S). The smallest

nonzero element of S is called the multiplicity of S and is denoted by m(S).

The next result is due to Selmer [44] and can be used to compute F(S) and g(S),

from one of the Apéry sets of the numerical semigroup S.

PROPOSITION 10. Let S be a numerical semigroup and let n be a nonzero element

of S. Then

(1) F(S) = max(Ap(S,n))−n;

(2) g(S) = 1
n(∑w∈Ap(S,n)w)− n−1

2 .

We say that a numerical semigroup S has a monotonic Apéry set if w(1)< w(2)<

.. . < w(m(S)−1), with {0,w(1), . . . ,w(m(S)−1)}= Ap(S,m(S)).

Let S be a numerical semigroup. Following the notation introduced in [29], we say

that the pseudo-Frobenius numbers of S are the elements of the set

PF(S) = {x ∈ Z\S | x+ s ∈ S for every s ∈ S\{0}}.

The cardinality of the previous set is an important invariant of S called the type of

S denoted by t(S). From the definition it easily follows that F(S) ∈ PF(S), in fact, it

is the maximum of this set.
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Let S be a numerical semigroup. We define in Z the following relation:

a≤S b if b−a ∈ S.

As noticed in [38], ≤S is an order relation (i.e. reflexive, antisymmetric and tran-

sitive). From the definition of PF(S), it easily follows that the elements are those

maximal gaps with respect to ≤S. A characterization in terms of the Apéry set already

appears in [[15], Proposition 7].

LEMMA 11. Let S be a numerical semigroup and let x be a nonzero element of S .

Then

PF(S) = {w− x | w ∈max≤SAp(S,x)}

From previous lemma we obtain an upper bound from the type of a numerical

semigroup, we have that t(S)≤ m(S)−1.

2. Irreducible numerical semigroups

One type of numerical semigroups which are among the most studied are the ir-

reducible numerical semigroups for their relevance in ring theory. A numerical se-

migroup is irreducible if it cannot be expressed as an intersection of two numerical

semigroups properly containing it. The next result shows that the irreducible numeri-

cal semigroups are maximal in the set of numerical semigroups with fixed Frobenius

number.

THEOREM 12. [[28], Theorem 1] The following conditions are equivalent:

(1) S is irreducible;

(2) S is maximal in the set of all numerical semigroups with Frobenius number

F(S);

(3) S is maximal in the set of all numerical semigroups that do not contain F(S).

A numerical semigroup S is symmetric (respectively, pseudo-symmetric) if it is

irreducible and F(S) is odd (respectively, even).
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PROPOSITION 13. [[38], Proposition 4.4] Let S be a numerical semigroup.

(1) S is symmetric if and only if F(S) is odd and x ∈ Z\S implies F(S)− x ∈ S;

(2) S is pseudo-symmetric if and only if F(S) is even and x ∈ Z\S implies that

either F(S)− x ∈ S or x = F(S)
2 .

Sometimes the previous proposition is used as definition of the concepts of sym-

metric and pseudo-symmetric numerical semigroups.

The next result gives us a relation between the genus and the Frobenius number of

irreducible numerical semigroups.

PROPOSITION 14. [[38], Corollary 4.5] Let S be a numerical semigroup.

(1) S is symmetric if and only if g(S) =
F(S)+1

2
.

(2) S is pseudo-symmetric if and only if g(S) =
F(S)+2

2
.

3. Families of numerical semigroups closed under finite intersections and for the

Frobenius number

The results presented in this section can be found in [27].

A Frobenius variety is a nonempty set V of numerical semigroups fulfilling the

following conditions:

(1) if S and T are in V , then so is S∩T ;

(2) if S is in V and it is not equal to N, then S∪{F(S)} is in V .

Clearly the set of all numerical semigroups is a Frobenius variety.

From 2) of Lemma 4, given a numerical semigroup S, we define recursively the

following sequence of numerical semigroups:

• S0 = S,

• If Si 6= N, then Si+1 = Si∪{F(Si)}.

SinceN\S is finite, we obtain a finite chain of numerical semigroups S = S0( S1(

S2, · · · ,( Sn = N. Denote by C (S) the set {S0,S1, . . . ,Sn}.
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The following results can be deduced from the definition of Frobenius variety.

LEMMA 15. If V is a Frobenius variety and S ∈ V , then C (S)⊆ V .

As a consequence of the above lemma we deduce that N belongs to every Frobe-

nius variety and therefore the intersection of Frobenius varieties is always a nonempty

family of numerical semigroups.

PROPOSITION 16. The intersection of Frobenius varieties is a Frobenius variety.

From 1) of Lemma 4 is easy to prove that a finite intersection of numerical semi-

groups is also a numerical semigroup. Note that nonfinite intersections of numerical

semigroups are not in general a numerical semigroup as it is shown in the following

example. Nevertheless, they are always submonoids of N.

EXAMPLE 17. For every n ∈ N, we have that {0,n,→} is a numerical semigroup.

It is also easy to prove that ∩n∈N {0,n,→}= {0}.

Let V be a Frobenius variety, we will say that a submonoid M of N is a V -monoid

if it can be expressed as an intersection of elements of V .

The following result is easy to prove.

LEMMA 18. The intersection of V -monoids is also a V -monoid.

From this result we have the following definition. Let A be a subset of N. The

V -monoid generated by A is the intersection of all the V -monoids containing A.

Denote such a V -monoid by V (A). If M = V (A), then we say that A is a V -system

of generators of M. As every submonoid of N is finitely generated, we obtain the

following result.

PROPOSITION 19. Every V -monoid has a finite V -system of generators.
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If no proper subset of A is a V -system of generators of M, then we say that A is a

minimal V -system of generators of M.

THEOREM 20. Every V -monoid has a unique minimal V -system of generators

and this set is finite.

PROPOSITION 21. Let M be a V -monoid and x ∈ M. The set M\{x} is a V -

monoid if and only if x belongs to the minimal V -system of generators of M.

COROLLARY 22. Let S be a numerical semigroup. The following statements are

equivalent:

(1) S = S
′ ∪
{

F(S
′
)
}

, for some S
′ ∈ V ;

(2) S ∈ V and the minimal V -system of generators of S contains an element

greater than F(S).

A graph G is a pair (V,E), where V is a nonempty set whose elements are called

vertices, and E is a subset of {(v,w) ∈V ×V | v 6= w}. The elements of E are called

edges of G. A path of length n connecting the vertices x and y of G is a sequence

of distinct edges of the form (v0,v1), (v1,v2),. . .,(vn−1,vn) with v0 = x and vn = y. A

graph G is a tree if there exists a vertex r (known as the root of G) such that for every

other vertex x of G, there exist a unique path connecting x and r. If (x,y) is an edge of

a tree, then we say that x is a child of y. A binary tree is a rooted tree in which every

vertex has 0, 1 or 2 childs. A vertex with no childs is a leaf.

Given a Frobenius variety V , define G(V ) the associated graph to V in the follo-

wing way: the set of vertices of G(V ) is V and (S
′
,S) ∈V ×V is an edge of G(V ) if

and only if S = S
′ ∪
{

F(S
′
)
}

. From Corollary 22 we have the following result.

THEOREM 23. Let V be a Frobenius variety. The graph G(V ) is a tree with

root equal to N. Furthermore, the children of a vertex S ∈ V are S\{x1} , . . . ,S\{xr}

where x1, . . . ,xr are the elements of the minimal V -system of generators of S which are

greater that F(S).



CHAPTER 2

Saturated numerical semigroups

We start this chapter by recalling some results that appear in [41]. This allows us

to introduce the concept of SAT system of generators for a saturated numerical semi-

group and we will show that the set of saturated numerical semigroups is a Frobenius

variety. This fact with the results from [27] enable us to arrange the set of all saturated

numerical semigroups in a tree rooted in N.

In Section 2, and from previous results, we present an algorithm for computing the

set of saturated numerical semigroups of a given genus. The results from this section

appear in [31].

Finally, in Section 3, we collect the results presented in [32]. In particular we give

an efficient algorithmic method that, for a positive integer F , computes the whole set of

saturated numerical semigroups with Frobenius number F . This is achieved by means

of F-saturated sequences, associating to each one a saturated numerical semigroup.

1. Characterization of saturated numerical semigroups

In this section we give a characterization of saturated numerical semigroups, then

we point out that the intersection of two saturated numerical semigroups is again sa-

turated. This allows us to introduce the concept of a SAT system of generators of

a saturated numerical semigroup. Then we will show that every saturated numerical

semigroup has a unique minimal SAT system of generators. This will support the con-

cept of SAT rank of a saturated numerical semigroup. Finally, we present a recursive
29
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method for computing the set of all saturated numerical semigroups, and arrange it in

a binary tree rooted in N with no leaves.

1.1. A characterization. A numerical semigroup S is saturated if the following

condition holds: if s,s1, . . . ,sr ∈ S are such that si ≤ s for all i ∈ {1, . . . ,r} and

z1, . . . ,zr ∈ Z are such that z1s1 + · · ·+ zrsr ≥ 0, then s+ z1s1 + · · ·+ zrsr ∈ S.

For A⊆ N and a ∈ A, set

dA(a) = gcd{x ∈ A|x≤ a}

THEOREM 24. [[41], Lemma 4] Let A be a nonempty subset of N such that 0 ∈ A

and gcd(A) = 1. The following conditions are equivalent:

1 ) A is a saturated numerical semigroup.

2 ) a+dA(a) ∈ A for all a ∈ A.

3 ) a+ kdA(a) ∈ A for all a ∈ A and k ∈ N.

1.2. SAT system of generators. Our next aim is to introduce the concept of a SAT

system of generators for a saturated numerical semigroup. In order to do this we first

need to prove that for a given X ⊆N with gcd(X) = 1, there exists a least (with respect

to inclusion) saturated numerical semigroup that contains X . The best candidate is the

intersection of all saturated numerical semigroups that contain X .

The next result is easy to prove.

PROPOSITION 25. [[41], Proposition 5] Let S1 and S2 be two saturated numerical

semigroups. Then S = S1∩S2 is a saturated numerical semigroup.

Let X be a subset of N such that gcd(X) = 1. Then every saturated numerical

semigroup containing X must also contain < X >, and thus there are finitely many

of them. We denote by Sat(X) the intersection of all saturated numerical semigroups

containing X , and call it the saturated closure of X . Observe that Sat(X) = Sat(<

X >). Clearly, we have that Sat(X) is the smallest saturated semigroup containing X .
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If S is a saturated numerical semigroup and X is a subset ofN such that gcd(X) = 1

and Sat(X) = S, then we will say that X is a SAT system of generators of S. We say

that X is a minimal SAT system of generators if in addition no proper subset of X is

a SAT system of generators of S. It is well known that every numerical semigroup is

finitely generated (as a semigroup). Hence for a given numerical semigroup S, there

exists {n1, . . . ,np} ⊂ N such that S =< n1, . . . ,np >. If S is a saturated numerical se-

migroup, then clearly Sat(n1, . . . ,np) = Sat(S) = S, and thus every saturated numerical

semigroup admits a finite SAT system of generators. Note that if X is a SAT system of

generators of S, then < X > does not have to be equal to S = Sat(X).

THEOREM 26. [[41], Theorem 6] Let n1 < n2 < · · · < np be positive in-

tegers such that gcd(n1, . . . ,np) = 1. For every i ∈ {1, . . . , p}, set di =

gcd(n1, . . . ,ni) and for all j ∈ {1, . . . , p− 1} define k j = max{k ∈ N | n j + kd j <

n j+1}. Then Sat(n1, . . . ,np) = {0,n1,n1 + d1, . . . ,n1 + k1d1,n2,n2 + d2, . . . ,n2 +

k2d2, . . . ,np−1,np−1 +dp−1, . . . ,np−1 + kp−1dp−1,np,np +1,→}.

EXAMPLE 27. Let {n1,n2,n3}= {4,10,23}. Then d1 = 4, d2 = 2, d3 = 1, k1 = 1

and k2 = 6. Hence Sat(4,10,23) = {0,4,8,10,12,14,16,18,20,22,23,24,→}.

It may happen that one is interested in the minimal system of generators (as

a semigroup) of Sat(X). From [26] one can deduce that if m = min(X\{0}) (=

min(Sat(X)\{0})), then the minimal system of generators of S = Sat(X) is A =

{m}∪ ({s ∈ S | s−m /∈ S}\{0}).

Observe that the cardinality of A is m. Theorem 26 allows us to compute Sat(X).

Therefore if we want to find out which are the elements of A, is suffices to look at the

first m elements in Sat(X) such that subtracting m from them, the resulting integers

are no longer in Sat(X). In the preceding example, S = Sat(4,10,23), m = 4 and

{s ∈ S | s−m /∈ S}= {0,10,23,25}. Thus Sat(4,10,23) =< 4,10,23,25 >.
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1.3. The rank of a saturated numerical semigroup. We start by showing that

every saturated numerical semigroup has a unique minimal SAT system of generators.

THEOREM 28. [[41], Theorem 11] Let S be a saturated numerical semigroup.

Then {s1, . . . ,sr} = {s ∈ S\{0} | dS(s) 6= dS(s′) for all s′ < s, s′ ∈ S} is the unique

minimal SAT system of generators of S.

EXAMPLE 29. Let S be the saturated numerical semigroup

S = {0,4,8,10,12,14,16,18,20,22,23,24,→}.

It follows that dS(4) = 4 = dS(8), dS(10) = . . . = dS(22) = 2 and dS(23) = 1 =

dS(23+ n) for all n ∈ N. By Theorem 28 the minimal SAT system of generators is

{4,10,23}.

Using Theorem 28 it makes sense to define the SAT rank of a saturated numerical

semigroup S by the cardinality of its minimal SAT system of generators, which we will

denote by SAT-rank(S).

Using Theorem 26 for the description of Sat(n1, . . . ,np) and Theorem 28 we have

the following result.

COROLLARY 30. [[41], Corollary 14] Let n1 < n2 < · · ·< np be positive integers

with greatest common divisor one. Then {n1, . . . ,np} is the minimal SAT systems of

generators of Sat(n1, . . . ,np) if and only if gcd(n1, . . . ,ni) 6= gcd(n1, . . . ,ni,ni+1) for

all i ∈ {1, . . . , p−1}.

The following result is a reformulation of Theorem 26 and will be useful in the

next sections.

LEMMA 31. Let n1 < n2 < · · · < np be positive integers such that

gcd
{

n1, . . . ,np
}
= 1. For every i ∈ {1, ..., p} let di = gcd{n1, . . . ,ni}. Then

Sat
({

n1, ...,np
})

= {0}∪ (n1 + 〈d1〉)∪·· ·∪ (np +
〈
dp
〉
).
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1.4. The tree of saturated numerical semigroups. Now we are going to show

that the set of saturated numerical semigroups may be viewed as a binary tree rooted

in N with no leaves. First we show how to construct the father of any non-root vertex.

Repeating the process yields the path connecting the given vertex to the root.

The next result is easy to prove.

PROPOSITION 32. [[41], Proposition 17] Let S 6= N be a saturated numerical se-

migroup. Then S = S∪{F(S)} is also saturated.

For a given numerical semigroup S, recall that Sn was defined recursively by

• S0 = S,

• If Si 6= N, then Si+1 = Si∪{F(Si)}.

Clearly, there exists k ∈ N such that Sk = N. If in addiction S is a saturated nume-

rical semigroup, Proposition 32 states that S = S0 ⊆ S1 ⊆ ·· · ⊆ Sk = N is a chain of

saturated numerical semigroups. Moreover, Si = Si+1\{a} for some a ∈ Si+1 (a beco-

mes the Frobenius number of Si). This idea motivates the next result, which explains

how the childs of a vertex in the tree are constructed.

PROPOSITION 33. [[41], Proposition 18] Let S be a saturated numerical semi-

group. The following conditions are equivalent.

1 ) S = S′∪{F(S′)} with S′ a saturated numerical semigroup,

2 ) the minimal SAT system of generators of S contains an element greater than

F(S).

The previous proposition allows us to construct recursively the tree containing the

set L of all saturated numerical semigroups. As we have seen before, the graph G(L)

is defined in the following way: the set of vertices of G(L) is L and (T,S) ∈ L×L is

a edge of G(L) if and only if T ∪{F(T )}= S.

With all this information the following property is easy to prove.
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LEMMA 34. The graph G(L) is a tree with root equal to N. Furthermore, the

childs of a vertex S ∈ L are S\{x1} , . . . ,S\{xr} where x1, . . . ,xr are the elements of

the minimal SAT-system of generators of S which are greater that F(S).

From Lemma 31 (see also Theorem 26) we easily deduce the following.

LEMMA 35. Let S be a saturated numerical semigroup with minimal SAT-system

of generators A =
{

n1 < · · ·< np
}

and let X = {ni ∈ A | ni > F(S)}. Then
{

np
}
⊆

X ⊆
{

np−1,np
}

. Furthermore, np−1 ∈ X if and only if np−1 = np−1.

REMARK 36. Note that as an immediate consequence of Lemmas 34 and 35, we

have that if S is an element of L then S has 1 or 2 childs and thus G(L) is a binary tree

with no leaves.

EXAMPLE 37. Let S=Sat
(
{4,10,23}

)
. Then 23 is the unique element in minimal

SAT-system of generators of S greater that F(S). Hence S ∈ L has a unique child, that

is, S\{23}.

EXAMPLE 38. Let S=Sat
(
{8,12,14,15}

)
. Then 14 and 15 are the elements in

minimal SAT-system of generators of S greater that F(S). Therefore, the childs of

S ∈ L are S\{14} and S\{15} .

2. The set of saturated numerical semigroups of a given genus

Our goal in this section is to find a way to compute the set of all saturated numerical

semigroups with a given genus. We will use Proposition 33 to build recursively a tree

rooted in N of the saturated numerical semigroups. The results presented can be found

in [31].

2.1. A method for computing the set of all saturated numerical semi-

groups of a given genus. Let g be a positive integer and L(g) be the set of

all saturated numerical semigroups with a genus g. It is clear that L(g + 1) =
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{S′ | S′ is child of an element of L(g)}. This fact allows us to recursively construct

L(g), starting in L(0) = {N}.

Sat(1) = N

Sat(2,3)

OO

Sat(3,4)

99

Sat(2,5)

dd

Sat(4,5)

::

Sat(3,5)

ee

Sat(2,7)

cc

Sat(5,6)

;;

Sat(4,6,7)

dd

Sat(3,7)

dd

Sat(2,9)

cc

· · ·
<<

· · · · · ·
ff 88

· · ·
gg

· · ·
ff

· · ·
bb

Our next aim is to describe the minimal SAT-systems of generators of the childs of

a given saturated numerical semigroup from its minimal SAT-system of generators.

PROPOSITION 39. Let S be a saturated numerical semigroup with minimal SAT-

system of generators
{

n1 < · · ·< np
}

and let dp−1 = gcd
{

n1, . . . ,np−1
}

. Then the

minimal SAT-system of generators of S\
{

np
}

is equal to:

1)
{

n1 < · · ·< np−1 < np +2
}

if dp−1|np +1;

2)
{

n1 < · · ·< np−1 < np +1
}

if gcd
{

dp−1,np +1
}
= 1;

3)
{

n1 < · · ·< np−1 < np +1 < np +2
}

in the other cases.

PROOF. As a consequence of Lemma 31 we have that S\
{

np
}

=

Sat
({

n1, . . . ,np−1,np +1,np +2
})

.

1) If dp−1|np + 1 then gcd
{

n1, . . . ,np−1
}

= dp−1 =

gcd
{

n1 . . . ,np−1,np +1
}

. By applying Lemma 31, we get that

S\
{

np
}
= Sat

({
n1, . . . ,np−1,np +2

})
and, from Corollary 30, we de-

duce that
{

n1, . . . ,np−1,np +2
}

is the minimal SAT-system of generators of

S\
{

np
}

.
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2) If gcd
{

dp−1,np +1
}
= 1 then, in view of Lemma 31, we obtain that

S\
{

np
}
= Sat

({
n1, . . . ,np−1,np +1

})
. By applying Corollary 30 this im-

plies that
{

n1, . . . ,np−1,np +1
}

is the minimal SAT-system of generators of

S\
{

np
}

;

3) From Corollary 30 it follows that
{

n1, . . . ,np−1,np +1,np +2
}

is the mini-

mal SAT-system of generators of S\
{

np
}

.

�

REMARK 40. Note that as a consequence of the previous proposition we have that

SAT-rank(S)≤SAT-rank(S\
{

np
}
)≤SAT-rank(S)+1.

EXAMPLE 41. 1) If S = Sat
(
{8,12,15}

)
then, by applying Proposition 39,

we have that S\{15}= Sat
(
{8,12,17}

)
.

2) If S = Sat
(
{6,9,19}

)
then, in view of Proposition 39, we obtain that

S\{19}= Sat
(
{6,9,20}

)
.

3) If S = Sat
(
{8,12,17}

)
then , using again Proposition 39, we deduce that

S\{17}= Sat
(
{8,12,18,19}

)
.

Recall that, as a consequence of Lemmas 34 and 35, we deduce that, if S is a sa-

turated numerical semigroup with minimal SAT-system of generators
{

n1 < · · ·< np
}

then S\
{

np
}

is always child of S. Besides, S\
{

np−1
}

is another child of S if and only

if np−1 = np−1.

PROPOSITION 42. Let S be a saturated numerical semigroup with minimal SAT-

system of generators
{

n1 < · · ·< np
}

such that np−1 = np − 1. Then the minimal

SAT-system of generators of S\
{

np−1
}

is equal to:

a) {n1 +1,n1 +2} if p = 2;

b) If p≥ 3 and dp−2 = gcd
{

n1, . . . ,np−2
}

then:

b.1)
{

n1 < · · ·< np−2 < np
}

if gcd
{

dp−2,np
}
= 1;

b.2)
{

n1 < · · ·< np−2 < np < np +1
}

in the other cases.



2. THE SET OF SATURATED NUMERICAL SEMIGROUPS OF A GIVEN GENUS 37

PROOF. a) Since S = Sat
(
{n1,n1 +1}

)
, from Lemma 31, it follows that

S\{n1}= Sat
(
{n1 +1,n1 +2}

)
.

b) In view of Lemma 31, we get that S\
{

np−1
}

=

Sat
({

n1, . . . ,np−2,np,np +1
})

.

b.1) If gcd
{

dp−2,np
}

= 1 then, by applying Lemma 31, we have

S = Sat
({

n1, . . . ,np−2,np
})

and, from Corollary 30, we obtain

that
{

n1, . . . ,np−2,np
}

is the minimal SAT-system of generators of

S\
{

np−1
}

.

b.2) Observe that in this setting dp−2 6= gcd
{

n1, . . . ,np−2,np
}

, since

otherwise 1 = gcd
{

n1, . . . ,np−2,np−1,np
}

= gcd
{

dp−2,np−1
}

=

gcd
{

n1, . . . ,np−2,np−1
}

, which is absurd. Therefore, if

gcd
{

dp−2,np
}
6= 1 then, using Corollary 30 once more, we have

that
{

n1, . . . ,np−2,np,np +1
}

is the minimal SAT-system of generators

of S\
{

np−1
}

.

�

REMARK 43. Observe that as a consequence of the previous proposition we have

that SAT-rank(S)−1≤SAT-rank(S\
{

np−1
}
)≤SAT-rank(S).

EXAMPLE 44. 1) If S = Sat
(
{5,6}

)
then, by applying Proposition 42, we

have that S\{5}= Sat
(
{6,7}

)
.

2) If S = Sat
(
{4,6,7}

)
then, by using Proposition 42, we get that S\{6} =

Sat
(
{4,7}

)
.

3) If S = Sat
(
{6,8,9}

)
then, using again Proposition 42, we obtain that

S\{8}= Sat
(
{6,9,10}

)
.

2.2. An algorithm to compute L(g). Our next goal is to describe an algorithmic

procedure to compute all the elements in L(g). Clearly N = Sat
(
{1}

)
has a uni-

que child, which is Sat
(
{2,3}

)
= {0,2,→}. Furthermore, if S ∈ L and S 6= N then

SAT-rank(S) ≥ 2. As we have mentioned before, if we know L(g− 1) then we can
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compute L(g), simply computing all childs of L(g−1). From Propositions 39 and 42,

we can conclude that, we need to know dp−1 and in some cases dp−2 to compute the

childs of a saturated numerical semigroups S with minimal SAT-system of generators{
n1 < · · ·< np

}
. To avoid having to make this calculation continuously and to maxi-

mize the efficiency of computation, we introduce the concept of α-representation of a

saturated numerical semigroup.

Let S 6= N be a saturated numerical semigroup, an α-representation of S is[
(n1,n2, . . . ,np),(x1,x2 . . . ,xp−1)

]
such that

{
n1 < n2 < · · ·< np

}
is the minimal SAT-

system of generators of S and xi = gcd
{

n1, . . . ,np−i
}

for all i ∈ {1, . . . , p−1}. Note

that x1 = gcd
{

n1, . . . ,np−1
}
= dp−1 and x2 = gcd

{
n1, . . . ,np−2

}
= dp−2.

Now we give a method that, from an α-representation of a saturated numerical

semigroup, allows to calculate the α-representations of its childs.

As an immediate consequence of Proposition 39, we have the following.

LEMMA 45. Let
[
(n1, . . . ,np),(x1, . . . ,xp−1)

]
be an α-representation of a saturated

numerical semigroup S 6= N. Then the α-representation of (S\
{

np
}
) is equal to:

1)
[
(n1, . . . ,np−1,np +2),(x1, . . . ,xp−1)

]
if x1|np +1;

2)
[
(n1, . . . ,np−1,np +1),(x1, . . . ,xp−1)

]
if gcd

{
x1,np +1

}
= 1;

3)
[
(n1, . . . ,np−1,np + 1,np + 2),(gcd

{
x1,np +1

}
,x1, . . . ,xp−1)

]
in the other

cases.

EXAMPLE 46. 1) If S = Sat
(
{8,12,15}

)
then the α-representation of S

is
[
(8,12,15),(4,8)

]
. By Applying Lemma 45, we have that the α-

representation of S\{15} is
[
(8,12,17),(4,8)

]
.

2) If S = Sat
(
{6,9,19}

)
then the α-representation of S is

[
(6,9,19),(3,6)

]
.

From Lemma 45, we obtain that the α-representation of S\{19} is[
(6,9,20),(3,6)

]
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3) If S = Sat
(
{8,12,17}

)
then the α-representation of S is

[
(8,12,17),(4,8)

]
.

By Lemma 45 again, we get that the α-representation of S\{17} is[
(8,12,18,19),(2,4,8)

]
.

As a consequence of Proposition 42, we easily deduce the next result.

LEMMA 47. Let
[
(n1, . . . ,np),(x1, . . . ,xp−1)

]
be an α-representation of a saturated

numerical semigroup S 6= N such that np−1 = np− 1. Then the α-representation of

(S\
{

np−1
}
) is equal to:

a)
[
(n1 +1,n1 +2),(n1 +1)

]
if p = 2;

b)
[
(n1, . . . ,np−2,np),(x2, . . . ,xp−1)

]
if p≥ 3 and gcd

{
x2,np

}
= 1;

c)
[
(n1, . . . ,np−2,np,np +1),(gcd

{
x2,np

}
,x2, . . . ,xp−1)

]
in the other cases.

EXAMPLE 48. 1) If S = Sat
(
{5,6}

)
then the α-representation of S is[

(5,6),(5)
]
. Applying Lemma 47, we have that the α-representation of

S\{5} is
[
(6,7),(6)

]
.

2) If S = Sat
(
{4,6,7}

)
then the α-representation of S is

[
(4,6,7),(2,4)

]
. By

Lemma 47, we obtain that the α-representation of S\{6} is
[
(4,7),(4)

]
.

3) If S = Sat
(
{6,8,9}

)
then the α-representation of S is

[
(6,8,9),(2,6)

]
.

Using again Lemma 47, we get that the α-representation of S\{8} is[
(6,9,10),(3,6)

]
.

We are ready to give the announced algorithm which shows how to compute L(g).

ALGORITHM 49. Input: g a positive integer.

Output: L(g).

1) A = {[(2,3),(2)]}, i = 1, B = /0.

2) If i = g then return A.

3) For each [(n1, . . . ,np),(x1, . . . ,xp−1)] ∈ A do

3.1) If x1|np +1 then

B = B∪
{
[(n1, . . . ,np−1,np +2),(x1, . . . ,xp−1)]

}
and go to Step 3.4).
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3.2) If gcd
{

x1,np +1
}
= 1 then

B = B∪
{
[(n1, . . . ,np−1,np +1),(x1, . . . ,xp−1)]

}
and go to Step 3.4).

3.3) B=B∪
{
[(n1, . . . ,np−1,np +1,np +2),(gcd

{
x1,np +1

}
,x1, . . . ,xp−1)]

}
.

3.4) If np−1 6= np−1 go to Step 4).

3.5) If p = 2 then B = B∪{[(n1 +1,n1 +2),(n1 +1)]} and go to Step 4).

3.6) If gcd
{

x2,np
}
= 1 then

B = B∪
{
[(n1, . . . ,np−2,np),(x2, . . . ,xp−1)]

}
and go to Step 4).

3.7) B = B∪
{
[(n1, . . . ,np−2,np,np +1),(gcd

{
x2,np

}
,x2, . . . ,xp−1)]

}
.

4) A = B, i = i+1, B = /0 and go to Step 2).

EXAMPLE 50. Let us compute all saturated numerical semigroups with genus 10.

First, and using Algorithm 49, we compute the α-representation of all saturated

numerical semigroups with genus less than 10 (denoted here by Ai);

. for i = 1 then A1 = {[(2,3),(2)]};

. for i = 2 then A2 = {[(2,5),(2)], [(3,4),(3)]};

. for i = 3 then A3 = {[(2,7),(2)], [(3,5),(3)], [(4,5),(4)]};

. for i = 4 then

A4 = {[(2,9),(2)], [(3,7),(3)], [(4,6,7),(2,4)], [(5,6),(5)]};

. for i = 5 then

A5 = {[(2,11),(2)], [(3,8),(3)], [(4,6,9),(2,4)], [(4,7),(4)],

[(5,7),(5)], [(6,7),(6)]};

. for i = 6 then

A6 = {[(2,13),(2)], [(3,10),(3)], [(4,6,11),(2,4)], [(4,9),(4)],

[(5,8),(5)], [(6,8,9),(2,6)], [(7,8),(7)]};

. for i = 7 then

A7 = {[(2,15),(2)], [(3,11),(3)], [(4,6,13),(2,4)], [(4,10,11),(2,4)],

[(5,9),(5)], [(6,8,11),(2,6)], [(6,9,10),(3,6)][(7,9),(7)], [(8,9),(8)]};

. for i = 8 then

A8 = {[(2,17),(2)], [(3,13),(3)], [(4,6,15),(2,4)], [(4,10,13),(2,4)],
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[(4,11),(4)], [(5,11),(5)], [(6,8,13),(2,6)], [(7,10),(7)], [(8,10,11),

(2,8)], [(9,10),(9)], [(6,9,11),(3,6)], [(6,10,11),(2,6)]};

. for i = 9 then

A9 = {[(2,19),(2)], [(3,14),(3)], [(4,6,17),(2,4)], [(4,10,15),(2,4)],

[(4,13),(4)], [(5,12),(5)], [(6,8,15),(2,6)], [(7,11),(7)], [(8,10,13)(2,8),

[(8,11),(8)], [(9,11),(9)], [(10,11),(10)], [(6,11),(6)], [(6,10,13),(2,6)],

[(6,9,13),(3,6)]}.

And from this we get the minimal SAT-system of generators of the set of saturated

numerical semigroups with genus 10,

{{2,21} ,{3,16} ,{4,6,19} ,{4,10,17} ,{4,14,15} ,{5,13} ,{6,8,17} ,{7,12} ,{8,10,15} ,

{8,12,13} ,{9,12,13} ,{10,12,13} ,{11,12}{6,13} ,{6,10,15} ,{6,9,14}} ,

which are the childs of elements in A9.

Finally, we present the results of some computational experiments performed to

analyze the apllicability of the algorithm previously proposed. These functions were

implemented in GAP [12] and [17] and compute all saturated numerical semigroups

with a given genus.

For Genus 10,

gap> Length(SaturatedNumericalSemigroupsWithFixedGenus(10)); 16

takes 0 ms, while computing the set of all saturated numerical semigroups with

genus and then filtering those that are saturated takes 31 ms.

gap> Length(Filtered(NumericalSemigroupsWithGenus(10),IsSaturatedNumericalSemigroup));

16

As for 15 we get also 0 ms for

gap> Length(SaturatedNumericalSemigroupsWithFixedGenus(15)); 40

while it takes 390 ms for

gap> Length(Filtered(NumericalSemigroupsWithGenus(15),IsSaturatedNumericalSemigroup));

40
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For 25 we still get 0 ms with

gap> Length(SaturatedNumericalSemigroupsWithFixedGenus(25)); 130

while it takes 100735 ms with

gap> Length(Filtered(NumericalSemigroupsWithGenus(25),IsSaturatedNumericalSemigroup));

130

For genus 30 the time with this algorithm is also 0 ms while with the filtering was

not possible to calculate because it gets an error message

”Error, exceeded the permitted memory”.

In the following table there are the results obtained for genus up to 150. For each

positive integer g we wrote the number of saturated numerical semigroups (ng) of the

given genus (g).

g ng g ng g ng g ng g ng g ng g ng g ng g ng g ng

1 1 16 43 31 228 46 701 61 1717 76 3634 91 6900 106 12057 121 20106 136 31790

2 2 17 51 32 251 47 757 62 1815 77 3805 92 7175 107 12503 122 20749 137 32758

3 3 18 56 33 272 48 805 63 1915 78 3970 93 7444 108 12939 123 21404 138 33730

4 4 19 67 34 295 49 864 64 2021 79 4163 94 7732 109 13411 124 22086 139 34755

5 6 20 78 35 324 50 918 65 2135 80 4348 95 8038 110 13886 125 22787 140 35751

6 7 21 85 36 346 51 973 66 2239 81 4532 96 8336 111 14382 126 23485 141 36764

7 9 22 91 37 373 52 1030 67 2365 82 4729 97 8669 112 14898 127 24239 142 37836

8 12 23 106 38 401 53 1103 68 2482 83 4952 98 9004 113 15441 128 24990 143 38951

9 15 24 117 39 432 54 1172 69 2599 84 5156 99 9348 114 15969 129 25753 144 40040

10 16 25 130 40 460 55 1248 70 2722 85 5373 100 9705 115 16524 130 26546 145 41170

11 21 26 143 41 500 56 1320 71 2868 86 5592 101 10083 116 17080 131 27379 146 42311

12 24 27 158 42 535 57 1385 72 3006 87 5822 102 10457 117 17634 132 28214 147 43477

13 29 28 170 43 581 58 1457 73 3158 88 6070 103 10866 118 18232 133 29081 148 44698

14 35 29 190 44 626 59 1548 74 3314 89 6345 104 11262 119 18857 134 29968 149 45956

15 40 30 205 45 662 60 1626 75 3470 90 6616 105 11643 120 19460 135 30859 150 47220

3. The set of saturated numerical semigroups with fixed Frobenius number

The main aim of this section is to give an algorithmic method that, given a

positive integer F , computes all saturated numerical semigroups with a Frobenius
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number F . The results presented in this section can be found in [32]. We alre-

ady saw that giving a saturated numerical semigroup S is equivalent to give a se-

quence of positive integers n1 < n2 < · · · < np with greatest common divisor one and

gcd{n1,n2, . . . ,ni} 6= gcd{n1,n2, . . . ,ni,ni+1} for all i ∈ {1, . . . , p−1}. In this case,

we say that
{

n1,n2, . . . ,np
}

is a minimal SAT-system of generators of S. Furthermore,

if di = gcd{n1, . . . ,ni} for each i ∈ {1, . . . , p}, then we say that S is a (d1,d2, . . . ,dp)-

semigroup.

A saturated sequence of length k, is a k-tuple of positive integers (d1,d2, . . . ,dk)

such that d1 > d2 > · · ·> dk = 1 and di+1|di for all i ∈ {1, . . . ,k−1}.

Let F be positive integer. An F-saturated sequence is a saturated sequence

(d1,d2, . . . ,dk) such that there exists at least one (d1,d2, . . . ,dk)-semigroup with Fro-

benius number F .

Let L(F) = {l | l is an F-saturated sequence}. For each l ∈ L(F) define L(l) =

{S | S is a l− semigroup with Frobenius number F }. Then
⋃

l∈L(F)L(l) is the set of

all saturated numerical semigroups with Frobenius number F . Therefore, to construct

the set of all saturated numerical semigroups with Frobenius number F , it suffices

to give an algorithmic procedure to compute all F-saturated sequences and given an

F-saturated sequence l another algorithm that allows to determine the set L(l).

3.1. Minimal SAT-system of generators. The following theorem is the key to

the development of this part of this work and describes a method that allows to obtain

the minimal SAT-system of generators of saturated numerical semigroups with a given

SAT-rank.

THEOREM 51. Let d1 > d2 > · · · > dp = 1 be integers such that di+1|di and let

t1, t2, . . . , tp be positive integers such that gcd
{

di
di+1

, ti+1

}
= 1 for all i∈ {1, . . . , p−1}.

Then
{

d1, t1d1 + t2d2, . . . , t1d1 + · · ·+ tpdp
}

is the minimal SAT-system of generators of

a saturated numerical semigroup with SAT-rank p. Furthermore every minimal SAT-

system of generators of a saturated numerical semigroup with SAT-rank p is of this

form.
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PROOF. Taking into account Corollary 30, to prove that{
d1, t1d1 + t2d2, . . . , t1d1 + · · ·+ tpdp

}
is the minimal SAT-system of ge-

nerators of a saturated numerical semigroup it suffices to show that

gcd{d1, t1d1 + t2d2, . . . , t1d1 + · · ·+ tidi} = di for all i ∈ {1, . . . , p}. We proceed

by induction on i. For i = 1, the result follows easily from the fact that gcd{d1}= d1.

Assume that the statement is true for i and let us show it for i+1. In fact,

gcd{d1, . . . , t1d1 + · · ·+ tidi, t1d1 + · · ·+ ti+1di+1}=

= gcd{gcd{d1, . . . , t1d1 + · · ·+ tidi} , t1d1 + · · ·+ ti+1di+1}=

= gcd{di, t1d1 + · · ·+ ti+1di+1}= gcd{di, ti+1di+1}=

= di+1.gcd
{

di

di+1
, ti+1

}
= di+1.

Reciprocally, let
{

n1 < n2 < · · ·< np
}

be a minimal SAT-system of generators of

a saturated numerical semigroup. Let di = gcd{n1, . . . ,ni} for all i ∈ {1, . . . , p}. It is

clear that di+1 | di and, by Corollary 30, that d1 > d2 > · · · > dp = 1. We will see

that there exist positive integers t1, . . . , tp such that n1 = d1, n2 = t1d1 + t2d2, . . . ,np =

t1d1 + · · ·+ tpdp and gcd
{

di
di+1

, ti+1

}
= 1 for all i ∈ {1, . . . , p−1}. Let t1 = 1 and

ti+1 = ni+1−ni
di+1

for all i ∈ {1, . . . , p−1}. To this end we prove by induction on i that

ni = t1d1 + · · ·+ tidi, for all i ∈ {2, . . . , p}. For i = 2 the result is clear, since t1d1 +

t2d2 = 1n1 +
n2−n1

d2
d2 = n2. Assume that the result holds for i and let us prove it for

i+ 1. As ni+1 = ni + ti+1di+1, by applying the induction hypothesis, we obtain that

ni+1 = t1d1 + · · ·+ tidi + ti+1di+1. In order to conclude the proof, it is enough to see

that gcd
{

di
di+1

, ti+1

}
= 1 for all i ∈ {1, . . . , p−1}. In fact,

di+1 = gcd{n1, . . . ,ni+1}= gcd{gcd{n1, . . . ,ni} ,ni+1}=

= gcd{di, t1d1 + · · ·+ tidi + ti+1di+1}=

= gcd{di, ti+1di+1}= di+1 gcd
{

di

di+1
, ti+1

}
.
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Therefore, gcd
{

di
di+1

, ti+1

}
= 1. �

3.2. The Frobenius number. With previous results we are able to find a formula

for the Frobenius number of a saturated numerical semigroup in terms of its minimal

SAT-system of generators.

Given integers a, b and c we denote by a≡ b mod c if a−b is a multiple of c. We

also write a|b to denote that a divides b.

PROPOSITION 52. Let S be a saturated numerical semigroup with minimal SAT-

system of generators
{

n1 < n2 < · · ·< np
}

. Let di = gcd{n1, . . . ,ni} for all i ∈

{1, . . . , p}. Then

F(S) =

{
np−1, if np 6≡ 1 mod dp−1,

np−2, if np ≡ 1 mod dp−1.

PROOF. If np 6≡ 1 mod dp−1 then np−1 6≡ 0 mod dp−1. By applying Theorem 26,

we have that np−1 6∈ S and
{

np,→
}
⊆ S. Hence F(S) = np−1.

If np ≡ 1 mod dp−1 then np− 1 ≡ 0 mod dp−1, and by using again Theorem 26,

we have that np− 1 ∈ S. From Corollary 30, we know that dp−1 ≥ 2 and thus np−

2 6≡ 0 mod dp−1. In addition, by Theorem 26, we deduce that np− 2 6∈ S and that{
np−1,np,→

}
⊆ S. Hence F(S) = np−2. �

As a consequence of the above proposition, we obtain the following result.

COROLLARY 53. Let S be a saturated numerical semigroup with minimal SAT-

system of generators
{

d1, t1d1 + t2d2, . . . , t1d1 + · · ·+ tpdp
}

fulfilling the conditions of

Theorem 51. Then

F(S) =

{
t1d1 + · · ·+ tpdp−1, if tp 6≡ 1 mod dp−1,

t1d1 + · · ·+ tpdp−2, if tp ≡ 1 mod dp−1.

A (d1,d2, . . . ,dp)-semigroup is a saturated numerical semigroup such that

if
{

n1 < n2 < · · ·< np
}

is its minimal SAT-system of generators, then di =

gcd{n1, . . . ,ni} for all i ∈ {1, . . . , p}.
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COROLLARY 54. Let S be a (d1,d2, . . . ,dp)-semigroup with Frobenius number F.

Then

1) d1 + · · ·+dp ≤ F +2;

2) 2p ≤ F +3;

3) the SAT-rank of S is less than or equal to log2(F +3).

PROOF. 1) By using Theorem 51 and Corollary 53, we deduce that there

exist positive integers t1, . . . , tp such that t1d1 + · · ·+ tpdp ∈ {F +1,F +2}.

Hence d1 + · · ·+dp ≤ F+2.

2) By Corollary 30, we have that d1 > d2 > · · · > dp = 1 and di+1|di for all i ∈

{1, . . . , p−1}. Then di ≥ 2di+1 and thus di ≥ 2p−i for all i ∈ {1, . . . , p−1}.

Applying 1), we deduce that 2p−1 + · · ·+ 2+ 1 ≤ F + 2. By induction, it

easily follows that 2p−1 + · · ·+2+1 = 2p−1, whence 2p ≤ F +3.

3) It is easily deduced from 2), since SAT-rank of S is equal to p.

�

Our next goal is to see which condition has to verify a saturated sequence

(d1, . . . ,dp) so that there exists at least one (d1, . . . ,dp)-semigroup with Frobenius

number F .

Suppose that
{

d1, t1d1 + t2d2, . . . , t1d1 + · · ·+ tpdp
}

is the minimal SAT-system of

generators of a saturated numerical semigroup with Frobenius number F , fulfilling the

conditions of Theorem 51. We distinguish two cases:

1) If tp 6≡ 1 mod dp−1 then, by applying Corollary 53 , we get that F +

1 = t1d1 + · · · + tpdp. Whence F + 1 ≥ d1 + · · · + dp. Moreover, as

gcd
{

t1d1 + · · ·+ tpdp,dp−1
}
= gcd

{
tpdp,dp−1

}
= gcd

{
tp,

dp−1
dp

}
= 1, then

gcd
{

F +1,dp−1
}
= 1. Since F + 1 = t1d1 + · · ·+ tpdp and dp = 1, we de-

duce that F +1≡ tp mod dp−1 and thus F +1 6≡ 1 mod dp−1.

2) If tp ≡ 1 mod dp−1 then, by applying Corollary 53, we have that F + 2 =

t1d1 + · · ·+ tpdp. Therefore F +2≥ d1 + · · ·+dp and F +2≡ 1 mod dp−1.
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THEOREM 55. Let F be a positive integer and let (d1, . . . ,dp) be a saturated se-

quence. Then there exists a (d1, . . . ,dp)-semigroup with Frobenius number F if and

only if it fulfills one of the conditions:

1) F +1≥ d1 + · · ·+dp, gcd
{

F +1,dp−1
}
= 1 and F +1 6≡ 1 mod dp−1;

2) F +2≥ d1 + · · ·+dp and F +2≡ 1 mod dp−1.

PROOF. The necessary condition is a consequence of the comment preceding the

theorem.

Let us see the sufficient condition. Assume that 1) is verified. Let

t1 = · · · = tp−1 = 1 and tp = (F + 1) − (d1 + · · · + dp−1) > 0 . Since

gcd
{

tp,
dp−1
dp

}
= gcd

{
tp,dp−1

}
= gcd

{
F +1,dp−1

}
= 1, we have that

gcd
{

ti+1,
di

di+1

}
= 1 for all i∈ {1, . . . , p−1}. By applying Theorem 51, we deduce that{

d1,d1 +d2, . . . ,d1 + · · ·+dp−1,d1 + · · ·+dp−1 +
(
(F +1)− (d1 + · · ·+dp−1)

)
dp
}

is a minimal SAT-system of generators of a saturated numerical semigroup S. As

F + 1 ≡ tp mod dp−1, we have tp 6≡ 1 mod dp−1. From Corollary 53, we obtain that

F(S) = F .

Assume now that 2) is true. Take t1 = · · ·= tp−1 = 1 and tp = (F +2)− (d1+ · · ·+

dp−1)> 0. As F+2≡ 1 mod dp−1 this implies that tp≡ 1 mod dp−1, and consequently

gcd
{

F +2,dp−1
}
= 1. Then gcd

{
tp,

dp−1
dp

}
= 1, and thus gcd

{
ti+1,

di
di+1

}
= 1 for all

i ∈ {1, . . . , p−1}. By applying again Corollary 53, we get F(S) = F . �

REMARK 56. Observe that the conditions 1) and 2) of previous theorem can not

happen simultaneously. In fact, if F + 2 ≡ 1 mod dp−1 then F + 1 ≡ 0 mod dp−1,

whence gcd
{

F +1,dp−1
}
= dp−1 6= 1.

The previous theorem gives a criterium to check if for a saturated sequence

(d1, . . . ,dp) there exists a (d1, . . . ,dp)-semigroup with Frobenius number F . We il-

lustrate it with some examples.
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EXAMPLE 57. 1) Does not exist (12,6,1)-semigroups with Frobenius num-

ber 25, because gcd{25+1,6} 6= 1 and 25+2 6≡ 1 mod 6. Consequently, the

conditions 1) and 2) of Theorem 55 are not verified.

2) By applying 2) of Theorem 55, we deduce that there exists at least one

(4,2,1)-semigroup with Frobenius number 9.

3) From 1) of Theorem 55, we have that there exists at least one (6,3,1)-

semigroup with Frobenius number 13.

3.3. An algorithm for computing all (d1, . . . ,dp)-semigroups with a given Fro-

benius number. Assume from now on that (d1, . . . ,dp) is a saturated sequence and

F denotes a positive integer. Now we give an algorithmic procedure that allows to

calculate all (d1, . . . ,dp)-semigroups with Frobenius number F .

PROPOSITION 58. Let S be a (d1, . . . ,dp)-semigroup with Frobenius number F

and let
{

d1, t1d1 + t2d2, . . . , t1d1 + · · ·+ tpdp
}

be its minimal SAT-system of generators

fulfilling the conditions of Theorem 51. Then:

1) t1d1 + · · ·+ tpdp ∈ {F +1,F +2};

2) t1d1 + · · ·+ tpdp = F +2 if only if F +2≡ 1 mod dp−1.

PROOF. 1) It is a consequence of Corollary 53.

2) (Necessity) If F + 2 = t1d1 + · · ·+ tpdp, then by Corollary 53, we have that

tp ≡ 1 mod dp−1 and consequently F +2≡ 1 mod dp−1.

(Sufficiency) From 1) we know that t1d1 + · · ·+ tpdp ∈ {F +1,F +2}.

If t1d1 + · · ·+ tpdp = F + 1, then since F + 2 ≡ 1 mod dp−1, we have that

F +1≡ 0 mod dp−1 and thus tpdp ≡ 0 mod dp−1. As dp = 1, we obtain that

tp ≡ 0 mod dp−1 and so we deduce that gcd
{

tp,
dp−1
dp

}
= dp−1 6= 1, which is

impossible. Therefore F +2 = t1d1 + · · ·+ tpdp.

�

If F does not verify neither Condition 1) nor Condition 2) of Theorem 55, we can

state that there is no
(
d1, . . . ,dp

)
-semigroup with Frobenius number F .
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If F verifies Condition 2) of Theorem 55, then by applying Theorem 51 and Pro-

position 58, we have that in order to get all (d1, . . . ,dp)-semigroups with Frobenius

number F , it suffices to calculate the positive integer solutions (t1, . . . , tp) of the equa-

tion d1x1 + · · ·+dpxp = F +2 such that gcd
{

ti+1,
di

di+1

}
= 1 for all i ∈ {1, . . . , p−1}.

Analogously, if F verifies Condition 1) of Theorem 55, then from Theorem 51

and Proposition 58, we deduce that in order to obtain all (d1, . . . ,dp)-semigroups with

Frobenius number F , it suffices to calculate the positive integer solutions (t1, . . . , tp)

of the equation d1x1 + · · ·+ dpxp = F + 1 such that gcd
{

ti+1,
di

di+1

}
= 1 for all i ∈

{1, . . . , p−1}.

Observe that, if b is a positive integer greater than or equal to d1 + · · ·+ dp,

then to calculate the positive integer solutions of the equation d1x1 + · · ·+ dpxp =

b, this is equivalent to calculate the nonnegative integer solutions to the equation

d1y1 + · · ·+ dpyp = b− (d1 + · · ·+ dp). This is because (y1, . . . ,yp) is solution to the

second equation if (y1 +1, . . . ,yp +1) is solution to the first equation.

Our next goal is to give an algorithmic procedure that determines the nonnegative

integer solutions of the equation

d1x1 + · · ·+dpxp = c (1)

with c a nonnegative integer.

Observe that the set of solutions of (1) corresponds with the set of integer partitions

of c in which the parts belong to
{

d1, . . . ,dp
}

. We use an argument similar to the ones

used in [54] and [20] to find all restricted partitions. Note that (1) has a finite number

of solutions and that (0, . . . ,0,c) is the smallest solution of (1) with respect to the

lexicographic order. Therefore, if given a solution of (1), we are able to obtain the

next solution of (1) with respect to the lexicographic order, then after a finite number

of steps we obtain the set of solutions of (1).

The next result is the key to the above question. If (x1, . . . ,xp) is a solution of (1),

we denote by Next(x1, . . . ,xp) the next solution of (1) with respect to the lexicographic

order.



50 2. SATURATED NUMERICAL SEMIGROUPS

PROPOSITION 59. Let (x1, . . . ,xp) be a solution of (1).

1) If (x1, . . . ,xp) is not a maximal solution of (1) with respect to the lexicographic

order, then there exists i ∈ {1, . . . , p−1} such that di+1xi+1+ · · ·+dpxp ≥ di;

2) If j = max
{

i ∈ {1, . . . , p−1} | di+1xi+1 + · · ·+dpxp ≥ di
}

, then

Next(x1, . . . ,xp) = (x1, . . . ,x j−1,x j +1,0, . . . ,0,d j+1x j+1 + · · ·+dpxp−d j).

PROOF. 1) Let (x′1, . . . ,x
′
p) be a solution of (1) such that (x1, . . . ,xp) <lex

(x′1, . . . ,x
′
p). Then there exists i ∈ {1, . . . , p} such that x′1 = x1, . . . ,x′i−1 =

xi−1 and x′i > xi. Let us see that i 6= p. If x′1 = x1, . . . ,x′p−1 = xp−1, since

(x1, . . . ,xp) and (x′1, . . . ,x
′
p) are solutions of (1), then we deduce that x′p = xp.

Hence (x1, . . . ,xp) = (x′1, . . . ,x
′
p) which is absurd. As d1x1 + · · ·+ dpxp =

d1x′1 + · · ·+ dpx′p, we have that dixi + · · ·+ dpxp = dix′i + · · ·+ dpx′p and so

di+1xi+1 + · · ·+dpxp−di = di(x′i− xi−1)+ · · ·+dpxp ≥ 0.

2) Let (x1, . . . ,xp) = (x1, . . . ,x j−1,x j + 1,0, . . . ,0,d j+1x j+1 + · · ·+ dpxp − d j).

Clearly (x1, . . . ,xp) is a solution of (1) and (x1, . . . ,xp) <lex (x1, . . . ,xp). In

order to conclude the proof, it suffices to prove that if (x′1, . . . ,x
′
p) is a so-

lution of (1) such that (x1, . . . ,xp) <lex (x′1, . . . ,x
′
p) ≤lex (x1, . . . ,xp), then

(x′1, . . . ,x
′
p) = (x1, . . . ,xp). In fact, from the previous inequality, we obtain

that x′1 = x1, . . . ,x′j−1 = x j−1. Next we will see that x′j > x j. Other-

wise there exists h ∈ N such that x′j = x j, . . . ,x′j+h = x j+h and x′j+h+1 >

x j+h+1. Then d j+h+1x j+h+1 + · · ·+ dpxp = d j+h+1x′j+h+1 + · · ·+ dpx′p and

thus d j+h+2x j+h+2 + · · ·+ dpxp− d j+h+1 ≥ 0, contradicting the maximality

of j. Now, by applying that (x′1, . . . ,x
′
p)≤lex (x1, . . . ,xp) we deduce that x′j =

x j = x j +1 and x′j+1 = · · ·= x′p−1 = 0. In this way x′1 = x1, . . . ,x′p−1 = xp−1,

by applying (x′1, . . . ,x
′
p) and (x1, . . . ,xp) are solutions of (1), we obtain that

x′p = xp. Therefore (x′1, . . . ,x
′
p) = (x1, . . . ,xp).

�

Now we can give the announced algorithm for computing all nonnegative integers

solutions of (1).
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ALGORITHM 60. Input: (d1, . . . ,dp)-saturated sequence and c nonnegative integer.

Output: The set of nonnegative integers solutions of the equation

d1x1 + · · ·+dpxp = c.

1) A = {(0, . . . ,0,c)}.

2) (x1, . . . ,xp) = (0, . . . ,0,c).

3) while there exists

j = max
{

i ∈ {1, . . . , p−1} | di+1xi+1 + · · ·+dpxp ≥ di
}

do (x1, . . . ,xp) =

(x1, . . . ,x j−1,x j + 1,0, . . . ,0,d j+1x j+1 + · · · + dpxp − d j) and A = A ∪{
(x1, . . . ,xp)

}
.

4) Return A.

We illustrate the preceding algorithms with an example.

EXAMPLE 61. Let (d1,d2,d3) = (6,2,1) and c = 10. We compute all nonnegative

integer solutions of the equation 6x1 +2x2 + x3 = 10. We begin with A = {(0,0,10)}

and (x1,x2,x3) = (0,0,10). Performing the step 3) of the above algorithm we get:

. (x1,x2,x3) = (0,1,8), A = A∪{(0,1,8)};

. (x1,x2,x3) = (0,2,6), A = A∪{(0,2,6)};

. (x1,x2,x3) = (0,3,4), A = A∪{(0,3,4)};

. (x1,x2,x3) = (0,4,2), A = A∪{(0,4,2)};

. (x1,x2,x3) = (0,5,0), A = A∪{(0,5,0)};

. (x1,x2,x3) = (1,0,4), A = A∪{(1,0,4)};

. (x1,x2,x3) = (1,1,2), A = A∪{(1,1,2)};

. (x1,x2,x3) = (1,2,0), A = A∪{(1,2,0)} .

Finally,

A = {(0,0,10),(0,1,8),(0,2,6),(0,3,4),(0,4,2),(0,5,0),(1,0,4),

(1,1,2),(1,2,0)} .

Now we can give the algorithm announced at the beginning of this section.
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ALGORITHM 62. Input: (d1, . . . ,dp) a saturated sequence and F a positive integer.

Output:

L =
{
(t1, . . . , tp) ∈

(
N\{0}

)p |
{

d1, t1d1 + t2d2, . . . , t1d1 + · · ·+ tpdp
}

is the

minimal SAT-system of generators of a (d1, . . . ,dp)− semigroup

with Frobenius number F} .

1) If F does not verify neither Condition 1) nor Condition 2) of Theorem 55,

then return L = /0 and the algorithm stops.

2) If F verifies the Condition 1) of Theorem 55, then c = F +1− (d1+ · · ·+dp)

and go to 4).

3) c = F +2− (d1 + · · ·+dp).

4) Calculate by applying Algorithm 60 the set A of all nonnegative integer solu-

tions of the equation d1x1 + · · ·+dpxp = c.

5) B = A+(1, . . . ,1).

6) L =
{
(t1, . . . , tp) ∈ B | gcd

{
di

di+1
, ti+1

}
= 1 for all i ∈ {1, . . . , p−1}

}
.

7) Return L .

We illustrate the preceding algorithm with an example.

EXAMPLE 63. Let us compute all (6,2,1)-semigroups with Frobenius num-

ber 17. As it checks the condition 2) of Theorem 55, then c = 17 +

2 − (6 + 2 + 1) = 10. From Example 61, we compute the set A =

{(0,0,10),(0,1,8),(0,2,6),(0,3,4),(0,4,2),(0,5,0),(1,0,4),(1,1,2),(1,2,0)} of all

nonnegative integer solutions of the equation 6x1 +2x2 + x3 = 10.

Hence the set B = A+(1,1,1) =

{(1,1,11),(1,2,9),(1,3,7),(1,4,5),(1,5,3),(1,6,1),(2,1,5),(2,2,3),(2,3,1)}.

Finally,

L = {(1,1,11),(1,2,9),(1,4,5),(1,5,3),(2,1,5),(2,2,3)}.

And thus, the (6,2,1)-semigroups with Frobenius number 17 are:
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. Sat
(
{6,8,19}

)
= {0,6,8,10,12,14,16,18,19,→};

. Sat
(
{6,10,19}

)
= {0,6,10,12,14,16,18,19→};

. Sat
(
{6,14,19}

)
= {0,6,12,14,16,18,19,→};

. Sat
(
{6,16,19}

)
= {0,6,12,16,18,19,→};

. Sat
(
{6,14,19}

)
(already appears);

. Sat
(
{6,16,19}

)
(already appears).

REMARK 64. The above example highlights that two distinct elements in L can

produce us the same saturated numerical semigroup. Therefore the representation des-

cribed in Theorem 51 is not unique.

3.4. An algorithm for computing all saturated numerical semigroups with a

given Frobenius number. Recall that an F-saturated sequence is a saturated sequence

(d1, . . . ,dk−1,dk) such that there exist at least one (d1, . . . ,dk−1,dk)-semigroup with

Frobenius number F .

Our first aim is to give an algorithmic procedure that allows to calculate all F-

saturated sequences with a given positive integer F .

It is clear that the unique saturated sequence of length 1 is (1), N is the unique

(1)-semigroup and F(N) = −1. Hence, if F is a positive integer any F-saturated

sequence has a length greater than or equal to 2. We say that an F-saturated sequence

(d1, . . . ,dk−1,dk) is of type 1 (respectively type 2) if gcd{F +1,dk−1} = 1 and F 6≡

0 mod dk−1 (respectively F +1 ≡ 0 mod dk−1). Note that being of type 1 or type 2 is

equivalent to fulfill Conditions 1) or 2) of Theorem 55.

The following two results are immediate consequences of Theorem 55.

LEMMA 65. Let F be a positive integer.

1) The set of F-saturated sequences with length 2 and type 1 is equal to

{(x,1) | x ∈ Z, F +1 > x≥ 2, gcd{F +1,x}= 1 and F 6≡ 0 mod x}.

2) The set of F-saturated sequences with length 2 and type 2 is equal to

{(x,1) | x ∈ Z, x≥ 2 and F +1≡ 0 mod x}.
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LEMMA 66. If k ≥ 3 and (d1, . . . ,dk−1,dk) is an F-saturated sequence, then

(d2, . . . ,dk−1,dk) is also an F-saturated sequence.

From the previous result we deduce that any F-saturated sequence with length k

greater than or equal to 3 can be obtained from an F-saturated sequence with length

k− 1 by joining a first coordinate. As a consequence of Theorem 55 and Lemma 66,

we obtain the following result.

LEMMA 67. Let F and x be positive integers with x greater than or equal to 2.

1) Suppose that (d1, . . . ,dk−1,dk) is an F-saturated sequence with length k and

type 1 and F + 1 ≥ xd1 + d1 + · · ·+ dk−1 + dk. Then (xd1,d1, . . . ,dk−1,dk)

is an F-saturated sequence with length k + 1 and type 1. Furthermore, all

F-saturated sequence with length k + 1 and type 1 can be obtained of this

form.

2) Suppose that (d1, . . . ,dk−1,dk) is an F-saturated sequence with length k and

type 2 and F + 2 ≥ xd1 + d1 + · · ·+ dk−1 + dk. Then (xd1,d1 . . . ,dk−1,dk) is

an F-saturated sequence with length k+ 1 and type 2. Furthermore, all F-

saturated sequence with length k+1 and type 2 can be obtained of this form.

The next goal is to give algorithms that allows to obtain all F-saturated sequences

with type 1 or 2. As a consequence of Corollary 54, we have that an F-saturated

sequence has length less than or equal to log2(F +3).

Given a real number q, we denote by bqc the integer max{z ∈ Z | z≤ q} and thus

bqc is the integer part of q.

ALGORITHM 68. Input: F a positive integer.

Output: A2, . . . ,Ablog2(F+3)c, Ai denotes the set of all F-saturated

sequences with length i and type 1.

1) A2 = {(x,1) | x ∈ Z, F +1 > x≥ 2, gcd{F +1,x}= 1 and

F 6≡ 0 mod x}.
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2) For i = 3 to blog2(F +3)c do

Ai = {(xd1,d1, . . . ,di−1) | (d1, . . . ,di−1) ∈ Ai−1, x≥ 2, and

F +1≥ xd1 +d1 + · · ·+di−1}.

3) Return A2,A3, . . . ,Ablog2(F+3)c.

The previous algorithm computes the F-saturated sequences with type 1 and the

following gives us the F-saturated sequences with type 2.

ALGORITHM 69. Input: F a positive integer.

Output: B2, . . . ,Bblog2(F+3)c, Bi denotes the set of all F-saturated

sequences with length i and type 2.

1) B2 = {(x,1) | x ∈ Z, x≥ 2, F +1≡ 0 mod x}.

2) For i = 3 to blog2(F +3)c do

Bi = {(xd1,d1, . . . ,di−1) | (d1, . . . ,di−1) ∈ Bi−1, x≥ 2, and

F +2≥ xd1 +d1 + · · ·+di−1}.

3) Return B2,B3, . . . ,Bblog2(F+3)c.

Next we illustrate the preceding algorithms with an example.

EXAMPLE 70. Let us compute all 17-saturated sequences.

1) First, and using Algorithm 68, we compute all sequences with type 1.

. A2 = {(5,1),(7,1),(11,1),(13,1)};

. A3 = {(10,5,1)};

. A4 = /0.

2) By applying Algorithm 69, we obtain all sequences with type 2.

. B2 = {(18,1),(9,1),(6,1),(3,1),(2,1)};

. B3 = {(12,6,1),(6,3,1),(9,3,1),(12,3,1),(15,3,1),(4,2,1),

(6,2,1),(8,2,1),(10,2,1),(12,2,1),(14,2,1),(16,2,1)}.

. B4 = {(8,4,2,1),(12,4,2,1)}.

We finish this section by introducing an algorithm that allows us to compute all

saturated numerical semigroups with a given Frobenius number.
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ALGORITHM 71. Input: F a positive integer.

Output: The set of all saturated numerical semigroups with Frobenius number F .

1) Calculate by applying Algorithm 68 A2,A3, . . . ,Ablog2(F+3)c.

2) Calculate by applying Algorithm 69 B2,B3, . . . ,Bblog2(F+3)c.

3) L = A2∪·· ·∪Ablog2(F+3)c∪B2∪·· ·∪Bblog2(F+3)c.

4) For each l ∈ L, let Ll be the output of Algorithm 62 and let

Cl =
{

Sat
(
{d1, t1d1 + t2d2, . . . , t1d1 + · · ·+ tkdk}

)
| l = (d1, . . . ,dk)

and (t1, . . . , tk) ∈ Ll}.

5) Return ∪l∈LCl .

Therefore for each positive integer F the previous algorithm computes all F-

saturated sequences with type 1 and 2 and for each F-saturated sequence computes

all saturated numerical semigroups with Frobenius number F associated with it.

The algorithm has been implemented in GAP, and it is available since version 0.98

of the numericalsgps GAP [17] package [12]. Next we give some timings.

For Frobenius number 30,

gap> Length(SaturatedNumericalSemigroupsWithFrobeniusNumber(30));

39

takes 0 milliseconds, while computing the set of all numerical semigroups with Frobe-

nius number and then filtering those that are saturated takes 30454 milliseconds.

gap> Length(Filtered(NumericalSemigroupsWithFrobeniusNumber(30),

IsSaturatedNumericalSemigroup));

39

As for 33 we get 31 milliseconds for

gap> Length(SaturatedNumericalSemigroupsWithFrobeniusNumber(33));

166

while it takes 284172 for

gap> Length(Filtered(NumericalSemigroupsWithFrobeniusNumber(33),
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IsSaturatedNumericalSemigroup));time;

For 100 we get

gap> Length(SaturatedNumericalSemigroupsWithFrobeniusNumber(100));time;

1605

with computational time equal to 875 milliseconds.

In the following table there are the results obtained for Frobenius number up to 100.

For each positive integer F we wrote the number of saturated numerical semigroups

(nF ) of the given Frobenius number (F).

F nF F nF F nF F nF F nF F nF F nF F nF F nF F nF

1 1 11 16 21 52 31 175 41 378 51 628 61 1267 71 2228 81 2775 91 5039

2 1 12 7 22 40 32 68 42 88 52 266 62 490 72 197 82 1200 92 1336

3 2 13 21 23 84 33 166 43 439 53 828 63 1208 73 2291 83 3765 93 4574

4 2 14 14 24 20 34 105 44 155 54 170 64 443 74 816 84 282 94 1878

5 4 15 25 25 92 35 240 45 389 55 909 65 1522 75 2124 85 3789 95 5973

6 3 16 18 26 53 36 49 46 233 56 284 66 303 76 779 86 1347 96 463

7 7 17 39 27 103 37 280 47 597 57 865 67 1785 77 2783 87 3752 97 6307

8 5 18 16 28 54 38 131 48 79 58 440 68 528 78 491 88 1196 98 1944

9 9 19 50 29 144 39 285 49 624 59 1210 69 1612 79 3157 89 4681 99 5894

10 8 20 22 30 39 40 113 50 239 60 95 70 662 80 728 90 506 100 1605





CHAPTER 3

Frobenius Problem

The Frobenius problem for numerical semigroups consists in finding formulas, in

terms of the elements in a minimal system of generators of a numerical semigroup S,

for computing F(S) and g(S). As we mentioned in introduction, this problem remains

open for numerical semigroups with embedding dimension greater or equal to three.

This chapter is dedicated to the study of three classes of numerical semigroups,

denominated by Mersenne, Thabit and Repunit numerical semigroups. This study is

done in sections 1, 2 and 3 and were published in [34], [36] and [35], respectively. In

the three cases we give formulas for important invariants of the numerical semigroups,

such as: embedding dimension, Frobenius number, type and genus.

1. The Frobenius problem for Mersenne numerical semigroups

A positive integer x is a Mersenne number if x = 2n− 1 for some n ∈ N\{0}.

We say that a numerical semigroup S is a Mersenne numerical semigroup if

there exist n ∈ N\{0} such that S =
〈{

2n+i−1 | i ∈ N
}〉

. The main purpose of

this section is to study this class of numerical semigroups and will be denoted by

S(n) =
〈{

2n+i−1 | i ∈ N
}〉

. The results presented in this section can be found in

[34].

1.1. The embedding dimension. Let n be a positive integer. We begin this section

by proving that S(n) is a numerical semigroup in which is verified that 2s+ 1 ∈ S (n)

for all s ∈ S(n)\{0}.

LEMMA 72. Let A be a nonempty set of positive integers such that M = 〈A〉. The

following conditions are equivalent:

59
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(1) 2a+1 ∈M for all a ∈ A;

(2) 2m+1 ∈M for all m ∈M\{0}.

PROOF. 1) implies 2). If m ∈ M\{0}, then there exist a1, . . . ,ak ∈ A such that

m = a1 + · · ·+ak. If k = 1 then m = a1 and therefore 2m+1 = 2a1 +1 ∈M. If k ≥ 2

then 2m+1 = 2(a1 + · · ·+ak−1)+2ak +1 ∈M, because M is closed under addition.

2) implies 1). Trivial. �

PROPOSITION 73. If n is a positive integer, then S(n) is a numerical semigroup.

Furthermore, 2s+1 ∈ S(n) for all s ∈ S(n)\{0}.

PROOF. Clearly, S(1) = N is a numerical semigroup and for every s ∈ N\{0} we

have that 2s+1 ∈ N. Suppose now that n≥ 2 and let us show that S(n) is a numerical

semigroup. Since S(n) is a submonoid of (N,+) it suffices to prove N\S is finite,

this is equivalent to gcd(S(n)) = 1. Since 2n− 1 and 2n+1− 1 ∈ S(n), we obtain that

gcd
{

2n−1,2n+1−1
}
= gcd{2n−1,2(2n−1)+1}= 1.

We have that S(n) = 〈
{

2n+i−1 | i ∈ N
}
〉. If i ∈N then 2(2n+i−1)+1 = 2n+i+1−

1 ∈ S(n). By Lemma 72, we conclude that 2s+1 ∈ S(n) for all s ∈ S(n)\{0}. �

Our next goal is to give the minimal systems of generators of a Mersenne numerical

semigroup.

LEMMA 74. Let n be a positive integer and let S =

〈
{

2n+i−1 | i ∈ {0,1, . . . ,n−1}
}
〉. Then 2s+1 ∈ S for all s ∈ S\{0}.

PROOF. If n = 1 then S = N and the result is true. Suppose now that n ≥ 2. If

i∈ {0,1, . . . ,n−2}, then 2(2n+i−1)+1= 2n+i+1−1∈ S. Besides, 2(22n−1−1)+1=

22n−1 = (2n−1)(2n +1) ∈ S. By applying Lemma 72, we obtain that 2s+1 ∈ S for

all s ∈ S\{0}. �

Before we state the next result, note that if X and Y are non empty sets of positive

integer numbers such that Y ⊆ X and X ⊆ 〈Y 〉, then we get that 〈X〉= 〈Y 〉
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PROPOSITION 75. If n is a positive integer, then S(n) =

〈
{

2n+i−1 | i ∈ {0,1, . . . ,n−1}
}
〉.

PROOF. Let S = 〈
{

2n+i−1 | i ∈ {0,1, . . . ,n−1}
}
〉. In view of the preceding note,

it suffices to prove that 2n+i− 1 ∈ S for all i ∈ N. We use induction on i. For i = 0

the result is trivial. Assume that the statement is true for i and let us show it for i+1.

As 2n+i+1−1 = 2
(
2n+i−1

)
+1 then by induction hypothesis and Lemma 74 we have

that 2n+i+1−1 ∈ S. �

The above proposition tells us that
{

2n+i−1 | i ∈ {0,1, . . . ,n−1}
}

is a system of

generators of S(n). The next result is fundamental to show that this set is the minimal

system of generators of S(n).

LEMMA 76. Let n be an integer greater than or equal to two. Then 22n−1− 1 6∈

〈
{

2n+i−1 | i ∈ {0,1, . . . ,n−2}
}
〉.

PROOF. Assume to the contrary that there exist a0, . . . ,an−2 ∈N such that 22n−1−

1 = a0(2n− 1)+ · · ·+ an−2(22n−2− 1). Then 22n−1− 1 = a02n + · · ·+ an−222n−2−

(a0 + · · ·+an−2) and consequently (a0 + · · ·+an−2) ≡ 1(mod 2n). Hence (a0 + · · ·+

an−2) = 1+2nk for some k ∈ N. If k = 0 then a0 + · · ·+an−2 = 1 and thus there exist

i ∈ {0,1, . . .n−2} such that ai = 1 and a j = 0 for all j ∈ {0,1, . . . ,n−2}\{i}. So we

deduce that 22n−1−1 = 2n+i−1 for some i∈ {0,1, . . .n−2}, which is absurd. If k 6= 0

then a0 + · · ·+an−2 ≥ 1+2n. This implies that a0(2n−1)+ · · ·+an−2(22n−2−1) ≥

(a0 + · · ·+an−2)(2n−1) ≥ (1+2n)(2n−1) = 22n− 1 > 22n−1− 1, which is absurd.

�

Now we are ready to show the result announced concerning the minimal system of

generators of S(n) .

THEOREM 77. Let n be a positive integer and let S(n) be the Mer-

senne numerical semigroup associated to n, then e(S(n)) = n. Furthermore{
2n+i−1 | i ∈ {0,1, . . . ,n−1}

}
is the minimal system of generators of S(n).
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PROOF. For n = 1, the result follows trivially. Thus, suppose that n≥ 2. By using

Proposition 75 we have that
{

2n+i−1 | i ∈ {0,1, . . . ,n−1}
}

is a system of generators

of S(n). If it is not minimal then there exists h ∈ {1, . . . ,n−1} such that 2n+h− 1 ∈

〈
{

2n+i−1 | i ∈ {0,1, . . . ,h−1}
}
〉. Let S = 〈

{
2n+i−1 | i ∈ {0,1, . . . ,h−1}

}
〉. If i ∈

{0,1, . . . ,h−2} then 2
(
2n+i−1

)
+ 1 = 2n+i+1− 1 ∈ S. Moreover 2

(
2n+h−1−1

)
+

1 = 2n+h−1 ∈ S. By applying Lemma 72 we obtain that 2s+1 ∈ S for all s ∈ S\{0}.

Now we use induction on i to prove that 2n+i− 1 ∈ S for all i ∈ N. For i = 0 the

result is true. Assume that the result holds for i and and let us prove for i+ 1. As

2n+i+1− 1 = 2
(
2n+i−1

)
+ 1 by applying the induction hypothesis and 2s + 1 ∈ S

for all s ∈ S\{0}, we obtain that 2n+i+1− 1 ∈ S. Consequently 22n−1− 1 ∈ S, which

contradicts Lemma 76. �

Observe that as a consequence of the previous results we obtain that for

every positive integer n there exists a unique Mersenne numerical semigroup S(n)

with embedding dimension n. In fact, S(4) = 〈
{

24−1,25−1,26−1,27−1
}
〉 =

〈{15,31,63,127}〉 is the unique Mersenne numerical semigroup with embedding di-

mension 4.

1.2. The Apéry set. Let S be a numerical semigroup and let x be one of its nonzero

elements. As we have seen before, we define the Apéry set of x in S as Ap(S,x) =

{s ∈ S | s− x 6∈ S}.

Our next goal is to describe the set Ap(S(n),2n−1). From now on we will denote

by si the elements 2n+i−1 for each i ∈ {0,1, . . . ,n−1}. So with this notation we have

that {s0,s1, . . . ,sn−1} is the minimal system of generators of S(n). It is easy to deduce

the following equalities.

LEMMA 78. Let n be an integer greater than or equal to two. Then:

(1) if 0 < i≤ j < n−1 then si +2s j = 2si−1 + s j+1;

(2) if 0 < i≤ n−1 then si +2sn−1 = 2si−1 +(2n +1)s0.
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We say that a sequence (a1, . . . ,ak) is a residual k-tuple if satisfies the following

conditions:

(1) for every i ∈ {1, . . . ,k} we have that ai ∈ {0,1,2};

(2) if i ∈ {2, . . . ,k} and ai = 2 then a1 = · · ·= ai−1 = 0.

LEMMA 79. Let n be an integer greater than or equal to two. If x ∈ Ap(S(n),s0)

then there exist a residual (n− 1)-tuple (a1, . . . ,an−1) such that x = a1s1 + · · ·+

an−1sn−1.

PROOF. We proceed by induction on x. The result is clear for x = 0. Sup-

pose that x > 0 and let j = min{i ∈ {0, . . . ,n−1} | x− si ∈ S(n)}. Observe that

j 6= 0 because x ∈ Ap(S(n),s0). By induction hypothesis there exist a residual

(n− 1)-tuple (a1, . . . ,an−1) such that x− s j = a1s1 + · · ·+ an−1sn−1. Hence x =

a1s1 + · · ·+(a j +1)s j + · · ·+an−1sn−1. To conclude the proof we only need to show

that
(
a1, . . . ,a j +1, . . . ,an−1

)
is a residual (n−1)-tuple. If a j+1= 3 then, by applying

Lemma 78, we get that either (a j +1)s j = 3s j = 2s j−1 + s j+1 in the case j < n−1 or

(a j +1)s j = 3s j = 2s j−1 +(2n +1)s0 in the case j = n−1. In both cases this leads to

x− s j−1 ∈ S(n), contradicting the minimality of j. If there exist k > j such that ak = 2

then, by using again Lemma 78, we obtain that either s j + 2sk = 2s j−1 + sk+1 in the

case k < n−1 or s j +2sk = 2s j−1+( 2n+1)s0 in the case k = n−1. In both cases we

get once again that x−s j−1 ∈ S(n) contradicting the minimality of j. Now by the mini-

mality of j we have that a1 = · · ·= a j−1 = 0 and consequently
(
a1, . . . ,a j +1, . . .an−1

)
is a residual (n−1)-tuple. �

Note that if h is a positive integer, then the sequence of numbers 2n,2n+1, . . . ,2n+h

is a geometric progression with common ratio 2 and so the sum of its terms 2n+2n+1+

· · ·+2n+h is equal to 2n+h+1−2n.

THEOREM 80. Let n be an integer greater than or equal to two and let S(n) be

the Mersenne numerical semigroup minimally generated by {s0,s1, . . . ,sn−1}. Then

Ap(S(n),s0) = {a1s1 + · · ·+an−1sn−1 | (a1, . . . ,an−1) is a residual (n−1)− tuple}.
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PROOF. Let us denote by R the set of all residual (n− 1)-tuples. It is clear that

R = {0,1}n−1 ∪ {(a1, . . . ,an−1) ∈ R | a1 = 2} ∪ · · · ∪ {(a1, . . . ,an−1) ∈ R | an−1 = 2}.

Observe that R is the disjoint union of these sets, consequently the cardinality of R is

equal to 2n−1 +2n−2 + · · ·+20 = 2n−1 = s0.

By Lemma 79, we know that Ap(S(n),s0) ⊆

{a1s1 + · · ·+an−1sn−1 | (a1, . . . ,an−1) ∈ R}. Besides, from previous paragraph,

we get that the cardinality of the set {a1s1 + · · ·+an−1sn−1 | (a1, . . . ,an−1) ∈ R} is

less than or equal to s0. In view of Lemma 5 the cardinality of Ap(S(n),s0) is exactly

s0, and consequently Ap(S(n),s0) = {a1s1 + · · ·+an−1sn−1 | (a1, . . . ,an−1) ∈ R}. �

As an immediate consequence of the proof of previous theorem we have the follo-

wing result.

COROLLARY 81. Let n be an integer greater than or equal to two and let

(a1, . . . ,an−1) and (b1, . . . ,bn−1) be two distinct residual (n−1)-tuples. Then we have

that a1s1 + · · ·+an−1sn−1 6= b1s1 + · · ·+bn−1sn−1

We illustrate the preceding theorem with an example.

EXAMPLE 82. Let us compute Ap(S(4),s0). We have that s0 = 15 and S(4) =

〈{15,31,63,127}〉 . The residual 3-tuples are (0,0,0), (0,1,0), (0,0,1), (0,1,1),

(1,0,0), (1,1,0), (1,0,1), (1,1,1), (2,0,0), (2,1,0), (2,0,1), (2,1,1), (0,2,0),

(0,2,1) and (0,0,2). Since s1 = 31 s2 = 63 and s3 = 127, by Theorem 80, we obtain

that Ap(S(4),s0) = {0,63,127,190,31,94,158,221,62,125,189,252,126,253,254}.

Next we give a procedure to see if a positive integer belongs or not to S(4).

Recall that if S is a numerical semigroup, x ∈ S\{0} then Ap(S,x) =

{w(0) = 0,w(1), · · · ,w(x−1)} where w(i) is the smallest element of S that is congru-

ent with i modulo x. Then using Lemma 5 we can conclude that an integer z belongs to

S if and only if z≥ w(z mod x) (where z mod x denotes the remainder of the division

of z by x).

As we see in previous example
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Ap(S(4),s0) = {w(0) = 0,w(1) = 31,w(2) = 62,w(3) = 63,w(4) = 94,

w(5) = 125,w(6) = 126,w(7) = 127,w(8) = 158,w(9) = 189,w(10) = 190,

w(11) = 221,w(12) = 252,w(13) = 253,w(14) = 254}.

From this and Remark 7 it easily follows that 172 ∈ S(4) and 222 6∈ S(4), because

172≥ w(172 mod 15) = w(7) = 127 and 222 < w(222 mod 15) = w(12) = 252.

1.3. The Frobenius problem. The next aim is to give a formula for the greatest

integer that does not belong to S(n) (i.e. Frobenius number). It is easy to prove our

next result.

LEMMA 83. Let n be an integer greater than or equal to two and let R be the set

of all residual (n−1)-tuples. Then the maximal elements (with respect to the product

order) in R are (2,1, . . . ,1), (0,2,1, . . . ,1) and (0,0, . . . ,2).

In the following result we will see that 2s1 + s2 + · · ·+ sn−1,2s2 + s3 + · · ·+

sn−1, . . . ,2sn−1 is a sequence of integers wherein each term is obtained from the previ-

ous by adding a unit.

LEMMA 84. Let n be an integer greater than or equal to three and let i ∈

{1, . . . ,n−2}. Then 2si + si+1 + · · ·+ sn−1 +1 = 2si+1 + si+2 · · ·+ sn−1.

PROOF. This is equivalent to prove that 2si + 1 = si+1. But this is clear, because

2(2n+i−1)+1 = 2n+i+1−1. �

Now we can give a formula for the Frobenius number of a Mersenne numerical

semigroup.

THEOREM 85. Let n be an integer greater than or equal to two and let S(n) be the

Mersenne numerical semigroup associated to n. Then F(S(n)) = 22n−2n−1.

PROOF. By applying Theorem 80 and Lemmas 83 and 84, we deduce that

max(Ap(S(n),s0)) = 2sn−1. Using now Proposition 10, we get that F(S(n)) =

2sn−1− s0 = 2
(
22n−1−1

)
)− (2n−1) = 22n−2n−1. �
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Our next goal is to determine the set of all pseudo-Frobenius number and the type

of S(n).

THEOREM 86. Let n be an integer greater than or equal to two and let S(n) be the

Mersenne numerical semigroup associated to n. Then t(S(n)) = n−1. Furthermore

PF(S(n)) = {F(S(n)) ,F(S(n))−1, . . . ,F(S(n))− (n−2)} .

PROOF. From Theorem 80 and Lemma 83, we deduce that max≤S(n)Ap(S(n),s0)⊆

{2s1 + s2 + · · ·+ sn−1,2s2 + s3 + · · ·+ sn−1, . . . ,2sn−1}. By using Lemma 84,

we have that the elements in this set are consecutive positive integers and thus

the difference between any two of its elements is smallest than or equal to

n− 2. Since 2n − 1 is the smaller positive integer in S(n) and 2n − 1 > n− 2

then we conclude that the difference between two distinct elements of

{2s1 + s2 + · · ·+ sn−1,2s2 + s3 + · · ·+ sn−1, . . . ,2sn−1} is not in S(n). Hence

max≤S(n)Ap(S(n),s0) = {2s1 + s2 + · · ·+ sn−1,2s2 + s3 + · · ·+ sn−1, . . . ,2sn−1}.

By the proof of Theorem 85, we have that F(S(n)) = 2sn−1 −

s0. From Lemma 84, we get that Maximales≤S(n)Ap(S(n),s0) =

{F(S(n))+ s0,F(S(n))+ s0−1, . . . ,F(S(n))+ s0− (n−2)}. Finally, by Lemma

11, we obtain PF(S(n)) = {F(S(n)) ,F(S(n))−1, . . . ,F(S(n))− (n−2)}. �

Observe that the previous theorem is not true for n= 1, since S(1)=N, PF(S(1))=

{−1} and consequently t(S(1)) = 1.

The next result gives the formula for the genus of the Mersenne numerical semi-

group S(n).

THEOREM 87. Let n be a positive integer and let S(n) be the Mersenne numerical

semigroup associated to n. Then g(S(n)) = 2n−1 (2n +n−3).

PROOF. For n = 1 the result is trivial. Suppose that n ≥ 2 and let R be the set of

all residual (n−1)-tuples. By applying Proposition 10, Theorem 80 and Corollary 81
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we have that

g(S(n)) =
1
s0

(
∑

(a1,...,an−1)∈R
a1s1 + · · ·+an−1sn−1

)
− s0−1

2
.

It is clear that

∑
(a1,...,an−1)∈R

a1s1 + · · ·+an−1sn−1 = ∑
(a1,...,an−1)∈R, a1=1

s1+

+ ∑
(a1,...,an−1)∈R, a1=2

2s1 + · · ·+ ∑
(a1,...,an−1)∈R, an−1=1

sn−1 + ∑
(a1,...,an−1)∈R, an−1=2

2sn−1.

Let i ∈ {1, · · · ,n−1}. The reader can prove the following:

- the cardinality of {(a1, . . . ,an−1) ∈ R | ai = 2} is 2n−1−i;

- the cardinality of {(a1, . . . ,an−1) ∈ R | ai = 1 and 2 6∈ {a1, . . . ,ai−1}} is 2n−2;

- if 1≤ j < i then the cardinality of
{
(a1, . . . ,an−1) ∈ R | ai = 1 and a j = 2

}
is

2n− j−2.

Whence we deduce that

∑
(a1,...,an−1)∈R

a1s1 + · · ·+an−1sn−1 =
n−1

∑
i=1

(
2n−2 +2n−3 + · · ·+2n−1−i)si+

+
n−1

∑
i=1

2n−1−i2si =
n−1

∑
i=1

(
2n−1−2n−1−i)si +

n−1

∑
i=1

2n−isi =

=
n−1

∑
i=1

(
2n−1−2n−1−i +2n−i)si =

n−1

∑
i=1

(
2n−1 +2n−1−i)si =

=
n−1

∑
i=1

(
2n−1 +2n−1−i)(2n+i−1

)
=

n−1

∑
i=1

(
22n+i−1 +22n−1−2n−1−2n−1−i)=

= 23n−1−22n +(n−1)22n−1− (n−1)2n−1−
(
2n−1−1

)
=

= 23n−1−22n +(n−1)22n−1−n2n−1 +1 =

= (2n−1)
(
22n−1−2n +n2n−1−1

)
.
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Consequently, we get that

g(S(n)) = 22n−1−2n +n2n−1−1− 2n−2
2

= 22n−1−2n +(n−1)2n−1 =

= 2n−1 (2n +n−3) .

�

We conclude the study of the Mersenne numerical semigroups by giving an exam-

ple that illustrates the previous results.

EXAMPLE 88. Let us compute the Frobenius number, the type and genus of the

Mersenne numerical semigroup S(4). From Theorem 85 we obtain that F(S(4)) =

28− 24− 1 = 239. By using Theorem 86 we get that t(S(4)) = 3 and PF(S(4)) =

{239,238,237}. Finally, by applying now Theorem 87 we have that g(S(4)) =

23 (24 +4−3
)
= 136.

2. The Frobenius problem for Thabit numerical semigroups

A positive integer x is a Thabit number if x = 3.2n− 1 for some n ∈ N. We say

that a numerical semigroup S is a Thabit numerical semigroup if there exist n ∈ N

such that S =
〈{

3.2n+i−1 | i ∈ N
}〉

. The main purpose of this section is to study

this class of numerical semigroups. We will denote by T (n) the numerical semigroup〈{
3.2n+i−1 | i ∈ N

}〉
. The results presented in this section can be found in [36].

2.1. The embedding dimension. If n is a nonnegative integer, then T (n)

is a submonoid of (N,+). Moreover
{

3.2n−1,3.2n+1−1
}
⊆ T (n) and

gcd
{

3.2n−1,3.2n+1−1
}
= gcd{3.2n−1,2(3.2n−1)+1}= 1. Hence gcd(T (n)) =

1 and so T (n) is a numerical semigroup.

The next result is fundamental to the development of this work.

PROPOSITION 89. If n is a nonnegative integer, then 2t + 1 ∈ T (n) for all t ∈

T (n)\{0}.
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PROOF. Let n ∈ N and let T (n) = 〈
{

3.2n+i−1 | i ∈ N
}
〉. Clearly 2(3.2n+i−1)+

1 = 3.2n+i+1− 1 ∈ T (n). From Lemma 72, we obtain that 2t + 1 ∈ T (n) for all t ∈

T (n)\{0}. �

Our aim is to prove Theorem 93, which ensures
{

3.2n+i−1 | i ∈ {0,1, . . . ,n+1}
}

is the minimal system of generators of T (n). To this purpose, we need some prelimi-

nary results.

LEMMA 90. Let n be a nonnegative integer and let S =

〈
{

3.2n+i−1 | i ∈ {0,1, . . . ,n+1}
}
〉. Then 2s+1 ∈ S for all s ∈ S\{0}.

PROOF. If i∈{0,1, . . . ,n}, then 2(3.2n+i−1)+1= 3.2n+i+1−1∈ S. Furthermore,

2
(
3.22n+1−1

)
+1 = 3.22n+2−1 = (3.2n−1)2 +

(
3.2n+1−1

)
+
(
3.22n−1

)
∈ S. By

using now the Lemma 72, we obtain the desired result. �

The next result gives a system of generators of T (n).

LEMMA 91. If n is a nonnegative integer, then T (n) =

〈
{

3.2n+i−1 | i ∈ {0,1, . . . ,n+1}
}
〉.

PROOF. Let S = 〈
{

3.2n+i−1 | i ∈ {0,1, . . . ,n+1}
}
〉. It is clear that S⊆ T (n). To

prove the other inclusion, we need to show that 3.2n+i− 1 ∈ S for all i ∈ N. We use

induction on i. For i = 0 the result is trivial. Assume that the statement holds for i

and let us show it for i+1. Since 3.2n+i+1−1 = 2
(
3.2n+i−1

)
+1 then, by induction

hypothesis and Lemma 90, we get that 3.2n+i+1−1 ∈ S. �

The next result show that 3.22n+1−1 belongs to the minimal system of generators

of T (n).

LEMMA 92. If n is a nonnegative integer, then 3.22n+1 − 1 6∈

〈
{

3.2n+i−1 | i ∈ {0,1, . . . ,n}
}
〉.

PROOF. Let us suppose 3.22n+1−1∈ 〈
{

3.2n+i−1 | i ∈ {0,1, . . . ,n}
}
〉. Then there

exists a0, . . . ,an ∈ N such that 3.22n+1 − 1 = a0 (3.2n−1) + · · ·+ an
(
3.22n−1

)
=
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3
(
a02n + · · ·+an22n)− (a0 + · · ·+an) and consequently a0+ · · ·+an ≡ 1(mod 3.2n).

Hence a0 + · · ·+ an = 1 + k3.2n for some k ∈ N. Besides, it is clear that k 6= 0

and so a0 + · · ·+ an ≥ 1 + 3.2n. Therefore a0 (3.2n−1) + · · ·+ an
(
3.22n−1

)
≥

(a0 + · · ·+an)(3.2n−1) ≥ (1+3.2n)(3.2n−1) = 9.22n− 1 > 3.22n+1− 1, which is

absurd. �

We are already in conditions to prove the result mentioned above.

THEOREM 93. Let n be a nonnegative integer and let T (n) be the Tha-

bit numerical semigroup associated to n, then e(T (n)) = n + 2. Furthermore{
3.2n+i−1 | i ∈ {0,1, . . . ,n+1}

}
is the minimal system of generators of T (n).

PROOF. From Lemma 91, we know that
{

3.2n+i−1 | i ∈ {0,1, . . . ,n+1}
}

is a system of generators of T (n). If it is not a minimal system of ge-

nerators of T (n), then there exists h ∈ {1, . . . ,n+1} such that 3.2n+h − 1 ∈

〈
{

3.2n+i−1 | i ∈ {0,1, . . . ,h−1}
}
〉.

Assume that S = 〈
{

3.2n+i−1 | i ∈ {0,1, . . . ,h−1}
}
〉. If i ∈ {0, . . . ,h−2} then

2
(
3.2n+i−1

)
+ 1 = 3.2n+i+1− 1 ∈ S. Moreover, in view of the previous paragraph

2
(
3.2n+h−1−1

)
+ 1 = 3.2n+h− 1 ∈ S. Hence by applying Lemma 72 we obtain that

2s+1 ∈ S for all s ∈ S\{0}.

Now we use induction on i to prove that 3.2n+i− 1 ∈ S for all i ∈ N. For i = 0,

the result follows trivially. Assume that the result is true for i and let us prove it

for i+ 1. As 3.2n+i+1− 1 = 2
(
3.2n+i−1

)
+ 1, from the induction hypothesis and

the end of the last paragraph, we get that 3.2n+i+1− 1 ∈ S. In particular we obtain

3.22n+1−1∈ S⊆ 〈
{

3.2n+i−1 | i ∈ {0,1, . . . ,n}
}
〉, which contradicts Lemma 92. �

Gathering all this information we obtain that for each integer k greater than or

equal to 2 there exists an unique Thabit numerical semigroup T (n) with embed-

ding dimension k. For example T (2) = 〈
{

3.22−1,3.23−1,3.24−1,3.25−1
}
〉 =

〈{11,23,47,95}〉 is the unique Thabit numerical semigroup with embedding dimen-

sion 4.
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2.2. The Apéry set. Our first purpose is to get an explicit description of the

elements in the Ap(T (n),3.2n−1). From now on we will denote by si the ele-

ments 3.2n+i− 1 for each i ∈ {0,1, . . . ,n+1}. Thus with this notation we have that

{s0,s1, . . . ,sn+1} is the minimal system of generators of T (n).

LEMMA 94. Let n be a nonnegative integer. Then:

(1) if 0 < i≤ j < n+1 then si +2s j = 2si−1 + s j+1;

(2) if 0 < i≤ n+1 then si +2sn+1 = 2si−1 + s2
0 + s1 + sn.

PROOF.

(1) If 0< i≤ j < n+1, then we have that si+2s j = 3.2n+i−1+2
(
3.2n+ j−1

)
=

2
(
3.2n+i−1−1

)
+3.2n+ j+1−1 = 2si−1 + s j+1.

(2) If 0 < i≤ n+1, then we get that si +2sn+1 = 3.2n+i−1+2
(
3.22n+1−1

)
=

3.2n+i− 2+ 3.22n+2− 1 = 2
(
3.22n+i−1−1

)
+(3.2n−1)2 +

(
3.2n+1−1

)
+(

3.22n−1
)
= 2si−1 + s2

0 + s1 + sn.

�

Denote by A(n) the set of all elements (a1, . . . ,an+1) ∈ {0,1,2}n+1 fulfilling the

following condition: if 1≤ i < j ≤ n+1 and a j = 2 then ai = 0.

LEMMA 95. Let n ∈ N and let T (n) be a Thabit numerical semi-

group minimally generated by {s0,s1, . . . ,sn+1}. Then Ap(T (n),s0) ⊆

{a1s1 + · · ·+an+1sn+1 | (a1, . . . ,an+1) ∈ A(n)}.

PROOF. Let x∈Ap(T (n),s0). We use induction on x to prove that x = a1s1+ · · ·+

an+1sn+1 with (a1, . . . ,an+1)∈ A(n). For x = 0 then x = 0s1+ · · ·+0sn+1 and the result

is clear. Assume that x > 0 and j = min{i ∈ {0, . . . ,n+1} | x− si ∈ T (n)}. Since x ∈

Ap(T (n),s0) observe that j 6= 0 and x− s j ∈ Ap(T (n),s0). By induction hypothesis,

there exists (a1, . . . ,an+1) ∈ A(n) such that x− s j = a1s1 + · · ·+ an+1sn+1. Hence

x = a1s1+ · · ·+(a j +1)s j + · · ·+an+1sn+1. To conclude the proof, it suffices to check

that
(
a1, . . . ,a j +1, . . . ,an+1

)
∈ A(n). In order to prove

(
a1, . . . ,a j +1, . . . ,an+1

)
∈
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{0,1,2}n+1 it is enough to see that a j + 1 6= 3. Suppose that a j + 1 = 3. By using

Lemma 94, we distinguish two cases depending on the value of j:

. if j < n+1 then (a j +1)s j = 3s j = 2s j−1 + s j+1;

. if j = n+1 then (a j +1)s j = 3s j = 2s j−1 + s2
0 + s1 + sn.

In both cases, we deduce that x− s j−1 ∈ T (n) contradicting the minimality of j.

Whence from the minimality of j we have that ai = 0 for 1 ≤ i < j. Let us see that

does not exists k > j such that ak = 2. Assume to the contrary that ak = 2, by Lemma

94 we have that:

. if k < n+1 then s j +2sk = 2s j−1 + sk+1;

. if k = n+1 then s j +2sk = 2s j−1 + s2
0 + s1 + sn.

In both cases, we get that x− s j−1 ∈ T (n) contradicting again the minimality of j.

Therefore
(
a1, . . . ,a j +1, . . . ,an+1

)
∈ A(n). �

We will see in the next example that the equality in Lemma 95 does not hold in

general.

EXAMPLE 96. We have that T (1) = 〈{5,11,23}〉 and Ap(T (1),5) =

{0,11,22,23,34}.

It is clear that A(1) = {(0,0),(0,1),(0,2),(1,0),(1,1),(2,0),(2,1)} and thus

{a111+a223 | (a1,a2) ∈ A(1)}= {0,23,46,11,34,22,45}.

Now our purpose is to find a subset R(n) of A(n) such that the equality holds in

Lemma 95 if we substitute A(n) by R(n).

LEMMA 97. Under the standing notation and n ∈N. If x ∈ T (n) and x 6≡ 0 mod s0

then x−1 ∈ T (n).

PROOF. If x ∈ T (n) then there exists there exist a0, . . . ,an+1 ∈ N such that

x = a0s0 + · · ·+ an+1sn+1. On the other hand, if x 6≡ 0 mod s0 then there exists
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i ∈ {1, . . . ,n+1} such that ai 6= 0. Hence

x−1 = a0s0 + · · ·+(ai−1)si + · · ·+an+1sn+1 +3.2n+i−2 =

= a0s0 + · · ·+(ai−1)si + · · ·+an+1sn+1 +2
(
3.2n+i−1−1

)
=

= a0s0 + · · ·+(ai−1 +2)si−1 +(ai−1)si + · · ·+an+1sn+1 ∈ T (n).

�

The next result shows that if Ap(T (n),s0) = {w(0),w(1), . . . ,w(s0−1)} then

w(0)< w(1)< · · ·< w(s0−1).

LEMMA 98. Let n ∈ N and let w(i) be the least element of T (n) congruent with i

modulo s0 for all i ∈ {0, . . . ,s0−1}. Then w(0)< w(1)< · · ·< w(s0−1).

PROOF. Let us show that w(i) < w(i+ 1) for all i ∈ {0, . . . ,s0−2}. Since w(i+

1) ∈ T (n) and w(i+ 1) 6≡ 0 mod s0, we have that w(i+ 1)− 1 ∈ T (n) by Lemma 97.

As w(i+1)−1≡ i mod s0, we can deduce that w(i)≤ w(i+1)−1. �

As a consequence of previous lemma we get that w(s0−1) = max(Ap(T (n),s0))

LEMMA 99. Under the standing notation. If n ∈ N then max(Ap(T (n),s0)) ≤

sn + sn+1.

PROOF. Since sn + sn+1 = 3.22n − 1 + 3.22n+1 − 1 = 2n (3.2n−1) + (2n−1) +

2n+1 (3.2n−1)+
(
2n+1−1

)
=
(
2n +2n+1)s0 +2n−1+2n+1−1 =

(
2n +2n+1)s0 +

s0−1, we can conclude that sn+sn+1≡ s0−1 mod s0. Therefore w(s0−1)≤ sn+sn+1

and by Lemma 98 we obtain the desired result. �

As a consequence of Lemma 99, we obtain the following result.

LEMMA 100. Under the standing notation. If n ∈ N then

(1) 2sn+1 6∈ Ap(T (n),s0);

(2) sn + sn+1 + si 6∈ Ap(T (n),s0) for all i ∈ {0, . . . ,n+1}.
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From now on we will suppose that n is a integer greater than or equal to 1. We will

denote by R(n) the set of the sequences (a1, . . . ,an+1) ∈ A(n) satisfying the following

conditions:

(1) an+1 ∈ {0,1};

(2) if an = 2 then an+1 = 0;

(3) if 1≤ i < n and an = an+1 = 1 then ai = 0.

Our goal now is to prove that Ap(T (n),s0) =

{a1s1 + · · ·+an+1sn+1 | (a1, . . . ,an+1) ∈ R(n)}.

REMARK 101. Observe that if n ≥ 2 then R(n) is the set of the sequences

(a1, . . . ,an+1) ∈ A(n) satisfying the following conditions:

(1) (a1, . . . ,an+1) 6= (0, . . . ,0,2);

(2) (a1, . . . ,an+1) 6= (0, . . . ,2,1) ;

(3) if an = an+1 = 1 then a1 = · · ·= an−1 = 0.

LEMMA 102. Under the standing notation. If n is a positive integer, then #R(n) =

3.2n−1 (where #X stands for cardinality of X).

PROOF. We distinguish two cases.

1) If (a1, . . . ,an+1) ∈ R(n) and 2 6∈ {a1, . . . ,an+1}, then ai ∈ {0,1} for all

i ∈ {1, . . . ,n− 1} and furthermore either an = an+1 = 0 or an = 0 and

an+1 = 1 or an = 1 and an+1 = 0 or (a1, . . . ,an+1) = (0, . . . ,0,1,1). Whence

#{(a1, . . . ,an+1) ∈ R(n) | 2 6∈ {a1, . . . ,an+1}}= 3.2n−1 +1.

2) If (a1, . . . ,an+1) ∈ R(n) and 2 ∈ {a1, . . . ,an+1}, then there exists an uni-

que i ∈ {1, . . . ,n} such that ai = 2. Besides, if i = n then (a1, . . . ,an+1) =

(0, . . .0,2,0). On the other hand, if i∈ {1, . . . ,n−1} then a1 = · · ·= ai−1 = 0,

ai+1, . . . ,an−1 ∈ {0,1} and either an = an+1 = 0 or an = 0 and an+1 = 1 or

an = 1 and an+1 = 0. Hence #{(a1, . . . ,an+1) ∈ R(n) | 2 ∈ {a1, . . . ,an+1}}=

3∑
n−1
i=1 2n−i−1 +1.
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Consequently #R(n)= 3.2n−1+1+3∑
n−1
i=1 2n−i−1+1= 3.2n−1+1+3(2n−1−1)+1=

6.2n−1−1 = 3.2n−1. �

Now we can state the result announced above.

THEOREM 103. Let n ∈ N\{0} and let T (n) be a Thabit numerical

semigroup minimally generated by {s0,s1, . . . ,sn+1}. Then Ap(T (n),s0) =

{a1s1 + · · ·+an+1sn+1 | (a1, . . . ,an+1) ∈ R(n)}.

PROOF. As a consequence of Lemmas 95 and 100 we obtain that

Ap(T (n),s0) ⊆ {a1s1 + · · ·+an+1sn+1 | (a1, . . . ,an+1) ∈ R(n)}. By using Lem-

mas 5 and 102, we get that #{a1s1 + · · ·+an+1sn+1 | (a1, . . . ,an+1) ∈ R(n)} ≤

#R(n) = 3.2n − 1 = s0 = #Ap(T (n),s0). Hence Ap(T (n),s0) =

{a1s1 + · · ·+an+1sn+1 | (a1, . . . ,an+1) ∈ R(n)}. �

As a consequence of the proof of previous theorem we have the following result.

COROLLARY 104. Under the standing hypothesis and notation. If

(a1, . . . ,an+1) ,(b1, . . . ,bn+1) ∈ R(n) and (a1, . . . ,an+1) 6= (b1, . . . ,bn+1), then we

have that a1s1 + · · ·+an+1sn+1 6= b1s1 + · · ·+bn+1sn+1.

Observe, by Remark 101 that, since (0,0, . . . ,1,1) belongs to R(n) if n ∈ N\{0}

then sn + sn+1 ∈ Ap(T (n),s0). Using Lemma 99 we have that max(Ap(T (n),s0)) =

sn+sn+1. Now by Proposition 10 we obtain the following result, which gives a formula

for the Frobenius number.

COROLLARY 105. Under the standing notation. If n ∈ N\{0} then F(T (n)) =

sn + sn+1− s0 = 9.22n−3.2n−1.

We illustrate some of these results with an example.

EXAMPLE 106.

. Let T (1) = 〈{5,11,23}〉. From Corollary 105, we obtain that F(T (1)) =

11+23−5 = 29. We have that R(1) = {(0,0),(0,1),(1,0),(1,1),(2,0)} and

thus, by Theorem 103, Ap(T (1),5) = {0,23,11,34,22}.



76 3. FROBENIUS PROBLEM

. Let T (2) = 〈{11,23,47,95}〉. By using again Corollary 105, we get that

F(T (2)) = 95+47−11 = 131. It is easy to check that

R(2) = {(0,0,0) ,(0,0,1) ,(0,1,0) ,(0,1,1) ,(0,2,0) ,(1,0,0) ,(1,0,1) ,

(1,1,0) ,(2,0,0) ,(2,0,1) ,(2,1,0)} .

Hence Ap(T (2),11) = {0,95,47,142,94,23,118,70,46,141,93}.

Observe that for T (2) we have that Ap(T (2),11) =

{w(0) = 0,w(1) = 23,w(2) = 46,w(3) = 47,w(4) = 70,w(5) = 93,

w(6) = 94,w(7) = 95,w(8) = 118,w(9) = 141,w(10) = 142}.

Thus using Remark 7, for example 129 ∈ T (2) and 119 6∈ T (2), since 129 ≥

w(129 mod 11) = w(8) = 118 and 119 < w(119 mod 11) = w(9) = 141.

2.3. Pseudo-Frobenius numbers and type. Note that if w,w′ ∈ Ap(S,x), then

w′ − w ∈ S if and only if w′ − w ∈ Ap(S,x). Therefore maximals≤S (Ap(S,x)) =

{w ∈ Ap(S,x) | w′−w 6∈ Ap(S,x)\{0} for all w′ ∈ Ap(S,x)}. Consequently, we

have that maximals≤T (1) (Ap(T (1),5)) = {22,34} (see Example 106). From Lemma

11, we get that PF(T (1)) = {17,29} and so t(T (1)) = 2.

Let n be an integer greater than or equal to 2. It is clear that maximal elements in

R(n) (with respect to the product order) are

(2,1, . . . ,1,0) ,(0,2,1, . . . ,1,0) , . . . ,(0, . . . ,0,2,1,0) ,(0, . . . ,0,2,0)

(2,1, . . . ,1,0,1) ,(0,2,1, . . . ,1,0,1) , . . . ,(0, . . . ,0,2,0,1) ,(0, . . . ,0,1,1) .

Moreover, since 2si +1 = si+1 for all i ∈ {1, . . . ,n}, we have that

{a1s1 + · · ·+an+1sn+1 | (a1, . . . ,an+1) ∈ {(2,1, . . . ,1,0) ,(0,2,1, . . . ,1,0) ,

. . . ,(0, . . . ,0,2,1,0) ,(0, . . . ,0,2,0)}}= {2sn− (n−1), . . . ,2sn−1,2sn} ,
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and

{a1s1 + · · ·+an+1sn+1 | (a1, . . . ,an+1) ∈ {(2,1, . . . ,1,0,1) ,(0,2,1, . . . ,1,0,1) ,

. . . ,(0, . . . ,0,2,0,1) ,(0, . . . ,0,1,1)}}= {sn + sn+1− (n−1), . . . ,sn + sn+1−1,sn + sn+1} .

As a consequence of Theorem 103, we obtain the following.

LEMMA 107. Under the standing notation. If n is an inte-

ger greater than or equal to two, then maximals≤T (n) (Ap(T (n),s0)) =

maximals≤T (n) {2sn,2sn−1, . . . ,2sn− (n−1),sn + sn+1,sn + sn+1−1, . . .

. . . ,sn + sn+1− (n−1)}

We are now able to give the next result that is central in this study.

THEOREM 108. Let n be an integer greater than or equal to two and let T (n) be

the Thabit numerical semigroup associated to n. Then maximals≤T (n) (Ap(T (n),s0)) =

{2sn− (n−1),sn + sn+1,sn + sn+1−1, . . . ,sn + sn+1− (n−1)}.

PROOF. Let i ∈ {0, . . . ,n−2}. Then sn + sn+1− (i+ 1)− (2sn− i) = sn + sn+1−

(2sn + 1) = sn + sn+1 − sn+1 = sn and consequently have that (2sn − i) ≤T (n) sn +

sn+1 − (i + 1). From Lemma 107 we obtain that maximals≤T (n) (Ap(T (n),s0)) =

maximals≤T (n) {2sn− (n−1),sn + sn+1,sn + sn+1−1, . . . ,sn + sn+1− (n−1)}.

As 2sn − (n − 1) < sn + sn+1 − (n − 1), the elements sn + sn+1 − (n −

1), . . . ,sn + sn+1 − 1,sn + sn+1 are n consecutive positive integers and n <

3.2n − 1, then we deduce that {sn + sn+1− (n−1), . . . ,sn + sn+1−1,sn + sn+1} ⊆

maximals≤T (n) (Ap(T (n),s0)).

Finally, we show that sn + sn+1 − i − (2sn− (n−1)) 6∈ T (n) for all i ∈

{0, . . . ,n−1}, or equivalently, sn + n− i 6∈ T (n) for all i ∈ {0, . . . ,n−1}. Assume

that there exists i ∈ {0, . . . ,n−1} such that sn + n− i ∈ T (n). Since sn + n− i =

3.22n− 1+ n− i = 2n (3.2n−1) + 2n− 1+ n− i and 1 ≤ 2n− 1+ n− i < 3.2n− 1,

by Lemma 97, we conclude that sn + 1 ∈ T (n). Then there exists a0, . . . ,an−1 ∈ N

such that sn + 1 = a0s0 + · · ·+ an−1sn−1. As sn + 1 6≡ 0 mod s0, then there exists
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j ∈ {1, . . . ,n−1} such that a j 6= 0. Therefore sn = a0s0 + · · ·+ (a j − 1)s j + · · ·+

an−1sn−1 +3.2n+ j−2 = a0s0 + · · ·+(a j−1)s j + · · ·+an−1sn−1 +2
(
3.2n+ j−1−1

)
=

a0s0 + · · ·+ (a j − 1)s j + · · ·+ an−1sn−1 + 2s j−1. Hence sn ∈ 〈{s0, . . . ,sn−1}〉 which

contradicts Theorem 93. �

By applying now Lemma 11 and Corollary 105 we obtain the following result.

COROLLARY 109. Let n be a positive integer and let T (n) be the Thabit numerical

semigroup associated to n. Then

PF(T (n)) = {F(T (n))− i | i ∈ {0, . . . ,n−1}}∪{2sn− s0− (n−1)}

and t(T (n)) = n+1.

Next we give an example.

EXAMPLE 110.

Let T (2) = 〈{11,23,47,95}〉. From Corollary 105, we know that F(T (2)) = 95+

47− 11 = 131. Moreover, we have that 2sn− s0− (n− 1) = 2.47− 11− 1 = 82. By

applying Corollary 109, we get that PF(T (2)) = {131,130,82}.

2.4. The genus. Our next purpose is to prove Theorem 113, which gives the a

formula for the genus of T (n). To this purpose, we need some preliminary results.

LEMMA 111. Let n be an integer greater than or equal to 2 and let i ∈

{1, . . . ,n+1}. Then

#{(a1, . . . ,an+1) ∈ R(n) | ai = 2}=


3.2n−i−1 if i ∈ {1, . . . ,n−1},

1 if i = n,

0 if i = n+1.

PROOF. If i ∈ {1, . . . ,n−1}, (a1, . . . ,an+1) ∈ R(n) and ai = 2, then we have

that a1 = a2 = · · · = ai−1 = 0, ai+1, . . . ,an+1 ∈ {0,1} and furthermore either an = 0

or an+1 = 0. Hence #{(a1, . . . ,an+1) ∈ R(n) | ai = 2} = 3.2n−i−1. On the other
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hand, it is also clear that {(a1, . . . ,an+1) ∈ R(n) | an = 2} = {(0, . . . ,0,2,0)} and

{(a1, . . . ,an+1) ∈ R(n) | an+1 = 2}= /0. �

LEMMA 112. Let n be an integer greater than or equal to 2 and let i ∈

{1, . . . ,n+1}. Then

#{(a1, . . . ,an+1) ∈ R(n) | ai = 1}=

 3
(
2n−1−2n−i−1) if i ∈ {1, . . . ,n−1},

2n if i ∈ {n,n+1}.

PROOF.

1) Let i ∈ {1, . . . ,n−1}. We distinguish two cases.

1.1) If 2 6∈ {a1, . . . ,ai−1}, then a1, . . . ,ai−1,ai+1, . . . ,an+1 ∈

{0,1} and either an = 0 or an+1 = 0. Therefore

#{(a1, . . . ,an+1) ∈ R(n) | ai = 1 and 2 6∈ {a1, . . . ,ai−1}}= 3.2n−2.

1.2) If 2 ∈ {a1, . . . ,ai−1}, then a j = 2 for some j ∈ {1, . . . , i−1}. Thus a1 =

· · ·= a j−1 = 0, a j+1, . . . ,an+1 ∈{0,1}, ai = 1 and either an = 0 or an+1 =

0. Hence #
{
(a1, . . . ,an+1) ∈ R(n) | ai = 1 and a j = 2

}
= 3.2n− j−2.

Consequently #{(a1, . . . ,an+1) ∈ R(n) | ai = 1}= 3.2n−2 +∑
i−1
j=1 3.2n− j−2 =

3.2n−2 +3.2n−3 + · · ·+3.2n−i−1 = 3
(
2n−1−2n−i−1).

2) Let i = n. We distinguish two cases.

2.1) If 2 6∈ {a1, . . . ,an−1}, then a1, . . . ,an−1,an+1 ∈ {0,1}. Be-

sides if an+1 = 1, then a1 = · · · = an−1 = 0. Hence

#{(a1, . . . ,an+1) ∈ R(n) | an = 1 and 2 6∈ {a1, . . . ,an−1}}= 2n−1 +1.

2.2) If 2 ∈ {a1, . . . ,an−1}, then a j = 2 for some j ∈ {1, . . . ,n−1}. In this

way a1 = · · ·= a j−1 = 0, a j+1, . . . ,an+1 ∈ {0,1} and an+1 = 0. Whence

#
{
(a1, . . . ,an+1) ∈ R(n) | an = 1 and a j = 2

}
= 2n− j−1.

Accordingly, #{(a1, . . . ,an+1) ∈ R(n) | an = 1}= 2n−1 +1+∑
n−1
j=1 2n− j−1 =

2n−1 +2n−2 + · · ·+20 +1 = 2n.

3) Let i = n+1. We distinguish two cases.
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3.1) If 2 6∈ {a1, . . . ,an}, then a1, . . . ,an ∈ {0,1}. Furthermore,

if an = 1 we have that a1 = · · · = an−1 = 0. Therefore,

#{(a1, . . . ,an+1) ∈ R(n) | an+1 = 1 and 2 6∈ {a1, . . . ,an}}= 2n−1 +1.

3.2) Now assume that 2 ∈ {a1, . . . ,an}. We deduce that there exists

j ∈ {1, . . . ,n−1} such that a j = 2 and thus a1 = · · · = a j−1 =

0, a j+1, . . . ,an−1 ∈ {0,1} and an = 0 (observe that in this case

does not exist elements such that an = 2 and an+1 = 1). Hence

#
{
(a1, . . . ,an+1) ∈ R(n) | an+1 = 1 and a j = 2

}
= 2n− j−1.

Consequently #{(a1, . . . ,an+1) ∈ R(n) | an+1 = 1} = 2n−1 + 1 +

∑
n−1
j=1 2n− j−1 = 2n.

�

We are ready to prove the next result.

THEOREM 113. Let n be a nonnegative integer and let T (n) be the Thabit nume-

rical semigroup associated to n. Then g(T (n)) = 9.22n−1 +(3n−5)2n−1.

PROOF. The reader can check that the result is also true for n ∈ {0,1}.

Now, we can suppose that n ≥ 2. Applying Proposition 10, Theorem 103 and

Corollary 104 we have that

g(T (n)) =
1
s0

(
∑

(a1,...,an+1)∈R(n)
a1s1 + · · ·+an+1sn+1

)
− s0−1

2
.

Clearly,

∑
(a1,...,an+1)∈R(n)

a1s1 + · · ·+an+1sn+1 =

= ∑
(a1,...,an+1)∈R(n), a1=1

s1 + ∑
(a1,...,an+1)∈R(n), a1=2

2s1 + · · ·

· · ·+ ∑
(a1,...,an+1)∈R(n), an+1=1

sn+1 + ∑
(a1,...,an+1)∈R(n), an+1=2

2sn+1.
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By using Lemmas 111 and 112, we obtain that

∑
(a1,...,an−1)∈R(n)

a1s1 + · · ·+an+1sn+1 =

=
n−1

∑
i=1

3.2n−i−12si +2sn +
n−1

∑
i=1

3
(
2n−1−2n−i−1)si +2nsn+

2nsn+1 = 3
n−1

∑
i=1

2n−i (3.2n+i−1
)
+3.2n−1

n−1

∑
i=1

(
3.2n+i−1

)
−

3
n−1

∑
i=1

2n−i−1 (3.2n+i−1
)
+(2n +2)sn +2nsn+1 =

= 3
n−1

∑
i=1

3.22n−3
n−1

∑
i=1

2n−i +9.2n−1
n−1

∑
i=1

2n+i− (n−1)3.2n−1−

9
n−1

∑
i=1

22n−1 +3
n−1

∑
i=1

2n−i−1 +(2n +2)sn + sn+1 =

= 9(n−1)22n−3(2n−2)+9.2n−1 (22n−2n+1)−3(n−1)2n−1−

9(n−1)22n−1 +3
(
2n−1−1

)
+(2n +2)

(
3.22n−1

)
+2n (3.22n+1−1

)
=

= 27.23n−1 +(9n−15)22n−1− (3n+4)2n−1 +1 =

= (3.2n−1)
(
9.22n−1 +(3n−2)2n−1−1

)
.

Therefore,

g(T (n)) = 9.22n−1 +(3n−2)2n−1−1− 3.2n−2
2

=

= 9.22n−1 +(3n−5)2n−1.

�

We conclude this section by illustrating the previous results with an example.

EXAMPLE 114. Consider the Thabit numerical semigroup T (3). By applying The-

orem 93, we obtain that e(T (3)) = 5 and {23,47,95,191,383} is its minimal set of

generators. From Corollary 105, we know that F(T (3)) = 551 and, by Theorem 113,
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we have that g(T (3)) = 304. Now using Corollary 109, we get that t(T (3)) = 4 and

PF(T (3)) = {551,550,549,357}

It also follows easily from the definition of R(n) that

R(3) = {(0,0,0,0) ,(0,0,0,1) ,(0,0,1,0) ,(0,0,1,1) ,(0,0,2,0) ,

(0,1,0,0) ,(0,1,0,1) ,(0,1,1,0) ,(0,2,0,0) ,(0,2,0,1) ,(0,2,1,0) ,

(1,0,0,0) ,(1,0,0,1) ,(1,0,1,0) ,(1,1,0,0) ,(1,1,0,1) ,(1,1,1,0) ,

(2,0,0,0) ,(2,0,0,1) ,(2,0,1,0) ,(2,1,0,0) ,(2,1,0,1) ,(2,1,1,0)}

and, by Theorem 103, we get that

Ap(T (3),23) = {0,383,191,574,382,95,478,286,190,573,381,47,430,

238,142,525,333,94,477,285,189,572,380} .

Moreover, from Lemma 98 ordering the previous set in increasing order we have

that w(0) = 0, w(1) = 47, w(2) = 94, w(3) = 95, w(4) = 142, w(5) = 189, w(6) =

190, w(7) = 191, w(8) = 238, w(9) = 285, w(10) = 286, w(11) = 333, w(12) = 380,

w(13) = 381, w(14) = 382, w(15) = 383, w(16) = 430, w(17) = 477, w(18) = 478,

w(19) = 525, w(20) = 572, w(21) = 573, w(22) = 574, where w(i) is the least element

of T (3) congruent with i modulo 23.

3. The Frobenius problem for Repunit numerical semigroups

In number theory, a Repunit is a number consisting of copies of the single digit

1. The numbers 1, 11, 111 or 1111, etc., are examples of Repunits. The term stands

for repeated unit and was coined by Albert H. Beiler in [3]. In general, the set of

Repunits in base b is
{

bn−1
b−1 | n ∈ N\{0}

}
. In binary, these are known like Mersenne

numbers. In the literature there are many problems related to this kind of numbers

(see, for example, [45] and [52]). The results presented in this section can be found in

[35].
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A numerical semigroup S is a Repunit numerical semigroup if there exist integers

b ∈ N\{0,1} and n ∈ N\{0} such that S =
〈{

bn+i−1
b−1 | i ∈ N

}〉
and it will be denoted

by S (b,n).

3.1. The embedding dimension. Along this section, b denotes an in-

teger greater than 2 and n denotes a positive integer. It is clear that

bn − 1 = (b−1)
(
bn−1 +bn−2 + · · ·+b+1

)
and thus bn−1

b−1 is a positive

integer. Besides gcd
{

bn−1
b−1 ,

bn+1−1
b−1

}
= 1

b−1

(
gcd
{

bn−1,bn+1−1
})

=

1
b−1 (gcd{bn−1,b(bn−1)+b−1}) = 1

b−1 (gcd{bn−1,b−1}) = 1
b−1 (b−1) = 1.

This proves the following result.

PROPOSITION 115. S (b,n) is a numerical semigroup.

Let M (b,n) be a submonoid of (N,+) generated by
{

bn+i−1 | i ∈ N
}

. It is clear

that S (b,n) =
{ m

b−1 | m ∈M (b,n)
}

. Hence, we get that gcd(M (b,n)) = b− 1 and

the map ϕ : M (b,n) −→ S (b,n), defined by ϕ(m) = m
b−1 , is a monoid isomorphism.

Consequently, if X is the minimal system of generators of M (b,n), then
{ x

b−1 |x ∈ X
}

is the minimal system of generators of S (b,n).

The next result gives a property verified in the monoid M (b,n), which is the key

to the development of this study.

LEMMA 116. If m ∈M (b,n)\{0}, then bm+b−1 ∈M (b,n).

PROOF. Since M (b,n) = 〈
{

bn+i−1 | i ∈ N
}
〉 and b

(
bn+i−1

)
+b−1 = bn+i+1−

1 ∈ M (b,n) then, by Lemma 72, we get that bm + b− 1 ∈ M (b,n) for all m ∈

M (b,n)\{0}. �

Observe that if X and Y are non empty sets of positive integer numbers such that

Y ⊆ X and X ⊆ 〈Y 〉, then clearly 〈X〉= 〈Y 〉.

LEMMA 117. The set
{

bn+i−1 | i ∈ {0, . . . ,n−1}
}

is a system of generators of

M (b,n).
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PROOF. Assume that M = 〈
{

bn+i−1 | i ∈ {0, . . . ,n−1}
}
〉. First, we show that if

m ∈ M\{0} then bm+ b− 1 ∈ M. For n = 1 the result is true. Thus, suppose that

n ≥ 2. If i ∈ {0, . . . ,n−2}, then b
(
bn+i−1

)
+ b− 1 = bn+i+1− 1 ∈ M. Moreover

b
(
b2n−1−1

)
+ b− 1 = b2n− 1 = (bn−1)(bn +1) ∈ M. By using Lemma 72, we

obtain that bm+b−1 ∈M for all m ∈M\{0}.

Now we show that M (b,n) = M. It is enough to show that bn+i− 1 ∈ M for all

i ∈ N. We proceed by induction on i. For i = 0 the result is true. Assume that the

statement is true for i and let us show it for i+1. As bn+i+1−1 = b
(
bn+i−1

)
+b−1

then, by the hypothesis of induction and from de fact that bm + b− 1 ∈ M for all

m ∈M\{0}, we get that bn+i+1−1 ∈M. �

Now we are ready to show that the system of generators of M (b,n) given in previ-

ous lemma is minimal.

THEOREM 118. The set
{

bn+i−1 | i ∈ {0,1, . . . ,n−1}
}

is the minimal system of

generators of M (b,n).

PROOF. If n = 1 the result is trivially true. Thus, suppose that n ≥ 2. First

we prove that b2n−1− 1 6∈ 〈
{

bn+i−1 | i ∈ {0,1, . . . ,n−2}
}
〉. Otherwise, there ex-

ist a0, . . . ,an−2 ∈ N such that b2n−1 − 1 = a0 (bn−1) + · · ·+ an−2
(
b2n−2−1

)
=

a0bn + · · ·+ an−2b2n−2− (a0 + · · ·+an−2). Therefore a0 + · · ·+ an−2 ≡ 1(mod bn)

implies that a0 + · · ·+an−2 = 1+ kbn for some k ∈ N\{0} and thus a0 + · · ·+an−2 ≥

1+bn. Consequently, we have that b2n−1−1 = a0 (bn−1)+ · · ·+an−2
(
b2n−2−1

)
≥

(a0 + · · ·+an−2)(bn−1)≥ (1+bn)(bn−1) = b2n−1 > b2n−1−1, which is impossi-

ble.

Now by Lemma 117, we know that
{

bn+i−1 | i ∈ {0, . . . ,n−1}
}

is a system of

generators of M (b,n). If it is not the minimal system of generators, then there exists

h ∈ {1, . . . ,n−1} such that bn+h−1 ∈ 〈
{

bn+i−1 | i ∈ {0,1, . . . ,h−1}
}
〉.

Let M = 〈
{

bn+i−1 | i ∈ {0, . . . ,h−1}
}
〉. If i ∈ {0, · · · ,h−2} then b

(
bn+i−1

)
+

b − 1 = bn+i+1 − 1 ∈ M. Furthermore, in view of the previous paragraph,



3. THE FROBENIUS PROBLEM FOR REPUNIT NUMERICAL SEMIGROUPS 85

b
(
bn+h−1−1

)
+ b− 1 = bn+h− 1 ∈ M. Therefore, by using Lemma 72 we obtain

that bm+b−1 ∈M for all m ∈M\{0}.

Using induction on i it is easy to show that bn+i− 1 ∈M for all i ∈ N. For i = 0

the result is true. Assume that the result holds for i. By induction hypothesis and

setting bn+i+1− 1 = b
(
bn+i−1

)
+ b− 1 we can deduce that bn+i+1− 1 ∈ M. As a

consequence we have that b2n−1− 1 ∈ M ⊆ 〈
{

bn+i−1 | i ∈ {0, . . . ,n−2}
}
〉, which

contradicts the fact that b2n−1−1 6∈ 〈
{

bn+i−1 | i ∈ {0,1, . . . ,n−2}
}
〉. �

As a consequence of the previous theorem, we have the following statement.

COROLLARY 119. The numerical semigroup S (b,n) has embedding dimension n.

Moreover, its minimal system of generators is
{

bn+i−1
b−1 | i ∈ {0, . . . ,n−1}

}
.

Note thatN is the unique Repunit numerical semigroup with embedding dimension

1. Clearly, as a consequence of previous results in this section, we obtain that, for n

greater than or equal 2, there are infinitely many Repunit numerical semigroups with

embedding dimension n. Specifically, this set is equal to {S (b,n) | b ∈ N\{0,1}}.

For example, the set of all Repunit numerical semigroups with embedding dimen-

sion 3 is equal to {S (b,3) | b ∈ N\{0,1}} =
{
〈b3−1

b−1 ,
b4−1
b−1 ,

b5−1
b−1 〉 | b ∈ N\{0,1}

}
=

{〈{7,15,31}〉,〈{13,40,121}〉, . . .}.

3.2. The Apéry set. The knowledge of Ap(S,x) for some x ∈ S\{0} gives us

enough information about S.

Motivated by the definitions, Lemma 5 and Proposition 10 we will extend the con-

cept of the Apéry set of numerical semigroups to the submonoids of (N,+). If M

is a submonoid of (N,+) and m ∈ M\{0} then Apéry set of m in M is Ap(M,m) =

{x ∈M | x−m 6∈M}. The next result is easy to prove.

LEMMA 120. Let M be a submonoid of (N,+) such that M 6= {0} and let d =

gcd(M) . Then:

(1) S =
{m

d | m ∈M
}

is a numerical semigroup;

(2) if m ∈M\{0} then Ap(M,m) =
{

dw | w ∈ Ap(S, m
d )
}

;
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(3) the cardinality of Ap(M,m) is m
d .

From now on we will denote by mi the elements bn+i − 1 for each i ∈

{0,1, . . . ,n−1}. Observe that with this notation we have that {m0,m1, . . . ,mn−1} is

the minimal system of generators of M (b,n) and
{ m0

b−1 ,
m1

b−1 , . . . ,
mn−1
b−1

}
is the minimal

system of generators of S (b,n).

Our next aim is to prove Theorem 123, which describes the set Ap(M (b,n) ,m0).

It is easy to prove the following result.

LEMMA 121. Let n be an integer grater than or equal 2. Then:

(1) if 0 < i≤ j < n−1 then mi +bm j = bmi−1 +m j+1;

(2) if 0 < i≤ n−1 then mi +bmn−1 = bmi−1 +(bn +1)m0.

We denote by R(b,n) the set of all n−1-tuple (a1, . . . ,an−1) that verify the follo-

wing conditions:

(1) for every i ∈ {1, . . . ,n−1} we have that ai ∈ {0,1, . . . ,b};

(2) if i ∈ {2, . . . ,n−1} and ai = b then a1 = · · ·= ai−1 = 0.

The following result expresses the interest of the set R(b,n).

LEMMA 122. Let n be an integer greater than or equal to two. If x ∈

Ap(M (b,n) ,m0) then there exists (a1, . . . ,an−1) ∈ R(b,n) such that x = a1m1 + · · ·+

an−1mn−1.

PROOF. We can use induction on x for the proof. For x = 0 the result is clear.

Suppose that x > 0 and let j = min{i ∈ {0, . . . ,n−1} | x−mi ∈M (b,n)}. Observe

that, as x ∈ Ap(M (b,n) ,m0) we obtain that j 6= 0. By induction hypothesis, there

exists (a1, . . . ,an−1) ∈ R(b,n) such that x−m j = a1m1 + · · ·+ an−1mn−1. Therefore

x = a1m1 + · · ·+
(
a j +1

)
m j + · · ·+an−1mn−1.

To conclude the proof, we will see that
(
a1, . . . ,a j +1, . . . ,an−1

)
∈ R(b,n). If

a j +1 = b+1, then by applying Lemma 121, it fulfills one of the conditions.

. if j < n−1 then (a j +1)m j = (b+1)m j = bm j−1 +m j+1;



3. THE FROBENIUS PROBLEM FOR REPUNIT NUMERICAL SEMIGROUPS 87

. if j = n−1 then (a j +1)m j = (b+1)m j = bm j−1 +(bn +1)m0.

In both cases we deduce that x−m j−1 ∈M (b,n), which contradicts the minimality of

j.

Now suppose there exists k > j such that ak = b then, by using Lemma 121, we

have the following conditions.

. if k < n−1 then m j +bmk = bm j−1 +mk+1;

. if k = n−1 then m j +bmk = bm j−1 +(bn +1)m0.

In both cases we obtain again that x−m j−1 ∈M (b,n), which contradicts the minima-

lity of j. Moreover, from the minimality of j we know that a1 = · · ·= a j−1 = 0.

So we can conclude that
(
a1, . . . ,a j +1, . . . ,an+1

)
∈ R(b,n). �

Before we state the following result let us observe that if h is a positive integer, then

the sequence of numbers bn,bn+1, . . . ,bn+h is a geometric progression with common

ratio b, it follows that bn +bn+1 + · · ·+bn+h = bn+h+1−bn

b−1 .

THEOREM 123. Let n be an integer greater than or equal to two. Then

Ap(M (b,n) ,m0) = {a1m1 + · · ·+an−1mn−1 | (a1, . . . ,an−1) ∈ R(b,n)}.

PROOF. Clearly R(b,n) = {0, . . . ,b−1}n−1 ∪

{(a1, . . . ,an−1) ∈ R(b,n) | a1 = b} ∪ · · · ∪ {(a1, . . . ,an−1) ∈ R(b,n) | an−1 = b}.

Then R(b,n) is the disjoint union of these sets and therefore the cardinality of

R(b,n) is equal to bn−1 + bn−2 + · · ·+ b0 = bn−1
b−1 = m0

b−1 . By using Lemma 122, we

have that Ap(M (b,n) ,m0) ⊆ {a1m1 + · · ·+an−1mn−1 | (a1, . . . ,an−1) ∈ R(b,n)}.

In view of Lemma 120 the cardinality of Ap(M (b,n) ,m0) is equal to
m0

b−1 . Furthermore, from the previous paragraph, we know that the car-

dinality of the set {a1m1 + · · ·+an−1mn−1 | (a1, . . . ,an−1) ∈ R(b,n)} is

less than or equal to m0
b−1 . Hence we conclude that Ap(M (b,n) ,m0) =

{a1m1 + · · ·+an−1mn−1 | (a1, . . . ,an−1) ∈ R(b,n)}. �

As a consequence of the proof of previous theorem we obtain the following result.
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COROLLARY 124. Let n be an integer greater than or equal to two and let

(a1, . . . ,an−1) and (b1, . . . ,bn−1) be two distinct elements in R(b,n). Then it follows

that a1m1 + · · ·+an−1mn−1 6= b1m1 + · · ·+bn−1mn−1

As an immediate consequence of Lemma 120 and Theorem 123, we have the fol-

lowing result.

COROLLARY 125. Let n be an integer greater than or equal to two. Then

Ap
(
S (b,n) , m0

b−1

)
=
{

a1
m1

b−1 + · · ·+an−1
mn−1
b−1 | (a1, . . . ,an−1) ∈ R(b,n)

}
.

We alrealdy seen that the least positive integer belonging to a numerical semigroup

S is called its multiplicity and is denoted by m(S). Recall that a numerical semigroup S

has a monotonic Apéry set if w(1)< w(2)< · · ·< w(m(S)−1) where w(i) is the least

element of S congruent with i modulo m(S) for all i ∈ {1, . . . ,m(S)−1}. Our next goal

is to prove that S (b,n) is a numerical semigroups with a monotonic Apéry set. Note

that not every numerical semigroup is of this form. In fact, if S = 〈5,7,9〉 then we have

that m(S) = 5 and Ap(S,5) = {w(0) = 0,w(1) = 16,w(2) = 7,w(3) = 18,w(4) = 9}.

LEMMA 126. Under the standing notation and n ≥ 2. If x ∈ S (b,n) and x 6≡

0 mod m0
b−1 then x−1 ∈ S (b,n).

PROOF. If x ∈ S (b,n), then there exists a0, . . . ,an−1 ∈ N such that x = a0
m0

b−1 +

· · ·+an−1
mn−1
b−1 . Besides, if x 6≡ 0 mod m0

b−1 then there exists i ∈ {1, . . . ,n−1} such that

ai 6= 0. Therefore,

x−1 = a0
m0

b−1 + · · ·+(ai−1) mi
b−1 + · · ·+an−1

mn−1
b−1 + mi

b−1 −1.

Since mi
b−1 −1 = bn+i−1

b−1 −1 = bn+i−b
b−1 = bbn+i−1−1

b−1 = b mi
b−1 , we have that

x−1 = a0
m0

b−1 + · · ·+(ai−1 +b) mi−1
b−1 +(ai−1) mi

b−1 · · ·+an−1
mn−1
b−1

belongs to S (b,n). �

Now we can prove the result announced above.

PROPOSITION 127. Under the standing notation and n ≥ 2. Then S (b,n) is a

numerical semigroups with a monotonic Apéry set.
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PROOF. In view of Corollary 119, we can deduce that m(S (b,n)) = m0
b−1 . To con-

clude the proof we only need to prove that w(i) < w(i + 1), where w(i) is the le-

ast element of S congruent with i modulo m0
b−1 for all i ∈ {1, . . . ,m(S)−1}. Since

w(i + 1) ∈ S (b,n) and w(i+ 1) 6≡ 0 mod m0
b−1 , then by Lemma 126 we obtain that

w(i+1)−1∈ S (b,n). Thus w(i)≤w(i+1)−1 because w(i+1)−1≡ i mod m0
b−1 . �

Next we illustrate the previous results with an example.

EXAMPLE 128. Let us compute Ap
(

S (3,3) , 33−1
3−1

)
= Ap(〈13,40,121〉,13). It is

easy to check that

R(3,3) = {(0,0) ,(0,1) ,(0,2) ,(1,0) ,(1,1) ,(1,2) ,(2,0) ,(2,1) ,(2,2) ,

(3,0) ,(3,1) ,(3,2) ,(0,3)} .

Applying Corollary 125, we get that

Ap(〈13,40,121〉,13) = {0,121,242,40,161,282,80,201,322,120,241,362,363} .

Furthermore, by using Proposition 127, we get that w(0) = 0,w(1) = 40,w(2) =

80,w(3) = 120,w(4) = 121,w(5) = 161,w(6) = 201,w(7) = 241,w(8) = 242,w(9) =

282,w(10) = 322,w(11) = 362 and w(12) = 363.

From Remark 7 and using the previous example, it easily follows that 265 ∈

S (3,3) and 270 6∈ S (3,3), because 265 ≥ w(265 mod 13) = w(5) = 161 and 270 <

w(270 mod 13) = w(10) = 322.

3.3. The Frobenius problem. Our next purpose is to give a formula for the Fro-

benius number of S (b,n). The next result has an immediate proof.

LEMMA 129. Let n be an integer greater than or equal to three. Then the max-

imal elements (with respect to the product order) in R(b,n) are (b,b−1, . . . ,b−1),

(0,b,b−1, . . . ,b−1) and (0, . . . ,0,b).
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The next result shows that bm1+(b−1)m2+ · · ·+(b−1)mn−1,bm2+(b−1)m3+

· · ·+ (b− 1)mn−1, . . . ,bmn−1 is a sequence of integers where each term is obtained

from the previous by adding b−1.

LEMMA 130. Let n be an integer greater than or equal to three and let i ∈

{1, . . . ,n−2}, then bmi +b−1 = mi+1.

PROOF. In fact, bmi +b−1 = b
(
bn+i−1

)
+b−1 = bn+i+1−1 = mi+1. �

Now we can state the result announced previously.

THEOREM 131. Let n be an integer greater than or equal to two. Then

F(S (b,n)) = bn−1
b−1 bn−1.

PROOF. From Corollary 125 and Lemmas 129 and 130, we deduce that

max
(
Ap
(
S (b,n) , m0

b−1

))
= bmn−1

b−1 . By applying Proposition 10 we obtain that

F(S (b,n)) = bmn−1
b−1 −

m0
b−1 = b(b2n−1−1)

b−1 − bn−1
b−1 = bn−1

b−1 bn−1. �

Note that for n = 1 the previous formula is not true, because S (b,1) = N and

F(N) =−1 6= b−1
b−1b−1 = b−1.

EXAMPLE 132. Let us compute the Frobenius number of the numerical semigroup

S (3,4) = 〈34−1
3−1 ,

35−1
3−1 ,

36−1
3−1 ,

37−1
3−1 〉 = 〈40,121,364,1093〉. By using Theorem 131 we

obtain that F(S (3,4)) = 34−1
3−1 34−1 = 3239.

Our next goal is to determine the set of all pseudo-Frobenius number and the type

of S (b,n).

Note that, as a consequence of Lemma 11, if we want to compute

the pseudo-Frobenius number of S (b,n) it suffices to determine the set of

maximals≤S(b,n)

(
Ap
(
S (b,n) , m0

b−1

))
.

THEOREM 133. Let n be an integer greater than or equal to two. Then t(S (b,n))=

n−1. Moreover PF(S (b,n)) = {F(S (b,n))− i | i ∈ {0, . . . ,n−2}}.
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PROOF. Assume that A is the set of maximal elements in R(b,n) (with respect

to the product order) and B =
{

a1
m1

b−1 + · · ·+an−1
mn−1
b−1 | (a1, . . . ,an−1) ∈ A

}
. From

Corollary 125, we deduce that maximals≤S(b,n)

(
Ap
(
S (b,n) , m0

b−1

))
=maximals≤S(b,n)B.

Then, by applying Lemmas 129 and 130, the set B is formed by n− 1 consecutive

positive integers. Hence the difference between any two elements in B is smaller than

or equal to n−2. As m0
b−1 = bn−1

b−1 is the smallest positive integer in S (b,n) and bn−1
b−1 >

n− 2, we can conclude that B is a set of incomparable elements with respect to the

≤S(b,n) order and thus maximals≤S(b,n)B = B.

Now by using Lemma 11 we obtain that PF(S (b,n)) =
{

w− m0
b−1 | w ∈ B

}
. From

the proof of Theorem 131 we have that max(B) = F(S (b,n))+ m0
b−1 and consequently

PF(S (b,n)) = {F(S (b,n))− i | i ∈ {0, . . . ,n−2}}. �

Note that for n = 1 the previous theorem is not true, because S (b,1) = N,

PF(N) = {−1} and so t(N) = 1. Notice also that for each positive integer n there

are infinitely many Repunit numerical semigroups of type n. Specifically, this set is

equal to {S (b,n+1) | b ∈ N\{0,1}} coincides with the set of all Repunit numerical

semigroups with embedding dimension n+1.

EXAMPLE 134. Let us compute the Pseudo-Frobenius numbers of the numerical

semigroup S (3,4). From Example 132 we know that F(S (3,4)) = 3239. By applying

Theorem 133 we have that PF(S (b,n)) = {3239,3238,3237}.

The next result gives a formula for the genus of a Repunit numerical semigroup.

THEOREM 135. Let n be a positive integer. Then g(S (b,n)) = bn

2

(
bn−b
b−1 +n−1

)
.

PROOF. For n = 1 the result is trivial. Now assume that n ≥ 2 and for each i ∈

{0, . . . ,n−1} define si =
mi

b−1 . By using Proposition 10 and Corollaries 124 and 125

we have that

g(S (b,n)) =
1
s0

(
∑

(a1,...,an−1)∈R(b,n)
a1s1 + · · ·+an−1sn−1

)
− s0−1

2
.
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Clearly,

∑
(a1,...,an−1)∈R(b,n)

a1s1 + · · ·+an−1sn−1 =

= ∑
(a1,...,an−1)∈R(b,n), a1=1

s1 + · · ·+ ∑
(a1,...,an−1)∈R(b,n), a1=b

bs1 + · · ·

· · ·+ ∑
(a1,...,an−1)∈R(b,n), an−1=1

sn−1 + · · ·+ ∑
(a1,...,an−1)∈R(b,n), an−1=b

bsn−1.

Let i ∈ {1, · · · ,n−1}. The reader can prove that:

- the cardinality of {(a1, . . . ,an−1) ∈ R(b,n) | ai = b} is bn−1−i;

- if x ∈ {1, . . . ,b−1}, then the cardinality of

{(a1, . . . ,an−1) ∈ R(b,n) | ai = x and b 6∈ {a1, . . . ,ai−1}} is bn−2;

- if 1 ≤ j < i then the cardinality of{
(a1, . . . ,an−1) ∈ R(b,n) | ai = x and a j = b

}
is bn− j−2.
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Therefore, applying the previous results, we have that

∑
(a1,...,an−1)∈R(b,n)

a1s1 + · · ·+an−1sn−1 =

=
b−1

∑
x=1

(
x

n−1

∑
i=1

(
bn−2 +bn−3 + · · ·+bn−1−i)si

)
+b

n−1

∑
i=1

bn−1−ibsi =

=
b(b−1)

2

n−1

∑
i=1

(
bn−2 + · · ·+bn−1−i)si +b

n−1

∑
i=1

bn−i−1si =

=
b(b−1)

2

n−1

∑
i=1

bn−1−bn−i−1

b−1
si +b

n−1

∑
i=1

bn−i−1si =

=
1
2

n−1

∑
i=1

(
bn−bn−i)si +

n−1

∑
i=1

bn−isi =
1
2

n−1

∑
i=1

(
bn +bn−i)si =

=
1
2

n−1

∑
i=1

(
bn +bn−i)(bn+i−1

b−1

)
=

1
2(b−1)

n−1

∑
i=1

(
b2n+i−bn +b2n−bn−i)=

=
1

2(b−1)

(
b3n−b2n+1

b−1
− (n−1)bn +(n−1)b2n−

(
bn−b
b−1

))
=

=
1

2(b−1)

(
(bn−1)

(
b2n−bn+1 +bn−b

)
b−1

+(n−1)bn (bn−1)

)
=

=
bn−1

2(b−1)

(
b2n−bn+1 +bn−b

b−1
+(n−1)bn

)
.

Therefore, we obtain that

g(S (b,n)) =
1
2

(
b2n−bn+1 +bn−b

b−1
+(n−1)bn

)
−

bn−1
b−1 −1

2
=

=
1
2

(
b2n−bn+1 +bn−b

b−1
+(n−1)bn− bn−b

b−1

)
=

=
1
2

(
b2n−bn+1

b−1
+(n−1)bn

)
=

bn

2

(
bn−b
b−1

+n−1
)
.

�

EXAMPLE 136. Let us compute the genus of the numerical semigroup S (3,4). By

applying Theorem 135 we have that g(S (3,4)) = 34

2

(
34−3
3−1 +4−1

)
= 1701.





CHAPTER 4

Combinatory optimization problems

In this chapter we will study the digital semigroups and the bracelet monoids. This

study is fullfilled in sections 1 and 2, respectively, and were published in [33] and [30].

A digital semigroup D is a subsemigroup of (N\{0}, ·) such that if d ∈ D then

{x ∈ N\{0} | `(x) = `(d)} ⊆ D with `(n) the number of digits of n written in decimal

expansion. In Section 1, we compute the smallest digital semigroup containing a set of

positive integers. For this, we establish a connection between the digital semigroups

and a class of numerical semigroups called LD-semigroups.

Given positive integers n1, . . . ,np, we say that a submonoid M of (N,+) is a

(n1, . . . ,np)-bracelet if a+ b+
{

n1, . . . ,np
}
⊆ M for every a,b ∈ M\{0}. In Section

2, we explicitly describe the smallest (n1, . . . ,np)-bracelet that contains a finite subset

X of N. We also present a recursive method that enables us to construct the whole set

B(n1, . . . ,np) =
{

M |M is a (n1, . . . ,np)−bracelet
}

. Finally, we study (n1, . . . ,np)-

bracelets that cannot be expressed as the intersection of (n1, . . . ,np)-bracelets properly

containing it.

1. Sets of positive integers closed under product and the number of decimal

digits

Given, A a subset of N\{0}, we denote by L(A) = {`(a) | a ∈ A}. We prove that

if D a digital semigroup then L(D)∪ {0} is a numerical semigroup. A numerical

semigroup S is called LD-semigroup if there exist a digital semigroup D such that

S = L(D)∪{0}. The results presented in this section can be found in [33].

Denote by D (respectively L) the set of all digital semigroups (respectively LD-

semigroups). We see that the map ϕ : D −→ L defined by ϕ(D) = L(D)∪ {0} is
95
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bijective and its inverse is the map θ : L −→ D with θ(S) = {a ∈ N\{0} | `(a) ∈ S}.

From this it easily follows that if D is a digital semigroup then N\D is finite.

This fact together with the results presented in Section 3 of the Preliminaries allows

us to arrange the elements of L in a tree. We characterize the childs of any vertex of

this tree and this will enable us to recursively construct the set L and consequently the

set D .

Given a set of positive integers X we denote by D(X) (respectively L(X))

the smallest (with respect to the set inclusion order) digital semigroup contai-

ning X (respectively LD-semigroup). We prove that if X is a set of positive in-

tegers and S the smallest LD-semigroup containing L(X) then θ(S) is the smal-

lest digital semigroup containing X . As a first consequence of this we get that

D = {D(X) | X is a nonempty finite subset of N\{0}} whence every digital semi-

group can be described from a finite number of terms.

Given a finite set of positive integers X we describe an algorithmic procedure for

computing the smallest LD-semigroup that contains X . As a consequence we have

an algorithm that computes the smallest digital semigroup containing a finite set of

positive integers.

1.1. LD-semigroups. The next result establish a relation between a digital semi-

group and a LD-semigroup.

PROPOSITION 137. If D is a digital semigroup, then L(D)∪{0} is a numerical

semigroup.

PROOF. Let x,y ∈ L(D). Since `(9× 10x−1) = x and `(9× 10y−1) = y we get

that 9× 10x−1,9× 10y−1 ∈ D and thus 81× 10x+y−2 ∈ D. But we have that 81×

10x+y−2 = (8× 10+ 1)10x+y−2 = 8× 10x+y−1 + 10x+y−2 and so `(81× 10x+y−2) =

x+ y. Therefore x+ y ∈ L(D) and consequently L(D)∪{0} is a submonoid of (N,+).

Let d ∈D. Then 10`(d)−1 ∈D and thus 102`(d)−2 = 10`(d)−1×10`(d)−1 ∈D. Since

`(102`(d)−2) = 2`(d)−1, obviously {`(d), 2`(d)−1} ⊆ L(D). Thus we conclude that

L(D)∪{0} is a numerical semigroup. �
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Observe that not every numerical semigroup is of this form. In fact, by applying

Proposition 137, we deduce that if S is a LD-semigroup and x∈ S\{0} then 2x−1∈ S.

Then we have that S = 〈4,5〉 is not a LD-semigroup, because 2×4−1 /∈ S.

Next we describe a characterization of LD-semigroups.

LEMMA 138. Let x and y be positive integers. Then `(xy) ∈

{`(x)+ `(y), `(x)+ `(y)−1}.

PROOF. As 10`(x)−1 ≤ x < 10`(x) and 10`(y)−1 ≤ y < 10`(y), we have that

10`(x)+`(y)−2 ≤ xy < 10`(x)+`(y). Therefore `(x)+ `(y)− 1 ≤ `(xy) < `(x)+ `(y)+ 1

and consequently `(xy) ∈ {`(x)+ `(y)−1, `(x)+ `(y)}. �

THEOREM 139. Let S be a numerical semigroup. The following conditions are

equivalent.

1) S is a LD-semigroup.

2) If a,b ∈ S\{0} then a+b−1 ∈ S.

PROOF. 1) implies 2). Assume that S is a LD-semigroup, then there exists a digital

semigroup D such that S = L(D)∪{0}. If a,b∈ S\{0} then 10a−1,10b−1 ∈D and thus

10a+b−2 ∈ D. Consequently a+b−1 = `(10a+b−2) ∈ L(D)⊆ S.

2) implies 1). Let D = {a ∈ N\{0} | `(a) ∈ S}. It is clear S = L(D) ∪ {0}.

In order to conclude the proof, it suffices to show that D is a digital semigroup.

It is clear that if d ∈ D then {a ∈ N\{0} | l(a) = l(d)} ⊆ D. Let us see that D

is closed under product. In fact, if a,b ∈ D then by Lemma 138 we deduce that

`(ab) ∈ {`(a)+ `(b), `(a)+ `(b)−1}. This implies that `(ab) ∈ S, and consequently

ab ∈ D. �

Let D = {D | D is a digital semigroup} and let L = {S | S is a LD-semigroup}. As

a consequence of the proof of Theorem 139 we obtain the following result.

COROLLARY 140. The correspondence ϕ : D → L , defined by ϕ(D) = L(D)∪

{0}, is a bijective map. Furthermore its inverse is the map θ : L → D , θ(S) =

{a ∈ N\{0} | `(a) ∈ S}.
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From this result one easily deduces the following alternative characterization.

COROLLARY 141. With the above notation, we have that

D = {θ(S) | S is a LD-semigroup} .

If x1,x2, . . . ,xk are integers, we denote by {x1,x2, . . . ,xk,→} the set

{x1,x2, . . . ,xk}∪ {z ∈ Z | z > xk}. Given a positive integer n, we denote by 4(n) =

{x ∈ N\{0} | `(x) = n}.

EXAMPLE 142. Let S = 〈3,5,7〉 = {0,3,5,6,7,→}. By using Theorem 139, we

obtain that S is a LD-semigroup. Since N\S = {1,2,4}, in view of Corollary 141, we

deduce that N\(4(1)∪4(2)∪4(4)∪{0}) is a digital semigroup.

COROLLARY 143. If D is a digital semigroup, then N\D is finite.

PROOF. By Corollary 141 there exists a LD-semigroup S such that D= θ(S). Since{
x ∈ N | x≥ 10F(S)

}
⊆ D it follows that N\D is finite. �

COROLLARY 144. Let S be a LD-semigroup not equal to N and let N\S =

{h1 = 1 < · · ·< ht = F(S)}. Then

1) F(θ(S)) = 10F(S)−1,

2) g(θ(S)) = 9×
(
10h1−1 + · · ·+10ht−1)+1.

PROOF. 1) It is enough to observe that 10F(S) − 1 =

max{n ∈ N\{0} | `(n) = F(S)}

2) Since θ(S) = N\(4(h1)∪·· ·∪4(ht)∪{0}), then g(θ(S)) =

cardinal(4(h1)∪·· ·∪4(ht)∪{0}). In order to conclude the

proof, it suffices to observe that if i ∈ {1, . . . , t} then 4(hi) ={
10hi−1,10hi−1 +1, . . .10hi−1

}
. Hence the cardinality of 4(hi) =

10hi−1−10hi−1 +1 = 10hi−10hi−1 = 9×10hi−1.

�



1. SETS OF POSITIVE INTEGERS CLOSED UNDER PRODUCT 99

EXAMPLE 145. Let S = 〈3,5,7〉 the LD-semigroup of Example 142. Since

F(S) = 4 then F(θ(S)) = 104 − 1 = 9999, and as N\S = {1,2,4} then g(θ(S)) =

9×
(
100 +101 +103)+1 = 9100.

1.2. Frobenius Variety of LD-semigroups. We begin with the following result:

PROPOSITION 146. Let L = {S | S is a LD-semigroup}. The set L is a Frobenius

variety.

PROOF. Clearly L is not empty, because N ∈ L . Assume that S,T ∈ L and let us

show that S∩T ∈ L . If a,b ∈ (S∩T )\{0} then a,b ∈ S\{0} and a,b ∈ T\{0}. By

using Theorem 139, we have that a+b−1 ∈ (S∩T )\{0}.

Now let us prove that if S ∈ L and S 6=N, then S∪{F(S)} ∈ L . To this end, we use

again Theorem 139. Let a,b ∈ (S∪{F(S)})\{0}.

. If a,b ∈ S, then a+b−1 ∈ S⊆ S∪{F(S)}.

. If F(S) ∈ {a,b}, then a+b−1≥ F(S) and thus a+b−1 ∈ S∪{F(S)}.

�

Let L = {S | S is a LD-semigroup}. Recall that the graph G(L) is the graph whose

vertices are the elements of L and (S,S′) ∈ L×L is an edge if S′ = S∪{F(S)}.

Recall that every numerical semigroup S is finitely generated and therefore there

exists a finite subset A of S such that S = 〈A〉. Furthermore, if no proper subset of A

generates S, then we say that A is a minimal system of generators of S. Every numerical

semigroup S admits a unique minimal system of generators, which will be denoted by

msg(S). Besides, msg(S) = (S\{0})\(S\{0}+S\{0}). We already know that if S

is a numerical semigroup and x ∈ S then S\{x} is a numerical semigroup if only if

x ∈msg(S).

As a consequence of Proposition 21 and Theorem 23 we obtain the following re-

sult.
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THEOREM 147. The graph G(L) is a tree rooted in N. Mo-

reover, the childs of a vertex S ∈ L are S\{x1} , . . . ,S\{xl} with

{x1, . . . ,xl }={x ∈msg(S) | x > F(S) and S\{x} ∈ L}

PROPOSITION 148. Let S be a LD-semigroup not equal to N and let x ∈ msg(S).

Then S\{x} is a LD-semigroup if and only if x+1 ∈ (N\S)∪msg(S).

PROOF. Necessity. If x+1 6∈ (N\S)∪msg(S), then clearly there exists a,b∈ S\{0}

such that a+ b = x+ 1. Hence a,b ∈ S\{0,x} but a+ b− 1 = x 6∈ S\{x} and conse-

quently S\{x} is not a LD-semigroup.

Sufficiency. Let a,b ∈ S\{0,x}. Since by hypothesis S is a LD-semigroup, then

we have that a+ b− 1 ∈ S. If a+ b− 1 = x we obtain that x+ 1 6∈ (N\S)∪msg(S).

Therefore a+b−1 6= x and thus a+b−1 ∈ S\{x}. By using Theorem 139, we have

that S\{x} is a LD-semigroup. �

From this result one easily deduces the following.

COROLLARY 149. Let S be a LD-semigroup not equal to N and let x ∈ msg(S)

such that x > F(S). Then S\{x} is a LD-semigroup if only if x+1 ∈msg(S).

These results allows us to construct recursively the tree, starting in N, and compute

the childs of each vertex (Figure 1). By using Theorem 147 and Corollary 149 we

obtain the following.

. N= 〈1〉 has an only child that is N\{1}= 〈2,3〉;

. 〈2,3〉 has again an only child that is 〈2,3〉\{2}= 〈3,4,5〉;

. 〈3,4,5〉 has two childs that are 〈3,4,5〉\{3}= 〈4,5,6,7〉 and 〈3,4,5〉\{4}=

〈3,5,7〉;

. 〈3,5,7〉 has no childs;

. 〈4,5,6,7〉 has three childs that are 〈4,5,6,7〉\{4} = 〈5,6,7,8,9〉,

〈4,5,6,7〉\{5}= 〈4,6,7,9〉 and 〈4,5,6,7〉\{6}= 〈4,5,7〉;

. . . . . . . . . . . . .
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FIGURE 1. The tree of LD-numerical semigroups

N= 〈1〉

��

〈2,3〉

��

〈3,4,5〉

�� ��

〈4,5,6,7〉

~~ �� ��

〈3,5,7〉

〈5,6,7,8,9〉 〈4,6,7,9〉 〈4,5,7〉

· · · · · · · · · · · · · · · · · · · · · · · ·

1.3. The smallest digital semigroup containing a set of positive integers. The

following result has immediate proof.

LEMMA 150. The intersection of digital semigroups is also a digital semigroup.

This result motivates the following definition. Given X ⊆ N\{0}, we denote by

D(X) the intersection of all digital semigroups containing X . Observe that as a con-

sequence of previous result we obtain that D(X) is the smallest (with respect to set

inclusion) digital semigroup containing X .

Nonfinite intersection of LD-semigroups is not in general a numerical semi-

group. In fact, for every n ∈ N we have that {0,n,→} is a LD-semigroup and⋂
n∈N {0,n,→} = {0} is not a numerical semigroup. Given A ⊆ N, we denote by

L(A) the intersection of all LD-semigroups containing A. It is clear that L(A) is a

submonoid of (N,+).



102 4. COMBINATORY OPTIMIZATION PROBLEMS

PROPOSITION 151. Let A be a nonempty subset of N\{0}. Then L(A) is a LD-

semigroup.

PROOF. Assume that S is a LD-semigroup containing A. If a is an element of

A then, by applying Theorem 139, we have that {a,2a−1} ⊆ S and consequently

{a,2a−1} ⊆ L(A). It follows easily that L(A) is a numerical semigroup.

Let us see that L(A) is a LD-semigroup. Let a,b ∈ L(A)\{0}. If S is a LD-

semigroup containing A, then a,b ∈ S\{0} and thus a+b−1 ∈ S. Hence a+b−1 ∈

L(A). By using Theorem 139, we can conclude that L(A) is a LD-semigroup. �

As a consequence of previous proposition we have the following result.

COROLLARY 152. Let A be a nonempty subset of N\{0}. Then L(A) is the smal-

lest LD-semigroup containing A.

Next, we see that for constructing the smallest digital semigroup containing a set

X is equivalent to construct the smallest LD-semigroup containing L(X).

PROPOSITION 153. Let X be a nonempty subset of N\{0}. Then S is the smallest

LD-semigroup containing L(X) if and only if θ(S) is the smallest digital semigroup

containing X.

PROOF. Necessity. Let D be a digital semigroup that contains X . Then L(D)∪{0}

is a LD-semigroup that contains L(X). Hence S⊆ L(D)∪{0} and consequently θ(S)⊆

θ(L(D)∪{0}) = D.

Sufficiency. Let T be a LD-semigroup that contains L(X). Then θ(T ) is a digital

semigroup that contains X . Therefore θ(S)⊆ θ(T ) and so we can assert that S⊆ T . �

Next we illustrate the previous proposition with an example.

EXAMPLE 154. We compute the smallest digital semigroup that contains

{1235,54321}. First we compute the smallest LD-semigroup that contains

L({1235,54321}) = {4,5}. From Theorem 139 we obtain that every LD-semigroup
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containing {4,5} must contains the number 7 and 〈4,5,7〉 is a LD-semigroup. Hence

L ({4,5}) = 〈4,5,7〉. By applying Proposition 153, we get that D ({1235,54321}) =

θ(〈4,5,7〉) = N\(4(1)∪4(2)∪4(3)∪4(6)∪{0}).

Observe that every digital semigroup D is not finitely generated as a semigroup. In

fact, if D is a digital semigroup, then by Corollary 143, we obtain that N\D is finite.

Whence D is a subsemigroup of (N\{0}, ·) that contains infinitely many primes and

these belong to any system of generators of D.

Let D be a digital semigroup and X ⊆D. We say that X is D-system of generators

of D if D(X) = D. In the following result, we will see that every digital semigroup

admits a finite D-system of generators.

THEOREM 155. With the above notation, we have that

D = {D(X) | X is a nonempty finite subset of N\{0}} .

PROOF. It is clear that {D(X) | X is a nonempty finite subset of N\{0}} ⊆D .

For the other inclusion, take D ∈ D then S = L(D)∪{0} is a LD-semigroup. We

have that every numerical semigroup is finitely generated, and therefore there exist

positive integers n1, . . . ,np such that S = 〈n1, . . . ,np〉. Let x1 . . . ,xp ∈ D with l(x1) =

n1, . . . , l(xp) = np and X =
{

x1, . . . ,xp
}

. In order to conclude the proof, it suffices to

show that D = D(X). It is clear that S is the smallest LD-semigroup containing L(X).

Hence, by applying Proposition 153, we obtain that D = θ(S) is the smallest digital

semigroup that contains X and consequently D = D(X). �

Let D be a digital semigroup and let X be a subset of D such that D(X) = D. We

say that X is a minimal D-system of generators of D if no proper subset of X is a

D-system of generators of D. Now, we are interested to get an explicit description of

the minimal D-system of generators for a digital semigroup.

Let S be a LD- semigroup and let A⊆ S. We say that A is a L-system of generators

of S if L(A) = S. Moreover, if no proper subset of A generates S, then we say that A is a
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minimal L-system of generators of S. As L is a Frobenius variety, then by Corollary

20 we obtain the following result.

PROPOSITION 156. Every LD-semigroup admits a unique minimal L-system of

generators. This minimal L-system of generators is finite.

Using previous proposition it makes sense to define the L-rank of a LD-semigroup

S by the cardinality of its minimal LD-system of generators.

As an immediate consequence of the Proposition 153, we obtain the following.

PROPOSITION 157. Let D be a digital semigroup and let
{

n1, . . . ,np
}

be the mi-

nimal L-system of generators of L(D)∪ {0}. For each i ∈ {1, . . . , p} let di ∈ D be

such that `(di) = ni. Then
{

d1, . . . ,dp
}

is a minimal D-system of generators for D.

Furthermore every minimal D-system of generators for D is of this form.

From previous proposition we can conclude that not every digital semigroups ad-

mits a unique minimal D-system of generators. But the cardinality of its minimal D-

system of generators is always the same. And this is precisely L-rank of L(D)∪{0},

which we will denote by D-rank(D).

As a consequence of Proposition 21 we obtain the following.

PROPOSITION 158. Let S be a LD-semigroup and let x ∈ S. Then, the set S\{x} is

a LD-semigroup if and only if x belongs to the minimal L-system of generators of S.

From Proposition 148 we can deduce the following result.

COROLLARY 159. Let S be a LD-semigroup not equal to N and let x ∈ S. Then

x belongs to the minimal L-system of generators of S if and only if x ∈ msg(S) and

x+1 ∈ (N\S)∪msg(S).

We illustrate some of these results with an example.
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EXAMPLE 160. Let X = {1234,2341521,1234567890} and let D = D(X). We

compute a minimal D-system of generators of D. We will start by computing the smal-

lest LD-semigroup that contains L(X) = {4,7,10}. From Theorem 139 we have that

every LD-semigroup containing {4,7,10}must contain 13 and thus S= 〈4,7,10,13〉=

{0,4,7,8,10,→} is a LD-semigroup. Therefore S is the smallest LD-semigroup that

contains L(X). By applying Corollary 159 the set {4} is the minimal L-system of

generators for S. This implies by Proposition 157 that {1234} is a minimal D-system

of generators of D. Notice that in general D = D({a}) with a a positive integer such

that `(a) = 4 and {a} is a minimal D-system of generators D.

1.4. The smallest LD-semigroup containing a set of positive integers. Let

x1, . . . ,xt be positive integers. Denote by

S (x1, . . . ,xt) = {x ∈ N\{0} | x = a1x1 + · · ·+atxt− r with

r,a1, . . . ,at ∈ N and r < a1 + · · ·+at}∪{0} .

Our next goal is to prove that S (x1, . . . ,xt) is the smallest LD-semigroup containing

the set {x1, . . . ,xt}.

Let S be a numerical semigroup and let
{

n1, . . . ,np
}

be

its minimal set of generators. For s ∈ S, denote by P (s) =

max
{

a1 + · · ·+ap | s = a1n1 + · · ·+apnp and a1, . . . ,ap ∈ N
}

.

The reader can easily verify the following result.

LEMMA 161. Let S be a numerical semigroup minimally generated by
{

n1, . . . ,np
}

and let s ∈ S. Then

(1) If i ∈ {1, . . . , p} and s−ni ∈ S then P (s−ni)≤ P (s)−1.

(2) If s = a1n1 + · · ·+ apnp and P (s) = a1 + · · ·+ ap with ai 6= 0 for some i ∈

{1, . . . , p}, then P (s−ni) = P (s)−1.

PROPOSITION 162. Let S be a numerical semigroup minimally generated by{
n1, . . . ,np

}
. The following conditions are equivalent:
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(1) S is a LD-semigroup;

(2) if i, j ∈ {1, . . . , p} then ni +n j−1 ∈ S;

(3) if s ∈ S\
{

0,n1, . . . ,np
}

then s−1 ∈ S;

(4) if s ∈ S\{0} then s−{0, . . . ,P (s)−1} ⊆ S.

PROOF. 1) implies 2). It is an immediate consequence of Theorem 139.

2) implies 3). If s ∈ S\
{

0,n1, . . . ,np
}

then there exist s′ ∈ S and i, j ∈ {1, . . . , p}

such that s = ni +n j + s′. Hence we obtain that s−1 = (ni +n j−1)+ s′ ∈ S

3) implies 4). We proceed by induction on P (s). For P (s) = 1 the result is

trivial. Now, assume that P (s) ≥ 2, a1, . . . ,at are nonnegative integers such that

s = a1n1 + · · ·+ apnp and P (s) = a1 + · · ·+ ap with ai 6= 0 for some i ∈ {1, . . . , p}.

From Lemma 161, we conclude that P (s−ni) = P (s)−1 and by induction hypothesis

s−ni−{0, . . . ,P (s)−2} ⊆ S. Hence s−{0, . . . ,P (s)−2} ⊆ S.

From the preceding paragraph we have that s− ni− (P (s)−2) ∈ S. Let us prove

that s−ni− (P (s)−2) 6= 0. In fact, since s ∈ S\
{

0,n1, . . . ,np
}

, then s−ni = a1n1 +

· · ·+ (ai− 1)ni + · · ·+ apnp 6= 0. This implies that either ai ≥ 2 or there exist j ∈

{1, . . . , p}\{i} such that a j 6= 0. And thus we obtain that either s = 2ni +a1n1 + · · ·+

(ai−2)ni+ · · ·+apnp or s = ni+n j +a1n1+ · · ·+(ai−1)ni+ · · ·+(a j−1)n j + · · ·+

apnp. This leads to s− ni− (P (s)−2) > 0 and consequently s− ni− (P (s)−2) ∈

S\{0}. From this we get that (s−ni− (P (s)−2)) + ni ∈ S\
{

0,n1, . . . ,np
}

and so

s− ni− (P (s)−2)+ ni− 1 ∈ S. Then we have that s− (P (s)−1) ∈ S and therefore

s−{0, . . . ,P (s)−1} ⊆ S.

4) implies 1). If a,b ∈ S\{0}, then P (a+b) ≥ 2. From the hypothesis, we have

that a+b−1∈ S. By applying Theorem 139, we obtain that S is a LD-semigroup. �

Observe that the previous proposition (condition 2) gives a criterion to check whet-

her or not a numerical semigroup is a LD-semigroup.
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EXAMPLE 163. Let us see that 〈4,5,7〉 is a LD-semigroup. In order to see this,

applying Proposition 162, it is enough to see that

{4+4−1 = 7,4+5−1 = 8,4+7−1 = 10,5+5−1 = 9,5+7−1 = 11,

7+7−1 = 13} ⊆ S.

The next lemma is straightforward to prove.

LEMMA 164. Let S be a numerical semigroup, s1, . . . ,st ∈ S\{0} and let a1, . . . ,at

be nonnegative integers. Then P (a1s1 + · · ·+atst)≥ a1 + · · ·+at .

THEOREM 165. Let x1, . . . ,xt be positive integers. Then S (x1, . . . ,xt) is the smal-

lest LD-semigroup that contains {x1, . . . ,xt}.

PROOF. (1) Let us see that if x,y ∈ S (x1, . . . ,xt)\{0}, then

{x+ y,x+ y−1} ⊆ S (x1, . . . ,xt). In fact, there exist nonnegative in-

tegers a1, . . . ,at ,b1, . . . ,bt ,r,r′ such that x = a1x1 + · · · + atxt − r,y =

b1x1 + · · · + btxt − r′, r < a1 + · · · + at and r′ < b1 + · · · + bt .

And thus x + y = (a1 + b1)x1 + · · · + (at + bt)xt − (r + r′) with

r + r′ + 1 < (a1 + b1) + · · ·+ (at + bt). Consequently we conclude that

{x+ y,x+ y−1} ⊆ S (x1, . . . ,xt).

(2) As a consequence of the previous proof, we can deduce that S (x1, . . . ,xt) is

submonoid of (N,+). Since x1 = 1x1 + · · ·+ 0xt − 0 and 2x1− 1 = 2x1 +

· · ·+ 0xt − 1, we obtain that {x1,2x1−1} ⊆ S (x1, . . . ,xt) and so we get that

S (x1, . . . ,xt) is a numerical semigroup. From Condition 1) we can assert that

S (x1, . . . ,xt) is a LD-semigroup.

(3) Arguing in a similar way with x1 ∈ S (x1, . . . ,xt), we get xi ∈ S (x1, . . . ,xt) for

all i ∈ {1, . . . , t}. This proves that S (x1, . . . ,xt) is a LD-semigroup containing

{x1, . . . ,xt}.

(4) Let us prove that S (x1, . . . ,xt) is the smallest LD-semigroup containing

{x1, . . . ,xt}. Assuming that T is a LD-semigroup containing {x1, . . . ,xt}, we
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will prove that S (x1, . . . ,xt) ⊆ T . In fact if x ∈ S (x1, . . . ,xt)\{0} then there

exist a1, . . . ,at ,r ∈ N such that x = a1x1 + · · ·+atxt− r and r < a1 + · · ·+at .

Since {x1, . . . ,xt} ⊆ T then a1x1 + · · ·+ atxt ∈ T . From Proposition 162 we

obtain that a1x1+ · · ·+atxt−{0, . . . ,P (a1x1 + · · ·+atxt)−1}⊆ T . By using

now Lemma 164 we have that r < P (a1x1 + · · ·+atxt) and so x belongs to T .

�

We conclude this section by giving an algorithm that allows to determine the smal-

lest LD-semigroup containing a set of positive integers A.

ALGORITHM 166. Input: A set of positive integers A.

Output: The minimal system of generators of the smallest LD-semigroup contai-

ning the set A.

1) B = msg(〈A〉)

2) if a+b−1 ∈ 〈B〉 for all a,b ∈ B, then return B.

3) A = B∪{a+b−1 | a,b ∈ B and a+b−1 6∈ 〈B〉} and go to 1).

Next we justify how the algorithm behaves. Let B1,B2, . . . be the possible values of

B arising from the algorithm. It is clear that 〈B1〉 〈B2〉 . . .. Note that if a ∈ B1 then

{a,2a−1} ⊂ 〈B2〉 and then we have that 〈B2〉 is a numerical semigroup. Then N\〈B2〉

is finite and thus this chain 〈B1〉  〈B2〉  . . . is finite. Consequently the algorithm

stops in a finite number of steps and gives us 〈B1〉  〈B2〉  . . .  〈Bn〉. Follows

from Proposition 162 that 〈Bn〉 is a LD-semigroup. Furthermore, as a consequence of

Theorem 139 and by the way we compute Bn, we conclude that every LD-semigroup

containing the set A must contain 〈Bn〉.

EXAMPLE 167. Let us compute the smallest LD-semigroup that contain {5}. To

this end we use the Algorithm 166. The values arising for A and B are:

. A = {5};

. B = {5};

. A = {5,9};
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. B = {5,9};

. A = {5,9,13,17};

. B = {5,9,13,17};

. A = {5,9,13,17,21};

. B = {5,9,13,17,21}.

Therefore the smallest LD-semigroup containing {5} is 〈5,9,13,17,21〉 =

{0,5,9,10,13,14,15,17,→}.

2. Bracelet Monoids and Numerical Semigroups

This section is devoted to the study of the (n1, . . . ,np)-bracelets and its

content is organized as follows. In Theorem 173 we explicitly describe the

smallest (n1, . . . ,np)-bracelet containing a set of positive integers. Denote

by B(n1, . . . ,np) =
{

M |M is a (n1, . . . ,np)−bracelet
}

and by N (n1, . . . ,np) ={
S | S is a numerical (n1, . . . ,np)−bracelet

}
. In Theorem 179 we show that, if

D is the set of all positive divisors of gcd(n1, . . . ,np) then B (n1, . . . ,np) =(⋃
d∈D

{
dS | S ∈N (n1

d , . . . ,
np
d )
})
∪{{0}}. The results presented in this section can

be found in [30].

We will prove that N (n1, . . . ,np) is a Frobenius variety. This fact together with the

results presented in Section 3 of the Preliminaries allows us to arrange the elements of

N (n1, . . . ,np) in a tree rooted in N. We describe the childs of any vertex of this tree

and this will enable us to recursively construct the set N (n1, . . . ,np).

The intersection of (n1, . . . ,np)-bracelets is again a (n1, . . . ,np)-bracelet. As a con-

sequence of this result we will introduce the concepts of (n1, . . . ,np)-system of ge-

nerators and minimal (n1, . . . ,np)-system of generators of a (n1, . . . ,np)-bracelet. In

Theorem 186 we will show that M is a (n1, . . . ,np)-bracelet if and only if M is the inter-

section of numerical (n1, . . . ,np)-bracelets. Using this result together with the results

presented in Section 3 of the Preliminaries we obtain that every (n1, . . . ,np)-bracelet

has a unique minimal (n1, . . . ,np)-system of generators. We will also characterize the

elements in this minimal (n1, . . . ,np)-system of generators.
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A (n1, . . . ,np)-bracelet is indecomposable if it cannot be expressed as the inter-

section of (n1, . . . ,np)-bracelets properly containing it. In Corollary 206 we give an al-

gorithm procedure which allows us to determine whether or not a (n1, . . . ,np)-bracelet

is indecomposable.

2.1. Characterization of the (n1, . . . ,np)-bracelets. Once more, given M a sub-

monoid of (N,+), we denote by msg(M) the minimal system of generators of M. We

already saw that msg(M) = (M \{0})\ (M \{0}+M \{0}).

PROPOSITION 168. Let m1, . . . ,mq and n1, . . . ,np be positive integers and let M

be a submonoid of (N,+) generated by
{

m1, . . . ,mq
}

. The following conditions are

equivalent.

(1) M is a (n1, . . . ,np)-bracelet.

(2) If i, j ∈ {1, . . . ,q} then mi +m j +
{

n1, . . . ,np
}
⊆M.

PROOF. 1) implies 2). Trivial.

2) implies 1). If a,b ∈M \{0} then there exist i, j ∈ {1, . . . ,q} and m,m′ ∈M such

that a = mi +m and b = m j +m′. Since mi +m j +
{

n1, . . . ,np
}
⊆ M, we have that

mi +m j +m+m′+
{

n1, . . . ,np
}
⊆M and thus a+b+

{
n1, . . . ,np

}
⊆M. �

The previous result allow us to determine whether or not a submonoid of (N,+) is

a (n1, . . . ,np)-bracelet.

EXAMPLE 169. Let M = 〈{4,6}〉 = {0,4,6,8,10,12, . . .}. We prove that M is a

(2,4)-bracelet. As 4+4+{2,4} ⊆M, 4+6+{2,4} ⊆M and 6+6+{2,4} ⊆M, by

applying Proposition 168, we obtain that M is a (2,4)-bracelet.

The following result is easy to prove.

LEMMA 170. Let n1, . . . ,np be positive integers. The intersection of (n1, . . . ,np)-

bracelets is a (n1, . . . ,np)-bracelet.

The previous result motivates the following definition. Given X ⊆ N we define

the (n1, . . . ,np)-bracelet generated by X as the intersection of all (n1, . . . ,np)-bracelet
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containing X . We will denote it by L{n1,...,np}(X), and is the smallest (with respect to

the set inclusion order) (n1, . . . ,np)-bracelet containing X . If M = L{n1,...,np}(X) we say

that X is a (n1, . . . ,np)-system of generators of M. Moreover, if no proper subset of X

generates M, then we say that X is a minimal (n1, . . . ,np)-system of generators. The

next result shows that every (n1, . . . ,np)-bracelet admits a finite (n1, . . . ,np)-system of

generators.

PROPOSITION 171. Let n1, . . . ,np be positive integers. Then B (n1, . . . ,np) ={
L{n1,...,np}(X) | X is a finite subset of N

}
PROOF. It is clear that

{
L{n1,...,np} (X) | X is a finite subset of N

}
⊆

B (n1, . . . ,np). Let us prove the other inclusion. If M ∈ B (n1, . . . ,np) then M

is a submonoid of (N,+). By Corollary 9 we deduce that there exists a finite subset X

of N such that M = 〈X〉. Hence M = L{n1,...,np}(X). �

Observe that, in view of the proof of Proposition 171, we obtain that if M is a

(n1, . . . ,np)-bracelet and M = 〈X〉 then M = L{n1,...,np}(X). The next example shows

that X can be the minimal system of generators of M but X cannot be a minimal

(n1, . . . ,np)-system of generators of M.

EXAMPLE 172. Let M = 〈{3,8,13}〉. Clearly {3,8,13} is the minimal system

of generators of M. Using the Proposition 168 we have that M is a (2,3)-bracelet.

Observe that every (2,3)-bracelet containing {3} must contain 3 + 3 + 2 = 8 and

3+ 8+ 2 = 13. Therefore M = 〈{3,8,13}〉 ⊆ L{2,3} ({3}). Since L{2,3} ({3}) is the

smallest (2,3)-bracelet containing {3} we deduce that M = L{2,3} ({3}). Thus the set

{3} is a minimal (2,3)-system of generators of M.

The following result gives an explicit description of the smallest (n1, . . . ,np)-

bracelet that contain a finite subset X of N.
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THEOREM 173. Let X = {x1, . . . ,xt} ⊆ N\{0} and let
{

n1, . . . ,np
}
⊆ N\{0}.

Then

L{n1,...,np} (X) =
{

a1x1 + · · ·+atxt +b1n1 + · · ·+bpnp |

a1, . . . ,at ,b1, . . . ,bp ∈ N and a1 + · · ·+at > b1 + · · ·+bp
}
∪{0} .

PROOF. Let A =
{

a1x1 + · · ·+atxt +b1n1 + · · ·+bpnp | a1, . . . ,at ,

b1, . . . ,bp ∈ N and a1 + · · ·+at > b1 + · · ·+bp
}
∪{0}. Clearly A is a subset of N that

is closed under addition, contains the zero element, and if x,y ∈ A\{0} then x+ y+{
n1, . . . ,np

}
⊆ A. Hence A is a (n1, . . . ,np)-bracelet. Since X is a subset of A it follows

that L{n1,...,np} (X)⊆A. For the other inclusion, take x= a1x1+ · · ·+atxt +b1n1+ · · ·+

bpnp ∈ A. The proof follows using induction on a1 + · · ·+at . If a1 + · · ·+at = 1 then

b1 = · · · = bp = 0 and thus x = a1x1 + · · ·+ atxt ∈ L{n1,...,np}(X). Suppose now that

a1+ · · ·+at ≥ 2 and b1+ · · ·+bp≥ 1. Then there exist i∈ {1, . . . , t} and j ∈ {1, . . . , p}

such that ai 6= 0 and b j 6= 0. By induction hypothesis we deduce that x− xi− n j ∈

L{n1,...,np} (X). Since a1 + · · ·+ at ≥ 2 we get that x− xi− n j 6= 0. Applying that

L{n1,...,np} (X) is a (n1, . . . ,np)-bracelet we have that x− xi− n j + xi +
{

n1, . . . ,np
}
⊆

L{n1,...,np}(X). Hence x ∈ L{n1,...,np} (X). �

Next we illustrate this result with an example.

EXAMPLE 174. Let us calculate L{2,3} ({4}). From Theorem 173, we have that

L{2,3} ({4}) = {a14+b12+b23 | a1,b1,b2 ∈ N and a1 > b1 +b2} ∪ {0}. Therefore

L{2,3} ({4}) = {0,4,8,10,11,12,14,15,16,17,18,→}= 〈4,10,11,17〉.

2.2. The numerical (n1, . . . ,np)-bracelets. A numerical semigroup is a submo-

noid S of (N,+) such thatN\S is finite. As we saw before a submonoid M of (N,+) is a

numerical semigroup if and only if gcd(M) = 1. Furthermore, it is easy to prove that if

M is submonoid of (N,+) such that M 6= {0} and gcd(M) = d, then M
d =

{m
d | m ∈M

}
is a numerical semigroup. As a consequence, we deduce that the numerical semigroups
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classify, up to isomorphism, the set of all submonoids of (N,+) not equal to {0} (see

Proposition 1).

PROPOSITION 175. Let X be a nonempty subset of N\{0} and let n1, . . . ,np

be positive integers. Then L{n1,...,np} (X) is a numerical semigroup if and only if

gcd
(
X ∪

{
n1, . . . ,np

})
= 1.

PROOF. Necessity. Suppose that gcd
(
X ∪

{
n1, . . . ,np

})
= d 6= 1. Then we deduce

that 〈{d}〉 is a (n1, . . . ,np)-bracelet that contain X and consequently L{n1,...,np} (X) ⊆

〈{d}〉. Hence L{n1,...,np} (X) is not a numerical semigroup.

Sufficiency. Let A = X ∪
(
2X +

{
n1, . . . ,np

})
. It is clear that A ⊆ L{n1,...,np} (X).

If x belongs to X then gcd
{

x,2x+n1, . . . ,2x+np
}
= gcd

{
x,n1, . . . ,np

}
. Therefore

gcd(A) = gcd
(
X ∪

{
n1, . . . ,np

})
= 1 and thus gcd

(
L{n1,...,np} (X)

)
= 1. This proves

that L{n1,...,np} (X) is a numerical semigroup. �

We say that a (n1, . . . ,np)-bracelet M is a numerical (n1, . . . ,np)-bracelet if

gcd(M) = 1 (i.e. N\M is finite). Recall that we denote by

N (n1, . . . ,np) =
{

M ∈ B(n1, . . . ,np) |M is a numerical (n1, . . . ,np)−bracelet
}
.

As a consequence of Proposition 171 and 175 we obtain the following corollary.

COROLLARY 176. Let n1, . . . ,np be positive integers such that gcd
{

n1, . . . ,np
}
=

1. Then B(n1, . . . ,np) = N (n1, . . . ,np)∪{{0}}.

Our next goal is to study the case gcd
{

n1, . . . ,np
}
6= 1.

LEMMA 177. Let n1, . . . ,np be positive integers. If M is a (n1, . . . ,np)-bracelet

such that M 6= {0} then gcd(M) |gcd
{

n1, . . . ,np
}

.

PROOF. Let x∈M\{0}. Then we have that
{

x,2x+n1, . . . ,2x+np
}
⊆M and thus

gcd(M) |gcd
{

x,2x+n1, . . . ,2x+np
}
.

Since

gcd
{

x,2x+n1, . . . ,2x+np
}
= gcd

{
x,n1, . . . ,np

}
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and

gcd
{

x,n1, . . . ,np
}
|gcd

{
n1, . . . ,np

}
,

we can conclude that gcd(M) |gcd
{

n1, . . . ,np
}

. �

LEMMA 178. Let M be a submonoid of (N,+) such that M 6= {0} and gcd(M)= d.

Then M is a (n1, . . . ,np)-bracelet if and only if M
d is a

(n1
d , . . . ,

np
d

)
-bracelet.

PROOF. Necessity. If a,b ∈ M
d \{0} then there exist x,y ∈ M such that a = x

d

and b = y
d . Since by hypothesis M is a (n1, . . . ,np)-bracelet we have that x + y +{

n1 . . . ,np
}
⊆ M. In view of Lemma 177, we know that d|gcd

{
n1, . . . ,np

}
and so

x
d +

y
d +
{n1

d , . . . ,
np
d

}
⊆ M

d . This proves that M
d is a

(n1
d , . . . ,

np
d

)
-bracelet.

Sufficiency. If a,b ∈M\{0} then a
d ,

b
d ∈

M
d . Since M

d is a
(n1

d , . . . ,
np
d

)
-bracelet, we

deduce that a
d +

b
d +
{n1

d , . . . ,
np
d

}
⊆ M

d . Hence a+b+
{

n1 . . . ,np
}
⊆M and thus M is

a (n1, . . . ,np)-bracelet. �

THEOREM 179. Let n1, . . . ,np be positive integers and let D be the set of all posi-

tive divisors of gcd
{

n1, . . . ,np
}

. Then

B (n1, . . . ,np)\{{0}}=
⋃

d∈D

{
dS | S ∈N (

n1

d
, . . . ,

np

d
)
}
.

PROOF. Let M ∈ B (n1, . . . ,np) such that M 6= {0} and gcd(M) = d. Thus, by

applying Lemma 177 and 178, we get that d is an element of D and M
d ∈N

(n1
d , . . . ,

np
d

)
.

For the other inclusion, take d ∈ D and S ∈ N
(n1

d , . . . ,
np
d

)
. Then by Lemma 178 we

have that dS ∈ B (n1, . . . ,np). �

We define in B (n1, . . . ,np)\{{0}} the following equivalence relation R :

M R M′ if gcd(M) = gcd
(
M′
)
.

The set of classes of elements of B (n1, . . . ,np)\{{0}} modulo R is denoted

by B (n1, . . . ,np)\{{0}}/R , and as a consequence of Theorem 179 it is equal to{{
dS | S ∈N (n1

d , . . . ,
np
d )
}
| d ∈ D

}
. In particular the previous set is a partition of

B (n1, . . . ,np)\{{0}}.
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EXAMPLE 180. Let us compute B (4,6)\{{0}}. By using Theorem 179, we have

that B (4,6)\{{0}} =
{

S | S ∈N (4,6)
}
∪
{

2S | S ∈N (2,3)
}

. Hence, in order to

compute B (4,6)\{{0}} it is sufficient to compute the sets N (4,6) and N (2,3).

2.3. The Frobenius variety of the numerical (n1, . . . ,np)-bracelet. We begin

with the following result.

PROPOSITION 181. Let n1, . . . ,np be positive integers. Then N (n1, . . . ,np) is a

Frobenius variety.

PROOF. First we have that N (n1, . . . ,np) is not empty, because N is a numerical

(n1, . . . ,np)-bracelet.

If S and T are in N (n1, . . . ,np) with a and b elements of (S∩T )\{0}, then a+

b+
{

n1, . . . ,np
}
∈ S∩T . Therefore S∩T ∈N (n1, . . . ,np).

Let S ∈N (n1, . . . ,np) such that S 6= N and let a,b ∈ (S∪{F(S)})\{0}. If a,b ∈ S

then a+b+
{

n1, . . . ,np
}
⊆ S⊆ S∪{F(S)}. If F(S)∈{a,b} then a+b+

{
n1, . . . ,np

}
⊆

{F(S)+1,→}⊆ S⊆ S∪{F(S)}. Hence S∪{F(S)} ∈N (n1, . . . ,np). �

We define the graph G(N (n1, . . . ,np)) as follows:

(1) the vertices are the elements of N (n1, . . . ,np);

(2) an element (S,S′)∈N (n1, . . . ,np)×N (n1, . . . ,np) is an edge if S∪{F(S)}=

S′.

As a consequence of Proposition 21 and Theorem 23 we have the following result.

THEOREM 182. The graph G(N (n1, . . . ,np)) is a tree rooted in N.

Moreover, the childs of S ∈ N (n1, . . . ,np) are the elements of the set{
S\{x} | x ∈msg(S), x > F(S) and S\{x} ∈N (n1, . . . ,np)

}
.

The next result is well known.

LEMMA 183. Let M be a submonoid of (N,+) such that M 6= {0} and x∈M. Then

M\{x} is a submonoid of (N,+) if and only if x ∈msg(M).
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PROPOSITION 184. Let M be a (n1, . . . ,np)-bracelet and x ∈ msg(M). Then

M\{x} is a (n1, . . . ,np)-bracelet if and only if x−
{

n1, . . . ,np
}
⊆ (Z\M)∪msg(M)∪

{0}.

PROOF. Necessity. If there exists i ∈ {1, . . . , p} such that x− ni /∈ (Z\M) ∪

msg(M)∪ {0} then we deduce that x− ni = a + b for some a,b ∈ M\{0}. Hence

x = a+ b+ ni /∈ M\{x}. Since x /∈ {a,b} because x− ni = a+ b then we have that

a,b ∈M\{x,0} and a+ b+ ni /∈M\{x}. It follows that M\{x} is not a (n1, . . . ,np)-

bracelet.

Sufficiency. Let a,b ∈M\{x,0}. Then we have that a+b+
{

n1, . . . ,np
}
⊆M. If

there exists i ∈ {1, . . . , p} such that a+ b+ ni = x then we get that x− ni /∈ (Z\M)∪

msg(M)∪ {0}, which is absurd. Therefore a+ b+
{

n1, . . . ,np
}
⊆ M\{x} and thus

M\{x} is a (n1, . . . ,np)-bracelet. �

EXAMPLE 185. We now draw part of the tree associated to the numerical (2,3)-

bracelets.

By using Theorem 182 and Proposition 184 we obtain the following:

. N has an only child N\{1}= 〈2,3〉,

. 〈2,3〉 has two childs 〈2,3〉\{2}= 〈3,4,5〉 and 〈2,3〉\{3}= 〈2,5〉,

. 〈2,5〉 has an only child 〈2,5〉\{5}= 〈2,7〉,

. 〈2,7〉 has no childs,

. 〈3,4,5〉 has tree childs 〈3,4,5〉\{3}= 〈4,5,6,7〉, 〈3,4,5〉\{4}= 〈3,5,7〉 and

〈3,4,5〉\{5}= 〈3,4〉,

. 〈3,4〉 has no childs,

. 〈3,5,7〉 has two childs 〈3,5,7〉\{5}= 〈3,7,8〉 and 〈3,5,7〉\{7}= 〈3,5〉,

. 〈3,5〉 has no childs,

. 〈3,7,8〉 has an only child 〈3,7,8〉\{7}= 〈3,8,10〉,

. 〈3,8,10〉 has an only child 〈3,8,10〉\{10}= 〈3,8,13〉,

. 〈3,8,13〉 has no childs,

. 〈4,5,6,7〉 has four childs . . . . . . . . . . . .
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〈1〉= N

〈2,3〉

OO

〈3,4,5〉

@@

〈2,5〉

[[

〈4,5,6,7〉

??

〈3,5,7〉

OO

〈3,4〉

^^

〈2,7〉

ZZ

· · ·

88

· · ·

<<

· · ·

CC

· · ·

OO

〈3,7,8〉

OO

〈3,5〉

^^

〈3,8,10〉

OO

〈3,8,13〉

OO

2.4. Minimal (n1, . . . ,np)-system of generators. Observe that the (infinite) inter-

section of elements in N (n1, . . . ,np) is not in general a numerical semigroup because,

as we already saw,
⋂

n∈N {0,n,→}= {0}. On the other hand the intersection of nume-

rical semigroups is always a submonoid of (N,+).

THEOREM 186. Let M be a submonoid of (N,+). The following conditions are

equivalent.

(1) M is a (n1, . . . ,np)-bracelet;

(2) M is an intersection of numerical (n1, . . . ,np)-bracelets.

PROOF. 1) implies 2). For each positive integer k, we define Sk = M∪{k,→}. It

is clear that Sk is a numerical (n1, . . . ,np)-bracelet and M = ∩k∈N\{0}Sk.
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2) implies 1). Suppose that M = ∩i∈ISi such that Si a numerical (n1, . . . ,np)-

bracelet, for every i ∈ I. If a,b ∈ M\{0} then a,b ∈ Si\{0} and thus a + b +{
n1, . . . ,np

}
⊆ Si, for every i ∈ I. Hence a+ b+

{
n1, . . . ,np

}
⊆M and consequently

M is a (n1, . . . ,np)-bracelet. �

If we apply Proposition 19 and Theorem 20 to the Frobenius variety N (n1, . . . ,np)

together with Theorem 186, we obtain the following result.

COROLLARY 187. Every (n1, . . . ,np)-bracelet has a unique minimal (n1, . . . ,np)-

system of generators and this set is finite.

As a consequence of Proposition 21 we have the following.

COROLLARY 188. Let M be a (n1, . . . ,np)-bracelet and x ∈M. The set M\{x} is

a (n1, . . . ,np)-bracelet if and only if x belongs to the minimal (n1, . . . ,np)-system of

generators of M.

Using Corollary 187 it makes sense to define the (n1, . . . ,np)-rank of a

(n1, . . . ,np)-bracelet M by the cardinality of its minimal (n1, . . . ,np)-system of ge-

nerators, which we will denote by (n1, . . . ,np)-rank(M).

We illustrate the previous results with an example.

EXAMPLE 189. Let S = 〈3,7,8〉. From Example 185 we have that S is a (2,3)-

bracelet. By applying Proposition 184 and Corollary 188 we obtain that {3,7} is the

minimal (2,3)-system of generators of S and thus (2,3)-rank(S) = 2.

We finish this section studding the (2,3)-bracelet S with (2,3)-rank(S) equal to 1.

The next result is easy to prove by induction on k.

LEMMA 190. If k ∈ N then {λ2+µ3 | λ,µ ∈ N and λ+µ≤ k} =

{x ∈ N | 2≤ x≤ 3k}∪{0}.

As an immediate consequence of Theorem 173 and Lemma 190 we have the follo-

wing.
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PROPOSITION 191. If m is a positive integer, then

L{2,3} ({m}) = {km+ i | k ∈ N\{0}, i ∈ {0,2,3, . . . ,3(k−1)}}∪{0}.

The following result is straightforward to prove.

LEMMA 192. Let S be a numerical semigroup and m ∈ S\{0}. If

{a,a+1, . . . ,a+m−1} ⊆ S then {a,→}⊆ S.

The next result gives a formula for the Frobenius number of (2,3)-bracelet S with

(2,3)-rank(S) = 1.

COROLLARY 193. If m is a positive integer then F
(
L{2,3} ({m})

)
=
(
bm

3 c+2
)

m+

1.

PROOF. (1) Let k be a positive integer. By applying Proposition 191 we de-

duce that km+1 ∈ L{2,3} ({m}) if and only if km+1 = (k−1)m+ i for some

i ∈ {0,2,3, . . . ,3(k−2)}. This is equivalent to m+1 ∈ {0,2,3, . . . ,3(k−2)}.

(2) Next we show that if km + 1 ∈ L{2,3} ({m}), then {km+1,→} ⊆

L{2,3} ({m}). In fact, if km + 1 ∈ L{2,3} ({m}) then by 1) we de-

duce that m + 1 ≤ 3(k − 2). Using a Proposition 191 we obtain that

{(k−1)m+2,(k−1)m+3, . . . ,(k−1)m+m+1} ⊆ L{2,3} ({m}). Follows

from Lemma 192 {(k−1)m+2,→}⊆ L{2,3} ({m}) and thus {km+1,→}⊆

L{2,3} ({m}).

(3) Observe that from 1) we get that km+1 /∈ L{2,3} ({m}) if and only if m+1 >

3(k− 2). This is equivalent to m ≥ 3(k− 2). Thus it proves that km+ 1 /∈

L{2,3} ({m}) if and only if k ≤ bm
3 c+2.

(4) Now as a consequence of previous items we obtain that F
(
L{2,3} ({m})

)
=(

bm
3 c+2

)
m+1.

�

We illustrate the preceding results with an example.
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EXAMPLE 194. Let us calculate the set of elements in L{2,3} ({7}). In

view of Corollary 193 we obtain that F
(
L{2,3} ({7})

)
= 29. By using

Proposition 191 we have that L{2,3} ({7}) = {0} ∪ {7} ∪ (14+{0,2,3}) ∪

(21+{0,2,3,4,5,6}) ∪ (28+{0,2,3,4,5,6,7,8,9}) ∪ {30,→} and

thus L{2,3} ({7}) = {0,7,14,16,17,21,23,24,25,26,27,28,30,→} =

〈7,16,17,25,26,27,36〉.

2.5. Indecomposable (n1, . . . ,np)-bracelets. We say that a (n1, . . . ,np)-bracelet

is indecomposable if it can not be expressed as an intersection of (n1, . . . ,np)-bracelets

that contain it properly. As an immediate consequence of Theorem 186 we have the

following result.

LEMMA 195. Every indecomposable (n1, . . . ,np)-bracelet is a numerical

(n1, . . . ,np)-bracelet.

Observe that if S is a numerical semigroup, then N\S is finite and thus the set

of numerical semigroups containing S is also finite. Hence S can be expressed as

an intersection of numerical semigroups containing it properly if and only if S is a

intersection of finitely many numerical semigroups containing it properly.

LEMMA 196. A numerical (n1, . . . ,np)-bracelet is indecomposable if it can not

be expressed as the intersection of two numerical (n1, . . . ,np)-bracelets containing it

properly.

PROOF. Necessity. Trivial.

Sufficiency. Let S be a numerical (n1, . . . ,np)-bracelet. By applying the comment

preceding Lemma 196, if S is not indecomposable then there exist S1, . . . ,Sk nume-

rical (n1, . . . ,np)-bracelets that contain S properly and S = S1 ∩ ·· · ∩ Sk. We can as-

sume that this decomposition is minimal in the sense of minimal number of numeri-

cal (n1, . . . ,np)-bracelets involved, that is, if j ∈ {1, . . . ,k} then
⋂k

i=1,i 6= j Si 6= S. Let

Sa = S1∩ ·· ·∩Sk−1. From Proposition 181 and by minimality of decomposition of S,
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we have that Sa is a numerical (n1, . . . ,np)-bracelet such that S( Sa. Hence Sa and Sk

are numerical (n1, . . . ,np)-bracelets that contain S properly and S = Sa∩Sk. �

The next result is an adaptation of Theorem 12 to the Frobenius variety

N (n1 . . . ,np).

PROPOSITION 197. Let S ∈ N (n1 . . . ,np). The following conditions are equiva-

lent:

(1) S is an indecomposable (n1, . . . ,np)-bracelet;

(2) S is maximal in the set of all numerical (n1, . . . ,np)-bracelets with Frobenius

number F(S);

(3) S is maximal in the set of all numerical (n1, . . . ,np)-bracelets that do not

contain F(S).

PROOF. 1) implies 2). Let S a numerical (n1, . . . ,np)-bracelet such that S ⊆ S and

F(S) = F(S). It is clear that S = (S∪{F(S)})∩S and, by Proposition 181, we have that

S∪{F(S)} is a numerical (n1, . . . ,np)-bracelet. Hence, by Lemma 196, we conclude

that S = S.

2) implies 3). Let S be a numerical (n1, . . . ,np)-bracelet fulfilling that S ⊆ S and

F(S) /∈ S. Applying Proposition 181, we deduce that S′ = S∪{F(S)+1,→} is a nume-

rical (n1, . . . ,np)-bracelet. As S⊆ S′ and F(S) = F(S′) we obtain that S = S′. Therefore

S = S.

3) implies 1). Let S1 and S2 be two numerical (n1, . . . ,np)-bracelets that contain S

properly. Then, by hypothesis, F(S)∈ S1 and F(S)∈ S2 this implies that F(S)∈ S1∩S2

and consequently S 6= S1∩S2. �

The following result is easy to prove.

LEMMA 198. Let S and S be two numerical semigroups such that S ( S and let

x = max
(
S\S
)
. Then S∪{x} is a numerical semigroup.

The next result shows that Lemma 198 is also true for the numerical (n1, . . . ,np)-

bracelets.
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LEMMA 199. Let S and S be two numerical (n1, . . . ,np)-bracelets such that S ( S

and let x = max
(
S\S
)
. Then S∪{x} is a numerical (n1, . . . ,np)-bracelet.

PROOF. By using Lemma 198, we know that S∪{x} is a numerical semigroup.

To conclude the proof it suffices to show that, if a,b ∈ (S∪{x})\{0} then a+ b+{
n1, . . . ,np

}
⊆ S∪{x}. We consider the following cases.

. Since 2x+
{

n1, . . . ,np
}
⊆ S we get that 2x+

{
n1, . . . ,np

}
⊆ S∪{x}.

. If a ∈ S\{0} then a + x +
{

n1, . . . ,np
}
⊆ S and so a + x +

{
n1, . . . ,np

}
⊆

S∪{x}.

. If a,b ∈ S\{0} then a+b+
{

n1, . . . ,np
}
⊆ S⊆ S∪{x}.

�

THEOREM 200. Let S be a numerical (n1, . . . ,np)-bracelet. Then S is an indecom-

posable (n1, . . . ,np)-bracelet if and only if for every x ∈ N\(S∪{F(S)}) we have that

S∪{x} is not a (n1, . . . ,np)-bracelet.

PROOF. Necessity. Assume that S∪{x} is a numerical (n1, . . . ,np)-bracelet. As

S = (S∪{F(S)})∩ (S∪{x}) we get that S can be expressed as the intersection of two

numerical (n1, . . . ,np)-bracelet properly containing it. Consequently S is not an inde-

composable (n1, . . . ,np)-bracelet.

Sufficiency. If S is not an indecomposable (n1, . . . ,np)-bracelet then, by Proposition

197, there exists a numerical (n1, . . . ,np)-bracelet S such that S ( S and F(S) = F(S).

Let x = max
(
S\S
)

and so x ∈N\(S∪{F(S)}). In view of Lemma 199 we deduce that

S∪{x} a numerical (n1, . . . ,np)-bracelet. �

We illustrate the preceding theorem with an example.

EXAMPLE 201. Let us show that S = 〈4,9,10,15〉 is an indecomposable nume-

rical (1)-bracelet. Since S = {0,4,8,9,10,12,→}, then we get that F(S) = 11. By

applying Proposition 168 we deduce that S is a numerical (1)-bracelet. Note that

N\(S∪{F(S)}) = {1,2,3,5,6,7}. It is clear that the sets S∪{1}, S∪{2}, S∪{3}
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and S∪{7} are not closed under addition and thus these sets are not numerical (1)-

bracelet. Nevertheless the sets S∪{5} and S∪{6} are numerical semigroups. Since

5+5+1 = 11 /∈ S∪{5} and 4+6+1 = 11 /∈ S∪{6} these numerical semigroups are

not (1)-bracelet. In view of Theorem 200 we can conclude that S is an indecomposable

numerical (1)-bracelet.

Following the notation introduced in the Preliminaries, we say that a numerical

semigroup is irreducible if it cannot be expressed as the intersection of two numeri-

cal semigroups properly containing it. Clearly, if a numerical (n1, . . . ,np)-bracelet is

irreducible then it is indecomposable. The Example 201 show us that the converse is

not true. In fact S = 〈4,9,10,15〉 is an indecomposable (1)-bracelet and S is not an

irreducible numerical semigroup because S = (S∪{5})∩ (S∪{6}).

The Theorem 200 allows to algorithmically determine, whether or not a given nu-

merical (n1, . . . ,np)-bracelet is indecomposable. Our next goal of this section is to

improve this result. To this purpose we introduce some concepts and results.

From Lemma 11 we easily deduce the next result.

PROPOSITION 202. Let S be a numerical semigroup and let n ∈ S\{0}. Then

PF(S) =
{

w−n | w ∈ Ap(S,n) and w′−w /∈ S for all w′ ∈ Ap(S,n)\{w}
}
.

Given a numerical semigroup S, denote by SG(S) = {x ∈ PF(S) | 2x ∈ S}. Its ele-

ments will be called the special gaps of S. The following result is easy to prove.

LEMMA 203. Let S be a numerical semigroup and let x ∈ N\S. Then x ∈ SG(S) if

and only if S∪{x} is a numerical semigroup.

PROPOSITION 204. Let m1, . . . ,mq be positive integers such that S = 〈m1, . . . ,mq〉

is a numerical (n1, . . . ,np)-bracelet and let x ∈ SG(S). Then S∪{x} is a (n1, . . . ,np)-

bracelet if and only if x+
{

x,m1, . . . ,mq
}
+
{

n1, . . . ,np
}
⊆ S.

PROOF. Necessity. Trivial.
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Sufficiency. Take a,b∈ (S∪{x})\{0}, and let us prove that a+b+
{

n1, . . . ,np
}
⊆

S∪{x}. We distinguish three different cases.

. If a,b ∈ S then a+b+
{

n1, . . . ,np
}
⊆ S⊆ S∪{x}.

. If a = b = x then a+b+
{

n1, . . . ,np
}
= 2x+

{
n1, . . . ,np

}
⊆ S⊆ S∪{x}.

. If a= x and b∈ S, then there exist s∈ S and i∈ {1, . . . ,q} such that b=mi+s,

because b 6= 0. Therefore a+b+
{

n1, . . . ,np
}
= x+mi + s+

{
n1, . . . ,np

}
⊆

S⊆ S∪{x}.

�

Next we illustrate some of these results with an example

EXAMPLE 205. Let S = 〈5,12,19,26,33〉. Then S =

{0,5,10,12,15,17,19,20,22,24,25,26,27,29,30,31,32,33,→} and thus F(S) = 28.

It easy clear that S is a numerical (2)-bracelet such that Ap(S,5) = {0,12,19,26,33}.

By Proposition 202, we have that PF(S) = {7,14,21,28} and thus SG(S) = {21,28}.

Applying Lemma 203 we obtain that S∪{21} and S∪{28} are numerical semigroups.

Since 21+ 5+ 2 = 28 /∈ S and 28+ {28,5,12,19,26,33}+ {2} ⊆ S, by Proposition

204, we get that S∪{21} is not a numerical (2)-bracelet and S∪{28} is a numerical

(2)-bracelet.

As an immediate consequence of Theorem 200 and Proposition 204, we obtain the

following result.

COROLLARY 206. Let m1, . . . ,mq be positive integers such that S = 〈m1, . . . ,mq〉

is a numerical (n1, . . . ,np)-bracelet. Then S is an indecomposable (n1, . . . ,np)-

bracelet if and only if for every x ∈ SG(S)\{F(S)} we have that x+
{

x,m1, . . . ,mq
}
+{

n1, . . . ,np
}
* S.

Observe that as a consequence of previous corollary we can conclude that the nu-

merical (2)-bracelet S = 〈5,12,19,26,33〉 given in Example 205 is indecomposable

(2)-bracelet.
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