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Abstract

This thesis is devoted to the study of the theory of numerical semigroups. First,
the focus is on saturated numerical semigroups. We will give algorithms that allows
us to compute, for a given integer g (respectively integer F'), the set of all saturated
numerical semigroups with genus g (respectivaly with Frobenius number F). After
that, we will solve the Frobenius problem for three particular classes of numerical
semigroups: Mersenne, Thabit and Repunit numerical semigroups. Lastly, we will

characterize and study the digital semigroups and the bracelet monoids.






Resumo

Problemas Combinatdrios em Semigrupos Numéricos

Esta tese € dedicada ao estudo da teoria dos semigrupos numéricos. O primeiro
foco € o estudo dos semigrupos numéricos saturados. Daremos algoritmos que nos
irdo permitir calcular, dado um inteiro g (repectivamente, um inteiro F'), o conjunto de
todos os semigrupos numéricos saturados com género g (respectivamente, com nimero
de Frobenius F). Depois disso, iremos resolver o problema de Frobenius para trés
classes particulares de semigrupos numéricos: semigrupos numéricos de Mersenne,
de Thabit e de Repunit. Por fim, iremos caracterizar e estudar os semigrupos digitais e

os monodides braceletes.






Introduction

Let N denote the set of nonnegative integers. A numerical semigroup is a subset S
of N that is closed under addition, contains the zero element and has finite complement
in N. The greatest integer that does not belong to S (respectively, the cardinal of N\S)
is called the Frobenius number of § (respectively, genus of §), and it is denoted by
F(S) (respectively, g(S)).

In literature we can find a long list of works that study one dimensional analyti-
cally irreducible local domains via their value semigroups (see for instance [2] and the
references given there). One important property studied for this kind of ring is of being
saturated.

Saturated rings were introduced in three different ways in [9], [23] and in [S3]
and the three definitions coincide for algebraically closed fields of zero characteristic.
From the characterization of a saturated ring through its value semigroups it arose the
concept of saturated semigroup (see [13] and [22]).

Given a non empty subset A from N and a € A we denote by dj(a) =
ged{x € A |x <a}. From [9] we say that a numerical semigroup S is saturated if
s+ds(s) € Sforalls € S.

Chapter 2 of this thesis is devoted to the study of saturated numerical semigroups.
The results of Section 2 were published in [31] and the main result is an algorithm
that allows us to compute, for a given integer g, the set of all saturated numerical

semigroups of genus g. The methodology used in this algorithm is based in sorting



6 INTRODUCTION
the set of all saturated numerical semigroups in a tree rooted in N and describing the
childs of the vertices of that tree.

The results of Section 3 were published in [32] and the main result is an algorithm
that allows us to compute, for a given integer F, the set of all saturated numerical se-
migroups with Frobenius number F'. The efficiency of this algorithm is fundamentally
based in the description of a algorithmic method that allows us to calculate, for a given
k-tuple of positive integers (dy,ds,...,d;) were dy > dy > --- > d =1 and d;y) | d;
foralli e {1,...,k— 1}, the set of all nonnegative integer solutions from the equation
dix1 + -+ +dgx; = c were c is a nonnegative integer.

During the early part of the last century, Ferdinand Georg Frobenius (1849-1917)
raised, in his lectures the problem of giving a formula for the largest integer that is
not representable as a linear combination with nonnegative integer coefficients of a
given set of positive integers whose greater common divisor is one. He also raised the
question of determining how many positive integers do not have such a representation.
By using our terminology, the first problem is equivalent to give a formula, in terms of
the elements in a minimal system of generators of a numerical semigroups S, for the
greatest integer not in S known, as we have seen before, as the Frobenius number. The
second problem consist on finding the cardinality of the set of gaps of that numerical
semigroup, that is, the genus of S (see [24] for a nice state of art on this problem).

At first glance, the Frobenius Problem may look deceptively specialized. Nevert-
heless it crops up again and again in the most unexpected places. It turned out that
the knowledge of Frobenius number has been extremely useful to investigate many
different problems.

This problem was solved by Sylvester and Curran Sharp (see [47]], (48] and [49])
for numerical semigroups with embedding dimension two. It was demonstrated that if

{n1,ny} is a minimal system of generators of S, then F(S) =njn, —n; —ny and g(S) =



INTRODUCTION 7
%(nl — 1)(ny — 1). The Frobenius problem remains open for numerical semigroups
with embedding dimension greater than or equal to three.

In Chapter 3 we will solve the Frobenius problem for three particular classes of
numerical semigroups: Mersenne, Thabit and Repunit numerical semigroups. The
results of this chapter were published in [34], [36] and [35].

A positive integer x is a Mersenne number if x = 2" — 1 for some n € N\{0}. We
say that a numerical semigroup S is a Mersenne numerical semigroup if there exist n €
N\{0} such that § = ({2"""—1 | i € N} ). The main purpose of Section 1 is to study
this class of numerical semigroups and will denoted by S(n) = ({2"*'—1]i e N}).
We give formulas for the embedding dimension, the Frobenius number, the type and
the genus for a numerical semigroup generated by the Mersenne numbers greater than
or equal to a given Mersenne number. We see that the minimal system of generators of
S(n) is equal to {2" — 1,271 — 1., 22"~1 — 1} and thus ¢ (S(n)) = n. We will solve
the Frobenius problem for the Mersenne numerical semigroups, in fact, we will prove
that F(S(n)) = 22" —2" —1 and g(S(n)) = 2" ' (2" +n—3).

Two numbers m and n are called amicable numbers if the sum of proper divisors
(the divisors excluding the number itself) of one number equals the other. A positive
integer x is a Thabit number if x = 3.2" — 1 for some n € N (named so in honor of
the mathematician, physician, astronomer and translator Al-Sabi Thabit ibn Qurra al-
Harrani 826- 901). These numbers expressed in binary representation are n + 2 bits
long being ”10” by n 1’s. Thabit ibn Qurra was the first to study these numbers and
their relation to amicable numbers. He discovered and proved that if p =3-2" —1,
g=3-2""!—1land r=9-2""! —1 are prime numbers, then M =2"pg and N = 2"r are a
pair of amicable numbers. Thus, for n =2, n =4 and n = 7 we have the amicable pairs
(220,284), (17296,18416) and (9363584,9437056), respectively, but no other such

pairs are known. We say that a numerical semigroup S is a Thabit numerical semigroup
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if there exist n € N such that § = ({3.2"" —1 | i € N} ), and will be denoted by T (n).
The main purpose of Section 2 is to study this class of numerical semigroups. In
this setting, we will see that the minimal system of generators of T'(n) is equal to
{3:2n+i—1|i€{0,1,...,n+1}} and therefore e(T (n)) = n+2. If n is a positive
integer, we will prove here that F(T (n)) =9-22" —3.2" —1 and g(T (n)) =922~ +
(3n—5)2" 1,

In Section 3, we will study the Repunit numerical semigroups. In number theory,
a Repunit is a number consisting of copies of the single digit 1. The numbers 1,
11, 111 or 1111, etc., are examples of Repunits. The term stands for repeated unit
and was coined by Albert H. Beiler in [3]]. In general, the set of Repunits in base b
is {% |ne N\{O}} In binary, these are known like Mersenne numbers. In the
literature there are many problems related to this kind of numbers (see, for example,
[45] and [52]). A numerical semigroup S is a Repunit numerical semigroup if there

exist integers b € N\ {0,1} and n € N\ {0} such that S = <{b';+:' |ie N}> and it

will denoted by S (b,n). We will prove that {Ib’%i |ie{0,....n— 1}} is the minimal
system of generators of S(b,n) and so e(S(b,n)) = n. We will solve Frobenius problem

for the Repunit numerical semigroup, specifically, we will prove that F(S(b,n)) =

b"—1 b" (b"—b
b”—landg(S(b,n)):—< -l—n—l).

b—1 2 \b—-1
Chapter 4 is dedicated to the study of the digital semigroups (Section 1) and the

bracelet monoids (Section 2). These results were published in [33] and [30], respecti-
vely. Given a positive integer n, we denote by ¢(n) the number of digits of n writen
in decimal expansion. For example ¢(137) = 3 and ¢(2335) = 4. Given A a subset of
N\{0}, we also denote by L(A) = {l(a) | a € A}. A digital semigroup D is a subsemi-
group of (N\{0},-) such that if d € D then {x € N\{0} | £(x) = ¢(d)} C D and a nu-

merical semigroup S is called LD-semigroup if there exist a digital semigroup D such
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that S = L(D) U{0}. Our main goal in Section 1 is to find the smallest digital semi-
group containing a set of positive integers. We characterize the LD-semigroups in the
following way: a numerical semigroup S is a LD-semigroup if and only ifa+b—1¢€ §
for all a,b € S\{0}. This fact allows us prove that the set of all LD-semigroups is a
Frobenius variety.

In order to clarify a bit more the study of LD-semigroups, we refer two papers that
motivate their study. By using the terminology of [6] a LD-semigroup is a numerical
semigroup that fulfills a nonhomogeneous pattern x; +x; — 1. As a consequence of
[[6], Example 6.4] LD-semigroups can be characterized by the fact that the minimum
element in each interval of nongaps is a minimal generator.

A (v,b,r,k)-configuration is a connected bipartite graph with v vertices on one
side, each of them of degree r, and b vertices on the other side, each of them of degree
k, and with no cycle of length 4. We say that the tuple (v,b,r,k) is configurable if
a (v,b,rk)-configuration exists. In [7] it is proved that if (v,b,r,k) is configurable
then vr = bk and consequently there exists d such that v = d—*— and b = d——.

gcd(rk) gcd(rk)

The fundamental result in [7] states that if r and k are integers greater than or equal

to two, then S,y = {d eEN| (d = dlzr,k) ,d @ dzr,k) N k) is conﬁgurable} is a numerical
semigroup. Moreover, in [46] it is shown that for balanced configurations, i.e. when
r=k, it follows that {x+y—1,x+y+ 1} C S, forall x,y € S, \{0}, and thus S
is a LD-semigroup.

Suppose that a plumber has an unlimited number of pipes with lengths [y,...,1,.
To join two pipes he can solder them or he cans use pipe joints Ji,...,J,. In the first
case the total length is equal to the sum of the lengths of the used pipes and if he uses
a pipe joint J; the total length is the sum of lengths of pipes plus n; (where n; is the
positive length of J; ). The main purpose of Section 2 is to study the set of lengths of

pipes that the plumber can make.
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The previous situation leads us to the following definition. Let S be a set of seg-
ments and let C be a set of circles. A (§,C)-bracelet is a finite sequence b of the

elements in the set SUC fulfilling the following conditions:

(1) b begins and ends with a segment;

(2) in b there are no two consecutive circles.
——( 0+

The length of a (S,C)-bracelet b is equal to the sum of all lengths of its segments
and all diameters of its circles, and it is denoted £(b).

Let B(S,C) ={b | bisa (S,C)—bracelet} and let LB(S,C) = {{(b) | b € B(S,C)}.
Suppose that 0 is a (S,C)-bracelet and ¢(0) = 0.

If S is a set of segments and C is a set of circles, where their lengths and diameters
are positive integers, then it is easy to prove that LB(S,C) is a submonoid of (N, +).
Note that if ¢ € C then diameter(c) may not be in LB(S,C). Butif ¢;,¢, € LB(S,C)\ {0}
then /| + ¢, 4 diameter(c) € LB(S,C). From here the following definition comes natu-
rally. Let ny,...,n, be positive integers and let M be a submonoid of (N, +). We say
that M is a (ny,...,n,)-bracelet if a+ b+ {ni,...,n, } C M for every a,b € M\ {0}.
From this we obtain that the set of lengths of pipes that the plumber can make is the
smallest (with respect to the set inclusion order) (ny,...,n,)-bracelet containing a set
{ll,...,lq} of positive integers (it is the smallest (np,...,n,)-bracelet that contains a
finite subset X of N).

Recall that a numerical semigroup is a submonoid S of (N, +) such that ged(S) =
1. This fact motivates the following definition. A numerical (np,...,n,)-bracelet is
a (ny,...,np)-bracelet M such that gcd(M) = 1. Therefore, following the notation

introduced in [6]], a numerical (np,...,n,)-bracelet is a numerical semigroup fulfilling



INTRODUCTION 11
nonhomogeneous patterns xj +xp +ny,x; +x2 +n2,...,x; +x2 +n,. And thus by
using again [Example 6.4 [6]] (1)-bracelets can be characterized by the numerical
semigroups fulfilling that the maximum element in each interval of non-gaps is one of
its minimal generators. The notion of pattern for numerical semigroups was introduced

in [5]]. Recently, the study of (1)-bracelets has been done in [25] and also suggested in
[7] and [46].






Introducao

Seja N o conjunto dos inteiros ndo negativos. Um semigrupo numérico € um
subconjunto S de N que € fechado para a adi¢do, contém o elemento zero e tem comple-
mento finito em N. O maior inteiro que ndo pertence a S (respectivamente, o cardinal
de N\S) é chamado o nimero de Frobenius de S (respectivamente, o género de S), e
denota-se por F(S) (respectivamente, g(S)).

Na literatura podemos encontrar uma longa lista de trabalhos dedicados ao estudo
de dominios locais analiticamente irredutiveis de dimensdo 1 via um semigrupo de
valores (ver por exemplo [2] e as referéncias ai dadas). Uma propriedade importante
estudada para este tipo de anéis € a de ser saturado.

Os anéis saturados foram introduzidos de trés formas distintas em [9], [23] € em
[83]] e as trés defini¢cdes dadas coincidem para corpos algebricamente fechados de ca-
racteristica O (zero). Desta caracterizagdo de um anel saturado via um semigrupo de
valores surgiu o conceito de semigrupo saturado (ver [13]] and [22]).

Dado um subconjunto nido vazio A de N e a € A denotamos por ds(a) =
ged{x€ A |x<a}. De [9] dizemos que um semigrupo numérico S é saturado se
s+ds(s) € S paratodo s € S.

O Capitulo 2 desta tese € dedicado ao estudo dos semigrupos numéricos. Os resul-
tados da Seccao 2 foram publicados em [31] e o seu principal resultado € um algoritmo
que nos permite calcular, para um dado inteiro g, o conjunto de todos os semigrupos

numéricos saturados com género g. A metodologia usada neste algoritmo € baseada na

13



14 INTRODUCAO
ordenacao do conjunto destes semigrupos numéricos saturados numa arvore com raiz
em N e na descricao dos filhos dos vértices dessa arvore.

Os resultados da Seccdo 3 foram publicados em [32] e o seu principal resultado é
um algoritmo que nos permite calcular, para um dado inteiro F, o conjunto de todos
os semigrupos numéricos saturados com nimero de Frobenius F. A eficiéncia deste
algoritmo é fundamentalmente baseada na descricdo de um método algoritmico que
nos permite calcular, para uma dada k-tupla de inteiros positivos (dy,d>,...,d;) onde
dy>dy>--->dy=1edy|dparatodo i € {1,...,k— 1}, o conjunto de todas as
solugdes inteiras ndo negativas da equacdo djx; + - - - + dgxy = ¢ onde ¢ € um inteiro
nao negativo.

Durante a primeira parte do século passado, Ferdinand Georg Frobenius (1849-
1917) levantou, nas suas palestras, o problema de dar uma férmula para o maior in-
teiro que nao pode ser representado como a combinag¢do linear de um dado conjunto
de inteiros positivos cujo maximo divisor comum € igual a 1 e em que os coeficientes
sejam inteiros nao negativos. Ele também levantou a questdao de determinar quantos
inteiros positivos nao tém tal representacdo. Usando a nossa terminologia, o primeiro
problema € equivalente a dar uma férmula, em termos dos elementos do sistema mi-
nimal de geradores de um semigrupo numérico S, para 0 maior inteiro que nao esta
em S, conhecido, como j4 vimos anteriormente, por nimero de Frobenius. O segundo
problema consiste em determinar a cardinalidade do conjunto dos buracos desse semi-
grupo numérico, ou seja, o género de S (ver [24] para uma boa referéncia do estado de
arte deste problema).

A primeira vista,o problema de Frobenius pode parecer especializado. No entanto
ele surge-nos nos lugares mais inesperados. O conhecimento do nimero de Frobenius

é-nos extremamente util para investigar diversos problemas.
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Este problema foi resolvido por Sylvester e Curran Sharp (ver [47], [48] e [49])
para semigrupos nimericos com dimensdo de imersdo dois. Foi demonstrado que se
{n1,ny} é um sistema minimal de geradores de S, entdo F(S) =njnp —n; —np e g(S) =
%(nl —1)(np — 1). O problema de Frobenius continua em aberto para semigrupos
numéricos com dimensao de imersao maior ou igual que trés.

No Capitulo 3 iremos resolver o problema de Frobenius para trés classes particula-
res de semigrupos numéricos: os semigrupos numéricos de Mersenne, de Thabit e de
Repunit. Os resultados deste capitulo foram publicados em [34], [36] and [35]].

Um inteiro positivo x € um ndmero de Mersenne se x = 2" — 1 para algum
n € N\{0}. Dizemos que um semigrupo numérico S é um semigrupo numérico de
Mersenne se existir um n € N\{0} tal que S = ({2"""—1]i€N}). O objectivo
principal da Seccdo 1 € estudar esta classe de semigrupos numéricos que denotare-
mos por S(n) = <{2”+i —1]ie N}> Daremos formulas para a dimensdo de imersdo,
o nimero de Frobenius, o tipo e o género de um semigrupo numérico gerado por
numeros de Mersenne maiores ou iguais a um dado nimero de Mersenne. Veremos
que o sistema minimal de geradores de S(n) é iguala {27 — 1,271 —1,... 2201 1}
e portanto e(S(n)) = n. Iremos resolver o problema de Frobenius para os semi-
grupos numéricos de Mersenne, de facto, provamos que F(S(n)) = 22" —2"—1 e
g(S(n)) =2""1(2" +n—3).

Dois nimeros m e n dizem-se amigaveis se a soma dos divisores proprios (0s
divisores a excepc¢ao do préprio nimero) de um dos nimeros for igual a do outro.
Um inteiro positivo x ¢ um nimero de Thabit se x = 3.2" — 1 para algum n € N
(chamado assim em honra ao matematico, fisico, astronomo e tradutor Al-Sabi Tha-
bit ibn Qurra al-Harrani 826- 901). Estes nimeros expressos em representacao
binéria tém 7n + 2 bits de comprimento sendo compostos por 10" seguidos de n 1’s.

Thabit ibn Qurra foi o primeiro a estudar esses nimeros e a sua relacdo com os
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nimeros amigdveis. Ele descobriu e provou que se p=3-2"—1, ¢g=3-2""1-1
e r=9-2""1 — 1 sdo nimeros primos, entio M = 2"pg e N = 2"r sio um par de
numeros amigaveis. Portanto, paran =2, n =4 e n = 7 temos os pares de amigédveis
(220,284), (17296, 18416) e (9363584,9437056), respectivamente, mas nao sao con-
hecidos mais nenhuns pares. Diremos que um semigrupo numérico S é um semi-
grupo numérico de Thabit se existir um n € N tal que S = <{3.2”+i —1]ie N}>, e
iremos denotd-los por T'(n). O objectivo principal da Sec¢do 2 é estudar esta classe
de semigrupos numéricos. Assim, iremos ver que o sistema minimal de geradores
de T(n) é igual a {3-2n+i—11]i€{0,1,...,n+1}} e portanto (T (n)) = n+ 2.
Seja n é um inteiro positivo, iremos provar que F(T(n)) =9-2" —3.2"—1 e
g(T(n))=9-22""14 (3n—-5)2""1.

Na Secgdo 3, iremos estudar os semigrupos numéricos Repunit. Na teoria dos
nimeros, um Repunit € um niimero composto pela repeticao do digito 1. Os nimeros
I, 11, 111 ou 1111, etc., s@o exemplos de Repunits. O termo significa a repeti¢dao
da unidade e foi introduzido por Albert H. Beiler em [3]. Em geral, o conjunto dos
Repunit na base b é {’Zlf—_ll |ne N\{O}} Em linguagem bindria, estes sdo conheci-
dos como os niimeros de Mersenne. Na literatura existem diversos problemas rela-
cionados com este tipo de nimeros (ver, por exemplo, [45] e [52]). Um semigrupo
numérico S € um semigrupo numérico Repunit se existirem inteiros b € N\ {0,1} e

n € N\ {0} tais que S = <{b’;ifl |ie N}> e serdo denotados por S(b,n). Iremos

provar que {Z%[ |i€{0,...,n— 1}} ¢ o sistema minimal de geradores de S(b,n) e

assim e(S(b,n)) = n. Iremos resolver o problema de Frobenius para os semigrupos

b —1
"—1
b—lb

numéricos Repunit, mais concretamente, iremos provar que F (S(b,n)) =

e g(S(b,n)) = % (12"_—119 tn— 1).
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O Capitulo 4 € dedicado ao estudo dos semigrupos digitais (Seccdo 1) e aos
mondides braceletes (Seccao 2). Estes resultados foram publicados em [33] e [30], re-
spectivamente. Dado um inteiro positivo n, denotamos por £(n) o nimero de digitos de
n escrito em representacdo decimal. Por exemplo £(137) = 3 e £(2335) = 4. Dado um
subconjunto A de N\{0}, vamos denotar por L(A) = {{(a) | a € A}. Um semigrupo
digital D é um subsemigrupo de (N\{0},-) tal que se d € D entdo {x € N\{0} | £(x) =
¢(d)} € D. Um semigrupo numérico S é chamado semigrupo-LD se existir um se-
migrupo digital D tal que S = L(D) U {0}. O nosso objetivo principal na Sec¢do 1
€ determinar o menor semigrupo digital que contém um conjunto de inteiros positi-
vos. Caracterizamos os semigrupos-LD da seguinte forma: um semigrupo numérico
S é um semigrupo-LD se e s6 se a+b — 1 € S para todos os a,b € S\{0}. Este facto
permite-nos provar que o conjunto de todos os semigrupos-LD sdo uma variedade de
Frobenius.

Com o intuito de clarificar um pouco mais o estudo dos semigrupos-LD, referi-
mos dois trabalhos que motivam o seu estudo. Usando a terminologia de [6]], um
semigrupo-LD é um semigrupo numérico que verifica um padrdo ndo homogéneo
x1 +x2 — 1. Como consequéncia de [[6], Exemplo 6.4] os semigrupos-LD podem
ser caracterizados pelo facto de que o menor elemento em cada intervalo de elementos
nao-buracos € um gerador minimal.

Uma configurag@o- (v, b, r,k) é um grafo bipartido conectado, com v vértices de um
lado, cada um deles de grau r, e b vértices no outro lado, cada um deles de grau k, e
sem nenhum ciclo de comprimento 4. Dizemos que a tupla (v, b, r,k) é configuravel se
existir uma configuragéo-(v,b, r,k). Em [7] é provado que se (v,b,r,k) é configurdvel
entdo vr = bk e consequentemente existe um d tal que v=d—~— e b =d—"—. Ore-

ged(rk) ged(rk)

sultado principal em [7] afirma que se r e k s@o inteiros maiores ou iguais a dois, entdo

Stk = {d eN| (dgcdlgnk) ,dgcdfr’k) )1, k) é conﬁgurével} ¢ um semigrupo numérico.
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Mais, em [46l] ¢ mostrado que para configuracdes equilibradas, i.e. quando r = k, tem-
se que {x+y—1,x+y+1} C S, para todos os x,y € S, \{0}, e portanto S, é
um semigrupo-LD.

Suponhamos que um canalizador tem um nimero ilimitado de tubos de compri-
mentos [1,...,l,. Para unir dois tubos ele pode solda-los ou pode usar juntas de tubos
Ji,...,Jp. No primeiro caso, o comprimento total € igual a soma dos comprimentos
dos tubos que ele usa e se ele usar uma junta de tubos J; o comprimento € a soma dos
comprimentos dos tubos mais n; (onde n; € o comprimento de de J; ). O principal ob-
jectivo da Secc¢do 2 € estudar o conjunto dos comprimentos dos tubos que o canalizador
pode fazer.

A situagd@o anterior conduz-nos a seguinte defini¢do. Seja S um conjunto de seg-
mentos e seja C um conjunto de circulos. Uma bracelete-(S,C) ¢ uma sequéncia finita

b dos elementos no conjunto SUC que verifica as seguintes condigdes:

(1) b comega e acaba com um segmento;

(2) em b nao ha dois circulos consecutivos.
——— O+ O+

O comprimento de uma bracelete-(S,C) b é igual a soma de todos os comprimentos
dos seus segmentos e todos os didmetros dos seus circulos, e denota-se por £(b).

Seja  B(S,C) = {b|béuma(S,C)—bracelet} e seja LB(S,C) =
{£(b) | b € B(S,C)}. Suponhamos que 0 é uma bracelete-(S,C) e £(0) = 0.

Se S € um conjunto de segmentos € C € um conjunto de circulos, onde os seus
comprimentos e didmetros sdo inteiros positivos, entdo € facil de provar que LB(S,C)
¢ um submondide de (N,+). Note que se ¢ € C entdo didmetro(c) pode ndo estar

em LB(S,C). Mas se (1,0, € LB(S,C)\ {0} entdo ¢; + ¢, + didmetro(c) € LB(S,C).
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Daqui, a seguinte defini¢do vem naturalmente. Sejam ny,...,n, inteiros positivos e
seja M um submonéide de (N, +). Dizemos que M é uma bracelete-(ni,...,n,) se
a+b+{ni,...,n,} C M para todos os a,b € M\ {0}. De onde obtemos que o con-
junto dos comprimentos dos tubosque o canalizador pode fazer é a menor (no que diz
respeito a ordem de inclusdo de conjuntos) bracelete-(ny,...,n,) que contém um con-
junto {ll,...,lq} de inteiros positivos (¢ a menor bracelete-(ny,...,n,) que contém
um subconjunto finito X de N).

Recordemos que um semigrupo numérico é um submondide S de (N,+) tal que
ged(S) = 1. Este facto motiva a seguinte definigdo. Uma bracelete-(ny,...,n,)
numérica ¢ uma bracelete-(np,...,n,) M tal que gcd(M) = 1. Assim, seguindo a
notagdo introduzida em [6], uma bracelete-(ny,...,n,) numérica ¢ um semigrupo
numérico que satisfaz o padrao ndo homogéneo x| +x2 + ny,x; +x2 +ny,...,x1 +
x2 +n,. E portanto, usando novamente o [Exemplo 6.4 [6]] as braceletes-(1) podem
ser caracterizadas pelos semigrupos numéricos que verificam que o elemento maximo
em cada intervalo de elementos ndo-buracos é um dos seus geradores minimais. A
nocdo de padrdo para semigrupos numéricos foi introduzida em [S]. Recentemente, o

estudo de braceletes-(1) foi feito em [25]] e também sugerida em [7] e [46]].






CHAPTER 1

Preliminaries

In this chapter we present some basic definitions and known results, needed later
in this work, related to the numerical semigroups. Some more specific definitions and

known results may be presented locally when needed.

1. Notable elements

We use N and Z to denote the set of nonnegative integers and the set of the integers,
respectively.

A semigroup is a pair (S,+), where S is a nonempty set and + is a binary ope-
ration defined on § verifying the associative law, that is, for all a,b,c € § we have
a+ (b+c)=(a+b)+c. If there exists an element t € S such that 7 +s=s+t =
for all s € S we say that (S,+) is a monoid. This element is usually denoted by 0. In
addition, S is a commutative monoid if for all a,b € S, a+b = b+ a. An example
of a commutative monoid is (N,+). All semigroups and monoids considered in this
work are commutative. A submonoid of a monoid S is a subset A of S such that 0 € A
and for every a,b € A we have that a4 b € A.

Given a nonempty subset A of a monoid S, the monoid generated by A is the least
(with respect to set inclusion) submonoid of S containing A, which turns out to be the

intersection of all submonoids of § containing A. It follows easily that
<A> = {Mxl + e Axy ‘ n GN\{O},xl,...,xn €A and?hl,...,kn GN}.

The set A is a system of generators of S if <A >=§, and we will say that S is

generated by A. A monoid S is finitely generated if there exists a system of generators

21
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of § with finitely many elements. Moreover, we say that A is a minimal system of
generators of S if no proper subset of A generates S.

Given two monoids X and Y, a map f : X — Y is a monoid homomorphism if
fla+b) = f(a)+ f(b) for all a,b € X and f(0) = 0. We say that f is a monoid
isomorphism if f is bijective.

A numerical semigroup is a submonoid of (N, +) such that the greatest common
divisor of its elements is equal to one, that is, < A > is a numerical semigroup if and

only if gcd(A) = 1.

PROPOSITION 1. Every nontrivial submonoid of N is isomorphic to a numerical

semigroup.
The following result gives us alternative ways of defining a numerical semigroup.

PROPOSITION 2. Let S a submonoid of N. The following conditions are equivalent:
(1) S is a numerical semigroup,
(2) the group spanned by S is 7,
(3) N\S is finite.

If aj < ay < --- < a; are integers, we denote by {aj,as,...,ar,—} the set
{a1,a,...,ax} U{z € Z | z > a}. The submonoid < 3,7 >= {0,3,6,7,9,10,12,—}
is an example of a numerical semigroup.

Let A and B be subsets of integer numbers. To denote the set

{a+b :acA, be B} weuse A+B.

LEMMA 3. Let S be a numerical semigroup. Then (S\{0})\(S\{0} +S\{0}) is

a system of generators of S. Furthermore, every system of generators of S contains

(S\{OD\(S\{0} +5\{0}).

Taking in account Proposition [2]it makes sense to consider the greatest integer not

belonging to S. We call this element the Frobenius number of S and it is denoted by
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F(S). The cardinality of the set N\S is called the genus of S (or gender of S) and is
denoted by g(S). The elements in this set are called the gaps of a numerical semigroup.

The next lemma appears in [38] and is easy to prove.

LEMMA 4. Let S and T be numerical semigroups. Then

(1) SNT is a numerical semigroup;

(2) if S # N then SU{F(S)} is a numerical semigroup.

Given n € S\ {0}, the Apéry set (named so in honour of [1]]) of S with respect to n
is defined by

Ap(S,n)={seS|s—n¢gS}.

It is easy to prove (see for instance [38]]) the following result.

LEMMA 5. Let S be a numerical semigroup and let n be a nonzero element of S.
Then, Ap(S,n) ={0=w(0),w(1),...,w(n—1)}, where w(i) is the least element of S

congruent with i modulo n, for all i € {0,...,n—1}.

Observe that the above lemma in particular implies that the cardinality of Ap(S,n)

is n. With this result, we easily deduce the following.

LEMMA 6. Let S be a numerical semigroup and let n € S\{0}. Then for all s € S,

there exists a unique (k,w) € N x Ap(S,n) such that

s=kn-+w.

The set Ap(S,n) determines completely the semigroup S, since S =< Ap(S,n)U
{n} >. Moreover, Ap(S,n) contains in general more information that an arbitrary set

of generators of S.

REMARK 7. If S is a numerical semigroup, x € S\{0} then Ap(S,x) =
{w(0) =0,w(1),...,w(x—1)}. From Lemma [§] we have that an integer z is in § if

and only if z > w(z mod x).
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As Lemma [3 states that (S\{0})\(S\{0} 4+ S\{0}) is the minimal system of ge-
nerators and as S =< Ap(S,n) U{n} >, for any n € S\{0}, we have the following

result.

THEOREM 8. Every numerical semigroup admits a unique minimal system of ge-

nerators. This minimal system of generators is finite.

From Proposition 1| and Theorem [8| we obtain the following consequence.

COROLLARY 9. Let S be a submonoid of (N,+). Then S has a unique minimal

system of generators, which in addiction is finite.

Let S be a numerical semigroup. The cardinality of the minimal system of genera-
tors of S is called embedding dimension of S, and is denoted by e(S). The smallest
nonzero element of S is called the multiplicity of S and is denoted by m(S).

The next result is due to Selmer [44] and can be used to compute F(S) and g(S),

from one of the Apéry sets of the numerical semigroup S.

PROPOSITION 10. Let S be a numerical semigroup and let n be a nonzero element

of S. Then
(1) F(S) =max(Ap(S,n)) —n;
(2) g(S) - %(ZWGAP(SJL) W) - %

We say that a numerical semigroup S has a monotonic Apéry set if w(1) < w(2) <
oo <w(m(S) —1), with {0,w(1),...,w(m(S) — 1)} = Ap(S,m(S)).
Let S be a numerical semigroup. Following the notation introduced in [29], we say

that the pseudo-Frobenius numbers of S are the elements of the set
PF(S)={x€Z\S | x+s e Sforevery s € S\{0}}.
The cardinality of the previous set is an important invariant of S called the type of

S denoted by t(S). From the definition it easily follows that F(S) € PF(S), in fact, it

is the maximum of this set.
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Let S be a numerical semigroup. We define in Z the following relation:
a<sbifb—acs.
As noticed in [38], <g is an order relation (i.e. reflexive, antisymmetric and tran-
sitive). From the definition of PF(S), it easily follows that the elements are those
maximal gaps with respect to <g. A characterization in terms of the Apéry set already

appears in [[15]], Proposition 7].

LEMMA 11. Let S be a numerical semigroup and let x be a nonzero element of S .
Then
PF(S) = {w—x | w € max<,Ap(S,x)}

From previous lemma we obtain an upper bound from the type of a numerical

semigroup, we have that #(S) < m(S) — 1.
2. Irreducible numerical semigroups

One type of numerical semigroups which are among the most studied are the ir-
reducible numerical semigroups for their relevance in ring theory. A numerical se-
migroup is irreducible if it cannot be expressed as an intersection of two numerical
semigroups properly containing it. The next result shows that the irreducible numeri-
cal semigroups are maximal in the set of numerical semigroups with fixed Frobenius

number.

THEOREM 12. [[28]], Theorem 1] The following conditions are equivalent:
(1) S isirreducible;
(2) S is maximal in the set of all numerical semigroups with Frobenius number
F(S);

(3) S is maximal in the set of all numerical semigroups that do not contain F(S).

A numerical semigroup S is symmetric (respectively, pseudo-symmetric) if it is

irreducible and F(S) is odd (respectively, even).
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PROPOSITION 13. [[38], Proposition 4.4] Let S be a numerical semigroup.
(1) S is symmetric if and only if F (S) is odd and x € Z\S implies F(S) —x € S;
(2) S is pseudo-symmetric if and only if F(S) is even and x € 7\S implies that

either F(S) —x € Sorx= @

Sometimes the previous proposition is used as definition of the concepts of sym-
metric and pseudo-symmetric numerical semigroups.

The next result gives us a relation between the genus and the Frobenius number of
irreducible numerical semigroups.

PROPOSITION 14. [[38], Corollary 4.5] Let S be a numerical semigroup.

F(S)+1
(1) S is symmetric if and only if g(S) = &

F(S)+2

(2) S is pseudo-symmetric if and only if g(S) = 5

3. Families of numerical semigroups closed under finite intersections and for the

Frobenius number

The results presented in this section can be found in [27].
A Frobenius variety is a nonempty set 7 of numerical semigroups fulfilling the

following conditions:
(1) if Sand T arein ¥, thensois SNT;
(2) if Sis in ¥/ and it is not equal to N, then SU{F(S)} is in V.
Clearly the set of all numerical semigroups is a Frobenius variety.
From 2) of Lemma {4, given a numerical semigroup S, we define recursively the
following sequence of numerical semigroups:
e So=31,
o If S; #N, then S;1; = S;U{F(S;)}.
Since N\ S is finite, we obtain a finite chain of numerical semigroups S =Sy C S| C

S2,+++,Z 8, = N. Denote by C(S) the set {So,S1,...,Sn}
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The following results can be deduced from the definition of Frobenius variety.
LEMMA 15. If V is a Frobenius variety and S € V, then C(S) C V.

As a consequence of the above lemma we deduce that N belongs to every Frobe-
nius variety and therefore the intersection of Frobenius varieties is always a nonempty

family of numerical semigroups.

PROPOSITION 16. The intersection of Frobenius varieties is a Frobenius variety.

From 1) of Lemma [4]is easy to prove that a finite intersection of numerical semi-
groups is also a numerical semigroup. Note that nonfinite intersections of numerical
semigroups are not in general a numerical semigroup as it is shown in the following

example. Nevertheless, they are always submonoids of N.

EXAMPLE 17. For every n € N, we have that {0,n,—} is a numerical semigroup.

It is also easy to prove that N,y {0,n,—} = {0}.

Let V' be a Frobenius variety, we will say that a submonoid M of N is a //-monoid
if it can be expressed as an intersection of elements of V.

The following result is easy to prove.

LEMMA 18. The intersection of ‘V-monoids is also a V-monoid.

From this result we have the following definition. Let A be a subset of N. The
7-monoid generated by A is the intersection of all the 7/-monoids containing A.
Denote such a 7-monoid by V(A). If M = V(A), then we say that A is a V/-system
of generators of M. As every submonoid of N is finitely generated, we obtain the

following result.

PROPOSITION 19. Every V-monoid has a finite ‘V-system of generators.
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If no proper subset of A is a V-system of generators of M, then we say that A is a

minimal 7/-system of generators of M.

THEOREM 20. Every V-monoid has a unique minimal ‘V-system of generators

and this set is finite.

PROPOSITION 21. Let M be a V-monoid and x € M. The set M\ {x} is a V-

monoid if and only if x belongs to the minimal V-system of generators of M.

COROLLARY 22. Let S be a numerical semigroup. The following statements are

equivalent:
(1) S= s'U {F(S,)},for some S € V:
(2) S € V and the minimal V-system of generators of S contains an element

greater than F (S).

A graph G is a pair (V,E), where V is a nonempty set whose elements are called
vertices, and E is a subset of {(v,w) € V xV | v#£ w}. The elements of E are called
edges of G. A path of length n connecting the vertices x and y of G is a sequence
of distinct edges of the form (vo,vi), (vi,v2),...,(Va—1,v,) Withvg =x and v, = y. A
graph G is a tree if there exists a vertex r (known as the root of G) such that for every
other vertex x of G, there exist a unique path connecting x and r. If (x,y) is an edge of
a tree, then we say that x is a child of y. A binary tree is a rooted tree in which every
vertex has 0, 1 or 2 childs. A vertex with no childs is a leaf.

Given a Frobenius variety 7/, define G(7/) the associated graph to 4V in the follo-
wing way: the set of vertices of G(7) is ¥ and (§,S) € ¥ x V is an edge of G(V) if
and only if S = §' U {F (S/) } From Corollary [22| we have the following result.

THEOREM 23. Let V be a Frobenius variety. The graph G(V) is a tree with
root equal to N. Furthermore, the children of a vertex S € V are S\{x1},...,S\ {x;}
where x1,...,x, are the elements of the minimal V-system of generators of S which are

greater that F(S).



CHAPTER 2

Saturated numerical semigroups

We start this chapter by recalling some results that appear in [41]. This allows us
to introduce the concept of SAT system of generators for a saturated numerical semi-
group and we will show that the set of saturated numerical semigroups is a Frobenius
variety. This fact with the results from [27] enable us to arrange the set of all saturated
numerical semigroups in a tree rooted in N.

In Section 2, and from previous results, we present an algorithm for computing the
set of saturated numerical semigroups of a given genus. The results from this section
appear in [31]].

Finally, in Section 3, we collect the results presented in [32]. In particular we give
an efficient algorithmic method that, for a positive integer F', computes the whole set of
saturated numerical semigroups with Frobenius number F'. This is achieved by means

of F-saturated sequences, associating to each one a saturated numerical semigroup.

1. Characterization of saturated numerical semigroups

In this section we give a characterization of saturated numerical semigroups, then
we point out that the intersection of two saturated numerical semigroups is again sa-
turated. This allows us to introduce the concept of a SAT system of generators of
a saturated numerical semigroup. Then we will show that every saturated numerical
semigroup has a unique minimal SAT system of generators. This will support the con-

cept of SAT rank of a saturated numerical semigroup. Finally, we present a recursive

29
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method for computing the set of all saturated numerical semigroups, and arrange it in

a binary tree rooted in N with no leaves.

1.1. A characterization. A numerical semigroup S is saturated if the following
condition holds: if s,sy,...,s, € S are such that s; < s for all i € {1,...,r} and
Zl,...,2r € Z are such that z;s1 4+ ---+ 2,5, > 0, then s+ z151 + - - + 2,5, € S.

ForA C Nanda €A, set

da(a) = ged{x € Alx < a}

THEOREM 24. [[41]], Lemma 4] Let A be a nonempty subset of N such that 0 € A

and gcd(A) = 1. The following conditions are equivalent:

1 ) A is a saturated numerical semigroup.
2 Ja+ds(a) € AforallacA.
3 )a+kds(a) €A forallac Aandk eN.

1.2. SAT system of generators. Our next aim is to introduce the concept of a SAT
system of generators for a saturated numerical semigroup. In order to do this we first
need to prove that for a given X C N with gcd(X) = 1, there exists a least (with respect
to inclusion) saturated numerical semigroup that contains X. The best candidate is the
intersection of all saturated numerical semigroups that contain X.

The next result is easy to prove.

PROPOSITION 25. [[41], Proposition 5] Let S1 and S> be two saturated numerical

semigroups. Then S = S1 NS, is a saturated numerical semigroup.

Let X be a subset of N such that gcd(X) = 1. Then every saturated numerical
semigroup containing X must also contain < X >, and thus there are finitely many
of them. We denote by Sar(X) the intersection of all saturated numerical semigroups
containing X, and call it the saturated closure of X. Observe that Sar(X) = Sat(<

X >). Clearly, we have that Saz(X) is the smallest saturated semigroup containing X.



1. CHARACTERIZATION OF SATURATED NUMERICAL SEMIGROUPS 31

If S is a saturated numerical semigroup and X is a subset of N such that gcd(X) =1
and Sat(X) = S, then we will say that X is a SAT system of generators of S. We say
that X is a minimal SAT system of generators if in addition no proper subset of X is
a SAT system of generators of S. It is well known that every numerical semigroup is
finitely generated (as a semigroup). Hence for a given numerical semigroup S, there
exists {ny,...,n,} C Nsuch that S =<njy,...,n, >. If S is a saturated numerical se-
migroup, then clearly Saz(ni,...,n,) = Sat(S) = S, and thus every saturated numerical
semigroup admits a finite SAT system of generators. Note that if X is a SAT system of

generators of S, then < X > does not have to be equal to S = Sar(X).

THEOREM 26. [[41], Theorem 6] Let n; < ny < --- < n, be positive in-
tegers such that gcd(mi,...,np) = 1.  For every i € {1,...,p}, set di =
ged(ny,...,n;) and for all j € {1,...,p— 1} define kj = max{k € N | nj +kd; <
njt1}.  Then Sat(ny,...,np) = {0,n1,n1 +di,...,n1 + kidi,nz,ny + da,...,ny +

kody,...,np_1,np_1+dp_1,...,0np_1 +kp_1dp_1,np,np+ 1,—}.

EXAMPLE 27. Let {nj,ny,n3} ={4,10,23}. Thend; =4,dy =2,d3 =1, k; =1
and ky = 6. Hence Sat(4,10,23) = {0,4,8,10,12,14,16,18,20,22,23,24, —}.

It may happen that one is interested in the minimal system of generators (as
a semigroup) of Sar(X). From [26] one can deduce that if m = min(X\{0}) (=
min(Sat(X)\{0})), then the minimal system of generators of § = Sat(X) is A =
{myU({s €S |s—m¢Sp\{0}).

Observe that the cardinality of A is m. Theorem [26|allows us to compute Sat(X).
Therefore if we want to find out which are the elements of A, is suffices to look at the
first m elements in Sar(X) such that subtracting m from them, the resulting integers
are no longer in Sar(X). In the preceding example, S = Sar(4,10,23), m = 4 and
{seS|s—m¢S}=1{0,10,23,25}. Thus Sat(4,10,23) =< 4,10,23,25 >.
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1.3. The rank of a saturated numerical semigroup. We start by showing that

every saturated numerical semigroup has a unique minimal SAT system of generators.

THEOREM 28. [[41], Theorem 11] Let S be a saturated numerical semigroup.
Then {si,...,s,} = {s € S\{0} | ds(s) # ds(s') for all ' <'s, s’ € S} is the unique

minimal SAT system of generators of S.

EXAMPLE 29. Let S be the saturated numerical semigroup
§=1{0,4,8,10,12,14,16,18,20,22,23,24, —}.

It follows that dg(4) = 4 = ds(8), ds(10) = ... = ds(22) =2 and dg(23) =1 =
ds(23 4 n) for all n € N. By Theorem [28| the minimal SAT system of generators is
{4,10,23}.

Using Theorem [28]it makes sense to define the SAT rank of a saturated numerical
semigroup S by the cardinality of its minimal SAT system of generators, which we will
denote by SAT-rank(S).

Using Theorem 26| for the description of Sat(ny,...,n,) and Theorem 28 we have

the following result.

COROLLARY 30. [[41], Corollary 14] Let ny < np < --- < np be positive integers
with greatest common divisor one. Then {ni,...,np} is the minimal SAT systems of
generators of Sat(ni,...,n,) if and only if ged(ny,...,n;) # ged(ny,...,ni,nir1) for
allie{l,....p—1}

The following result is a reformulation of Theorem [26] and will be useful in the

next sections.

LEMMA 31. Let ny < np < --- < n, be positive integers such that
gcd{nl,...,np} = 1. Foreveryi€ {1,...,p} letd; = gcd{ny,...,n;}. Then
Sat({ni,...,np}) ={0}U(n1 4 (d1)) U---U(np+{dp)).
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1.4. The tree of saturated numerical semigroups. Now we are going to show

that the set of saturated numerical semigroups may be viewed as a binary tree rooted

in N with no leaves. First we show how to construct the father of any non-root vertex.
Repeating the process yields the path connecting the given vertex to the root.

The next result is easy to prove.

PROPOSITION 32. [[41l], Proposition 17] Let S # N be a saturated numerical se-

migroup. Then S = SU{F (S)} is also saturated.

For a given numerical semigroup S, recall that S, was defined recursively by
e So=29,
o If S; #N, then S;; = S;U{F(S;)}.

Clearly, there exists k € N such that Sy = N. If in addiction § is a saturated nume-
rical semigroup, Proposition states that S = Sy C §; C --- C Sy = N is a chain of
saturated numerical semigroups. Moreover, S; = S; 1\ {a} for some a € S;;| (a beco-
mes the Frobenius number of ;). This idea motivates the next result, which explains

how the childs of a vertex in the tree are constructed.

PROPOSITION 33. [[41], Proposition 18] Let S be a saturated numerical semi-

group. The following conditions are equivalent.

1)S=SU{F(S)} with " a saturated numerical semigroup,

2 ) the minimal SAT system of generators of S contains an element greater than

F(S).

The previous proposition allows us to construct recursively the tree containing the
set L of all saturated numerical semigroups. As we have seen before, the graph G(L)
is defined in the following way: the set of vertices of G(L) is L and (7,S) € L X L is
aedge of G(L) ifand only if TU{F(T)} =S.

With all this information the following property is easy to prove.
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LEMMA 34. The graph G(L) is a tree with root equal to N. Furthermore, the
childs of a vertex S € L are S\ {x1},...,S\ {x;} where x,...,x, are the elements of

the minimal SAT-system of generators of S which are greater that F(S).

From Lemma [31] (see also Theorem [26)) we easily deduce the following.

LEMMA 35. Let S be a saturated numerical semigroup with minimal SAT-system
of generators A = {n| <---<np} and let X = {n; €A | n; > F(S)}. Then {n,} C

X C {np,l,np}. Furthermore, n,_1 € X if and only ifn,_1 =n, — 1.

REMARK 36. Note that as an immediate consequence of Lemmas [34{ and we
have that if S is an element of L then S has 1 or 2 childs and thus G(£) is a binary tree

with no leaves.

EXAMPLE 37. Let S=Sat({4,10,23} ). Then 23 is the unique element in minimal
SAT-system of generators of S greater that F(S). Hence S € L has a unique child, that
is, S\ {23}.

EXAMPLE 38. Let S:Sat({& 12,14, 15}). Then 14 and 15 are the elements in
minimal SAT-system of generators of S greater that F(S). Therefore, the childs of
S € Lare S\{14} and S\ {15} .

2. The set of saturated numerical semigroups of a given genus

Our goal in this section is to find a way to compute the set of all saturated numerical
semigroups with a given genus. We will use Proposition [33|to build recursively a tree
rooted in N of the saturated numerical semigroups. The results presented can be found

in [31].

2.1. A method for computing the set of all saturated numerical semi-
groups of a given genus. Let g be a positive integer and L(g) be the set of

all saturated numerical semigroups with a genus g. It is clear that L(g+ 1) =
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{S"| S’ is child of an element of £(g)}. This fact allows us to recursively construct

L(g), starting in L(0) = {N}.

Sat(1) =N
A
Sat(2,3)
pd ~
Sat(3,4) Sat(2,5)
A AN ~
Sat(4,5) Sat(3,5) Sat(2,7)
A ~ ~ ~
Sat(5,6) Sat(4,6,7) Sat(3,7) Sat(2,9)
7 ~ A ™~ ~ ~

Our next aim is to describe the minimal SAT-systems of generators of the childs of

a given saturated numerical semigroup from its minimal SAT-system of generators.

PROPOSITION 39. Let S be a saturated numerical semigroup with minimal SAT-
system of generators {n1 << np} and let d, | = gcd{nl,...,np_l}. Then the
minimal SAT-system of generators of S\ {np} is equal to:

D {n < <np_1 <np+2} ifdy_1|n,+1;
2) {mi < <np_i <np+1}ifged{d,_1,n,+1} =1;
3) {nl < <npop<np+1< np—|—2} in the other cases.

PROOF. As a consequence of Lemma we have that S\ {np} =
Sat({n1,...,np_1,np+l,np—f—Z}).

DIf dyq|n, + 1 then ged{ni,...,np_1} = dpo1 =
ged{ni...,np_1,n,+1}. By applying Lemma we get that
S\ {np} = Sat({nl,...,np_l,np—f—Z}) and, from Corollary we de-

duce that {n1 yeey Mp 1,0y + 2} is the minimal SAT-system of generators of

S\{np}.
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2) If ged {dp_l,np + 1} — 1 then, in view of Lemma we obtain that
S\ {np} = Sat( {m yeesNp_1,0p+ 1}) By applying Corollary {30 this im-
plies that {nl, ceyNp 1,0+ 1} is the minimal SAT-system of generators of
S\ {”p};
3) From Corollary (30|it follows that {ny,...,n,_1,n,+1,n,+2} is the mini-
mal SAT-system of generators of S\ {n p}.

O

REMARK 40. Note that as a consequence of the previous proposition we have that

SAT-rank(S) <SAT-rank(S\ {n,}) <SAT-rank(S)+ 1.

EXAMPLE 41. 1) If $ = Sat({8,12,15} ) then, by applying Proposition 39|
we have that S\ {15} = Sat({8,12,17}).
2) If § = Sat({6,9,19}) then, in view of Proposition [39] we obtain that
S\ {19} = Sat({6,9,20}).
3) If § = Sat({8,12,17}) then , using again Proposition [39] we deduce that
S\ {17} = Sat({8,12,18,19}).

Recall that, as a consequence of Lemmas [34{ and we deduce that, if S is a sa-
turated numerical semigroup with minimal SAT-system of generators {n 1<---<n p}
then S\ {np} is always child of S. Besides, S\ {np_l } is another child of S if and only

ifn, 1 =n,—1

PROPOSITION 42. Let S be a saturated numerical semigroup with minimal SAT-
system of generators {n1 << np} such that n, | = n, — 1. Then the minimal
SAT-system of generators of S\ {np,l} is equal to:

a) {m+1,n+2}ifp=2;
b) If p>3andd, = gcd{nl,...,np_z} then:
b.1) {ni < <npo<np}ifged{d,—2,np} =1;
b.2) {n1 < <npp<np<npt 1} in the other cases.
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PROOF. a) Since S = Sat({ny,n; +1}), from Lemma it follows that

S\{ni} = Sat({n +1,n; +2}).

b)In view of Lemma (31 we get that S\{n,_1} =

Sat({ni,...,np—2,np,np+1}).

b.1) If ged{d,—2,n,} = 1 then, by applying Lemma (31, we have
S = Sat({nl,...,np_z,np}) and, from Corollary we obtain
that {nl,...,np_z,np} is the minimal SAT-system of generators of
S\{np-1}.

b.2) Observe that in this setting d,—» # ged{ni,...,n,—2,n,}, since
otherwise 1 = ged{ni,...,np_2,np_1,n,} = ged{dp—2,np_1} =
ged{ni,...,np_2,np_1}, which is absurd. Therefore,  if
gcd {dp_z,np} =% 1 then, using Corollary once more, we have
that {m yeeeyp 2, Rp, Ay + 1} is the minimal SAT-system of generators
of S\ {ny—1}.

0J

REMARK 43. Observe that as a consequence of the previous proposition we have

that SAT-rank(S) — 1 <SAT-rank(S\ {n,—1 }) <SAT-rank(S).

EXAMPLE 44. 1) If § = Sat({5,6} ) then, by applying Proposition 42| we
have that S\ {5} = Sat({6,7}).
2) If S = Sat({4,6,7}) then, by using Proposition 42| we get that S\ {6} =

Sat({4,7}).
3) If S = Sat({6,8,9}) then, using again Proposition 42, we obtain that

S\ {8} = Sat({6,9,10}).

2.2. An algorithm to compute £(g). Our next goal is to describe an algorithmic
procedure to compute all the elements in £(g). Clearly N = Sat({1}) has a uni-
que child, which is Sat({2,3}) = {0,2,—}. Furthermore, if S € L and S # N then

SAT-rank(S) > 2. As we have mentioned before, if we know L(g — 1) then we can
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compute £(g), simply computing all childs of £(g— 1). From Propositions[39and 42]
we can conclude that, we need to know d),_1 and in some cases d,, > to compute the
childs of a saturated numerical semigroups S with minimal SAT-system of generators
{n <---<np}. To avoid having to make this calculation continuously and to maxi-
mize the efficiency of computation, we introduce the concept of a-representation of a
saturated numerical semigroup.

Let S # N be a saturated numerical semigroup, an oO-representation of S is
[(n1,n2,...,np), (x1,%2...,xp—1)] such that {n; <ny <--- <np} is the minimal SAT-
system of generators of S and x; = gcd {nl,...,np_i} forallie {1,...,p—1}. Note
that x; = ged {ny,...,np—1 } =dp_ and x, = ged {ny,...,np2} =dp».

Now we give a method that, from an o-representation of a saturated numerical
semigroup, allows to calculate the a-representations of its childs.

As an immediate consequence of Proposition[39] we have the following.

LEMMA 45. Let [(nl, cnp), (X, ,xp,l)] be an a-representation of a saturated

numerical semigroup S # N. Then the a.-representation of (S\ {np}) is equal to:

1) [(nla"'7np—17np+2),(xla"'rxp—l)] l:fX1’np+1,'
2) [(nl,...,np_l,np+1),(x|,...,xp_1)} ifgcd{xl,np+1} =1;
3) [(nl,...,np_l,np+l,np+2),(gcd{x1,np+1},x1,...,xp_1)] in the other

cases.

EXAMPLE 46. 1) If S = Sat({8,12,15}) then the o-representation of S
is [(8,12,15),(4,8)]. By Applying Lemma @45 we have that the a-
representation of S\ {15} is [(8,12,17),(4,8)].

2) If § = Sat({6,9,19}) then the o-representation of S is [(6,9,19),(3,6)].
From Lemma we obtain that the o-representation of S\ {19} is
[(6.9,20),(3,6)]
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3) If S = Sat({8,12,17} ) then the ar-representation of S is [(8,12,17),(4,8)].
By Lemma again, we get that the o-representation of S\ {17} is
((8,12,18,19),(2,4,8)].

As a consequence of Proposition 42] we easily deduce the next result.

LEMMA 47. Let [(nl, cnp), (X, ,xp,l)] be an o-representation of a saturated
numerical semigroup S # N such that n, | = n, — 1. Then the «-representation of
(S\{np-1}) is equal to:

a) [(nl +1,n+2),(n + 1)] ifp=2;
b) [(nl, e lp_2, M), (xz,...,xp_l)} if p> 3 and ged {xz,np} =1;

c) [(nl,...,np_z,np,np +1),(ged {xz,np} X2, ,xp_l)} in the other cases.

EXAMPLE 48. 1) If § = Sat({5,6}) then the a-representation of § is

[(5,6),(5)]. Applying Lemma we have that the a-representation of
S\ {5} is [(6.7).(6)].

2) If § = Sat({4,6,7}) then the a-representation of S is [(4,6,7),(2,4)]. By
Lemma {47, we obtain that the or-representation of S\ {6} is [(4,7), (4)].

3) If S = Sat({6,8,9}) then the o-representation of S is [(6,8,9),(2,6)].
Using again Lemma we get that the o-representation of S\{8} is
[(6,9,10),(3,6)].

We are ready to give the announced algorithm which shows how to compute £(g).

ALGORITHM 49. Input: g a positive integer.
Output: L(g).
1) A={[(2,3),(2)]},i=1,B=0.
2) If i = g then return A.
3) For each [(n1,...,np), (x1,...,xp—1)] €A do
3.1) If x{|n, + 1 then
B=BU{|[(ni,...,np—1,np+2),(x1,...,xp—1)] } and go to Step 3.4).
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3.2) If ged {x1,np,+1} =1 then
B=BU{[(n1,...,np—1,np+1),(x1,...,xp—1)] } and go to Step 3.4).
3.3) B:BU{[(nl,...,np_l,np—l— 1,n,+2), (gcd{xl,np+ 1} XLy ,xp_l)]}.
34) Ifn,_1 #n,—1goto Step 4).
3.5) If p=2then B=BU{[(n; + 1,n1+2),(n;+1)]} and go to Step 4).
3.6) If ged {x2,n,} = 1 then
B=BU{[(n1,...,np—2,np),(x2,...,xp—1)]} and go to Step 4).
3.7 B=BU {[(nl,...,np_z,np,np—f- 1),(ged {xz,np} ,xz,...,xp_1)]}.

4) A=B,i=i+1,B=0and go to Step 2).

EXAMPLE 50. Let us compute all saturated numerical semigroups with genus 10.

First, and using Algorithm 49 we compute the a-representation of all saturated

numerical semigroups with genus less than 10 (denoted here by A;);

. fori=1thenA; = {[(2,3),(2)]};

- fori=2then Ay = {[(2,5),(2)],[(3,4), (3)]};

. fori =3 then A3 = {[(2,7),(2)],[(3,5), 3)],[(4,5), (4)]};
. for i =4 then

A4 ={[(2,9),(2)1,[3,7),(3)],[(4,6,7),(2,4)],[(5,6),(5)]};

. for i =5 then

As = {[(2,11),(2)],[(3,8),(3)],[(4,6,9),(2,4)], [(4,7), (4)],
[(5,7),(5)1,1(6,7),(6)]};

. for i = 6 then

As = {1(2,13),(2)],[(3,10),(3)], [(4,6,11),(2,4)],[(4,9), (4)],
[(5,8),(5)1,1(6,8,9),(2,6)],[(7,8), (7)]};

. for i =7 then

A7 =1{[(2,15),(2)],[(3,11),(3)],[(4,6,13),(2,4)], (4,10, 11), (2,4)],
[(5,9),(5)1,1(6,8,11),(2,6)],[(6,9,10), (3,6)][(7,9), (7)1, [(8,9), (8)]};

. for i = 8 then

Ag = {[(2,17),(2)],[(3,13),(3)],[(4,6,15),(2,4)],[(4,10,13), (2,4)],
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[(4,11), (4)L,[(5.11), (5)], (6.8, 13), (2,6)L. (7, 10), (7)], [(8, 10, 11),
(2,8)],1(9,10),(9)],(6,9,11),(3,6)], (6,10, 11), (2,6)]};
. for i =9 then

Ag = {[(2,19),(2)],[(3,14),(3)],[(4,6,17),(2,4)],[(4,10,15),(2,4)],
[(4,13),(4)],[(5,12),(5)],1(6,8,15),(2,6)],[(7,11), (7)1, (8,10, 13)(2,8),
[(8,11), (8)],[(9, 11), (9)], [(10, 11), (10)], (6, 11), (6)],[(6, 10, 13), (2,6)],
[(6,9,13),(3,6)]}.

And from this we get the minimal SAT-system of generators of the set of saturated

numerical semigroups with genus 10,

{{2,21},{3,16},{4,6,19},{4,10,17} ,{4, 14,15} ,{5,13},{6,8,17},{7,12} ,{8,10, 15} ,
{8,12,13},{9,12,13},{10,12,13} ,{11,12} {6,13},{6,10, 15} ,{6,9, 14} } ,

which are the childs of elements in Ag.

Finally, we present the results of some computational experiments performed to
analyze the apllicability of the algorithm previously proposed. These functions were
implemented in GAP [12] and [17] and compute all saturated numerical semigroups

with a given genus.

For Genus 10,

gap> Length(SaturatedNumericalSemigroups WithFixedGenus(10)); 16

takes 0 ms, while computing the set of all saturated numerical semigroups with
genus and then filtering those that are saturated takes 31 ms.

gap> Length(Filtered(NumericalSemigroupsWithGenus(10),IsSaturatedNumericalSemigroup));
16

As for 15 we get also 0 ms for

gap> Length(SaturatedNumericalSemigroups WithFixedGenus(15)); 40

while it takes 390 ms for

gap> Length(Filtered(NumericalSemigroupsWithGenus(15),IsSaturatedNumericalSemigroup));

40
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For 25 we still get 0 ms with
gap> Length(SaturatedNumericalSemigroupsWithFixedGenus(25)); 130
while it takes 100735 ms with

gap> Length(Filtered(NumericalSemigroupsWithGenus(25),IsSaturatedNumericalSemigroup))
130

For genus 30 the time with this algorithm is also 0 ms while with the filtering was

not possible to calculate because it gets an error message

“Error, exceeded the permitted memory”.

In the following table there are the results obtained for genus up to 150. For each
positive integer g we wrote the number of saturated numerical semigroups (n,) of the

given genus (g).

s

[e [n le lne Jo [n [e [m Je In Jo [ [ [m Jc |n [

n |

8 ng

1 1 16 43 31 228 || 46 701 61 1717 || 76 3634 || 91 6900 || 106 | 12057| 121 | 20104| 136 | 3179
2 2 17 51 32 251 47 757 || 62 1815 || 77 3805 || 92 7175 || 107 | 12503| 122 | 20749| 137 | 3275§
3 3 18 56 33 272 || 48 805 63 1915 || 78 3970 || 93 7444 || 108 | 12939| 123 | 21404| 138 | 33730
4 4 19 67 34 295 || 49 864 || 64 2021 (| 79 4163 || 94 7732 || 109 | 13411 124 | 2208¢| 139 | 34753
5 6 20 78 35 324 || 50 918 || 65 2135 | 80 4348 || 95 8038 || 110 | 1388¢| 125 | 22787| 140 | 35751
6 7 21 85 36 346 || 51 973 66 2239 || 81 4532 || 96 8336 || 111 | 14382 126 | 23485| 141 | 36764
7 9 22 91 37 373 || 52 1030 || 67 2365 || 82 4729 || 97 8669 || 112 | 14898| 127 | 24239| 142 | 37834
8 12 23 106 || 38 401 53 1103 || 68 2482 || 83 4952 || 98 9004 || 113 | 15441 128 | 2499Q| 143 | 38951
9 15 24 117 || 39 432 || 54 1172 || 69 2599 || 84 5156 || 99 9348 || 114 | 15969| 129 | 25753| 144 | 40040
10 16 25 130 || 40 460 || 55 1248 || 70 2722 || 85 5373 | 100 | 9705 || 115 | 16524| 130 | 26546| 145 | 41170
11 21 26 143 || 41 500 || 56 1320 || 71 2868 || 86 5592 || 101 | 10083| 116 | 17080 131 | 27379| 146 | 4231]|
12 24 27 158 || 42 535 || 57 1385 || 72 3006 || 87 5822 || 102 | 10457| 117 | 17634| 132 | 28214 147 | 4347
13 29 28 170 || 43 581 58 1457 || 73 3158 || 88 6070 || 103 | 10866| 118 | 18232 133 | 29081 148 | 44694
14 35 29 190 || 44 626 || 59 1548 || 74 3314 || 89 6345 || 104 | 11262| 119 | 18857 134 | 2996§| 149 | 45954
15 40 30 205 || 45 662 || 60 1626 || 75 3470 || 90 6616 || 105 | 11643| 120 | 19460 135 | 30859| 150 | 4722(

3. The set of saturated numerical semigroups with fixed Frobenius number

The main aim of this section is to give an algorithmic method that, given a

positive integer F, computes all saturated numerical semigroups with a Frobenius
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number F. The results presented in this section can be found in [32]. We alre-
ady saw that giving a saturated numerical semigroup S is equivalent to give a se-
quence of positive integers ny < np < --- < n, with greatest common divisor one and
ged{ny,ny,...,n;} # ged{ny,na,...,nj,niy1} forall i € {1,...,p—1}. In this case,
we say that {n 1,12,... ,np} is a minimal SAT-system of generators of S. Furthermore,
if d; = gcd{ni,...,n;} foreach i € {1,...,p}, then we say that S is a (di,d,...,d,)-
semigroup.

A saturated sequence of length £, is a k-tuple of positive integers (dy,d>, ..., dy)
such thatdy > dy > --- >dy =1 and dj1|d; forall i € {1,...,k—1}.

Let F be positive integer. An F-saturated sequence is a saturated sequence
(dy,da,...,dy) such that there exists at least one (dj,ds, ... ,d;)-semigroup with Fro-
benius number F.

Let L(F) = {l | I is an F-saturated sequence}. For each [ € L(F) define L(l) =
{S | Sis al— semigroup with Frobenius number F }. Then Ujcz(r) L(1) is the set of
all saturated numerical semigroups with Frobenius number F'. Therefore, to construct
the set of all saturated numerical semigroups with Frobenius number F, it suffices
to give an algorithmic procedure to compute all F-saturated sequences and given an

F-saturated sequence / another algorithm that allows to determine the set £(1).

3.1. Minimal SAT-system of generators. The following theorem is the key to
the development of this part of this work and describes a method that allows to obtain
the minimal SAT-system of generators of saturated numerical semigroups with a given

SAT-rank.

THEOREM 51. Let di > dy > --- > d, = 1 be integers such that d;y1|d; and let
1,12, ...,tp be positive integers such that gcd{d%,tiﬂ} =1forallie{l,...,p—1}.
Then {d1 Jhdy+thdy, ... .thd 4+ tpdp} is the minimal SAT-system of generators of
a saturated numerical semigroup with SAT-rank p. Furthermore every minimal SAT-
system of generators of a saturated numerical semigroup with SAT-rank p is of this

form.
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PROOF. Taking into  account  Corollary  [30} to  prove  that
{di,tid\ +12d>,....t1dy +---+1pdp} is the minimal SAT-system of ge-
nerators of a saturated numerical semigroup it suffices to show that
ged{d|,nydi +trdy,... .t dy + -+ t;d;} = d; for all i € {1,...,p}. We proceed
by induction on i. For i = 1, the result follows easily from the fact that ged {d; } = d;.

Assume that the statement is true for { and let us show it for i + 1. In fact,

ged{dy,....tid1 +---+tidi,tydy + - - - +tip1dip } =
= ng{ng{dl,...,tldl —i-"'—i-l‘idi},l‘ldl +"'+ti+1di+1} =

=ged{d;,tid1 +--- +tip1dip1 } = ged{d, tip1dit1} =

d.
= di+l-g0d{d_l>ti+l} =dit1.
i+1

Reciprocally, let {n1 <ny<---< np} be a minimal SAT-system of generators of
a saturated numerical semigroup. Let d; = ged{ny,...,n;} foralli € {1,...,p}. Itis
clear that d;1| | d; and, by Corollary that dy > dp > --- > d, = 1. We will see
that there exist positive integers f1,...,t, such that ny = dy, no = t1dy +trda,...,n, =
fidy + - +tpd, and gcd{d%,tiﬂ} =1forallie{l,...,p—1}. Lets; =1 and
fir) = % for all i € {1,...,p—1}. To this end we prove by induction on i that
ni=tidy+---+1td;, for all i € {2,...,p}. For i =2 the result is clear, since #;d] +
tody = 1n; + "Zd;z’“dz = ny. Assume that the result holds for i and let us prove it for
i+ 1. As njy1 = n;+ti;1diy1, by applying the induction hypothesis, we obtain that
ni+1 = tidy +--- + tid; + ti+1diy1. In order to conclude the proof, it is enough to see

that gcd{dl%,tiﬂ} =1forallie{l,...,p—1}. In fact,

dit1=ged{n,...,nit1} = ged{ged{ny,...,ni} ,nit1} =

= ged{di,nhdy +- - +tidi +ti1dip1 } =

d;
= ged{d;,ti1dip1} =dip ng{EJHI} -
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Therefore, gcd{% tix 1} =1. U

i+17
3.2. The Frobenius number. With previous results we are able to find a formula
for the Frobenius number of a saturated numerical semigroup in terms of its minimal
SAT-system of generators.

Given integers a, b and ¢ we denote by a = b mod c if a — b is a multiple of c. We

also write a|b to denote that a divides b.

PROPOSITION 52. Let S be a saturated numerical semigroup with minimal SAT-
system of generators {n1 <mp << np}. Let d;i = ged{ny,...,n;} for all i €
{1,....,p}. Then

F(S) { np—1, if ny#1modd, 1,
np—2, if np,=1modd, .

PROOF. If n, # 1 mod d, | then n, —1 % 0 mod d,,_1. By applying Theorem 26
we have thatn, — 1 ¢ S and {n,,—} C S. Hence F(S) =n, — 1.

If n, =1 mod d, | then n, —1 =0 mod d,_;, and by using again Theorem
we have that n, — 1 € S. From Corollary we know that d, | > 2 and thus n, —
2 # 0 mod d,—1. In addition, by Theorem we deduce that n, —2 ¢ S and that
{n,—1,n,,—} CS. Hence F(S) = n, —2. O

As a consequence of the above proposition, we obtain the following result.

COROLLARY 53. Let S be a saturated numerical semigroup with minimal SAT-
system of generators {dl,tldl +trdy, ... . t1d1 - +tpdp} fulfilling the conditions of
Theorem(51l Then

t1d1+---+tpdp—2, iftpEImOddp_l.

A (dy,dy,...,d,)-semigroup is a saturated numerical semigroup such that
if {nl <np < - <np} is its minimal SAT-system of generators, then d; =
ged{ny,...,n;} forallie {1,...,p}.
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COROLLARY 54. Let S be a (dy,d>,...,d,)-semigroup with Frobenius number F.
Then
1)di+---+d, <F+2;
2) 2P <F+3;
3) the SAT-rank of S is less than or equal to 1og, (F +3).

PROOF. 1) By using Theorem |51| and Corollary we deduce that there
exist positive integers t1,...,7, such that tid +--- +t,d, € {F +1,F +2}.
Hence di +---+d, <F+2.

2) By Corollary 30}, we have that d; >d, > --- > d, = 1 and d;1|d; for all i €
{1,...,p—1}. Then d; > 2d; and thus d; > 2P foralli € {1,...,p—1}.
Applying 1), we deduce that 2°~! 4 ... +2+1 < F +2. By induction, it
easily follows that 2Pl 4 .. 424 1=2P—1,whence 2” < F +3.

3) Itis easily deduced from 2), since SAT-rank of S is equal to p.

0J

Our next goal is to see which condition has to verify a saturated sequence
(di,...,dp) so that there exists at least one (di,...,d,)-semigroup with Frobenius
number F'.

Suppose that {dy,11d) +trdy,...,11d1 + -+ +1,dp } is the minimal SAT-system of
generators of a saturated numerical semigroup with Frobenius number F, fulfilling the

conditions of Theorem [51] We distinguish two cases:

1) If t, #1 mod d,—; then, by applying Corollary , we get that F +
l =ndy + - +1tpdy,. Whence F+12>d;+---+d, Moreover, as
ged {tidi+ - +1pdy,dp_1 } = ged{tpdy,dp—1 } = gcd{tp,dg—;l} = 1, then
ged{F+1,d,_1} = 1. Since F +1 =1d, + -+ +1,d, and d, = 1, we de-
duce that F +1 =1, mod d,,—1 and thus F +1 # 1 mod d,,_.

2) If 1, =1 mod d,_; then, by applying Corollary we have that F +2 =
tidy +---+1tpdy,. Therefore F +2>dy+---+dyand F+2=1mod d, ;.
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THEOREM 55. Let F be a positive integer and let (dy,...,d,) be a saturated se-
quence. Then there exists a (di,...,d,)-semigroup with Frobenius number F if and

only if it fulfills one of the conditions:

1) F+1>di+ - +dp ged{F+1,dp_1} =1and F+1%# 1 mod dp_i;
2) F+2>di+---+dy,and F +2=1mod d, ;.

PROOF. The necessary condition is a consequence of the comment preceding the
theorem.

Let us see the sufficient condition. Assume that 1) is verified. Let
==t =1and t, =F+1)—(d +--+dy—1) >0 . Since
gcd tp,dfi—’l} = gcd{tp,dp_l} = gcd{F+1,dp_1} = 1, we have that

P
gcd {l‘i_H , dl%} =1forallie{1,...,p—1}. By applying Theorem we deduce that
{di,di+ds,....dv+-+dp_1,di++dp 1+ (F+1) = (di+-+dp_1))dp}
is a minimal SAT-system of generators of a saturated numerical semigroup S. As
F+1=t, mod d,_, we have t, Z 1 mod d,,_. From Corollary [53| we obtain that
F(S)=F.

Assume now that 2) is true. Take t; =--- =1,y =landt, = (F+2)—(d1+---+
dp—1)>0. As F+2 =1 mod d,_ this implies that #, = 1 mod d,_, and consequently
gcd {F—|—2,dp_1} = 1. Then gcd{tp, dfl—:} =1, and thus gcd {t,-“,ﬁl} =1 for all
i€{l1,...,p— 1}. By applying again Corollary [53] we get F(S) = F. O

REMARK 56. Observe that the conditions 1) and 2) of previous theorem can not
happen simultaneously. In fact, if F +2 =1 mod d,,_1 then F +1 =0 mod d,_1,
whence ged {F +1,dp_1} =d,_1 # 1.

The previous theorem gives a criterium to check if for a saturated sequence
(di,...,dp) there exists a (di,...,d,)-semigroup with Frobenius number F. We il-

lustrate it with some examples.
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EXAMPLE 57. 1) Does not exist (12,6, 1)-semigroups with Frobenius num-
ber 25, because gcd {25+ 1,6} # 1 and 2542 # 1 mod 6. Consequently, the
conditions 1) and 2) of Theorem [55] are not verified.

2) By applying 2) of Theorem [55] we deduce that there exists at least one
(4,2, 1)-semigroup with Frobenius number 9.
3) From 1) of Theorem we have that there exists at least one (6,3,1)-

semigroup with Frobenius number 13.

3.3. An algorithm for computing all (d;,...,d,)-semigroups with a given Fro-
benius number. Assume from now on that (di,...,d),) is a saturated sequence and
F denotes a positive integer. Now we give an algorithmic procedure that allows to

calculate all (di,...,d,)-semigroups with Frobenius number F.

PROPOSITION 58. Let S be a (di,...,d,)-semigroup with Frobenius number F
and let {d1 hdy+tdy, ... hdi 4+ tpdp} be its minimal SAT-system of generators
fulfilling the conditions of Theorem Then:

D tidi+---+tpd, € {F+1,F+2};
2) idi+---+tpd, =F +2ifonly if F+2=1mod d,_;.

PROOF. 1) It is a consequence of Corollary
2) (Necessity) If F +2 =t1dy + --- +1tpd),, then by Corollary we have that
t, = 1 mod d, 1 and consequently F'+2 =1 mod d)_;.
(Sufficiency) From 1) we know that t1dy + --- +1,d, € {F +1,F +2}.
If ndy +---+1t,d, = F + 1, then since F'+2 =1 mod d),_;, we have that
F+1=0modd, | and thus t,d, =0 mod d,_|. As d, = 1, we obtain that
t, =0 mod d,,_ and so we deduce that gcd {tp, d;—;l} =d,—1 # 1, which is
impossible. Therefore F +2 =t1dy + - +1tpd),.
O

If F does not verify neither Condition 1) nor Condition 2) of Theorem [55] we can

state that there is no (a’ Iyeo- ,dp)—semigroup with Frobenius number F'.
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If F verifies Condition 2) of Theorem [55] then by applying Theorem [S1] and Pro-
position we have that in order to get all (di,...,d,)-semigroups with Frobenius
number F, it suffices to calculate the positive integer solutions (¢1,...,#,) of the equa-
tion dix; +--- +dpx, = F + 2 such that ng{ti+1,%} =l1forallie{l,...,p—1}.

Analogously, if F verifies Condition 1) of Theorem [53] then from Theorem [51]
and Proposition 58] we deduce that in order to obtain all (di, ... ,d,)-semigroups with
Frobenius number F, it suffices to calculate the positive integer solutions (t1,...,t))
of the equation dyx| + ---+dpx, = F + 1 such that gcd {ti+1,%} =1 forallie
{1,...,p—1}.

Observe that, if b is a positive integer greater than or equal to dy + --- + d,,
then to calculate the positive integer solutions of the equation dyx| + --- + dpx, =
b, this is equivalent to calculate the nonnegative integer solutions to the equation
diyi1+---+dpy, =b—(di +---+d,). This is because (y1,...,yp) is solution to the
second equation if (y; +1,...,y, + 1) is solution to the first equation.

Our next goal is to give an algorithmic procedure that determines the nonnegative

integer solutions of the equation
dixi+---+dpx, =c (1)

with ¢ a nonnegative integer.

Observe that the set of solutions of (1) corresponds with the set of integer partitions
of ¢ in which the parts belong to { di,....d p}. We use an argument similar to the ones
used in [54] and [20] to find all restricted partitions. Note that (1) has a finite number
of solutions and that (0,...,0,c) is the smallest solution of (1) with respect to the
lexicographic order. Therefore, if given a solution of (1), we are able to obtain the
next solution of (1) with respect to the lexicographic order, then after a finite number
of steps we obtain the set of solutions of (1).

The next result is the key to the above question. If (x1,...,x,) is a solution of (1),
we denote by Next(xp,...,x,) the next solution of (1) with respect to the lexicographic

order.
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PROPOSITION 59. Let (x1,...,x,) be a solution of (1).
1) If (x1,...,xp) is not a maximal solution of (1) with respect to the lexicographic
order, then there exists i € {1,...,p— 1} such that di1xi41+ - - +dpxp > d;;
If  j = max{ie{l,...,p—1} | dig1xi1 +---+dpx, > d;}, then
Next(x1,...,xp) = (X1,...,xj—1,x; + 1,0,...,0,dj1xj11 + - +dpx, — dj).

PROOF. 1) Let (x},...,x,) be a solution of (1) such that (xi,...,xp) <jex
(x},-.-,x},). Then there exists i € {1,...,p} such that x| = xy,...,x;_| =
xi—1 and x; > x;. Let us see that i # p. If x| = xy,...,x] b1 = Xp—1, since
(x1,...,xp) and (x},...,x),) are solutions of (1), then we deduce that x), = x,,.

Hence (x1,...,x,) = (xl,...,x;) which is absurd. As dix; +---+dpx, =
dixy+-- —i—dpx;, we have that dix; + --- +dpx, = dix} + - -- +dpx;, and so
dip1xip1+ - +dpxp —di = di(x; —x; — 1) + - +dpx, > 0.

2) Let (X1,...,%,) = (x1,...,xj—1,x;+ 1,0,...,0,dj1xj41 + - - + dpxp, — d;).

Clearly (Xi,...,X,) is a solution of (1) and (x1,...,Xp) <jex (X1,...,%Xp). In

/
p

lution of (1) such that (xi,...,xp) <jex (x’l,...,x;,) <lex (%1,...,Xp), then

order to conclude the proof, it suffices to prove that if (x],...,x,) is a so-
(x]5--»X,) = (F1,...,%p). In fact, from the previous inequality, we obtain
that x} = x,...,x; | = x;j_1. Next we will see that x; > x;. Other-
wise there exists 4 € N such that x; = xj,...,x;.Jrh Xj4p and x]+h+1 >
Xjth+1- Then dj_|_h+1x]'+h+] + - +dpxP = dj+h+1.xj+h+1 + - +dp.xp and
thus dj pioXjpnyo+ - +dpxp —djipp1 = 0, contradicting the maximality

of j. Now, by applying that (x’l,. -3Xp) Ziex (¥1,..,Xp) we deduce that x; =

xj—)chtlandx]+1 p = 0. In this way x| = 1,...,x;71:)_cp_1,
by applying (x},...,x,) and (X1,...,X,) are solutions of (1), we obtain that
X, = Xp. Therefore (xl,...,x )= (X1,....%p).

0]

Now we can give the announced algorithm for computing all nonnegative integers

solutions of (1).
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ALGORITHM 60. Input: (dy,...,d,)-saturated sequence and ¢ nonnegative integer.
Output: The set of nonnegative integers solutions of the equation
dix;+--+dpxp =c.
1) A={(0,...,0,¢)}.
2) (x1,...,xp) =(0,...,0,c).
3) while there exists
Jj= max{ie {L,...,p—1} | di1xip1 +---+dpxp 2d,~} do (x1,...,xp) =
(x1,..,xj—1,x; + 1,0,...,0,dj41xj41 + - +dpxp —dj) and A = AU

{(x1,....x) }-

4) Return A.
We illustrate the preceding algorithms with an example.

EXAMPLE 61. Let (dy,da,d3) = (6,2,1) and ¢ = 10. We compute all nonnegative
integer solutions of the equation 6xj + 2x, +x3 = 10. We begin with A = {(0,0,10)}
and (x1,x2,x3) = (0,0,10). Performing the step 3) of the above algorithm we get:
)=1(0,1,8),A=AU{(0,1,8)};
( )=1(0,2,6),A=AU{(0,2,6)};
( )=1(0,3,4),A=AU{(0,3,4)};
. (x1,x2,x3) = (0,4,2),A=AU{(0,4,2)};
. (x1,x2,x3) = (0,5,0),A=AU{(0,5,0)};

( )= (1,0,4), (1,0,4)
( )= (1,1,2), (1,1,2)
( )= (1,2,0), (1,2,0)

. (.X1,.x2,)€3

- \X1,X2,X3

- \X1,X2,X3

=(1,0,4),A=AU{(1,0,4)};
1,1,2),A=AU{(1,1,2)};

1,2,0),A=AU{(1,2,0)}.

- (X1,X2,X3

- \X1,X2,X3

- \X1,X2,X3

Finally,

A ={(0,0,10),(0,1,8),(0,2,6),(0,3,4),(0,4,2),(0,5,0),(1,0,4),

(1,1,2),(1,2,0)}.

Now we can give the algorithm announced at the beginning of this section.
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ALGORITHM 62. Input: (di,...,d,) a saturated sequence and F' a positive integer.

Output:

L= {(l‘l,. .. ,tp) € (N\{O})p ‘ {dl,l‘ld] +tdy,...,.t1dy + - —I—tpdp} is the
minimal SAT-system of generators of a (d,...,d,) — semigroup

with Frobenius number F'} .

1) If F does not verify neither Condition 1) nor Condition 2) of Theorem [55]
then return £ = () and the algorithm stops.

2) If F verifies the Condition 1) of Theorem[53] then ¢ = F +1— (di +---+d,)
and go to 4).

3 c=F+2—(di+---+dp).

4) Calculate by applying Algorithm [60]the set A of all nonnegative integer solu-
tions of the equation djxj + -+ +d,x, = c.

5) B=A+(1,...,1).

6) L= {(rl,...,t,,) €B| gcd{%,ml} —1 forallie {1,....p— 1}}.

7) Return L.

We illustrate the preceding algorithm with an example.

EXAMPLE 63. Let us compute all (6,2,1)-semigroups with Frobenius num-
ber 17.  As it checks the condition 2) of Theorem [55] then ¢ = 17 +
2—-(6+2+1) = 10. From Example we compute the set A =
{(0,0,10),(0,1,8),(0,2,6),(0,3,4),(0,4,2),(0,5,0),(1,0,4),(1,1,2),(1,2,0) } of all
nonnegative integer solutions of the equation 6xj 4 2x; 4+ x3 = 10.

Hence the set B=A+(1,1,1) =
{(1,1,11),(1,2,9),(1,3,7),(1,4,5),(1,5,3),(1,6,1),(2,1,5),(2,2,3),(2,3,1) }.

Finally,

L£L={(1,1,11),(1,2,9),(1,4,5),(1,5,3),(2,1,5),(2,2,3) }.

And thus, the (6,2, 1)-semigroups with Frobenius number 17 are:
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. Sat({6,8,19}) = {0,6,8,10,12,14,16,18,19, - };
. Sat({6,10,19}) = {0,6,10,12,14,16,18,19 —};
. Sat({6,14,19}) ={0,6,12,14,16,18,19, —};
. Sat({6,16,19}) ={0,6,12,16,18,19,—};
( )
( )

. Sat({6,14,19} ) (already appears);
. Sat({6,16,19} ) (already appears).

REMARK 64. The above example highlights that two distinct elements in £ can
produce us the same saturated numerical semigroup. Therefore the representation des-

cribed in Theorem [51]is not unique.

3.4. An algorithm for computing all saturated numerical semigroups with a
given Frobenius number. Recall that an F-saturated sequence is a saturated sequence
(dy,...,dx_1,dy) such that there exist at least one (dy,...,dy_1,dy)-semigroup with
Frobenius number F.

Our first aim is to give an algorithmic procedure that allows to calculate all F-
saturated sequences with a given positive integer F.

It is clear that the unique saturated sequence of length 1 is (1), N is the unique
(1)-semigroup and F(N) = —1. Hence, if F is a positive integer any F-saturated
sequence has a length greater than or equal to 2. We say that an F-saturated sequence
(dy,...,dx—1,dy) is of type 1 (respectively type 2) if gcd{F +1,d;_1} =1 and F #
0 mod dy_ (respectively F + 1 =0 mod d;_1). Note that being of type 1 or type 2 is
equivalent to fulfill Conditions 1) or 2) of Theorem [53]

The following two results are immediate consequences of Theorem [55]

LEMMA 65. Let F be a positive integer.
1) The set of F-saturated sequences with length 2 and type 1 is equal to
{(x,1) | x€Z, F+1>x>2, ged{F+1,x} =1 and F # 0 mod x}.
2) The set of F-saturated sequences with length 2 and type 2 is equal to
{(x,1) | x€Z,x>2and F+1=0mod x}.
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LEMMA 66. If k > 3 and (dy,...,dy_1,dy) is an F-saturated sequence, then

(da,...,dx_1,dy) is also an F-saturated sequence.

From the previous result we deduce that any F-saturated sequence with length k
greater than or equal to 3 can be obtained from an F'-saturated sequence with length
k — 1 by joining a first coordinate. As a consequence of Theorem [55and Lemma

we obtain the following result.

LEMMA 67. Let F and x be positive integers with x greater than or equal to 2.

1) Suppose that (dy,...,dy_1,dy) is an F-saturated sequence with length k and
type l and F+1 > xdy+dy+---+dy_1 +di. Then (xdy,dy,...,d_1,dy)
is an F-saturated sequence with length k+ 1 and type 1. Furthermore, all
F-saturated sequence with length k+ 1 and type 1 can be obtained of this
form.

2) Suppose that (dy,...,dx_1,dy) is an F-saturated sequence with length k and
type2and F +2 > xdy+dy+ -+ +dy_1 +dy. Then (xdy,d...,d_1,dy) is
an F-saturated sequence with length k+ 1 and type 2. Furthermore, all F-

saturated sequence with length k+ 1 and type 2 can be obtained of this form.

The next goal is to give algorithms that allows to obtain all F-saturated sequences
with type 1 or 2. As a consequence of Corollary [54] we have that an F-saturated
sequence has length less than or equal to log, (F + 3).

Given a real number ¢, we denote by |¢| the integer max {z € Z | z < ¢} and thus

|q] is the integer part of g.

ALGORITHM 68. Input: F a positive integer.
Output: A, ..., A|10g,(F+3)> Ai denotes the set of all F-saturated

sequences with length i and type 1.

) Ay={(x,1) | x€Z, F+1>x>2, ged{F+1,x} =1 and
F # 0 mod x}.
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2) Fori=3to [log,(F+3)] do
A;={(xdy,dy,...,di—1) | (d1,...,di-1) €A1, x>2, and
F+1>xdi+di+---+di—1}.
3) Return Az, A3, ..., A|log,(F13))-

The previous algorithm computes the F-saturated sequences with type 1 and the

following gives us the F-saturated sequences with type 2.

ALGORITHM 69. Input: F a positive integer.

Output: By, ..., B|iog,(F+3)|> Bi denotes the set of all F-saturated

log,
sequences with length i and type 2.

1) Bp={(x,1) |x€Z,x>2, F+1=0mod x}.
2) Fori=3to [log,(F +3)] do
B; ={(xdy,dy,...,di—1) | (dy,...,di—1) € Bi—_1, x > 2, and
F+2>xdi+di+--+di1}.
3) Return By,B3, ..., Blog,(F+3)|-

Next we illustrate the preceding algorithms with an example.

EXAMPLE 70. Let us compute all 17-saturated sequences.

1) First, and using Algorithm[68] we compute all sequences with type 1.
A ={(5,1),(7,1),(11,1),(13,1) };
. A3 ={(10,5,1)};
LAy =0.
2) By applying Algorithm[69] we obtain all sequences with type 2.
- By ={(18,1),(9,1),(6,1),(3,1), (2. 1)};
. B3 ={(12,6,1),(6,3,1),(9,3,1),(12,3,1),(15,3,1),(4,2,1),
(6,2,1),(8,2,1),(10,2,1),(12,2,1),(14,2,1),(16,2,1)}.
= {(

By =1{(8,4,2,1),(12,4,2,1)}.

We finish this section by introducing an algorithm that allows us to compute all

saturated numerical semigroups with a given Frobenius number.
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ALGORITHM 71. Input: F a positive integer.
Output: The set of all saturated numerical semigroups with Frobenius number F'.
1) Calculate by applying Algorithm @Az,Ag, ey A log, (F43) -
2) Calculate by applying Algorithm @32,33, -+ Bllog, (F+3)|-
3) L=AyU--UA o0, (Fy3)| UB2U - UB|10g,(F+3)-
4) For each [ € L, let £; be the output of Algorithm [62|and let
C = {Sat({di,11di + ods, ..., t1di + -+ 1di}) | 1= (d, ..., dy)
and (t1,...,1;) € L;}.
5) Return U;¢; C).

Therefore for each positive integer F' the previous algorithm computes all F-
saturated sequences with type 1 and 2 and for each F-saturated sequence computes
all saturated numerical semigroups with Frobenius number F associated with it.

The algorithm has been implemented in GAP, and it is available since version 0.98
of the numericalsgps GAP [17] package [12]. Next we give some timings.

For Frobenius number 30,

gap> Length(SaturatedNumericalSemigroupsWithFrobeniusNumber (30)) ;
39

takes 0 milliseconds, while computing the set of all numerical semigroups with Frobe-

nius number and then filtering those that are saturated takes 30454 milliseconds.

gap> Length(Filtered(NumericalSemigroupsWithFrobeniusNumber(30),
IsSaturatedNumericalSemigroup)) ;

39
As for 33 we get 31 milliseconds for

gap> Length(SaturatedNumericalSemigroupsWithFrobeniusNumber(33));
166

while it takes 284172 for

gap> Length(Filtered(NumericalSemigroupsWithFrobeniusNumber(33),
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IsSaturatedNumericalSemigroup)) ;time;
For 100 we get

gap> Length(SaturatedNumericalSemigroupsWithFrobeniusNumber (100)) ;time;
1605

with computational time equal to 875 milliseconds.
In the following table there are the results obtained for Frobenius number up to 100.
For each positive integer F we wrote the number of saturated numerical semigroups

(nr) of the given Frobenius number (F).

P o e e e e [ r o [l [ [ o [ ] o [ £ ]me [£]m [ £ ] ]
1 1 11 ] 16 || 21 | 52 || 31 | 175 || 41 | 378 || 51 | 628 || 61 | 1267 || 71 | 2228 || 81 | 2775 || 91 | 5039
2 1 12 7 || 22| 40 || 32| 68 || 42| 88 || 52| 266 || 62 | 490 || 72 | 197 | 82 | 1200 || 92 | 1336
3 2 13121 || 23| 84 || 33 | 166 || 43 | 439 || 53 | 828 || 63 | 1208 || 73 | 2291 || 83 | 3765 || 93 | 4574
4 2 14 | 14 || 24 | 20 || 34 | 105 || 44 | 155 || 54 | 170 || 64 | 443 || 74 | 816 || 84 | 282 94 | 1878
5 4 15125 (25| 92 || 35| 240 || 45 | 389 || 55 | 909 || 65 | 1522 || 75 | 2124 || 85 | 3789 || 95 | 5973
6 3 16 | 18 || 26 | 53 |[ 36 | 49 || 46 | 233 || 56 | 284 || 66 | 303 || 76 | 779 || 86 | 1347 || 96 | 463
7 7 17 | 39 || 27 | 103 || 37 | 280 || 47 | 597 || 57 | 865 || 67 | 1785 || 77 | 2783 || 87 | 3752 || 97 | 6307
8 5 18 | 16 || 28 | 54 || 38 | 131 |[ 48 | 79 || 58 | 440 || 68 | 528 || 78 | 491 88 | 1196 || 98 | 1944
9 9 19 | 50 || 29 | 144 || 39 | 285 || 49 | 624 || 59 | 1210 || 69 | 1612 || 79 | 3157 || 89 | 4681 99 | 5894
10| 8 20 [ 22 /30| 39 |[ 40 | 113 || 50 | 239 || 60 | 95 70 | 662 || 80 | 728 || 90 | 506 100 | 1605







CHAPTER 3

Frobenius Problem

The Frobenius problem for numerical semigroups consists in finding formulas, in
terms of the elements in a minimal system of generators of a numerical semigroup S,
for computing F(S) and g(S). As we mentioned in introduction, this problem remains
open for numerical semigroups with embedding dimension greater or equal to three.

This chapter is dedicated to the study of three classes of numerical semigroups,
denominated by Mersenne, Thabit and Repunit numerical semigroups. This study is
done in sections 1, 2 and 3 and were published in [34], [36] and [35], respectively. In
the three cases we give formulas for important invariants of the numerical semigroups,

such as: embedding dimension, Frobenius number, type and genus.

1. The Frobenius problem for Mersenne numerical semigroups

A positive integer x is a Mersenne number if x = 2" — 1 for some n € N\{0}.
We say that a numerical semigroup S is a Mersenne numerical semigroup if
there exist n € N\{0} such that § = ({2"""—1|i€N}). The main purpose of
this section is to study this class of numerical semigroups and will be denoted by
S(n) = ({2"""—1|ie€N}). The results presented in this section can be found in
[34].

1.1. The embedding dimension. Letn be a positive integer. We begin this section
by proving that S(n) is a numerical semigroup in which is verified that 2s+ 1 € S(n)
for all s € S(n)\{0}.

LEMMA 72. Let A be a nonempty set of positive integers such that M = (A). The

following conditions are equivalent:

59
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(1) 2a+1 €M forallac A;
(2) 2m+1 € M for allm € M\{0}.

PROOF. 1) implies 2). If m € M\{0}, then there exist ay,...,a; € A such that
m=aj—+---+ag. If k=1 then m = a; and therefore 2m+1=2a;+1 M. It k> 2
then 2m+1=2(a; +---+ay_1) +2ar+ 1 € M, because M is closed under addition.

2) implies 1). Trivial. O

PROPOSITION 73. If n is a positive integer, then S(n) is a numerical semigroup.
Furthermore, 25+ 1 € S(n) for all s € S(n)\{0}.

PROOEF. Clearly, S(1) = N is a numerical semigroup and for every s € N\{0} we
have that 25+ 1 € N. Suppose now that n > 2 and let us show that S(n) is a numerical
semigroup. Since S(n) is a submonoid of (N, +) it suffices to prove N\S is finite,
this is equivalent to gcd (S(n)) = 1. Since 2" — 1 and 2"*! — 1 € S(n), we obtain that
ged{2"—1,2""1—1} =ged{2"—1,2(2" - 1)+ 1} = 1.

We have that S(n) = ({2"" —1|i € N}). If i € Nthen 2(2"' — 1)+ 1 = 2"+ +1 —
1 € S(n). By Lemma([72] we conclude that 2s+ 1 € S(n) for all s € S(n)\{0}. O

Our next goal is to give the minimal systems of generators of a Mersenne numerical

semigroup.

LEMMA 74. Let n be a positive integer and let S =
({21 —1|ie€{0,1,...,n—1}}). Then2s+1 € S for all s € S\{0}.

PROOF. If n =1 then S = N and the result is true. Suppose now that n > 2. If
i€{0,1,....,n—2},then2(2"" — 1)+ 1 =2+l 1 €S Besides, 22" ' - 1)+ 1=
22" —1=(2"—1)(2"+1) € S. By applying Lemma we obtain that 2s+ 1 € S for
all s € S\{0}. OJ

Before we state the next result, note that if X and Y are non empty sets of positive

integer numbers such that Y C X and X C (Y), then we get that (X) = (Y)
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PROPOSITION 75. If n is a positive integer, then S(n) =
({2 —1]ie{0,1,....n—1}}).

PROOF. Let S = ({2"""—1]i€{0,1,...,n—1}}). In view of the preceding note,
it suffices to prove that 2"t/ — 1 € S for all i € N. We use induction on i. For i =0
the result is trivial. Assume that the statement is true for i and let us show it for i + 1.
As 2"+l 1 =2 (2" — 1) +1 then by induction hypothesis and Lemma|74| we have
that 2"+ —1 €. O

The above proposition tells us that {2”“ —1]ie{0,1,...,n— 1}} is a system of
generators of S(n). The next result is fundamental to show that this set is the minimal

system of generators of S(n).

LEMMA 76. Let n be an integer greater than or equal to two. Then 2*"~' —1 ¢
({2 —1]ie{0,1,...,n—=2}}).

PROOF. Assume to the contrary that there exist ay, ..., a,—» € N such that 22"~1 —
1=ag(2"— 1)+ +a, (2" 2—1). Then 22" ! — 1 = qp2" + - +a, 222" 2
(ap+ -+ +ay—2) and consequently (ag+ --- +a,—2) = 1(mod 2"). Hence (ag+ -+
an—2) = 1+2"k for some k € N. If k =0 then ap + - - - +a,—» = 1 and thus there exist
i€{0,1,...n—2} such thata; = 1 and aj =0 forall j € {0,1,...,n—2}\{i}. So we
deduce that 22"~! —1 =2"*1 [ for some i € {0,1,...n — 2}, which is absurd. If k # 0
then ag + - - 4+ a,_o > 142", This implies that ag(2" — 1) +--- +a, 2(2** 2 —1) >
(ag+-++an2)(2"—1) > (1+2%) (2" —1) =22" —1 > 22"~ _ 1, which is absurd.

U

Now we are ready to show the result announced concerning the minimal system of

generators of S(n) .

THEOREM 77. Let n be a positive integer and let S(n) be the Mer-
senne numerical semigroup associated to n, then e(S(n)) = n.  Furthermore

{21 —1]i€{0,1,...,n—1}} is the minimal system of generators of S(n).
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PROOF. For n = 1, the result follows trivially. Thus, suppose that n > 2. By using
Propositionwe have that {2"" —1|i€ {0,1,...,n—1}} is a system of generators
of S(n). If it is not minimal then there exists 4 € {1,...,n— 1} such that 2"*" — 1 ¢
({2 =1]ie{0,1,....,0h—1}}). Let S= ({2"""—1]i€{0,1,...,h—1}}). Ifi €
{0,1,...,h—2} then 2 (2" — 1) + 1 = 2""*1 —1 € S. Moreover 2 (2"™"~1—1) +
1 =2"t" —1 ¢ S. By applying Lemma we obtain that 25+ 1 € S for all s € S\{0}.
Now we use induction on i to prove that 2"+ — 1 € § for all i € N. For i = 0 the
result is true. Assume that the result holds for i and and let us prove for i +1. As
2nHiFl 1 =2(2""—1) + 1 by applying the induction hypothesis and 25+ 1 € §
for all s € S\{0}, we obtain that 2"**! — 1 € §. Consequently 2>"~! —1 € S, which
contradicts Lemma O

Observe that as a consequence of the previous results we obtain that for
every positive integer n there exists a unique Mersenne numerical semigroup S(n)
with embedding dimension n. In fact, S(4) = ({2*—1,25-1,26-1,27—1}) =
({15,31,63,127}) is the unique Mersenne numerical semigroup with embedding di-

mension 4.

1.2. The Apéry set. Let S be a numerical semigroup and let x be one of its nonzero
elements. As we have seen before, we define the Apéry set of x in S as Ap(S,x) =
{seS|s—x¢S}.

Our next goal is to describe the set Ap(S(n),2" — 1). From now on we will denote
by s; the elements 2" — 1 for each i € {0,1,...,n— 1}. So with this notation we have
that {so,51,...,5,—1} is the minimal system of generators of S(n). It is easy to deduce

the following equalities.

LEMMA 78. Let n be an integer greater than or equal to two. Then:

(1) if0<i<j<n—1thens;+2s;=2s; 1+5js1;
(2) if0<i<n—1thens;+2s,_1 =2si_1+ (2" + 1) s0.
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We say that a sequence (ay,...,ax) is a residual k-tuple if satisfies the following
conditions:
(1) forevery i € {1,...,k} we have that a; € {0,1,2};
(2) ifie{2,...,k} anda; =2 thena; =---=a;—1 =0.

LEMMA 79. Let n be an integer greater than or equal to two. If x € Ap (S(n),so)

then there exist a residual (n — 1)-tuple (ay,...,a,—1) such that x = ays; +--- +

an—18p—1-

PROOF. We proceed by induction on x. The result is clear for x = 0. Sup-
pose that x > 0 and let j = min{i € {0,...,n—1} |x—s; € S(n)}. Observe that
J # 0 because x € Ap(S(n),sp). By induction hypothesis there exist a residual
(n —1)-tuple (ai,...,a,—1) such that x —s; = ajs; + -+ ap—15,—1. Hence x =
aisi+---+ (aj + l)sj + -+ 4ap—15,—1. To conclude the proof we only need to show
that (ai,...,a;+1,...,a,-1) is aresidual (n—1)-tuple. If a;+ 1 = 3 then, by applying
Lemma [78] we get that either (a;+ 1)s; = 3s; = 2s; 1 + 5,41 in the case j <n—1 or
(aj+1)s; =3s;=2s;—1+ (2" + 1)so in the case j = n— 1. In both cases this leads to
x—sj—1 € S(n), contradicting the minimality of j. If there exist k > j such that a; =2
then, by using again Lemma we obtain that either s; + 25, = 251 + S¢41 in the
case k <n—1ors;+2sy =2s;_1+(2"+1)so in the case k = n— 1. In both cases we

get once again that x —s;_; € S(n) contradicting the minimality of j. Now by the mini-

mality of j we have that a; = --- =a;_| =0 and consequently (a1 yoesaj+ 1. .a,,_l)
is a residual (n — 1)-tuple. O
Note that if / is a positive integer, then the sequence of numbers 2,271 ... 2n+h

is a geometric progression with common ratio 2 and so the sum of its terms 2" + 2"+ +

.. 42"t g equal to 27T 27,

THEOREM 80. Let n be an integer greater than or equal to two and let S(n) be
the Mersenne numerical semigroup minimally generated by {so,s1,...,Sn—1}. Then

Ap(S(n),s0) = {ais1+---+an—15.—1| (ai,...,a,—1) is aresidual (n— 1) —tuple}.
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PROOF. Let us denote by R the set of all residual (n — 1)-tuples. It is clear that
R={0,1Y""'U{(ar,...,an_1) €R |ay =2} U---U{(ai,...,an—1) ER | an_ =2}.
Observe that R is the disjoint union of these sets, consequently the cardinality of R is
equal to 21 4272 ... 420 =" ] =,

By Lemma 79] we know that Ap(S(n),s0) C
{ais1+--+an—18,—1| (ai1,...,an—1) €R}. Besides, from previous paragraph,
we get that the cardinality of the set {a;s;+---+an—15,—1 | (a1,-..,an—1) € R} is
less than or equal to so. In view of Lemma [5|the cardinality of Ap (S(n),so) is exactly

s0, and consequently Ap (S(n),s0) = {a1s1 +---+an—15n—1 | (a1,...,an—1) €R}. O

As an immediate consequence of the proof of previous theorem we have the follo-

wing result.

COROLLARY 81. Let n be an integer greater than or equal to two and let
(ai,...,an—1) and (by,...,by_1) be two distinct residual (n— 1)-tuples. Then we have
that aysy+ -+ an—1Sp—1 Zb1s1+- - +bp—15p—1

We illustrate the preceding theorem with an example.

EXAMPLE 82. Let us compute Ap(S(4),s0). We have that so = 15 and S(4) =
({15,31,63,127}) . The residual 3-tuples are (0,0,0), (0,1,0), (0,0,1), (0,1,1),
(1,0,0), (1,1,0), (1,0,1), (1,1,1), (2,0,0), (2,1,0), (2,0,1), (2,1,1), (0,2,0),
(0,2,1) and (0,0,2). Since s; = 31 s, = 63 and s3 = 127, by Theorem [80} we obtain
that Ap (S(4),s0) = {0,63,127,190,31,94,158,221,62, 125,189,252, 126,253,254},

Next we give a procedure to see if a positive integer belongs or not to S(4).

Recall that if S is a numerical semigroup, x € S\{0} then Ap(S,x) =
{w(0) =0,w(1),--- ,w(x—1)} where w(i) is the smallest element of S that is congru-
ent with i modulo x. Then using Lemma 5| we can conclude that an integer z belongs to
S if and only if z > w(z mod x) (where z mod x denotes the remainder of the division
of z by x).

As we see in previous example
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Ap(S(4),s0) = {w(0) =0,w(1) =31,w(2) = 62,w(3) = 63,w(4) =94,
w(5) = 125,w(6) = 126,w(7) = 127,w(8) = 158,w(9) = 189, w(10) = 190,
w(11) =221, w(12) =252,w(13) = 253,w(14) = 254}.
From this and Remark [7]it easily follows that 172 € S(4) and 222 ¢ S(4), because
172 > w(172 mod 15) = w(7) = 127 and 222 < w(222 mod 15) = w(12) = 252.

1.3. The Frobenius problem. The next aim is to give a formula for the greatest
integer that does not belong to S(n) (i.e. Frobenius number). It is easy to prove our

next result.

LEMMA 83. Let n be an integer greater than or equal to two and let R be the set

of all residual (n— 1)-tuples. Then the maximal elements (with respect to the product

order)in R are (2,1,...,1), (0,2,1,...,1) and (0,0,...,2).

In the following result we will see that 25y + sy + -+ 5,-1,250 + 53+ -+ +
Sn—1,---,28,—1 1S a sequence of integers wherein each term is obtained from the previ-

ous by adding a unit.

LEMMA 84. Let n be an integer greater than or equal to three and let i €
{1,. .. ,n—2}. Then2si+siy1+--+Sp—1+ 1 =28i41+Sit2- -+ Sp—1-

PROOF. This is equivalent to prove that 2s; + 1 = s;;-1. But this is clear, because
2(2n+1_1)+1 :2n+i+1_1. 0

Now we can give a formula for the Frobenius number of a Mersenne numerical

semigroup.

THEOREM 85. Let n be an integer greater than or equal to two and let S(n) be the

Mersenne numerical semigroup associated to n. Then F(S(n)) = 22" —2" — 1.

PROOF. By applying Theorem [80] and Lemmas [83] and [84, we deduce that
max (Ap (S(n),s0)) = 2s,—1. Using now Proposition we get that F(S(n)) =
251 —s9o=2(2"""1-1))—(2"—1)=2""—-2"— 1. O
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Our next goal is to determine the set of all pseudo-Frobenius number and the type

of S(n).

THEOREM 86. Let n be an integer greater than or equal to two and let S(n) be the

Mersenne numerical semigroup associated to n. Then t(S(n)) = n— 1. Furthermore

PF(S(n)) = {E(S(n)).F(S(n)) — ... ,E(S(n)) — (n—2)}.

PROOF. From Theorem and Lemma we deduce that max <, Ap (S(n),s0) C
{251+ s2+ 4 8p-1,280+ 83+ +Su_1,---,251} By using Lemma
we have that the elements in this set are consecutive positive integers and thus
the difference between any two of its elements is smallest than or equal to
n—2. Since 2" — 1 is the smaller positive integer in S(n) and 2" — 1 > n—2
then we conclude that the difference between two distinct elements of

{2s1+s2+ - +sp—1,250+853+ -+ 8-1,...,25,—1} is not in S(n). Hence

max<, Ap(S(n),s0) = {2s1+s2+tdsu1,250 4853+ Sty 28501
By the proof of Theorem we have that F(S(n)) = 2s,-1 —
50- From Lemma we get that Maximales<;, Ap(S(n),s0) =
{F(S(n))+s0,F(S(n))+so—1,...,F(S(n)) +so—(n—2)}. Finally, by Lemma
we obtain PF (S(n)) = {F(S(n)),F(S(n))—1,...,F(S(n)) — (n—2)}. O

Observe that the previous theorem is not true for n = 1, since S(1) =N, PF(5(1)) =
{—1} and consequently t(S(1)) = 1.
The next result gives the formula for the genus of the Mersenne numerical semi-

group S(n).

THEOREM 87. Let n be a positive integer and let S(n) be the Mersenne numerical

semigroup associated to n. Then g(S(n)) =2""1 (2" +n—3).

PROOF. For n =1 the result is trivial. Suppose that n > 2 and let R be the set of
all residual (n — 1)-tuples. By applying Proposition 10, Theorem [80]and Corollary
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we have that

g<s<n>>:—< z a1s1+---+an1sn1)—soz_l-
(

It is clear that

Z aisy+--t+ap—185p—-1 = Z s1+
(ayye.,an—1)€ER (@t an—1)€ER, aj=1
+ Z 2814+ Z Sp—1+ Z 28p-1.
(017"‘7al’l*1)€R7 a1:2 (017"'7an71)€R7 an71:1 (a17"‘7an71)€R7 an71:2

Leti € {1,---,n— 1}. The reader can prove the following:

- the cardinality of {(ay,...,a,_1) €R | a; =2} is 2"~ 174,
- the cardinality of {(ay,...,a,_1) €ER|a;=1and 2 & {ay,...,a;_1}}is 2" 2,
- if 1 < j < i then the cardinality of {(ai,...,ay—1) €R |a;=1and a; =2} is

2n—j—2

Whence we deduce that

n—1
Y  asitootagsii=Y (2742 442 ) g4
(al,...,an_l)ER i=1
(N ._”_1 n—1_ on—1-i\ .. (L o
+V2 25i= Y. (2 2 )sit+ Y, 2" s =
i=1 i=1 i=1
_n—l n—1__~Hn—1-i n—i '_n—l n—1 n—1—-i\ ., __
=Y (2 2 ) g =) (27 2 s =

i=1 i

1
n—1 ) ) n—1 ) )

— Z (2n—1 +2n—1—1) (2n+l_ 1) — Z (22n+z—1 +22n—1 _2n—1 _2n—l—z) —
i=1

i=1

— 23}171 _22n + (n_ 1)22}171 _ (I’l— l)znfl . (2n71 i 1) —
— 23}171 _22n+ (n_ 1)221’171 _nznfl + 1 —

=2"-1) (2" ' =24 n2" 1 - 1).
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Consequently, we get that

2" -2

g(S(n))y =221 —2n g2t —1— 5

— 22n71 _ny (n_ l)znfl —

=21 (2"t n-3).
O

We conclude the study of the Mersenne numerical semigroups by giving an exam-

ple that illustrates the previous results.

EXAMPLE 88. Let us compute the Frobenius number, the type and genus of the
Mersenne numerical semigroup S(4). From Theorem [85| we obtain that F(S(4))
28 — 2% — 1 =239. By using Theorem 86/ we get that t(S(4)) = 3 and PF(S(4))
{239,238,237}. Finally, by applying now Theorem (87| we have that g(S(4))
23 (2*+4-3) = 136.

2. The Frobenius problem for Thabit numerical semigroups

A positive integer x is a Thabit number if x = 3.2" — 1 for some n € N. We say
that a numerical semigroup S is a Thabit numerical semigroup if there exist n € N
such that § = ({3.2"""—1]i e N}). The main purpose of this section is to study
this class of numerical semigroups. We will denote by 7' (rn) the numerical semigroup

< {3.2”“ —1]ieN }> The results presented in this section can be found in [36].

2.1. The embedding dimension. If n is a nonnegative integer, then T (n)
is a submonoid of (N,+).  Moreover {3.2"—1,32""'—1} C T(n) and
ged{3.2"—1,3.2""1 —1} =ged{3.2"—1,2(3.2"— 1) + 1} = 1. Hence gcd (T'(n)) =
1 and so T'(n) is a numerical semigroup.

The next result is fundamental to the development of this work.

PROPOSITION 89. If n is a nonnegative integer, then 2t +1 € T(n) for all t €

T(n)\{0}.
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PROOF. Letn € Nand let T(n) = ({3.2"*' — 1 | i € N}). Clearly 2(3.2""" — 1) +

1 =321 1 € T(n). From Lemma [72] we obtain that 2t + 1 € T(n) for all 1 €
T (n)\{0}. O]
Our aim is to prove Theorem which ensures {3.2""" —1]i€{0,1,...,n+1}}

is the minimal system of generators of 7T'(n). To this purpose, we need some prelimi-

nary results.

LEMMA 90. Let n be a nonnegative integer and let S =
({327 —1]i€{0,1,....,n+1}}). Then 25+ 1 € S for all s € S\{0}.

PROOF. Ifi € {0,1,...,n},then2(3.2" — 1)+ 1=3.2"+*1 _| ¢ §. Furthermore,
2(327+1 1) 41 =32242 1= (32" —1)>+ (3.2 — 1) + (322 — 1) € 5. By

using now the Lemma([72] we obtain the desired result. O

The next result gives a system of generators of 7'(n).

LEMMA 91. If n is a nonnegative integer, then T(n) =
({32 —11ie{0,1,....n+1}}).

PROOF. Let S = ({3.2"""—1]i€ {0,1,...,n+1}}). Itis clear that S C T (n). To
prove the other inclusion, we need to show that 3.2" _ 1 e S for all i € N. We use
induction on i. For i = 0 the result is trivial. Assume that the statement holds for i
and let us show it for i + 1. Since 3.2"+*1 —1 =2(3.2"* — 1) +1 then, by induction
hypothesis and Lemmal|90| we get that 3.2"++! —1 € . O

The next result show that 3.2"+1 — [ belongs to the minimal system of generators

of T(n).

LEMMA 92. If n is a nonnegative integer, then 32771 — 1 ¢
({327 —1]ie{0,1,....,n}}).

PROOF. Letus suppose 3.2""1 —1€ ({3.2"" —1|i€{0,1,...,n}}). Then there
exists a, ...,a, € N such that 3.2%""!' —1 =4y (3.2"— 1)+ -+, (32*"—1) =
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3(ap2"+ -+ +ay2*") — (ag+ - +ay) and consequently ag+ - -+ a, = 1(mod 3.2").
Hence ag+ - +a, = 1 +k3.2" for some k € N. Besides, it is clear that k #~ 0
and so ag+ -+ +a, > 1+3.2". Therefore ap(3.2"—1) + -+ +a,(3.2"—1) >
(ap+--+ay) (32" —1) > (1+32n) (3.2n—1) =9.22" — 1 > 3.22"*1 _ 1, which is
absurd. 0J

We are already in conditions to prove the result mentioned above.

THEOREM 93. Let n be a nonnegative integer and let T(n) be the Tha-
bit numerical semigroup associated to n, then e(T(n)) = n+ 2. Furthermore

{3.2”“ —1]ie{0,1,...,n+ 1}} is the minimal system of generators of T (n).

PROOF. From Lemma (91, we know that {3.2"7—1]i€{0,1,....,n+1}}
is a system of generators of 7'(n). If it is not a minimal system of ge-
nerators of T(n), then there exists & € {1,...,n+1} such that 3.2""" — 1 ¢
({327 —1]ie{0,1,....h—1}}).

Assume that S = ({3.2"7 —1|ie{0,1,....,h—1}}). If i € {0,...,h—2} then
2(3.2"H—1)+1=3.2""*"1_1 € S. Moreover, in view of the previous paragraph
2(3.27h=1—1)+1=32"""—1 € S. Hence by applying Lemma [72| we obtain that
2541 € Sforall s € S\{0}.

Now we use induction on i to prove that 3.2 _1eSforallieN. Fori=0,
the result follows trivially. Assume that the result is true for i and let us prove it
for i+ 1. As 3.2"H+1 1 =2(3.2"" —1) 41, from the induction hypothesis and
the end of the last paragraph, we get that 3.2" T+ — 1 € S. In particular we obtain
3.2 —1e8C ({327 —1]ie{0,1,...,n}}), which contradicts Lemma(92, [

Gathering all this information we obtain that for each integer k greater than or
equal to 2 there exists an unique Thabit numerical semigroup 7 (n) with embed-
ding dimension k. For example 7(2) = ({3.22—1,32%—-1,3.24—1,32°—1}) =
({11,23,47,95}) is the unique Thabit numerical semigroup with embedding dimen-

sion 4.
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2.2. The Apéry set. Our first purpose is to get an explicit description of the
elements in the Ap(7(n),3.2" —1). From now on we will denote by s; the ele-
ments 3.2 — 1 for each i € {0,1,...,n+1}. Thus with this notation we have that

{50,581, .,8u+1} is the minimal system of generators of T'(n).

LEMMA 94. Let n be a nonnegative integer. Then:
(1) if0<i<j<n+1thens;+2s;j=2s; 1+5j11;
(2) if 0 <i<n+1thensi+2s,+1 =281 +53+51+ S

PROOF.
(1) If 0 < i < j <n+1, then we have that s;+2s; =3.2"" — 142 (3.2""/ — 1) =
2(3.2mH 1) 432 1 =25y 45541
(2) If 0 <i<n+1, then we get that 5; + 25,11 = 3.2"7 —1+2 (322" —1) =
320 243222 1 =2 (322 1) 4 (32" — 12+ (327 — 1) +
(3.22"—1) = 2s5i_1 + 55+ 51 + Sn.
O

Denote by A(n) the set of all elements (ay,...,a,+1) € {0,1,2}"*! fulfilling the

following condition: if 1 <i< j<n+1anda; =2 thenqg; =0.

LEMMA 95. Let n € N and let T(n) be a Thabit numerical semi-
group minimally generated by {s0,S1,...,Sn+1}- Then Ap(T(n),sp) C

{arsi+- +antisne1 | (a1, an41) €A(n)}.

PROOF. Letx € Ap(T'(n),so). We use induction on x to prove that x = ays; +---+
An+1Sp+1 With (ag,...,a,+1) € A(n). For x =0 then x = 0s| +- - - +0s,,+1 and the result
is clear. Assume thatx >0 and j=min{i € {0,...,n+1} |x—s; € T(n)}. Since x €
Ap(T(n),so) observe that j # 0 and x —s; € Ap(T'(n),s0). By induction hypothesis,
there exists (ai,...,an+1) € A(n) such that x —s; = ais1 +--- + ap+15,+1. Hence
x=ais1+- -+ (aj + l)sj + -4+ au+15,+1. To conclude the proof, it suffices to check

that (a1,...,aj+1,...,an+1) € A(n). In order to prove (al,...,aj+1,...,an+1) €
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{0,1,2}"*! it is enough to see that aj+1 # 3. Suppose that a;+ 1 = 3. By using

Lemma [94] we distinguish two cases depending on the value of j:

Jif j<n+1then (aj+1)s; =3s; =2sj_1+5j+1;
Jif j=n+1then (aj+1)s; =3s; =2s;_ +s(2)+s1—|—sn.

In both cases, we deduce that x —s;_; € T(n) contradicting the minimality of j.
Whence from the minimality of j we have that a¢; = 0 for 1 <i < j. Let us see that
does not exists k > j such that a; = 2. Assume to the contrary that gy = 2, by Lemma

we have that:

Cifk<n+1thens;+2s =251 +Sk415
. if k=n+1thens; + 2s; :2sj,1+s(2)+s1—l—sn.

In both cases, we get that x —s;_; € T(n) contradicting again the minimality of j.

Therefore (ai,...,a;j+1,...,a,41) € A(n). O

We will see in the next example that the equality in Lemma [95] does not hold in

general.

EXAMPLE 96. We have that T(1) = ({5,11,23}) and Ap(7(1),5) =
{0,11,22,23,34}.

It is clear that A(1) = {(0,0),(0,1),(0,2),(1,0),(1,1),(2,0),(2,1)} and thus
(a1l + @23 | (a1,a2) € A(1)} = {0,23,46, 11,34,22,45).

Now our purpose is to find a subset R(n) of A(n) such that the equality holds in
Lemma [95]if we substitute A(n) by R(n).

LEMMA 97. Under the standing notation and n € N. If x € T (n) and x # 0 mod sg
thenx—1¢€ T(n).

PROOF. If x € T(n) then there exists there exist ao,...,a,+1 € N such that

X = apso+ -+ apr15,+1. On the other hand, if x # 0 mod sy then there exists
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i €{l,...,n+ 1} such that a; # 0. Hence

x—1 :CIOSO—|—"'—|—(CZ,'— 1)Si+"'+an+1sn+1 +3.2n+i_2:
=apso+-+ (@ — 1)si+ - +anp1spe1 +2 (32771 —1) =

=apso+ -+ (ai—1+2)si-1+ (@i — 1)si+ -+ ant15p+1 € T(n).
O

The next result shows that if Ap (T (n),so) = {w(0),w(1),...,w(sop—1)} then
w(0) <w(l) <--- <w(so—1).

LEMMA 98. Let n € N and let w(i) be the least element of T (n) congruent with i

modulo sg for all i € {0,...,50 —1}. Then w(0) < w(l) <--- <w(sp—1).

PROOF. Let us show that w(i) < w(i+ 1) for all i € {0,...,s0—2}. Since w(i+
1) € T(n) and w(i+ 1) # 0 mod so, we have that w(i+1) — 1 € T(n) by Lemma [97]
Asw(i+1)—1=imod sy, we can deduce that w(i) <w(i+1)—1. O

As a consequence of previous lemma we get that w(sg — 1) = max (Ap (T (n),so))

LEMMA 99. Under the standing notation. If n € N then max (Ap (T (n),so)) <

Sp+ Sn41-

PROOF. Since s, + 5,11 = 322" — 143221 1 =2"1(32"— 1)+ (2"—1) +
2 (32" — 1)+ (2 —1) = (2" + 2" ) sp+ 2" — 12" — 1 = (272" ) 5 +
so— 1, we can conclude that s, + s, 1 = 5o — 1 mod sg. Therefore w(so—1) < s, +Sp+1

and by Lemma 08 we obtain the desired result. ]

As a consequence of Lemma[99] we obtain the following result.

LEMMA 100. Under the standing notation. If n € N then

(1) 2sp41 & Ap (T (n),s0);
(2) sp+Su+1+si € Ap(T(n),s0) foralli € {0,...,n+1}.
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From now on we will suppose that 7 is a integer greater than or equal to 1. We will
denote by R(n) the set of the sequences (aj,...,a,+1) € A(n) satisfying the following

conditions:
(1) ap+1 € {0, 1}
(2) ifa, =2 thena,+1 =0;
(3)ifl <i<nanda, =a,+1 =1thenag; =0.
Our goal now is to prove that Ap(T(n),s0) =

{a1s1 + -+ ap1Sn+1 | (al,...,an+1) ER(H)}.

REMARK 101. Observe that if n > 2 then R(n) is the set of the sequences

(ai,...,an+1) € A(n) satisfying the following conditions:

(1 (a17"'7an+1> ?é (O,...,O,Z);
2) (a17'-'7an+1> 7’é (O,,Z,]) :

3) ifa,=ayy1 =1thena; =---=a,—1 =0.

LEMMA 102. Under the standing notation. If n is a positive integer, then #R(n) =
3.2" — 1 (where #X stands for cardinality of X).

PROOF. We distinguish two cases.

1) If (ai,...,an+1) € R(n) and 2 ¢ {ay,...,an+1}, then g; € {0,1} for all
i € {l,...,n—1} and furthermore either a, = a,+; = 0 or a, = 0 and
ant1 =lora,=1anday,+1 =0or (ag,...,ay,+1) = (0,...,0,1,1). Whence
#{(ar,...,an1) ER(n) |2 ¢ {ay,...,an1}} =32""141.

2) If (ai,...,an+1) € R(n) and 2 € {ay,...,a,11}, then there exists an uni-
que i € {1,...,n} such that a; = 2. Besides, if i = n then (ay,...,a,41) =
(0,...0,2,0). On the other hand, ifi € {1,...,n—1} thena; =---=a;_1 =0,
aj+1,---,an—1 € {0,1} and either a, = a,+1 =0 ora, =0 and a,4; =1 or
a, =1and a,+1 =0. Hence #{(ay,...,an+1) €R(n) |2 € {ay,...,ant1}} =
3y lon-iclg g,
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Consequently #R(n) =3.2" '+ 143y 121 1 =320 14 14327 1~ 1) + 1 =
621 —1=32"—1. O

Now we can state the result announced above.

THEOREM 103. Let n € N\{0} and let T(n) be a Thabit numerical
semigroup minimally generated by {s0,81,...,5n+1} Then Ap(T(n),so) =

{arsi+--+anpisni1 | (ar1,...,a041) €R(n)}.

PROOF. As a consequence of Lemmas [05 and [I00] we obtain that
Ap(T(n),s0) C {ais1+- -+ ant15q+1 | (a1,-..,an+1) ER(n)}. By using Lem-
mas [ and we get that #{ajs;+-- +api1sne1 | (a1,...,an41) ER(1)} <
#R(n) = 32" — 1 = so = #Ap(T(n),s). Hence Ap(T(n),so) =

{aisi+--+antispy1 | (a1,...,an41) € R(n)}. O
As a consequence of the proof of previous theorem we have the following result.

COROLLARY 104. Under the standing hypothesis and notation. If
(ala"'aan—i-l)?(bla" '7bl’l+1) € R(l’l) and (ala"'aan—i-l) % (blv' '-7bn+1)’ then we

have that ays\ + - + any1Sn41 7 b15S1+ -+ + by 1Sp41.

Observe, by Remark [101] that, since (0,0, ...,1,1) belongs to R(n) if n € N\{0}
then s, + 5,41 € Ap(T(n),sp). Using Lemma [99| we have that max(Ap (7' (n),s0)) =
Sn+Sn+1. Now by Proposition[I0|we obtain the following result, which gives a formula

for the Frobenius number.

COROLLARY 105. Under the standing notation. If n € N\{0} then F(T (n)) =
Sp+ Spt1— S0 = 9.2 _32mn 1,

We illustrate some of these results with an example.

EXAMPLE 106.

. Let T(1) = ({5,11,23}). From Corollary [105] we obtain that F(7'(1)) =
11423 —5=29. We have that R(1) = {(0,0), (0,1), (1,0),(1,1),(2,0)} and
thus, by Theorem|103] Ap (7'(1),5) = {0,23,11,34,22}.
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. Let T(2) = ({11,23,47,95}). By using again Corollary [I05, we get that
F(T(2)) =95+47— 11 = 131. It is easy to check that

R(2) =1{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(0,2,0),(1,0,0),(1,0,1),

(1,1,0),(2,0,0),(2,0,1),(2,1,0) }.
Hence Ap (T(2),11) ={0,95,47,142,94,23,118,70,46,141,93}.

Observe  that for T(2) we  have that Ap(7T(2),11) =
{w(0) =0,w(1) =23, w(2) =46,w(3) =47,w(4) =70,w(5) =93,
w(6) =94,w(7) =95,w(8) = 118,w(9) = 141,w(10) = 142}.

Thus using Remark [7, for example 129 € T(2) and 119 ¢ T(2), since 129 >
w(129 mod 11) = w(8) = 118 and 119 < w(119 mod 11) = w(9) = 141.

2.3. Pseudo-Frobenius numbers and type. Note that if w,w’ € Ap(S,x), then
w —w € S if and only if w —w € Ap(S,x). Therefore maximals<, (Ap(S,x)) =
{we Ap(S,x) |w —w e Ap(S,x)\{0} forall w’ € Ap(S,x)}.  Consequently, we
have that maximals<, , (Ap(7(1),5)) = {22,34} (see Example . From Lemma
we get that PF(7'(1)) = {17,29} and so t(T(1)) = 2.

Let n be an integer greater than or equal to 2. It is clear that maximal elements in

R(n) (with respect to the product order) are

(2,1,...,1,0),(0,2,1,...,1,0),...,(0,...,0,2,1,0),(0,...,0,2,0)

(2,1,...,1,0,1),(0,2,1,...,1,0,1),...,(0,...,0,2,0,1),(0,...,0,1,1).

Moreover, since 2s; 4+ 1 = s;41 forall i € {1,...,n}, we have that

{a1s1+'-~+an+1sn+1 | (al,...,anﬂ) S {(2,1,...,1,0),(0,2,1,...,1,0),

..,(0,...,0,2,1,0),(0,...,0,2,0)}} = {25, — (n—1),..., 25, — 1,2s,},
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and

{ais1+ -+ ant18n+1 | (a1,...,an11) €{(2,1,...,1,0,1),(0,2,1,...,1,0,1),

.3(0,...,0,2,0,1),(0,...,0,1, D)} } ={sp+spr1—(n—1),....8n+Snt1— 1,80+ Snt1}-

As a consequence of Theorem 103} we obtain the following.

LEMMA 107. Under the standing notation. If n is an inte-
ger greater than or equal to two, then maximals<,  (Ap(T(n),s0)) =

maximals<, {280,280, —1,....2sp — (n—1),8, + Spt-1,50 + Snt1 — 1, ..

coosSnt S — (n—=1)}
We are now able to give the next result that is central in this study.

THEOREM 108. Let n be an integer greater than or equal to two and let T (n) be
the Thabit numerical semigroup associated to n. Then maximals<,, (Ap (T (n),s0)) =

{an_ (n_ 1),Sn+Sn+1,Sn +Spr1— Lo Snt S — (n_ 1)}

PROOF. Leti € {0,...,n—2}. Then s, +sp+1 — (i+ 1) — (25, — i) = sSp+ Spt1 —
(25, + 1) = s, + Spt1 — Spr1 = s, and consequently have that (2s, — i) <T(n) Sn+
sp+1 — (i +1). From Lemma we obtain that maximals<, ~(Ap(T'(n),s0)) =
maximals<, {2sn—(n—1),8n+Sut1,n+Sns1—1,.. ., Sp+spr1 — (n—1)}.

As 2sp — (n—1) < sy + sy41 — (n— 1), the elements s, + 5,41 — (n —
1),....8 + Su+1 — L8, + sy,+1 are n consecutive positive integers and n <
3.2" — 1, then we deduce that {s,+s,r1—(n—1),....80+8S+1— Lsy+sns1} C
maximals<,  (Ap (7 (n),s0)).

Finally, we show that s, + s, — i — (2s,—(n—1)) ¢ T(n) for all i €
{0,...,n—1}, or equivalently, s, +n—i ¢ T(n) for all i € {0,...,n—1}. Assume
that there exists i € {0,...,n— 1} such that s, +n—i € T(n). Since s, +n—i=
322 1 4n—i=2"32"—1)+2"—l4+n—iand 1 <2"—1+n—i<32"—1,
by Lemma we conclude that s, + 1 € T(n). Then there exists ag,...,a,—1 € N

such that s, + 1 = agso+ -+ + an—15,—1. As s, +1 % 0 mod s¢, then there exists
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j€{l,...,n—1} such that a; # 0. Therefore s, = apso+---+ (a; — 1)sj+---+
an—1Sn—1+3.2" =2 =apso+ -+ (a;j—1)s;+ -+ an_15p—1 +2 (3.2’””.’1 — 1) =
apso+---+(aj—1)sj+---+ap—18,—1 +2s;—1. Hence s, € ({s0,...,5,—1}) which
contradicts Theorem O

By applying now Lemma|[IT]and Corollary [I05] we obtain the following result.

COROLLARY 109. Let n be a positive integer and let T (n) be the Thabit numerical

semigroup associated to n. Then
PF(T(n)) ={F(T(n))—i|i€{0,....n—1}}U{2sp—so—(n—1)}
and t(T(n)) =n+ 1.
Next we give an example.

EXAMPLE 110.

Let T(2) = ({11,23,47,95}). From Corollary [103] we know that F(T'(2)) =95+
47 — 11 = 131. Moreover, we have that 2s, —so — (n—1) =2.47—11—1 = 82. By
applying Corollary we get that PF(7'(2)) = {131,130, 82}.

2.4. The genus. Our next purpose is to prove Theorem [113] which gives the a

formula for the genus of T'(n). To this purpose, we need some preliminary results.

LEMMA 111. Let n be an integer greater than or equal to 2 and let i €
{1,...,n+1}. Then

320 f e {l,...,n—1},
#{(a1,...,ant1) ER(n) |a;=2}=1¢ 1 if i=n,
0 if i=n—+1.

PROOF. If i € {1,...,n—1}, (a1,...,an+1) € R(n) and a; = 2, then we have
that aj =a, = =a;—1 =0, aj+1,...,an+1 € {0,1} and furthermore either a, = 0

or a,.1 = 0. Hence #{(ai,...,an+1) €R(n)|a; =2} = 3.2"7"1. On the other
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hand, it is also clear that {(ai,...,an+1) € R(n) | a, =2} = {(0,...,0,2,0)} and
{(ala---aan+1)€R(n)|an+1:2}:®' 0

LEMMA 112. Let n be an integer greater than or equal to 2 and let i €
{1,...,n+1}. Then

32t —2m=imh) i ie{l,...,n—1},

#{(a1,...,an11) €R(n) |a; =1} = o
on if i€{nn+1}.

PROOF.

1) Leti € {1,...,n—1}. We distinguish two cases.

LIt 2 & A{ay,...,ai1}, then  ay,...,ai_1,ai11,...,ap11 €
{0,1} and either a, = 0 or a,y; = O. Therefore
#{(ar,...,an11) €ER(n) |aj=1and 2 ¢ {ay,...,a;_1}} =3.2"2

1.2) If2 € {ay,...,ai—1}, thenaj =2 for some j € {1,...,i—1}. Thus a; =
c-=aj_1=0,aj41,...,an41 €{0,1}, a; =1 and either a, =0 or a4 =
0. Hence #{(aj,...,ant1) €R(n) |aj=1andaj =2} =3.2"/ 72,

Consequently #{(a1,...,an11) € R(n) [ a; =1} =322 4 ¥/} 320772 =

3.2 43203 4 4320 =3 (2l il

2) Let i = n. We distinguish two cases.

20 If 2 & {ay,...,ap—1}, then ay,...,ay—1,ap+1 € {0,1}. Be-
sides if a,y; = 1, then a = -+ = a1 = 0. Hence
#{(ar,...,an11) €ER(n) |ay=1and 2 ¢ {ay,...,a,_1}} =2""141.

22) If 2 € {ai,...,an—1}, then a; = 2 for some j € {1,...,n—1}. In this
wayay =---=aj—1 =0,aj41,...,ap+1 € {0,1} and a,+1 = 0. Whence
#{(a1,...,an+1) €R(n) |ay=1anda; =2} =2"/"1.

Accordingly, #{(ay,...,a,11) €ER(n) |a, =1} =2""1+1 +Z?;} ==l =

2l on=2 g 42041 =0

3) Leti=n+ 1. We distinguish two cases.
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3. If 2 ¢ {ai,...,an}, then ay,...,a, € {0,1}. Furthermore,
if a, =1 we have that ¢ = --- = a,-1 = O. Therefore,
#{(ai,...,an11) ER(N) |aps1 =1and 2 ¢ {ay,...,a,}} =2""1+1.

3.2) Now assume that 2 € {ay,...,a,}. We deduce that there exists

j€{l,...,n—1} such that ¢; = 2 and thus a; = --- = aj_| =
0, ajy1,...,ap—1 € {0,1} and a, = O (observe that in this case
does not exist elements such that a, = 2 and a,+; = 1). Hence
#{(a1,...,ans1) €R(n) | apy1 = landa; =2} =27/,
Consequently — #{(aj,...,ans1) ER() |ap =1} = 2771 + 1 +

yroporith=om

We are ready to prove the next result.

THEOREM 113. Let n be a nonnegative integer and let T (n) be the Thabit nume-

rical semigroup associated to n. Then g(T (n)) = 9.22"~1 + (3n—5) 2" 1.

PROOF. The reader can check that the result is also true for n € {0, 1}.

Now, we can suppose that n > 2. Applying Proposition Theorem [103| and
Corollary we have that
S0 — 1

g(T(n)> = ( Z as +"'+an+15n+1> s
(

alyeeeslnt1)ER(N)

Z ais)+ -+ ap1Sn+l =
(al 7"'7an+l)6R(n)

= Z s1+ Z 2S1+"'

(a1, esap+1)ER(N), a1=1 (a1, ran+1)€ER(N), a1=2

- Z Sp41 1 Z 28p41-

(aiye...ant1)ER(N), apy1=1 (ayye-stns1)ER(N), apy1=2
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By using Lemmas and[112] we obtain that

Y asit A dnises =
(1, 1) ER(n)

n—1 n—1
= Y 3.2 2 2, Y 3 (27 -2 4 2t
i=1 i=1
nl ; . n—1 )
Dy =3 Y 271 (32 1) £3.20 1Y (3.0 1) —
1 —1

i= i
n—1 ) )
3Y 232" = 1) + (2" 4 2) sy +2"spe1 =
i=1
n—1 n—1 ) n—1 )
=3y 32" -3 2" 492"y 2" —(n—1)3.2" -
i=1 i=1 i=1

n—1 n—1 )

9222n71+322n7171+(2n+2)sn+sn+1 —
i=1 i=1

=9(n—1)2""—3(2"—2)+9.2" ' (22" —2"*1) —3(n—1)2" '~
9(n—1)2"1 43 (2" = 1)+ (2" +2) (3.2 — 1) +2" (3.2 - 1) =
=272 (9n—15)22"" 1 —(Bn4+4)2" 41 =

=(32"—1)(92" '+ (3n—2)2" 1 —1).
Therefore,

32"-2
2

g(T(n)=9.2"""14+(B3n-2)2""1 -1~

=9.2 14 3n—5)2" 1,

We conclude this section by illustrating the previous results with an example.

EXAMPLE 114. Consider the Thabit numerical semigroup 7'(3). By applying The-
orem (93, we obtain that e (7(3)) =5 and {23,47,95,191,383} is its minimal set of
generators. From Corollary [105] we know that F(7'(3)) = 551 and, by Theorem
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we have that g (7'(3)) = 304. Now using Corollary we get that t(7'(3)) =4 and
PF(T(3)) = {551,550,549,357}

It also follows easily from the definition of R(n) that

R(3) = {(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,0,2,0),
(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,2,0,0),(0,2,0,1),(0,2,1,0),
(1,0,0,0),(1,0,0,1),(1,0,1,0),(1,1,0,0),(1,1,0,1),(1,1,1,0),

(2,0,0,0),(2,0,0,1),(2,0,1,0),(2,1,0,0),(2,1,0,1),(2,1,1,0)}

and, by Theorem [103] we get that

Ap(T(3),23) = {0,383,191,574,382,95,478,286,190,573,381,47,430,
238,142,525,333,94,477,285, 189,572,380} .

Moreover, from Lemma [9§] ordering the previous set in increasing order we have
that w(0) =0, w(1) =47, w(2) =94, w(3) =95, w(4) = 142, w(5) = 189, w(6) =
190, w(7) = 191, w(8) = 238, w(9) = 285, w(10) = 286, w(11) = 333, w(12) = 380,
w(13) =381, w(14) = 382, w(15) = 383, w(16) = 430, w(17) = 477, w(18) = 478,
w(19) =525, w(20) =572, w(21) =573, w(22) = 574, where w(i) is the least element

of T(3) congruent with i modulo 23.

3. The Frobenius problem for Repunit numerical semigroups

In number theory, a Repunit is a number consisting of copies of the single digit
1. The numbers 1, 11, 111 or 1111, etc., are examples of Repunits. The term stands
for repeated unit and was coined by Albert H. Beiler in [3]. In general, the set of
Repunits in base b is {% |neN \{0}} In binary, these are known like Mersenne
numbers. In the literature there are many problems related to this kind of numbers
(see, for example, [45] and [52]). The results presented in this section can be found in

135].



3. THE FROBENIUS PROBLEM FOR REPUNIT NUMERICAL SEMIGROUPS 83

A numerical semigroup S is a Repunit numerical semigroup if there exist integers

e N}> and it will be denoted

bn+

b€N\{0,1} and n € N\ {0} such that S = {{¥;
by S (b,n).

3.1. The embedding dimension. Along this section, b denotes an in-

teger greater than 2 and n denotes a positive integer. It is clear that
vt —1 = (b—l)(b”_1+b”_2+---+b+1) and thus I;:T_ll is a positive
integer. Besides gcd{f_—’f,%} = ;5 (ged{p"—1,p"1—1}) =

5 (ged {b" = 1,b (0" = 1) +b—1}) = 5y (ged {b" — 1,b—1}) = 5 (b—1) = L.

This proves the following result.
PROPOSITION 115. S(b,n) is a numerical semigroup.

Let M (b,n) be a submonoid of (N, +) generated by {6"""—1 | i € N}. It is clear
that S (b,n) = {32 | me€ M (b,n)}. Hence, we get that gcd (M (b,n)) = b — 1 and
the map @ : M (b,n) — S(b,n), defined by @(m) = ;™;, is a monoid isomorphism.
Consequently, if X is the minimal system of generators of M (b,n), then {bel lxeX }
is the minimal system of generators of S (b, n).

The next result gives a property verified in the monoid M (b,n), which is the key

to the development of this study.
LEMMA 116. If m € M (b,n) \{0}, then bm+b—1 € M (b,n).

PROOF. Since M (b,n) = ({b"+ —1|ie€ N})and b (0" —1) +b—1=p"T+! -
1 € M (b,n) then, by Lemma we get that bm+b —1 € M (b,n) for all m €
M (b,n)\{0}. 0

Observe that if X and Y are non empty sets of positive integer numbers such that

Y C X and X C (Y), then clearly (X) = (Y).

LEMMA 117. The set {b"t' —1|i€{0,...,n—1}} is a system of generators of
M (b,n).
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PROOF. Assume that M = ({b"*"—1|i € {0,...,n—1}}). First, we show that if
m € M\{0} then bm+b—1 € M. For n =1 the result is true. Thus, suppose that
n>2 Ifie{0,....,n—2}, then b ()" —1) +b—1 =b""*1 — 1 € M. Moreover
b ' —1)+b—1=0b"—1=(b"—1)(b"+1) € M. By using Lemma [72 we
obtain that bm+b—1 € M for all m € M\{0}.

Now we show that M (b,n) = M. It is enough to show that " — 1 € M for all
i € N. We proceed by induction on i. For i = O the result is true. Assume that the
statement is true for i and let us show it fori+ 1. As o" 71 —1=p (0" —1) +b—1
then, by the hypothesis of induction and from de fact that bm+b —1 € M for all
m € M\{0}, we get that »"+*1 — 1 € M. O

Now we are ready to show that the system of generators of M (b,n) given in previ-

ous lemma is minimal.

THEOREM 118. The set {b"*' —1|i€ {0,1,...,n—1}} is the minimal system of

generators of M (b,n).

PROOF. If n = 1 the result is trivially true. Thus, suppose that n > 2. First
we prove that 6" 1 —1 ¢ ({p"t—1]i€{0,1,...,n—2}}). Otherwise, there ex-
ist ag,...,a,_2 € N such that b** 1 —1 =aqy(b"— 1)+ -+ a,_» (b2n72_ 1) =
aph" + -+ a,_2b*""%2 — (ag+---+ay_2). Therefore ap+---+a,_» = 1(mod b")
implies that ag + - - +a,—2 = 1 + kb" for some k € N\{0} and thus ag+---+a,—» >
1 +b". Consequently, we have that b**~! — 1 =ag (b" —1)4---+a,_» (192”_2 — 1) >
(ap+-+-+ano)(B"—1) > (1+b") (b" — 1) = b* —1 > b*"~1 — 1, which is impossi-
ble.

Now by Lemma 117, we know that {6"""—1|i€ {0,...,n—1}} is a system of
generators of M (b,n). If it is not the minimal system of generators, then there exists
he{l,...,n—1} such that b"™" — 1€ ({b" —1]i€{0,1,....h—1}}).

LetM = ({0"""—1|ie{0,....h—1}}).Ifi€{0,--- ,h—2} then b (b"""—1) +

b—1=0bp"+ 1 ¢ M. Furthermore, in view of the previous paragraph,
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b1 —1)+b—1=0b"""—1€ M. Therefore, by using Lemma (72| we obtain
that bm+b—1 € M for all m € M\{0}.

Using induction on i it is easy to show that "7 —1 € M for all i € N. Fori =0
the result is true. Assume that the result holds for i. By induction hypothesis and
setting "1 — 1 = b (0" —1) + b — 1 we can deduce that b"""*1 —1 € M. Asa
consequence we have that 5*"~1 —1 € M C ({p"""—1|i€{0,...,n—2}}), which
contradicts the fact that "1 — 1 & ({p""—1]i€{0,1,...,n—2}}). O

As a consequence of the previous theorem, we have the following statement.

COROLLARY 119. The numerical semigroup S (b,n) has embedding dimension n.

o A
Moreover, its minimal system of generators is {bb_] Liefo,...,n— 1}}

Note that N is the unique Repunit numerical semigroup with embedding dimension
1. Clearly, as a consequence of previous results in this section, we obtain that, for n
greater than or equal 2, there are infinitely many Repunit numerical semigroups with
embedding dimension n. Specifically, this set is equal to {S(b,n) | b € N\ {0,1}}.
For example, the set of all Repunit numerical semigroups with embedding dimen-
sion 3 is equal to {S(b,3) | b€ N\{0,1}} = {<b,f_—11 L Bl e N\ {0, 1}} -
{({7,15,31}),({13,40,121}),...}.

3.2. The Apéry set. The knowledge of Ap(S,x) for some x € S\{0} gives us
enough information about S.

Motivated by the definitions, Lemma[5|and Proposition[I0] we will extend the con-
cept of the Apéry set of numerical semigroups to the submonoids of (N,+). If M
is a submonoid of (N,+) and m € M\ {0} then Apéry set of m in M is Ap(M,m) =

{x € M | x—m & M}. The next result is easy to prove.
LEMMA 120. Let M be a submonoid of (N,+) such that M # {0} and let d =
gcd(M) . Then:

(1) S= {% | me M} is a numerical semigroup;

(2) if m € M\ {0} then Ap(M,m) = {dw | w € Ap(S,2)};
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(3) the cardinality of Ap(M,m) is 7.

From now on we will denote by m; the elements b"™" — 1 for each i €
{0,1,...,n—1}. Observe that with this notation we have that {mg,my,...,m,_1} is

the minimal system of generators of M (b,n) and { ™%, 7, ..., 75 } is the minimal

system of generators of S (b,n).
Our next aim is to prove Theorem [123] which describes the set Ap (M (b,n),my).

It is easy to prove the following result.

LEMMA 121. Let n be an integer grater than or equal 2. Then:
(1) if0<i<j<n—1thenm;+bmj=bm;_|+mj;
(2) if 0 <i<n—1then mj+bm,_ =bm;_; + (b" + 1) my.

We denote by R (b,n) the set of all n — 1-tuple (ay,...,a,—1) that verify the follo-
wing conditions:
(1) foreveryi e {1,...,n—1} we have that q; € {0,1,...,b};
(2) ifie{2,....n—1}anda;=bthena; =---=a;—; =0.

The following result expresses the interest of the set R (b,n).

LEMMA 122. Let n be an integer greater than or equal to two. If x €
Ap (M (b,n) ,myg) then there exists (ay,...,an—1) € R(b,n) such that x = aym; +--- +

an—1Mp—1.

PROOF. We can use induction on x for the proof. For x = 0 the result is clear.
Suppose that x > 0 and let j = min{i € {0,...,n—1} | x—m; € M (b,n)}. Observe
that, as x € Ap (M (b,n),mp) we obtain that j # 0. By induction hypothesis, there
exists (ai,...,an—1) € R(b,n) such that x —m; = aym; + --- + a,—1m,_1. Therefore
x=ami+-+ (aj+1)mj+ -+ an_1my_i.

To conclude the proof, we will see that (al,...,aj—I— 1,...,an_1) € R(b,n). If
aj+1=b+1, then by applying Lemma 21} it fulfills one of the conditions.

cif j<n—1then (aj+1)mj= (b+1)mj=bmj_1+mji;
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cif j=n—1then (a;+ 1)m;= (b+1)mj=bm;_1+ (b" + 1) my.
In both cases we deduce that x —mj_; € M (b,n), which contradicts the minimality of
J-
Now suppose there exists k > j such that a; = b then, by using Lemma [121] we
have the following conditions.
L ifk<n—1thenm;+bmy =bm;_1 +myy;
. if k=n—1thenm;+bmy =bmj_1 + (b" + 1) mo.
In both cases we obtain again that x —m;_; € M (b,n), which contradicts the minima-
lity of j. Moreover, from the minimality of j we know thata; =---=a; |1 =0.

So we can conclude that (ai,...,a;j+1,...,a,41) € R(b,n). O

Before we state the following result let us observe that if /4 is a positive integer, then

the sequence of numbers b, "1, ... b"™" is a geometric progression with common
. . n+h+1__pn
ratio b, it follows that " + p" ! ... 4 prth = bbTb

THEOREM 123. Let n be an integer greater than or equal to two. Then
Ap (M (b,n) ,my) ={aym;+---+an_1my—1 | (a1,...,an—1) €ER(b,n)}.

PROOF. Clearly R(b,n) = {0,....6—1}"" U
{(ai1,...,an—1) €R(b,n) |a; =b} U --- U {(a1,...,an—1) € R(b,n) | an—1 = b}.
Then R(b,n) is the disjoint union of these sets and therefore the cardinality of
R(b,n) is equal to &" ' +p" 2 ... 40 = l;::f = 2. By using Lemma we
have that Ap (M (b,n),my) C {aymy+---+an_1mu—1 | (a1,...,an—1) € R(b,n)}.
In view of Lemma the cardinality of Ap(M(b,n),mp) is equal to

meOl. Furthermore, from the previous paragraph, we know that the car-

dinality of the set {aymi+---+ap—1my_1| (a1,...,an—1) €R(b,n)}

[

S
less than or equal to ;4. Hence we conclude that Ap (M (b,n),mg) =

{aymi+-- - +ay_1my—1 | (a1,...,an—1) € R(b,n)}. d

As a consequence of the proof of previous theorem we obtain the following result.



88 3. FROBENIUS PROBLEM

COROLLARY 124. Let n be an integer greater than or equal to two and let
(ai,...,an—1) and (by,...,by,—1) be two distinct elements in R(b,n). Then it follows
that aymy + -+ -+ ay—1mu—1 = bymy+- -+ byp_1my_

As an immediate consequence of Lemma [120]and Theorem [123] we have the fol-

lowing result.

COROLLARY 125. Let n be an integer greater than or equal to two. Then
Ap(S(b,n), 2%) ={a1 2+ +an1 527 | (a1,...,an-1) ER(b,n)}.

We alrealdy seen that the least positive integer belonging to a numerical semigroup
S is called its multiplicity and is denoted by m(S). Recall that a numerical semigroup S
has a monotonic Apéry set if w(1) < w(2) < --- <w(m(S)—1) where w(i) is the least
element of S congruent with i modulo m(S) for alli € {1,...,m(S) — 1}. Our next goal
is to prove that S (b,n) is a numerical semigroups with a monotonic Apéry set. Note
that not every numerical semigroup is of this form. In fact, if S = (5,7,9) then we have

that m(S) = 5 and Ap(S,5) = {w(0) = 0,w(1) = 16,w(2) = 7,w(3) = 18,w(4) = 9}.

LEMMA 126. Under the standing notation and n > 2. If x € S(b,n) and x #
0 mod ;= then x—1 € S(b,n).

PROOF. If x € S(b,n), then there exists ao,...,a,—1 € N such that x = agz~% +
-+ ap—1 3. Besides, if x # 0 mod 3™ then there exists i € {1,...,n — 1} such that
a; # 0. Therefore,

x_l:aoﬂ‘*’""*‘(‘li_l)%—F"'—Fan 1mn 1+b : 1.

Since y7 — 1 = b’Zrlll —1= b’Zilb bebl 11 1 bbm’l, we have that
x—l:aob—ﬂ+-..+(ai_l+b)%+(al_1) +al’l 17le1
belongs to S (b,n). O

Now we can prove the result announced above.

PROPOSITION 127. Under the standing notation and n > 2. Then S(b,n) is a

numerical semigroups with a monotonic Apéry set.
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PROOEF. In view of Corollary we can deduce that m (S (b,n)) = 7= . To con-
clude the proof we only need to prove that w(i) < w(i+ 1), where w(i) is the le-
ast element of S congruent with i modulo ™ for all i € {1,...,m(S)—1}. Since

w(i+1) € S(b,n) and w(i+ 1) # 0 mod 3™, then by Lemma we obtain that

w(i+1)—1€S(b,n). Thus w(i) <w(i+1) —1because w(i+1)—1=imod ;2. [
Next we illustrate the previous results with an example.

EXAMPLE 128. Let us compute Ap (5(3,3) , ﬁ%ﬂ) = Ap((13,40,121),13). It is
easy to check that

R(3,3) ={(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),

(3,0),(3,1),(3,2),(0,3)}.
Applying Corollary [[25] we get that
Ap((13,40,121),13) = {0,121,242,40, 161,282,80,201,322,120,241,362,363} .

Furthermore, by using Proposition [127} we get that w(0) = 0,w(1) = 40,w(2) =
80, w(3) = 120, w(4) = 121,w(5) = 161, w(6) = 201, w(7) = 241, w(8) = 242, w(9) =
282, w(10) = 322,w(11) = 362 and w(12) = 363.

From Remark [7| and using the previous example, it easily follows that 265 €
S(3,3) and 270 ¢ S(3,3), because 265 > w(265 mod 13) = w(5) = 161 and 270 <
w(270 mod 13) = w(10) = 322.

3.3. The Frobenius problem. Our next purpose is to give a formula for the Fro-

benius number of S (b,n). The next result has an immediate proof.

LEMMA 129. Let n be an integer greater than or equal to three. Then the max-
imal elements (with respect to the product order) in R(b,n) are (b,b—1,...,b—1),
(0,b,b—1,...,b—1) and (0,...,0,b).
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The next result shows that bm + (b—1)my+-- -+ (b— 1)my_1,bmy+ (b—1)m3 +
w4 (b—1)my_y,...,bm,_; is a sequence of integers where each term is obtained

from the previous by adding b — 1.

LEMMA 130. Let n be an integer greater than or equal to three and let i €

{1,...,n—2}, then bmj+b—1=mj;.
PROOF. In fact, bmj+b—1=0b(b"" —1)+b—1=b"11— 1 =my,. O
Now we can state the result announced previously.

THEOREM 131. Let n be an integer greater than or equal to two. Then
F(S(b,n)) = 2=b" 1.

PROOF. From Corollary [125] and Lemmas [I29] and [I30], we deduce that
max (Ap (S(b,n),7%%)) = b3*5. By applying Proposition we obtain that

e bb2nl 1 n n
F(S(b’”)):bn;ff — ( h—1 )_l;;fll —ZZ 1lbn L. O

Note that for n = 1 the previous formula is not true, because S(b,1) = N and

F(N)=—1#2b—-1=b-1.

EXAMPLE 132. Let us compute the Frobenius number of the numerical semigroup

S(3,4) = (3=1,3=1 X1 31y — 140,121,364,1093). By using Theorem [131| we

obtain that F (S (3,4)) = 3=13% — 1 = 3239.

Our next goal is to determine the set of all pseudo-Frobenius number and the type
of S(b,n).

Note that, as a consequence of Lemma [[I, if we want to compute
the pseudo-Frobenius number of S(b,n) it suffices to determine the set of

maximals<g, (Ap (S(b,n), 52))-

THEOREM 133. Let n be an integer greater than or equal to two. Thent (S (b,n)) =
n—1. Moreover PF (S (b,n)) ={F(S(b,n))—i|i€{0,...,n—2}}.
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PROOF. Assume that A is the set of maximal elements in R (b,n) (with respect

to the product order) and B = {a; 7% +---+an—15¢ | (ai1,...,an—1) €A}. From
Corollary we deduce that maximals<,, - (Ap (S (b,n), ;2% )) = maximals<y, = B.
Then, by applying Lemmas [129] and [I30] the set B is formed by n — 1 consecutive
positive integers. Hence the difference between any two elements in B is smaller than
orequalton—2. As ;= = };:11 is the smallest positive integer in S (b,n) and % >
n — 2, we can conclude that B is a set of incomparable elements with respect to the
<s(b,n) Order and thus maximals< somB =B

Now by using Lemma (11| we obtain that PF (S (b,n)) = {w— 7% | w € B}. From

the proof of Theorem we have that max(B) = F (S (b,n)) 4 ;=% and consequently

PE (S (b,n)) = {F(S(b,n)) —i|i € {0,...,n—2}}. O

Note that for n = 1 the previous theorem is not true, because S(b,1) = N,
PF(N) = {—1} and so t(N) = 1. Notice also that for each positive integer n there
are infinitely many Repunit numerical semigroups of type n. Specifically, this set is
equal to {S(b,n+1) | b€ N\{0,1}} coincides with the set of all Repunit numerical

semigroups with embedding dimension n + 1.

EXAMPLE 134. Let us compute the Pseudo-Frobenius numbers of the numerical
semigroup S (3,4). From Example[132] we know that F (S (3,4)) = 3239. By applying
Theorem 133 we have that PF (S (b,n)) = {3239,3238,3237}.

The next result gives a formula for the genus of a Repunit numerical semigroup.
THEOREM 135. Let n be a positive integer. Then g (S (b,n)) = bzn (bn T +n— 1>

PROOF. For n = 1 the result is trivial. Now assume that n > 2 and for each i €

{0,...,n—1} define s5; = ;7. By using Proposition |10]and Corollaries and -

we have that

1 so—1
g(S(bvn»:_( Z alsl+"'+anlsnl> - 02 .

50 (ayye-yan—1)ER(b,n)
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Clearly,
Z aisy+ -+ ap-151-1=
(@1, esan—1)ER(D,n)
= y S1t y bsy + -
(ay,....an—1)€R(b,n), a;=1 (ay,....an—1)€R(b,n), aj=b
R ) Sp_1+-F Y bsp—1.
(a1yeesan—1)ER(b,n), an_1=1 (aty--an—1)€R(b,n), an_1=b

Leti€ {l,---,n— 1}. The reader can prove that:

- the cardinality of {(ay,...,a,_1) €R(b,n) | a; = b} is b '

- if x € Al,....,b—1}, then the cardinality
{(ar,...,an_1) ER(b,n) |a;=xand b & {ai,...,a;_1}}is b"%;

- if 1 < j < i then the cardinality
{(ai,...,an-1) ER(b,n) |a;=xanda; =b} is b" /2.
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Therefore, applying the previous results, we have that

Z ais1+--+ap—185—-1 =
(at,-.an—1)€ER(b,n)

b—1 n—1 n—1 )
— X (bn 2+bn 3+ +bn 1— l) s; _i_bzbnflfzbsi:
] i=1

—

1\ n— ) n—1 )
_ b(b 1) Z (bn—2_+__'_+bn—1—t) Si—f—b Z bn—t—lsi —

i=1

2

b(b—l n—1 bn—l_bn—i—l n—1 il

= > . b1 sl+bizzib S =
1n71 n n—i (= n—i 1n71 n n—i

bn—l—i -1

_1 . n nz _ 1
_2;b+b (b—1>_2b—
1 b3n_b2n+l b'—b
>( . (1= 1)b"+ (n—1)b (b_l))

nil (b2n+i _p" +b2n _ bnfi) —
=1

2(b—1 —1
1 (b"—1) (0> =" +b"—b)
- —DP B —1) | =
2(b—1)( b1 F=DEET-1)
pr—1 (b —prtlppt—p
- — 1" ).
2(b—1)( b1 -1 >
Therefore, we obtain that
<) 1 /(b —pt 4 pn—p - e
1 /b —p 1 pn—p b —b
- _ —1p - =
2( b—1 +n-1) b—l)
1 b2n_bn+1 bt /b —b
= — —NY ) == —1).
2< 7 Y ) 2<b—1+” )
O
By

EXAMPLE 136. Let us compute the genus of the numerical semigroup S (3,4).
3 (32 +4-1) =1701.

applying Theorem |135|we have that g (5(3,4)) =







CHAPTER 4

Combinatory optimization problems

In this chapter we will study the digital semigroups and the bracelet monoids. This
study is fullfilled in sections 1 and 2, respectively, and were published in [33] and [30].

A digital semigroup D is a subsemigroup of (N\{0},-) such that if d € D then
{x e N\{0} | £(x) =£4(d)} C D with £(n) the number of digits of n written in decimal
expansion. In Section 1, we compute the smallest digital semigroup containing a set of
positive integers. For this, we establish a connection between the digital semigroups
and a class of numerical semigroups called LD-semigroups.

Given positive integers np,...,n,, we say that a submonoid M of (N,+) is a
(ni,...,np)-bracelet if a+ b+ {ny,...,n,} C M for every a,b € M\ {0}. In Section
2, we explicitly describe the smallest (n1,...,n,)-bracelet that contains a finite subset
X of N. We also present a recursive method that enables us to construct the whole set
B(ni,...,np) = {M|Misa(ny,...,n,) —bracelet}. Finally, we study (ni,...,n,)-
bracelets that cannot be expressed as the intersection of (ny,...,n,)-bracelets properly

containing it.

1. Sets of positive integers closed under product and the number of decimal
digits
Given, A a subset of N\{0}, we denote by L(A) = {{(a) | a € A}. We prove that
if D a digital semigroup then L(D)U {0} is a numerical semigroup. A numerical
semigroup S is called LD-semigroup if there exist a digital semigroup D such that
S = L(D)U{0}. The results presented in this section can be found in [33].
Denote by D (respectively L) the set of all digital semigroups (respectively LD-

semigroups). We see that the map ¢ : D — L defined by ¢(D) = L(D) U {0} is
95
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bijective and its inverse is the map 0 : L — D with 8(S) = {a € N\{0} | £(a) € S}.
From this it easily follows that if D is a digital semigroup then N\D is finite.

This fact together with the results presented in Section 3 of the Preliminaries allows
us to arrange the elements of L in a tree. We characterize the childs of any vertex of
this tree and this will enable us to recursively construct the set £ and consequently the
set D.

Given a set of positive integers X we denote by D(X) (respectively L(X))
the smallest (with respect to the set inclusion order) digital semigroup contai-
ning X (respectively LD-semigroup). We prove that if X is a set of positive in-
tegers and S the smallest LD-semigroup containing L(X) then 6(S) is the smal-
lest digital semigroup containing X. As a first consequence of this we get that
D = {D(X) | Xisanonempty finite subset of N\{0}} whence every digital semi-
group can be described from a finite number of terms.

Given a finite set of positive integers X we describe an algorithmic procedure for
computing the smallest LD-semigroup that contains X. As a consequence we have
an algorithm that computes the smallest digital semigroup containing a finite set of

positive integers.

1.1. LD-semigroups. The next result establish a relation between a digital semi-

group and a LD-semigroup.

PROPOSITION 137. If D is a digital semigroup, then L(D)U{0} is a numerical

semigroup.

PROOF. Let x,y € L(D). Since £(9 x 10571) = x and £(9 x 10°~') = y we get
that 9 x 10°1,9 x 10°~! € D and thus 81 x 107772 € D. But we have that 81 x
107772 = (8 x 10+ 1)108772 = 8 x 10871 4 1072 and so £(81 x 1077 2) =
x+y. Therefore x+y € L(D) and consequently L(D) U {0} is a submonoid of (N, +).

Letd € D. Then 10/~! € D and thus 10?/4)=2 = 10°@)~1 x 10/@)~! € D. Since
0(1021)=2) = 2¢(d) — 1, obviously {¢(d), 2¢(d) — 1} C L(D). Thus we conclude that
L(D)U{0} is a numerical semigroup. O
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Observe that not every numerical semigroup is of this form. In fact, by applying
Proposition|137, we deduce that if S is a LD-semigroup and x € S\{0} then 2x—1 € S.
Then we have that S = (4,5) is not a LD-semigroup, because 2 x4 —1 ¢ S.

Next we describe a characterization of LD-semigroups.

LEMMA 138. Let x and y be positive integers. Then ({(xy) €
{0(x) +£(y), £(x) +£(y) — 1}.

PROOF. As 10/0-1 < x < 10/™ and 1001 <y < 10‘0), we have that
1000+0)=2 < xy < 10°0H) | Therefore £(x) +£(y) — 1 < £(xy) < £(x) +L(y) + 1
and consequently ¢(xy) € {£(x) +£(y) — 1,4(x) +£(y)}. O

THEOREM 139. Let S be a numerical semigroup. The following conditions are
equivalent.
1) Sis a LD-semigroup.
2) Ifa,b € S\{0} thena+b—1€S.

PROOF. 1) implies 2). Assume that S is a LD-semigroup, then there exists a digital
semigroup D such that S = L(D)U{0}. If a,b € S\ {0} then 10! 10! € D and thus
10+5=2 ¢ D. Consequently a +b — 1 = £(10*?=2) ¢ L(D) C S.

2) implies 1). Let D = {a € N\{0} | ¢(a) € S}. Tt is clear S = L(D) U{0}.
In order to conclude the proof, it suffices to show that D is a digital semigroup.
It is clear that if d € D then {a € N\{0} | /(a) =1(d)} C D. Let us see that D
is closed under product. In fact, if a,b € D then by Lemma |138| we deduce that
l(ab) € {l(a)+L(b),l(a)+£(b) — 1}. This implies that £(ab) € S, and consequently
ab € D. U

Let D= {D | D is a digital semigroup} and let L = {S | S is a LD-semigroup}. As

a consequence of the proof of Theorem [I39] we obtain the following result.

COROLLARY 140. The correspondence ¢ : D — L, defined by ¢(D) = L(D) U

{0}, is a bijective map. Furthermore its inverse is the map 0 : L — D, 0(S) =
{a e N\{0} | ¢(a) € S}.
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From this result one easily deduces the following alternative characterization.

COROLLARY 141. With the above notation, we have that
D ={06(S) | S is a LD-semigroup} .

If xp,x2,...,xx are integers, we denote by {xi,x2,...,x,—} the set

{x1,%2,...,xx} U{z € Z | z> x;}. Given a positive integer n, we denote by A(n) =

{x e N\{0} | £(x) = n}.

EXAMPLE 142. Let S = (3,5,7) = {0,3,5,6,7,—}. By using Theorem [139] we
obtain that S is a LD-semigroup. Since N\S = {1,2,4}, in view of Corollary [141] we
deduce that N\ (A(1) UA(2)UA(4)U{0}) is a digital semigroup.

COROLLARY 143. If D is a digital semigroup, then N\D is finite.

PROOF. By Corollary[141]there exists a LD-semigroup S such that D = 6(S). Since
{x eEN|x> 10F<S>} C D it follows that N\D is finite. O

COROLLARY 144. Let S be a LD-semigroup not equal to N and let N\S =
{m=1<---<h =F(S)}. Then
1) F(8(S)) = 10F®) —1,
2) g(8(8)) =9 x (1014 410" 1) 4 1.

PROOF. 1) It is enough to observe that 109 — 1 =
max {n € N\{0} | {(n) =F(S)}

2) Since  0(S) = N\(A(h)U---UA(h)U{0}), then g(08(S)) =
cardinal (A(hy)U---UA(h ) U{0}). In order to conclude the
proof, it suffices to observe that if i € {I,...,r} then A(h;) =
{1071 10%=1+1,...10% —1}.  Hence the cardinality of A (h;) =
107 —1— 10"+ 1=10% — 1001 =9 x 10"~ 1,
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EXAMPLE 145. Let S = (3,5,7) the LD-semigroup of Example Since
F(S) = 4 then F(6(S)) = 10* — 1 = 9999, and as N\S = {1,2,4} then g(8(S)) =
9 x (10°+10'+10%) + 1 =9100.

1.2. Frobenius Variety of LD-semigroups. We begin with the following result:

PROPOSITION 146. Let L = {S | S is a LD-semigroup}. The set L is a Frobenius

variety.

PROOF. Clearly L is not empty, because N € L. Assume that S,7 € L and let us
show that SNT € L. If a,b € (SNT)\{0} then a,b € S\{0} and a,b € T\{0}. By
using Theorem[139] we have thata+b—1 € (SNT)\{0}.

Now let us prove that if S € £ and S # N, then SU{F(S)} € L. To this end, we use

again Theorem[139] Let a,b € (SU{F(S)}) \{0}.

Ifa,beS, thena+b—1¢€SCSUIES)}.
. IfF(S) € {a,b}, thena+b—1>F(S)and thusa+b—1 € SU{F(S)}.

O

Let L ={S | Sis a LD-semigroup}. Recall that the graph G(L) is the graph whose
vertices are the elements of £ and (S,5’) € L x L is an edge if ' = SU{F(S)}.

Recall that every numerical semigroup S is finitely generated and therefore there
exists a finite subset A of S such that § = (A). Furthermore, if no proper subset of A
generates S, then we say that A is a minimal system of generators of S. Every numerical
semigroup S admits a unique minimal system of generators, which will be denoted by
msg(S). Besides, msg(S) = (S\{0})\ (S\ {0} +S\{0}). We already know that if S
is a numerical semigroup and x € S then S\ {x} is a numerical semigroup if only if
x € msg(S).

As a consequence of Proposition [21{ and Theorem [23| we obtain the following re-

sult.
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THEOREM 147. The graph G(L) is a tree rooted in N. Mo-
reover, the childs of a vertex S € L are S\{xi},...,S\{x;} with
{x1,...,x }={x € msg(S) | x > F(S) and S\ {x} € L}

PROPOSITION 148. Let S be a LD-semigroup not equal to N and let x € msg(S).
Then S\ {x} is a LD-semigroup if and only if x+ 1 € (N\S) Umsg(S).

PROOF. Necessity. If x4+ 1 ¢ (N\S) Umsg(S), then clearly there exists a,b € S\ {0}
such that @ +b = x+ 1. Hence a,b € S\ {0,x} buta+b—1=x ¢ S\ {x} and conse-
quently S\ {x} is not a LD-semigroup.

Sufficiency. Let a,b € S\ {0,x}. Since by hypothesis S is a LD-semigroup, then
we have that a+b—1 € S. If a+b — 1 = x we obtain that x+ 1 ¢ (N\S) Umsg(S).
Therefore a+ b — 1 # x and thus a+b — 1 € S\ {x}. By using Theorem we have
that S\ {x} is a LD-semigroup. O

From this result one easily deduces the following.

COROLLARY 149. Let S be a LD-semigroup not equal to N and let x € msg(S)
such that x > F(S). Then S\ {x} is a LD-semigroup if only if x+ 1 € msg(S).

These results allows us to construct recursively the tree, starting in N, and compute
the childs of each vertex (Figure 1). By using Theorem [147| and Corollary we

obtain the following.

. N = (1) has an only child that is N\{1} = (2,3);

. (2,3) has again an only child that is (2,3)\{2} = (3,4,5);
(3,4,5) has two childs that are (3,4,5)\{3} = (4,5,6,7) and (3,4,5)\{4} =
(3,5,7);

. (3,5,7) has no childs;
(4,5,6,7) has three childs that are (4,5,6,7)\{4} = (5,6,7,8,9),
(4,5,6,7)\{5} = (4,6,7,9) and (4,5,6,7)\{6} = (4,5,7);
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FIGURE 1. The tree of LD-numerical semigroups

1.3. The smallest digital semigroup containing a set of positive integers. The

following result has immediate proof.
LEMMA 150. The intersection of digital semigroups is also a digital semigroup.

This result motivates the following definition. Given X C N\{0}, we denote by
D(X) the intersection of all digital semigroups containing X. Observe that as a con-
sequence of previous result we obtain that D(X) is the smallest (with respect to set
inclusion) digital semigroup containing X.

Nonfinite intersection of LD-semigroups is not in general a numerical semi-
group. In fact, for every n € N we have that {0,n,—} is a LD-semigroup and
Mpen {0,n,—} = {0} is not a numerical semigroup. Given A C N, we denote by
L(A) the intersection of all LD-semigroups containing A. It is clear that £(A) is a
submonoid of (N, +).
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PROPOSITION 151. Let A be a nonempty subset of N\{0}. Then L(A) is a LD-

Semigroup.

PROOF. Assume that S is a LD-semigroup containing A. If a is an element of
A then, by applying Theorem we have that {a,2a—1} C S and consequently
{a,2a—1} C L(A). It follows easily that £(A) is a numerical semigroup.

Let us see that £(A) is a LD-semigroup. Let a,b € L(A)\{0}. If S is a LD-
semigroup containing A, then a,b € S\ {0} and thusa+b—1€ S. Hencea+b—1 €
L(A). By using Theorem [139] we can conclude that £(A) is a LD-semigroup. O

As a consequence of previous proposition we have the following result.

COROLLARY 152. Let A be a nonempty subset of N\ {0}. Then L(A) is the smal-

lest LD-semigroup containing A.

Next, we see that for constructing the smallest digital semigroup containing a set

X is equivalent to construct the smallest LD-semigroup containing L(X).

PROPOSITION 153. Let X be a nonempty subset of N\ {0}. Then S is the smallest
LD-semigroup containing L(X) if and only if 0(S) is the smallest digital semigroup

containing X.

PROOF. Necessity. Let D be a digital semigroup that contains X. Then L(D) U {0}
is a LD-semigroup that contains L(X). Hence S C L(D)U{0} and consequently 8(S) C
0 (L(D)U{0})=D.

Sufficiency. Let T be a LD-semigroup that contains L(X). Then 6(T) is a digital

semigroup that contains X. Therefore 6(S) C 6(7') and so we can assert that SC 7. [

Next we illustrate the previous proposition with an example.

EXAMPLE 154. We compute the smallest digital semigroup that contains
{1235,54321}.  First we compute the smallest LD-semigroup that contains
L({1235,54321}) = {4,5}. From Theorem we obtain that every LD-semigroup
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containing {4,5} must contains the number 7 and (4,5,7) is a LD-semigroup. Hence
L({4,5}) = (4,5,7). By applying Proposition[153] we get that D ({1235,54321}) =
0((4,5,7)) =N\ (A(L)UAR)UAB)UA(6)U{0}).

Observe that every digital semigroup D is not finitely generated as a semigroup. In
fact, if D is a digital semigroup, then by Corollary we obtain that N\D is finite.
Whence D is a subsemigroup of (N\{0},-) that contains infinitely many primes and
these belong to any system of generators of D.

Let D be a digital semigroup and X C D. We say that X is D-system of generators
of D if D(X) = D. In the following result, we will see that every digital semigroup

admits a finite D-system of generators.
THEOREM 155. With the above notation, we have that
D ={D(X) | X is a nonempty finite subset of N\ {0}}.

PROOF. Itis clear that { D(X) | X is a nonempty finite subset of N\ {0}} C D.

For the other inclusion, take D € D then S = L(D) U {0} is a LD-semigroup. We
have that every numerical semigroup is finitely generated, and therefore there exist
positive integers ni,...,n, such that S = (ny,...,np,). Letx1...,x, € D with [(x1) =
ni,...,l[(xp) =n,and X = {xl . ,xp}. In order to conclude the proof, it suffices to
show that D = D(X). It is clear that S is the smallest LD-semigroup containing L(X).
Hence, by applying Proposition we obtain that D = 0(S) is the smallest digital
semigroup that contains X and consequently D = D(X). O

Let D be a digital semigroup and let X be a subset of D such that D(X) = D. We
say that X is a minimal D-system of generators of D if no proper subset of X is a
D-system of generators of D. Now, we are interested to get an explicit description of
the minimal D-system of generators for a digital semigroup.

Let S be a LD- semigroup and let A C S. We say that A is a L-system of generators
of Sif L(A) = S. Moreover, if no proper subset of A generates S, then we say that A is a
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minimal L-system of generators of S. As L is a Frobenius variety, then by Corollary

we obtain the following result.

PROPOSITION 156. Every LD-semigroup admits a unique minimal L-system of

generators. This minimal L-system of generators is finite.

Using previous proposition it makes sense to define the L-rank of a LD-semigroup
S by the cardinality of its minimal LD-system of generators.

As an immediate consequence of the Proposition [I53] we obtain the following.

PROPOSITION 157. Let D be a digital semigroup and let {nl b 7np} be the mi-
nimal L-system of generators of L(D)U{0}. For each i € {1,...,p} let d; € D be
such that £(d;) = n;. Then {dl, e ,dp} is a minimal ‘D-system of generators for D.

Furthermore every minimal ‘D-system of generators for D is of this form.

From previous proposition we can conclude that not every digital semigroups ad-
mits a unique minimal D-system of generators. But the cardinality of its minimal D-
system of generators is always the same. And this is precisely L-rank of L(D)U {0},
which we will denote by D-rank(D).

As a consequence of Proposition 21| we obtain the following.

PROPOSITION 158. Let S be a LD-semigroup and let x € S. Then, the set S\{x} is

a LD-semigroup if and only if x belongs to the minimal L-system of generators of S.
From Proposition [I48| we can deduce the following result.

COROLLARY 159. Let S be a LD-semigroup not equal to N and let x € S. Then

x belongs to the minimal L-system of generators of S if and only if x € msg(S) and
x+1 € (N\S)Umsg(S).

We illustrate some of these results with an example.
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EXAMPLE 160. Let X = {1234,2341521,1234567890} and let D = D(X). We
compute a minimal D-system of generators of D. We will start by computing the smal-
lest LD-semigroup that contains L(X) = {4,7,10}. From Theorem we have that
every LD-semigroup containing {4,7,10} must contain 13 and thus S = (4,7,10,13) =
{0,4,7,8,10,—} is a LD-semigroup. Therefore S is the smallest LD-semigroup that
contains L(X). By applying Corollary the set {4} is the minimal L-system of
generators for S. This implies by Proposition that {1234} is a minimal D-system
of generators of D. Notice that in general D = D({a}) with a a positive integer such

that /(a) = 4 and {a} is a minimal D-system of generators D.

1.4. The smallest LD-semigroup containing a set of positive integers. Let

X1,...,X; be positive integers. Denote by

S(xt,...,x) ={x e N\{0} | x=aix; +---+ax; — r with
rap,...,a; ENandr <a;+---+a,} U{0}.

Our next goal is to prove that S(xi,...,x;) is the smallest LD-semigroup containing
the set {x1,...,x}.

Let S be a numerical semigroup and let {nj,...,n,} be
its minimal set of generators. For s € S, denote by P(s) =
max{a1 +---4a,|s=an+---+apn,anday,...,a, € N}.

The reader can easily verify the following result.

LEMMA 161. Let S be a numerical semigroup minimally generated by {nl yee ,np}
and let s € S. Then

(1) Ifie{1,...,p} and s —n; € S then P(s —n;) < P(s) — 1.
(2) If s = ainy +--- +apn, and P(s) = ay + --- +a, with a; # 0 for some i €
{1,...,p}, then P(s—n;) = P(s) — 1.

PROPOSITION 162. Let S be a numerical semigroup minimally generated by

{m Yoo ,np}. The following conditions are equivalent:
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(1) S is a LD-semigroup;
(2) ifi,je{l,...,p} thenni+nj—1€S;
(3) ifsES\{O,nl,...,np} thens—1¢€S;
(4) if s € S\{0} then s —{0,...,P(s)—1} CS.

PROOF. 1) implies 2). It is an immediate consequence of Theorem |139

2) implies 3). If s € S\ {0,n1,...,n, } then there exist s € Sand i, j € {1,...,p}
such that s = n; +n; +s'. Hence we obtain thats — 1 = (n;+nj—1)+s' €S

3) implies 4). We proceed by induction on P(s). For P(s) = 1 the result is
trivial. Now, assume that P(s) > 2, ay,...,a, are nonnegative integers such that
s=an+---+apny and P(s) = a; +--- + a, with a; # 0 for some i € {1,...,p}.
From Lemma([161] we conclude that (s —n;) = ©P(s) — 1 and by induction hypothesis
s—n;—{0,...,P(s) —2} CS. Hence s — {0,...,P(s) =2} CS.

From the preceding paragraph we have that s — n; — (P(s) —2) € S. Let us prove
that s —n; — (P(s) —2) # 0. In fact, since s € S\ {0,n1,...,np}, then s —n; = ayn; +
+-+(ai— nj+---+apn, # 0. This implies that either a; > 2 or there exist j €
{1,...,p}\{i} such that a; # 0. And thus we obtain that either s = 2n; +ajn; +--- +
(a;—2)nj+---+apn,ors=ni+nj+an+---+(a—)nj+---+(a;—)nj+---+
apn,. This leads to s —n; — (P(s) —2) > 0 and consequently s —n; — (P(s) —2) €
S\{0}. From this we get that (s —n; — (P(s) —2)) +n; € S\{0,ny,...,n,} and so
s—n;j— (P(s)—2)+n;—1 € S. Then we have that s — (P(s) — 1) € S and therefore
s—40,...,P(s)—1} CS.

4) implies 1). If a,b € S\ {0}, then P (a+b) > 2. From the hypothesis, we have
thata+b—1 € S. By applying Theorem |[139] we obtain that S is a LD-semigroup. [J

Observe that the previous proposition (condition 2) gives a criterion to check whet-

her or not a numerical semigroup is a LD-semigroup.
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EXAMPLE 163. Let us see that (4,5,7) is a LD-semigroup. In order to see this,

applying Proposition 162} it is enough to see that

{444-1=7,445-1=8,44+7-1=10,545-1=9,5+7—-1=11,
T7+7—-1=13} CS.
The next lemma is straightforward to prove.

LEMMA 164. Let S be a numerical semigroup, sy,...,s; € S\{0} and let ay, ..., q

be nonnegative integers. Then P(ays;+---+ass;) > aj+---+a.

THEOREM 165. Let x1,...,x; be positive integers. Then S (xy,...,x;) is the smal-
lest LD-semigroup that contains {xi,...,x}.
PROOF. (1) Let us see that if x,y € S(x1,...,x)\{0}, then

{x+y,x+y—1} C S(x1,...,x). In fact, there exist nonnegative in-
tegers ap,...,a;,by,...,b;,r,r/ such that x = ajx; + - +ax; —r,y =
bixt + - +bx; —7r, r<a +-+a and ¥ < by + - + b,.
And thus x+y = (ay + by)x1 + -+ + (a + b)xy — (r + 1) with
r+r+1<(a;+by)+-+ (a +b;). Consequently we conclude that
{x+y,x+y—1} CTS(x1,...,%).

(2) As a consequence of the previous proof, we can deduce that S (xi,...,x) is
submonoid of (N,+). Since x; = 1x; +---4+0x; — 0 and 2x; — 1 = 2x; +

-+++0x; — 1, we obtain that {x;,2x; — 1} C S(x,...,x/) and so we get that

S(x1,...,x) is a numerical semigroup. From Condition 1) we can assert that
S(x1,...,%) is a LD-semigroup.
(3) Arguing in a similar way with x; € S (xy,...,x;), we getx; € S(x,...,x) for

all i € {1,...,t}. This proves that S (x1,...,x) is a LD-semigroup containing

{Xl, e ,x;}.
(4) Let us prove that S(xp,...,x/) is the smallest LD-semigroup containing

{x1,...,%}. Assuming that T is a LD-semigroup containing {xi,...,x}, we



108 4. COMBINATORY OPTIMIZATION PROBLEMS

will prove that S(xq,...,x) C T. In fact if x € S (xy,...,x/)\ {0} then there
existay,...,a;,r € Nsuchthatx=ax;+---+ax;—randr<a;+---+a.
Since {x1,...,x} C T then ajx; + --- +ax; € T. From Proposition we
obtain thatajx; +---+ax; —{0,...,P(ajx;+---+awx;) — 1} CT. By using
now Lemmawe have that r < P (ajx; + - - - +a,x;) and so x belongs to T'.

0

We conclude this section by giving an algorithm that allows to determine the smal-

lest LD-semigroup containing a set of positive integers A.

ALGORITHM 166. Input: A set of positive integers A.
Output: The minimal system of generators of the smallest LD-semigroup contai-
ning the set A.
1) B=msg((4))
2) ifa+b—1 € (B) for all a,b € B, then return B.
3) A=BU{a+b—1|a,beBanda+b—1¢ (B)} and go to 1).

Next we justify how the algorithm behaves. Let By, By, ... be the possible values of
B arising from the algorithm. It is clear that (B;) & (By) & .... Note that if a € B; then
{a,2a— 1} C (B) and then we have that (B;) is a numerical semigroup. Then N\ (B;)
is finite and thus this chain (B;) & (B2) & ... is finite. Consequently the algorithm
stops in a finite number of steps and gives us (B1) & (B2) & ... & (By). Follows
from Proposition [162]that (B,) is a LD-semigroup. Furthermore, as a consequence of
Theorem [139] and by the way we compute B,,, we conclude that every LD-semigroup

containing the set A must contain (By,).

EXAMPLE 167. Let us compute the smallest LD-semigroup that contain {5}. To
this end we use the Algorithm [I66 The values arising for A and B are:
.A={5}
. B={5};
. A=1{5,9};
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. B={5,9};
A =1{5,9,13,17};
. B=1{5,9,13,17};

. A={5,9,13,17,21};

. B={5,9,13,17,21}.
Therefore the smallest LD-semigroup containing {5} is (5,9,13,17,21) =
{0,5,9,10,13,14,15,17, = }.

2. Bracelet Monoids and Numerical Semigroups

This section is devoted to the study of the (np,...,n,)-bracelets and its
content is organized as follows. In Theorem we explicitly describe the
smallest (np,...,np,)-bracelet containing a set of positive integers. Denote
by B(ni,...,n,) = {M|Misa(ni,...,n,)—bracelet} and by A(ni,...,np) =
{S| S is a numerical (n,...,n,) —bracelet}. In Theorem we show that, if
D is the set of all positive divisors of gcd(ny,...,n,) then B(ni,...,n,) =
(Ugep {dS | S € A((%,...,"2)}) U{{0}}. The results presented in this section can
be found in [30]].

We will prove that A (n1,...,n,) is a Frobenius variety. This fact together with the
results presented in Section 3 of the Preliminaries allows us to arrange the elements of
A (ni,...,np) in a tree rooted in N. We describe the childs of any vertex of this tree
and this will enable us to recursively construct the set A (ny,...,np).

The intersection of (n1,...,n,)-bracelets is again a (n1,...,n,)-bracelet. As a con-
sequence of this result we will introduce the concepts of (n1,...,n,)-system of ge-
nerators and minimal (ny,...,n,)-system of generators of a (ny,...,n,)-bracelet. In

Theorem|186|we will show that M is a (ny, ...,n,)-bracelet if and only if M is the inter-

section of numerical (ny,...,n,)-bracelets. Using this result together with the results
presented in Section 3 of the Preliminaries we obtain that every (n,...,n,)-bracelet
has a unique minimal (ny,...,n,)-system of generators. We will also characterize the

elements in this minimal (n1,...,n,)-system of generators.
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A (n1,...,np)-bracelet is indecomposable if it cannot be expressed as the inter-
section of (ny,...,n,)-bracelets properly containing it. In Corollary we give an al-
gorithm procedure which allows us to determine whether or not a (ny,...,n,)-bracelet

is indecomposable.

2.1. Characterization of the (ni,...,n,)-bracelets. Once more, given M a sub-
monoid of (N, +), we denote by msg(M) the minimal system of generators of M. We
already saw that msg(M) = (M \ {0})\ (M \ {0} + M\ {0}).

PROPOSITION 168. Let my,...,m, and ny,...,n, be positive integers and let M
be a submonoid of (N,+) generated by {ml,...,mq}. The following conditions are
equivalent.

(1) Misa (ni,...,np)-bracelet.

(2) Ifi,je{l,...,q} thenmi+mj+{n1,...,np} CM.

PROOF. 1) implies 2). Trivial.
2) implies 1). If a,b € M\ {0} then there exist i, j € {1,...,q} and m,m’ € M such
that a = m; +m and b = mj+m'. Since mj +m;+ {ni,...,n,} C M, we have that

mi+mj+m+m'+{n,...,n,} CMandthusa+b+ {ni,...,n,} CM. O

The previous result allow us to determine whether or not a submonoid of (N, +) is

a(ni,...,np)-bracelet.

EXAMPLE 169. Let M = ({4,6}) = {0,4,6,8,10,12,...}. We prove that M is a
(2,4)-bracelet. As4+4+{2,4} CM,4+6+{2,4} CMand 6+6+{2,4} C M, by
applying Proposition [168| we obtain that M is a (2,4)-bracelet.

The following result is easy to prove.

LEMMA 170. Let ny,...,n, be positive integers. The intersection of (ny,...,n,)-

bracelets is a (n1, . ..,np)-bracelet.

The previous result motivates the following definition. Given X C N we define

the (n1,...,np)-bracelet generated by X as the intersection of all (ny,...,n,)-bracelet
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containing X. We will denote it by L{m,‘..,np}(X ), and is the smallest (with respect to
the set inclusion order) (n,...,np)-bracelet containing X. If M =Ly, ., 1(X) we say
that X is a (ny,...,n,)-system of generators of M. Moreover, if no proper subset of X
generates M, then we say that X is a minimal (ny,...,n,)-system of generators. The
next result shows that every (n1,...,n,)-bracelet admits a finite (np,...,n,)-system of

generators.

PROPOSITION 171. Let ny,...,n, be positive integers. Then @(nl,...,np) =
{L{nl,...,np}(X) | X is a finite subset ofN}

PROOF. It is clear that {L{nl,.‘.,np} (X) | X is a finite subset of N} -
B(ni,...,np). Let us prove the other inclusion. If M € B(ny,...,n,) then M
is a submonoid of (N,+). By Corollary [9] we deduce that there exists a finite subset X
of N such that M = (X). Hence M = Ly,,, 3 (X). O

Observe that, in view of the proof of Proposition we obtain that if M is a

(n1,...,np)-bracelet and M = (X) then M = Ly, , 1(X). The next example shows

ip}
that X can be the minimal system of generators of M but X cannot be a minimal

(n1,...,np)-system of generators of M.

EXAMPLE 172. Let M = ({3,8,13}). Clearly {3,8,13} is the minimal system
of generators of M. Using the Proposition we have that M is a (2,3)-bracelet.
Observe that every (2,3)-bracelet containing {3} must contain 3 +3 42 = 8 and
3+8+2=13. Therefore M = ({3,8,13}) C Ly, 33 ({3}). Since Ly, 3, ({3}) is the
smallest (2,3)-bracelet containing {3} we deduce that M = Ly, 33 ({3}). Thus the set

{3} is a minimal (2, 3)-system of generators of M.

The following result gives an explicit description of the smallest (ny,...,n,)-

bracelet that contain a finite subset X of N.
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THEOREM 173. Let X = {xi,...,x} C N\{0} and let {ny,...,n,} C N\{0}.
Then

L{nl,...,np} (X) = {a1x1 +--tax +biny+---+byn, |

al,...,a,,bh...,bp6Nanda1+---+a[>b1+---+bp}U{O}.

PROOF. LetA = {alxl +-dax +bin -+ bpny | ai, ... a;,
bi,....bpeNandaj+---+a; > b —|—~--—|—bp} U{0}. Clearly A is a subset of N that
is closed under addition, contains the zero element, and if x,y € A\ {0} then x+y+
{ni,...,n,} CA. HenceAisa (ni,...,np)-bracelet. Since X is a subset of A it follows
that Ly, 0} (X) C A. For the other inclusion, take x = ajx; + -+ ax; +byny +- -+
bpn, € A. The proof follows using induction on @y +---+a;. If a; +--- +a, = 1 then

by =---=b, =0 and thus x = ax; + - +ax; € Ly, (X). Suppose now that

)
ai+---+a;>2andby+---+b, > 1. Then thereexisti € {1,...,r} and j € {1,...,p}
such that @; # 0 and b; # 0. By induction hypothesis we deduce that x —x; —n; €
Lin,...n,y (X). Since aj+---+a, > 2 we get that x —x; —n; # 0. Applying that
oy} (X) is @ (n1,...,n,)-bracelet we have that x —x; —nj +x; + {n1,...,n,} C

L{nl,...,np}(X)- Hence x € Ly, .} (X). 0

Next we illustrate this result with an example.

EXAMPLE 174. Let us calculate L 3y ({4}). From Theorem we have that
L3y ({4}) = {@14+b12+b23 | ay,b1,bp € Nand ay > by +by} U{0}. Therefore
Lpsy ({4)) = {0,4,8,10,11,12,14,15,16,17,18,—} = (4,10,11,17).

2.2. The numerical (ny,...,n,)-bracelets. A numerical semigroup is a submo-
noid S of (N, +) such that N\ S is finite. As we saw before a submonoid M of (N, +)isa
numerical semigroup if and only if gcd(M) = 1. Furthermore, it is easy to prove that if
M is submonoid of (N, +) such that M # {0} and ged(M) =d, then 4 = {% | m € M}

is a numerical semigroup. As a consequence, we deduce that the numerical semigroups
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classify, up to isomorphism, the set of all submonoids of (N, +) not equal to {0} (see
Proposition [I).

PROPOSITION 175. Let X be a nonempty subset of N\{0} and let ny,...,n,
be positive integers. Then Lin,...np} (X) is a numerical semigroup if and only if

gcd (XU{nl,...,np}) =1

PROOF. Necessity. Suppose that gcd (X U {m yeen ,np}) =d # 1. Then we deduce
(X) <

that ({d}) is a (n1,...,np)-bracelet that contain X and consequently Ly, . .} C

({d}). Hence Ly, ., (X) is not a numerical semigroup.

Sufficiency. Let A =XU (2X + {n1,...,np}). Itis clear that A C Ly, 1 (X).
If x belongs to X then ged {x,2x+ny,...,2x+n, } = ged{x,ny,...,n,}. Therefore
ged (A) = ged (XU {ni,...,np}) =1 and thus ged (L{nl,...,np} (X)) = 1. This proves

that Ly, ) (X) is a numerical semigroup. O

We say that a (ni,...,n,)-bracelet M is a numerical (np,...,n,)-bracelet if

gcd (M) =1 (i.e. N\M is finite). Recall that we denote by
N(ni,...,np) ={M € B(ni,...,np) | M is a numerical (ny,...,n,) — bracelet} .
As a consequence of Proposition and[I75| we obtain the following corollary.

COROLLARY 176. Let ny,...,n, be positive integers such that gcd {nl, e ,np} =
1. Then B(ny,...,np) = N(n1,...,n,) U{{0}}.

Our next goal is to study the case gcd{nl yeen ,np} # 1.

LEMMA 177. Let ny,...,n, be positive integers. If M is a (n1,...,n,)-bracelet
such that M # {0} then ged (M) |ged {n,...,n,}.

PROOF. Letx € M\{0}. Then we have that {x,2x+ny,...,2x+n, } C M and thus
ged (M) |ged {x,2x+n1,...,2x+n,} .

Since

gcd{x,2x+n1,...,2x+np} = gcd{x,nl,...,nl,}
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and
ged{x,n1,...,np}|ged{ni,....np},
we can conclude that ged (M) |ged {ny,...,n,}. O

LEMMA 178. Let M be a submonoid of (N, +) such that M # {0} and ged (M) = d.

Then M is a (ny,...,np)-bracelet if and only if% isa (%‘, . %”)-bmcelet.

PROOF. Necessity. If a,b € 4\ {0} then there exist x,y € M such that a = ¥
and b = %. Since by hypothesis M is a (ni,...,np)-bracelet we have that x +y +
{n1 ...,np} C M. In view of Lemma , we know that d|gcd{n1,...,np} and so
T4l (a2 C Y This proves that ¥ isa (2,...,°2)-bracelet.

Sufficiency. If a,b € M\ {0} then 4,2 € ¥ Since ¥ isa (Z,...,"2)-bracelet, we
deduce that f—1+§+{%,...,%” C %’1. Hence a+b+{n1 ...,np} C M and thus M is

a(ni,...,np)-bracelet. O

THEOREM 179. Let ny,...,n, be positive integers and let D be the set of all posi-
tive divisors of gcd {n1 yeen ,np}. Then
ni l’lp
B(m,..mp)\ {0} = J {as|se (... 20}
d d
deD
PROOF. Let M € B(ny,...,n,) such that M # {0} and ged (M) = d. Thus, by
applying Lemma and , we get that d is an element of D and %’ eN (';—1, ey %”).
For the other inclusion, take d € D and S € AL(%,...,"#). Then by Lemma we
have that dS € B (ni,...,np). O

We define in B (ny,...,n,)\ {{0}} the following equivalence relation & :
M R M’ if ged (M) = ged (M) .

The set of classes of elements of B(ny,...,n,)\{{0}} modulo & is denoted
by B(ni,...,n,)\{{0}} /R, and as a consequence of Theorem it is equal to
{{dS|SeN(%,....,”2)} |d € D}. In particular the previous set is a partition of

B(ni,...,np) \ {{0}}.
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EXAMPLE 180. Let us compute B (4,6)\ {{0}}. By using Theorem[179] we have
that B(4,6)\{{0}} = {S|SeAN(4,6)} U{25|S €N (2,3)}. Hence, in order to
compute B (4,6)\ {{0}} it is sufficient to compute the sets A_(4,6) and A(2,3).

2.3. The Frobenius variety of the numerical (ni,...,n,)-bracelet. We begin

with the following result.

PROPOSITION 181. Let ny,...,n, be positive integers. Then N (ni,...,n,) is a

Frobenius variety.

PROOF. First we have that A (n1,...,np) is not empty, because N is a numerical
(ni,...,np)-bracelet.

If S and T are in A[(n1,...,n,) with a and b elements of (SNT)\{0}, then a +
b+ {ni,...,n,} € SNT. Therefore SNT € N (ni,...,np).

Let S € AL (ni,...,np) such that S # N and let a,b € (SU{F(S)})\{0}. Ifa,b € §
thena+b+{ny,...,n,} CSCSU{F(S)}. IfF(S) € {a,b} thena+b+{ny,...,n,} C
{F(S)+1,—} CSCSU{F(S)}. Hence SU{F(S)} € A (n1,...,np). O

We define the graph G (A (n1,...,n,)) as follows:

(1) the vertices are the elements of A (ny,...,n,);
(2) anelement (S,5") € AL (n1,...,np) x N (n1,...,n,) is an edge if SU{F(S)} =
S

As a consequence of Proposition 21| and Theorem 23| we have the following result.

THEOREM 182. The graph G(N (ni,...,np)) is a tree rooted in N.

Moreover, the childs of S € N (ni,...,np) are the elements of the set
{S\{x} | x € msg(S), x > F(S) and S\{x} € N (n1,...,np) }.

The next result is well known.

LEMMA 183. Let M be a submonoid of (N, +) such that M # {0} and x € M. Then
M\{x} is a submonoid of (N, +) if and only if x € msg(M).
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PROPOSITION 184. Let M be a (ny,...,np)-bracelet and x € msg(M). Then
M\{x} is a (ni,...,np)-bracelet if and only if x— {ni,...,np} C (Z\M)Umsg(M)U
{0}.

PROOF. Necessity. 1If there exists i € {1,...,p} such that x —n; ¢ (Z\M) U
msg(M) U {0} then we deduce that x —n; = a+ b for some a,b € M\{0}. Hence
x=a+b+n; ¢ M\{x}. Since x ¢ {a,b} because x —n; = a+ b then we have that
a,b € M\{x,0} and a+b+n; ¢ M\{x}. It follows that M\{x} is not a (ny,...,n,)-
bracelet.

Sufficiency. Let a,b € M\ {x,0}. Then we have that a+ b + {nl,...,nl,} CM. If
there exists i € {1,...,p} such that a + b+ n; = x then we get that x —n; ¢ (Z\M) U
msg(M) U {0}, which is absurd. Therefore a+b+ {ni,...,n,} C M\{x} and thus
M\{x}isa (ny,...,np)-bracelet. O

EXAMPLE 185. We now draw part of the tree associated to the numerical (2,3)-
bracelets.
By using Theorem 182 and Proposition[184] we obtain the following:
. N has an only child N\{1} = (2,3),
. (2,3) has two childs (2,3)\{2} = (3,4,5) and (2,3)\{3} = (2,5),
(2,5) has an only child (2,5)\{5} = (2,7),
(2,7) has no childs,
(3,4,5) has tree childs (3,4,5)\{3} = (4,5,6,7), (3,4,5)\{4} = (3,5,7) and
(3,45\{5} = (3,4),
(3,4) has no childs,
. (3,5,7) has two childs (3,5,7)\{5} = (3,7,8) and (3,5,7)\{7} = (3,5),
(3,5) has no childs,
(3,7,8) has an only child (3,7,8)\{7} = (3,8, 10),
(3,8,10) has an only child (3,8,10)\{10} = (3,8,13),
(3,8,13) has no childs,
(4,5,6,7) has four childs



2. BRACELET MONOIDS AND NUMERICAL SEMIGROUPS 117

(1)=N

R

/N

(3,4,5) (2,5)

/TN \

(4,5,6,7) (3,5,7) (3,4) (2,7)

7D

(3,7,8) (3,5)

(3,8,10)

(3,8,13)

2.4. Minimal (n;,...,n,)-system of generators. Observe that the (infinite) inter-
section of elements in A (ny,...,n,) is not in general a numerical semigroup because,
as we already saw, (,en {0,7,—} = {0}. On the other hand the intersection of nume-

rical semigroups is always a submonoid of (N, +).

THEOREM 186. Let M be a submonoid of (N,+). The following conditions are
equivalent.
(1) Misa (n,...,np)-bracelet;

(2) M is an intersection of numerical (n1,...,np)-bracelets.

PROOF. 1) implies 2). For each positive integer k, we define Sy = M U {k,—}. It

is clear that Sy is a numerical (n1,...,n,)-bracelet and M = N 0} Sk-
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2) implies 1). Suppose that M = N;;S; such that S; a numerical (ny,...,np)-
bracelet, for every i € I. If a,b € M\{0} then a,b € S;\{0} and thus a + b +
{n,...,np} C S, forevery i € I. Hence a+ b+ {ni,...,n,} C M and consequently

M is a (ny,...,n,)-bracelet. O

If we apply Proposition|19{and Theorem to the Frobenius variety A (n1,...,np)
together with Theorem [186] we obtain the following result.

COROLLARY 187. Every (ny,...,np)-bracelet has a unique minimal (ny,...,n,)-

system of generators and this set is finite.
As a consequence of Proposition 21| we have the following.

COROLLARY 188. Let M be a (ny,...,np)-bracelet and x € M. The set M\{x} is
a (ni,...,np)-bracelet if and only if x belongs to the minimal (ny,...,np)-system of

generators of M.

Using Corollary it makes sense to define the (nj,...,n,)-rank of a
(n1,...,np)-bracelet M by the cardinality of its minimal (ny,...,n,)-system of ge-
nerators, which we will denote by (ny,...,n,)-rank(M).

We illustrate the previous results with an example.

EXAMPLE 189. Let S = (3,7,8). From Example we have that S is a (2,3)-
bracelet. By applying Proposition [184] and Corollary we obtain that {3,7} is the
minimal (2,3)-system of generators of S and thus (2,3)-rank(S) = 2.

We finish this section studding the (2, 3)-bracelet S with (2,3)-rank(S) equal to 1.

The next result is easy to prove by induction on &.

LEMMA 190. If k € N then {A2+u3|AueNandr+u<k} =
{xeN|2<x<3k}U{0}.

As an immediate consequence of Theorem[I73]and Lemma|[I90| we have the follo-

wing.
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PROPOSITION 191. If m is a positive integer, then
L3y ({m}) ={km+i| ke N\{0}, i €{0,2,3,...,3(k— 1)} }U{0}.
The following result is straightforward to prove.

LEMMA 192. Let S be a numerical semigroup and m € S\{0}. If
{a,a+1,...,a+m—1} C S then {a,—} CS.

The next result gives a formula for the Frobenius number of (2,3)-bracelet S with

(2,3)-rank(S) = 1.

COROLLARY 193. If m is a positive integer then F (L 3y ({m})) = (| %] +2) m+

PROOF. (1) Let k be a positive integer. By applying Proposition [191| we de-
duce that km+1 € Ly 3y ({m}) if and only if km + 1 = (k — 1)m + i for some
i€40,2,3,...,3(k—2)}. This is equivalenttom+1 € {0,2,3,...,3(k—2)}.

(2) Next we show that if km + 1 € L3y ({m}), then {km+1,—} C
Lipsy({m}). In fact, if km+ 1 € Lyp3y({m}) then by 1) we de-
duce that m + 1 < 3(k—2). Using a Proposition we obtain that
{k=1)m+2,(k—=1)m+3,...,(k—1)m+m+1} C L 31 ({m}). Follows
from Lemma 192 {(k — 1)m+2,—} C Ly 3} ({m}) and thus {km+1,—} C
L3y ({m}).

(3) Observe that from 1) we get that km + 1 ¢ Ly, 3y ({m}) if and only if m + 1 >
3(k—2). This is equivalent to m > 3(k —2). Thus it proves that km + 1 ¢
Li3) ({m}) if and only if &k < | % | +2.

(4) Now as a consequence of previous items we obtain that F (L{273} ({m})) =
(1%]+2)m+1.

O

We illustrate the preceding results with an example.
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EXAMPLE 194. Let us calculate the set of elements in L3y ({7}). In
view of Corollary we obtain that F(L3({7})) = 29. By using
Proposition we have that Ly ({7}) = {0} U {7} U (14+{0,2,3}) U
(214{0,2,3,4,5,6)) U (28+1{0,2,3,4,5,6,7,8,9)) U {30,—} and
thus Loy ({7) = {0,7,14,16,17,21,23,24,25,26,27,28,30,—} =
(7,16,17,25,26,27,36).

2.5. Indecomposable (ni,...,n,)-bracelets. We say that a (ny,...,n,)-bracelet
is indecomposable if it can not be expressed as an intersection of (np,...,n,)-bracelets
that contain it properly. As an immediate consequence of Theorem [I86] we have the

following result.

LEMMA 195. Every indecomposable (ni,...,n,)-bracelet is a numerical

(n1,...,np)-bracelet.

Observe that if S is a numerical semigroup, then N\S is finite and thus the set
of numerical semigroups containing S is also finite. Hence S can be expressed as
an intersection of numerical semigroups containing it properly if and only if § is a

intersection of finitely many numerical semigroups containing it properly.

LEMMA 196. A numerical (ni,...,np)-bracelet is indecomposable if it can not
be expressed as the intersection of two numerical (ny,...,ny,)-bracelets containing it
properly.

PROOF. Necessity. Trivial.

Sufficiency. Let S be a numerical (ny,...,n,)-bracelet. By applying the comment
preceding Lemma [196] if S is not indecomposable then there exist Sy,...,S; nume-
rical (ny,...,np)-bracelets that contain S properly and S = S;N---NSx. We can as-
sume that this decomposition is minimal in the sense of minimal number of numeri-
cal (ni,...,n,)-bracelets involved, that is, if j € {1,...,k} then ﬂle#jS,- #S. Let
Sa =81 N---NSk_1. From Proposition and by minimality of decomposition of S,
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we have that S, is a numerical (n1,...,n,)-bracelet such that S C S,. Hence S, and Sj

are numerical (n1,...,n,)-bracelets that contain S properly and S = S, N Sk. O

The next result is an adaptation of Theorem [I2] to the Frobenius variety
N(I’ll ...,np).

PROPOSITION 197. Let S € N[ (n; ...,n,). The following conditions are equiva-

lent:
(1) S is an indecomposable (ny,...,np)-bracelet;
(2) S is maximal in the set of all numerical (ny,...,n,)-bracelets with Frobenius
number F(S);
(3) S is maximal in the set of all numerical (ny,...,np)-bracelets that do not

contain F(S).

PROOF. 1) implies 2). Let S a numerical (ny,...,n,)-bracelet such that S C S and
F(S) = F(S). It is clear that S = (SU {F(S)}) NS and, by Proposition[181] we have that
SU{F(S)} is a numerical (np,...,n,)-bracelet. Hence, by Lemma we conclude
that S = S.

2) implies 3). Let S be a numerical (ny,...,n,)-bracelet fulfilling that S C S and
F(S) ¢ S. Applying Proposition[181] we deduce that ' = SU{F(S) + 1, —} is a nume-
rical (ny,...,np)-bracelet. As S C S’ and F(S) =F(S’) we obtain that S = §'. Therefore
S§=S§.

3) implies 1). Let S1 and S, be two numerical (n1,...,n,)-bracelets that contain S
properly. Then, by hypothesis, F(S) € S| and F(S) € S, this implies that F(S) € S1 NS,
and consequently S # S; N.S,. U

The following result is easy to prove.

LEMMA 198. Let S and S be two numerical semigroups such that S C S and let

x =max (S\S). Then SU{x} is a numerical semigroup.

The next result shows that Lemma is also true for the numerical (n1,...,n,)-

bracelets.
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LEMMA 199. Let S and S be two numerical (ny,...,np)-bracelets such that S C S

and let x = max (S\S). Then SU{x} is a numerical (ni,...,np)-bracelet.

PROOF. By using Lemma we know that SU {x} is a numerical semigroup.
To conclude the proof it suffices to show that, if a,b € (SU{x})\{0} then a + b +
{ni,...,n,} CSU{x}. We consider the following cases.
. Since 2x+ {ny,...,np} C S we get that 2x+ {ni,...,n,} C SU{x}.
If a € $\{0} then a+x+ {ny,...,n,} C S and so a+x+ {ni,...,np,} C
Su{x}.
Ifa,b e S\{0} thena+b+{ny,...,n,} CSCSU{x}.
0

THEOREM 200. Let S be a numerical (ny,...,n,)-bracelet. Then S is an indecom-
posable (n1,...,np)-bracelet if and only if for every x € N\ (SU{F(S)}) we have that

SU{x} isnota (ny,...,np)-bracelet.

PROOF. Necessity. Assume that SU {x} is a numerical (ni,...,n,)-bracelet. As

S = (SU{F(S)})N(SU{x}) we get that S can be expressed as the intersection of two

numerical (n1,...,np)-bracelet properly containing it. Consequently S is not an inde-
composable (ny,...,n,)-bracelet.
Sufficiency. If S is not an indecomposable (n1, ..., n,)-bracelet then, by Proposition

197| there exists a numerical (ny,...,n,)-bracelet S such that S C S and F(S) = F(S).
Let x = max (5\S) and so x € N\ (SU{F(S)}). In view of Lemma|[199 we deduce that

SU{x} a numerical (ny,...,n,)-bracelet. O

We illustrate the preceding theorem with an example.

EXAMPLE 201. Let us show that S = (4,9,10,15) is an indecomposable nume-
rical (1)-bracelet. Since S = {0,4,8,9,10,12,—}, then we get that F(S) = 11. By
applying Proposition we deduce that S is a numerical (1)-bracelet. Note that
N\ (SU{F(S)}) = {1,2,3,5,6,7}. It is clear that the sets SU {1}, SU{2}, SU{3}
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and SU {7} are not closed under addition and thus these sets are not numerical (1)-
bracelet. Nevertheless the sets SU {5} and SU {6} are numerical semigroups. Since
5454+1=11¢SU{5}and4+6+1=11¢ SU{6} these numerical semigroups are
not (1)-bracelet. In view of Theorem[200| we can conclude that S is an indecomposable

numerical (1)-bracelet.

Following the notation introduced in the Preliminaries, we say that a numerical
semigroup is irreducible if it cannot be expressed as the intersection of two numeri-
cal semigroups properly containing it. Clearly, if a numerical (ny,...,n,)-bracelet is
irreducible then it is indecomposable. The Example [201] show us that the converse is
not true. In fact S = (4,9,10,15) is an indecomposable (1)-bracelet and S is not an
irreducible numerical semigroup because S = (SU{5}) N (SU{6}).

The Theorem [200 allows to algorithmically determine, whether or not a given nu-
merical (ni,...,n,)-bracelet is indecomposable. Our next goal of this section is to
improve this result. To this purpose we introduce some concepts and results.

From Lemma [ 1] we easily deduce the next result.
PROPOSITION 202. Let S be a numerical semigroup and let n € S\{0}. Then
PF(S)={w—n|we€Ap(S,n) andw —w & S for allw' € Ap(S,n)\{w}}.

Given a numerical semigroup S, denote by SG(S) = {x € PF(S) | 2x € S}. Its ele-

ments will be called the special gaps of S. The following result is easy to prove.

LEMMA 203. Let S be a numerical semigroup and let x € N\S. Then x € SG(S) if

and only if SU{x} is a numerical semigroup.

PROPOSITION 204. Let my,...,my be positive integers such that S = (my, ... ,my)
is a numerical (ny,...,np)-bracelet and let x € SG(S). Then SU{x} is a (n1,...,np)-

bracelet if and only ifx+{x,m1,...,mq} + {nl,.‘.,np} CS.

PROOF. Necessity. Trivial.
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Sufficiency. Take a,b € (SU{x})\{0}, and let us prove thata+ b+ {ni,...,n,} C
SU{x}. We distinguish three different cases.
.Ifa,bESthena+b—|—{n1,...,np} CSCSU{x}.
) Ifa:b:xthena+b—l—{n1,...,np} :2x+{n1,...,np} CSCSU{x}.
. Ifa=xand b € S, then there exist s € Sand i € {1,...,q} such that b = m; +s,
because b # 0. Thereforea+b+{n1,...,np} :x+m,~+s—|—{n1,...,nl,} C
SCSU{x}.

Next we illustrate some of these results with an example

EXAMPLE  205. Let S = (5,12,19,26,33). Then S =
{0,5,10,12,15,17,19,20,22,24,25,26,27,29,30,31,32,33,—} and thus F(S) = 28.
It easy clear that S is a numerical (2)-bracelet such that Ap(S,5) = {0,12,19,26,33}.
By Proposition 202} we have that PF(S) = {7,14,21,28} and thus SG(S) = {21,28}.
Applying Lemma 203| we obtain that SU{21} and SU {28} are numerical semigroups.
Since 21+5+2 =28 ¢ S and 28 + {28,5,12,19,26,33} + {2} C S, by Proposition
204} we get that SU{21} is not a numerical (2)-bracelet and S U {28} is a numerical
(2)-bracelet.

As an immediate consequence of Theorem 200 and Proposition [204] we obtain the

following result.

COROLLARY 206. Let my,...,my be positive integers such that S = (my,...,my)
is a numerical (ny,...,np)-bracelet. Then S is an indecomposable (ni,...,n,)-

bracelet if and only if for every x € SG(S)\ {F(S)} we have that x+ {x,my,...,mq} +

{I’ll,...,l’lp} QS

Observe that as a consequence of previous corollary we can conclude that the nu-
merical (2)-bracelet S = (5,12,19,26,33) given in Example [205| is indecomposable
(2)-bracelet.
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