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STABILITY OF SYZYGY BUNDLES
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(Communicated by Bernd Ulrich)

Abstract. We show that given integers N , d and n such that N ≥ 2,

(N, d, n) 6= (2, 2, 5), and N + 1 ≤ n ≤
(

d+N

N

)

, there is a family of n monomials

in K [X0, . . . , XN ] of degree d such that their syzygy bundle is stable. Case
N ≥ 3 was obtained independently by Coandǎ with a different choice of fami-
lies of monomials [Coa09].

For (N, d, n) = (2, 2, 5), there are 5 monomials of degree 2 in K [X0,X1,X2]
such that their syzygy bundle is semistable.

1. Introduction

LetK be an algebraically closed field, R := K[X0, . . . , XN ] andm := (X0, . . . , XN ).
A syzygy bundle is defined as the kernel of an epimorphism

n
⊕

i=1

OPN (−di)
f1,...,fn

// OPN ,

given by (g1, . . . , gn) 7→ f1g1 + · · ·+ fngn, where f1, . . . , fn are homogeneous poly-
nomials in R of degrees d1, . . . , dn, respectively, such that the ideal (f1, . . . , fn) is
m-primary.

The main goal of this work is to give a complete answer to the following problem,
presented by Brenner in [Bre08b]:

Problem 1.1. Does there exist for every d and every n ≤
(

d+N

N

)

a family of n
monomials in R of degree d such that their syzygy bundle is semistable?

In [Bre08a], Brenner computes the maximal slope of a syzygy bundle given by
momnomials (see theorem 6.3). As a corollary, he deduces the following result
(corollary 6.4, in his paper), which will be used as a main tool here:

Proposition 1.2. Let {fi}i∈I be a family of monomials in R of degrees di, such
that the ideal (fi, i ∈ I) is m-primary. Suppose that, for every subset J ⊆ I, with
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|J | ≥ 2, the inequality
dJ −

∑

i∈J di

|J | − 1
≤

−
∑

i∈I di

|I| − 1

holds, where dJ is the degree of the highest common factor of the subfamily {fi}i∈J .
Then the syzygy bundle Syz(fi, i ∈ I) is semistable (and stable if strict inequality
holds for J ⊂ I).

Note that when monomials are of the same degree d, and making n := |I| and
k := |J |, the inequality in proposition 1.2 becomes

(1) (d− dJ )n+ dJ − dk ≥ 0.

Case N = 2 was solved in [CMMR10]. We refer to this paper’s introduction for
more information on the problem and matters involved. The results in the present
work are part of the first’s author PhD thesis [Mar09]. Case N ≥ 3 of the main
result, theorem 4.6, was obtained independently by Coandǎ with a different choice
of families of monomials [Coa09].

Let us now briefly explain how the paper is organized and how the families are
constructed.

In section 2, case N = 1 is solved both applying direct methods and making use
of the numerical criterion in proposition 1.2. In section 3, the tools to solve the
general case N ≥ 3 are presented, and in section 4 its different subcases are dealt
with. In the general case, we take the aproach described in the next paragraphs,
based on what was done in [CMMR10].

In general monomials in R of a given degree d can be represented in a hyperte-
trahedron. This hypertetrahedron is the graph whose vertexes are all monomials
of degree d, and where two monomials are connected by an edge if and only if
their greatest common divisor has degree d− 1. We shall call the ith face of this
hypertetrahedron the set of monomials where the variable Xi does not occur.

We will distinguish four cases, according to different values of n. Recall that we
have N + 1 ≤ n ≤

(

d+N
N

)

. For the first cases given by

N + 1 ≤ n ≤
(

d+N−1
N−1

)

+ 1,

we will show in lemma 3.2 that each family of n− 1 monomials in K[X0, . . . , XN−1]
whose syzygy bundle over PN−1 is stable yields a family of n monomials in R whose
syzygy bundle over PN is also stable. Cases

(

d+N−1
N−1

)

+ 1 < n ≤
(

d+N

N

)

−
(

d−1
N

)

are solved in proposition 4.1 by taking the Nth face and the vertex Xd
N of the

hypertetrahedron, and adding monomials in the remaining faces. Taking the set of
all the hypertetrahedron’s faces and adding the monomials in its interior which are
closest to the vertexes gives us a solution to the cases

(

d+N

N

)

−
(

d−1
N

)

< n ≤
(

d+N

N

)

−
(

d−1
N

)

+N + 1,

treated in proposition 4.2. The last cases, with
(

d+N

N

)

−
(

d−1
N

)

+N + 1 < n ≤
(

d+N

N

)

,

in lemma 4.4, are solved by taking a family of monomials of degree d−N − 1 whose
syzygy bundle is stable, multiplying them by X0 · · ·XN , and adding all monomials
in the faces of the hypertetrahedron. This is a generalisation of a lemma by Brenner,
made for the case N = 2 in his notes [Bre], which he kindly shared.



STABILITY OF SYZYGY BUNDLES 3

2. Stable syzygy bundles on the projective line

In this section a solution to problem 1.1 is presented for N = 1. If n = 2, we get
stability, since the syzygy bundle is a line bundle. For n ≥ 3, all vector bundles are
a sum of line bundles, and therefore cannot be stable. We get thus the result:

Theorem 2.1. Let d and n be integers such that 2 ≤ n ≤ d+1 and d is a multiple
of n− 1. Then there is a family of n monomials in K [X0, X1] of degree d such
that their syzygy bundle is semistable. It is stable for n = 2, and semistable, but
not stable, otherwise. If d is not a multiple of n− 1, there is no such family.

Moreover, if d is not a multiple of n− 1, and f1, . . . , fn is any family of ho-
mogeneous polynomials in K[X0, X1] of degree d such that the ideal (f1, . . . , fn) is
m-primary, their syzygy bundle Syz(f1, . . . , fn) is not semistable.

Proof. If n = d+ 1, if I :=
{

Xd
0 , X

d−1
0 X1, . . . , X

d
1

}

then the syzygy bundle Syz(I) is
semistable, but not stable. Indeed, if g is the greatest common divisor of monomials
in a subset J ⊆ I, all monomials in J are of the form gh, with h a monomial of
degree d− dJ , where dJ is the degree of g. There are d− dJ + 1 monomials of
degree d− dJ , so k := |J | ≤ d− dJ + 1. Now

(d− dJ )n+ dJ − dk ≥ (d− dJ )(d+ 1) + dJ − d(d − dJ + 1) = 0.

Therefore inequality (1) holds. In fact, if we consider the subfamily of monomials

J :=
{

Xd
0 , X

d−1
0 X1, . . . , X

d−dJ

0 XdJ

1

}

, we get equality, which means that the syzygy
bundle is not stable.

In general, for the remaining values of n, i.e. 3 ≤ n ≤ d, if f1, . . . , fn is a fam-
ily of homogeneous polynomials in K[X0, X1] such that the ideal (f1, . . . , fn) is
m-primary, their syzygy bundle Syz(f1, . . . , fn) has rank n− 1 and first Chern
class c1

(

Syz(f1, . . . , fn)
)

= −dn. By Grothendieck theorem, there are integers

a1, . . . , an−1 such that Syz(f1, . . . , fn) ∼=
⊕n−1

i=1 OPN (ai) which is semistable if and
only if a1 = · · · = an−1. Therefore

(n− 1)a1 = a1 + · · ·+ an−1 = c1
(

Syz(f1, . . . , fn)
)

= −dn,

and since n and n− 1 are coprime, d is a multiple of n− 1. We have thus found a
necessary condition for such a syzygy bundle to be semistable.

Now for the converse, suppose d is a multiple of n− 1, say d = (n− 1)e, with
e ∈ Z, and consider the set

I :=
{

Xd
0 , X

(n−2)e
0 Xe

1 , X
(n−3)e
0 X2e

1 , . . . , Xe
0X

(n−2)e
1 , Xd

1

}

.

Here we can get an isomorphism Syz(I) ∼= OPN (−ne)n−1 by sending standard vec-
tors to

(

0, . . . , Xe
1 , −Xe

0 , . . . , 0
)

. Therefore, Syz(I) is a semistable bundle. Since in
cases n = 2 and n = d+ 1, d is also a multiple of n− 1, we have the result. �

3. Some tools for the general case

As we have said in the introduction, case N = 2 was solved in [CMMR10]. Let
us now consider case N ≥ 3. We start with some tools and definitions we will need,
and deal with the several cases in the next section.

Remark 3.1. If we use the notation ad,j := − jd
j−1 , inequality (1) is equivalent to

dJ

k−1 + ad,k ≤ ad,n. The fact that once d is fixed, the sequence (ad,j)j≥2 is mono-

tonically increasing will be useful in many arguments.
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Lemma 3.2. If N ≥ 3, N + 1 ≤ n ≤
(

d+N−1
N−1

)

+ 1, and I′ is a family of n− 1

monomials in K [X0, . . . , XN−1] of degree d such that their syzygy bundle is stable,
then I := I′ ∪

{

Xd
N

}

is a family of n monomials in R of degree d whose associated
syzygy bundle is stable.

Proof. Note that the ideal generated by I is primary. Let J ⊆ I be a subset with
at least two monomials. If J ⊆ I′, then by hypotheses, inequality (1) holds. If not,
then Xd

N ∈ J , and since J has at least another monomial, where the variable XN

does not occur and dJ = 0, so inequality (1) holds, for the sequence (ad,j)j≥2 is

monotonically increasing. �

A direct application of this lemma which will become handy for proofs to follow
is to take the whole Nth face and add Xd

N to obtain a well-behaved family again.
To this end, let us state the case of the highest possible n, which has already been
proved by Flenner in characteristic zero [Fle84], by Ballico [Bal92], and by Brenner
[Bre08a], using his own criterion.

Proposition 3.3. For any N ≥ 2, Syz
({

X i0
0 · · ·X iN

N : i0 + · · ·+ iN = d
})

is stable

on P
N .

Proof. Let I :=
{

X i0
0 · · ·X iN

N : i0+· · ·+iN = d
}

. If g is the greatest common divisor
of monomials in a subset J ⊆ I, all monomials in J are of the form gh, with h a
monomial of degree d− dJ , where dJ is the degree of g. There are

(

N+d−dJ

d−dJ

)

monomials of degree d− dJ , so k = |J | ≤
(

N+d−dJ

d−dJ

)

. Now

(d− dJ)n+ dJ − dk = (d− dJ)
(

d+N

N

)

+ dJ − d
(

d−dJ+N

N

)

> 0,

which can be proved by induction on N . Therefore inequality (1) holds. �

Now using lemma 3.2 and this proposition, we get

Proposition 3.4. For any N ≥ 3, the syzygy bundle associated to the family
{

X i0
0 · · ·X

iN−1

N−1 : i0 + · · ·+ iN−1 = d
}

∪
{

Xd
N

}

is stable on P
N .

In what follows, except when stated otherwise, we will adopt the following:

Strategy 3.5. For each given d and n, we choose a set of n monomials I such that
for 0 < dJ < d, no monomial of degree dJ divides a greater number of monomials
in I than XdJ

0 .

Remark 3.6. If J ⊂ I, with k := |J | ≥ 2, and dJ is the degree of the greatest
common divisor of monomials in J , to verify that I satisfies inequality (1), we can
assume 0 < dJ < d, since the fact that J has at least two elements makes dJ 6= d,
and for dJ = 0, the fact that the sequence (ad,j)j≥2 is monotonically increasing

is enough. We may also assume that J has all multiples of its greatest common
divisor, since if a degree dJ is fixed, the higher k is, the harder it is to guarantee
inequality (1).

Finally let us define the set of all faces of the hypertetrahedron.

Definition 3.7. Let FN,d denote the family of monomials

FN,d :=
{

X i0
0 · · ·X iN

N : i0 + · · ·+ iN = d and i0 · · · iN = 0
}

.

We can easily see that the cardinality of FN,d is
(

d+N
N

)

−
(

d−1
N

)

.
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4. Stable syzygy bundles on the projective space

In this section, we use the tools of the previous one to prove our main result
(theorem 4.6).

Proposition 4.1. Let N ≥ 3, d ≥ 2 and
(

d+N−1
N−1

)

+ 1 < n ≤
(

d+N
N

)

−
(

d−1
N

)

. Then
there is a family of n monomials in R of degree d whose associated syzygy bundle
is stable.

Proof. The upper bound considered for n in this proposition becomes
(

d+N
N

)

when

d− 1 < N . In case n =
(

d+N

N

)

we know the statement is true by proposition 3.3.
Otherwise, let 1 ≤ r ≤ min(d− 1, N) and 0 ≤ l ≤ d− r − 1 be such that

(

d+N
N

)

−
(

d−r+N
N

)

+
(

l+N−1
N−1

)

< n ≤
(

d+N
N

)

−
(

d−r+N
N

)

+
(

l+N
N−1

)

,

and let I ′r :=
{

X
j0
0 · · ·XjN

N : j0 + · · · + jN = d and jN−r+1 · · · jN = 0
}

. This set

contains all monomials in faces N − r + 1 to N , and |I ′r| =
(

d+N
N

)

−
(

d−r+N
N

)

. Now
let I ′′r,l be the set of the monomials in face N − r with degree in XN greater than

d− r − l that do not belong to I ′r, i.e. the ones of type

XN−r+1 · · ·XN−1X
d−r−l+1
N f ,

where f is a monomial of degree l where the variable XN−r does not occur. There-

fore
∣

∣

∣
I ′′r,l

∣

∣

∣
=

(

l+N−1
N−1

)

. Let 1 ≤ i ≤
(

l+N−1
N−2

)

be such that

n =
(

d+N
N

)

−
(

d−r+N
N

)

+
(

l+N−1
N−1

)

+ i,

and let I ′′′r,l be a set of i monomials of degree d in R of the form

XN−r+1 · · ·XN−1X
d−r−l
N f ,

where f is a monomial of degree l + 1, where variables XN−r and XN do not occur.
Let us choose these monomials in such a way that the degrees of X0 in these f are
as large as possible. Let I := I ′r ∪ I ′′r,l ∪ I ′′′r,l. Since I ′r ∪ I ′′r,l is a set for which the

claim in strategy 3.5 is true, the way we choose the monomials for I ′′′r,l guarantees
that strategy 3.5 can be applied to I.

As always, it is enough to verify inequality (1) for 0 < dJ < d (see strategy 3.5).
We shall see the cases 0 < dJ ≤ l, dJ = l + 1 and l + 1 < dJ < d separately.

Case 1: dJ ≤ l. In this case, if k is the number of multiples of XdJ

0 in I, we have

k =
(

d−dJ+N
N

)

−
(

d−dJ−r+N
N

)

+
(

l−dJ+N−1
N−1

)

+min
[

i,
(

l−dJ+N−1
N−2

)

]

.

Therefore

(d− dJ)n+ dJ − dk ≥ (d− dJ)
[

(

d+N
N

)

−
(

d−r+N
N

)

+
(

l+N−1
N−1

)

]

+ dJ

− d
[

(

d−dJ+N

N

)

−
(

d−dJ−r+N

N

)

+
(

l−dJ+N−1
N−1

)

]

− dJ
(

l−dJ+N−1
N−2

)

.

Concluding this case amounts to showing that this last expression is positive. To
do this, set

T (N, d, dJ , r, l) := (d− dJ )
[

(

d+N

N

)

−
(

d−r+N

N

)

+
(

l+N−1
N−1

)

]

+ dJ

− d
[

(

d−dJ+N
N

)

−
(

d−dJ−r+N
N

)

+
(

l−dJ+N−1
N−1

)

]

− dJ
(

l−dJ+N−1
N−2

)

.
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Let us start by showing that T increases with r:

T (N, d, dJ , r + 1, l)− T (N, d, dJ , r, l) = (d− dJ)
(

d−r+N−1
N−1

)

− d
(

d−dJ−r+N−1
N−1

)

Note that if r > d− dJ , then
(

d−dJ−r+N−1
N−1

)

= 0, in which case this expression is
clearly positive. Otherwise, we get

T (N,d, dJ , r + 1, l)− T (N, d, dJ , r, l) =

= 1
(N−1)!

[

(d− dJ )(d− r + 1)
N−1
∏

s=2

(d− r + s)− d(d− dJ − r + 1)
N−1
∏

s=2

(d− dJ − r + s)

]

.

This last expression is non-negative, since

(d− dJ )(d− r + 1)− d(d− dJ − r + 1) = (r − 1)dJ ≥ 0,

and d− r + s > d− dJ − r + s. We can therefore look at the case r = 1, since if T
is positive in this case, it will always be positive. Let us see now that T (N, d, dJ , 1, l)
increases with l. Suppose dJ ≤ l ≤ d− 3. We get

T (N,d, dJ , 1, l + 1) − T (N,d, dJ , 1, l) =

=
1

(N − 2)!

[

(d− dJ)
N−1
∏

s=2

(l + s)−
[

d(l − dJ + 2) + dJ (N − 2)
]

N−2
∏

s=2

(l − dJ + s+ 1)

]

.

This last expression is never negative, since for N = 3 we have

T (3, d, dJ , 1, l+ 1)− T (3, d, dJ , 1, l) = (d− l − 3)dJ ≥ 0,

and for N ≥ 4 we can write

T (N,d, dJ , 1, l+1)−T (N, d, dJ , 1, l) =
1

(N − 2)!

[

(d− dJ )(l + 2)(l +N − 1)

N−2
∏

s=3

(l + s)

−
[

d(l − dJ + 2) + dJ (N − 2)
]

(l − dJ + 3)

N−2
∏

s=3

(l − dJ + s+ 1)

]

This is not negative, since

(d− dJ )(l +N − 1)(l + 2)−
[

d(l − dJ + 2) + dJ (N − 2)
]

(l − dJ + 3) =

= (d− l − 3)l(N − 2) + (l − dJ)
2(N − 3) + 2(d− l)(N − 3)

+ 5(l− dJ )(N − 3) + 2(d− l − 1)(l − dJ )(dJ − 1)

+ (d− l− 3)dJ
2 + l(l − dJ )(dJ − 1) + 3(d− l − 2)(dJ − 1)

+ (l − dJ)(dJ − 1) + (d− l − 3) + 3(dJ − 1)(dJ + 1),

which is non-negative, and for 3 ≤ s ≤ N − 2 we have l + s ≥ l − dJ + s+ 1.
Therefore we can look at the case l = dJ , for if T is positive in this case, it will

always be positive. We look at two cases separately: d > 2dJ and d ≤ 2dJ . In the
former, we get

T (N,d, dJ , 1, dJ ) = (d− dJ)
[

(

d+N−1
N−1

)

+
(

dJ+N−1
N−1

)

]

− d
(

d−dJ+N−1
N−1

)

− d− dJ(N − 2)

= 1
(N−1)!

[

(d− dJ )(d+ 1)(d+ 2)

N−1
∏

s=3

(d+ s)− d(d− dJ + 1)(d− dJ + 2)

N−1
∏

s=3

(d− dJ + s)

+ (d− 2dJ )

(

N−1
∏

s=1

(dJ + s)− (N − 1)!

)

+ dJ

(

N−1
∏

s=1

(dJ + s)−N !

)]

.
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Now

(d− dJ)(d+ 1)(d+ 2)− d(d − dJ + 1)(d− dJ + 2) =

= (d− 2dJ )d · dJ + (d− 2dJ)dJ
2 + 2dJ

(

dJ
2 − 1

)

,

which is never negative, and we always have d+ s > d− dJ + s. Furthermore we

can see that
∏N−1

s=1 (dJ + s)−N ! ≥
∏N−1

s=1 (1 + s)−N ! = 0, and the term

(d− 2dJ)
[

∏N−1
s=1 (dJ + s)− (N − 1)!

]

is strictly positive. Therefore T is positive

in this case.
In case d ≤ 2dJ , since 1 ≤ dJ = l ≤ d− 2, we get d ≥ 3, and therefore dJ ≥ 2.

We can write

T (N,d, dJ , 1, dJ ) = (d− dJ)
[

(

d+N−1
N−1

)

+
(

dJ+N−1
N−1

)

]

− d
(

d−dJ+N−1
N−1

)

− d− dJ(N − 2)

= 1
(N−1)!

[

(d− dJ )(d+ 1)(d+ 2)

N−1
∏

s=3

(d+ s)− d(d− dJ + 1)(d− dJ + 2)

N−1
∏

s=3

(d− dJ + s)

+ (d− dJ)(dJ + 1)

N
∏

s=3

(dJ − 1 + s)− 2dJ

N
∏

s=3

s

]

+ 2dJ − d.

Now if we observe that

(d− dJ)(d+ 1)(d+ 2)− d(d − dJ + 1)(d− dJ + 2) =

= d(d− dJ − 1)dJ + (d− 2)dJ > 0,

we see that the difference

(d− dJ )(d+ 1)(d+ 2)

N−1
∏

s=3

(d+ s)− d(d− dJ + 1)(d− dJ + 2)

N−1
∏

s=3

(d− dJ + s)

is strictly positive. Finally, since d− dJ ≥ 2, we get (d − dJ)(dJ + 1) − 2dJ ≥
2(dJ + 1)− 2dJ > 0, and

(d− dJ)(dJ + 1)

N
∏

s=3

(dJ − 1 + s)− 2dJ

N
∏

s=3

s > 0.

Therefore T is positive also in this case, and hence it is always positive.

Case 2: dJ = l + 1. To count the multiples of XdJ

0 , i.e. X l+1
0 , in I ′, we count all

possible multiples of X l+1
0 and subtract the ones of the form X l+1

0 fXN−r+1 · · ·XN ,

where f is a monomial of degree d− l − 1− r. We get
(

d−l−1+N
N

)

−
(

d−l−1−r+N
N

)

.

In I ′′ there is only one multiple of XdJ

0 , namely X l+1
0 XN−r+1 · · ·XN−1X

d−r−l
N .

Therefore if k is the number of multiples of XdJ

0 in I, we have

k =
(

d−l−1+N

N

)

−
(

d−l−1−r+N

N

)

+ 1.

we get

(d− dJ)n+ dJ − dk = (d− l − 1)
[

(

d+N
N

)

−
(

d−r+N
N

)

+
(

l+N−1
N−1

)

+ i
]

+ l+ 1− d
[

(

d−l−1+N
N

)

−
(

d−l−1−r+N
N

)

+ 1
]

≥ (d− l − 1)
[

(

d+N

N

)

−
(

d−r+N

N

)

+
(

l+N−1
N−1

)

+ 1
]

+ l+ 1− d
[

(

d−l−1+N
N

)

−
(

d−l−1−r+N
N

)

+ 1
]
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= (d− l − 1)
[

(

d+N
N

)

−
(

d−r+N
N

)

+
(

l+N−1
N−1

)

]

− d
[

(

d−l−1+N

N

)

−
(

d−l−1−r+N

N

)

]

Again all we have to do is to prove that this expression is positive. Let

U(N, d, r, l) := (d− l− 1)
[

(

d+N

N

)

−
(

d−r+N

N

)

+
(

l+N−1
N−1

)

]

− d
[(

d−l−1+N

N

)

−
(

d−l−1−r+N

N

)]

,

and, as we did in the previous case, let us see that this expression increases with r.

U(N, d, r + 1, l)− U(N, d, r, l) =

= 1
(N−1)!

[

(d− l − 1)(d− r + 1)

N−1
∏

s=2

(d− r + s)− d(d− l − r)

N−1
∏

s=2

(d− l − 1− r + s)

]

.

This is never negative, since (d− l− 1)(d− r+1)− d(d− l− r) = (l+1)(r− 1) ≥ 0,
and for 2 ≤ s ≤ N − 1, d− r + s ≥ d− l − 1− r + s. Therefore, to see that U is
positive, it is enough to check the case r = 1.

U(N, d, 1, l) = (d− l− 1)
[

(

d+N−1
N−1

)

+
(

l+N−1
N−1

)

]

− d
(

d−l+N−2
N−1

)

= 1
(N−1)!

[

(d− l − 1)(d+ 1)(d+ 2)

N−1
∏

s=3

(d+ s)

]

− 1
(N−1)!

[

d(d− l)(d− l + 1)
N−1
∏

s=3

(d− l − 1 + s)− (d− l − 1)
N−1
∏

s=1

(l + s)

]

Since

(d− l− 1)(d+ 1)(d+ 2)− d(d− l)(d− l + 1) =

= d(d− l − 2)l+ d(d − l− 2) + (d− 2)l+ (d− 2) ≥ 0,

and (d− l − 1)
∏N−1

s=1 (l + s) > 0, we get that U is positive.

Case 3: dJ > l + 1. In this case, we shall use induction on r. For r = 1, we get
that all multiples of XdJ

0 in I are in I ′1, and since I ′1 ∪ I ′′1,0 is the set mentioned in
proposition 3.4, inequality (1) is satisfied for I ′1 ∪ I ′′1,0. The fact that the sequence
(ad,j)j≥2 is monotonically increasing guarantees that inequality (1) is also satisfied

for I.
For the induction step, suppose that for a given r, inequality (1) is satisfied

for I ′r ∪ I ′′r,d−r−1 ∪ I ′′′r,d−r−1. Note that I ′r+1 ∪ I ′′r+1,0 = I ′r ∪ I ′′r,d−r−1 ∪ I ′′′r,d−r−1, if

we consider the maximum possible i, so that I ′′′r,d−r−1 has cardinality
(

d−r+N−2
N−2

)

.

Then again the fact that the sequence (ad,j)j≥2 is monotonically increasing guar-

antees that inequality (1) is also satisfied for I (see remark 3.1), since all multiples

of XdJ

0 belong to I ′r+1. �

When d = N + 1, the proposition above leaves out only one monomial, namely
X0 · · ·XN . Proposition 3.3 shows that for n =

(

d+N
N

)

=
(

2N+1
N

)

, the whole hyperte-
trahedron is a family whose associated syzygy bundle is stable. For d > N + 1, the
next proposition starts with FN,d (recall definition 3.7) and adds at most N + 1
monomials.
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Proposition 4.2. Let N ≥ 3, d > N + 1 and
(

d+N

N

)

−
(

d−1
N

)

< n ≤
(

d+N

N

)

−
(

d−1
N

)

+N + 1.

Then there is a family of n monomials in R of degree d whose associated syzygy
bundle is stable.

Proof. Let 1 ≤ i ≤ N + 1 be such that n =
(

d+N

N

)

−
(

d−1
N

)

+ i, and let I ′ be the set
of the first i monomials in the sequence

(

Xd−N
0 X1 · · ·XN , X0X

d−N
1 X2 · · ·XN , . . . , X0 · · ·XN−1X

d−N
N

)

.

Let I := FN,d ∪ I ′. Let us check that inequality (1) holds for 0 < dJ < d. Since I

satisfies strategy 3.5, we can look only at multiples of XdJ

0 .

If d−N < dJ < d, all multiples ofXdJ

0 belong to FN,d, and since, by the previous
proposition, inequality (1) holds for FN,d, the fact that the sequence (ad,j)j≥2 is

monotonically increasing guarantees that inequality (1) holds for I.

If 1 < dJ ≤ d−N the number of multiples of XdJ

0 is k :=
(

d−dJ+N
N

)

−
(

d−dJ

N

)

+1,
and we get

(d− dJ)n+ dJ − dk = (d− dJ)
[(

d+N

N

)

−
(

d−1
N

)

+ i
]

+ dJ − d
[(

d−dJ+N

N

)

−
(

d−dJ

N

)

+ 1
]

≥ (d− dJ )
[(

d+N

N

)

−
(

d−1
N

)

+ 1
]

+ dJ − d
[(

d−dJ+N

N

)

−
(

d−dJ

N

)

+ 1
]

= (d− dJ )
[(

d+N

N

)

−
(

d−1
N

)]

− d
[(

d−dJ+N

N

)

−
(

d−dJ

N

)]

.

Let

V (d, dJ , N) := (d− dJ)
[

(

d+N
N

)

−
(

d−1
N

)

]

− d
[

(

d−dJ+N
N

)

−
(

d−dJ

N

)

]

.

If we look at V as a function on dJ , its second derivative is

− 2d
N ! ·

∑

1≤s<t≤N





N
∏

t6=r 6=s
r=1

(d− dJ + r)−

N
∏

t6=r 6=s
r=1

(d− dJ −N + r)



 .

Since this is negative for dJ ∈ [1, d−N ], the function’s minimum in this interval is
at one of its ends. (Note that we are dealing with the case 1 < dJ ≤ d−N , and
therefore the lowest value for dJ is 2, and not 1, but for the sake of simplicity in
calculations, we can look at 1 ≤ dJ ≤ d−N .) For dJ = 1, we get

V (d, 1, N) = 1
N!

[

(d− 1)(d+ 1)(d+ 2)
N
∏

s=2

(d+ s)− d
2(d+ 1)

N
∏

s=2

(d− 1 + s)

]

+
(

d−1
N

)

.

This is clearly positive, since (d− 1)(d+ 1)(d+ 2)− d2(d+ 1) = (d− 2)(d+ 1) > 0.
For dJ = d−N , we get

V (d, d−N, N) = 1
N!

[

N(d+ 1)(d+ 2)
N
∏

s=3

(d+ s)

]

−
1
N!

[

N(d−N)(d−N + 1)
N
∏

s=3

(d−N − 1 + s) + d(N + 1)(N + 2)
N
∏

s=3

(N + s)

]

+ d.

This is easily seen to be positive, since

N(d+ 1)(d+ 2)−N(d−N)(d−N + 1)− d(N + 1)(N + 2) =

= (d−N)N(N − 2) + (d−N)(N − 2) > 0,

which means thatN(d+ 1)(d+ 2) > N(d−N)(d−N + 1) + d(N + 1)(N + 2), and
for 3 ≤ s ≤ N , d+ s > d−N − 1 + s and d+ s > N + s.
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Finally, if dJ = 1, the number of multiples of XdJ

0 is k :=
(

d−1+N

N

)

−
(

d−1
N

)

+ i,
and we get

(d− dJ)n+ dJ − dk = (d− 1)
[

(

d+N
N

)

−
(

d−1
N

)

+ i
]

+ 1− d
[

(

d−1+N
N

)

−
(

d−1
N

)

+ i
]

= (d− 1)
[

(

d+N

N

)

−
(

d−1
N

)

]

− d
[

(

d−1+N

N

)

−
(

d−1
N

)

]

+ 1− i

≥ (d− 1)
[

(

d+N
N

)

−
(

d−1
N

)

]

− d
[

(

d−1+N
N

)

−
(

d−1
N

)

]

−N

= d
(

d+N−1
N−1

)

−
(

d+N

N

)

+
(

d−1
N

)

−N =
(

d− d+N
N

) (

d+N−1
N−1

)

+
(

d−1
N

)

−N.

This is positive, since d− d+N
N

= (d−2)(N−1)+N−2
N

> 0, and
(

d−1
N

)

≥
(

N+1
N

)

> N .
Therefore inequality (1) strictly holds in all cases, so the syzygy bundle associated

to I is stable. �

For some computations in the next proof, we will need a result which is a simple
consequence of the fact that for any numbers a, b1, . . . , bn,

p
∏

s=1

(a+ bs) =

p
∑

s=0

∑

1≤t1<···<ts≤p

ap−sbt1 · · · bt1 .

Note that ifN ≥ 1 and d ≥ 0, we get
(

d+N
N

)

−
(

d−1
N

)

= N+1
(N−1)!d

N−1 + positive terms.

Lemma 4.3. Let N ≥ 1 and d ≥ 0. Then
(

d+N

N

)

−
(

d−1
N

)

≥ N+1
(N−1)!d

N−1.

The following lemma will be the key to prove our main result.

Lemma 4.4. Let N ≥ 3, d > N + 1, and
(

d+N

N

)

−
(

d−1
N

)

< n ≤
(

d+N

N

)

. If I ′ is a
family of

n′ := n−
[

(

d+N
N

)

−
(

d−1
N

)

]

monomials in R of degree d′ := d−N − 1 such that their syzygy bundle is stable,
then

I := FN,d ∪
{

X0 · · ·XNf : f ∈ I ′
}

is a family of n monomials in R of degree d whose associated syzygy bundle is stable.

Proof. Let J ⊂ I, with k := |J | ≥ 2, and let dJ be the degree of the greatest com-
mon divisor g of monomials in J . Let i be number of the variables that do not
occur in g, say Xα1

, . . . , Xαi
. Then J intersects exactly i faces of FN,d, with

0 ≤ i ≤ N , since we are assuming J has all multiples of g that belong to I (see re-
mark 3.6). Now we know that the number of all monomials that are multiples of g is
(

d−dJ+N

N

)

. Since the multiples of g that do not belong to any of the i faces that in-

tersect J can be written as fgXα1
· · ·Xαi

, its number is
(

d−dJ+N−i
N

)

. Then exactly
(

d−dJ+N
N

)

−
(

d−dJ+N−i
N

)

of its monomials are in FN,d, and the remaining admit a
greatest common divisor of degree dJ + i, and come from a subset J ′ ⊆ I ′, admit-
ting a greatest common divisor of degree dJ′ ≥ dJ −N − 1 + i. Since N + 1− i

faces of FN,d do not intersect J , its greatest common divisor is multiple of the
variables that are not present in those faces, and consequently dJ ≥ N + 1− i. Let

k′ := |J ′| = k −
[

(

d−dJ+N
N

)

−
(

d−dJ+N−i
N

)

]

.
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Observe that
[

d′ − (dJ −N − 1 + i)
]

n′ + (dJ −N − 1 + i)− d′k′ ≥ (d′ − dJ′)n′ + dJ′ − d′k′,

and the last expression is strictly positive, since I ′ satisfies inequality (1). We can
see that

(d− dJ)n+ dJ − dk =
[

d′ − (dJ −N − 1 + i)
]

n′ + (dJ −N − 1 + i)− d′k′

+ P (n′, k′, N, d, dJ , i) +Q(N, d, dJ , i),

where

P (n′, k′, N, d, dJ , i) = i (n′ − k′) + (N + 1− i)
[

(

d−dJ+N−i
N

)

− k′ + 1
]

and

Q(N, d, dJ , t) = (d−dJ)
[

(

d+N

N

)

−
(

d−1
N

)

]

−d
(

d−dJ+N

N

)

+(d−N−1+ t)
(

d−dJ+N−t

N

)

.

Now P is clearly positive, since
(

d−dJ+N−i
N

)

is the highest possible cardinality for J ′.
If we can guarantee that Q(N, d, dJ , i) is non-negative, inequality (1) is strictly
satisfied.

Suppose dJ = 1. In this case, we have i = N , since dJ ≥ N + 1− i. Therefore we

get Q(N, d, 1, N) = (N−2)d+d−N

d

(

d−1+N

N

)

, and this expression is positive for N ≥ 3.
Now suppose dJ ≥ 2. Since the last term in Q vanishes for a > d− dJ , we shall

consider the cases i ≤ d− dJ and i > d− dJ separately.

Case 1: i ≤ d− dJ . Since

Q(N, d, dJ , t+ 1)−Q(N, d, dJ , t) = − (N−1)(d−N−2)+t(N+1)+(dJ−2)
d−dJ−t

(

d−dJ+N−t−1
N

)

,

and this is negative, we know that Q decreases as t gets higher. Therefore we should
pay attention to the highest value of i, that is i = min(N, d− dJ ).

Let us start with the case d = N + 2. In this case, i = N + 2− dJ , and

Q(N, N + 2, dJ , N + 2− dJ) = (N + 2− dJ)
(

2N+2
N

)

− (N + 2)
(

2N+2−dJ

N

)

−N2 − 2N +NdJ + 1.

If we look at this as a function on dJ , its second derivative is

−2 · N+2
N ! ·

∑

1≤s<t≤N

∏

1≤r≤N
t6=r 6=s

(N + 2− dJ + r).

Since this is negative for dJ ∈ [2, N + 1], the function’s minimum in this interval is
at one of its ends. For dJ = 2, we have

Q(N, N + 2, 2, N) = 3N2−2N−4
N+2

(

2N
N

)

−N2 + 1,

and this is positive for N ≥ 3. For dJ = N + 1, we have

Q(N, N + 2, N + 1, 1) =
(

2N+2
N

)

− (N + 2)
(

N+1
N

)

−N + 1

≥
(

2N+2
3

)

− (N + 2)(N + 1)−N + 1

= 1
3

(

4N3 + 3N2 − 10N − 3
)

,

and this is also positive for N ≥ 3.

Now, for general d ≥ N + 2, we shall see two subcases separately, namely
N ≤ d− dJ and N > d− dJ .
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Subcase 1.1: N ≤ d− dJ . Looking at Q(N, d, dJ , N) as a function on dJ again,
its second derivative is

− 2
N ! ·

∑

1≤s<t≤N



d ·

N
∏

t6=r 6=s
r=1

(d− dJ + r) − (d− 1) ·

N
∏

t6=r 6=s
r=1

(d− dJ −N + r)



 .

This is negative for dJ ∈ [2, d−N ], since d− dJ + r ≥ d− dJ −N + r ≥ 1 for
1 ≤ r ≤ N . Therefore the function’s minimum in this interval is at one of its ends.
If dJ = 2, we get

Q(N, d, 2, N) = 1
N ! (2d

2N + dN2 − 2d2 − 5dN − 2N2 + 2d+ 2N)
N−2
∏

r=1

(d+ r)

− 1
N !(N − 1)

N
∏

r=1

(d−N − 1 + r).

We will show that this expression is positive by induction on N . For N = 3, we get

Q(3, d, 2, 3) = 1
3d

[

d2 + 6(d− 4) + 5
]

> 0.

Now

Q(N + 1, d, 2, N + 1) = d+N−1
N+1 Q(N, d, 2, N)

+ 1
(N+1)!

[

2
(

d2 + dN − 2d− 2N
)

N−1
∏

r=1

(d+ r)

−(d2 − 2dN2 − d+ 2N3 −N2 +N)

N−1
∏

r=1

(d−N + r)

]

.

Since

2
(

d2 + dN − 2d− 2N
)

−
(

d2 − 2dN2 − d+ 2N3 −N2 +N
)

=

2(d−N)N2 + d(d− 3) + 2(d− 1)N + (N − 3)2 + 3(N − 3) > 0,

and d+ r > d−N + r we get the result.
If dJ = d−N , we get

Q(N, d, d−N, N) = N
[

(

d+N
N

)

−
(

d−1
N

)

]

− d
(

2N
N

)

+ d− 1.

If we look at this expression now as a function on d, its second derivative is

2
(N−1)! ·

∑

1≤s<t≤N





N
∏

t6=r 6=s
r=1

(d+ r)−

N
∏

t6=r 6=s
r=1

(d−N − 1 + r)



 > 0,

since d+ r ≥ d−N − 1 + r ≥ 1 for 1 ≤ r ≤ N . This means its first derivative in-
creases with d. When we evaluate this first derivative at d = N + 2, we get

(2) 1
(N−1)!

N
∑

s=1





N
∏

r 6=s
r=1

(N + 2 + r) −
N
∏

r 6=s
r=1

(1 + r)



 −
(

2N
N

)

+ 1.

Note that, except for the last term in the sum, the last factor of the first product
is 2(N + 1), and the last factor of the second is N + 1. Splitting the last term in
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the sum and factoring out the last factor of both products, this becomes

N+1
(N−1)!

N−1
∑

s=1



2 ·

N−1
∏

r 6=s
r=1

(N + 2 + r)−

N−1
∏

r 6=s
r=1

(1 + r)





+ 1
(N−1)!

[

N−1
∏

r=1

(N + 2 + r)−

N−1
∏

r=1

(1 + r)

]

−
(

2N
N

)

+ 1,

and this can be rearranged as

N+1
(N−1)!

N−1
∑

s=1





N−1
∏

r 6=s
r=1

(N + 2 + r) −

N−1
∏

r 6=s
r=1

(1 + r)





+ 1
(N−1)!

[

N−1
∏

r=1

(N + 2 + r)−

N−1
∏

r=1

(1 + r)

]

+ 1
N !





N−1
∑

s=1

(N + 1)N

N−1
∏

r 6=s
r=1

(N + 2 + r) −

N
∏

r=1

(N + r)



 + 1.

Now the first two terms are clearly positive and for the third one we can see that

(N + 1)N

N−1
∑

s=1

N−1
∏

r 6=s
r=1

(N + 2 + r)−

N
∏

r=1

(N + r)

≥ (N + 1)2N

N−2
∏

r=1

(N + 2 + r)−

N
∏

r=1

(N + r)

= (N + 1)2N

N−2
∏

r=1

(N + 2 + r) − 2N(2N − 1)

N−2
∏

r=1

(N + r) > 0,

since (N + 1)2N > 2N(2N − 1) > 1 for N ≥ 3, and N + 2 + r > N + r > 1 for
1 ≤ r ≤ N − 2. Therefore all the expressions are positive, and we see that Q in-
creases with d. Since we have already seen that Q is positive for the first value
d = N + 2, we have that Q is positive in this case.

Subcase 1.2: N > d− dJ . Looking once more at Q(N, d, dJ , N) as a function
on dJ , its second derivative is

− 2d
N ! ·

∑

1≤s<t≤N

N
∏

t6=r 6=s
r=1

(d− dJ + r).

This is negative for dJ ∈ [d−N, d− 1], since d− dJ + r ≥ 1 for 1 ≤ r ≤ N .
Therefore the function’s minimum in this interval is at one of its ends. If dJ = d−N ,
we are exactly in the same situation as before, so we already know that Q is non-
-negative. If dJ = d− 1, we get

Q(N, d, d− 1, N) =
(

d+N
N

)

−
(

d−1
N

)

− d(N + 1).
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Therefore, if we apply lemma 4.3, we get

Q(N, d, d− 1, N) ≥ N+1
(N−1)!d

N−1 − d(N + 1)

≥ (N+1)N−1

(N−1)! d− d(N + 1)

> (N + 1)d− d(N + 1) = 0.

Case 2: i > d− dJ . In this case, we get dJ > d−N , since i ≤ N . Let us start
again with the case d = N + 2. In this case, 3 ≤ dJ ≤ N + 1, and

Q(N, N + 2, dJ , i) = (N + 2− dJ )
[

(

2N+2
N

)

−
(

N+1
N

)

]

− (N + 2)
(

2N+2−dJ

N

)

.

If we look at this as a function on dJ , its second derivative is

−2 · N+2
N ! ·

∑

1≤s<t≤N

∏

t6=r 6=s
1≤r≤N

(N + 2− dJ + r).

Since this is negative for dJ ∈ [3, N + 1], the function’s minimum in this interval is
at one of its ends. For dJ = 3, we have

Q(N, N + 2, 3, i) = 7N2−8N−8
N+2

(

2N−1
N

)

−N2 + 1,

and this is positive for N ≥ 3. For dJ = N + 1, we have

Q(N, N + 2, N + 1, i) =
(

2N+2
N

)

− (N + 3)(N + 1)

≥
(

2N+2
3

)

− (N + 3)(N + 1) = 1
3

(

4N3 + 3N2 − 10N − 9
)

,

and this is also positive for N ≥ 3.
In general, for d ≥ N + 2, we get

Q(N, d, dJ , i) = (d− dJ )
[

(

d+N

N

)

−
(

d−1
N

)

]

− d
(

d−dJ+N

N

)

.

Looking at this expression as a function on dJ , its second derivative is

− 2d
N ! ·

∑

1≤s<t≤N

N
∏

t6=r 6=s
r=1

(d− dJ + r) ≤ 0.

Since this is negative for dJ ∈ [d−N, d− 1], the function’s minimum in this interval
is again at one of its ends.

For dJ = d−N , we have

Q(N, d, d−N, i) = N
[

(

d+N
N

)

−
(

d−1
N

)

]

− d
(

2N
N

)

.

If we look at this expression now as a function on d, its second derivative is

2
(N−1)! ·

∑

1≤s<t≤N





N
∏

t6=r 6=s
r=1

(d+ r)−

N
∏

t6=r 6=s
r=1

(d−N − 1 + r)



 > 0,

since d+ r ≥ d−N − 1 + r ≥ 1 for 1 ≤ r ≤ N . This means its first derivative in-
creases with d. When we evaluate this first derivative at d = N + 2, we get

1
(N−1)!

N
∑

s=1





N
∏

r 6=s
r=1

(N + 2 + r)−

N
∏

r 6=s
r=1

(1 + r)



 −
(

2N
N

)

.
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this is the same expression as (2) above, except for the final term (+1). Since this
term is ignored in the argument that follows, we arrive to the same conclusions
here, and guarantee that Q is positive.

For dJ = d− 1, we have

Q(N, d, d− 1, i) =
(

d+N

N

)

−
(

d−1
N

)

− d(N + 1).

Again we can apply lemma 4.3, and get

Q(N, d, d− 1, i) ≥ N+1
(N−1)!d

N−1 − d(N + 1)

>
(N+1)N−1

(N−1)! d− d(N + 1) > (N + 1)d− d(N + 1) = 0.

We have verified that Q(N, d, dJ , i) is positive in all cases, so inequality (1) is
strictly satisfied, and I is a family of n monomials whose associated syzygy bundle
is stable. �

The main theorem of this work can now be stated. The fact that for the case
N = 2 problem 1.1 is solved (except for the case d = 2 and n = 5) [CMMR10],
combined with the results in this section, will allow us to assert its main theorem.
To get round that exception, we can see a particular case.

Lemma 4.5. The syzygy bundle associated to the family of quadric monomials
I :=

{

X2
0 , X

2
1 , X

2
2 , X

2
3 , X0X1, X2X3

}

is stable.

Proof. Note that the ideal generated by I is primary, and that the relevant sets
to verify inequality (1) have two elements and a linear greatest common divisor.
Therefore

(d− dJ)n+ dJ − dk = (2− 1) · 6 + 1− 2 · 2 = 3 > 0,

so stability is guaranteed. �

Theorem 4.6. Let N , d and n be integers such that N ≥ 2, (N, d, n) 6= (2, 2, 5),

and N + 1 ≤ n ≤
(

d+N

N

)

. Then there is a family of n monomials in K [X0, . . . , XN ]
of degree d such that their syzygy bundle is stable.

For (N, d, n) = (2, 2, 5), there are 5 monomials of degree 2 in K [X0, X1, X2] such
that their syzygy bundle is semistable.

Proof. Case N = 2 was already stated in theorem 3.5 in [CMMR10]. For N ≥ 3,
this can be done by induction on N . For N = 3, lemma 3.2 gives us an answer for

4 ≤ n ≤
(

d+2
2

)

+ 1,

except for the case where d = 2 and n = 6, for which we have lemma 4.5; proposi-
tion 4.1 takes care of the cases

(

d+2
2

)

+ 1 < n ≤
(

d+3
3

)

−
(

d−1
3

)

;

proposition 4.2 gives an answer for
(

d+3
3

)

−
(

d−1
3

)

< n ≤
(

d+3
3

)

−
(

d−1
3

)

+ 4;

finally, lemma 4.4 takes care of all other cases.
Now if we suppose the answer is positive for some N , lemma 3.2 provides a

positive answer for the first cases of N + 1, and proposition 4.1, proposition 4.2,
and lemma 4.4 take care of the rest. �
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(Gemma ColomÈ-Nin, Teresa Cortadellas BenÌtez, Juan Elias, and Santiago Zarzuela,
eds.), University Lecture Series, vol. 42, American Mathematical Society, Providence,
RI, 2008, pp. 1–71.

[CMMR10] Laura Costa, Pedro Macias Marques, and Rosa Maŕıa Miró-Roig, Stability and un-
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de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Espanya

E-mail address: pmm@uevora.pt

URL: home.uevora.pt/∼pmm
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