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EXISTENCE OF POSITIVE SOLUTIONS FOR A
FOURTH-ORDER MULTI-POINT BEAM PROBLEM ON

MEASURE CHAINS

DOUGLAS R. ANDERSON, FELIZ MINHÓS

Abstract. This article concerns the fourth-order multi-point beam problem

(EIW∆∇)∇∆(x) = m(x)f(x, W (x)), x ∈ [x1, xn]X

W (ρ2(x1)) =

n−1X
i=2

aiW (xi), W∆(ρ2(x1)) = 0,

(EIW∆∇)(σ(xn)) = 0, (EIW∆∇)∇(σ(xn)) =

n−1X
i=2

bi(EIW∆∇)∇(xi).

Under various assumptions on the functions f and m and the coefficients ai and
bi we establish the existence of one or two positive solutions for this measure

chain boundary value problem using the Green’s function approach.

1. Introduction

The aim of this work is to obtain sufficient conditions for the existence of positive
solutions of the measure chain fourth-order multi-point boundary value problem
composed by the equation

(EIW∆∇)∇∆(x) = m(x)f(x, W (x)) for all x ∈ [x1, xn]X (1.1)

and the multi-point boundary conditions

W (ρ2(x1)) =
n−1∑
i=2

aiW (xi), W∆(ρ2(x1)) = 0,

(EIW∆∇)(σ(xn)) = 0, (EIW∆∇)∇(σ(xn)) =
n−1∑
i=2

bi(EIW∆∇)∇(xi),

(1.2)

on a measure chain X, n ≥ 4. The boundary points satisfy x1 ∈ Xκ2 and xn ∈ Xκ2

with ρ2(x1) < x2 < · · · < xn−1 < σ(xn), while f : X×[0,∞) → [0,∞) is continuous,
I : [ρ(x1), σ(xn)]X → (0,∞) is left-dense continuous and E > 0 is constant. The
mass function m : [ρ(x1), σ(xn)]X → [0,∞) is right-dense continuous, not identically
zero on [x2, x3]X and the non-negative coefficients ai and bi satisfy the non-resonant
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conditions
∑n−1

i=2 ai < 1 and
∑n−1

i=2 bi < 1. Physically, the motivation for this fourth-
order problem is a nonuniform cantilever beam of length L in transverse vibration
such that the left end is clamped and the right end is free with vanishing bending
moment and shearing force. Let E be the modulus of elasticity, I(x) the area
moment of inertia about the neutral axis and m(x) the mass per unit length of the
beam. After separation of variables, the space-variable problem is formulated as

(EI(x)W ′′(x))′′ = m(x)W (x), for all x ∈ [0, L],

W (0) = W ′(0) = (EIW ′′)(L) = (EIW ′′)′(L) = 0 ;
(1.3)

see Meirovitch [14, 15].
Throughout this work we assume a working knowledge of measure chains (time

scales) and measure chain notation, where any arbitrary nonempty closed subset of
R can serve as a measure chain X. See Hilger [11] for an introduction to measure
chains; other excellent sources on delta dynamic equations include [5, 6], and for
nabla dynamic equations, see [4]. For more on beam and other fourth-order con-
tinuous problems we refer to the recent papers [1, 9, 16, 17, 18], and for functional
boundary value problems see [7, 8]. Related to fourth-order dynamic equations, see
[2, 3, 12, 19]. However, as far as we know, this is the first time where multi-point
boundary conditions as in (1.2) are considered in fourth order nonlinear problems
on time scales.

The second section contains some preliminary lemmas needed to evaluate explic-
itly the unique solution W of a related fourth-order equation, by a Green’s function
approach, and to prove some properties of W . Section three provides some suffi-
cient conditions on the nonlinearity to obtain the existence and the multiplicity of
positive solutions, via index theory in cones. Two examples are referred in the last
section, to illustrate the existence of multiple positive solutions.

2. Foundational lemmas

For the related fourth-order multi-point boundary value problem composed by
the equation

(EIW∆∇)∇∆(x) = y(x), x ∈ [x1, xn]X, (2.1)

with y : [x1, xn]X → R right-dense continuous, and boundary conditions (1.2), it is
referred [2, Theorem 7.1], where the Green’s function G(x, s) for the corresponding
homogeneous equation

(EIW∆∇)∇∆(x) = 0 (2.2)

satisfying boundary conditions

W (ρ2(x1)) = W∆(ρ2(x1)) = 0,

(EIW∆∇)(σ(xn)) = (EIW∆∇)∇(σ(xn)) = 0,
(2.3)

is given, for (x, s) ∈ [ρ2(x1), σ2(xn)]X × [ρ(x1), σ(xn)]X, by

G(x, s) =


∫ s

ρ2(x1)

( ∫ ζ

ρ2(x1)
x−ξ

EI(ξ)∇ξ
)
∆ζ s ∈ [ρ(x1), x]X, x ≤ σ2(xn),∫ x

ρ2(x1)

( ∫ ζ

ρ2(x1)
s−ξ

EI(ξ)∇ξ
)
∆ζ s ∈ [x, σ(xn)]X, x ≥ ρ2(x1).

(2.4)
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Example 2.1. Consider the Green’s function (2.4) for ρ2(x1) = 0 and σ2(xn) = 1,
with EI(x) ≡ 1. Then we have the following continuous and discrete illustrations:

X = R : G(x, s) =


s2(3x−s)

6 s ∈ [0, x], x ∈ [0, 1],
x2(3s−x)

6 s ∈ [x, 1], x ∈ [0, 1],

X = hZ : G(x, s) =

{
s(s−h)(3x−s−h)

6 s ∈ [h, x]hZ, x ≤ 1,

x(x−h)(3s−x−h)
6 s ∈ [x, 1− h]hZ, x ≥ 0,

where for 0 < h << 1 we have hZ = {0, h, 2h, . . . , 1− h, 1}.

This Green’s function satisfies the following properties.

Lemma 2.2 ([3]). For all (x, s) ∈ [ρ2(x1), σ2(xn)]X × [ρ(x1), σ(xn)]X, the Green’s
function given by (2.4) is increasing in x and satisfies

0 ≤ G(x, s) ≤ G
(
σ2(xn), s

)
. (2.5)

Now we prove an existence and uniqueness result.

Lemma 2.3. Assume the coefficients ai and bi in (1.2) are real non-negative num-
bers that satisfy the non-resonant conditions

0 ≤
n−1∑
i=2

ai < 1, 0 ≤
n−1∑
i=2

bi < 1. (2.6)

If y ∈ Crd[ρ(x1), σ(xn)]X, then the nonhomogeneous dynamic equation (2.1) with
boundary conditions (1.2) has a unique solution W defined by

W (x) =
∫ σ(xn)

ρ(x1)

G(x, s)y(s)∆s+A(y)+B(y)
∫ x

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ, (2.7)

where G(x, s) is the Green’s function (2.4) related with the boundary value problem
(2.2), (2.3) and the positive constants A(y) and B(y) are given by

A(y) =
(
1−

n−1∑
i=2

ai

)−1 n−1∑
i=2

ai

( ∫ σ(xn)

ρ(x1)

G(xi, s)y(s)∆s

+ B(y)
∫ xi

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ

) (2.8)

and

B(y) =
(
1−

n−1∑
i=2

bi

)−1 n−1∑
i=2

bi

∫ σ(xn)

xi

y(s)∆s. (2.9)

Proof. First, we consider equation (2.1) together with conditions

W (ρ2(x1)) = A, W∆(ρ2(x1)) = 0

(EIW∆∇)(σ(xn)) = 0, (EIW∆∇)∇(σ(xn)) = B.
(2.10)

It is clear that any solution of problem (2.1), (2.10) can be expressed for some
constants A and B as

W (x) = u(x) + Av(x) + Br(x),
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where u is the unique solution of problem value problem (2.1), (2.3), v is the unique
solution of (2.2) with boundary conditions

v(ρ2(x1)) = 1, v∆(ρ2(x1)) = (EIv∆∇)(σ(xn)) = (EIv∆∇)∇(σ(xn)) = 0,

and r is the unique solution of (2.2) with boundary conditions

(EIr∆∇)∇(σ(xn)) = 1, r(ρ2(x1)) = r∆(ρ2(x1)) = (EIr∆∇)(σ(xn)) = 0.

One can verify directly that these functions are

u(x) =
∫ σ(xn)

ρ(x1)

G(x, s)y(s)∆s, v(x) ≡ 1, r(x) =
∫ x

ρ2(x1)

∫ ζ

ρ2(x1)

ξ − σ(xn)
EI(ξ)

∇ξ∆ζ.

It is clear that W∆(ρ2(x1)) = 0 and (EIW∆∇)(σ(xn)) = 0. To satisfy the two
other boundary conditions in (1.2), we must have at σ(xn) that

−B =
(
1−

n−1∑
i=2

bi

)−1 n−1∑
i=2

∫ σ(xn)

xi

y(s)∆s,

and at ρ2(x1) that

A =
n−1∑
i=2

ai

( ∫ σ(xn)

ρ(x1)

G(xi, s)y(s)∆s + A−B

∫ xi

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ

)
.

Solving, we arrive at the expression (2.7) for A(y) given in (2.8). �

For problem (2.1),(1.2) the following maximum principle holds.

Lemma 2.4. Assume that (2.6) holds. If y ∈ Crd[ρ(x1), σ(xn)]X with y ≥ 0
on [ρ(x1), σ(xn)]X, the unique solution W as in (2.7) of the problem (2.1), (1.2)
satisfies W (x) ≥ 0 for x ∈ [ρ2(x1), σ2(xn)]X.

Proof. From Lemma 2.3, problem (2.1), (1.2) has a unique solution W given by
(2.7) and, by Lemma 2.2, the Green’s function (2.4) satisfies G(x, s) ≥ 0 on the set
[ρ2(x1), σ2(xn)]X×[ρ(x1), σ(xn)]X. The result is a direct consequence of assumption
(2.6) and the fact that A(y), B(y) ≥ 0. �

Lemma 2.5. Assume that (2.6) holds. If y ∈ Crd[ρ(x1), σ(xn)]X with y ≥ 0 on
[ρ(x1), σ(xn)]X, then the unique solution W of the time scale boundary value problem
(2.1), (1.2), given by (2.7), satisfies

min
x∈[x2,x3]X

W (x) = W (x2) ≥ γ‖W‖,

where

γ :=

∫ x2

ρ2(x1)

∫ ζ

ρ2(x1)
σ(xn)−ξ

EI(ξ) ∇ξ∆ζ∫ σ(xn)

ρ2(x1)

∫ ζ

ρ2(x1)
σ2(xn)−ξ

EI(ξ) ∇ξ∆ζ
∈ (0, 1), (2.11)

and
‖W‖ := max

x∈[ρ2(x1),σ2(xn)]X
W (x) = W (σ2(xn)).

Proof. Using Lemma 2.2 and (2.7), we conclude that for all x ∈ [ρ2(x1), σ2(xn)]X,

W (x) ≤
∫ σ(xn)

ρ(x1)

G
(
σ2(xn), s

)
y(s)∆s+A(y)+B(y)

∫ σ2(xn)

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ.
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For x ∈ [x2, x3]X, from Lemma 2.2 the Green’s function (2.4) satisfies

G(x, s)
G(σ2(xn), s)

≥ G(x2, s)
G(σ2(xn), s)

≥

∫ x2

ρ2(x1)

∫ ζ

ρ2(x1)
σ(xn)−ξ

EI(ξ) ∇ξ∆ζ∫ σ(xn)

ρ2(x1)

∫ ζ

ρ2(x1)
σ2(xn)−ξ

EI(ξ) ∇ξ∆ζ
= γ (2.12)

for γ as in (2.11), and the constant A(y) in (2.8) satisfies A(y) ≥ γA(y) since
γ ∈ (0, 1) and A(y) ≥ 0. Thus for x ∈ [x2, x3]X, we have

W (x) =
∫ σ(xn)

ρ(x1)

G(x, s)
G(σ2(xn), s)

G(σ2(xn), s)y(s)∆s + A(y)

+ B(y)
∫ x

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ

≥
∫ σ(xn)

ρ(x1)

γG(σ2(xn), s)y(s)∆s + γA(y)

+ B(y)
∫ x2

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ

=
∫ σ(xn)

ρ(x1)

γG(σ2(xn), s)y(s)∆s + γA(y)

+ γB(y)
∫ σ(xn)

ρ2(x1)

∫ ζ

ρ2(x1)

σ2(xn)− ξ

EI(ξ)
∇ξ∆ζ

=
∫ σ(xn)

ρ(x1)

γG(σ2(xn), s)y(s)∆s + γA(y)

+ γB(y)
∫ σ2(xn)

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ

= γW (σ2(xn)) = γ‖W‖.

This completes the proof. �

3. Existence of Positive Solutions

In this section some criteria are identified whereby the existence of positive so-
lutions to the multi-point boundary value problem (1.1), (1.2) can be established,
where f : X× [0,∞) → [0,∞) is continuous such that the limits

f0 := lim
y→0+

f(x, y)
y

, f∞ := lim
y→∞

f(x, y)
y

,

exist uniformly for x ∈ [x1, xn]X.
In the sequel it is assumed that the right-dense continuous mass function m

satisfies

m : [ρ(x1), σ(xn)]X → [0,∞), ∃ x∗ ∈ (x2, x3)X : m(x∗) > 0. (3.1)

Let B denote the Banach space C[ρ2(x1), σ2(xn)]X with the norm

‖W‖ = sup
x∈[ρ2(x1),σ2(xn)]X

|W (x)|.
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Define the cone P ⊂ B by

P =
{
W ∈ B : W (x) ≥ 0 on [ρ2(x1), σ2(xn)]X, W (x) ≥ γ‖W‖ on [x2, x3]X

}
,
(3.2)

where γ is given in (2.11). Since W is a solution of (1.1), (1.2) if and only if it
satisfies equation (2.7) replacing in this case y(s) by m(s)f(s,W (s)), define for
W ∈ P the operator L : P → B by

LW (x) =
∫ σ(xn)

ρ(x1)

G(x, s)m(s)f(s,W (s))∆s + A(mf(·,W )) +
(
1−

n−1∑
i=2

bi

)−1

×
( n−1∑

i=2

bi

∫ σ(xn)

xi

m(s)f(s,W (s))∆s
) ∫ x

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ.

(3.3)
By Lemmas 2.4 and 2.5, L : P → P. Moreover, L is completely continuous by a
typical application of the Ascoli-Arzela Theorem.

Lemma 3.1 ([10, 13]). Let P be a cone in a Banach space S and B an open,
bounded subset of S with BP := B∩P 6= ∅ and BP 6= P . Assume that L : BP → P
is a compact map such that y 6= Ly for y ∈ ∂BP , and the following results hold:

(i) If ‖Ly‖ ≤ ‖y‖ for y ∈ ∂BP , then iP (L,BP ) = 1.
(ii) If there exists an η ∈ P\{0} such that y 6= Ly + λη for all y ∈ ∂BP and all

λ > 0, then iP (L,BP ) = 0.
(iii) Let U be open in P such that UP ⊂ BP . If iP (L, BP ) = 1 and iP (L,UP ) =

0, then L has a fixed point in BP \UP ; the same is true if iP (L,BP ) = 0
and iP (L,UP ) = 1.

For the cone P given in (3.2) and any positive real number r, define the convex
set

Pr := {W ∈ P : ‖W‖ < r},
and, for γ in (2.11), the set

Ωr :=
{
W ∈ P : min

x∈[x2,x3]X
W (x) < γr

}
.

Lemma 3.2 ([13]). The set Ωr has the following properties:
(i) Ωr is open relative to P.
(ii) Pγr ⊂ Ωr ⊂ Pr.
(iii) W ∈ ∂Ωr if and only if minx∈[x2,x3]X W (x) = γr.
(iv) If W ∈ ∂Ωr, then γr ≤ W (x) ≤ r for x ∈ [x2, x3]X.

For G(x, s) in (2.4) and A(y) in (2.8) with y replaced by the mass function m,
consider the constant K given by

K :=
∫ σ(xn)

ρ(x1)

G(σ2(xn), s)m(s)∆s + A(m)

+
(
1−

n−1∑
i=2

bi

)−1( n−1∑
i=2

bi

∫ σ(xn)

xi

m(s)∆s
) ∫ σ2(xn)

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ

(3.4)
and

fr
γr := min

W∈[γr,r]

{
min

x∈[x2,x3]X

f(x,W )
r

}
, fr

0 := max
W∈[0,r]

{
max

x∈[ρ(x1),σ(xn)]X
fracf(x,W )r

}
.
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The next two lemmas present sufficient conditions on f to evaluate the index of
L.

Lemma 3.3. Let K be as in (3.4). If fr
0 < 1/K holds, then iP (L, Pr) = 1.

Proof. From (2.8),
|A(mf(·,W ))| ≤ A(m)‖f(·,W )‖.

For W ∈ ∂Pr, by (3.3) and Lemma 2.2,

(LW )(x) =
∫ σ(xn)

ρ(x1)

G(x, s)m(s)f(s,W (s))∆s + A(mf(·,W )) + (1−
n−1∑
i=2

bi)−1

×
( n−1∑

i=2

bi

∫ σ(xn)

xi

m(s)f(s,W (s))∆s
) ∫ x

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ

≤ ‖f(·,W )‖
[ ∫ σ(xn)

ρ(x1)

G(σ2(xn), s)m(s)∆s + A(m) +
(
1−

n−1∑
i=2

bi

)−1

×
( n−1∑

i=2

bi

∫ σ(xn)

xi

m(s)∆s
) ∫ σ2(xn)

ρ2(x1)

∫ ζ

ρ2(x1)

σ(xn)− ξ

EI(ξ)
∇ξ∆ζ

]
< (r/K)K = r = ‖W‖.

It follows that for W ∈ ∂Pr, ‖LW‖ < ‖W‖. By Lemma 3.1 (i), iP (L, Pr) = 1. �

Lemma 3.4. Let

M−1 :=
∫ x3

x2

G(x2, s)m(s)∆s. (3.5)

If the inequality fr
γr > Mγ is satisfied, then iP (L,Ωr) = 0.

Proof. Let η(x) ≡ 1 for x ∈ [ρ2(x1), σ2(xn)]X, so that η ∈ ∂P1. Suppose there exist
W∗ ∈ ∂Ωr and λ∗ ≥ 0 such that W∗ = LW∗ + λ∗η. Then for x ∈ [x2, x3]X,

W∗(x) = (LW∗)(x) + λ∗η(x)

≥
∫ x3

x2

G(x, s)m(s)f(s,W∗(s))∆s + λ∗

> Mγr

∫ x3

x2

G(x2, s)m(s)∆s + λ∗ = γr + λ∗,

with γ given in (2.11), and, by Lemma 3.2 (iv), this contradiction is obtained:
γr > γr + λ∗. Consequently, W∗ 6= LW∗ + λ∗η for W∗ ∈ ∂Ωr and λ∗ ≥ 0, so, by
Lemma 3.1 (ii), iP (L,Ωr) = 0. �

Theorem 3.5. Let γ, K and M be as given in (2.11), (3.4) and (3.5), respectively.
Assume that one of the following assumptions holds:
there exist constants c1, c2, c3 ∈ R with 0 < c1 < γc2 and c2 < c3 such that

(H1) fc1
0 , f c3

0 ≤ 1/K, fc2
γc2

> Mγ

or there exist constants c1, c2, c3 ∈ R with 0 < c1 < c2 < γc3 such that
(H2) fc1

γc1
, f c3

γc3
≥ Mγ, fc2

0 < 1/K.
Then the multi-point problem (1.1), (1.2) has two positive solutions in P, given by
(3.2).
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Proof. Assume (H2) holds (the case for (H1) is similar and is omitted). We show
that either L has a fixed point in ∂Ωc1 or in Pc2\Ωc1 . From Lemma 3.4 , if W 6= LW
for W ∈ ∂Ωc1 ∪ ∂Ωc3 , then iP (L,Ωc1) = 0 and iP (L,Ωc3) = 0. Since fc2

0 ≤ 1/K
and W 6= LW for W ∈ ∂Pc2 , Lemma 3.3 implies that iP (L, Pc2) = 1. By Lemma
3.2 (ii), Ωc1 ⊂ Pc1 ⊂ Pc2 . From Lemma 3.1 (iii), L has a fixed point in Pc2\Ωc1 . In
the same way Pc2 ⊂ Pγc3 ⊂ Ωc3 and L has a fixed point in Ωc3\P c2 . �

For a ∈ {0+,∞} define

fWa := lim inf
W→a

min
x∈[x2,x3]X

f(x,W )
W

, fa
W := lim sup

W→a
max

x∈[ρ(t1),σ(xn)]X

f(x,W )
W

.

Corollary 3.6. Suppose there exists a positive constant c such that either one the
following to conditions holds:

(H1’) 0 ≤ f0
W , f∞W < 1/K, fc

γc > Mγ;
(H2’) M < fW0, fW∞ ≤ ∞, fc

0 < 1/K.
Then problem (1.1), (1.2) has two positive solutions in P.

Proof. Since (H1’) implies (H1) and (H2’) implies (H2), the result follows. �

The proofs of the following two results are similar to those given above and are
omitted.

Theorem 3.7. Assume that there exist constants c1, c2 ∈ R with 0 < c1 < γc2

such that
(H3) fc1

0 ≤ 1/K and fc2
γc2

≥ Mγ,
or that there exist constants c1, c2 ∈ R with 0 < c1 < c2 such that

(H4) fc1
γc1

≥ Mγ and fc2
0 ≤ 1/K.

Then problem (1.1), (1.2) has a positive solution.

Corollary 3.8. Suppose either one of the following conditions holds:
(H3’) 0 ≤ f0

W < 1/K and Mγ < fW∞ ≤ ∞;
(H4’) 0 ≤ f∞W < 1/K and Mγ < fW0 ≤ ∞.

Then problem (1.1), (1.2) has a positive solution.

4. Examples

In the first example, for γ, K, and M given by (2.11), (3.4), and (3.5), respec-
tively, assume positive constants c1, c2, c3 ∈ R such that c1 < γc2, c2 < c3 and

c1

K
≤ Mγc2 + δ ≤ c3

K
,

for some δ > 0. Consider a particular case of equation (1.1) given by

(EIW∆∇)∇∆(x) = m(x)f(W ) for all x ∈ [x1, xn]X, (4.1)

where

f(W ) =


1
K W if W ∈ [0, c1],
Mγc2+δ− c1

K

γc2−c1
(W − c1) + c1

K if W ∈ [c1, γc2],
c3
K −Mγc2−δ

c3−γc2
(W − c3) + c3

K if W ≥ γc2.

As f satisfies assumption (H1), by Theorem 3.5, problem (4.1), (1.2) has two posi-
tive solutions.
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For the second example consider, on the time scale X = [0, 1], the boundary
value problem composed by the equation

W (4)(x) = x
(x

5
+ (W (x))2

)
, for x ∈ X, (4.2)

with the boundary conditions

W (0) = 0.2W
(1

3

)
+ 0.5W

(2
3

)
,

W ′(0) = 0, W ′′(1) = 0,

W ′′′(1) = 0.1W ′′′
(1

3

)
+ 0.3W ′′′

(2
3

)
.

(4.3)

In fact this is a particular case of the initial problem (1.1), (1.2), with EI(x) ≡ 1,
m(x) = x, f(x,W (x)) = x

5 + (W (x))2, n = 4, ρ(x) = x, σ(x) = x, x2 = 1
3 and

x3 = 2
3 . Applying the Green’s function given in Example 2.1, then K = 0.72921,

γ = 14
27 and M = 2916

11 .
For c1 = 1

2070 , c2 = 1 and c3 = 552 assumption (H2) holds and, by Theorem 3.5,
problem (4.2), (4.3) has two positive solutions in the cone

P =
{
W ∈ C([0, 1]) : W (x) ≥ 0 on [0, 1] and W (x) ≥ 14

27
||W || on [

1
3
,
2
3
]
}
.

References

[1] D. R. Anderson and R. I. Avery; A fourth-order four-point right focal boundary value prob-

lem, Rocky Mountain Journal of Mathematics, 36:2 (2006) 367–380.
[2] D. R. Anderson, G. Sh. Guseinov and J. Hoffacker; Higher-order self adjoint boundary value

problems on time scales, Journal of Computational and Applied Mathematics, 194:2 (2006)

309–342.
[3] D. R. Anderson and J. Hoffacker; Existence of solutions for a cantilever beam problem, J.

Math. Anal. Appl., 323 (2006) 958—973.

[4] F. M. Atici and G. Sh. Guseinov; On Green’s functions and positive solutions for boundary
value problems on time scales, J. Comput. Appl. Math., 141:1-2 (2002) 75–99.

[5] M. Bohner and A. Peterson; Dynamic Equations on Time Scales, An Introduction with

Applications, Birkhäuser, Boston, 2001.
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