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a b s t r a c t

This work presents some existence, non-existence and location results for the problem
composed by the fourth-order fully nonlinear equation

u(4) (x)+ f
(
x, u (x) , u′ (x) , u′′ (x) , u′′′ (x)

)
= sp(x)

for x ∈ [0, 1], where f : [0, 1] × R4 → R and p : [0, 1] → R+ are continuous functions
and s is a real parameter, with the Lidstone boundary conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0.

This problem models several phenomena, such as, the bending of an elastic beam simply
supported at the endpoints.
The arguments used apply a lower and upper solutions technique, a priori estimations

and topological degree theory. In this paper we replace the usual bilateral Nagumo
condition by some one-sided conditions, which enables us to consider unbounded
nonlinearities.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Fourth-order differential equations are often called beam equations due to their relevance in beam theory, namely in the
study of the bending of an elastic beam. This paper considers the nonlinear full equation

u(iv) (x)+ f
(
x, u (x) , u′ (x) , u′′ (x) , u′′′ (x)

)
= sp (x) (1)

for x ∈ [0, 1], where f : [0, 1]× R4 → R and p : [0, 1]→ R+ are continuous functions and s is a real parameter, with the
boundary conditions

u(0) = u(1) = u′′(0) = u′′(1) = 0. (2)

These types of condition, known as Lidstone boundary conditions, appear in several physical and engineering situations
such as simply supported beams [1,2] and suspension bridges [3,4]. The related problems have been studied by many
authors, either from a variational approach [5,6] or with topological techniques [7–10] or both [11]. Recently, some
papers applied the lower and upper solutions method to more general boundary conditions such as nonlinear [12–14] and
functional cases [15,16], some of them including the Lidstone case.
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The bilateral Nagumo condition, used in some of the above papers, plays an important role to control the growth of the
third derivative. In this work we apply a more general Nagumo-type assumption: a unilateral condition. Using this point
of view, the results that exist in the literature for problem (1)–(2) [17,18] are improved, because the nonlinearity can be
unbounded from above or from below, following arguments suggested by [19,20].
It is pointed out that, for Lidstone problems,where there is no information about the third derivative on the boundary, the

replacement of the bilateral condition by a unilateral one is not trivial. It requires a new a priori lemma and a new auxiliary
problem in the proof of the main result.
The example contained in the final section illustrates this improvement and highlights some of the advantages of the

lower and upper solutions in these boundary value problems, providing existence results, locating the solution and some
derivatives, and adding some qualitative informations on them, for the values of the parameter s such that there is a pair of
lower and upper solutions of (1)–(2).

2. Definitions and auxiliary results

In this paper Ck([0, 1]) denotes the space of real valued functions with continuous i-derivative in [0, 1], for i = 1, . . . , k,
equipped with the norm

‖y‖Ck = max
0≤i≤k

{∣∣y(i)(x)∣∣ : x ∈ [0, 1]} .
By C([0, 1])we denote the space of continuous functions with the norm ‖y‖ = maxx∈[0,1] |y(x)| .
The one-sided Nagumo-type condition to be used and the consequent a priori estimation are precise, as follows:

Definition 1. Given a subset E ⊂ [0, 1] × R4, a continuos function f : E → R is said to satisfy the one-sided Nagumo-type
condition in E if there exists a real continuous function hE : R+0 → [k,+∞[, for some k > 0, such that

f (x, y0, y1, y2, y3) ≤ hE (|y3|) , ∀ (x, y0, y1, y2, y3) ∈ E (3)

or

f (x, y0, y1, y2, y3) ≥ −hE (|y3|) , ∀ (x, y0, y1, y2, y3) ∈ E, (4)

with ∫
+∞

0

t
hE (t)

dt = +∞. (5)

Lemma 2. Let f : [0, 1]× R4 → R be a continuous function, verifying Nagumo-type conditions (3) and (5) in

E =
{
(x, y0, y1, y2, y3) ∈ [0, 1]× R4 : γi (x) ≤ yi ≤ Γi (x) , i = 0, 1, 2

}
,

where γi (x) and Γi (x) are continuous functions such that, for i = 0, 1, 2, γi (x) ≤ Γi (x), for every x ∈ [0, 1] .
Then for every ρ > 0 there is R > 0 such that every solution u (x) of Eq. (1) verifying

u′′′(0) ≥ −ρ, u′′′(1) ≤ ρ (6)

and

γi (x) ≤ u(i) (x) ≤ Γi (x) , ∀x ∈ [0, 1] , (7)

for i = 0, 1, 2, satisfies
∥∥u′′′∥∥ < R.

Proof. Consider u, a solution of the Eq. (1) that satisfies (6) and (7), and define the non-negative real number r :=
max {Γ2(1)− γ2(0),Γ2(0)− γ2(1)} .
Suppose ρ > 0 be large enough such that for every u solution of (1) we have

∣∣u′′′(x)∣∣ ≤ ρ, for every x ∈ [0, 1], and ρ ≥ r .
If ρ = R then the proof is concluded.
Consider now that there is u, a solution of (1) and x0 ∈ [0, 1], such that

∣∣u′′′(x0)∣∣ > ρ. If
∣∣u′′′(x)∣∣ > ρ, for every x ∈ [0, 1],

then, for u′′′(x) > ρ, we obtain the following contradiction:

Γ2(1)− γ2(0) ≥ u′′(1)− u′′(0) =
∫ 1

0
u′′′(τ )dτ

>

∫ 1

0
ρdτ ≥

∫ 1

0
rdτ ≥ Γ2(1)− γ2(0).

The case u′′′(x) ≥ −ρ, for every x ∈ [0, 1], follows similar arguments. So there is x ∈ [0, 1] such that
∣∣u′′′(x)∣∣ ≤ ρ.
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As the integrals
∫
+∞

0
t

hE (t)
dt and

∫
+∞

0
τ

hE (τ )+|s|‖p‖
dτ are of the same type, by (5), take R1 > ρ such that∫ R1

ρ

τ

hE(τ )+ |s| ‖p‖
dτ > max

x∈[0,1]
Γ2(x)− min

x∈[0,1]
γ2(x). (8)

Consider x1 ∈ [0, 1[ such that u′′′(x1) < −ρ or x1 ∈]0, 1] such that u′′′(x1) > ρ. In the first case take x̂1 such that
0 ≤ x̂1 < x1 and, for every x ∈ [x̂1, x1[,

u′′′(x̂1) = −ρ and u′′′(x) < −ρ. (9)

By an adequate change of variable and (8), we obtain∫
−u′′′(x1)

−u′′′ (̂x1)

τ

hE(τ )+ |s| ‖p‖
dτ =

∫ x1

x̂1

−u′′′(x)
hE(−u′′′(x))+ |s| ‖p‖

.
(
−u(iv)(x)

)
dx

=

∫ x1

x̂1

f
(
x, u, u′, u′′, u′′′

)
− sp (x)

hE(−u′′′(x))+ |s| ‖p‖

(
−u′′′(x)

)
dx

≤

∫ x1

x̂1
−u′′′(x)dx = u′′(̂x1)− u′′(x1)

≤ max
x∈[0,1]

Γ2(x)− min
x∈[0,1]

γ2(x)

<

∫ R1

ρ

τ

hE(τ )+ |s| ‖p‖
dτ ,

and therefore that u′′′(x1) > −R1. By the arbitrariness of x1, then for every x ∈ [0, 1[ such that u′′′ (x) < −ρ the inequality
u′′′ (x) > −R1 holds. In a similar way it can be proved that u′′′(x1) < R1, and so

∣∣u′′′(x)∣∣ ≤ R1, for every x ∈ [0, 1].
Consider now ρ < r , and take R2 > r such that∫ R2

r

τ

hE(τ )+ |s| ‖p‖
dτ > max

x∈[0,1]
Γ2(x)− min

x∈[0,1]
γ2(x). (10)

By (6), there is x ∈ [0, 1] such that
∣∣u′′′(x)∣∣ ≤ r . If ∣∣u′′′(x)∣∣ ≤ r holds for every x ∈ [0, 1], then the proof is concluded.

Otherwise, we take x2 ∈ [0, 1[ such that u′′′ (x2) < −r or x2 ∈]0, 1] such that u′′′(x2) > r . In the first case consider
0 ≤ x̂2 ≤ x2 with

u′′′(x̂2) = −r and u′′′(x) < −r, ∀x ∈ [x̂2, x2[

Applying a similar method as in (9), we obtain∫
−u′′′(x2)

−u′′′ (̂x2)

τ

hE(τ )+ |s| ‖p‖
dτ <

∫ R2

r

τ

hE(τ )+ |s| ‖p‖
dτ

and so u′′′(x2) > −R2. Arguing as above it can be shown that when u′′′(x2) > r the inequality u′′′(x2) < R2 still holds.
Therefore

∣∣u′′′(x)∣∣ ≤ R1, for every x ∈ [0, 1] .
Taking R = max {R1, R2} then

∣∣u′′′(x)∣∣ ≤ R, for every x ∈ [0, 1] . �

Remark 3. If the function f verifies (4), the previous estimate still holds replacing, in Lemma 2, (6) by

u′′′(0) ≤ ρ, u′′′(1) ≥ −ρ. (11)

Remark 4. Observe that R depends only on the functions hE, γ2 and Γ2, and not on the boundary conditions. Moreover, if s
belongs to a bounded set, then R can be considered the same, independently of s.

The functions used as upper and lower solutions are defined as a pair:

Definition 5. The functions α, β ∈ C4 (]0, 1[) ∩ C2 ([0, 1]) verifying

α(i) (x) ≤ β(i) (x) , i = 0, 1, 2,∀x ∈ [0, 1] , (12)

define a pair of lower and upper solutions of problem (1)–(2) if the following conditions are satisfied:
(i)

α(iv) (x)+ f
(
x, α (x) , α′ (x) , α′′ (x) , α′′′ (x)

)
≥ sp (x) ,

β(iv) (x)+ f
(
x, β (x) , β ′ (x) , β ′′ (x) , β ′′′ (x)

)
≤ sp (x) ;
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(ii)
α (0) ≤ 0, α′′ (0) ≤ 0, α′′ (1) ≤ 0,
β (0) ≥ 0, β ′′ (0) ≥ 0, β ′′ (1) ≥ 0;

(iii)

α′ (0)− β ′ (0) ≤ min {β (0)− β (1) , α (1)− α (0)} .

As was shown in [17], condition (iii) cannot be removed for this type of definition. However, if the minimum in (iii) is
non-positive then assumption (12) can be replaced by α′′ (x) ≤ β ′′ (x), for every x ∈ [0, 1], as the other inequalities are
obtained from integration.

3. Existence and location result

For values of the parameter s such that there are lower and upper solutions of (1)–(2), we can be obtain the following
existence and location result, where the nonlinear part can be unbounded from above or from below.

Theorem 6. Suppose that there is a pair of upper and lower solutions of the problem (1)–(2), α (x) and β (x), respectively. Let
f : [0, 1]× R4 → R be a continuous function satisfying the one-sided Nagumo conditions (3), or (4) and (5) in

E∗ =
{
(x, y0, y1, y2, y3) ∈ [0, 1]× R4 : α (x) ≤ y0 ≤ β (x) ,

α′ (x) ≤ y1 ≤ β ′ (x) , α′′ (x) ≤ y2 ≤ β ′′ (x)

}
and

f
(
x, α, α′, y2, y3

)
≤ f (x, y0, y1, y2, y3) ≤ f

(
x, β, β ′, y2, y3

)
, (13)

for α (x) ≤ y0 ≤ β (x) , α′ (x) ≤ y1 ≤ β ′ (x) and for fixed (x, y2, y3) ∈ [0, 1] × R2. Then the problem (1)–(2) has at least a
solution u (x) ∈ C4 ([0, 1]), satisfying

α(i) (x) ≤ u(i) (x) ≤ β(i) (x) , for i = 0, 1, 2,∀x ∈ [0, 1] .

Proof. Consider the continuous truncations δi given by

δi (x, yi) =

α
(i) (x) if yi < α(i) (x)
yi if α(i) (x) ≤ yi ≤ β(i) (x)
β(i) (x) if y(i) > β(i) (x)

, i = 0, 1, 2. (14)

For λ ∈ [0, 1], consider the homotopic equation

u(iv) (x) = λ
[
sp(x)− f

(
x, δ0 (x, u) , δ1

(
x, u′

)
, δ2

(
x, u′′

)
, u′′′

)]
+ u′′ (x)− λδ2

(
x, u′′

)
, (15)

and the boundary conditions

u (0) = 0, u (1) = 0,

u′′′ (0) = λ
[
u′′′ (0)+ u′′(0)

]
,

u′′′ (1) = λ
[
u′′′ (1)− u′′(1)

]
.

(16)

Let r2 > 0 be large enough, such that, for every x ∈ [0, 1],

−r2 < α′′ (x) ≤ β ′′ (x) < r2, (17)

sp(x)− f
(
x, β (x) , β ′ (x) , β ′′ (x) , 0

)
+ r2 − β ′′ (x) > 0, (18)

sp(x)− f
(
x, α (x) , α′ (x) , α′′ (x) , 0

)
− r2 − α′′ (x) < 0,

and, for every u solution of (15) and (16)∣∣u′′′(0)∣∣ ≤ r2, ∣∣u′′′(1)∣∣ ≤ r2. (19)

Step 1- For every solution u (x) of the problem (15)–(16) we have∣∣u′′ (x)∣∣ < r2, ∣∣u′ (x)∣∣ < r1, |u (x)| < r0, ∀x ∈ [0, 1] ,
with r1 := r2 + u′ (0) and r0 > r1, independently of λ ∈ [0, 1] .
Let u be a solution of (15) and (16). By contradiction assume that there areλ ∈ [0, 1] and x ∈ [0, 1] such that

∣∣u′′ (x)∣∣ ≥ r2.
In the case u′′ (x) ≥ r2 define

max
x∈[0,1]

u′′ (x) := u′′ (x0) ≥ r2 > 0.
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If x0 ∈]0, 1[ then u′′′ (x0) = 0 and u(iv) (x0) ≤ 0. Therefore, by (13) and (18), for λ ∈ [0, 1] we obtain the following
contradiction:

0 ≥ u(iv) (x0)
= λ

[
sp(x0)− f

(
x0, δ0 (x0, u) , δ1

(
x0, u′

)
, β ′′(x0), 0

)]
+ u′′ (x0)− β ′′ (x0)

≥ λ
[
sp(x0)− f

(
x0, β (x0) , β ′ (x0) , β ′′(x0), 0

)]
+ r2 − β ′′ (x0) > 0.

If x0 = 0, for λ ∈]0, 1], by (19) the contradiction is

0 ≥ u′′′(0) = λ
[
u′′′ (0)+ u′′(0)

]
≥ λ

(
u′′′ (0)+ r2

)
> 0.

For λ = 0, by (16), u′′′(0) = 0 and 0 ≥ u(iv) (0) = u′′(0) ≥ r2 > 0. The situation is analogous for x0 = 1, and, therefore,
u′′ (x) < r2, for every x ∈ [0, 1]. The case u′′ (x) ≤ −r2 is similarly analogous, and so∣∣u′′ (x)∣∣ < r2, ∀x ∈ [0, 1] ,∀λ ∈ [0, 1] .
Integrating in [0, x], u′(x)− u′ (0) =

∫ x
0 u
′′(s)ds < r2, and∣∣u′(x)∣∣ < r2 + u′ (0) , ∀x ∈ [0, 1] ,∀λ ∈ [0, 1] .

By integration, u(x)− u (0) =
∫ x
0 u
′(s)ds ≤

∫ x
0 r1ds ≤ r1 < r0.

With the same arguments it can be proved that u(x) > −r0 and

|u(x)| < r0,∀x ∈ [0, 1] .

Step 2- There is R > 0, such that every solution u (x) of the problem (15)–(16) verifies∣∣u′′′ (x)∣∣ < R, ∀x ∈ [0, 1] ,
independently of λ ∈ [0, 1].
In order to apply the Lemma 2, define the set

Er =
{
(x, y0, y1, y2, y3) ∈ [0, 1]× R4 : −r1 ≤ yi ≤ r1, i = 0, 1,−r2 ≤ y2 ≤ r2

}
,

with r1, r2 given by Step 1, and, for λ ∈ [0, 1], the function Fλ : Er → R defined by

Fλ (x, y0, y1, y2, y3) = λf (x, δ0 (x, y0) , δ1 (x, y1) , δ2 (x, y2) , y3)+ y2 − λδ2 (x, y2) .

If f verifies (3) in Er , then

Fλ (x, y0, y1, y2, y3) ≤ λhEr (|y3|)+ r2 − λα
′′(x) ≤ hEr (|y3|)+ 2r2,

and Fλ satisfies (3) with hE replaced by h̄Er (x) = hEr (x)+ 2r2 in Er .
If condition (4) holds in Er , we will obtain, in a similar way,

Fλ (x, y0, y1, y2, y3) ≥ −λhEr (|y3|)− r2 − λβ
′′(x) ≥ −

(
hEr (|y3|)+ 2r2

)
.

Condition (5) holds as∫
+∞

0

t
h̄Er (t)

dt =
∫
+∞

0

t
hEr (t)+ 2r2

dt

≥
1

1+ 2r2
k

∫
+∞

0

t
hEr (t)

dt = +∞.

By (19), Lemma 2 holds with γi (x) = −r1,Γi (x) = r1, i = 0, 1, γ2 (x) = −r2,Γ2 (x) = r2 and ρ = r2. Therefore, there is
R > 0 such that∣∣u′′′ (x)∣∣ < R, ∀x ∈ [0, 1] .
Observe that as r2 and hEr do not depend on λ then R does not depend on λ.
Step 3- Problem (15)–(16) has at least a solution u1 (x) for λ = 1.
Define the operatorsL : C4 ([0, 1]) ⊂ C3 ([0, 1])→ C ([0, 1])× R4 given by

Lu =
(
u(iv) − u′′, u (0) , u (1) , u′′′ (0) , u′′′ (1)

)
andNλ : C3 ([0, 1])→ C ([0, 1])× R4 by

Nλ =

(
λ
[
sp(x)− f

(
x, δ0 (x, u) , δ1

(
x, u′

)
, δ2

(
x, u′′

)
, u′′′ (x)

)]
− λδ2

(
x, u′′

)
,

0, 0, λ
[
u′′′ (0)+ u′′(0)

]
, λ
[
u′′′ (1)− u′′(1)

] )
.
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AsL−1 is compact thenwe can define the completely continuous operator Tλ :
(
C4 ([0, 1]) ,R

)
→
(
C4 ([0, 1]) ,R

)
given

by Tλ (u) = L−1Nλ (u).
For r1, r2 and R given by Steps 1 and 2, consider the set

Ω =
{
y ∈ C3 ([0, 1]) :

∥∥y(i)∥∥ < r1, i = 0, 1, ∥∥y′′∥∥ < r2, ∥∥y′′′∥∥ < R} .
Therefore, the degree d (Tλ,Ω, 0) is well defined for every λ ∈ [0, 1], and by the invariance under homotopy, d (T0,Ω, 0) =
d (T1,Ω, 0).
The equation T0 (u) = u is equivalent to the homogeneous problem{

u(iv)(x)− u′′ (x) = 0
u (0) = u (1) = u′′′ (1) = u′′′ (0) = 0

that admits only a trivial solution. Then, by degree theory, d (T0,Ω, 0) = ±1, and the equation u = T1 (u) has at least a
solution. That is, the problem composed by the equation

u(iv) (x) = sp(x)− f
(
x, δ0 (x, u) , δ1

(
x, u′

)
, δ2

(
x, u′′

)
, u′′′ (x)

)
+ u′′ (x)− δ2

(
x, u′′

)
with the initial boundary conditions (2) has at least one solution u1 (x) inΩ .
Step 4- The function u1 (x) is a solution of the problem (1)–(2)
The function u1 (x) will be a solution of the initial problem (1)–(2) if it verifies α(i) (x) ≤ u

(i)
1 (x) ≤ β

(i) (x), i = 0, 1, 2,
∀x ∈ [0, 1].
Suppose, by contradiction, that there is x ∈ [0, 1] such that α′′ (x) > u′′1 (x), and define

min
x∈[0,1]

[
u′′1 (x)− α

′′ (x)
]
:= u′′1 (x1)− α

′′ (x1) < 0.

If x1 ∈]0, 1[, then u′′′1 (x1) = α
′′′ (x1) and u(iv) (x1)− α(iv) (x1) ≥ 0.

By Definition 5 and (13) we obtain the contradiction

α(iv) (x1) ≤ u
(iv)
1 (x1)

= sp(x1)− f
(
x1, δ0 (x1, u) , δ1

(
x1, u′

)
, α′′ (x1) , α′′′ (x1)

)
+ u′′ (x1)− α′′ (x1)

< sp (x1)− f
(
x1, α (x1) , α′ (x1) , α′′ (x1) , α′′′ (x1)

)
≤ α(iv) (x1) .

If x1 = 0 or x1 = 1 the contradiction is trivial, by Definition 5(ii).
Therefore α′′ (x) ≤ u′′1 (x), for every x ∈ [0, 1]. In a similar way it can be proved that u

′′

1 (x) ≤ β ′′ (x), and so
α′′ (x) ≤ u′′1 (x) ≤ β

′′ (x), for every x ∈ [0, 1].
As, by (2),

0 =
∫ 1

0
u′1 (x) dx =

∫ 1

0

(
u′1 (0)+

∫ x

0
u′′1 (s) ds

)
dx

= u′1 (0)+
∫ 1

0

∫ x

0
u′′1 (s) dsdx,

then u′1 (0) = −
∫ 1
0

∫ x
0 u
′′

1 (s) dsdx. By this technique∫ 1

0

∫ x

0
α′′ (s) dsdx = α(1)− α(0)− α′(0),

and, by Definition 5(iii) and (17),

−β ′(0) ≤ α(1)− α(0)− α′(0) =
∫ 1

0

∫ x

0
α′′ (s) dsdx

≤

∫ 1

0

∫ x

0
u′′1 (s) dsdx = −u

′

1 (0) .

Therefore, u′1 (0) ≤ β
′(0) and, by integration of (17), one obtains

u′1 (x)− u
′

1 (0) =
∫ x

0
u′′1 (s) ds ≤

∫ x

0
β ′′ (s) ds = β ′(x)− β ′(0)

and

u′1 (x) ≤ β
′(x)− β ′(0)+ u′1 (0) ≤ β

′(x), ∀x ∈ [0, 1].
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The relation α′ (x) ≤ u′1 (x), for every x ∈ [0, 1], can be proved by similar arguments. Then α
′ (x) ≤ u′1 (x) ≤ β ′ (x), for

every x ∈ [0, 1]. By Definition 5 (ii)

α (x) ≤
∫ x

0
α′ (s) ds ≤

∫ x

0
u′1 (s) ds = u1 (x)

≤

∫ x

0
β ′ (s) ds = β(x)− β(0) ≤ β(x).

Therefore u1 (x) is a solution for problem (1)–(2). �

4. Example

Consider, for k ∈ N0, the fourth-order equation

u(iv) (x)+ eu(x) + arctan
(
u′ (x)

)
− u′′ (x)3 −

[
u′′′ (x)

]2k+4
= sp (x) . (20)

The functions α and β given by α := −x2− 1 and β := x+ 1 are, respectively, upper and lower solutions of the problem
(20)–(2), for values of s such that

K0 :=
e2 + π

4

min
x∈[0,1]

p (x)
≤ s ≤

e−2 − π
2 + 8

max
x∈[0,1]

p (x)
:= K1.

Defining

E ′ =
{
(x, y0, y1, y2, y3) ∈ [0, 1]× R4 : −x2 − 1 ≤ y0 ≤ x+ 1,

−2x ≤ y1 ≤ 1,−2 ≤ y2 ≤ 0

}
,

the continuous function f : E ′ → R, given by

f (x, y0, y1, y2, y3) = exp (y0)+ arctan (y1)− y32 − y
2k+4
3 , k ∈ N0, (21)

verifies the Nagumo condition (3) and assumption (13), with hE′(y3) = e2+ π
2 . Then, by Theorem 6, there is a solution u (x)

of problem (20)–(2) such that

−x2 − 1 ≤ u (x) ≤ x+ 1,−2x ≤ u′ (x) ≤ 1,−2 ≤ u′′ (x) ≤ 0, ∀x ∈ [0, 1] .

Notice that the nonlinearity f given by (21) does not verify the two-sided Nagumo type conditions and, therefore, [17]
cannot be applied to (2) and (20). In fact, suppose by contradiction that there are a set E and a positive function ϕ such that
|f (x, y0, y1, y2, y3)| ≤ ϕ (|y3|) in E and∫

+∞

0

s
ϕ (s)

= +∞.

Consider, in particular, that

f (x, y0, y1, y2, y3) ≤ ϕ (|y3|) , ∀ (x, y0, y1, y2, y3) ∈ E

and (0, 0, 0, y3) ∈ E. So, for x ∈ [0, 1] , y0 = 0, y1 = 0, y2 = 0 and y3 ∈ R+,

f (x, 0, 0, 0, y3) = 1+ y2k+43 ≤ ϕ (|y3|) .

As
∫
+∞

0
s

1+s2k+4
ds, k ∈ N0, is finite, then the following contradiction is obtained:

+∞ >

∫
+∞

0

s
1+ s2k+4

ds ≥
∫
+∞

0

s
ϕ (s)

ds = +∞.
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