
On Integrating Population-Based Metaheuristics
with Cooperative Parallelism

Jheisson Lopez
University of Antioquia/UNGS

Colombia/Argentina
jalopez@ungs.edu.ar

Danny Munera
University of Antioquia

Colombia
danny.munera@udea.edu.co

Daniel Diaz
University of Paris 1/CRI

France
daniel.diaz@univ-paris1.fr

Salvador Abreu
University of Évora/LISP

Portugal
spa@uevora.pt

Abstract—Many real-life applications can be formulated as
Combinatorial Optimization Problems, the solution of which is
often challenging due to their intrinsic difficulty. At present, the
most effective methods to address the hardest problems entail
the hybridization of metaheuristics and cooperative parallelism.
Recently, a framework called CPLS has been proposed, which
eases the cooperative parallelization of local search solvers. Being
able to run different heuristics in parallel, CPLS has opened a
new way to hybridize metaheuristics, thanks to its cooperative
parallelism mechanism. However, CPLS is mainly designed for
local search methods. In this paper we seek to overcome the
current CPLS limitation, extending it to enable population-
based metaheuristics in the hybridization process. We discuss
an initial prototype implementation for Quadratic Assignment
Problem combining a Genetic Algorithm with two local search
procedures. Our experiments on hard instances of QAP show
that this hybrid solver performs competitively w.r.t. dedicated
QAP parallel solvers.

Index Terms—parallelism, cooperation, metaheuristics, genetic
algorithm, hybridization, QAP

I. INTRODUCTION

Combinatorial Optimization Problems (COP) are widely
used to model and solve real-life problems in several ap-
plication domains, such as shortest/cheapest round trips,
scheduling, planning, time-tabling, resource allocation, net-
work configuration and monitoring, matching, business prod-
uct line modeling, system management. . . Solving these prob-
lems rapidly represents a real challenge due to their inherent
difficulty (most of them are NP-hard). The study of COPs
as well as the search for efficient algorithms to solve them,
has therefore been a very active research area for many years.
Due to the computational intractability of most problems, we
can find (or generate) problem instances of varying degrees of
difficulty.

Easy and medium-sized problems can be solved with exact
methods, which guarantee the optimality of the computed solu-
tion or prove that a problem does not admit any solution. This
is possible because these methods consider the entire search
space: either explicitly by exhaustive search or implicitly, by
detecting when a portion of the search space can be ignored
and get pruned off.

For harder problems, approximation methods are more ap-
propriate. These methods aim at finding a solution of “good”
quality (possibly sub-optimal) in a reasonable amount of time.

Metaheuristics have proven to be the most efficient approxima-
tion methods to address this class of problems. Metaheuristics
are high-level procedures using choices (i.e., heuristics) to
limit the part of the search space which actually gets visited, in
order to make problems tractable. Metaheuristics can be clas-
sified in two main categories: single-solution and population-
based methods. Single-solution metaheuristics maintain, mod-
ify and stepwise improve on a single candidate solution
(also called a configuration). Examples of single-solutions
methods include: Simulated Annealing [1], Local Search [2],
Tabu Search [3], Variable Neighborhood Search [4], Adaptive
Search [5], Extremal Optimization [6]. . . On the other hand,
population-based methods, modify and improve a population,
i.e. sets of candidate solutions. These methods include: Genetic
Algorithms [7], Ant Colony Optimization [8], Particle Swarm
Optimization [9]. . . Metaheuristics generally implement two
main search strategies: intensification and diversification, also
called exploitation and exploration [10]. Intensification guides
the solver to deeply explore a promising part of the search
space. In contrast, diversification aims at extending the search
onto different parts of the search space [11]. In order to
obtain the best performance, a metaheuristic should provide a
useful balance between intensification and diversification. By
design, some heuristics are better at intensifying the search
while others are so at diversifying it. More generally, each
metaheuristic has it own strengths and weaknesses, which may
greatly vary according to the problem or even instance being
solved.

For yet more difficult problems, the current trend is there-
fore to design hybrid metaheuristics, by combining different
metaheuristics in order to benefit from the individual ad-
vantages of each method. An effective approach consists in
combining a population-based method with a single-solution
method (often a local search procedure). These hybrid methods
are called memetic algorithms [12]. However, hybrid meta-
heuristics are complex procedures, tricky to design, implement
and tune.

An orthogonal approach to address very difficult problems
consists in using parallel computation. For instance, several
instances of a given metaheuristic can be executed in parallel
in order to develop concurrent explorations of the search
space, either independently or cooperatively by means of com-
munication between concurrent processes. The independent

approach is easiest to implement on parallel computers, since
no communication is needed between the processes running
a metaheuristics. The whole execution simply stops as soon
as any process finds a solution. For some problems this
approach provides very good results but in many cases the
speedup tends to taper off when increasing the number of
processors. A cooperative approach entails adding a commu-
nication mechanism in order to share or exchange information
among solver instances during the search process. However,
designing an efficient cooperative method is a dauntingly
complex task [13], and many issues must be solved: What
information is exchanged? Between which processes is it
exchanged? When is the information exchanged? How is it
exchanged? How is the imported data used? [14]. More-
over, most cooperative choices are problem-dependent (and
sometimes even instance-dependent). Bad choices result in
poor performance, possibly much worse than what could
be obtained with independent parallelism. However, a well-
tuned cooperation scheme may significantly outperform the
independent approach. To this end, a framework – called
CPLS – which eases the cooperative parallelization of local
search solvers has been recently proposed in [15], [16]. This
framework, available as an open source library written in
the IBM X10 concurrent programming language, allows the
programmer to tune the search process through an extensive
set of parameters. This framework has been successfully used
to tackle stable matching problems [17] and very difficult
instances of the Quadratic Assignment Problem (QAP) [18].

More interestingly, as it is able to run different heuristics in
parallel, CPLS has opened a new way to hybridize metaheuris-
tics, by exploiting its solution-sharing cooperative parallelism
mechanism. The user only needs to code (in X10) each of the
desired metaheuristics, independently, and may rely on CPLS
to provide both parallelism and cooperation to get “the best
of both worlds”. At runtime, the parallel instances of each
different metaheuristic communicate their best solutions, and
one of them may forgo its current computation and adopt
a better solution from the others, hoping it will converge
faster. The expected outcome is that a solution which may
be stagnating for one solver, has a chance to be improved on
by another metaheuristic. CPLS has been successfully used
to develop a very efficient hybrid solver for QAP, called
ParEOTS, by implicitly combining Extremal Optimization and
Tabu Search [19].

In this work we are interested in hybridizing single-solution
metaheuristics with population-based metaheuristics and in
particular in memetic algorithms. Theoretically it is possible
to plug a population-based metaheuristics into CPLS, we thus
tried to hybridize a genetic algorithm with the local search
procedures used in ParEOTS (extremal optimization and tabu
search) [19]. It turned out that the resulting solver performed
worse than ParEOTS! An explanation for this observation is
that the CPLS basic cooperation mechanisms are designed for
single-solution metaheuristics, and also that CPLS is better at
intensification than diversification. ParEOTS performed well
because extremal optimization can be conveniently tuned to

provide an appropriate level of diversification. Even though
some single-solution metaheuristics are rather good at diver-
sification, when well tuned, population-based metaheuristics
offers a wider variety of diversification thanks to the large
possibilities of evolution offered by a population. However, to
be effective in an hybrid procedure, this population should en-
compass many solutions (e.g. all solution candidates computed
by all solver instances).

In this paper we seek to overcome the current CPLS
limitation, extending it to enable population-based metaheuris-
tics in the hybridization process. We experimented with an
initial prototype for QAP, which we show to already perform
competitively w.r.t. ParEOTS and other state-of-the-art parallel
solvers.

The rest of this paper is organized as follows: in section II,
we describe the existing CPLS and discuss some of its
limitations. In section III we present the adaptation of CPLS
used in our prototype implementation in order to hybridize a
genetic algorithm with two local search procedures to solve
QAP. Section IV provides an initial experimental assessment
of our prototype. The paper ends with some considerations for
future directions.

II. THE COOPERATIVE PARALLEL LOCAL SEARCH
FRAMEWORK

The Cooperative Parallel Local Search framework
(CPLS) [15], [16] was designed to facilitate the
implementation of cooperative parallel local search solvers.
CPLS is available as an open source library written in the
IBM X10 concurrent programming language. From a user
point of view, one needs only code the desired metaheuristic,
in X10, using the CPLS Application Programming Interface
(API). This API provides object-oriented abstractions to
hide all parallel management details from the user, who
writes a purely sequential program, without having to worry
about parallelism and communication. The resulting solver
can be executed on a wide variety of machine (multicores,
manycores, clusters,. . .), implicitly using the parallelism
provided by the X10 programming system. Furthermore,
CPLS augments the independent parallelism strategy
with a tunable communication mechanism, which enables
cooperation between the multiple metaheuristic instances. It
also offers several parameters which control this mechanism.
To activate cooperative parallelism, the user simply annotates
the existing code with calls to CPLS functions to periodically
execute 2 actions1:

• report on its current configuration (Report action).
• retrieve a solution2 and, if it is good enough, the solver

adopts it, i.e. it abandons its current solution and replaces
it with the received one (Update action).

At runtime, each local search instance is encapsulated in an
explorer node. The point is to use all available processing

1These calls must be inserted inside the main loop of the metaheuristic.
2The received configuration is most likely reported by another local search

instance.

units by mapping each explorer node to a physical core. CPLS
organizes the explorers into teams, where a team consists
of NPT explorers which aim at intensifying the search in a
particular region of the search space using intra-team com-
munication. NPT can range from 1 to the maximum number
of cores. This parameter is directly related to the trade-off
between intensification and diversification since it is expected
that different teams explore different regions of the search
space. When NPT is 1, the framework coincides with the
independent parallelism strategy, it is expected that each 1-
node team be working on a different region of the search space,
without any effort to seek parallel intensification. When NPT
is equal to the maximum number of nodes (creating only 1
team in the execution), the framework hits the maximum level
of intensification (note that a certain amount of diversification
is inherently provided by parallelism, between 2 cooperation
actions, due to the stochastic nature of metaheuristics.) Tuning
the value of NPT allows the user to adjust the trade-off between
intensification and diversification.

Explorer
2

Elite Pool

Explorer
1

Conf. 1
…
Conf. k

Report: send the current
solution to EP

Update: retrieve a solution
and maybe adopt it Explorer

3

Head Node

Explorer
n

Fig. 1: CPLS team structure

By design, a team seeks to intensify the search in the most
promising neighborhood found by any of its members. The pa-
rameters which guide the intensification are the Report Interval
R and Update Interval U – every R iterations, each explorer
node sends its current configuration and the associated cost
metric to its head node. The head node is a particular explorer
inside the team which periodically collects and processes this
information, retaining the best configurations in the Elite Pool
EP of size |EP|. Every U iterations, explorer nodes randomly
retrieve a configuration from EP, in the head node. An explorer
node may adopt the configuration from the EP, if it is “better”
than its own current configuration with a probability pAdopt.
Figure 1 depicts the structure of a team.

In addition to the notion of teams of parametric size, CPLS
provides an additional mechanism for diversification through
inter-team communications. For this, a particular node, called
the master node, periodically compares each team’s best
configuration (taken from its elite pool) using a distance
function (e.g., using a Hamming distance). If two or more
teams are too close, the master node selects a team to perform
a corrective action (this can be the “worst” team, i.e. the one

whose best configuration cost is highest). The corrective action
– which is indeed a diversification action – aims at forcing all
explorers (or a fraction thereof) in the selected team, to explore
a different area of the search space.

It is worth noting that CPLS abstracts the notion of meta-
heuristic and thus accepts any metaheuristic, including others
besides local search. Several configurations are possible; the
most common one consists in executing in parallel several
instances of exactly the same metaheuristic (clones). One may
also execute the same metaheuristic but configured differently,
i.e. with different parameter tuning. For instance, the same
tabu search procedure could be executed with different tabu
tenure values. A portfolio approach can be obtained with
the independent parallel execution of different metaheuristics.
Finally, it is also possible to execute different metaheuristics,
within the cooperative scheme just described. The resulting
solver behaves like a hybrid solver, just that it’s achieved
without the complexity required by the design and coding of
the hybrid solver.

ParEOTS [19] is a powerful hybrid solver for QAP combin-
ing Extremal Optimization and Tabu Search. Being interested
in memetic algorithms, we tried to add a Genetic Algorithm
(GA) as third component to this hybrid solver. The integration
was simple but we the resulting solver was not any better
than ParEOTS. We sought the CPLS characteristics which
prevent the efficient use of population-based metaheuristics
for hybridization. It turns out that the CPLS basic cooperation
mechanisms are designed for single-solution metaheuristics;
with the Elite Pool, CPLS is intrinsically better at intensi-
fication than diversification. The diversification mechanism
described above is very difficult to tune (we could never obtain
any gain from it). Additionally, ParEOTS does not use it. This
mechanism has two major drawbacks:

1) It is a centralized process: the master node has the
big responsibility of making the right decision (it risks
breaking a winning team). It acts with a very limited
view of the computation: basically the best solutions
computed so far by a team. In a sense, diversification is
not sufficiently well informed to be effective when the
likely next moves are taken from larger sets, as happens
with population-based metaheuristics such as GA.

2) CPLS is biased towards execution on distributed archi-
tectures based on clusters of multicore computers: teams
are mapped to nodes and explorers run on individual
cores. In this setting, inter-team communications tend
to be relatively expensive because they require node-to-
node communication.3 It can be argued that diversifica-
tion actions are costly and should therefore be used with
parsimony.

ParEOTS performs well because extremal optimization can be
conveniently tuned to provide an appropriate level of diversi-
fication. Even though some single-solution metaheuristics are
rather good at diversification, population-based metaheuristics

3This aspect tends to be mitigated by high-throughput and low-latency
network interconnects, such as Infiniband.

generally offer a wider spectrum of diversification, when well
tuned, because of the large evolutionary possibilities afforded
by a population. However, to be effective in a hybrid proce-
dure, the population should encompass many solutions (e.g. all
solutions computed inside a team). This was not the case with
our previous GA experiment: the GA was treated like any other
metaheuristic, it has its own private data structures and only
sends and receives single solutions from time to time. This
drove us to conjecture that the notion of population should
be promoted so as to share a global vision of what happens
across the team, thereby contributing to a better diversification
decision. This is the idea underlying our development, which
we now flesh out.

III. HYBRIDIZING WITH GA

In order to provide an efficient interaction, within the
CPLS framework, between population-based and local search
metaheuristics, we conducted several experiments seeking to
enhance the intra-team communication strategy. We tested
several architectures, parameters and components, and finally
we developed a prototype, dedicated to solving QAP, that
actually improves on the performance of the original CPLS.

Our proposal, as shown in Figure 2, considers the inclusion
of a genetic algorithm (GA) in the head node interacting with
three explorer nodes: two implementing the robust tabu search
(RoTS) method and one implementing the extremal optimiza-
tion (EO) method. These methods are detailed in [18], [19].
We extend the CPLS model by having two independent pools
of configurations inside the head node: the diversification pool
(DivPool) and the intensification pool (IntPool).

Explorer
EO

DivPool

Explorer
GA

Conf. 1
…
Conf. j

Report current conf. to IntPool

Update conf. from DivPool

Explorer
RoTS

2

Explorer
RoTS

1

IntPool

Conf. 1
…
Conf. k

Indiv. 1
…
Indiv. m

PopulationHead Node

Update individual from IntPool

Report individual to DivPool

Explorer Nodes: EO - RoTS Head Node: GA

Fig. 2: CPLS new team structure

LS nodes start with a random configuration and the head
node with a random population composed of individuals (i.e.
configurations). They all interact with the pools as follows:

1) LS Explorers to IntPool: every RS iterations, explorer
nodes implementing local search methods (EO and
RoTS) report their current configuration and correspond-
ing cost to the IntPool.

2) IntPool to Population: every UP iterations, the GA
replaces a random individual in its population with a
random configuration from the IntPool.

3) Population to DivPool: every RP iterations, the GA
reports an individual to the DivPool.

4) DivPool to LS Explorer: every US iterations, the explor-
ers nodes implementing LS methods randomly retrieve a
configuration from the DivPool and may adopt this con-
figuration, if it is “better” than its current configuration.

During the execution of the solving process, the head node’s
IntPool collects elite configurations from LS explorer nodes.
Then, the GA generates offspring configurations (possibly
stemming from some those directly generated by the LS
metaheuristics) and feeds the DivPool with some individuals.
LS explorer nodes consume configurations from the DivPool
and possibly adopt them, closing the interaction loop inside
the team. Note that this process emulates the basic idea of
memetic algorithms, while keeping the main functionality
of each metaheuristic unaltered and providing hybridization
through cooperative parallelism.

Finally, we propose a mechanism to ensure entropy in
the GA’s population, mainly because GA has the role of a
“diversification agent” inside the team. If the GA’s population
becomes uniform (not diverse), it could mean that enough
intensification has been done on this region, and it would
be more interesting to explore other regions of the search
space. The diversity of the population may be measured every
diversity check interval dCkI with a diversity check function
dCkF. If the dCkF value is lower than a minimum allowed
diversity value mdV, then a percentage of the population
(pPr) gets restarted. Nevertheless, a 1 - pPr portion of the
population is kept as memory of the search process, and it
only gets replaced if the explorations in the new region give
rise to better configurations.

A. Parameter selection

Implementing these changes requires finding suitable values
for a new set of parameters. We now proceed with discussing
the design and implementation decisions which we followed
to select particular values for these parameters.

In our proposal, IntPool and DivPool behavior is controlled
by the CPLS pool parameters, e.g., pool size, entry policy and
request policy [15], [16]. We use the CPLS default values for
both pools’ parameters (the size of the pool is 4 and stores
the best solutions; on demand a random solution is picked
form the pool). This turns out to be convenient for our model,
as we already ensure that configurations reported by a given
metaheuristic only compete with other configurations reported
by metaheuristics of the same nature.

To simplify the values selection for the report/update param-
eters, we use global R and U values, as in the original CPLS.
Based on these global values, we computed the individual
values for RP, UP, RS and US, as follows: Rp = R/NPT
and Up = U/NPT ; whereas in the explorer nodes, Rs =
R/(problem size) and Us = U .

We decided to use the normalized entropy, proposed in [20],
to measure the diversity of the GA’s population in the range
from 0 to 1. An entropy value equal to 0 indicates a population
consisting of multiple repetitions of the same individual, while
an entropy value equal to 1 specify a population composed of
individuals that are all different from each other.

B. The Genetic Algorithm Design
Genetic algorithms (GA) are inspired by Darwin’s law of

natural selection. The basic idea is that by combining different
bits of the best adapted individuals you can get even better
individuals. Hybridization of GAs is one of the most successful
strategies that have been proposed to solve QAP [21]. For this
reason, we have designed a GA and implemented it in CPLS,
to test the new intra-team communication scheme that we
described above. On one hand, a genetic algorithm basically
consists of five stages that are repeated cyclically (each of
these cycles is named generation): initialization of its popula-
tion, selection of individuals for crossing, crossing, mutation
and selection of the population for the next generation. On
the other hand, a GA must define a way to encode individuals
as well as two main parameters: the population size and the
mutation rate. We now discuss the decisions we made for the
stages and the parameters mentioned above. The pseudo-code
for our GA is presented as Algorithm 1.

Algorithm 1 GA for hybridization
Input: population size pz, mutation rate mr, time limit timeout

#swaps for mutation operator mS = mr ∗ pz/2
Random initialization of the population p
p is ordered according to cost
while BKS not reached and timeout not reached do

Select an elite individual
Select a non-elite individual
Apply UX over previously selected individuals
Mutate each offspring
Sort offspring by cost
for each offspring do

if offspring.cost ≤ p.worstCost and offspring /∈ p then
add offspring to p

end if
end for

end while

We encode the individuals as permutations, as this allows
for direct evaluation of the cost (it does not require a decoding
process) and therefore takes less processing time. Besides, as
suggested by Ahuja, et al. [22], the GA is largely independent
from the initialization mechanism for its population, as long
as sufficiently diverse populations are generated. For this
reason, we chose a random initialization of the population as
it produces individuals uniformly distributed throughout the
search space.

We decided to use a population size (pz) equal to the
instance size. As the size of the population determines the
size of the search space region to be explored by each team,
it makes sense to size it proportionately to the instance.
Moreover, experimentation shows that populations greater than
the instance size have a negative impact on the performance
of the algorithm: the population must be sorted and the
offspring should be compared with it in each generation. In a
probatory experiment, we observed that population sizes less
than the instance size n have a very low initial entropy, while
population sizes greater that n have an initial entropy barely
greater than one of size n.

Regarding the selection for crossing, in [22] the authors
conclude that the use of a mechanism that favors the best
individuals (i.e. an elitist one) does not necessarily lead to
better results, and can even negatively affect them by hastening
the convergence towards local optima. In order to establish an
intermediate point of elitism, we adopt the strategy proposed
by Lalla-Ruiz et al. [23]: the total population is divided into
a group of elite individuals and another of non-elite ones;
an element from each group is randomly selected and they
are used to carry out the crossing process. The individuals
generated through this process are called the offspring. We
have used Uniform Crossover (UX) because, according to
Benlic and Hao [24], it offers the best results for QAP. The
crossing process generates two offspring in each generation.

Classically, for QAP, the mutation operator consists in
swapping two of the individual’s positions (2-exchanges are
widely used for permutation problems). The mutation rate is
a parameter which determines the probability of applying the
mutation operator on the offspring. However, in our prototype,
the mutation rate (mr) is the percentage of individuals that
will be mutated (taking into account that a swap modifies 2
individuals). In this setting, we use a mutation rate around
40%. This value is very high for classical genetic algorithms
but in our contect, the genetic algorithm is mainly used to
ensure a high degree of diversification for other explorers.

Finally, we decided to use an elitist criterion in the eval-
uation of the offspring for deciding whether they are to be
included in the population for the next generation: an offpring
individual replaces the worst individual of the population if it
has better cost and is not already present in the population.

IV. EXPERIMENTATION

We performed an experimental evaluation of our prototype
implementation4. All experiments have been carried out on
server with 4 × 16-core AMD Opteron 6376 CPUs, running
at 2.3 GHz and 128 GB of RAM. This is the same machine
as used for ParEOTS evaluation in [19] but we could only use
32 cores (while the reference paper presents results for 128
cores).

For this evaluation we selected the 33 hardest instances
of the QAPLIB benchmarks highlighted in [18], [19]. Each

4The source code and QAP instances are available from https://github.com/
jlopezrf/COPSolver-V 2.0

https://github.com/jlopezrf/COPSolver-V_2.0
https://github.com/jlopezrf/COPSolver-V_2.0

problem is executed 10 times, stopping as soon as the Best
Known Solution (BKS) is reached. This execution is done with
a time cap of 5 minutes (in case the BKS is not reached). Such
experiments give useful information regarding the quality of
quickly obtainable solutions.

GA-CPLS ParEOTS
32 cores 32 cores

#BKS APD BPD time #BKS APD BPD time

els19 10 0.000 0.000 0.0 10 0.000 0.000 0.0
kra30a 10 0.000 0.000 0.0 8 0.268 0.000 60.1
sko56 10 0.000 0.000 3.2 10 0.000 0.000 3.5
sko64 10 0.000 0.000 2.9 10 0.000 0.000 5.2
sko72 10 0.000 0.000 7.3 10 0.000 0.000 13.7
sko81 10 0.000 0.000 56.8 10 0.000 0.000 48.9
sko90 10 0.000 0.000 14.3 5 0.003 0.000 225.5
sko100a 10 0.000 0.000 43.7 8 0.003 0.000 163.6
sko100b 10 0.000 0.000 36.8 10 0.000 0.000 64.9
sko100c 10 0.000 0.000 57.4 10 0.000 0.000 98.9
sko100d 10 0.000 0.000 39.3 10 0.000 0.000 92.0
sko100e 10 0.000 0.000 39.1 10 0.000 0.000 54.3
sko100f 9 0.001 0.000 83.1 9 0.001 0.000 133.2
tai40a 7 0.022 0.000 184.1 4 0.045 0.000 216.8
tai50a 2 0.180 0.000 268.2 2 0.155 0.000 255.4
tai60a 0 0.294 0.036 300.0 0 0.235 0.036 300.0
tai80a 0 0.536 0.397 300.0 0 0.486 0.413 300.0
tai100a 0 0.378 0.247 300.0 0 0.337 0.227 300.0
tai20b 10 0.000 0.000 0.0 8 0.091 0.000 60.0
tai25b 10 0.000 0.000 0.0 10 0.000 0.000 0.0
tai30b 10 0.000 0.000 0.0 10 0.000 0.000 0.2
tai35b 10 0.000 0.000 0.1 10 0.000 0.000 18.8
tai40b 10 0.000 0.000 0.1 10 0.000 0.000 0.6
tai50b 10 0.000 0.000 8.4 10 0.000 0.000 7.6
tai60b 10 0.000 0.000 18.4 10 0.000 0.000 17.7
tai80b 10 0.000 0.000 24.9 5 0.008 0.000 195.2
tai100b 10 0.000 0.000 48.6 1 0.033 0.000 276.9
tai150b 0 0.126 0.052 300.0 0 0.412 0.137 300.0
tai64c 10 0.000 0.000 1.2 7 0.014 0.000 90.0
tai256c 0 0.238 0.215 300.0 0 0.308 0.272 300.0
tho40 10 0.000 0.000 2.1 10 0.000 0.000 2.7
tho150 3 0.003 0.000 251.0 0 0.021 0.001 300.0
wil100 10 0.000 0.000 39.3 4 0.001 0.000 218.4

Summary 261 0.054 0.029 82.7 221 0.073 0.033 125.0

TABLE I: Comparison of GA-CPLS with ParEOTS

We first compare our prototype implementation (called GA-
CPLS in the rest of this section) with ParEOTS, our reference.
Table I reports for each benchmark:

• the number of times the BKS is reached out of 10 runs
(#BKS).

• the Average Percentage Deviation (APD) which is the av-
erage of the 10 relative deviation percentages, computed
as follows: 100× F (sol)−BKS

BKS , where F (sol) is the cost
of the obtained solution. This information is useful for
comparing the average quality of solutions (across the 10
executions) found by the solvers.

• the Best Percentage Deviation (BPD) which corresponds
to the relative deviation percentage of the best solution
found among the 10 executions.

• the average execution time given in second which cor-
responds to the actual elapsed times, and include the
time to install all solver instances, solve the problem,

communications and the time to detect and propagate the
termination.

To compare the two solvers, we first compare the number
of BKS found, then (in case of a tie), the APD and finally
the execution time. For each benchmark, the best-performing
solver row is highlighted and the discriminant field is enhanced
in bold font. GA-CPLS clearly outperforms ParEOTS. Several
instances are now systematically solved at each replication
(e.g. sko90 or tai100b or wil100). Moreover, for the
very difficult tho150 which was never solved by ParEOTS,
GA-CPLS can reach the BKS 3 times. ParEOTS is better on
tai50a-tai100a. These problems require a very strong
intensification to reach the BKS. It would be interesting to
experiment with different parameters for GA-CPLS to increase
its level of intensification on these problems. The “Summary”
row gives relevant information: GA-CPLS reaches the BKS
261 times (over the 330 possible) while ParEOTS only reaches
221. The APD are on average better than with ParEOTS;
similarly for the best reached solution. Finally, regarding
execution time, our prototype solver is, on average, 1.5 times
fastet than ParEOTS. The difference is particularly impressive
on instances like: tai35b (ParEOTS needs 18.784sec while
GA-CPLS only needs 0.068sec. Clearly, the hybridization
with a GA now works really well and definitely improves
performance.

It is also interesting to compare GA-CPLS with state-of-
arts parallel solvers for QAP. We have selected the following
challengers:

• COSEARCH [25], which is a cooperative parallel method
based on tabu search, genetic algorithms and a kick
operator. The (published) results are obtained from a
heterogeneous grid computing platform using around 150
processors.

• CPTS [26]: a cooperative parallel tabu search algorithm
in which processors exchange information to intensify or
diversify the search. The results are obtained from the
cited paper using 10 Intel Itanium processors (1.3 GHz).

• PHA [27]: a hybrid approach based on parallel island
genetic algorithm and robust tabu search. Experimenta-
tion was performed on a cluster of 46 nodes, each with
8 cores.

• TLBO-RTS [28]: a hybrid teaching-learning based
optimization approach. This algorithm combines the
teaching-learning based optimization to optimize a popu-
lation, then, the population is given to a robust tabu search
technique. TLBO-RTS supports a parallel execution using
a parallel island technique. The results are obtained using
40 to 50 processors.

Table II reports all available information from the cited
papers. Execution times are given either in seconds for
small values (as a decimal number) or in a human read-
able form (as mm:ss or hh:mm:ss). These times are mainly
given for information purpose. Unfortunately, some methods
do not provide the number of obtained BKS (obviously an
APD = 0.000 corresponds to #BKS = 10). For this reason

GA-CPLS COSEARCH CPTS PHA TLBO-RTS
32 cores 150 cores 10 cores 46 cores 40-50 cores

APD BPD time APD BPD APD time APD time APD BPD time

els19 0.000 0.000 0.0 0.000 0.000 0.000 6
kra30a 0.000 0.000 0.0
sko56 0.000 0.000 3.2 0.000 21:00 0.000 16:14 0.000 0.000 1:21:36
sko64 0.000 0.000 2.9 0.003 0.000 0.000 42:54 0.000 23:06 0.000 0.000 1:59:18
sko72 0.000 0.000 7.3 0.000 1:09:36 0.000 33:37 0.000 0.000 2:50:48
sko81 0.000 0.000 0:56 0.000 2:01:24 0.000 39:52
sko90 0.000 0.000 0:14 0.000 3:13:42 0.000 40:31 0.000 0.000 5:42:48
sko100a 0.000 0.000 0:43 0.054 0.000 0.000 5:04:48 0.000 41:43 0.003 0.000 9:54:18
sko100b 0.000 0.000 0:36 0.000 5:09:36 0.000 42:19 0.005 0.000 8:02:36
sko100c 0.000 0.000 0:57 0.000 5:16:06 0.000 42:11 0.000 0.000 8:28:30
sko100d 0.000 0.000 0:39 0.000 5:09:48 0.000 41:54 0.009 0.007 8:29:24
sko100e 0.000 0.000 0:39 0.000 5:09:06 0.000 42:28 0.005 0.000 10:14:30
sko100f 0.001 0.000 1:23 0.003 5:10:18 0.000 41:58 0.005 0.000 8:02:36
tai40a 0.022 0.000 3:04 0.148 3:30 0.000 10:36 0.000 0.000 29:00
tai50a 0.180 0.000 4:28 0.440 10:18 0.000 12:44 0.360 0.321 55:00
tai60a 0.294 0.036 5:00 0.476 26:24 0.000 19:34 0.410 0.388 1:35:18
tai80a 0.536 0.397 5:00 0.691 1:34:48 0.644 39:58 0.870 0.850 3:59:30
tai100a 0.378 0.247 5:00 0.861 0.723 0.589 4:21:12 0.537 1:11:53 0.596 0.575 8:03:18
tai20b 0.000 0.000 0.0 0.000 6 0.000 0:22
tai25b 0.000 0.000 0.0 0.000 0:24 0.000 0:34
tai30b 0.000 0.000 0.0 0.000 1:12 0.000 0:48
tai35b 0.000 0.000 0.1 0.000 0.000 0.000 2:24 0.000 1:06 0.000 0.000 22:24
tai40b 0.000 0.000 0.1 0.000 4:30 0.000 1:34
tai50b 0.000 0.000 8.4 0.000 13:48 0.000 5:49
tai60b 0.000 0.000 0:18 0.000 30:24 0.000 9:29
tai80b 0.000 0.000 0:24 0.000 1:50:54 0.000 27:42 0.000 0.000 3:59:00
tai100b 0.000 0.000 0:48 0.135 0.000 0.001 4:01:00 0.000 42:30 0.000 0.000 8:28:12
tai150b 0.126 0.052 5:00 0.439 0.008 0.076 122:57:48 0.026 2:57:26 0.015 0.011 7:08:30
tai64c 0.000 0.000 1.2 0.000 0.000 0.000 20:36 0.000 12:56 0.000 0.000 1:57:42
tai256c 0.238 0.215 5:00 0.170 0.120 0.136 122:57:48 0.116 11:27:10
tho40 0.000 0.000 2.1
tho150 0.003 0.000 4:11 0.066 0.010 0.013 33:11:42 0.009 2:57:24 0.030 0.027 9:16:36
wil100 0.000 0.000 0:39 0.009 0.000 0.000 5:16:36 0.000 41:58 0.000 0.000 8:02:36

Summary 0.054 0.029 1:22 0.158 0.078 0.083 10:51:24 0.044 58:15 0.105 0.099 5:25:36

TABLE II: Comparison of GA-CPLS with other parallel solvers

we consider the APD, and highlight the solver with the
best value. GA-CPLS has a better, or at least equal, APD
than COSEARCH for all common instances. Comparing the
performance with COSEARCH, out of 11 instances, it is
apparent that COSEARCH performs better than GA-CPLS in
only one instance: tai256c; note that no execution time
data is available for COSEARCH. Regarding CPTS, out of
31 common instances, it appears that it only performs better
than GA-CPLS in two cases: tai150b and tai256c, but
taking a very long time: more than 122 hours! Here, we
obtain a slightly worse value but in just 5 minutes. A similar
situation appears with TLBO-RTS which only performs better
than GA-CPLS on two instances: tai40a and tai150b,
for which it requires 7 hours. The comparison with PHA is
more balanced; both systems are able to reach the BKS of
most problems at each replication. PHA is better in 6 cases
(sko100f, tai40a-tai60a, tai150b and tai256c).
These instances require strong intensification and/or are large
size (greater than 100). Clearly, a 5 minutes time limit is
too short for these problems (PHA needs around 3 hours
to obtain its performance on tai150b and more than 11
hours for tai256c). However, it is worth mentioning, our
method returns better solutions for 3 large instances (tai80a,

tai100a and the very difficult tho150). The “summary”
row confirms that PHA provides slightly better solutions than
GA-CPLS while our prototype is clearly faster. In conclusion,
in terms of solution quality, GA-CPLS is one of the best
performing parallel methods. Moreover, in terms of execution
time, our method has the best run times while maintaining a
high quality of the solution and making efficient use of parallel
resources. We are aware that COSEARCH and CPTS were
reported on several years ago, on slower machines, and that
both TLBO-RTS and PHA run with a different (higher) core
count, but the results are significant nonetheless.

V. CONCLUSION AND FURTHER WORK

Hybrid cooperative parallel metaheuristics is currently one
of the most efficient approaches to address very hard Com-
binatorial Optimization Problems. Designing such a solver
is a very complex task which requires very strong skills
and considerable effort in parallel programming, modeling,
metaheuristics, hybridization and runtime tuning. Recently, the
CPLS framework has been proposed to ease the design and
the implementation of such hybrid parallel solvers. However,
CPLS is oriented towards single-solution metaheuristics, a bias
which we have experimentally confirmed. It is all the more

regrettable, considering that population-based metaheuristics
have shown to be very efficient when combined with other
local search procedures, as testified by the success of memetic
algorithms.

In this paper we analyzed the base mechanisms of CPLS
which prevent efficient hybridization with population-based
metaheuristics. We then proposed a modification of CPLS,
for which we did an initial prototype for the very difficult
Quadratic Assignment Problem (QAP). Our experiments with
this prototype indicate very good performance on the hardest
instances of QAPLib, making it already competitive with other
state-of-the-art parallel solvers.

Our medium-term goal is to propose a new framework,
based on CPLS, to fully support hybridization with population-
based metaheuristics. For this we first need to experiment
more extensively, in order to analyze the impact of parameters
such as the size of the population, the reset percentages of
the population, different values for parameters which control
the communication. Regarding QAP, we will try to further
improve our Genetic Algorithm (e.g. testing with the Insert
Path Crossover as operator and crossover).

We will then test this improved solver on even more difficult
QAP instances (e.g. instances proposed by Drezner, Palubeckis
and Carvalho & Rahmann). We also plan to intensify the
experimental evaluation, to cover a wider base of test cases
and runtime configurations, namely the progression in speedup
attained by scaling the computational resources (cores and
nodes).

REFERENCES

[1] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983. [Online]. Available: http://www.sciencemag.org/cgi/doi/10.1126/
science.220.4598.671

[2] E. Aarts and J. K. Lenstra, Local Search in Combinatorial Optimization,
1st ed. New York, NY, USA: John Wiley & Sons, Inc., 1997.

[3] F. Glover and M. Laguna, Tabu Search. Kluwer Academic Publishers,
jul 1997.

[4] N. Mladenovic and P. Hansen, “Variable Neighborhood Search,” Com-
puters & Operations Research, vol. 24, no. 11, pp. 1097–1100, 1997.

[5] P. Codognet and D. Diaz, “Yet Another Local Search Method for
Constraint Solving,” in Stochastic Algorithms: Foundations and Appli-
cations, K. Steinhöfel, Ed. London: Springer Berlin Heidelberg, 2001,
pp. 342–344.

[6] S. Boettcher and A. Percus, “Nature’s way of optimizing,” Artificial
Intelligence, vol. 119, no. 12, pp. 275–286, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0004370200000072

[7] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley Professional, 1989.

[8] C. Solnon, “Ants Can Solve Constraint Satisfaction Problems,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 4, pp. 347–357,
2002.

[9] J. Kennedy and R. Eberhart, “Particle swarm optimization,” IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948,
1995.

[10] C. Blum and A. Roli, “Metaheuristics in Combinatorial Optimization:
Overview and Conceptual Comparison,” ACM Computing Surveys,
vol. 35, no. 3, pp. 268–308, 2003.

[13] T. Crainic, M. Gendreau, P. Hansen, and N. Mladenovic, “Cooperative
Parallel Variable Neighborhood Search for the p-Median,” Journal of
Heuristics, vol. 10, no. 3, pp. 293–314, 2004.

[11] H. Hoos and T. Stützle, Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann / Elsevier, 2004.

[12] P. Moscato and C. Cotta, “Memetic algorithms,” Handbook of Applied
Optimization, vol. 157, p. 168, 2002.

[14] M. Toulouse, T. Crainic, and M. Gendreau, “Communication Issues
in Designing Cooperative Multi-Thread Parallel Searches,” in Meta-
Heuristics: Theory&Applications, I. Osman and J. Kelly, Eds. Norwell,
MA.: Kluwer Academic Publishers, 1995, pp. 501–522.

[15] D. Munera, D. Diaz, S. Abreu, and P. Codognet, “Flexible Cooperation
in Parallel Local Search,” in Symposium on Applied Computing,
SAC’2014. Gyeongju, Korea: ACM Press, 2014, pp. 1360–1361.
[Online]. Available: http://dblp.uni-trier.de/db/conf/sac/sac2014.html{#}
MuneraDAC14

[16] D. Munera, D. Diaz, S. Abreu, and P. Codognet, “A
Parametric Framework for Cooperative Parallel Local Search,”
in European Conference on Evolutionary Computation in
Combinatorial Optimisation (EvoCOP), ser. Lecture Notes in
Computer Science, C. Blum and G. Ochoa, Eds., vol. 8600.
Granada, Spain: Springer, 2014, pp. 13–24. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-44320-0{ }2

[17] D. Munera, D. Diaz, S. Abreu, F. Rossi, V. Saraswat, and P. Codognet,
“Solving Hard Stable Matching Problems via Local Search and Coop-
erative Parallelization,” in AAAI, Austin, TX, USA, 2015.

[18] D. Munera, D. Diaz, and S. Abreu, “Solving the Quadratic Assignment
Problem with Cooperative Parallel Extremal Optimization,” in The 16th
European Conference on Evolutionary Computation in Combinatorial
Optimisation, Porto, 2016.

[19] D. Munera, D. Diaz, and S. Abreu, “Hybridization as
Cooperative Parallelism for the Quadratic Assignment Problem,”
in 10th International Workshop, HM 2016, ser. Lecture Notes
in Computer Science, vol. 9668. Plymouth, UK: Springer
International Publishing, 2016, pp. 47–61. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-39636-1

[20] C. Fleurent, Jacques, and J. A. Ferland, “Genetic hybrids for the
quadratic assignment problem,” in DIMACS Series in Mathematics and
Theoretical Computer Science. American Mathematical Society, 1993,
pp. 173–187.

[21] Z. Drezner, “Extensive experiments with hybrid genetic algorithms
for the solution of the quadratic assignment problem,” Computers &
Operations Research, vol. 35, no. 3, pp. 717–736, 2008. [Online].
Available: http://dx.doi.org/10.1016/j.cor.2006.05.004

[22] R. K. Ahuja, J. B. Orlin, and A. Tiwari, “A greedy genetic algorithm
for the quadratic assignment problem,” Computers & Operations
Research, vol. 27, no. 10, pp. 917 – 934, 2000. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305054899000672

[23] E. Lalla-Ruiz, C. Expsito-Izquierdo, B. Melin-Batista, and J. M.
Moreno-Vega, “A hybrid biased random key genetic algorithm for
the quadratic assignment problem,” Information Processing Letters,
vol. 116, no. 8, pp. 513 – 520, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020019016300254

[24] U. Benlic and J.-k. Hao, “Memetic Search for the Quadratic Assignment
Problem,” Expert Systems With Applications, vol. 42, no. 1, pp. 584–595,
2015. [Online]. Available: http://dx.doi.org/10.1016/j.eswa.2014.08.011

[25] E.-G. Talbi and V. Bachelet, “COSEARCH: A parallel cooperative
metaheuristic,” Journal of Mathematical Modelling and Algorithms,
vol. 5, no. 1, pp. 5–22, 2006.

[26] T. James, C. Rego, and F. Glover, “A Cooperative Parallel Tabu Search
Algorithm for the Quadratic Assignment Problem,” European Journal
of Operational Research, 2009.

[27] U. Tosun, “On the Performance of Parallel Hybrid Algorithms for the
Solution of the Quadratic Assignment Problem,” Engineering Applica-
tions of Artificial Intelligence, vol. 39, pp. 267–278, 2015.

[28] T. Dokeroglu, “Hybrid Teaching-Learning-Based Optimization
Algorithms for the Quadratic Assignment Problem,” Computers
and Industrial Engineering, vol. 85, pp. 86–101, 2015. [Online].
Available: http://dx.doi.org/10.1016/j.cie.2015.03.001

http://www.sciencemag.org/cgi/doi/10.1126/science.220.4598.671
http://www.sciencemag.org/cgi/doi/10.1126/science.220.4598.671
http://www.sciencedirect.com/science/article/pii/S0004370200000072
http://dblp.uni-trier.de/db/conf/sac/sac2014.html{#}MuneraDAC14
http://dblp.uni-trier.de/db/conf/sac/sac2014.html{#}MuneraDAC14
http://dx.doi.org/10.1007/978-3-662-44320-0{_}2
http://link.springer.com/10.1007/978-3-319-39636-1
http://dx.doi.org/10.1016/j.cor.2006.05.004
http://www.sciencedirect.com/science/article/pii/S0305054899000672
http://www.sciencedirect.com/science/article/pii/S0020019016300254
http://dx.doi.org/10.1016/j.eswa.2014.08.011
http://dx.doi.org/10.1016/j.cie.2015.03.001

