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A simple formulation is developed to model the influence of the aerosol hygroscopic
growth in the dependence of the atmospheric electric field measurements with relative
humidity. The formulation uses the Petters and Kreidenweis's model for the hygroscopic
growth factor of aerosols with relative humidity and assumes that the ion–aerosol
attachment coefficient is linearly proportional to the particle radius according to Gunn's
calculation. A formula which describes the atmospheric electric field increase with
relative humidity in the regime expected for the aerosols to grow hygroscopically is
found; between 60% and 90%. It also relates the microphysical parameter of aerosol
hygroscopicity, κ, with the macrophysical measure of the atmospheric electric field.
Historical data of atmospheric electric field and relative humidity recorded in the
meteorological station of Portela (near Lisbon airport, Portugal) are used to fit the model.
The electrical measurements were done with a Benndorf electrograph and the 1980–1990
period was considered. Due to the high pollution levels the atmospheric electric field
measurements were divided in four wind sectors, NW, NE, SE, and SW. The sector least
affected by pollutant aerosols, NW, was used in the fitting and the goodness found is
r2�0.97, the aerosol concentration number is �3280 cm�3 and the hygroscopic growth
parameter κ�0.094. These are very reasonable values consistent with an urban environ-
ment, which typically has high aerosol number concentration with small hygroscopicity.
The limitations of the model are presented throughout the sections.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Radiative forcing caused by aerosols (e.g. Charlson, Anderson, & Rodhe, 1999; Foster et al., 2007; Kaufman, Hobbs, & Kirchhoff,
1998; Li, 1998; Lyamani, Olmo, Alcántara, & Alados-Arboledas, 2006; Markowicz, Flatau, Ramana, Crutzen, & Ramanathan, 2002;
Obregón et al., 2015) is of relevance to the Earth's radiation balance and consequently to the Earth's climate. Special emphasis has
been given to the direct radiative effect, inwhich aerosols scatter and absorb radiation, and the indirect effect, inwhich aerosols as
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cloud condensation nuclei (CCN) are able to modify cloud droplet number concentration, size, and distribution (Pruppacher &
Klett, 2010). Moreover, in CCN processes the increase in aerosol size with relative humidity (RH) through particle hygroscopic
growth is of fundamental importance. For example, as aerosol particles become larger in size than their dry equivalents, they
scatter more light because of the increase in the particle cross-section, e.g. (Carrico et al., 2000; Fierz-Schmidhauser et al., 2010;
Koloutsou-Vakakis et al., 2001; Pilat & Charlson, 1966; Seinfeld & Pandis, 1998; Titos et al. 2014a, b). Considering the hygroscopic
growth patterns, aerosol particles can be split into three categories. Some aerosol species like soot or mineral dust are insoluble;
therefore do not grow significantly in size with increasing RH (Sjogren et al., 2007; Weingartner, Burtscher, & Baltensperger, 1997).
On the contrary, some aerosol species like H2SO4 and some organics are hygroscopic, thus being able to take up water and grow or
shrink smoothly as the RH increases or decreases. Finally some aerosol species, e.g. sea salt, are also hygroscopic, but show
hysteresis behavior and are called deliquescent aerosols. In fact, aerosol hygroscopic growth has been a research topic of
considerable interest. Work has been done in field campaigns (e.g. Duplissy, DeCarlo, & Dommen, 2011), laboratory experiments
(e.g. Rickards, Miles, Davies, Marshall, & Reid, 2013), and modeling (e.g. Petters & Kreidenweis, 2007). In this context, it is usual to
refer to the aerosol growth factor, GF¼R(RH)/R0, where R(RH) stands for the particle wet radius for a given RH and R0 is the particle
dry radius. Various models have been used to describe GF; Petters and Kreidenweis's model (Petters & Kreidenweis, 2007) is
commonly used in literature. This model is a key aspect of the formulation that will be presented below and is given by

GF rhð Þ ¼ 1þκ
aw

1�aw

� �1=3

: ð1Þ

In Eq. (1) aw is the water activity (related with RH) and κ is the hygroscopicity parameter. According to Petters and Kreidenweis
(2007) the hygroscopicity of atmospheric particles is in the range from 0.1 to 0.9. Moreover, the authors show that if κ of each of
the components is known it is possible to calculate the hygroscopicity of the mixture by weighting the component κ with the
correspondent volume fractions. This implies that the κ of the mixture can also be obtained frommeasurements in the absence of
information on its chemical composition. Such “effective hygroscopicity parameter” can then be used in modeling CCN activity. In
this context, the possibility of assessing κ from historical records of the Potential Gradient (PG) seems highly likely.1 In fact, PG
records go back to the mid-nineteenth century in different parts of Europe, e.g. London (Harrison, 2006), Paris (Harrison & Aplin,
2003), and Glasgow (Aplin, 2012). Valuable historical information about aerosol properties (not only concentration) can be
accessed this way. On one hand, the sensitivity of atmospheric electric parameters to pollutant aerosols has long been proven, e.g.
(Retalis, 1977; Manes, 1977), and widely used to retrieve pollution dynamics in urban environments (Silva et al., 2014). On the
other hand, it was previously shown that marine aerosol size increase with relative humidity is responsible for the decrease in
atmospheric electric conductivity (AEC) (e.g. Deshpande & Kamra, 2004; Kamra, Deshpande, & Gopalakrishan 1997). To relate
aerosol hygroscopic growth and PG measurements a simple model is proposed here. In the literature, simple models relating
aerosols and PG exist (e.g. Harrison, 2012; Harrison & Aplin, 2002), and give very useful information about the atmospheric
processes under study. In a basic view, PG is a result of the action of the Global Electric Circuit (Odzimek, Lester, & Kubicki, 2010;
Williams & Mareev, 2014; Wilson, 1920) and the local joint effect of ions, aerosols and water droplets (Harrison, 2012). Ions act as
charge carriers in the atmosphere and are the major contributors to electric conduction (Matthews, Ward, Keitch, & Henshaw,
2010; Wright, Buckley, Matthews, Shallcross, & Henshaw, 2014). In the lower troposphere the most representative negative ions
are O2

� , CO3
� , NO3

� , HSO4
� while the positive ones are: H3Oþ , Hþ , NOþ , NO2

þ , NH4
þ (Harrison & Carslaw, 2003). These are

known to form small ion clusters, like O2
� (H2O)n, via hydration by water molecules (Harrison & Carslaw, 2003). This process

reduces ion mobility and consequently decreases the AEC, which causes the PG to increase with RH. This is a possible mechanism
explaining the RH dependence of the PG, at least in low RH, RH�20%. The change in the local ionization rate with RH is another
mechanism to explain the dependence of the electrical parameters with RH (Israël, 1970, 1973); these two works go deep into the
complexity of the processes being discussed here. Nevertheless, in urban environments the presence of aerosols alters significantly
the electrical properties of the atmosphere (Manes, 1977). In this context, Harrison (2012) explored the induced effect of aerosols
on the atmospheric electric field in cases of reduced visibility, with the presence of water droplets, and did not consider the
change in the local ionization rate with RH. Aerosols scavenge conducting atmospheric ions and reduce AEC such that, through
Ohm's law (for a constant conduction current), an increase in the PG is observed (Retalis, 1977). It should be mentioned here that
this is a simplistic view in the sense that the charge is still present, but is carried by larger and less mobile charged aerosols, which
contributes much less to conductivity (Wright, Holden, Shallcross, & Henshaw, 2014). Besides, it is known that the ion–particle
attachment coefficient (β) depends on the radius (R) of the particles (Gunn, 1954) as

β¼ 4πkBTμm

e
R; ð2Þ

where kB is the Boltzmann constant, T is the ambient temperature (considered here as 293 K), μmmean ionmobility and e electron
charge. Thus it is expected that the increase in the aerosol size with RH would imply the scavenging of more ions and
consequently the decrease in AEC and increase in PG; such process is expected to dominate the relative humidity dependence of
the PG mainly in the RH range where aerosols grow hygroscopically (Kamra et al., 1997). Different types of aerosols would give
different contributions according to their hygroscopicity; only the aerosols that grow hygroscopically would contribute. In
particular, soot, a common pollutant aerosol in urban environments, does not grow hygroscopically and for that reason it is
1 The convention is that PG¼dVI/dz, VI is the potential difference between the Ionosphere and Earth's surface and z the vertical coordinate. It is defined
to be positive for fair-weather days and is related with the vertical component of the atmospheric electric field by Ez¼�PG.
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expected that will not contribute to the PG dependence with RH. This aspect will be discussed in subsequent sections. Moreover,
RH between �60% and �90% can be considered as a reasonable range where aerosols grow hygroscopically (Kamra et al., 1997;
Petters & Kreidenweis, 2007; Rickards et al., 2013). For high RH, especially close to saturation, CCN processes will dominate and
droplet formation will start (Nicoll & Harrison, 2010). A simple model is developed to describe the contribution of hygroscopic
aerosol growth to the Relative Humidity dependence of the Potential Gradient for RH between �60% and �90%. The historical
observations of PG taken at the meteorological station of Portela at Lisbon airport, Portugal (Serrano, Reis, Rosa, & Lucio, 2006;
Silva et al., 2014), are used for this purpose.

2. Formulation

Keeping in mind these arguments a formulation of the influence that aerosol hygroscopic growth has on PG will be presented.
The RH range of validity of the model is between �60% and �90% (as discussed above) and the limitations of the model are
discussed during the formulation. The first step is to consider the equation for ion balance in an environment containing aerosols.
The key aspect for the validity of the formulation is that the majority of ion loss is via aerosol attachment not recombination; for
this to be true does not necessarily require very high concentrations of aerosols. According to Tammet, Hõrrak, Laakso, and
Kulmala (2006) it is estimated that ion–ion recombination contributes about 9–13% and ion–aerosol attachment around 65–69%
(i.e. 5–7.6 times that of recombination) to ion loss for aerosol concentrations �4000 cm�3 (similar values will be found when
fitting the present model to PG data). In fact, “nanoparticle–nanoparticle coagulation”, encompassing “ion–ion recombination”,
was neglected in a recent empirical formulation (Tammet & Kulmala, 2014). The formalism developed by Hoppel (1985) uses
effective parameters to simplify the equation for ion balance in the presence of a more realistic aerosol size distribution. Thus, the
steady-state equation for ion formation and loss in the presence of aerosols can be written as

q�αn2�βaZan¼ 0; ð3Þ
where n is the mean ion concentration number, q is the ion production rate, α is the ion recombination rate, βa is the “effective”
ion–aerosol attachment coefficient for the aerosol size distribution in question, and Za aerosol number concentration. It is worth
mentioning here that Eq. (3) is a simplification because it neglects the positive to negative ion concentration imbalance; which is
crucial in highly perturbed regions where space charges form (Matthews et al., 2010). Nevertheless, the present formulation
assumes a quasi-equilibrium state perturbed by the presence of aerosols. The solution of Eq. (3) is straightforward:

n¼ 1
2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βaZa
� �2þ4αq

q
�βaZa

� �
: ð4Þ

Now it is possible to make a change in the variables to transform Eq. (4) into:

n¼ n1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ1

p
�x

	 

; ð5Þ

where n1 ¼
ffiffiffiffiffiffiffiffiffi
q=α

p
is the steady state ion concentration when no aerosols or droplets are present (Harrison & Carslaw, 2003),

and x is given by

x¼ βaZa

2
ffiffiffiffiffiffi
αq

p ð6Þ

It is assumed that the AEC is given by σt ¼ 2μmen; here the contribution of charged aerosols to the total atmospheric electric
conductivity is neglected. This is an approximation required to maintain the simplicity of this model, but it is reasonable to do so,
as it is known that charged aerosols contribute less to conduction due to their lower mobility, as compared with atmospheric ions
(Wright et al., 2014). Actually, this contribution is often neglected in similar models (e.g. Harrison, 2006, 2012; Harrison & Aplin,
2002). Thus, using Ohm's law it is possible to relate σt and PG:

PG¼ Jz
σt

¼ Jz
2μme

n1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ1

p
�x

	 
h i�1
; ð7Þ

where Jz is the air-Earth density current. Using standard values of Jz�2 pAm�2, μm�1.2 cm�2 V�1 s�1, α�1.6�10�6 cm3 s�1

and q�10 cm�3 s�1 (Harrison & Carslaw, 2003) and assuming a typical PG�100 V/m, it is found that x�2.3. In fact, in cases with
aerosol number concentration around �4000 cm�3 it is expected that x⪢1 and Eq. (5) can be written as

n¼ n1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx�2

p
�1

	 

� n1

2x
¼ q
βaZa

: ð8Þ

The approximation in Eq. (8) is accomplished by a Taylor series expansion of the square root, neglecting O(x�4). Hence
Eq. (7) becomes simply:

PG� Jz
2μmeq

βaZa ¼
2πJzkBT

e2q
RaZa: ð9Þ

In Eq. (9) the ion–aerosol attachment coefficient βa was substituted by the formula derived by Gunn (1954) and presented in
Eq. (2). Notice that the particle radius should not be seen as a real particle size of a monodisperse aerosol size distribution, rather
as an “effective attachment radius” representative of a polydisperse aerosol size distribution subjected to electrostatic forces
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(Hoppel, 1985). In the formulation being developed here the attachment coefficient is modeled to retrieve “effective aerosol
properties” from PG values, in particular aerosol concentration. Equation (9) reveals that the PG is proportional to the product of
aerosol radius and concentration, RaZa, and does not depend (in first order) on the ion mobility. This is a significant result from the
model as a reduction in ion mobility with RH could be a possible cause for AEC decrease (PG increase) with RH in clean
environments. It is expected that humidity changes in the 60–90% range would not change considerably the ion mobility (e.g.
Harrison & Aplin, 2007; Wright et al., 2014). Actually, Eq. (9) is similar to the one found by Harrison and Aplin (2002). The last step
in the formulation is to describe the Ra growth with RH. To do that Eq. (1) is used and a simplification is made assuming that water
activity is given by aw ¼ rh¼ RH=100. This is a good approximation in the regime of validity of the present model where RH is
restricted from 60% to 90% (Rickards et al., 2013). Similarly to the discussion presented for the “effective aerosol radius”, in real
atmospheres GF will vary accordingly to the dry size and composition of the aerosols, thus here the hygroscopicity parameter, κ,
should be interpreted as an “effective hygroscopicity parameter” representative, in a statistical sense, of the actual polydisperse
aerosol size distribution. Finally, the equation relating PG and RH through aerosol growth is found:

PG� 2πJzkBT
e2q

ZaRa;0 1þκa
rh

1�rh

� �1=3

: ð10Þ

In Eq. (10) Za, Ra,0 and κa are the number concentration of aerosols, the dry radius, and the hygroscopicity parameter,
respectively. This equation relates, in a simple formulation, three significant microphysical aerosol parameters: number
concentration, dry radius and hygroscopicity parameter with two macrophysical measurements: Potential Gradient and Relative
Humidity. Obviously the microphysical parameters must be considered as “effective parameters” in the statistical sense described
above and not “precise parameters”. Here the significant point is that in macrophysical radiative modeling the “effective
parameters” are more relevant than the precise measurements of those microphysical parameters (Petters & Kreidenweis, 2007).
3. Data

A Benndorf electrograph was coupled to a radioactive probe to secure equality of potential between the sensor and the air and
also improving the time response of the electrograph. It was installed at 1 m above ground in a cement base recorded the PG at
Portela meteorological station (Lisbon Airport, Portugal, as shown in Fig. 1). Its sensitivity was checked using an electronic
electrometer with standard voltage source between 7200 V and the same calibration procedure was used in all periods of
operation. The analog records of the electrograph were digitalized afterwards (Serrano, 2010). Further details on the dataset can be
found in Serrano et al. (2006), Silva et al. (2014) and Conceição et al. (2015). Measurements with similar devices were made
worldwide (e.g. Shigeno, Takizawa, Itoh, Yokoyama, & Owada, 2001). In the present study data from 1980 to 1990 is used and only
non-negative values of PG were selected because negative PG values are not a consequence of RH as they are linked to rain and
shower clouds. On the contrary, positive values of PG�400 V/m, are found under high RH condition, for example, in the case of
fogs (Deshpande & Kamra, 2004). Thus when studying the dependence of the PG with RH, it is important to include these cases,
that are usually rejected under the fair-weather conditions (Voeikov, 1965). This is the reasonwhy a strict fair-weather selection is
not fully appropriate to the present study. It should be mentioned that positive charged clouds also exist and affect the PG, though
Iberia 
Peninsula

Atlantic
Ocean

Fig. 1. Location of the Portela meteorological station (yellow pin) and the industrial region of Setubal (red pin) are marked. The Atlantic Ocean and Iberian
Peninsula are also indicated. A wind rose measured at Portela is also shown. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)



Fig. 2. Distributions of the hourly PG values, in logarithmic scale, for the four wind sectors: NW, NE, SE, and SW.
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less statistically significant in Lisbon with low cloud cover percentages (ranging from 28% in summer and 61% in winter).
Precipitation and snow further perturb the PG and for that reason “manually observed present weather” (MW) was used. PG
values having MW in the range of 50–99; which corresponds to “precipitation at the station at the time of observation” were
excluded. Relative humidity was calculated from the air temperature and dew point measured in Portela meteorological station
(the same station where PG was recorded). The former Portuguese Institute of Meteorology (IM) did the measurements and the
data was retrieved from the NNDC Climate Data Online website supported by NOAA. During the 1980s most of the industries and
main pollution sources in the region were located to the south of Tagus River, in Setubal region. Therefore using the station as a
geographic reference, the mentioned main pollution sources can be found in the southern sector while in the northern sector such
sources are scarcer (and population is lower). The Tagus river basin and the Iberian Peninsula are located to the East whereas the
Western sector is covered by the Atlantic Ocean. Pollution has the effect of increasing the PG (Silva et al., 2014, and the references
therein), thus it is expected that south winds correspond to higher PG values than northern ones. Furthermore, westerly winds
transport marine air, which is known to bring ions with higher electrical mobility than those transported from continental regions
(Wilding & Harrison, 2005). Moreover, typically marine air contains fewer but larger aerosol particles which would have a lower
mobility and higher “effective attachment coefficient” but a lower total influence on ion concentration, and hence conductivity,
because of their very low number (Hoppel, 1985). For that reason lower PG values are expected to be associated to winds from the
west as compared with those from east. These features were observed in Silva et al. (submitted for publication) and according to
that procedure, PG is divided into four wind sectors:
1)
 NW, 2701rθr3601;

2)
 NE, 0rθr901;

3)
 SE, 90rθr1801;

4)
 SW, 1801rθr2701.
Matthews (2012a, 2012b) previously applied this methodology to study the impact of high voltage power lines on the local PG.
It is worth mentioning that the prevailing winds in Lisbon are from NW (Fig. 1) and result from the Iberian thermal depression
(Costa et al., 2010). From the considerations presented thus far it is expected that the NW sector corresponds to lower PG values
than those associated to the NE and SE sectors; regarding the SW sector, where winds bring both marine and polluted air, the PG
values are expected to be higher than in the NW, but smaller than in the SE. These results are depicted in the histograms of Fig. 2,
and further statistical parameters are presented in Table 1. The median PG values are consistent with the previous arguments:
NW, 67.0 V/m; NE, 90.0 V/m; SE, 100.0 V/m; and SW, 90.0 V/m. Additionally, the daily variation of PG corresponding to the four



Table 1
Mean, median, median absolute deviation (MAD), skewness, kurtosis, and number of hours for the period between 1980 and 1990. The atmospheric electric
field measurements are divided in: NW, NE, SE, and SW.

NW NE SE SW

Mean (V/m) 75.4 101.1 119.5 104.1
Median (V/m) 67.0 90.0 100.0 90.0
MAD (V/m) 30.7 43.7 54.7 47.4
Skewness 2.03 1.34 1.13 1.20
Kurtosis 9.81 5.48 4.61 5.10
Number of days 385 283 95 204

Fig. 3. Daily behaviour of hourly PG values in a boxplot representation. The four wind sectors are considered: NW, NE, SE, and SW.
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wind sectors is presented in a boxplot2 representation (Fig. 3), and show similar behaviour. It is verified that at the beginning and
end of the day low values of PG are observed, around �50 V/m. Daily PG curves measured inland often differ from the Carnegie
curve mainly due the action of local phenomena, for example, convective currents (Tacza et al., 2014). Convective currents due to
the presence of the Atlantic Ocean could, in fact, be a reason explaining such low values measured at Portela; nevertheless
investigation of such mechanism is out of the scope of this paper. The daily behaviour for the NW is slightly different from the
other three sectors as it shows less variability and the peak observed in the other wind sectors at 18UT is reduced in this one. In
fact, for PG measurements carried out in urban environments, the peak at 18UT is a combination of the maximum of the Global
Electric Circuit activity, Carnegie curve (Harrison, 2013) and of the air pollution generated at the end of the workdays (Harrison,
2009). Also winds from the NW sector are most likely to occur during this time of the day (known as Nortada, Alcoforado,
Andrade, Lopes, Vasconcelos, & Vieira, 2006). Hence, the reduction of the 18UT peak for NW sector can be an indication of a more
efficient removal of air pollution. Finally, daily averages are calculated for both PG and RH, reducing the variability of these
parameters.
2 On each box, the central dot is the median, the limits of the box are the 25th (first quartile, q1) and 75th (third quartile, q3) percentiles and the
whiskers (solid lines) extend to the most extreme data points not considered outliers. Maximumwhisker length (w) is set to 1.5 and outliers are defined to
be larger than q3þw(q3�q1) or smaller than q1�w(q3�q1).



Fig. 4. RH dependence of daily averaged PG values of all sectors: NW, NE, SE, and SW. Bins with ΔRH¼5% in the RH range from 30% to 100% were used. The
label attributed to a bin corresponds to its upper limit. Vertical lines mark the hygroscopic growth region, in which the analysis is focused.
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4. Results and discussion

PG as a function of RH is shown in a boxplot representation in Fig. 4 for the four wind sectors. PG values are separated
into RH bins with a given width, ΔRH¼5%, from RH¼30% up to 100%. The condition for each i-bin is

RHiniþ i�1ð ÞΔRHoRH ið ÞrRHiniþ iΔRH; ð11Þ
The choice of the ΔRHwas made as a trade-off between statistical representativeness of each bin and sufficient number of bins

to have enough values to guarantee the validity of the analysis. It is seen in Fig. 4 that for low RH the PG values tend to fair-
weather values around �80 V/m and a diversity of behaviors is observed for higher RH. On one hand, in the heavily polluted
southern sectors, SW and SE, it is observed that the PG tends to decrease with RH; which is an unexpected result. These should
result from the presence of high levels of pollutant aerosols and two possibilities can be considered: (1) precipitation of air
pollution particles by charged water aerosols (Balachandran, Krupa, Machowski, Jaworek, 2001) reducing ion–aerosol attachment
and increasing AEC; (2) increased partitioning of charge to the larger aerosols implying that charged aerosols would contribute to
AEC (the assumption made in the formulation assuming that the charged aerosols do not contribute to AEC would not be valid).
On the other hand, the northern sectors show an increase in the PG with RH in the region of aerosol hygroscopic growth. The PG
for NE sector shows a slightly lower increase with RH as compared with the NW sector. This is an important result because these
sectors are known to be the least polluted (Silva et al., submitted for publication) and more hygroscopic marine aerosols, coming
from the Atlantic Ocean, influence the NW sector. Marine aerosols are known to have high hygroscopicity (Carrico et al., 2000;
Titos et al., 2014b) and will dominate the non-hygroscopic behaviour of the pollutant aerosols. To progress with the analysis the
median values of the PG corresponding to the northern sectors, for each RH bin, are represented against the median RH of the
respective bin. The data is fitted to the model in Eq. (10) in the RH region defined for aerosol hygroscopic growth between �60%
and �90%. In the fitting it was assumed that the dry size of the aerosols is Ra,0�0.1 μm, and the following parameters are used:
Jz�2 pAm�2, T�293 K, and q�10 cm�3 s�1 (Harrison & Carslaw, 2003). The fits are presented in Fig. 5a and b. The error bars
represent the median absolute deviation (MAD), the solid-line is the fitted curve and the dashed-lines are the model curve using κ
40% above (upper limit) and below (lower limit) of the fitted values, respectively. The model describes well the RH evolution of the
PG for the northern wind sectors in the region of aerosol hygroscopic growth. The results are presented in Table 2. These are very
reasonable values consistent with an urban environment; which has high aerosol concentration number with small
hygroscopicity. They are probably a result of the mixture between the non-hygroscopic pollutant aerosols resulting from the
activity of the city of Lisbon and the hygroscopic marine aerosols. This is more evident for the NW sector. The fitting procedure is
robust against the Ra,0 used and would only affect the value estimated for Za because these two quantities appear as a product in



Table 2
Results from fitting the model to the PG in the northern wind sectors: aerosol number
concentration (Za) and aerosol hygroscopic growth parameter (κa). The goodness of the fit is
also given (r2). It is assumed that particle dry radius is Ra,0¼0.1 μm.

NW NE

Za (cm�3) 3280 4179
κa 0.094 0.072
r2 0.97 0.997

Fig. 5. The fits of the model to the wind sectors: (a) NW and (b) NE. The error bars represent the median absolute deviation (MAD), the solid-line the fitted
curve and the dashed-lines the model function but with a variation in κ of 40% above and below the fitted valued.
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Eq. (10). It is important to mention that Ra,0 is expected to be small as it is the dry radius instead of the typical values measured in
real atmospheric conditions where the aerosol particles are already hydrated to some extent (Deshpande & Kamra, 2004).

5. Conclusions

The formulation developed here relates in a simple way three microphysical properties of the aerosols: dry radius, conce-
ntration number and hygroscopicity; with the macrophysical measurement of Potential Gradient. As a simple formulation, it has
several limitations such as neglecting the positive to negative ion concentration unbalance, the effect of electrified aerosols, the
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influence of aerosol size distribution, and the change in the ionization rate with the relative humidity. Nevertheless, it describes
fairly well the dependence of the Potential Gradient with the Relative Humidity for the northern wind sectors (less affected by air
pollution) of the measurements done at the Portela meteorological station (Lisbon, Portugal). The values for the aerosol
hygroscopicity are low, but consistent with the fact that they are probably a consequence from a mixture between non-
hygroscopic pollutant aerosols (resulting from the activity of the city of Lisbon) and the hygroscopic marine aerosols. This point
validates the model here developed.
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