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SUMMARY

Bone mass distribution and structure are depenolemhechanical stress and adaptive
response at cellular and tissue levels. Mechastgalulation of bone induces new bone
formation in vivo and increases the metabolic agtivand gene expression of
osteoblasts in culture. The aim of this work was etxperimentally validate the
possibility of using piezoelectric materials as eam of stimulating mechanically bone
cells by converse piezoelectric effect.

Keywords: Polymeric piezoelectric, actuator, osteoblast cells, mechanical stimulation.

INTRODUCTION

Bone is a living structure in constant adaptatiod eemodeling. The processes of bone
resorption and deposition are strongly related eximanical stimuli [1-4]. Osteocytes
and osteoblasts play a central role in mechaniwadu sensing and transduction in
living bone and thus, osteoclastic activity too.

Mechanosensation implies that cells respond topatieal force. There is evidence that
forces capable of inducing cell deformation indebanges in membrane channels and



on protein structure [5, 6] and that ultimatelyfoskeleton deformation may directly
influence on cell nuclei [6-9]. In response to mawbkal stimuli, osteoblasts produce a
number of substances that function as messengeecoies, like prostaglandins
(particularly PGE2) and nitric oxide [10-13]. A nieemical stimulus may be propagated
to surrounding osteocytes by a single originatis¢eocyte, via extracellular soluble
signalling factors like nitric oxide [14]. Many diees have been tested for mechanical
stimulation of cells and tissues in vitro, namefyosteocytes and osteoblasts [15-19],
although many of these systems are hardly adaptalde in vivo device. Strain, load
and frequency of the stimulus determine how cealpoads; dynamic, short loading
causes the strongest bone adaptation responsepaacells tend to accommodate to a
routine, so the stimulus must vary in order to ddeived by a same level of response; a
stochastic bone cells response in vitro and in \nes been reported [8, 11, 20-26].
According to some authors, high frequency assatiatéh a high enough number of
cycles are needed to maximize osteoblast proliteran vitro [27].

Takada described the use for in vitro assays @ézoplectric actuator in which the cells
were seeded on a collagen gel block; this block thhas submitted to uniaxial tension
and/or compression by the displacement originaietio piezoelectric ceramic layers
by the loading of voltage; both strain and frequesgplied could vary [19].

As Fukada and Yasuda described, the bone has peewnaeproperties, and mechanical
stress applied to dried bone produces polarizarm@hsubmission of bone to an electric
field originates strain [28].

METHODS
Piezoelectric substract

Physical phenomena of the piezoelectric substract

The polymeric piezoelectric films used (Polyvingie Fluoride (PVDF)) were
supplied by Measurement Specialties Inc CompanyAjUShese films consist of a
12x13mm active area, printed with silver ink eled#s on both surfaces in an
15x40mm die-cut piezoelectric polymer substrate.piblarized along the thickness and
admits as piezoelectric strain constantl; = 23 X 10712 and d;; = —33 X

m
10‘12(m/ v), see figure 1. Theoretically, based on the comverszoelectricity effect,

m

when a voltage is applied along the polarized tivac3 — axis), the polymer strains
in the directiorl — axis, given the intrinsic properties of this specifiaterial. The
amount of free strain is given by the equation (1).
dszq
€11 = Va (1)

Wheret is the polymer thickness, aﬂr@ the applied voltage.
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Figure 1 —The scheme illustrated a piezoelectric polymer. Blaek region corresponds to t
active areas (silver electrode).

Coating the polymeric piezoelectric substrate with PMMA and micrc-particles of
Bonelike.

To ensure osteoblasts to adhere the silver elextrotkre covered with an elect
insulator material.

The chosen material for covering was an acrylidy pmethyl methacrylate) (PMMA
(PERFEX®, International Dental Products, USA). Migrarticles of Bonelike kindl
offered by INESCPorto were added. The PVDF was maa/gith a homogenous lay
of PMMA and Bonelike by a De~Coating process, at constant velocity of 0,z
mnvys, see figur@. Each PVDF had four layers, guarantying eledtiicsulation. The
coating was performed in a clean room (Class 1E8RPorto

‘Fﬁ‘\ 0238 mm/s

Figure 2- Deepeoating machine develop to coated the piezoeleattigators for bone cells

Sterilizing process of thecoated polymeric piezoelectri
The coated polymeric piezoelectric substrates watemitted toy-irradiatior (normed
dosis of 25 kGy) for sterilization prior to cellltwre (ITN, Lisbon)

Finite element method (FNM)



FNM estimated and quantified the amount of stréssfs distribution along the
piezoelectric surface. The mesh was of quadraéizqalectric solid elements with three
degrees of freedom, through Finite Elements Anal{SEA) using the solver Abaqus
6.7-1 in static conditions. The material propertiseed for the numerical simulation
were provided by the supplier. The model was comgdry 9109 nodes.

Experimental measuring of the piezoelectric displaament

To understand and quantified the really amounthefdisplacement and is distributed
along the piezoelectric actuator surface were aseBSPI - electronic speckle pattern
interferometry process.

Cells culture

The cell line used, MC3T3-EL1 cells (11th passagatly offered by Ineb, Porto) exhibit
a developmental sequence typical for osteobla€lk [this cell line has been used in
many studies on the effects of mechanical stinutgB3-35].

MCT3T3-E1 cells were cultured under standard caowkt (37°C, 5% carbon dioxide),
usinga-MEM medium (Cambrex), 2 mM L-Glutamine (Cambrek)% of bovine fetal
serum (Gibco), 0,5% gentamicin and 1% amphoteBc{ibco).

Piezoelectric substrates (standing on culture dishBP) and controls (standard culture
dishes, TPP) were seeded with 16x104 cells, witbtal volume of 10QuL of cell
suspension. Cells were allowed to adhere to thetsatb, before adding the rest of
culture medium, and then grown in both static agdathic piezoelectric substrates
(n=6); on the substrates submitted to dynamic ¢mmdi, stimulation was done with a
alternating sinusoidal current (AC), of 5V, at lldad 3Hz for 15 minutes at each
frequency (24h and 48 hours post-seeding). All arpents were repeated three times.

Determination of viability and metabolic activity with resarzurin method

The resarzurin-based method utilizes the redoxrdgarzurin that upon reduction by
metabolically active cells is converted into a tygHuorescent product (resorufin).
Nonviable cells have no metabolic capacity ands thwill not reduce the dye, so the
fluorescence intensity observed is a measure ofidlide cells [36-38].

After stimulation, the medium was aspirated and meedium with 10% resarzurin
solution added. Cells cultures were then incubdted3 hours before collection of
samples and fluorescence readings using a fluarescgpectrophotometer (Shimadzu,
Japan).

Measurement of nitric oxide (NO) in culture medium

NO is a messenger molecule produced in responsmetchanical stimulation of
osteoblasts and osteocytes, with a large variebyadgical functions [12, 39].

NO is quickly oxidized to nitrate and nitrite indbogical systems, and these are the two
primary, stable and nonvolatile breakdown produwftdNO. In aqueous buffers and
culture conditions nitrite is the principal oxidati product of NO [40]. In this study,
culture medium samples were collected immediatéier astimulation and NO
measured, using NO Assay Kit (Biochain), basedhenGriess reaction, after sample
deproteinization, and according to the manufacsiiestructions.

Statistical analysis

Normal distribution of the results was verifiedngihe Shapiro-Wilk normality test for
n>3, and differences between groups tested usiegn@y ANOVA and Significant
differences were considered at a P value 0,05.stdgstical analysis was done using



software OriginPro 7.5 (OriginLab Corporation, us

RESULTS

Coating the polymeric piezoelectric substrate witlPMMA and micro -particles of
Bonelike.

The Figure 3shoes the active area alre coated. The device has a tothickness
of

Figure 3 - Optical microscopic (Palatine inverted optical roszope, Olympus PMG3) images of
coatings distribution in the polymeric piezoelecsurface

Finite element method (FNM)

FNM gave an estimation of stress/strain and digphent cstribution along th
uncoatedolymeric piezoelectric surce. The values range is 6,4443<7,3(nm) . The
higher dsplacement was observed in ipiezoelectric freexremity (see, Figure and
Figure 5. It's possible to observe sinusoidal numerical perturbation in the ence
region, but the strain valueare arounckyy = 2,21 along the piezoelect surface.
Thesevalues are near the tlretical ones, see equation (IThe stress conditions fi
each cycle are present in the Fig5.

Figure 4 - Displacement variation in nanometers along the PBtiaator surfacen each cycle.
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Figure 5 - Figure 4a - Strain variation in the longitudinaledgtion of the PVDF actuator surface
(axis — yy ) along the PVDF length, for each cycle.

Experimental measuring of the piezoelectric displaament

The ESPI process shows that, beside the displaceoaersed by the piezoelectric
constants, there is a structural interference chbgehe fact of being a thin membrane.

With this process was possible to compare the nloemd the coated piezoelectric
membranes (see Figure 7a and 7b).
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Figure 7a- Displacement variation in millimeters along the Figure 7b - Displacement variation in millimeters along thet=al
uncoated PVDF actuator surface or each cycle PVDF actuator surface or each cycle

Cells culture

Determination of viability and metabolic activity with resarzurin method

Cell proliferation and viability was affected byetlsubstrate (actuator vs. customized
cell culture dish). Viability was significantly dexased in the groups grown on the
device surface (Figure 7).

Although viability seems to be consistently andgliy higher for the first 48 hours in
the group subjected to stimulation, differencesenet statistically significant.
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Figure 7 - Cell viability 24 and 48 hours after seeding aadydstimulation of the dynamic group, results

are expressed in percent related to controls (atdnckll culture dish, TPP). Bars show Means amdrEr
bars show Means + Standard Error.

Measurement of nitric oxide (NO) in culture medium

Nitric oxide in culture medium after stimulation svaignificantly higher in dynamic

conditions vs. static, both 24 and 48 hours afemdsg (see Figure 8). When the
population means of the controls were comparedigmficant difference was found at
24 and 48 hours; the dynamic group at 24h and 48taved in similar way, when

means of the NO measurements were compared witisiigtoup.
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Figure 8 — Nitric oxide immediately after stimulation of tliynamic group, comparing to static group.
Bars show Means and Error bars show Means * Stdrtaor.

Statistical analysis

Normal distribution of the results was verifiedngthe Shapiro-Wilk normality test for
n>3, and differences between groups tested usiegvary ANOVA and Significant
differences were considered at a P value 0,05 sTdtestical analysis was done using
software OriginPro 7.5 (OriginLab Corporation, USA)

CONCLUSION AND DISCUSSION
In this work the stress/strain was constant, bexalthough the frequency varied, the
applied voltage was constant. According to therdtédin of piezoelectricity every time



a voltage was applied a maximum high of strain whatined and then material
recovered the initial shapsg, = 2,2 . The amount of stress/strain distribution along
the piezoelectric material was assumed as an addeptalue.

These results suggest that the devices affecteatimely cell viability and proliferation.
Although Braga et al. describe no evidence of negadffects of extracts obtained by
immersing PVDF/HA composite membranes in mediumdugt], few studies on
PVDF cytocompatibility are available.

Another study using human epithelial cell line L18fers a proliferation of 37% three
days after seeding on virgin PVDF, increasing t804&t 6 days post-seeding, when
comparing to to control [42]. Hung et al. descriltedt PVDF had an inhibitory effect
on neural stem cells differentiation and PVDF sekrnwedecrease consistently MTT
reduction activity [43].

Apart from the impact of the PVDF itself, the cogtimay increase or diminish protein
adsorption and cell adhesion. For adherent cedislihke osteoblasts, this is most
important. Surface properties are also influencgdhe sterilization method. In this
study,y-irradiation (normed dosis 25 kGy) was used toilsterthe devices prior to cell
culture. The method used may increase protein ptisoron virgin PVDF foils and,
although it may not strongly influence cell surfatensity, it may influence coating
oxidation phenomena [44].

The slightly higher values of resorufin in the dyme group in this assay is in
agreement with the expected proliferation enhano¢énmelated to the mechanical
stimulation to which osteoblasts were subjectecadoordance with the literature [15,
45].

The elevation in the NO values in the culture mediunder dynamic conditions
suggests that piezoelectric materials can be @feentechanical stimuli generators.

By using piezoelectric material for bone cells stiation, the control of mechanical
ranges only requires the control of the amount lettacal energy applied; the fast
answer to electric stimulus also allows workingphysiological frequencies, as are the
ones used 1Hz and 3Hz, in this study. Another atdwegmnis the possibility by changing
the piezoelectric constants of a biocompatible gaézctric material to stimulate bone in
different directions apart the one used in thiska(olfy).
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