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A B S T R A C T

Realistic 3D finite strain analysis and crack propagation with tetrahedral meshes require mesh refinement/
division. In this work, we use edges to drive the division process. Mesh refinement and mesh cutting are edge-
based. This approach circumvents the variable mapping procedure adopted with classical mesh adaptation
algorithms. The present algorithm makes use of specific problem data (either level sets, damage variables or
edge deformation) to perform the division. It is shown that global node numbers can be used to avoid the
Schönhardt prisms. We therefore introduce a nodal numbering that maximizes the trapezoid quality created by
each mid-edge node. As a by-product, the requirement of determination of the crack path using a crack path
criterion is not required. To assess the robustness and accuracy of this algorithm, we propose 4 benchmarks. In
the knee-lever example, crack slanting occurs as part of the solution. The corresponding Fortran 2003 source
code is provided.

1. Introduction

Division of tetrahedra with applications to fracture can make use of
mesh adaptivity algorithms using edge-based division. 3D adaptivity is
a classical subject and is discussed in mesh generation textbooks, cf.
[11]. However, several aspects, such as the general case of edge-based
division and the use of global node numbering to improve the division
quality were not previously addressed. In addition, applications to
fracture are infrequent and make use of specific crack front cases. We
here address these issues and show applications to fracture, including
slanting (see, e.g. [14] for an erosion-based algorithm predicting
slanting).

Several discretization-based 3D applications make use of tetrahe-
dron division:

• Level-set based operations and mesh creation/adaptivity for large
deformations, including biomechanics applications [4].

• Visualization [13,9].

• Fracture [2,26].

• Surgery modeling [18,20].

• Biomechanics [4].

In terms of objective for the mesh division, we focus here on the
required algorithms and a number of applications. It is known that
tetrahedron mesh subdivision based on edges or faces generates five
distinct members of the polyhedron family: tetrahedra, square pyr-
amids, triangular prisms (both pentahedra) and octahedra.
Tetrahedrization of square pyramids and octahedra can be made
compatible with neighbour elements1 for any give face-based criteria.
However, triangular prisms can degenerate in the so-called Schönhardt
prism, which is non-tetrahedrizable. Some Authors have been inserting
nodes inside the original tetrahedron to deal with Schönhardt prisms
(cf. [24]). The reason for this ad-hoc procedure is that two tasks are
simultaneously being performed: mesh improvement and tetrahedriza-
tion. Of course these are equally important and here we address them
separately. In terms of tetrahedron division, past work has dealt with
two distinct families of methods: edge-based [25] and face-based [22]
(Table 1).

Using global numbering (use the maximum node number), it is a
simple matter to show that triangular prisms can be made tetrahedriz-
able, as will be addressed later. Prototype quality of triangles and
tetrahedra (inverse relations given by P.L. George [12]) is given by:
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where β = 4 3triangle and β = 36 2tetrahedron . In (1)–(2) Atriangle is the area
of the triangle and Vtetrahedron is the volume of the tetrahedron. The edge
lengths are given by li with i = 1, 2, 3 for the triangle and i = 1,…,6 for
the tetrahedron. The evaluation of mesh quality, the corresponding
arithmetic average is used. We now discuss the division of tetrahedra
based on edges.

2. Edge-based cutting with pre-ordering

2.1. Marking edges and calculating the crack intersection point

To identify the corresponding edges and mark for splitting, we have
several choices, according to the main goal. Using two nodes of a given
edge, let them be N1 and N2, we have a local edge coordinate ξ such as
N1 corresponds to ξ = −1 and N2 to ξ =+ 1. If the surface is known from
a function xϕ ( ) = 0 such that x are the coordinates of a given point, we
use an affine relation to obtain the marked edge and corresponding
local coordinate ξ:

ξ
ϕ ϕ
ϕ ϕ

=
+
−

1 2

1 2 (3)

where ϕ1 and ϕ2 are the images of ϕ in nodes N1 and N2. If ξ ∈ [−1, 1],
the corresponding edge is marked. We now introduce two additional
strategies for edge marking. In the case of edge length, we use the
following criterion for marking:

l
f

l l≥
2

( + )N N
m

1 2 max min (4)

where lN1N2 is the deformed edge length and lmax and lmin are the
maximum and minimum deformed edge lengths, respectively. In
addition, the typical value of the parameter fm adopted here is 0.75
and is introduced to avoid excessive remeshing. For the damage
problem, we have (see Fig. 1):

d L dh f l(1 − ) + <N N m N N1 2 min 1 2 (5)

where d is the indicative damage value at the edge, LN1N2 is the
undeformed edge length and hmin is the minimum edge size, which is
considered problem data. In (5), fm is introduced to incorporate the
effect of lN1N2 and damage in the same inequality. A typical value of fm
is 1.5 (Table 2).

Table 1
Case selection as a function of number of marked edges and topology (neighborhood relations).

Number of marked edges Description Case Local relations between local element numbering and case numbering

0 Single case #1 Any order
1 Single case #2 N1 and N2 are on the marked edge
2 A node shares two marked edges #3 N3 does not share a marked edge N4 shares two marked edges

Otherwise #4 N1-N2 corresponds to the smallest local marked edge

3 A node shares 3 unmarked edges #5 N3 is the corresponding node
A node shares three marked edges #6 N4 is the corresponding node
Otherwise #7 N1 and N2 have both two marked edges

4 One node contains 3 marked edges #8 N3 shares one marked edge and N4 shares three
Otherwise #9 Both N1 and N2 are on the unmarked edge

5 Single case #10 Both N1 and N2 are on the unmarked edge
6 Single case #11 Any order

Fig. 1. Edge division based on level set or damage value.

Table 2
Index sets for tetrahedrization of #PRI, #PYR, #TET and #OCT. #TET indicates a
tetrahedron, #PYR a pyramid, #PRI a triangular-base prism and #OCT a octahedron.

Solid: added edges Indices

#PRI: 4-6, 1-3, 1-6 1, 2, 6, 3
1, 6, 4, 3
1, 6, 5, 4

#PRI: 4-6, 2-4, 1-6 1, 2, 6, 4
1, 6, 5, 4
2, 6, 4, 3

#PRI: 4-6, 2-4, 2-5 1, 2, 5, 4
2, 3, 6, 4
2, 6, 5, 4

#PRI: 3-5, 1-3, 1-6 1, 2, 6, 3
1, 3, 5, 4
1, 6, 5, 3

#PRI: 3-5, 1-3, 2-5 1, 3, 5, 4
2, 5, 1, 3
2, 6, 5, 3

#PRI: 3-5, 2-4, 2-5 1, 2, 5, 4
2, 3, 5, 4
2, 6, 5, 3

Solid: added edges Indices
#PYR: 1-3 1, 2, 5, 3

1, 3, 5, 4
#PYR: 2-4 1, 2, 5, 4

2, 5, 4, 3
#TET: 1, 2, 3, 4
#OCT: 3-5 1, 3, 4, 5

1, 3, 5, 6
3, 4, 5, 2
3, 5, 6, 2

#OCT: 4-6 1, 4, 6, 3
1, 6, 4, 5
2, 4, 6, 5
2, 6, 4, 3
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Fig. 2. Tetrahedron subdivision: 11 independent cases (permutations and reflections removed). Node numbering for each case is in a one-to-one relation with local node numbering for
each element.
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2.2. Edge-based symbolic tetrahedron subdivision

We propose a symbolic tetrahedron subdivision based on global
node numbering and unequivocally split the arising quadrilateral faces.
The classical 11 cases [24] of tetrahedron splitting are shown in Fig. 2.
Cases where quadrilaterals appear pose a decision problem, which will
be addressed later. Traditionally [24,25], the shortest dividing diagonal
is used, but this can produce a non-tetrahedrizable Schönhardt prism.
An alternative consists of using the global numbers as an criterion for
splitting. This can produce ill-shaped elements and therefore a nodal
pre-ordering is needed to ensure that elements are of satisfactory
quality. Note that this process can be considered h − adaptivity, see
Fig. 21.6 of [8].

Since tetrahedra with adjacent faces must share the new edges,
these must be compatible. The same face must be divided in a
compatible form in two adjacent elements. In our method, the criterion
for face bisection in two triangles is the global node number. The
largest global node number in a given quadrilateral face will determine
the split. It is well known that triangular prisms with divided quad-
rilateral faces can become non-tetrahedrizable. Fig. 3 shows a trian-
gular prism and its planification face and the global node numbers. The
sequence of largest node numbers will preclude the non-tetrahedriz-
able prisms (Table 3).

The division of a tetrahedron can generate the polyhedra shown in
Fig. 5. It can be observed that, with the exception of the tetrahedron,
division of these polyhedra is not unique and the previously mentioned
criterion is adopted. Although this can result in inadequate quality (in
the sense of mesh quality [8]) subsequent operations will address this
aspect. Numbering of mid-edges is based on the assessment of division
of trapezoids based on quality, cf. Fig. 4. For each edge j we use the
algorithm 1.

Algorithm 1. Algorithm (Fortran03) for estimating edge quality.
Mesh smoothing (see [8]) is performed using the centroid of

incident elements see Fig. 6 and Fig.7 for the combined effects:

Fig. 3. Face division of a triangular prism. a b c, , and d e, and are global node numbers.
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3. Equilibrium problems: constitutive integration in finite
strains

Using standard notation, we write the spatial equilibrium equations
as [19]:

σ
x

b
∂
∂

+ = 0ij
i

j (7)

with the Cauchy tensor components σij (i j, = 1, 2, 3). In (7) i is the
direction index and j is the facet index. The components of the body

force vector are bi. In (7), coordinates x j are the spatial, or deformed,
coordinates of a given point under consideration. In addition, the
following natural and essential boundary conditions hold on each part
of the boundary Γ Γ Γ= ∪t u where Γt is the natural boundary and Γu is
the essential boundary:

t σ v Γ= · on t (8)

u u Γ= on u (9)

where t is the known stress vector on Γt where v is the outer normal and
u is the known displacement field on Γu. It is assumed that (7) and (8)–
(9) are satisfied for a time parameter t T∈ [0, ] with T being the total
time of analysis and for a point with position x Ω∈ belonging to the
deformed position domain at the time of analysis. Natural boundary Γt

is evolving in the sense that cracks create boundaries with known t .
Equilibrium configuration corresponds to the domain Ω. In tensor
notation, equation (7) can be presented as:

σ b 0∇· + =T (10)

with ∇ = / x
∂

∂ being the spatial gradient operator. After multiplication
by the velocity field u̇, integration in the deformed configuration Ω and
application of integration by parts component-wise, we obtain the
following power form (Ẇint is the internal and Ẇext is the external
power):

∫ ∫ ∫σ L b u t uΩ Ω Γ: d = · ̇d + · ̇d
Ω

W

Ω Γ

Ẇ ̇

t

int ext (11)

where L is the velocity gradient: L = =x
x

u
x

∂ ̇
∂

∂ ̇
∂ .

Using the undeformed configuration Ω0 for the left-hand side, it is
well known that (11) can be written as:

∫ ∫ ∫S E b u t uΩ Ω Γ: ̇d = · ̇d + · ̇d
Ω

W

Ω Γ

W

0

̇ ̇

t
0
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where S is the second Piola-Kirchhoff stress and E is the corresponding
Green-Lagrange tensor. Eigenvalues of E are identified as ε ε,1 2 and ε3.
For the quasi-brittle model employed in this work, we use the Mazars
[17] definition of equivalent strain, here denoted εeq:

∑ε ε=
i

ieq
=1

3
2

(13)

with ε i= , = 1, 2, 3i
ε ε+

2
i i . From (13) the maximum equivalent

strain ε is defined as ε ε= max[ ]
hist

eq . With a non-local representation of

ε, which is denoted ε we use a strict approach: only the softening
function depends on ε . Note that in the literature, εeq is frequently
adopted for the nonlocal strain approach, e.g. [21]. Loading/unloading
conditions strictly involve local quantities and the structure of the local
constitutive representation remains. Defining the equivalent stress as
σ Eε=eq eq and introducing a softening function σ ε( ), we establish the

Table 3
Node numbers for tetrahedrization of cases shown in Fig. 2. #TET indicates the creation
of a tetrahedron, #PYR a pyramid, #PRI a triangular-base prism and #OCT a octahedron.

Case Result

#1 #TET(1,2,3,4)
#2 #TET(3,4,5,2)

#TET(4,3,5,1)
#3 #PYR(1,2,5,6,3)

#TET(6,5,3,4)
#4 #TET(2,3,5,6)

#TET(2,6,5,4)
#TET(1,5,6,4)
#TET(1,5,3,6)

#5 #TET(2,3,6,7)
#TET(3,5,7,4)
#TET(6,3,5,7)
#TET(1,6,3,5)

Case Result
#6 #TET(4,7,6,5)

#PRI(2,7,6,1,3,5)
#7 #PYR(6,7,4,2,5)

#PYR(3,1,5,7,6)
#TET(1,2,6,5)

#8 #TET(8,6,7,4)
#TET(7,8,5,6)
#PYR(2,3,7,6,5)
#PYR(1,8,7,3,5)

#9 #PRI(8,7,3,4,5,6)
#PRI(1,2,8,5,6,7)

#10 #TET(9,8,5,4)
#TET(3,6,7,8)
#PYR(6,7,9,5,8)
#PRI(1,2,9,5,6,7)

#11 #TET(1,9,8,5)
#TET(2,10,9,6)
#TET(3,8,10,7)
#TET(5,6,7,4)
#OCT(8,6,7,5,9,10)

Fig. 4. Assessment of triangular (with a sub-quadrilateral) division corresponding to the face arrangement.
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loading/unloading conditions in terms of stress:

d σ σ ε(1 − ) − ( ) ≤ 0eq (14)

d ̇ ≥ 0 (15)

d d σ σ ε̇ [ (1 − ) − ( )] = 0eq (16)

from which a Hookean-like constitutive law is obtained, where Voigt
notation is used:

dS E= (1 − ) (17)

and is the elastic tangent modulus. Function σ ε( ) follows the
standard exponential softening law:

⎡
⎣⎢

⎤
⎦⎥σ ε σ εLσ

G
( ) = exp −

c
max

max

(18)

In (18), σmax is the maximum equivalent stress, Gc is the critical
strain energy release rate (all modes are equally combined in εeq) and L
is the length scale parameter. To ensure consistence with other models,
we identify d in (14–16) and (17) as the damage constitutive variable.

Considering the model described by (14)–(18), two main ap-
proaches can be used:

1. Use of a cohesive law to introduce the dissipation of fracture energy
in a process region which is explicitly a surface. This has been
performed with technique such as XFEM [6] and alternatives.

2. Use of a regularized formulation, cf. [21,3], which provides an
explicit length scale and avoids the cohesive elements.

The first approach is theoretically sound but makes use of an explicit
crack path determination technique which can be difficult to find in 3D.
Aspects such as crack coalescence and bifurcation are difficult to obtain
in a robust form in 3D. The second approach, although much simpler
since it does not require an explicit crack path, often produces
unrealistic crack regions and also is difficult to fine-tune in terms of
energy dissipation.

Remeshing is a form to remove the excessive thickness created by
the regularized formulation and to ensure that dissipation is limited to
a realistic region, without requiring crack path determination.

Implementation details, including the control equation for the
solution, are provided in previous papers, see e.g. [1].

4. Regularization with the screened Poisson equation

The classical screened Poisson equation [7] (typically named

Helmholtz-like, cf. [21,3]) is adopted to regularize the otherwise ill-
posed equilibrium problem in the presence of strain softening [5]. The
combination with remeshing is very useful, since the usual irregular
results produced by. Using an additional field, ε , we perform a coupling
with the constitutive-based ε as:

Il d L ε ε ε( , ) (∇ ): = −m b
2 2 (19)

with the following boundary condition:

ε v Γ∇ · = 0 inb b (20)

A version with constant l was established by Lasry and Belytschko [16]
who used an explicit version of this model, requiring higher-order
continuity. In (19), ∇b

2 is the Laplacian with respect to the coordinates
in equilibrium configuration Ωb, corresponding to an updated-
Lagrangian formulation. This allows the diffusion effect of (19) without
the well-known [3] flattening side-effect. It is worth noting that ε given
by equation ((19) is a weighted average (see [10,21]) and therefore
mesh size only affects the local quantity ε which is not directly
responsible for softening, as d is made dependent on ε . In the present
work we introduce the following function l d L( , )m :

l d L L dL( , ) = −m m

where Lm is the average mesh edge size at the localization region. The
following constraint applies:

L L≤m

this limits the spreading of the damaged region which occurs with
fixed l. An alternative approach with similar effect was used by Geers
et al. [10] by means of a rate effect. We use a staggered scheme to
regularize the strain-softening problem. We introduce an element that
implements equation (19) using the following weak form with the
previous rate notation:

∫W L dL ε ε ε ε ε̇ = [−( − ) (∇ ·∇ )̇ + ( − ) ]̇dΩε b b b
Ω

m
2

b (21)

where, in terms of discretization for a tet, ξε N ε= ∑ ( )K K K=1
4 where

ξN ( )K are the classical shape functions and εK are the nodal unknowns
for the regularization element. Linearization of (21) follows:

∫W L dL ε ε εεd ̇ = [−( − ) (∇ d ·∇ )̇ − d ]̇dΩε b b b
Ω

m
2

b (22)

The implementation is performed with Mathematica [23] and
AceGen software [15]. We obtain the following element residual for
node M:

Fig. 5. Polyhedra generated by subdivision of a tetrahedron.
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where the sum symbol for K was omitted. In (23), NK are the shape
functions. The linearization corresponding to (23) provides the element
stiffness matrix for nodes M and K as:

⎡
⎣⎢

⎤
⎦⎥∫K L dL N

x
N
x

N N= −( − ) ∂
∂

∂
∂

− dΩMK
e K

i

M

i
K M b

Ω
m

2

b (24)

To compare this new technique with the conventional fixed-l
algorithm, we compare the localization regions in tension for a
stretched bar in Fig. 8 where all relevant data is shown. We can
observe that our new technique with variable l results in a much
sharper definition of the localization region.

5. Numerical tests

5.1. Verification test: pulling exercise

When performing full remeshing, mapping (or transference) of
degrees-of-freedom and constitutive variables is required between the
evolving meshes. In the presence of smoothing, this is also required.
However, the mesh partitioning algorithm does not require that step.
To assess the smoothness of results, as well as the effect of the updating
parameter fm we introduce the following benchmark: using Kirchhoff/
Saint-Venant a bar is pulled up to double its original length. Fig. 9
shows the relevant data for this problem.

Differing from classical full remeshing and map algorithms, the
reaction is very smooth since variable transfer is not required, see
Fig. 10a. Mesh quality decreases with refinement, which is acknowl-

Fig. 6. Cube with intersecting ellipsoid: two distinct mesh densities.
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edged in the literature (see [25,4]), as Fig. 10b shows. The parameter
fm has a dramatic effect in the computational cost. For h=1.5 and
f = 1.5m the final number of elements is nearly eight times the initial,
see Fig. 10c.

5.2. Pristine three-point bending fracture

We now consider a three-dimensional fracture problem, the three-
point bending beam, which is described in Fig. 11. In this Figure,
consistent units are used for dimensions. In contrast with classical
benchmarks, this does not include a pre-notch and is pristine in terms
of initial damage. Fig. 11 shows the relevant data for this problem and
the coarse initial mesh. The goal here is to assess the effect of hmin in
the crack path and load/deflection results. Fig. 12a shows the reaction
as a function of v . Some conclusions can be drawn: without remeshing,
results are excessively ductile. In addition, some sensitivity exists in
terms of hmin , which indicates the effect of poor-quality elements in the
process region. This is further confirmed in Fig. 12b where a smaller
hmin corresponds to a sharper decrease in mesh quality.

5.3. Crack propagation and slanting in a knee-lever

We now use the geometry and relevant data from Schöllmann et al.
[26] for their knee-lever problem. The knee-lever is built from
aluminum alloy IADS 7075T 651. Dimensions and constitutive proper-
ties are shown in Fig. 13a. Fracture properties agree with what was

reported for this material in [26] and a simple proportional loading is
performed here, with monotonously increasing u . Since the thickness is
moderate with respect to the other dimensions, some plane stress effect
is noticeable in the crack advance, as Fig. 13b shows, with the well-
known slanting phenomenon. For the meshes with characteristic
lengths h=4 and h=5, a sequence of deformed configurations is shown
in Fig. 14. We point out that some roughness appears during
propagation, in contrast with alternative methods by the Authors
(see, e.g. [2]). In terms of mesh quality evolution, with the presence
of smoothing we counteracted part of the quality-decreasing effect, as
Fig. 15a shows. In contrast with the previous test, the process region is
relatively localized and therefore a limited increase in the number of
elements is observed, see Fig. 15a.

6. Conclusions

In the context of tetrahedral mesh cutting and subdivision, we
introduced a pre-ordering in new mid-edge nodes to avoid the presence
of non-tetrahedrizable prisms. We tested the algorithm in mesh
partitioning, large strain analysis and computational fracture. In the
latter,we combined a staggered algorithm with the modified screened
Poisson equation and adaptive mesh refinement, and successfully
solved two problems in quasi-brittle fracture. The Mazars equivalent
strain definition [17] was used. Two main goals were achieved:

1. Crack path criteria are not required. Mesh refinement defines the
crack path. The crack slanting phenomenon in plane stress is
naturally reproduced.

2. Cohesive laws are not required. A regularized continuum law, within
a smeared model, is used which provides the necessary dissipation
(which is combined with the screened Poisson equation).

Besides the usual mesh length h, which is required to solve any finite
element problem, only two additional solution parameters are re-
quired: the non-local length L appearing in the screened-Poisson
equation and also in the smeared model, and the mesh refinement
length hmin , controlling the subdivision of elements. When compared
with enrichment methods or classical remeshing algorithms, we
detected the following two shortcomings in the present technique:

1. Computational cost is comparatively high, since two analysis are
performed, with the second involving regularization and equilibrium
equations. Degrees-of-freedom also increase in the first stage of the
analysis.

2. Crack paths are not smooth and present oscillations.

Fig. 7. Partition by an ellipsoid inside: comparison of strategies. Quality as a function of
mesh characteristic length h.

Fig. 8. Stretched bar under tension: localization region as a function of ε for l=L and l L dL= − m.
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Fig. 9. Pulling exercise: mesh evolution for f = 1.5m .
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Fig. 10. Evolution of reaction, mesh quality and number of elements as a function of v .
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Fig. 11. Three-point bending test.
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Fig. 12. Three-point bending test: effect of hmin .
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Fig. 13. Knee-lever: geometry, relevant data and mesh evolution results.
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Fig. 14. Knee-lever: sequence of deformed meshes for h=4 and h = 3 mm.
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