Complementing the Pleistocene biogeography of European amphibians: Testimony from a southern Atlantic species

Gregorio Sánchez-Montes | Ernesto Recuero | A. Márcia Barbosa | Íñigo Martínez-Solano

1Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, Sevilla, Spain
2Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
3Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO/InBIO), Universidade de Évora, Évora, Portugal
4Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain

Correspondence
Íñigo Martínez-Solano, Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, Madrid, Spain.
Email: inigomsolano@mncn.csic.es

Funding Information
Secretaría de Estado de Investigación, Desarrollo e Innovación, Grant/Award Number: CGL2011-28300; Fundación para la Ciencia e a Tecnología, Grant/Award Number: IF/00266/2013/CP1168/CT0001; Ministerio de Ciencia e Innovación, Grant/Award Number: CGL2008-04271-C02-01/BOS; Ramón y Cajal, Grant/Award Number: RYC-2007-01668; Severo Ochoa, Grant/Award Number: SEV-2012-0262; Investigador FCT, Grant/Award Number: IF/00266/2013/CP1168/CT0001

Editor: Krystal Tolley

Abstract

Aim: To reconstruct the historical biogeography of Hyla molleri, a tree frog endemic to the Eurosiberian and Mediterranean bioclimatic zones in the Iberian Peninsula.

Location: Iberian Peninsula.

Methods: We used molecular data (mtDNA and species-specific, polymorphic microsatellite loci) and species distribution modelling (SDM) from the Last Interglacial (LIG) to the present to characterize spatial patterns of genetic diversity in this species and assess their relationship with climatically favourable areas through time.

Results: Genetic diversity is heterogeneously distributed across the range of H. molleri, with two main genetic reservoirs located in (a) central and southern Portugal and (b) a fragmented area encompassing mountainous areas in northern Spain. According to SDM, the Iberian Peninsula has experienced a progressive and continuous decrease in climatically favourable areas for H. molleri since the LIG, especially in southern and eastern Iberia, where the species is currently absent. However, we found no correlation between areas that have remained climatically favourable since the LIG and current genetic diversity.

Main conclusions: Our results suggest that the demographic history of H. molleri since the Pleistocene has been characterized by relative stability, contrasting with the large-scale cycles of extinction-recolonization inferred for other more thermophilous, co-distributed amphibian species in Iberia. Accounting for discordant demographic responses to climatic changes across syntopic species provides new insights about the evolutionary history of amphibian communities in southern Europe.

KEYWORDS
Holocene, Hyla molleri, integrative phylogeography, Last Glacial Maximum, Last Interglacial, microsatellites, mtDNA, species distribution modelling

1 INTRODUCTION

Climatic instability through the Pleistocene glaciations has played a major role in shaping current patterns of intraspecific genetic diversity in many taxa endemic to southern European peninsulas, with amphibians as a particularly sensitive (and thus informative) group due to their limited dispersal capacity (Abellán & Svenning, 2014; Canestrelli & Nascetti, 2008; Gonçalves et al., 2009; Martínez-Solano, Teixeira, Buckley, & García-Paris, 2006; Recuero & García-Paris, 2011). These southern areas represent either sanctuaries (model ‘S’) or refugia (model ‘R’) for these taxa, depending on whether they harboured most or only a minor fraction of their genetic heritage respectively (Recuero & García-Paris, 2011). Species with a model ‘R’ Pleistocene history are characterized by relatively
shallow phylogeographic structure after the extinction of most ancient lineages during glaciations (Recuero & García-Paris, 2011), whereas model ‘S’ species show deep phylogeographic breaks due to the persistence of ancient groups in multiple refugia (Gonçalves et al., 2015; Martínez-Solano et al., 2006). The effects of successive glacial and interglacial periods on current patterns of genetic diversity across taxa have been largely mediated by range contractions and expansions, whose relative timing is expected to differ in cold-tolerant (e.g. associated with the Eurosiberian bioclimatic realm) and thermophilous (e.g. Mediterranean) taxa. In the present, model ‘S’ and model ‘R’ Eurosiberian and Mediterranean species can be found in sympatry in some areas of southern Europe, potentially showing contrasting historical demographic dynamics associated to their different Pleistocene biogeography and ecological requirements (Dufresnes et al., 2013). This can be assessed through the integration of phylogeographic analyses on multi locus genetic datasets, and species distribution modelling (SDM) representing climatic favourability in different time periods, to unravel the effects of past climate fluctuations on biodiversity (Buckley, 2009; Elith & Leathwick, 2009).

Recent studies have applied this approach to two thermophilous Mediterranean amphibians from the Iberian Peninsula, one corresponding to a model ‘R’ species (Pelobates cultripes, see Gutiérrez-Rodríguez, Barbosa, & Martínez-Solano, 2017a) and the other to a model ‘S’ species (Pleurodeles waltl, see Gutiérrez-Rodríguez, Barbosa, & Martínez-Solano, 2017b). In both cases, the results showed a decrease in climatically favourable areas in the Last Glacial Maximum (LGM), associated with a decrease in genetic diversity in areas more subject to changes in favourability through time, mostly in northern latitudes (Gutiérrez-Rodríguez et al., 2017a, 2017b), supporting the idea that thermophilous Mediterranean species fit the classical model of range contraction to glacial refuge, followed by range expansion after the LGM (Gutiérrez-Rodríguez et al., 2017a, 2017b). However, the generality of this model needs to be assessed in a wider range of co-distributed taxa, including those that are also present in the cooler Atlantic region. These taxa often reach higher latitudes and altitudes than their Mediterranean counterparts, presumably because of a higher tolerance to cold environments. This higher ecological breadth may have played a role in buffering the demographic effects of the ice ages on Atlantic taxa, which would thus be less dependent on climatic stability than Mediterranean taxa, perhaps undergoing historical population dynamics differing from the classical contraction-expansion model. Characterizing the genetic structure of Eurosiberian species in southern European refugia in relation to past climatic scenarios is thus essential to obtain a comprehensive picture of the biogeographic history of Europe since the last ice age, and to understand community dynamics associated with long-term climatic changes (Lobo, Martínez-Solano, & Sanchiz, 2016).

The Iberian tree frog Hyla molleri Bedriaga, 1889 is an optimal model system in this respect. It has a wide distribution in the Iberian Peninsula, encompassing both its Eurosiberian and Mediterranean regions, and occurring from altitudes near sea level to over 2,400 m in the Sistema Central mountains (Reino et al., 2017). It can be considered a cold-tolerant species, with some populations inhabiting areas with annual mean temperatures below 8°C (Llusia, Márquez, Beltrán, Benítez, & do Amaral, 2013). It is also a vagile species which shows a relatively high frequency of movements between distant breeding sites, as compared to other amphibians (>700 m apart, see Sánchez-Montes, Wang, Ariño, & Martínez-Solano, 2018). Both features are probably important in driving population responses of H. molleri to climatic fluctuations, potentially leading to different dynamics compared to less vagile, more thermophilous species. Although previous studies on H. molleri revealed limited genetic variation based on mitochondrial DNA (mtDNA) data, with no obvious patterns of population structure (Barth et al., 2011; Gvoždík et al., 2015; Stöck et al., 2012), its historical demography under past climatic scenarios remains to be explored in detail.

Here we use specific microsatellite markers (Sánchez-Montes, Ariño, Vizmanos, Wang, & Martínez-Solano, 2017) and apply an integrative phylogeographic approach to reconstruct the historical biogeography of this species in Iberia. We analyse genetic samples (mtDNA and microsatellites) from 60 populations, and use SDM to infer changes in climatic favourability for this species through time, focusing on the relationship between spatial patterns of genetic diversity and historical climatic favourability. Specifically, we aim to (a) infer range-wide patterns of genetic variation and structure in H. molleri and assess whether they fit an ‘R’ or an ‘S’ model and (b) test whether genetic diversity is concentrated in areas that have remained climatically favourable since the Last Interglacial (LIG), with gradients of decreasing genetic diversity towards recently recolonized territories, in agreement with the glacial-refugium model. Alternatively, a decoupling between spatial patterns of genetic diversity and climatic stability in the Iberian refugium would support a different scenario, in which climatic changes during the Pleistocene did not have significant effects on this species’ historical population dynamics. Our results have implications for the conservation of the evolutionary potential in H. molleri (Carvalho et al., 2017).

2 MATERIALS AND METHODS

2.1 Sampling and DNA purification

We collected tissue samples of 248 individuals of H. molleri from 60 localities, covering its entire distribution range (Table 1, Figures 1 and 2). Samples included tail tips of tadpoles and toes of post-metamorphic individuals, which were then released back in the place of capture, and from specimens preserved in museum collections. Tissue samples were stored in absolute ethanol and kept at 4°C upon genomic DNA isolation, which was performed with NucleoSpin Tissue-Kits (Macherey-Nagel, Düren, Germany).

2.2 Mitochondrial DNA

We sequenced fragments of the mitochondrial genes cytochrome b (cob) and NADH dehydrogenase subunits 4 (ND4) and 5 (ND5), including adjoining tRNAs (total: 3,290 base pairs), in 247 individual samples from 59 different localities (Table 1), using primers LO and
TABLE 1 Sample localities included in this study, with their geographical coordinates in decimal degrees (Lat: latitude, Long: longitude), the codes of individual samples of *Hyla molleri* and genetic diversity results obtained in mitochondrial (mtDNA) and microsatellite analyses.

<table>
<thead>
<tr>
<th>ID</th>
<th>Locality</th>
<th>Lat</th>
<th>Long</th>
<th>Sample codes</th>
<th>mtDNA</th>
<th>Microsatellites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>H_0</td>
</tr>
<tr>
<td>1</td>
<td>Cuchía, Cantabria, Spain</td>
<td>43.431</td>
<td>−4.029</td>
<td>IM54690-IM54699</td>
<td>10</td>
<td>H160-H162</td>
</tr>
<tr>
<td>2</td>
<td>Segovnes, Nouvelle-Aquitaine, France</td>
<td>44.957</td>
<td>−0.750</td>
<td>IM54006-IM54013, IM54018-IM54023</td>
<td>14</td>
<td>H44-H55</td>
</tr>
<tr>
<td>3</td>
<td>Villaviciosa, Asturias, Spain</td>
<td>43.523</td>
<td>−3.380</td>
<td>IM54701-IM54704, IM54854</td>
<td>5</td>
<td>H71, H163, H164</td>
</tr>
<tr>
<td>4</td>
<td>Embalse de Cecebre, A Coruña, Spain</td>
<td>43.275</td>
<td>−8.282</td>
<td>MNCN11068</td>
<td>1</td>
<td>H76</td>
</tr>
<tr>
<td>5</td>
<td>Larreus, Huesca, Spain</td>
<td>42.517</td>
<td>−0.848</td>
<td>ERG29-ERG30</td>
<td>2</td>
<td>H82, H83</td>
</tr>
<tr>
<td>6</td>
<td>Valgración, La Rioja, Spain</td>
<td>42.327</td>
<td>−3.089</td>
<td>IM53856-IM53861</td>
<td>6</td>
<td>H90, H116-H119</td>
</tr>
<tr>
<td>7</td>
<td>Cernegula, Burgos, Spain</td>
<td>42.639</td>
<td>−3.624</td>
<td>MNCN11078</td>
<td>1</td>
<td>H169</td>
</tr>
<tr>
<td>8</td>
<td>Ruesga, Palencia, Spain</td>
<td>42.883</td>
<td>−4.548</td>
<td>IM54725-IM54729</td>
<td>5</td>
<td>H165-H167</td>
</tr>
<tr>
<td>9</td>
<td>Puerto de Urbasa, Navarra, Spain</td>
<td>42.797</td>
<td>−2.172</td>
<td>IM53927-IM53928, IM53931-IM53934</td>
<td>6</td>
<td>H90, H120-H124</td>
</tr>
<tr>
<td>10</td>
<td>Puerto de la Cubilla, León, Spain</td>
<td>42.990</td>
<td>−5.926</td>
<td>IM53235-IM53243</td>
<td>9</td>
<td>H98-H104</td>
</tr>
<tr>
<td>11</td>
<td>Albires, León, Spain</td>
<td>42.276</td>
<td>−5.280</td>
<td>IM53055-IM53060</td>
<td>6</td>
<td>H92-H97</td>
</tr>
<tr>
<td>12</td>
<td>Ólvega, Soria, Spain</td>
<td>41.752</td>
<td>−1.962</td>
<td>IM54097-IM54106</td>
<td>10</td>
<td>H90, H129-H137</td>
</tr>
<tr>
<td>13</td>
<td>Renales-Laranueva, Guadalajara, Spain</td>
<td>40.934</td>
<td>−3.540</td>
<td>ERG957-ERG962</td>
<td>6</td>
<td>H84-H89</td>
</tr>
<tr>
<td>14</td>
<td>Codesal, Zamora, Spain</td>
<td>41.972</td>
<td>−6.387</td>
<td>IM54214-IM54220, IM54222-IM54226</td>
<td>12</td>
<td>H142, H145, H149-H158</td>
</tr>
<tr>
<td>15</td>
<td>Buenache de la Sierra, Cuenca, Spain</td>
<td>40.179</td>
<td>−1.943</td>
<td>IM54157-IM54166</td>
<td>10</td>
<td>H138-H141</td>
</tr>
<tr>
<td>16</td>
<td>Valdemanco, Madrid, Spain</td>
<td>40.853</td>
<td>−3.644</td>
<td>JF318126-JF318127, GSH399°, GSH428°, GSH469°</td>
<td>2</td>
<td>H168</td>
</tr>
<tr>
<td>17</td>
<td>Boceguillas, Segovia, Spain</td>
<td>41.330</td>
<td>−3.618</td>
<td>IM54065-IM54067, IM40701-IM54073</td>
<td>6</td>
<td>H90, H125-H128</td>
</tr>
<tr>
<td>18</td>
<td>Colmenar Viejo, Madrid, Spain</td>
<td>40.687</td>
<td>−3.830</td>
<td>WP208, GSH258° - GSH259°, GSH265°</td>
<td>1</td>
<td>H183</td>
</tr>
<tr>
<td>19</td>
<td>Torrecaballeros, Segovia, Spain</td>
<td>41.004</td>
<td>−4.018</td>
<td>GSH301°, GSH314°, GSH319°</td>
<td>3</td>
<td>2.278</td>
</tr>
<tr>
<td>20</td>
<td>Fuenterrebollo, Segovia, Spain</td>
<td>41.326</td>
<td>−3.926</td>
<td>GSH554°, GSH557°, GSH565°</td>
<td>3</td>
<td>3.000</td>
</tr>
<tr>
<td>21</td>
<td>Peñalara, Madrid, Spain</td>
<td>40.848</td>
<td>−3.949</td>
<td>MNCN3448</td>
<td>1</td>
<td>H171</td>
</tr>
<tr>
<td>22</td>
<td>Candeleda, Ávila, Spain</td>
<td>40.126</td>
<td>−5.221</td>
<td>MNCN11086</td>
<td>1</td>
<td>H170</td>
</tr>
<tr>
<td>23</td>
<td>Ferreras de Arriba-Villardeciervos, Zamora, Spain</td>
<td>41.904</td>
<td>−6.229</td>
<td>IM54206-IM54212, IM54246-IM54265, IM54267</td>
<td>10</td>
<td>H90, H142-H148, H157, H159</td>
</tr>
<tr>
<td>24</td>
<td>El Puerto, Asturias, Spain</td>
<td>43.024</td>
<td>−6.229</td>
<td>MNCN41176-MNCN41183</td>
<td>8</td>
<td>H172-H178</td>
</tr>
<tr>
<td>25</td>
<td>Monforte de Lemos, Lugo, Spain</td>
<td>42.529</td>
<td>−7.575</td>
<td>IM53534-IM53537</td>
<td>4</td>
<td>H90, H105-H107</td>
</tr>
<tr>
<td>26</td>
<td>Ginzo de Limia, Ourense, Spain</td>
<td>42.054</td>
<td>−7.821</td>
<td>IM53549-IM53554</td>
<td>6</td>
<td>H110-H115</td>
</tr>
<tr>
<td>27</td>
<td>Boticas, Vila Real, Portugal</td>
<td>41.689</td>
<td>−7.665</td>
<td>GVA212-GVA213</td>
<td>2</td>
<td>H90, H91</td>
</tr>
<tr>
<td>28</td>
<td>Serra da Estrela, Guarda, Portugal</td>
<td>40.342</td>
<td>−7.622</td>
<td>EST1-EST2, IM53555-IM53559, IM54235-IM54237</td>
<td>10</td>
<td>H8, H13, H40, H65</td>
</tr>
<tr>
<td>29</td>
<td>Paramos, Aveiro, Portugal</td>
<td>40.980</td>
<td>−8.645</td>
<td>IM53542-IM53545</td>
<td>4</td>
<td>H33-H36</td>
</tr>
</tbody>
</table>

(Continues)
TABLE 1 (Continued)

<table>
<thead>
<tr>
<th>ID</th>
<th>Locality</th>
<th>Lat</th>
<th>Long</th>
<th>Sample codes</th>
<th>mtDNA</th>
<th>Microsatellites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td>AR</td>
</tr>
<tr>
<td>30</td>
<td>Mindelo, Porto, Portugal</td>
<td>41.305</td>
<td>−8.723</td>
<td>IMS3546-IMS3548, MIND1</td>
<td>H37-H39, H75</td>
<td>4</td>
</tr>
<tr>
<td>31</td>
<td>Ciudad Rodrigo, Salamanca, Spain</td>
<td>40.569</td>
<td>−6.576</td>
<td>IMS3538-IMS3539</td>
<td>H108, H109</td>
<td>2</td>
</tr>
<tr>
<td>32</td>
<td>Lavariz, 7.5 km NW of Arzila, Coimbra, Portugal</td>
<td>40.196</td>
<td>−8.642</td>
<td>IMS1447-IMS1452, IMS4185</td>
<td>H16-H19</td>
<td>6</td>
</tr>
<tr>
<td>33</td>
<td>Longueira, Beja, Portugal</td>
<td>39.672</td>
<td>−8.777</td>
<td>IMS4171, IMS4176-IMS4185</td>
<td>H8, H56-H64</td>
<td>11</td>
</tr>
<tr>
<td>34</td>
<td>7 km NW of São José da Lamarosa, Santarém, Portugal</td>
<td>39.125</td>
<td>−8.513</td>
<td>ERG1275-ERG1276, ERG1285-ERG1286</td>
<td>H6, H7, H11, H12</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>Serra de Montejunto, Lisboa, Portugal</td>
<td>39.174</td>
<td>−9.018</td>
<td>ERG1280-ERG1284</td>
<td>H8-H10</td>
<td>5</td>
</tr>
<tr>
<td>36</td>
<td>Torrefresneda, Badajoz, Spain</td>
<td>38.992</td>
<td>−6.096</td>
<td>IMS2922-IMS2925</td>
<td>H23-H26</td>
<td>4</td>
</tr>
<tr>
<td>37</td>
<td>Valle de Santiago, Cabañeros, Ciudad Real, Spain</td>
<td>39.347</td>
<td>−4.401</td>
<td>IMS3622</td>
<td>H42</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>Castelo de Vide, Portalegre, Portugal</td>
<td>39.415</td>
<td>−7.457</td>
<td>MNCN8932</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Navas de Estena, Ciudad Real, Spain</td>
<td>39.497</td>
<td>−4.541</td>
<td>IMS2166-IMS2171</td>
<td>H8, H20-H22</td>
<td>6</td>
</tr>
<tr>
<td>40</td>
<td>Fontanosas, Ciudad Real, Spain</td>
<td>38.805</td>
<td>−4.572</td>
<td>IMS3816, IMS3821</td>
<td>H8, H43</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>Río Montoro, N of Fuencaliente, Ciudad Real, Spain</td>
<td>38.498</td>
<td>−4.291</td>
<td>IMS3049-IMS3054</td>
<td>H27-H32</td>
<td>6</td>
</tr>
<tr>
<td>42</td>
<td>Los Baños de Robledillo, Toledo, Spain</td>
<td>39.497</td>
<td>−4.358</td>
<td>IMS4498</td>
<td>H66</td>
<td>1</td>
</tr>
<tr>
<td>43</td>
<td>Valdeazores, Ciudad Real, Spain</td>
<td>39.314</td>
<td>−4.720</td>
<td>IMS3620</td>
<td>H41</td>
<td>1</td>
</tr>
<tr>
<td>44</td>
<td>Ojos de Villaverde, Albacete, Spain</td>
<td>38.806</td>
<td>−2.369</td>
<td>IMS4823-IMS4828</td>
<td>H72, H73</td>
<td>6</td>
</tr>
<tr>
<td>45</td>
<td>Saceruela-Valdemarco del Esteras, Ciudad Real, Spain</td>
<td>38.951</td>
<td>−4.652</td>
<td>IMS4657-IMS4660, IMS4664, IMS4666-IMS4667</td>
<td>H67-H70</td>
<td>7</td>
</tr>
<tr>
<td>46</td>
<td>Coruche, Santarém, Portugal</td>
<td>38.999</td>
<td>−8.519</td>
<td>CORU1-CORU2</td>
<td>H3</td>
<td>2</td>
</tr>
<tr>
<td>47</td>
<td>Lourinhã, Lisboa, Portugal</td>
<td>39.314</td>
<td>−9.275</td>
<td>LRNH1</td>
<td>H74</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>Beira, N of Marvão, Portalegre, Portugal</td>
<td>39.451</td>
<td>−7.360</td>
<td>FJ226918</td>
<td>H15</td>
<td>1</td>
</tr>
<tr>
<td>49</td>
<td>Monte Claro, Portalegre, Portugal</td>
<td>39.532</td>
<td>−7.720</td>
<td>ERG104-ERG105</td>
<td>H4, H5</td>
<td>2</td>
</tr>
<tr>
<td>50</td>
<td>Pombal, Leiria, Portugal</td>
<td>39.994</td>
<td>−8.683</td>
<td>POM2</td>
<td>H80</td>
<td>1</td>
</tr>
<tr>
<td>51</td>
<td>Alfarelos, Coimbra, Portugal</td>
<td>40.158</td>
<td>−8.667</td>
<td>COIM1-COIM2</td>
<td>H1, H2</td>
<td>2</td>
</tr>
<tr>
<td>52</td>
<td>Cadalso de los Vidrios, Madrid, Spain</td>
<td>40.317</td>
<td>−4.381</td>
<td>MS 01a2</td>
<td>H77</td>
<td>1</td>
</tr>
<tr>
<td>53</td>
<td>El Tiemblo, Ávila, Spain</td>
<td>40.411</td>
<td>−4.468</td>
<td>MS 02a2-MS 05a2</td>
<td>H78, H79, H179, H180</td>
<td>4</td>
</tr>
<tr>
<td>54</td>
<td>El Hoyo de Pinares, Ávila, Spain</td>
<td>40.486</td>
<td>−4.390</td>
<td>MS 06a2</td>
<td>H180</td>
<td>1</td>
</tr>
<tr>
<td>55</td>
<td>Serradilla del Llano, Salamanca, Spain</td>
<td>40.500</td>
<td>−6.350</td>
<td>PFRA1</td>
<td>H181</td>
<td>1</td>
</tr>
<tr>
<td>56</td>
<td>Cerceda, Madrid, Spain</td>
<td>40.719</td>
<td>−3.956</td>
<td>WP211</td>
<td>H184</td>
<td>1</td>
</tr>
<tr>
<td>57</td>
<td>Guadalix de la Sierra, Madrid, Spain</td>
<td>40.756</td>
<td>−3.676</td>
<td>WP205</td>
<td>H182</td>
<td>1</td>
</tr>
</tbody>
</table>

(Continues)
within and across runs with TRACER 1.6 (Rambaut, Drummond, Xie, lion generations and assessed convergence of parameter estimates genes (shape = 0.01, scale = 100). We ran two analyses for 100 mil-
the respective clock rates in mtDNA and for each of the nuclear Doallo, & Posada, 2012). We used uninformative gamma priors for
struct a haplotype network with POPART 1.7 (Leigh & Bryant, 2015),
icluded sequences from four species:
divergence times between
set = 0.0, meanInRealSpace = true), encompassing the range of
defined by a lognormal distribution (\(M = 22.0, SD = 0.22, offset = 0.0, \text{meanInRealSpace} = \text{true}\)), encompassing the range of
divergence times between \textit{H. meridionalis} and \textit{H. arborea} (14.3–32.7 Myr) estimated in different studies compiled in TimeTree (www.timetreer.org). We specified nucleotide substitution models separately for the mtDNA fragment and for each of the nuclear genes, based on results from \textit{mModelTest} 2.1.5 (Darriba, Taboada, Doallo, & Posada, 2012). We used uninformative gamma priors for the respective clock rates in mtDNA and for each of the nuclear genes (shape = 0.01, scale = 100). We ran two analyses for 100 million generations and assessed convergence of parameter estimates within and across runs with \textit{Tracer} 1.6 (Rambaut, Drummond, Xie, Baele, & Suchard, 2018).
We used continuous diffusion analyses as implemented in \textit{beast} to infer phylogenetic relationships between haplogroups and
historical demographic dynamics in \textit{H. molleri}. These analyses included all individuals sequenced for the mtDNA fragments, and incorporated information on nucleotide substitution rates as inferred in the \textit{beast} analysis (median = 0.0086 substitutions/site/Myr, 95% highest posterior density interval = 0.0039–0.0142) with a lognormal prior (\(M = 0.008, SD = 0.3, offset = 0.0, \text{meanInRealSpace} = \text{true}\)). We specified the Bayesian Skyline as the coalescent tree model (Drummond, Rambaut, Shapiro, & Pybus, 2005). We divided the mitochondrial dataset in three major partitions and considered additional subpartitions by codon in coding regions. The optimal data partitioning scheme and respective nucleotide substitution models were selected with \textit{PartitionFinder} 1.1.1 (Lan
clear, Calcott, Ho, & Guindon, 2012). We ran the analysis for 300 million generations and assessed convergence of parameter esti-
mates with \textit{Tracer}. A maximum clade credibility tree based on median node heights was reconstructed with \textit{TreeAnnotator} 1.8.4 (part of the \textit{beast} package) and subsequently used to infer diffusion dynamics with \textit{Spread} 1.0.6 (Bielejec, Rambaut, Suchard, & Lemey, 2011).
We calculated several genetic estimators commonly used to detect signatures of demographic expansion in DNA sequences, such as \(F_J\) and \(H_E\) (Fu & Li, 1993), \(F_J\) and \(H_E\) (Fu, 1997), Tajima’s \(D\) (Tajima, 1989) and Ramos-Onsins & Rozas’ \(R_2\) (Ramos-Onsins & Rozas, 2002), as calculated by \textit{dnasp}. Test statistics were calculated both for the complete dataset and for partial datasets comprising the North-Plateau and the South-Atlantic mtDNA clades (see Section 3).

2.3 | Microsatellites

A set of 18 microsatellites specifically optimized for \textit{H. molleri} (Sánchez-Montes et al., 2017) was used to genotype 113 individuals from 40 localities (Table 1). Dye-labelled primers were arranged in five multiplex reactions, which were run following the protocols reported in Sánchez-Montes, Recuero, Gutiérrez-Rodriguez, Gomez-Mestre, and Martínez-Solano (2016), Sánchez-Montes et al. (2017). Chromatograms were obtained with an ABI PRISM 3730 sequencer using a GeneScan 500 LIZ size standard (Applied Biosystems). Alleles were scored manually using \textit{GeneMapper} v4.0 (Applied Biosystems). The resulting dataset was complemented with 12 additional

Table 1 (Continued)

<table>
<thead>
<tr>
<th>ID</th>
<th>Locality</th>
<th>Lat</th>
<th>Long</th>
<th>Sample codes</th>
<th>mtDNA</th>
<th>Microsatellites</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Puerto de Canencia, Madrid, Spain</td>
<td>40.871</td>
<td>−3.757</td>
<td>WP212</td>
<td>1 H185</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>La Mierla, Guadalajara, Spain</td>
<td>40.923</td>
<td>−3.261</td>
<td>WP200</td>
<td>1 H85</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Salamanca, Salamanca, Spain</td>
<td>40.930</td>
<td>−5.670</td>
<td>FJ226917</td>
<td>1 H14</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>El Berrueco, Madrid, Spain</td>
<td>40.932</td>
<td>−3.569</td>
<td>WP207</td>
<td>1 H90</td>
<td></td>
</tr>
</tbody>
</table>

\(n\): sample size, \(\pi\): nucleotide diversity (calculated using only full sequences, i.e. with no missing data), AR: mean allelic richness; \(H_E\): observed heterozygosity, \(H_{OE}\): expected heterozygosity, PA: private alleles.

*Genotypes extracted from Sánchez-Montes et al. (2017).

H1046 for cob (Stöck et al., 2008) and newly designed primers HylaND4F-HylaND4R2 and HylaND5F2-HylaND5R1 for ND4 and ND5 respectively. We checked for stop codons to verify that sequences are indeed from mitochondrial genes and not nuclear copies or pseudogenes. Primer sequences and PCR conditions are described in Supporting Information Appendix S1. New mtDNA sequences of \textit{H. molleri} have been deposited in GenBank under accession numbers MK172097–MK172750. We calculated the number of haplotypes with FaBox 1.41 (Villeisen, 2007), and used individ-
uids with complete sequences (i.e. without missing data) to calculate nucleotide diversity with \textit{dnasp} v6 (Rozas et al., 2017) and to recon-
struct a haplotype network with \textit{Popart} 1.7 (Leigh & Bryant, 2015), using the median-joining algorithm (Bandel, Forster, & Röhl, 1999).

Reconstructing time-calibrated gene trees requires information from the fossil record or on nucleotide substitution rates. We esti-
imated substitution rates in our mtDNA sequences in a species-tree analysis in \textit{beast} 1.8.4 (Heled & Drummond, 2010). This analysis included sequences from four species: \textit{Hyla meridionalis}, \textit{Hyla arborea}, \textit{Hyla orientalis} and \textit{H. molleri}. In addition to sequences from our tar-
geted mtDNA fragments, we downloaded from GenBank sequences from three nuclear markers: RAG1, alpha fibrinogen and med15 (alignments and accession numbers in Supporting Information Appendix S1). For \textit{beast} analyses we chose the Yule process as the species tree prior and applied a calibration for the root with a prior defined by a lognormal distribution (\(M = 22.0, SD = 0.22, offset = 0.0, \text{meanInRealSpace} = \text{true}\)), encompassing the range of
divergence times between \textit{H. meridionalis} and \textit{H. arborea} (14.3–32.7 Myr) estimated in different studies compiled in TimeTree (www.timetreer.org). We specified nucleotide substitution models separately for the mtDNA fragment and for each of the nuclear genes, based on results from \textit{mModelTest} 2.1.5 (Darriba, Taboada, Doallo, & Posada, 2012). We used uninformative gamma priors for the respective clock rates in mtDNA and for each of the nuclear genes (shape = 0.01, scale = 100). We ran two analyses for 100 million generations and assessed convergence of parameter estimates within and across runs with \textit{Tracer} 1.6 (Rambaut, Drummond, Xie, Baele, & Suchard, 2018).
We used continuous diffusion analyses as implemented in \textit{beast} to infer phylogenetic relationships between haplogroups and
We used GenAlEx 6.5b3 (Peakall & Smouse, 2006) to calculate mean allelic richness (AR), observed (H_0) and expected heterozygosity (H_E) and the number of private alleles from multilocus genotypes of individuals sampled at each locality. We ran software STRUCTURE 2.3.4 (Pritchard, Stephens, & Donnelly, 2000), which implements unsupervised Bayesian clustering analyses, to (a) infer the number of genetic clusters (K) best explaining the genetic structure in the range-wide sample and (b) estimate the assignment probability of each individual to each of the inferred clusters. For each value of K from one to ten, we ran ten replicates with correlated allelic frequencies (Falush, Stephens, & Pritchard, 2003), 100,000-500,000 generations of burn-in, and 10^6 post-burn-in iterations. We assessed the likelihood of different K values explaining the genetic structure in the data with STRUCTURE HARVESTER 0.6.94 (Earl & vonHoldt, 2012), using both the original (Pritchard et al., 2000) and the ΔK (Evanno, Regnaut, & Goudet, 2005) methods. We used CLUMPACK (Kopelman, Mayzel, Jakobsson, Rosenberg, & Mayrose, 2015) to summarize the assignment probabilities of each individual and population to each of the inferred clusters.

2.4 | Climatic favourability model

To infer climatically favourable areas for *H. molleri* under current and past climate, we built an SDM based on this species’ current distribution. Occurrence data consisted of presence and absence of records on 10×10 km2 grid cells with a Universal Transverse Mercator (UTM) projection (Figure 3), obtained from Loureiro, Carretero, Ferrand, and Paulo (2010) for Portugal, from MAGRAMA (2015) for Spain and from INPN (2018) for France. We considered that all records previously attributed to *H. arborea* in Portugal and Spain corresponded to *H. molleri* (Carretero, Martínez-Solano, Ayllón, & Llorrente, 2016).

Model predictors were the 19 bioclimatic variables available in the WorldClim 1.4 dataset (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) for current climate. These variables had an appropriate
temporal and spatial scale for our study, and have potential direct or indirect relationships with the occurrence of *H. molleri* (Supporting Information Appendix S3).

To encompass while not overly exceeding the species’ distribution range, the study area included the Iberian Peninsula and metropolitan France (Figure 3). Vector maps of countries and of the 10×10 km2...
Current presence

Current favourability

LIG favourability

MH favourability (CCSM)

MH favourability (MIROC)

MH favourability (MPI)

LGM favourability (CCSM)

LGM favourability (MIROC)

LGM favourability (MPI)

LIG ∩ LGM favourability (CCSM)

LIG ∩ LGM favourability (MIROC)

LIG ∩ LGM favourability (MPI)

$r_{ALL} = -0.105$

$r_{MESS} = 0.002$

$r_{ALL} = 0.102$

$r_{MESS} = 0.002$

$r_{ALL} = 0.033$

$r_{MESS} = 0.138$

$r_{ALL} = -0.06$

$r_{MESS} = 0.002$
UTM grids were downloaded from the EDIT geoplatform (Sastre, Rocca, & Lobo, 2009) and clipped to the study area. Species occurrence data from Portugal (Loureiro et al., 2010) and Spain (MAGRAMA, 2015) were imported directly from the source databases. Data from France (INPN, 2018) were geo-referenced and digitized manually from the online source map using QGIS (QGIS Development Team, 2014). We further completed the dataset by adding the locations of our own samples (Table 1). UTM cells that were cut by the coastline or by the limits of UTM zones were excluded from model training, to avoid spurious effects derived from their smaller effective area. The model included 1,321 cells with H. molleri presence records, and 12,958 cells without. Repeated occurrence records within the same cell were not considered. At this resolution scale, the dispersal capacity of H. molleri is negligible, so we can consider that presence in contiguous cells reflects adequate environment in those cells, and not simply spatial autocorrelation in species occurrence.

The model was built in R v3.0.2 (R Core Team, 2017) with the fuzzySim package (Barbosa, 2015a) using the favourability function (Real, Barbosa, & Vargas, 2006), a generalized linear model that allows obtaining prevalence-independent values directly comparable across taxa and time periods (Acevedo & Real, 2012). Unlike the generality of other algorithms, which model probability or suitability, favourability can be formally used in fuzzy logical analyses (Acevedo & Real, 2012; Real et al., 2006), such as the intersections that assess the maintenance of adequate conditions across time periods (see below). Nevertheless, to ensure that the choice of modelling approach did not strongly affect our conclusions, we also modelled the same data with the widely used algorithm Maxent. We built this model with the MAXNET R package, using linear and quadratic features (Merow, Smith, & Silander, 2013) and a complementary log-log (clloglog) transform (Phillips, Anderson, Dudík, Schapire, & Blair, 2017). We then mapped these predictions for each climate scenario and measured their correlations with the corresponding favourability predictions.

The selection of variables followed a three-step protocol, as implemented in the 'fuzzySim::multGLM' function: first, variables with a significant bivariate relationship with the distribution of the species were selected based on the false discovery rate (Benjamini & Hochberg, 1995); the selected variables were included in a multivariate model through a forward-stepwise procedure based on Akaike's Information Criterion (Akaike, 1974); finally, non-significant variables left in the model were removed in a stepwise manner (Crawley, 2007).

Model performance was evaluated with the MODEvA R package (Barbosa, Real, Muñoz, & Brown, 2013). We used several performance metrics that measure discrimination, classification (using 0.5 as the threshold value, which for favourability models equates to using prevalence; Real et al., 2006; Acevedo & Real, 2012), explanatory power and calibration – that is the fit of predicted probabilities to observed occurrence frequencies (see Jiménez-Valverde, Acevedo, Barbosa, Lobo, & Real, 2013).

The model was then projected towards the past, to hindcast climatically favourable areas based on WorldClim palaeoclimatic simulations – one for the Last Interglacial period (LIG, ~120,000–140,000 years ago), and three for the LGM (~21,000 years ago) and for the Mid Holocene (~6,000 years ago): CCSM4, MIROC-ESM and MPI-ESM-P (Hijmans et al., 2005). We quantified the general changes in favourability between past simulations and current climate, using the fuzzy range change measures (including overall proportional gain, loss and stability) available in 'fuzzySim'. Given that favourability values can be handled directly with fuzzy logic (Acevedo & Real, 2012; Real et al., 2006), we used the fuzzySim package to calculate the fuzzy intersection (Zadeh, 1965) of climatic favourability in the LIG and the LGM, to infer how favourable each cell remained along the glacial cycle.

To avoid the uncertainty caused by extrapolation of models outside the analysed climatic values, we performed a Multivariate Environmental Similarity Surface (MESS) analysis (Elith, Kearney, & Phillips, 2010), using the MESS function of MODEvA. After excluding dissimilar environments (i.e. UTM cells with negative MESS values), we calculated the correlations between sustained favourability values (LIG–LGM intersections) and current genetic diversity within the distribution range of H. molleri, which was taken from IUCN (2017) and edited to encompass all recorded occurrences (Figure 3). We combined different measures of genetic diversity (allelic richness, observed heterozygosity and number of private alleles; nucleotide diversity was excluded for its smaller sample size) in a principal components analysis (PCA) with R function PRINCOMP, using the correlation (rather than the covariance) matrix as these variables are measured on different scales. We confirmed that the first PCA axis captured most (~60%) of the variation and correlated positively with each diversity measure. We then used kriging interpolation (AUTOKRIGE function of the AUTOMAP R package) to estimate genetic diversity across the species’ range, averaged it over the UTM 10 × 10-km² cells, and correlated it with the intersection of current and past climatic favourability.

3 | RESULTS

3.1 Mitochondrial DNA analyses

Nucleotide diversity is higher in western and central areas within the range of H. molleri (Supporting Information Appendix S3). The mtDNA tree recovered by BEAST contained two well-supported major clades that originated back in the Pleistocene (95% highest posterior density interval [95% HPDI] for the root: 0.35–1.36 Myr, median:
divided into five subclades, corresponding to (a) the North-Atlantic localities in Galicia (NW Spain) and Southern France, (b) the Atlantic-Lusitanian localities in central Portugal (two subclades) and (c) the southern distribution range, including a widespread haplogroup covering most of the Southern Plateau and a geographically restricted clade from the Algarve (S Portugal) (Figure 1). In total, 185 different mtDNA haplotypes were retrieved from the 247 individual sequences, with H8 as the most common haplotype in the Southern clade (found in five localities) and H90 as the most widespread haplotype within the Northern-Plateau clade (found in eight localities). Localities 2 (Segones, France) and 14 (Codesal, Spain) showed the highest haplotype diversity in our sample, with 12 different haplotypes each (Table 1).

Continuous diffusion analyses inferred a geographical location for the root of the mtDNA tree in a broad area in northwestern Iberia, south of the Cantabrian mountains and north of the Sistema Central mountains, extending towards the coast of central Portugal. From this ancestral area, populations would have expanded along a SW-NE axis first, followed by eastward expansions north and south of Sistema Central and by an independent expansion north of the Cantabrian mountains, from which populations would have subsequently expanded west and east along the coast (Supporting Information Figure S3.2).

All test statistics showed significant evidence for demographic expansions in H. molleri, as well as for each major mtDNA clade separately (Table 2).

3.2 | Microsatellite analyses

Locality scores in northern Iberian mountains and in western Iberia showed the highest genetic diversity, measured as mean AR and H0 (Supporting Information Appendix S3). In contrast, the highest concentration of private alleles occurred at both geographical extremes, in localities of France and south-west Portugal (Supporting Information Appendix S3).

Clustering analyses yielded K = 4 and, especially, K = 7 as the numbers of clusters best explaining the genetic structure in the microsatellite data (Figure 2 and Supporting Information Appendix S2). Four of the groups inferred from mtDNA data (North-Atlantic, North-Plateau, West-Atlantic and South) were also recovered in microsatellite analyses with K = 4 (Figure 2). At K = 7, the Central System and the northwestern localities were differentiated within the North-Plateau group and a South-eastern cluster was differentiated within the Southern group (Figure 2).

3.3 | Climatic favourability model

Model predictions (Figure 3) had good overall evaluation measures, with, for example an area under the receiver operating characteristic curve (AUC) of 0.914, which is considered ‘excellent’ (Swets, 1988), and a McFadden’s pseudo-R² of 0.379, which is well above what is considered ‘excellent fit’ (McFadden, 1978; Figure 4). Maxent predictions, obtained for comparison, had essentially the same AUC (0.915) as favourability, slightly higher sensitivity at a threshold equalling the species’ prevalence, and lower specificity and remaining classification measures. They also provided essentially similar spatial patterns to those of favourability, with which they were highly correlated (Supporting Information Figure S3.3), therefore indicating that our results were robust to the choice of modelling algorithm.

Climatically favourable areas inferred from model projections generally contracted between time periods, from the LIG to the present (Figures 5 and 6). However, favourability generally remained high across the current distribution range of H. molleri (Figure 3). Current genetic diversity showed a general increasing trend towards the southwest (Figure 7). There were no meaningful correlations between genetic diversity and environmental favourability along the glacial cycle, whether or not restricting the analysis to environments analogous to those of today (Figure 3).

4 | DISCUSSION

The combination of comprehensive range-wide sampling and extensive genetic information, including mtDNA sequences and specific microsatellite markers, has shown that the phylogeographic pattern of H. molleri is more complex than expected based on previous studies (Barth et al., 2011; Gvozdič et al., 2015; Moreira, 2012; Stöck et al., 2012). Our results uncovered finer-scale patterns of genetic structure than previous studies, including evidence for two major Pleistocene lineages (Figure 1), and additional geographically structured subdivision within both major groups (Figures 1 and 2). Furthermore, in contrast to thermophilous Mediterranean species, genetic diversity across the range of H. molleri did not follow a decreasing gradient from putative southern refugia. Instead, we found two main genetic reservoirs in central and southern Portugal.

<table>
<thead>
<tr>
<th>Haplogroup</th>
<th>n</th>
<th>D (F&L)</th>
<th>F (F&L)</th>
<th>D (Taj)</th>
<th>R² (R)</th>
<th>F₅ (Fu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North-Plateau</td>
<td>40</td>
<td>–3.066*</td>
<td>–3.356*</td>
<td>–2.371**</td>
<td>0.038***</td>
<td>–23.16***</td>
</tr>
<tr>
<td>South+Atlantic</td>
<td>63</td>
<td>–3.513*</td>
<td>–3.746*</td>
<td>–2.526***</td>
<td>0.027***</td>
<td>–26.15***</td>
</tr>
<tr>
<td>All</td>
<td>100</td>
<td>–6.024*</td>
<td>–3.684*</td>
<td>–1.819*</td>
<td>0.040*</td>
<td>–32.39***</td>
</tr>
</tbody>
</table>

n = sample size (number of sequences); F&L = Fu & Li; Taj = Tajima; R = Ramos-Onsins & Rozas.

*p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 2 Results of historical demographic analyses for Hyla molleri
obtained with the MODEVA R package (Barbosa, 2015b). Measures and plots were directly compared with the other measures between 0 and 1, so that they can be kappa were standardized (rate. TSS (True Skill Statistic) and Cohen’s kappa were standardized (s) to vary between 0 and 1, so that they can be directly compared with the other measures (Barbosa, 2015b). Measures and plots were obtained with the mcoEvA R package and in northern Spain (North-Plateau). The distribution of genetic diversity in H. mulleri, and its lack of correlation with areas that remained climatically favourable through the LIG and LGM towards the present (Figure 3), suggest that this Atlantic species does not accommodate to the Pleistocene history documented in more thermodilophilous Mediterranean amphibians (Gutiérrez-Rodríguez et al., 2017a, 2017b).

The estimated age of the common ancestor of the two Pleistocene lineages of H. mulleri is relatively young (~780,000 years), especially when compared to other Iberian species like P. waltl (Gutiérrez-Rodríguez et al., 2017b), Lisostriton boscai (Martínez-Solano et al., 2006) or Alytes obstetricans (Gonçalves et al., 2015), highlighting their different evolutionary histories. Hyla mulleri shares a common ancestor with H. orientalis, an eastern species distributed from Central Europe to the Caspian Sea (Gvoždík et al., 2015). Time estimates for their common ancestor range from middle Pleistocene (Gvoždík et al., 2015) to early Pliocene (Dufresnes et al., 2018; Stöck et al., 2012), much earlier than our TMRCA estimates (Figure 1). The sister relationship between both species, their current disjunct distribution and their different phylogeographic structure suggest a substantial change in the distribution range of H. mulleri along the Pleistocene, including a relatively recent colonization (just over 1 Myr) of the Iberian Peninsula from populations north of the Pyrenees, where the species could have been widely distributed. These northern populations would have disappeared during some of the Pleistocene glacial maxima, remaining only those in the Iberian refugium, which are putatively represented by fossil remains dating back to the middle Pleistocene in the North Plateau in Atapuerca, Burgos (1.4–1.2 Myr; Cuenca-Bescós et al., 2010).

In view of this evolutionary history, H. mulleri would fit a type ‘R’ model (Recuero & García-París, 2011), in which current genetic diversity originated in populations surviving in true Pleistocene glacial refugia, whereas older lineages became extinct during the Pleistocene. Similarly shallow patterns of phylogeographic structure have been observed in a number of largely co-distributed species, including both Atlantic species like Lisostriton helveticus (Recuero & García-París, 2011), Discoglossus galganoi (Martínez-Solano, 2004) and Rana iberica (Teixeira, Gonçalves, Ferrand, García-París, & Recuero, 2018), and Mediterranean taxa like Alytes cisternasii (Gonçalves et al., 2009) or P. cultripes (Gutiérrez-Rodríguez et al., 2017a). Unfortunately, for several of these taxa we lack detailed information regarding the relationship between changes in climatic favourability and patterns of genetic diversity. The only model ‘R’ species for which this integrative approach combining genetic information and SDM has been applied so far showed a clear signature of range contraction during the LGM, followed by continuous expansion during the Holocene, in line with the classical model (Gutiérrez-Rodríguez et al., 2017a).

Ancestral lineages of H. mulleri north of the Pyrenees were probably extirpated by extreme climatic changes, but the cold-tolerance of the species possibly facilitated demographic stability through the milder climate fluctuations in the Iberian refugium, taking advantage of the habitat heterogeneity provided by topography in this region (Abellán & Svensen, 2014; Gomez & Lunt, 2007). Topography may have also played a fundamental role in shaping the observed phylogeographic pattern. For instance, recolonization of the area along the Cantabrian coast in northern Spain up to Atlantic France took place from populations in NW Iberia (Supporting Information Figure S3.2), whereas the geographically closer Northern Plateau clade barely expanded north of the Cantabrian mountains, which were covered by large ice sheets during Pleistocene glacial maxima (Hewitt, 1996). A similar pattern of historical isolation mediated by a

![Figure 4](image-url)

FIGURE 4 Explanatory power, discrimination, classification and calibration performance of the environmental favourability model obtained for current *Hyla mulleri* distribution. D^2, R^2: different measures of explained deviance. ROC: receiver operating characteristic; AUC: area under the curve. CCR: correct classification rate. TSS (True Skill Statistic) and Cohen’s kappa were standardized (s) to vary between 0 and 1, so that they can be directly compared with the other measures (Barbosa, 2015b). Measures and plots were obtained with the mcoEvA R package.
mountain barrier can explain the differentiation between the South and North-Plateau lineages, which are currently in contact along the Sistema Central mountains. The role of mountains as barriers to dispersal would have been stronger during glacial maxima, whereas in the present interglacial neither the Cantabrian nor the Sistema Central mountains act as impermeable barriers (Domínguez-Villar et al., 2013; Sánchez-Montes et al., 2018), and populations of *H. molleri* occur all along the altitudinal gradient up to elevations above the treeline >2,000 m a.s.l. (Martínez-Solano, 2006). Climatic conditions during the LGM must have prevented colonization of alpine habitats until the Holocene, when lineage admixture would be limited by demographic processes according to the ‘founder takes all’ model (Waters, Fraser, & Hewitt, 2013).

According to our model, the Iberian Peninsula experienced a progressive and continuous decrease in climatically favourable areas for *H. molleri* since the LIG, especially in southern and eastern Iberia, where the species is currently absent (Figure 3). At the only two localities with upper Pleistocene-Holocene *H. molleri* fossils (Blain & Corchón Rodríguez, 2018; Cuenca-Bescós et al., 2010), climatic favourability generally remained high during the analysed timeframe (Supporting Information Figure S3.4). This provides support to our model, even if with limited data. Interestingly, we found a good match between climatically favourable areas through time and those areas where *H. molleri* currently occurs (Figure 3), which may explain the absence of a positive correlation between historical climatic favourability and current patterns of genetic diversity. According to this interpretation, climatic changes in the late Pleistocene would not have led to strong extinction/recolonization dynamics in *H. molleri*, at least not as severe as in other less vagile, more thermophilous, co-distributed amphibian species, for which these extinction/recolonization dynamics have been invoked to explain correlations between sustained climatic favourability and genetic diversity (Gutiérrez-Rodriguez et al., 2017a, 2017b). Instead, the historical biogeography of *H. molleri* may have been mainly characterized by resilience against climatic fluctuations based on its cold-tolerance, its dispersal capacity, and its preference for more stable (in terms of hydroperiod predictability) breeding sites, as compared to other Iberian species such as *P. waltl, P. cultripes, Epidalea calamita, or Pelophylax perezi* (Sánchez-Montes et al., 2018). Therefore, climatic changes would have only affected areas in the periphery of its Iberian range. Signatures of demographic expansion based on mtDNA sequences (Table 2) may represent the recolonization of new areas that became

![FIGURE 5 Fuzzy range change measures (fuzzy equivalents of the proportional gain, loss and overall change in areas climatically favourable for the presence of *Hyla molleri*) among time periods, from the Last Inter-Glacial (LIG) to the LGM, the Mid-Holocene (MH) and the present, including the three paleoclimatic simulations currently available across periods on WorldClim (CCSM4, MIROC-ESM and MPI-ESM-P).]
briefly favourable during the Mid Holocene, although favourability in these areas declined again towards the present (Figure 3), causing extinctions in recent times (Supporting Information Figure S1.2). The high dispersal capacity of this species would help it track climatic changes with rapid demographic responses (e.g. latitudinal/altitudinal migrations), explaining the lack of correlation between genetic diversity and climatic stability.

Our results suggest that the biogeographic history of *H. molleri* since the Pleistocene has been characterized by a relatively stable climatic favourability in the core of the species distribution within the Iberian refugium, with demographic resilience to climate changes and a decrease in favourability affecting only peripheral populations. This contrasts with the large-scale cycles of extinction-recolonization inferred for other more thermophilous, co-distributed amphibian species in Iberia, providing new insights about the evolutionary history of amphibian assemblages. Cold-tolerance might have buffered the effect of Pleistocene climatic fluctuations on the demographic history of southern Atlantic species within their glacial refugia, thus preventing strong genetic diversity depletions as experienced by thermophilous species. Also, dispersal ability probably played an important role in the capacity of species to respond to fluctuations in favourability through time. These two traits drove the resilience of *H. molleri* through the climatic cycles of the Pleistocene, and this inference could be used to model the response of this and other cold-tolerant species to current forecasts of global warming. These results can be applied to the conservation of the evolutionary potential of *H. molleri*, which would be dependent on the maintenance of the differentiated gene pools identified along environmental gradients, representing this species’ ecological breadth.

ACKNOWLEDGEMENTS

We thank G. Alarcos, D. Álvarez, J. Álvarez, J.W. Amtzen, J. Barbadillo, A. Bermejo, D. Buckley, M. García París, A. Gosá, C. Grande, J. Gutiérrez, P. Hernández, E. Jockusch, M. Lapeña, R. Pereira, J. A. Saz, P. Segurado and F. Smith for help collecting samples and M. J. Fernández Benéitez for assistance in the laboratory. Isabel Rey and Beatriz Álvarez (MNCN DNA and Tissue collection) provided access to samples under their care. H.A. Blain and J. Bisbal-Chinesta provided helpful comments on the fossil record of *H. molleri*. This research was funded by grants CGL2008-04271-C02-01/BOS and
REFERENCES

BIOSKETCHES

The research group has an interest in developing and applying model-based genetic analyses and species distribution modelling (SDM) to address the study of demographic processes and assess their role in driving biodiversity patterns.

Author contributions: I.M.S., E.R.G., and A.M.B. designed the research. I.M.S., E.R.G., A.M.B. and G.S.M. conducted field work and sample collection. E.R.G. and G.S.M. conducted laboratory work. I.M.S. and G.S.M. performed the genetic analyses. A.M.B. performed the SDM analyses. G.S.M. wrote the manuscript and E.R.G., A.M.B. and I.M.S. provided edits to the manuscript.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Sánchez-Montes G, Recuero E, Barbosa AM, Martínez-Solano Í. Complementing the Pleistocene biogeography of European amphibians: Testimony from a southern Atlantic species. *J Biogeogr*. 2019;00:1–16. https://doi.org/10.1111/jbi.13515