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Abstract

Aim: To reconstruct the historical biogeography of Hyla molleri, a tree frog endemic

to the Eurosiberian and Mediterranean bioclimatic zones in the Iberian Peninsula.

Location: Iberian Peninsula.

Methods: We used molecular data (mtDNA and species‐specific, polymorphic

microsatellite loci) and species distribution modelling (SDM) from the Last Inter-

glacial (LIG) to the present to characterize spatial patterns of genetic diversity in this

species and assess their relationship with climatically favourable areas through time.

Results: Genetic diversity is heterogeneously distributed across the range of H. mol-

leri, with two main genetic reservoirs located in (a) central and southern Portugal

and (b) a fragmented area encompassing mountainous areas in northern Spain.

According to SDM, the Iberian Peninsula has experienced a progressive and continu-

ous decrease in climatically favourable areas for H. molleri since the LIG, especially

in southern and eastern Iberia, where the species is currently absent. However, we

found no correlation between areas that have remained climatically favourable since

the LIG and current genetic diversity.

Main conclusions: Our results suggest that the demographic history of H. molleri

since the Pleistocene has been characterized by relative stability, contrasting with the

large‐scale cycles of extinction‐recolonization inferred for other more thermophilous,

co‐distributed amphibian species in Iberia. Accounting for discordant demographic

responses to climatic changes across syntopic species provides new insights about

the evolutionary history of amphibian communities in southern Europe.

K E YWORD S

Holocene, Hyla molleri, integrative phylogeography, Last Glacial Maximum, Last Interglacial,

microsatellites, mtDNA, species distribution modelling

1 | INTRODUCTION

Climatic instability through the Pleistocene glaciations has played a

major role in shaping current patterns of intraspecific genetic diver-

sity in many taxa endemic to southern European peninsulas, with

amphibians as a particularly sensitive (and thus informative) group

due to their limited dispersal capacity (Abellán & Svenning, 2014;

Canestrelli & Nascetti, 2008; Gonçalves et al., 2009; Martínez‐
Solano, Teixeira, Buckley, & García‐París, 2006; Recuero & García‐
París, 2011). These southern areas represent either sanctuaries

(model ‘S’) or refugia (model ‘R’) for these taxa, depending on

whether they harboured most or only a minor fraction of their

genetic heritage respectively (Recuero & García‐París, 2011). Species
with a model ‘R’ Pleistocene history are characterized by relatively
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shallow phylogeographic structure after the extinction of most

ancient lineages during glaciations (Recuero & García‐París, 2011),

whereas model ‘S’ species show deep phylogeographic breaks due to

the persistence of ancient groups in multiple refugia (Gonçalves et

al., 2015; Martínez‐Solano et al., 2006). The effects of successive

glacial and interglacial periods on current patterns of genetic diver-

sity across taxa have been largely mediated by range contractions

and expansions, whose relative timing is expected to differ in cold‐
tolerant (e.g. associated with the Eurosiberian bioclimatic realm) and

thermophilous (e.g. Mediterranean) taxa. In the present, model ‘S’

and model ‘R’ Eurosiberian and Mediterranean species can be found

in sympatry in some areas of southern Europe, potentially showing

contrasting historical demographic dynamics associated to their dif-

ferent Pleistocene biogeography and ecological requirements

(Dufresnes et al., 2013). This can be assessed through the integra-

tion of phylogeographic analyses on multilocus genetic datasets, and

species distribution modelling (SDM) representing climatic favourabil-

ity in different time periods, to unravel the effects of past climate

fluctuations on biodiversity (Buckley, 2009; Elith & Leathwick, 2009).

Recent studies have applied this approach to two thermophilous

Mediterranean amphibians from the Iberian Peninsula, one corre-

sponding to a model ‘R’ species (Pelobates cultripes, see Gutiérrez‐
Rodríguez, Barbosa, & Martínez‐Solano, 2017a) and the other to a

model ‘S’ species (Pleurodeles waltl, see Gutiérrez‐Rodríguez, Barbosa,
& Martínez‐Solano, 2017b). In both cases, the results showed a

decrease in climatically favourable areas in the Last Glacial Maximum

(LGM), associated with a decrease in genetic diversity in areas more

subject to changes in favourability through time, mostly in northern

latitudes (Gutiérrez‐Rodríguez et al., 2017a, 2017b), supporting the

idea that thermophilous Mediterranean species fit the classical model

of range contraction to glacial refugia, followed by range expansion

after the LGM (Gutiérrez‐Rodríguez et al., 2017a, 2017b). However,

the generality of this model needs to be assessed in a wider range

of co‐distributed taxa, including those that are also present in the

cooler Atlantic region. These taxa often reach higher latitudes and

altitudes than their Mediterranean counterparts, presumably because

of a higher tolerance to cold environments. This higher ecological

breadth may have played a role in buffering the demographic effects

of the ice ages on Atlantic taxa, which would thus be less dependent

on climatic stability than Mediterranean taxa, perhaps undergoing

historical population dynamics differing from the classical contrac-

tion‐expansion model. Characterizing the genetic structure of Eurosi-

berian species in southern European refugia in relation to past

climatic scenarios is thus essential to obtain a comprehensive picture

of the biogeographic history of Europe since the last ice age, and to

understand community dynamics associated with long‐term climatic

changes (Lobo, Martínez‐Solano, & Sanchiz, 2016).

The Iberian tree frog Hyla molleri Bedriaga, 1889 is an optimal

model system in this respect. It has a wide distribution in the Iberian

peninsula, encompassing both its Eurosiberian and Mediterranean

regions, and occurring from altitudes near sea level to over 2,400 m

in the Sistema Central mountains (Reino et al., 2017). It can be con-

sidered a cold‐tolerant species, with some populations inhabiting

areas with annual mean temperatures below 8°C (Llusia, Márquez,

Beltrán, Benítez, & do Amaral, 2013). It is also a vagile species which

shows a relatively high frequency of movements between distant

breeding sites, as compared to other amphibians (>700 m apart, see

Sánchez‐Montes, Wang, Ariño, & Martínez‐Solano, 2018). Both fea-

tures are probably important in driving population responses of H.

molleri to climatic fluctuations, potentially leading to different

dynamics compared to less vagile, more thermophilous species.

Although previous studies on H. molleri revealed limited genetic vari-

ation based on mitochondrial DNA (mtDNA) data, with no obvious

patterns of population structure (Barth et al., 2011; Gvoždík et al.,

2015; Stöck et al., 2012), its historical demography under past

climatic scenarios remains to be explored in detail.

Here we use specific microsatellite markers (Sánchez‐Montes,

Ariño, Vizmanos, Wang, & Martínez‐Solano, 2017) and apply an inte-

grative phylogeographic approach to reconstruct the historical bio-

geography of this species in Iberia. We analyse genetic samples

(mtDNA and microsatellites) from 60 populations, and use SDM to

infer changes in climatic favourability for this species through time,

focusing on the relationship between spatial patterns of genetic

diversity and historical climatic favourability. Specifically, we aim to

(a) infer range‐wide patterns of genetic variation and structure in H.

molleri and assess whether they fit an ‘R’ or an ‘S’ model and (b) test

whether genetic diversity is concentrated in areas that have

remained climatically favourable since the Last Interglacial (LIG), with

gradients of decreasing genetic diversity towards recently recolo-

nized territories, in agreement with the glacial‐refugium model. Alter-

natively, a decoupling between spatial patterns of genetic diversity

and climatic stability in the Iberian refugium would support a differ-

ent scenario, in which climatic changes during the Pleistocene did

not have significant effects on this species’ historical population

dynamics. Our results have implications for the conservation of the

evolutionary potential in H. molleri (Carvalho et al., 2017).

2 | MATERIALS AND METHODS

2.1 | Sampling and DNA purification

We collected tissue samples of 248 individuals of H. molleri from 60

localities, covering its entire distribution range (Table 1, Figures 1

and 2). Samples included tail tips of tadpoles and toes of post‐meta-

morphic individuals, which were then released back in the place of

capture, and from specimens preserved in museum collections. Tis-

sue samples were stored in absolute ethanol and kept at 4°C upon

genomic DNA isolation, which was performed with NucleoSpin Tis-

sue‐Kits (Macherey‐Nagel, Düren, Germany).

2.2 | Mitochondrial DNA

We sequenced fragments of the mitochondrial genes cytochrome b

(cob) and NADH dehydrogenase subunits 4 (ND4) and 5 (ND5),

including adjoining tRNAs (total: 3,290 base pairs), in 247 individual

samples from 59 different localities (Table 1), using primers LO and
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TABLE 1 Sample localities included in this study, with their geographical coordinates in decimal degrees (Lat: latitude, Long: longitude), the
codes of individual samples of Hyla molleri and genetic diversity results obtained in mitochondrial (mtDNA) and microsatellite analyses

ID Locality Lat Long
Sample
codes

mtDNA Microsatellites

n Haplotypes π n AR HO HE PA

1 Cuchía, Cantabria, Spain 43.431 −4.029 IMS4690‐IMS4699 10 H160‐H162 0.00023 9 2.556 0.382 0.399 1

2 Segonnes, Nouvelle‐
Aquitaine, France

44.957 −0.750 IMS4006‐IMS4013,

IMS4018‐IMS4023

14 H44‐H55 0.00000 3 2.000 0.315 0.293 7

3 Villaviciosa, Asturias, Spain 43.523 −5.380 IMS4701‐IMS4704,

IMS4854

5 H71, H163,

H164

0.00441 5 3.167 0.486 0.464 4

4 Embalse de Cecebre,

A Coruña, Spain

43.275 −8.282 MNCN11068 1 H76 1 1.556 0.611 0.306 0

5 Larués, Huesca, Spain 42.517 −0.848 ERG29‐ERG30 2 H82, H83 1 1.444 0.500 0.250 0

6 Valgañón, La Rioja, Spain 42.327 −3.089 IMS3856‐IMS3861 6 H90, H116‐H119 0.00069 3 2.889 0.667 0.530 2

7 Cernégula, Burgos, Spain 42.639 −3.624 MNCN11078 1 H169 1 1.556 0.611 0.306 0

8 Ruesga, Palencia, Spain 42.883 −4.548 IMS4725‐IMS4729 5 H165‐H167 0.00046 5 3.389 0.703 0.575 0

9 Puerto de Urbasa,

Navarra, Spain

42.797 −2.172 IMS3927‐IMS3928,

IMS3931‐IMS3934

6 H90, H120‐H124 0.00136 3 3.000 0.519 0.488 1

10 Puerto de la Cubilla, León, Spain 42.990 −5.926 IMS3235‐IMS3243 9 H98‐H104 0.00135 3 1.778 0.287 0.257 0

11 Albires, León, Spain 42.276 −5.280 IMS3055‐IMS3060 6 H92‐H97 0.00108 3 2.500 0.602 0.483 0

12 Ólvega, Soria, Spain 41.752 −1.962 IMS4097‐IMS4106 10 H90, H129‐H137 0.00066 3 3.111 0.574 0.549 1

13 Renales‐Laranueva,
Guadalajara, Spain

40.934 −2.540 ERG957‐ERG962 6 H84‐H89 0.00079 3 2.556 0.657 0.482 2

14 Codesal, Zamora, Spain 41.972 −6.387 IMS4214‐IMS4220,

IMS4222‐IMS4226

12 H142, H145,

H149‐H158

0.00090 3 3.000 0.611 0.498 1

15 Buenache de la Sierra,

Cuenca, Spain

40.179 −1.943 IMS4157‐IMS4166 10 H138‐H141 0.00036 3 2.667 0.537 0.467 0

16 Valdemanco,

Madrid, Spain

40.853 −3.644 JF318126‐JF318127,
GSH399a, GSH428a,

GSH469a

2 H168 3 3.278 0.630 0.519 2

17 Boceguillas, Segovia, Spain 41.330 −3.618 IMS4065‐IMS4067,

IMS4071‐IMS4073

6 H90, H125‐
H128

0.00069 3 2.667 0.685 0.488 1

18 Colmenar Viejo, Madrid, Spain 40.687 −3.830 WP208, GSH258a ‐
GSH259a, GSH265a

1 H183 3 2.444 0.556 0.423 0

19 Torrecaballeros, Segovia, Spain 41.004 −4.018 GSH301a, GSH314a,

GSH319a
3 2.278 0.444 0.386 0

20 Fuenterrebollo, Segovia, Spain 41.326 −3.926 GSH554a, GSH557a,

GSH565a
3 3.000 0.574 0.494 1

21 Peñalara, Madrid, Spain 40.848 −3.949 MNCN3448 1 H171 1 1.667 0.722 0.361 0

22 Candeleda, Ávila, Spain 40.126 −5.221 MNCN11086 1 H170 1 1.556 0.611 0.306 1

23 Ferreras de Arriba‐
Villardeciervos,

Zamora, Spain

41.904 −6.229 IMS4206‐IMS4212,

IMS4264‐IMS4265,

IMS4267

10 H90, H142‐
H148, H157,

H159

0.00057 3 3.000 0.713 0.539 2

24 El Puerto, Asturias, Spain 43.024 −6.229 MNCN41176‐
MNCN41183

8 H172‐H178 0.00203 1 1.167 0.500 0.250 0

25 Monforte de Lemos,

Lugo, Spain

42.529 −7.575 IMS3534‐IMS3537 4 H90, H105‐H107 0.00123 3 3.222 0.694 0.569 1

26 Ginzo de Limia, Ourense, Spain 42.054 −7.821 IMS3549‐IMS3554 6 H110‐H115 0.00249 3 2.778 0.583 0.481 5

27 Boticas, Vila Real, Portugal 41.689 −7.665 GVA212‐GVA213 2 H90, H91 2 2.611 0.611 0.500 3

28 Serra da Estrela, Guarda, Portugal 40.342 −7.622 ESTR1‐ESTR2,
IMS3555‐IMS3559,

IMS4235‐IMS4237

10 H8, H13,

H40, H65

0.00046 6 3.167 0.533 0.528 6

29 Paramos, Aveiro, Portugal 40.980 −8.645 IMS3542‐IMS3545 4 H33‐H36 0.00451 3 3.000 0.611 0.528 6

(Continues)
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TABLE 1 (Continued)

ID Locality Lat Long
Sample
codes

mtDNA Microsatellites

n Haplotypes π n AR HO HE PA

30 Mindelo, Porto, Portugal 41.305 −8.723 IMS3546‐IMS3548,

MIND1

4 H37‐H39,

H75

0.00205 3 0.889 0.148 0.142 0

31 Ciudad Rodrigo,

Salamanca, Spain

40.569 −6.576 IMS3538‐IMS3539 2 H108, H109 2 1.833 0.472 0.340 0

32 Lavariz, 7.5 km NW of

Arzila, Coimbra, Portugal

40.196 −8.642 IMS1447‐IMS1452 6 H16‐H19 0.00271 3 4.111 0.722 0.685 5

33 Longueira, Beja, Portugal 37.672 −8.777 IMS4171, IMS4176‐
IMS4185

11 H8, H56‐
H64

0.00318 4 3.778 0.546 0.604 9

34 7 km NW of São José da

Lamarosa, Santarém, Portugal

39.125 −8.513 ERG1275‐ERG1276,
ERG1285‐ERG1286

4 H6, H7,

H11, H12

0.00231 3 3.389 0.620 0.601 7

35 Serra de Montejunto,

Lisboa, Portugal

39.174 −9.018 ERG1280‐ERG1284 5 H8‐H10 0.00055 5 3.556 0.642 0.594 4

36 Torrefresneda, Badajoz, Spain 38.992 −6.096 IMS2922‐IMS2925 4 H23‐H26 0.00045 3 2.722 0.463 0.457 2

37 Valle de Santiago, Cabañeros,

Ciudad Real, Spain

39.347 −4.401 IMS3622 1 H42 1 1.500 0.500 0.250 1

38 Castelo de Vide,

Portalegre, Portugal

39.415 −7.457 MNCN8932 1 1.222 0.389 0.194 1

39 Navas de Estena,

Ciudad Real, Spain

39.497 −4.541 IMS2166‐IMS2171 6 H8, H20‐
H22

0.00122 3 2.778 0.574 0.485 1

40 Fontanosas, Ciudad Real, Spain 38.805 −4.572 IMS3816, IMS3821 2 H8, H43 1 1.278 0.389 0.194 2

41 Río Montoro, N of

Fuencaliente,

Ciudad Real, Spain

38.498 −4.291 IMS3049‐IMS3054 6 H27‐H32 0.00265 3 2.889 0.546 0.515 2

42 Los Baños de Robledillo,

Toledo, Spain

39.497 −4.358 IMS4498 1 H66 1 1.444 0.556 0.278 1

43 Valdeazores, Ciudad

Real, Spain

39.314 −4.720 IMS3620 1 H41 1 1.500 0.500 0.250 2

44 Ojos de Villaverde,

Albacete, Spain

38.806 −2.369 IMS4823‐IMS4828 6 H72, H73 0.00035 4 2.500 0.421 0.395 0

45 Saceruela‐Valdemanco del

Esteras, Ciudad Real, Spain

38.951 −4.652 IMS4657‐IMS4660,

IMS4664, IMS4666‐
IMS4667

7 H67‐H70 0.00142

46 Coruche, Santarém, Portugal 38.999 −8.519 CORU1‐CORU2 2 H3

47 Lourinhã, Lisboa, Portugal 39.279 −9.275 LRNH1 1 H74

48 Beira, N of Marvão,

Portalegre, Portugal

39.451 −7.360 FJ226918 1 H15

49 Monte Claro,

Portalegre, Portugal

39.532 −7.720 ERG104‐ERG105 2 H4, H5

50 Pombal, Leiria, Portugal 39.994 −8.683 POM2 1 H80

51 Alfarelos, Coimbra, Portugal 40.158 −8.667 COIM1‐COIM2 2 H1, H2

52 Cadalso de los Vidrios,

Madrid, Spain

40.317 −4.381 MS 01a2 1 H77

53 El Tiemblo, Ávila, Spain 40.411 −4.468 MS 02a2‐MS 05a2 4 H78, H79,

H179, H180

0.00638

54 El Hoyo de Pinares, Ávila, Spain 40.486 −4.390 MS 06a2 1 H180

55 Serradilla del Llano,

Salamanca, Spain

40.500 −6.350 PFRA1 1 H181

56 Cerceda, Madrid, Spain 40.719 −3.956 WP211 1 H184

57 Guadalix de la Sierra,

Madrid, Spain

40.756 −3.676 WP205 1 H182

(Continues)
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H1046 for cob (Stöck et al., 2008) and newly designed primers

HylaND4F‐HylaND4R2 and HylaND5F2‐HylaND5R1 for ND4 and

ND5 respectively. We checked for stop codons to verify that

sequences are indeed from mitochondrial genes and not nuclear

copies or pseudogenes. Primer sequences and PCR conditions are

described in Supporting Information Appendix S1. New mtDNA

sequences of H. molleri have been deposited in GenBank under

accession numbers MK172097–MK172750. We calculated the num-

ber of haplotypes with FABOX 1.41 (Villesen, 2007), and used individ-

uals with complete sequences (i.e. without missing data) to calculate

nucleotide diversity with DNASP V6 (Rozas et al., 2017) and to recon-

struct a haplotype network with POPART 1.7 (Leigh & Bryant, 2015),

using the median‐joining algorithm (Bandelt, Forster, & Röhl, 1999).

Reconstructing time‐calibrated gene trees requires information

from the fossil record or on nucleotide substitution rates. We esti-

mated substitution rates in our mtDNA sequences in a species‐tree
analysis in *BEAST 1.8.4 (Heled & Drummond, 2010). This analysis

included sequences from four species: Hyla meridionalis, Hyla arborea,

Hyla orientalis and H. molleri. In addition to sequences from our tar-

geted mtDNA fragments, we downloaded from GenBank sequences

from three nuclear markers: RAG1, alpha fibrinogen and med15

(alignments and accession numbers in Supporting Information

Appendix S1). For *BEAST analyses we chose the Yule process as the

species tree prior and applied a calibration for the root with a prior

defined by a lognormal distribution (M = 22.0, SD = 0.22, off-

set = 0.0, meanInRealSpace = true), encompassing the range of

divergence times between H. meridionalis and H. arborea (14.3–
32.7 Myr) estimated in different studies compiled in TimeTree

(www.timetree.org). We specified nucleotide substitution models

separately for the mtDNA fragment and for each of the nuclear

genes, based on results from JMODELTEST 2.1.5 (Darriba, Taboada,

Doallo, & Posada, 2012). We used uninformative gamma priors for

the respective clock rates in mtDNA and for each of the nuclear

genes (shape = 0.01, scale = 100). We ran two analyses for 100 mil-

lion generations and assessed convergence of parameter estimates

within and across runs with TRACER 1.6 (Rambaut, Drummond, Xie,

Baele, & Suchard, 2018).

We used continuous diffusion analyses as implemented in BEAST

to infer phylogenetic relationships between haplogroups and

historical demographic dynamics in H. molleri. These analyses

included all individuals sequenced for the mtDNA fragments, and

incorporated information on nucleotide substitution rates as

inferred in the *BEAST analysis (median = 0.0086 substitutions/site/

Myr, 95% highest posterior density interval = 0.0039–0.0142) with

a lognormal prior (M = 0.008, SD = 0.3, offset = 0.0, meanInRealS-

pace = true). We specified the Bayesian Skyline as the coalescent

tree model (Drummond, Rambaut, Shapiro, & Pybus, 2005). We

divided the mitochondrial dataset in three major partitions and

considered additional subpartitions by codon in coding regions.

The optimal data partitioning scheme and respective nucleotide

substitution models were selected with PARTITIONFINDER 1.1.1 (Lan-

fear, Calcott, Ho, & Guindon, 2012). We ran the analysis for 300

million generations and assessed convergence of parameter esti-

mates with TRACER. A maximum clade credibility tree based on

median node heights was reconstructed with TREEANNOTATOR 1.8.4

(part of the BEAST package) and subsequently used to infer diffu-

sion dynamics with SPREAD 1.0.6 (Bielejec, Rambaut, Suchard, &

Lemey, 2011).

We calculated several genetic estimators commonly used to detect

signatures of demographic expansion in DNA sequences, such as Fu &

Li's F and D (Fu & Li, 1993), Fu's FS (Fu, 1997), Tajima's D (Tajima,

1989) and Ramos‐Onsins & Rozas’ R2 (Ramos‐Onsins & Rozas, 2002),

as calculated by DNASP. Test statistics were calculated both for the

complete dataset and for partial datasets comprising the North‐Pla-
teau and the South+Atlantic mtDNA clades (see Section 3).

2.3 | Microsatellites

A set of 18 microsatellites specifically optimized for H. molleri (Sán-

chez‐Montes et al., 2017) was used to genotype 113 individuals

from 40 localities (Table 1). Dye‐labelled primers were arranged in

five multiplex reactions, which were run following the protocols

reported in Sánchez‐Montes, Recuero, Gutiérrez‐Rodríguez, Gomez‐
Mestre, and Martínez‐Solano (2016), Sánchez‐Montes et al. (2017).

Chromatograms were obtained with an ABI PRISM 3730 sequencer

using a GeneScan 500 LIZ size standard (Applied Biosystems). Alleles

were scored manually using GENEMAPPER v4.0 (Applied Biosystems).

The resulting dataset was complemented with 12 additional

TABLE 1 (Continued)

ID Locality Lat Long
Sample
codes

mtDNA Microsatellites

n Haplotypes π n AR HO HE PA

58 Trancoso, Guarda, Portugal 40.826 −7.358 TRAN2 1 H81

59 Puerto de Canencia,

Madrid, Spain

40.871 −3.757 WP212 1 H185

60 La Mierla, Guadalajara, Spain 40.923 −3.261 WP200 1 H85

61 Salamanca, Salamanca, Spain 40.930 −5.670 FJ226917

HPA248

1 H14

62 El Berrueco, Madrid, Spain 40.932 −3.569 WP207 1 H90

n: sample size, π: nucleotide diversity (calculated using only full sequences, i.e. with no missing data), AR: mean allelic richness; HO: observed heterozy-

gosity, HE: expected heterozygosity. PA: private alleles.
aGenotypes extracted from Sánchez‐Montes et al. (2017).
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genotypes of individuals from four populations in Central Spain

extracted from Sánchez‐Montes et al. (2017, see Table 1).

We used GENALEX 6.5b3 (Peakall & Smouse, 2006) to calculate

mean allelic richness (AR), observed (HO) and expected heterozy-

gosity (HE) and the number of private alleles from multilocus geno-

types of individuals sampled at each locality. We ran software

STRUCTURE 2.3.4 (Pritchard, Stephens, & Donnelly, 2000), which

implements unsupervised Bayesian clustering analyses, to (a) infer

the number of genetic clusters (K) best explaining the genetic

structure in the range‐wide sample and (b) estimate the assign-

ment probability of each individual to each of the inferred clus-

ters. For each value of K from one to ten, we ran ten replicates

with correlated allelic frequencies (Falush, Stephens, & Pritchard,

2003), 100,000–500,000 generations of burn‐in, and 106 post‐
burn‐in iterations. We assessed the likelihood of different K values

explaining the genetic structure in the data with STRUCTURE HAR-

VESTER 0.6.94 (Earl & vonHoldt, 2012), using both the original

(Pritchard et al., 2000) and the ΔK (Evanno, Regnaut, & Goudet,

2005) methods. We used CLUMPAK (Kopelman, Mayzel, Jakobsson,

Rosenberg, & Mayrose, 2015) to summarize the assignment proba-

bilities of each individual and population to each of the inferred

clusters.

2.4 | Climatic favourability model

To infer climatically favourable areas for H. molleri under current and

past climate, we built an SDM based on this species’ current distri-

bution. Occurrence data consisted of presence and absence of

records on 10 × 10 km2 grid cells with a Universal Transverse Mer-

cator (UTM) projection (Figure 3), obtained from Loureiro, Carretero,

Ferrand, and Paulo (2010) for Portugal, from MAGRAMA (2015) for

Spain and from INPN (2018) for France. We considered that all

records previously attributed to H. arborea in Portugal and Spain cor-

responded to H. molleri (Carretero, Martínez‐Solano, Ayllón, & Llor-

ente, 2016).

Model predictors were the 19 bioclimatic variables available in

the WorldClim 1.4 dataset (Hijmans, Cameron, Parra, Jones, & Jarvis,

2005) for current climate. These variables had an appropriate

00.10.20.30.40.50.60.70.8

1
1

1

0.98

0.99

1

0.98

1

F IGURE 1 Left: map showing the geographical distribution of the six mtDNA haplogroups in Hyla molleri. The range of H. molleri is shaded
in grey (Iberian Peninsula) and transparent grey (southern France, where the range boundaries in the contact zone with Hyla arborea are not
fully characterized). The inset corresponds to the boxed area in central Iberia. Right: tree showing major mtDNA clades recovered in BEAST.
Numbers above branches represent Bayesian posterior probabilities. The scale (bottom) is in millions of years
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temporal and spatial scale for our study, and have potential direct or

indirect relationships with the occurrence of H. molleri (Supporting

Information Appendix S3).

To encompass while not overly exceeding the species’ distribution

range, the study area included the Iberian Peninsula and metropolitan

France (Figure 3). Vector maps of countries and of the 10 × 10 km2

K=2

K=4

K=7

F IGURE 2 Top: map showing the geographical distribution of the seven main clusters recovered in STRUCTURE analyses, with the range of
Hyla molleri shaded in grey (Iberian Peninsula) and transparent grey (southern France, where the range boundaries in the contact zone with
Hyla arborea are not fully characterized). The inset corresponds to the boxed area in central Iberia. Bottom: plot representing the assignment
probabilities of each individual from each population (population code numbers in the bottom line) to each inferred cluster for K = 2, 4 and 7
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Current presence

r = 0.102

Current favourability LIG favourability

MH favourability (CCSM) MH favourability (MIROC) MH favourability (MPI)

LGM favourability (CCSM) LGM favourability (MIROC) LGM favourability (MPI)

rALL = −0.105
rMESS = 0.002

LIG∩LGM favourability (CCSM)

rALL = 0.033
rMESS = 0.138

LIG∩LGM favourability (MIROC)

rALL = −0.06
rMESS = 0.002

LIG∩LGM favourability (MPI)
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UTM grids were downloaded from the EDIT geoplatform (Sastre, Roca,

& Lobo, 2009) and clipped to the study area. Species occurrence data

from Portugal (Loureiro et al., 2010) and Spain (MAGRAMA, 2015)

were imported directly from the source databases. Data from France

(INPN, 2018) were geo‐referenced and digitized manually from the

online source map using QGIS (QGIS Development Team, 2014). We

further completed the dataset by adding the locations of our own sam-

ples (Table 1). UTM cells that were cut by the coastline or by the limits

of UTM zones were excluded from model training, to avoid spurious

effects derived from their smaller effective area. The model included

1,321 cells with H. molleri presence records, and 12,958 cells without.

Repeated occurrence records within the same cell were not consid-

ered. At this resolution scale, the dispersal capacity of H. molleri is neg-

ligible, so we can consider that presence in contiguous cells reflects

adequate environment in those cells, and not simply spatial autocorre-

lation in species occurrence.

The model was built in R v3.0.2 (R Core Team, 2017) with the fUZZY-

SIM package (Barbosa, 2015a) using the favourability function (Real,

Barbosa, & Vargas, 2006), a generalized linear model that allows

obtaining prevalence‐independent values directly comparable across

taxa and time periods (Acevedo & Real, 2012). Unlike the generality of

other algorithms, which model probability or suitability, favourability

can be formally used in fuzzy logical analyses (Acevedo & Real, 2012;

Real et al., 2006), such as the intersections that assess the mainte-

nance of adequate conditions across time periods (see below). Never-

theless, to ensure that the choice of modelling approach did not

strongly affect our conclusions, we also modelled the same data with

the widely used algorithm Maxent. We built this model with the MAX-

NET R package, using linear and quadratic features (Merow, Smith, &

Silander, 2013) and a complementary log–log (cloglog) transform (Phil-

lips, Anderson, Dudík, Schapire, & Blair, 2017). We then mapped these

predictions for each climate scenario and measured their correlations

with the corresponding favourability predictions.

The selection of variables followed a three‐step protocol, as imple-

mented in the ‘fuzzySim::multGLM’ function: first, variables with a sig-

nificant bivariate relationship with the distribution of the species were

selected based on the false discovery rate (Benjamini & Hochberg,

1995); the selected variables were included in a multivariate model

through a forward‐stepwise procedure based on Akaike's Information

Criterion (Akaike, 1974); finally, non‐significant variables left in the

model were removed in a stepwise manner (Crawley, 2007).

Model performance was evaluated with the MODEVA R package

(Barbosa, Real, Muñoz, & Brown, 2013). We used several perfor-

mance metrics that measure discrimination, classification (using 0.5

as the threshold value, which for favourability models equates to

using prevalence; Real et al., 2006; Acevedo & Real, 2012),

explanatory power and calibration – that is the fit of predicted prob-

abilities to observed occurrence frequencies (see Jiménez‐Valverde,
Acevedo, Barbosa, Lobo, & Real, 2013).

The model was then projected towards the past, to hindcast cli-

matically favourable areas based on WorldClim palaeoclimatic simula-

tions – one for the Last Interglacial period (LIG, ~120,000–140,000
years ago), and three for the LGM (~21,000 years ago) and for the Mid

Holocene (~6,000 years ago): CCSM4, MIROC‐ESM and MPI‐ESM‐P
(Hijmans et al., 2005). We quantified the general changes in favoura-

bility between past simulations and current climate, using the fuzzy

range change measures (including overall proportional gain, loss and

stability) available in ‘fuzzySim’. Given that favourability values can be

handled directly with fuzzy logic (Acevedo & Real, 2012; Real et al.,

2006), we used the FUZZYSIM package to calculate the fuzzy intersec-

tion (Zadeh, 1965) of climatic favourability in the LIG and the LGM, to

infer how favourable each cell remained along the glacial cycle.

To avoid the uncertainty caused by extrapolation of models out-

side the analysed climatic values, we performed a Multivariate Envi-

ronmental Similarity Surface (MESS) analysis (Elith, Kearney, & Phillips,

2010), using the MESS function of MODEVA. After excluding dissimilar

environments (i.e. UTM cells with negative MESS values), we calcu-

lated the correlations between sustained favourability values

(LIG–LGM intersections) and current genetic diversity within the distri-

bution range of H. molleri, which was taken from IUCN (2017) and edi-

ted to encompass all recorded occurrences (Figure 3). We combined

different measures of genetic diversity (allelic richness, observed

heterozygosity and number of private alleles; nucleotide diversity was

excluded for its smaller sample size) in a principal components analysis

(PCA) with R function PRINCOMP, using the correlation (rather than the

covariance) matrix as these variables are measured on different scales.

We confirmed that the first PCA axis captured most (~60%) of the

variation and correlated positively with each diversity measure. We

then used kriging interpolation (AUTOKRIGE function of the AUTOMAP R

package) to estimate genetic diversity across the species’ range, aver-

aged it over the UTM 10 × 10‐km2 cells, and correlated it with the

intersection of current and past climatic favourability.

3 | RESULTS

3.1 | Mitochondrial DNA analyses

Nucleotide diversity is higher in western and central areas within the

range of H. molleri (Supporting Information Appendix S3). The

mtDNA tree recovered by BEAST contained two well‐supported major

clades that originated back in the Pleistocene (95% highest posterior

density interval [95% HPDI] for the root: 0.35–1.36 Myr, median:

F IGURE 3 Current occurrence records (black 10 × 10 km2 cells), current distribution range encompassing these records (grey outline) and
climatic favourability (colour scale ranging from dark blue–least favourable–through yellow to dark red–most favourable–) for Hyla molleri, in
the present and under projected climates for the Last Inter‐Glacial (LIG) and for each of three simulations for the Last Glacial Maximum (LGM)
and the Mid Holocene (MH): CCSM4, MIROC‐ESM and MPI‐ESM‐P. Predictions in shaded areas are outside climatic conditions accessible to
the model (analogous climates) and are therefore less reliable. The correlation (r) between favourability and genetic diversity is shown where
applicable (see Section 2)
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0.78 Myr), corresponding to haplotypes found in the Northern Pla-

teau of the Iberian Peninsula (95% HPDI for the time to the most

recent common ancestor [TMRCA]: 0.12–0.46 Myr) and in the

South+Atlantic regions (95% HPDI TMRCA: 0.24–0.96 Myr) respec-

tively (Figure 1). The composite South+Atlantic clade is further sub-

divided into five subclades, corresponding to (a) the North‐Atlantic
localities in Galicia (NW Spain) and Southern France, (b) the Atlantic‐
Lusitanian localities in central Portugal (two subclades) and (c) the

southern distribution range, including a widespread haplogroup cov-

ering most of the Southern Plateau and a geographically restricted

clade from the Algarve (S Portugal) (Figure 1). In total, 185 different

mtDNA haplotypes were retrieved from the 247 individual

sequences, with H8 as the most common haplotype in the Southern

clade (found in five localities) and H90 as the most widespread hap-

lotype within the Northern‐Plateau clade (found in eight localities).

Localities 2 (Segonnes, France) and 14 (Codesal, Spain) showed the

highest haplotype diversity in our sample, with 12 different

haplotypes each (Table 1).

Continuous diffusion analyses inferred a geographical location

for the root of the mtDNA tree in a broad area in northwestern Ibe-

ria, south of the Cantabrian mountains and north of the Sistema

Central mountains, extending towards the coast of central Portugal.

From this ancestral area, populations would have expanded along a

SW‐NE axis first, followed by eastward expansions north and south

of Sistema Central and by an independent expansion north of the

Cantabrian mountains, from which populations would have subse-

quently expanded west and east along the coast (Supporting Infor-

mation Figure S3.2).

All test statistics showed significant evidence for demographic

expansions in H. molleri, as well as for each major mtDNA clade

separately (Table 2).

3.2 | Microsatellite analyses

Localities in northern Iberian mountains and in western Iberia

showed the highest genetic diversity, measured as mean AR and HO

(Supporting Information Appendix S3). In contrast, the highest con-

centration of private alleles occurred at both geographical extremes,

in localities of France and southwestern Portugal (Supporting Infor-

mation Appendix S3).

Clustering analyses yielded K = 4 and, especially, K = 7 as the

numbers of clusters best explaining the genetic structure in the

microsatellite data (Figure 2 and Supporting Information Appendix S2).

Four of the groups inferred from mtDNA data (North‐Atlantic, North‐
Plateau, West‐Atlantic and South) were also recovered in

microsatellite analyses with K = 4 (Figure 2). At K = 7, the Central Sys-

tem and the northwestern localities were differentiated within the

North‐Plateau group and a South‐eastern cluster was differentiated

within the Southern group (Figure 2).

3.3 | Climatic favourability model

Model predictions (Figure 3) had good overall evaluation measures,

with, for example an area under the receiver operating characteristic

curve (AUC) of 0.914, which is considered ‘excellent’ (Swets, 1988),

and a McFadden's pseudo‐R2 of 0.379, which is well above what is

considered ‘excellent fit’ (McFadden, 1978; Figure 4). Maxent predic-

tions, obtained for comparison, had essentially the same AUC

(0.915) as favourability, slightly higher sensitivity at a threshold

equalling the species’ prevalence, and lower specificity and remaining

classification measures. They also provided essentially similar spatial

patterns to those of favourability, with which they were highly cor-

related (Supporting Information Figure S3.3), therefore indicating

that our results were robust to the choice of modelling algorithm.

Climatically favourable areas inferred from model projections

generally contracted between time periods, from the LIG to the pre-

sent (Figures 5 and 6). However, favourability generally remained

high across the current distribution range of H. molleri (Figure 3).

Current genetic diversity showed a general increasing trend towards

the southwest (Figure 7). There were no meaningful correlations

between genetic diversity and environmental favourability along the

glacial cycle, whether or not restricting the analysis to environments

analogous to those of today (Figure 3).

4 | DISCUSSION

The combination of comprehensive range‐wide sampling and exten-

sive genetic information, including mtDNA sequences and specific

microsatellite markers, has shown that the phylogeographic pattern

of H. molleri is more complex than expected based on previous stud-

ies (Barth et al., 2011; Gvoždík et al., 2015; Moreira, 2012; Stöck et

al., 2012). Our results uncovered finer‐scale patterns of genetic

structure than previous studies, including evidence for two major

Pleistocene lineages (Figure 1), and additional geographically struc-

tured subdivision within both major groups (Figures 1 and 2). Fur-

thermore, in contrast to thermophilous Mediterranean species,

genetic diversity across the range of H. molleri did not follow a

decreasing gradient from putative southern refugia. Instead, we

found two main genetic reservoirs in central and southern Portugal

Haplogroup n D (F&L) F (F&L) D (Taj) R2 (R) FS (Fu)

North‐Plateau 40 −3.066* −3.356* −2.371** 0.038*** −23.16***

South+Atlantic 63 −3.513* −3.746* −2.526*** 0.027*** −26.15***

All 100 −4.024* −3.684* −1.819* 0.040* −32.39***

n = sample size (number of sequences); F&L = Fu & Li; Taj = Tajima; R = Ramos‐Onsins & Rozas.

*p < 0.05; **p < 0.01; ***p < 0.001.

TABLE 2 Results of historical
demographic analyses for Hyla molleri
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and in northern Spain (North‐Plateau). The distribution of genetic

diversity in H. molleri, and its lack of correlation with areas that

remained climatically favourable through the LIG and LGM towards

the present (Figure 3), suggest that this Atlantic species does not

accommodate to the Pleistocene history documented in more ther-

mophilous Mediterranean amphibians (Gutiérrez‐Rodríguez et al.,

2017a, 2017b).

The estimated age of the common ancestor of the two Pleistocene

lineages of H. molleri is relatively young (~780,000 years), especially

when compared to other Iberian species like P. waltl (Gutiérrez‐Rodrí-
guez et al., 2017b), Lissotriton boscai (Martínez‐Solano et al., 2006) or

Alytes obstetricans (Gonçalves et al., 2015), highlighting their different

evolutionary histories. Hyla molleri shares a common ancestor with H.

orientalis, an eastern species distributed from Central Europe to the

Caspian Sea (Gvoždík et al., 2015). Time estimates for their common

ancestor range from middle Pleistocene (Gvoždík et al., 2015) to early

Pliocene (Dufresnes et al., 2018; Stöck et al., 2012), much earlier than

our TMRCA estimates (Figure 1). The sister relationship between both

species, their current disjunct distribution and their different phylo-

geographic structure suggest a substantial change in the distribution

range of H. molleri along the Pleistocene, including a relatively recent

colonization (just over 1 Myr) of the Iberian Peninsula from popula-

tions north of the Pyrenees, where the species could have been widely

distributed. These northern populations would have disappeared dur-

ing some of the Pleistocene glacial maxima, remaining only those in

the Iberian refugium, which are putatively represented by fossil

remains dating back to the middle Pleistocene in the North Plateau in

Atapuerca, Burgos (1.4–1.2 Myr; Cuenca‐Bescós et al., 2010).
In view of this evolutionary history, H. molleri would fit a type ‘R’

model (Recuero & García‐París, 2011), in which current genetic

diversity originated in populations surviving in true Pleistocene gla-

cial refugia, whereas older lineages became extinct during the Pleis-

tocene. Similarly shallow patterns of phylogeographic structure have

been observed in a number of largely co‐distributed species, includ-

ing both Atlantic species like Lissotriton helveticus (Recuero & García‐
París, 2011), Discoglossus galganoi (Martínez‐Solano, 2004) and Rana

iberica (Teixeira, Gonçalves, Ferrand, García‐París, & Recuero, 2018),

and Mediterranean taxa like Alytes cisternasii (Gonçalves et al., 2009)

or P. cultripes (Gutiérrez‐Rodríguez et al., 2017a). Unfortunately, for

several of these taxa we lack detailed information regarding the rela-

tionship between changes in climatic favourability and patterns of

genetic diversity. The only model ‘R’ species for which this integra-

tive approach combining genetic information and SDM has been

applied so far showed a clear signature of range contraction during

the LGM, followed by continuous expansion during the Holocene, in

line with the classical model (Gutiérrez‐Rodríguez et al., 2017a).

Ancestral lineages of H. molleri north of the Pyrenees were prob-

ably extirpated by extreme climatic changes, but the cold‐tolerance
of the species possibly facilitated demographic stability through the

milder climate fluctuations in the Iberian refugium, taking advantage

of the habitat heterogeneity provided by topography in this region

(Abellán & Svenning, 2014; Gomez & Lunt, 2007). Topography may

have also played a fundamental role in shaping the observed phylo-

geographic pattern. For instance, recolonization of the area along

the Cantabrian coast in northern Spain up to Atlantic France took

place from populations in NW Iberia (Supporting Information Fig-

ure S3.2), whereas the geographically closer Northern Plateau clade

barely expanded north of the Cantabrian mountains, which were

covered by large ice sheets during Pleistocene glacial maxima

(Hewitt, 1996). A similar pattern of historical isolation mediated by a
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mountain barrier can explain the differentiation between the South

and North‐Plateau lineages, which are currently in contact along the

Sistema Central mountains. The role of mountains as barriers to dis-

persal would have been stronger during glacial maxima, whereas in

the present interglacial neither the Cantabrian nor the Sistema Cen-

tral mountains act as impermeable barriers (Domínguez‐Villar et al.,

2013; Sánchez‐Montes et al., 2018), and populations of H. molleri

occur all along the altitudinal gradient up to elevations above the

treeline >2,000 m a.s.l. (Martínez‐Solano, 2006). Climatic conditions

during the LGM must have prevented colonization of alpine habitats

until the Holocene, when lineage admixture would be limited by

demographic processes according to the ‘founder takes all’ model

(Waters, Fraser, & Hewitt, 2013).

According to our model, the Iberian Peninsula experienced a pro-

gressive and continuous decrease in climatically favourable areas for

H. molleri since the LIG, especially in southern and eastern Iberia,

where the species is currently absent (Figure 3). At the only two

localities with upper Pleistocene‐Holocene H. molleri fossils (Blain &

Corchón Rodríguez, 2018; Cuenca‐Bescós et al., 2010), climatic

favourability generally remained high during the analysed timeframe

(Supporting Information Figure S3.4). This provides support to our

model, even if with limited data. Interestingly, we found a good

match between climatically favourable areas through time and those

areas where H. molleri currently occurs (Figure 3), which may explain

the absence of a positive correlation between historical climatic

favourability and current patterns of genetic diversity. According to

this interpretation, climatic changes in the late Pleistocene would

not have led to strong extinction/recolonization dynamics in H. mol-

leri, at least not as severe as in other less vagile, more ther-

mophilous, co‐distributed amphibian species, for which these

extinction/recolonization dynamics have been invoked to explain cor-

relations between sustained climatic favourability and genetic diver-

sity (Gutiérrez‐Rodríguez et al., 2017a, 2017b). Instead, the historical

biogeography of H. molleri may have been mainly characterized by

resilience against climatic fluctuations based on its cold‐tolerance, its
dispersal capacity, and its preference for more stable (in terms of

hydroperiod predictability) breeding sites, as compared to other Ibe-

rian species such as P. waltl, P. cultripes, Epidalea calamita or Pelophy-

lax perezi (Sánchez‐Montes et al., 2018). Therefore, climatic changes

would have only affected areas in the periphery of its Iberian range.

Signatures of demographic expansion based on mtDNA sequences

(Table 2) may represent the recolonization of new areas that became
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F IGURE 5 Fuzzy range change
measures (fuzzy equivalents of the
proportional gain, loss and overall change
in areas climatically favourable for the
presence of Hyla molleri) among time
periods, from the Last Inter‐Glacial (LIG) to
the LGM, the Mid‐Holocene (MH) and the
present, including the three paleoclimatic
simulations currently available across
periods on WorldClim (CCSM4, MIROC‐
ESM and MPI‐ESM‐P)

12 | SÁNCHEZ‐MONTES ET AL.



briefly favourable during the Mid Holocene, although favourability in

these areas declined again towards the present (Figure 3), causing

extinctions in recent times (Supporting Information Figure S1.2). The

high dispersal capacity of this species would help it track climatic

changes with rapid demographic responses (e.g. latitudinal/altitudinal

migrations), explaining the lack of correlation between genetic

diversity and climatic stability.

Our results suggest that the biogeographic history of H. molleri

since the Pleistocene has been characterized by a relatively stable

climatic favourability in the core of the species distribution within

the Iberian refugium, with demographic resilience to climate

changes and a decrease in favourability affecting only peripheral

populations. This contrasts with the large‐scale cycles of extinction‐
recolonization inferred for other more thermophilous, co‐distributed
amphibian species in Iberia, providing new insights about the evolu-

tionary history of amphibian assemblages. Cold‐tolerance might

have buffered the effect of Pleistocene climatic fluctuations on the

demographic history of southern Atlantic species within their glacial

refugia, thus preventing strong genetic diversity depletions as expe-

rienced by thermophilous species. Also, dispersal ability probably

played an important role in the capacity of species to respond to

fluctuations in favourability through time. These two traits drove

the resilience of H. molleri through the climatic cycles of the Pleis-

tocene, and this inference could be used to model the response of

this and other cold‐tolerant species to current forecasts of global

warming. These results can be applied to the conservation of the

evolutionary potential of H. molleri, which would be dependent on

the maintenance of the differentiated gene pools identified along

environmental gradients, representing this species’ ecological

breadth.
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