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A B S T R A C T

Habitat fragmentation is a major biodiversity threat. Linear infrastructures (e.g. roads) hamper the movement of
individuals and cause non-natural mortality. Roadkill hotspots have been used to define priority areas for road
effect mitigation, but data availability and reliability is an issue, particularly on wide spatial scales. Additionally,
mitigating the whole infrastructure network is unfeasible. Expedite methods are required to address such
challenges. We present the gDefrag package, a graph-based approach that builds on habitat value and accessi-
bility after simplifying the landscape as a graph. Its advantages include not requiring roadkill or movement data,
and providing effective methods to deliver reliable information, allowing landscape managers to address
landscape fragmentation overall. gDefrag prioritizes roads which should be targeted first to defragment the
landscape. The software includes a user-friendly manual and currently implements four prioritization criteria:
habitat quality, maximum number of inter-habitat paths, overall landscape connectivity, and simultaneously
larger and higher-quality habitats.

1. Introduction

Linear infrastructures, particularly roads, railways or power-lines
(hereafter roads), are responsible for significant and deleterious impacts
on biodiversity, including non-natural mortality (e.g. roadkill or colli-
sion with power-lines) and habitat fragmentation, altering the land-
scapes into a patchwork of increasingly smaller areas (Borda-de-água
et al., 2017; Van Der Ree et al., 2015). Given the exponential expansion
of the transportation networks worldwide (Ibisch et al., 2016; Laurance
and Balmford, 2013), the negative effects are expected to have a global
impact. Particularly in environmentally sensitive regions, road net-
works can have a profound impact on ecosystems (Laurance and
Balmford, 2013), affecting the dynamics and persistence of animal
populations (Borda-de-Água et al., 2014, 2011; Ceia-Hasse et al., 2017;
Holderegger and Di Giulio, 2010; Silva et al., 2010).

A major purpose of researchers in conservation biology, as well of
infrastructure managers, is to identify roads having a higher risk of
mortality or that inflict important barrier effects. Those infrastructures
are often targeted to be prioritized for implementing mitigation mea-
sures (Crawford et al., 2014; e.g. Cureton and Deaton, 2012). This

prioritization is typically, but not exclusively (Mimet et al., 2016),
based on information from wildlife mortality surveys, assuming that
road mortality occurs mostly in areas of higher connectivity (Grilo
et al., 2011; Kang et al., 2016). However, mortality hotspots may be
incorrectly identified if surveys are not sufficiently frequent (Santos
et al., 2015). They may also not indicate the best sites for road miti-
gation due to earlier population depression caused by road fatalities,
thereby decreasing the number of records over time (Eberhardt et al.,
2013; Zimmermann Teixeira et al., 2017). Furthermore, species with
high road avoidance may be rarely detected in roadkill surveys (Chen
and Koprowski, 2016), despite being heavily affected by the barrier
effects due to resource inaccessibility (Ito et al., 2013).

Assuming that a larger amount of connected habitat allows the
persistence of larger and more resilient populations and communities,
one could target the mitigation of transportation networks in order to
maximize the accessible habitat, i.e. the amount of reachable habitat
from a given location without crossing any major barrier (Eigenbrod
et al., 2008). We suggest that road mitigation should first be supported
by a broader landscape-level approach, with the goal of connecting
areas divided by roads in a way that maximizes the amount of
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accessible habitat. The question is how to classify the different roads
according to the quantity of quality habitat adjacent to them, prior-
itizing those that separate patches with higher values. Graph-based
tools have increasingly been used in landscape ecology (Foltête et al.,
2014; Kang et al., 2016; Urban and Keitt, 2001), and can easily provide
a baseline for prioritization. Graph theory applications in landscape
ecology usually represent a network of nodes (habitat patches), con-
nected by links, e.g. representing least cost dispersal paths between
these patches. Here, we somewhat reverse this reasoning and consider
that the nodes are the polygons separated by the infrastructure net-
work, and the links represent (or are crossed by) the infrastructures
themselves (Fig.1).

Defining landscapes as spatial graph-like structures presents several
advantages, namely they 1) effectively summarize the spatial relation-
ships between nodes, 2) facilitate multi-scale analysis, and 3) allow
faster computation times (Bergerot et al., 2013; Fortin et al., 2012;
Galpern et al., 2011). Moreover, several graph-based connectivity me-
trics and concepts have already been developed (Brandes, 2001;
Freeman, 1978a,b; Plavšić et al., 1993). The approach we propose re-
quires few parameters: the habitat for the focal species or another
feature we aim to defragment (based, for instance, on habitat presence,
extent, density, suitability or accessibility), and the linear infra-
structures network. Such information is available for most regions of
the world. Note that one can be interested in defragmenting a particular
habitat, e.g. forest cover, or more complex layers such as environmental
quality resulting from species distribution models. Likewise, one can
integrate different infrastructures simultaneously when considering the
polygon areas of interest. Most importantly, this approach allows a fast
assessment at the landscape level, and is feasible over any spatial scale.
Other software applications exist, e.g. Graphab (Foltête et al., 2012),
that translate the landscape as a graph and can be applied in studies
related with the impact of linear infrastructures (Girardet et al., 2015).
However, this approach is also based upon roadkill data, with all the
related issues discussed above.

We hereby present the R package gDefrag (version 0.1), containing

a set of functions that provide the necessary tools to apply this ap-
proach, namely the graph-based prioritization of linear infrastructures
for the implementation of mitigation measures, therefore maximizing
the defragmentation effectiveness while increasing feasibility and di-
minishing potential costs.

2. gDefrag workflow

The package has five functions and a very straightforward work-
flow, making it an easy-to-use tool for a wide variety of end users (from
researchers to infrastructure and landscape managers). The goal is to
rank the different components of the linear infrastructure networks
(e.g. roads) in order to efficiently prioritize the sections to mitigate
while maximizing the accessible habitat and connectivity (Table 1).

The nodes are the spatial polygons defined by the linear infra-
structure network (together with the limits of the study area, if neces-
sary). This information is provided by the user, and can be obtained
from existing infrastructure layers (e.g. openstreetmaps.org, after cor-
rection of topological errors) combined with environmental layers (for
the habitat or environmental value of each polygon). Each polygon
must have at least one attribute that will be used for prioritizing links,
e.g. its area, the amount of available habitat or environmental suit-
ability. The fact that unfavourable landscapes may exist between the
linear infrastructure and the closest habitat within the adjacent polygon
can be accounted for by the users in the value of this attribute, ac-
cording to their specific aims. This value can also be weighted by the
homogeneity of the habitat or its accessibility from the linear infra-
structure. The nodes are created by the function ‘node.creation’ and are
placed inside each polygon. The links connect the nodes (polygons) that
are adjacent, separated by linear infrastructures, and are defined using
the function ‘edge.creation’. Minimum thresholds can be defined for the
length of the road separating two polygons, and/or for the area of each
polygon, for links to be created connecting them.

The overall workflow can be synthetized in the steps described in
Fig. 2. In the following section we will present a worked example re-
sorting to the sample dataset that is made available with the package.

3. Worked example: prioritizing areas for defragmenting a
landscape in a region of the Iberian Peninsula

3.1. Load data

The example that follows uses the sample dataset (‘road_P’) avail-
able with the gDefrag package. It contains a polygon vector map, in
which the polygons are delimited by the road network in a region of the
Iberian Peninsula (Fig. 3). This small-scaled example provides a simple
demonstration of gDefrag capabilities which is relatively fast to com-
pute. As a background raster for obtaining polygons values, we used the
percentage of forest cover from Copernicus Global Land Service (Smets
et al., 2017). For each polygon we summed the number of cells (100m
resolution) with> 30% forest cover, therefore representing the habitat
available for a typical forest species.

3.2. Node creation

Next, an object with the nodes (Fig. 4C) was created with the

Fig. 1. Nodes (red) and links (black lines) over a landscape fragmented by roads
(black polygons).

Table 1
Brief descriptions of the gDefrag functions.

Function Description

node.creation Creates the R object with the nodes information, from a layer of spatial polygons separated by infrastructures and characterized by a habitat value.
edge.creation Creates the R object with the links information, connecting the nodes created by the previous function.
prioritize Runs the prioritization algorithm on the links, with one of three methods: ‘value’, ‘between’, ‘IIC’ and ‘AWM’.
plotgraph Plots the outputs, including the nodes and links represented according to their values.
gDefrag.full Wrapper function that runs the full process.
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following code:

out1 < - node.creation (land_polyg= road_P, value_col =

"forest_sum", scale_nodes= 10, col_nodes = "pink", cex_labels= 1)

#For the ‘Area-Weighted Metric’ method

out1_2 < - node.creation (land_polyg= road_P, value_col = "propor-
tion", scale_nodes= 5000000, col_nodes = "pink", cex_labels= 1)

The ‘land_polyg’ argument requires a ‘SpatialPolygonsDataFrame’,
package ‘sp’ (Pebesma and Bivand, 2018) object (which can be im-
ported e.g. from a polygon shapefile); ‘value_col’ requires the name of
the column in the polygon data attribute table (‘road_P@data’) con-
taining the summarized raster information (value); ‘scale_nodes’ is a
graphic argument scaling the node size for a better graphical re-
presentation, ‘col_node’ determines the nodes’ colour and ‘cex_labels’
the size of the nodes labels. The function produces an object of class
"SpatialPointsDataFrame" of package ‘sp’ (Pebesma and Bivand, 2018).

3.3. Edge creation

Having the object ‘out1′ (and ‘out1_2′), the links were defined by
running the following code (Fig. 4D):

out2 < - edge.creation (nodes= out1, land_polyg= road_P, min_-
length=0,

min_pol_area=0)

#For the “Area-Weighted Metric” method

out2_2 < - edge.creation (nodes= out1_2, land_polyg= road_P,
min_length= 0, min_pol_area=0)

The argument ‘nodes’ requires the object produced by the function
‘node.creation’, ‘land_polyg’ requires the author-input
‘SpatialPolygonsDataFrame’ (‘road_P’ in the package sample data),
‘min_length’ may take the minimum road length of a road separating
two polygons to create an edge, and ‘min_pol_area’ is the minimum
polygon area to consider for making a node. The user should give
careful consideration to these two last arguments, which have zero as
the default value (i.e., no minimum length or area) and can have a
relevant impact on the outputs produced in the next function. The
function ‘edge.creation’ creates an object of class
‘SpatialLinesDataFrame’ of package ‘sp’ (Pebesma and Bivand, 2018).

Fig. 2. gDefrag workflow: 1) import polygon data into R; 2) Define nodes; 3)
Define links: 4) Prioritization procedure; 5) Plotting and/or exporting output
into a GIS.

Fig. 3. Iberian Peninsula (SW Europe), with the sub region used as sample dataset highlighted in grey. The lines show the main road network.
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3.4. Prioritization

The process of prioritizing the links can be carried out with one of
four methods: edge betweenness (Fig. 4E), node value (Fig. 4F), Integral
Index of Connectivity (IIC; Fig. 4G) and Area-Weighted Metric (AWM;
Fig. 4H). The first (method = ‘between’) prioritizes links that are part of
the shortest distance paths (a path is the set of links connecting two
nodes; shortest distance refers to the path between two nodes with less
links - the topological distance). It is computed by resorting internally
to the function ‘edge.beetweenness.estimate’ of R package ‘igraph’
(Csardi and Nepusz, 2018). The method ‘value’ gives priority to links
connecting the nodes with the highest attribute value (which is supplied
by the user in the attribute table of the input map). The method ‘IIC’
gives higher priority to links that are more relevant to the overall graph
connectivity, by computing dIIC as described in Pascual-Hortal and
Saura (2006). This value is computed for all links, allowing prioritiza-
tion according to the connectivity value of the links. Finally, the
method ‘AWM’ prioritizes links based on a combination of size and
quality, favoring the defragmentation of larger, higher-quality areas.

The following code produces the output for each of the prioritiza-
tion methods:

out3 < - prioritize (nodes= out1, edges= out2, method = "value")

out4 < - prioritize (nodes= out1, edges= out2, method = "be-
tween")

out5 < - prioritize (nodes= out1, edges= out2, method = "IIC")

out6 < - prioritize (nodes= out1_2, edges= out2_2, method =
"AWM")

The outputs provided by this function are depicted in Fig. 4 (bottom
panel). The function ‘prioritize’ creates an object of class

‘SpatialLinesDataFrame’ of package ‘sp’ (Pebesma and Bivand, 2018), in
which the links (spatial lines) have the priority information in their
attribute table.

As an alternative, the complete process can be run using a single
wrapper function, ‘gDefrag.full’, which encloses all others (node.crea-
tion, edge.creation, prioritization), but turns the process of creating
prioritized links even more straightforward:

out7 < - gDefrag.full (land_polyg= road_P, method = "value", va-
lue_col = "forest_sum", main = "Node value-based graph",
shape=TRUE)

out8 < - gDefrag.full (land_polyg= road_P, value_col = "forest_sum",
method = "IIC", main = "IIC-based graph",shape=TRUE)

out9 < - gDefrag.full (land_polyg= road_P, value_col = "forest_sum",
method = "between", main = "Betweenness-based graph",
shape=TRUE)

out10 < - gDefrag.full (land_polyg= road_P, value_col = "propor-
tion", method = "AWM", main = "AWM-based graph", shape=TRUE)

The function ‘gDefrag.full’ produces a list object as an output, in-
cluding the nodes and the links with their priority values.

4. Summary results

Different prioritizing methods prioritize different features of the
graph. Betweenness gives more weight to links that are part of more
internode shortest paths, thus prioritizing those that maximize the flow
between nodes (Fig. 4E). Node value gives more weight to links con-
necting nodes with higher attribute values. This attribute is user-de-
fined and it can reflect ecological suitability (the output of an ecological
niche model), habitat availability (percentage/area of habitat, possibly
weighted by accessibility across the road) or available area (polygon

Fig. 4. Sample analysis workflow. Left-hand panel: Combining the polygon shapefile (A) with the raster (B) (e.g. habitat cover, niche model). Mid panel: In gDefrag,
create the nodes (C) and the links (D) objects. Right-hand panel: project the prioritization of the links, to the available methods (E, F, G, H). method = ‘between’ (E) -
Give priority to links with higher betweenness centrality; method = ‘value’ (F) - Give priority to nodes maximizing the value of the raster (in this case, connect
preferentially nodes with higher forest cover); method = ‘IIC’ (G) – Integral Index of Connectivity, gives priority to links more relevant to overall connectivity; ‘AWM’
(H) - Weighted Area Metric, gives priority to larger polygons containing higher habitat quality. Note that the node 4 was not considered in the prioritization
computations, considering its small area.
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area) (Fig. 4F). IIC gives more weight to links that, if lost, would have a
greatest impact on overall connectivity (Fig. 4G). Finally, the Weighted
Area Index gives more weight to larger polygons containing higher
habitat quality (Fig. 4H).

5. Visualization

The other available function in gDefrag is ‘plotgraph’, a plotting
function to depict the results of the prioritization procedure, although
the user can also resort to the possibility of creating a shapefile (ar-
gument ‘shape’ available in all other functions) that can be loaded into
a GIS for a more flexible graphical output.

6. Discussion

The present package presents an effective and straightforward ap-
proach to prioritize areas for defragmenting a landscape. It avoids the
aforementioned issues related to wildlife roadkill data, which are often
scarce, uneven and of insufficient quality, particularly on wide spatial
scales, and therefore might not accurately reflect the relevance of a
given site to the focal taxonomic group. We provide a small-scale ex-
ample in which we used all four prioritization methods that are cur-
rently implemented. The results reflect these different approaches,
giving more weight to the links configuration (betweenness and IIC) or
to the node arguments (value and AWM). ‘Betweenness’ prioritizes links
promoting the flow through the graph, while ‘IIC’ favours links con-
necting the graph internally to the farthest nodes. On the other hand,
‘value’ prioritizes links connecting nodes with the higher user-defined
value and the ‘AWM’ weights this by the polygons’ area.

We have shown that gDefrag is an effective tool, providing methods
to prioritize links to be created, reducing the fragmentation on a
landscape traversed by a road network. It is an easy-to-use, scale-in-
dependent approach that allows the selection of sites to break the
barrier effect of roads, with the advantage of not requiring roadkill
data. Our approach provides a general idea of what are the most stra-
tegic portions of linear infrastructures for defragmenting landscapes,
even over very wide scales (e.g. regional or continental). Then, finer-
scale analyses integrating the composition and configuration of the
landscape can also be developed, in order to efficiently prioritize the
sections to mitigate.
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