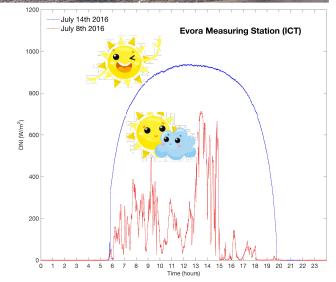


Short-term Forecasting for Direct Normal Irradiance with Numerical Weather Prediction Models in Alentejo

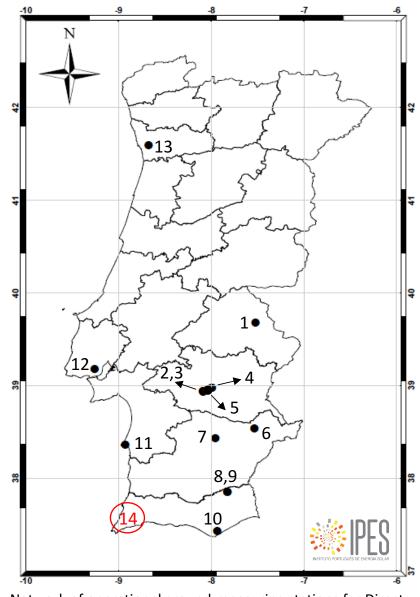
Francis M. Lopes, Hugo G. Silva, Rui Salgado, Manuel Collares-Pereira

fmlopes@uevora.pt,
hgsilva@uevora.pt,
rsal@uevora.pt,
collarespereira@uevora.pt


A previsão numérica do tempo em Portugal: estado da arte e novos desafios, IPMA, November 26-27th 2018, Lisbon.

Overview

- Forecasts of direct normal irradiance (DNI) are essential for an optimized operation strategy of concentrating solar power (CSP) systems, particularly during partly cloudy days, allowing to reduce the uncertainty of solar plant outputs due to solar irradiance intermittency.
- Current state-of-the-art Numerical Weather Prediction (NWP) models:
 - The first DNI forecasts (ECMWF) are dated around 2014.
 - Still require further validation over DNI forecasts, mainly due to cloud representation during overcast periods.
- <u>Objectives</u>: Use of the Integrated Forecasting System (IFS), the global NWP model from the European Centre for Medium-Range Weather Forecasts (ECMWF), to assess short-term forecasts of DNI in southern Portugal and integrate these in the operation of CSP systems.

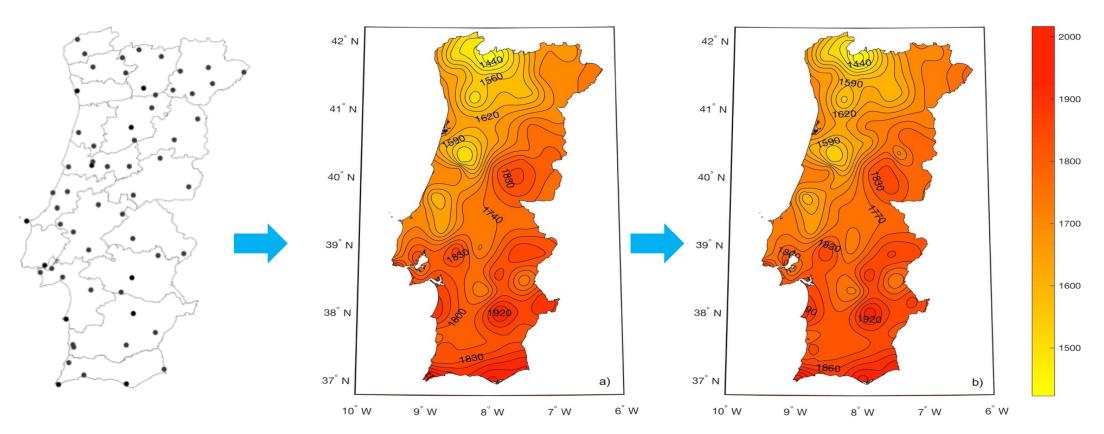


Solar Assessment

- For Portugal, available commercial data is provided by companies (e.g. SOLARGIS and Meteonorm).
- These companies do not have ground-measuring data to validate their model estimations in Portugal.
- There is an expected range of bias outside validation sites of about ±8% to ±12%.
- As part of the DNI-A project (reference ALT20-03-0145-FEDER-000011), a DNI network has been growing since 2014 with the objective to map the DNI availability (kWh/m²) in Portugal.

- 1. Portalegre AREANATEJO
- 2. PECS University of Évora
- 3. EMSP University of Évora
- 4. Évora University of Évora
- 5. Alcamizes EDP Innovation
- 6. Moura Lógica
- 7. Beja University of Évora
- 8. Martim Longo CapWatt
- 9. Martim Longo Enercoutim
- 10. Olhão IPMA
- 11. Sines University of Évora
- 12. Lisboa LNEG
- 13. Porto INEGI
- 14. Sagres (to be installed soon)

DNI Network



Network of operational ground-measuring stations for Direct Normal Irradiance (DNI) in continental Portugal since 2014. Cortesy of Afonso Cavaco (IPES), afonso.cavaco@ipes.pt

Solar Assessment

• The mapping of Global Horizontal Irradiance (GHI) has already been performed with IPMA's network of 89 GHI ground-measuring stations.

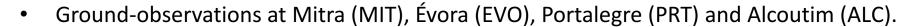
H.G. Silva, P. Canhoto, E. Abreu, Francis M. Lopes, A. Cavaco, J. Neto, M. Collares-Pereira. "Solar Irradiation Gap-Filling with Estimator Matrices (SIGMA) Validated for Portugal (Southern Europe)". (in preparation)

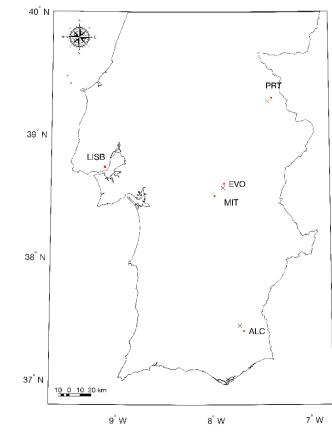
Annual GHI availabilities (kWh/m²/year) in Portugal from 2001 to 2017, estimated by: (a) simple linear interpolation of the missing data; (b) processing method: Solar Irradiation Gap filling with estimator Matrices (SIGMA).

Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener



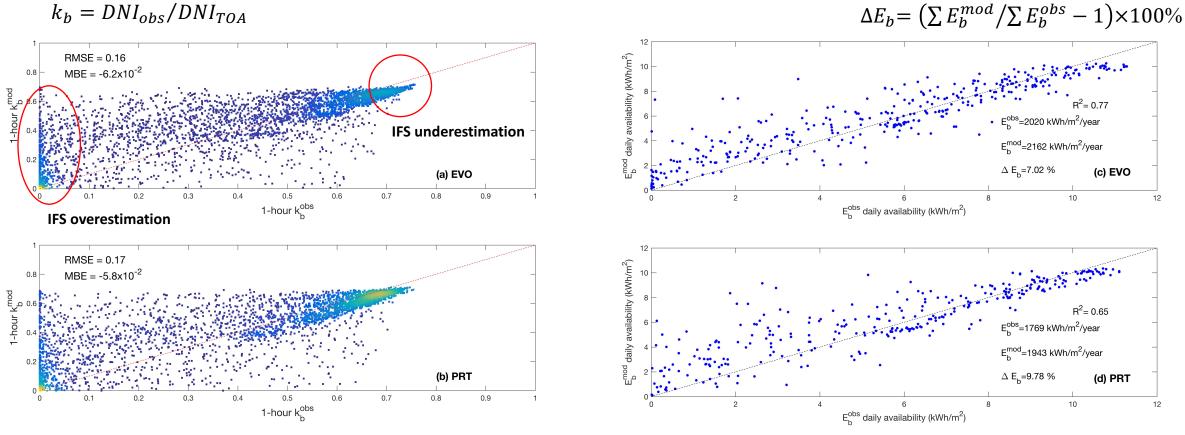

Short-term forecasts of GHI and DNI for solar energy systems operation: assessment of the ECMWF integrated forecasting system in southern Portugal

Francis M. Lopes^{a,b,*}, Hugo G. Silva^{a,b,c}, Rui Salgado^{b,c}, Afonso Cavaco^d, Paulo Canhoto^{b,c}, Manuel Collares-Pereira^{a,b,c,d}

d Portuguese Solar Energy Institute, IIFA, Palácio do Vimioso, Largo Marquês de Marialva, Apart. 94, 7002-554 Évora, Portugal

Stations used for measurements (black crosses) and model (red dots).

- In-situ hourly averages for $\mathbf{1}$ year (starting in April $\mathbf{1}^{\text{st}}$ 2016) of \mathbf{DNI} and \mathbf{GHI} were used for analysis.
- The Integrated Forecasting System (IFS), the global model from ECMWF setup:
 - McRad (cycle 41R2) radiative scheme;
 - Spatial resolution of 0.1º (~ 11km in latitude);
 - Output is hourly accumulated values (i.e., time step values integrated in an hourly basis);



a Renewable Energies Chair, University of Évora, IIFA, Palácio do Vimioso, Largo Marquês de Marialva, Apart. 94, 7002-554 Évora, Portugal

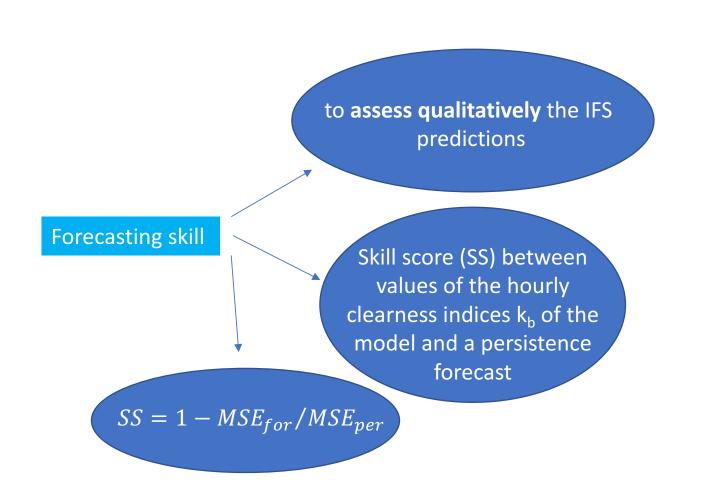
Earth Sciences Institute, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal

C Department of Physics, School of Sciences and Technology, University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal

$$E_b = \sum_{1}^{24} DNI$$

Hourly clearness indices for DNI (k_b) in two ground-measuring stations (EVO, PRT) during one year (April 1st 2016 to March 31st 2017).

Daily availabilities (kWh/m²) for DNI (E_b) in two ground-measuring stations (EVO, PRT) during one year (April 1st 2016 to March 31st 2017).

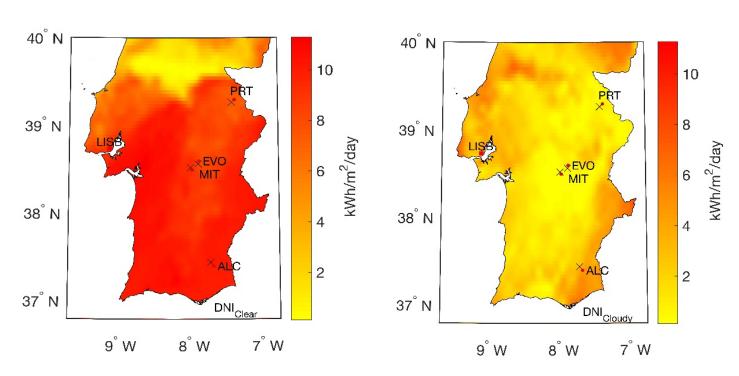

Model overestimation

Cloud representation
(e.g. Altostratus)

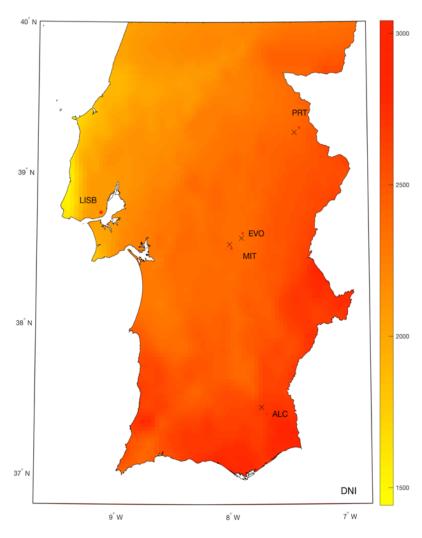
Mean month

Mean monthly aerosol climatology (Tegen et al., 1997)

IFS vs. Measurements



k _b	EVO	MIT	PRT	ALC
r	0.81	0.79	0.76	0.79
RMS E	0.15	0.15	0.17	0.16
MBE	-2.8x10 ⁻⁰²	-0.03	-0.04	-0.05
MAE	0.10	0.11	0.11	0.11


Persistence vs. Measurements

k _b	EVO	MIT	PRT	ALC
r	0.52	0.50	0.46	0.54
RMSE	0.24	0.24	0.26	0.24
MBE	-2.4x10 ⁻⁰⁴	-1.8x10 ⁻⁰⁴	4.0x10 ⁻⁰³	3.1x10 ⁻⁰⁴
MAE	0.17	0.17	0.17	0.16

IFS vs. Persistence				
k _b	EVO	MIT	PRT	ALC
SS	0.6094	0.6094	0.5725	0.5556

Spatial distribution of predicted daily irradiation availability (kWh/m²/day) for two test cases: **one clear sky day (July 12**th **2016)** on top and **one cloudy day** (May 8th **2016)** on bottom.

Spatial distribution of **predicted annual DNI** availability (kWh/m²/year) in southern Portugal for 365 days.

New Radiative Scheme (ecRad, CY43R3)

- Operational since July 2017;
- General improvement towards the code.

Aerosol climatology:

Tegen (Tegen et al., 1997)

CAMS (prognostic aerosol scheme initiated by a aerosol data assimilation system)

Évora station

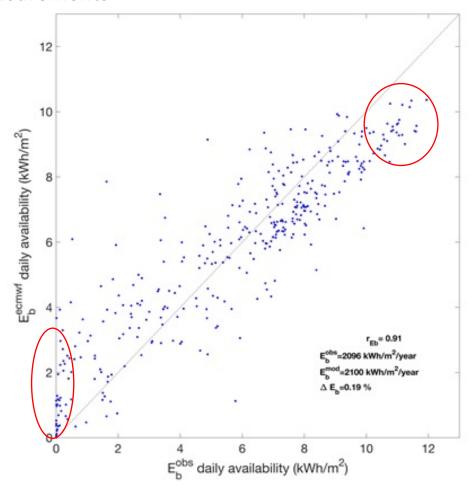
McRad ecRad SShourly 0.59 0.66

0.69 0.77 SS_{daily}

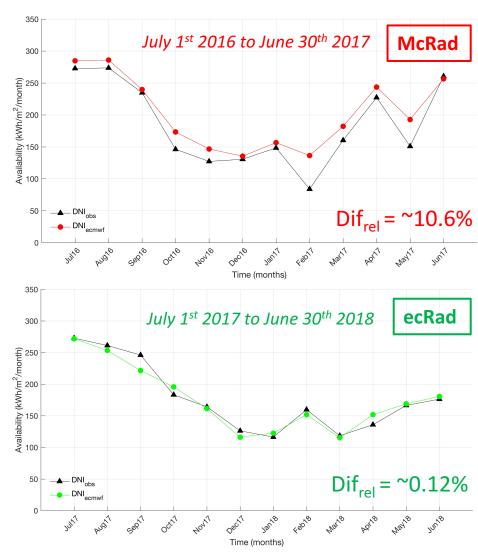
Skill score (SS) calculated with k_h values (hourly and daily data) for the McRad (July 1st 2016 to June 30th 2017) and ecRad (July 1st 2017 to June 30th 2018).

Reduction in noise in cloudy skies (Hogan and Bozzo, 2018);

Statistical hourly analysis (McRad vs. ecRad):


Évora station

	McRad		ecRad	
	Observation	IFS	Observation	IFS
Mean (W/m²)	+10.6 463.61	<mark>%</mark> 512.76	+1.: 444.24	2% 444.76
Median (W/m²)	501.74	563.31	452.32	457.80
Std. dev (W/m²)	351.71	310.67	361.87	310.72


ecRad predicted annual mean values closer to measured values than McRad.

ecRad Radiative Scheme

 Although ecRad performs better than the previous McRad, there is still over and underestimation of the model towards measurements

Daily availabilities (kWh/m²) for DNI (E_b) in EVO during July 1st 2017 to June 30th 2018 (ecRad radiative scheme).

Monthly availability (kWhm²/month) for DNI in EVO during July 1st 2016 to June 30th 2017 (McRad) and July 1st 2017 to June 30th 2018 (ecRad). Relative differences obtained through the sum of DNI hourly values.

On going and future work

- IFS short-term **forecasts** are **used in a simulated CSP system through the System Advisor Model (SAM)** software developed by the U.S. Department of Energy and National Renewable Energy Laboratory (NREL).
- Preliminary analysis with the used parameters: DNI (McRad) and Meteorological data from the IFS and measurements was performed (SolarPACES 2018).
- Output of the predicted **annual electricity injection** to the grid E_G (MWh) from a linear parabolic-trough power plant.
- Relative difference of \sim 12.16% between the E_G based on forecasted and measured data.
- Current work:
 - McRad is replaced by the ecRad in SAM analysis.
 - Include a higher number of input parameters from real power plants in SAM software.

Predictive Value of Short-term Forecasts of DNI for Solar Energy Systems Operation

Francis M. Lopes^{1, 2, a)}, Ricardo Conceição^{1, 2, b)}, Hugo G. Silva^{1, 2, c)}, Rui Salgado^{2, d)}, Paulo Canhoto^{2, e)}, Manuel Collares-Pereira^{1, 2, f)}

¹Renewable Energies Chair, University of Évora, IIFA, Palácio do Vimioso, Largo Marquês de Marialva, 7002-554, Évora, Portugal.

²Institute of Earth Sciences, University of Évora, Rua Romão Ramalho, 7000-671, Évora, Portugal.

brfc@uevora.pt
chgsilva@uevora.pt
drsal@uevora.pt
e)canhoto@uevora.pt
f)collarespereira@uevora.pt

Abstract. Solar power forecasting plays a critical role in power-system management, scheduling, and dispatch operations. Accurate forecasts of direct normal irradiance (DNI) are essential for an optimized operation strategy of concentrating solar thermal (CST) systems, particularly under clear-sky conditions during partly cloudy days. In this work, short-term forecasts from the radiative scheme \(\text{McMc}\) (Cycle 41R.2) included in the Integrated Forecasting System (IFS), the global numerical weather prediction model of the European Centre for Medium-Range Weather Forecasts (ECMWF), to global numerical Model (SAM). Results are part of a preliminary analysis concerning the value of DNI predictions from the IFS for the improvement of the operationalization of a CST system with similar configurations as the Andasol 3 CST power plant. For a 365-day period, the present results show high correlations between predictions of energy to grid based on measurements and IFS forecasts mainly for daily values (~0.94), while the lower correlations obtained for hourly values (~0.89) are due to cloud representation of the IFS during overcast periods, leading to small deviations with respect to those from measurements. Moreover, as means to measure the forecasting skill of the IFS, daily and hourly skill scores based on local measurements and a persistence model are obtained (0.66 and 0.53, respectively), demonstrating that the IFS has a good overall performance. These aspects show the value that forecasted DNI has in the operation management of CST power systems, and, consequently, in the electricity market.

Acknowledgements

This work was co-funded by the European Union through the European Regional Development Fund, framed in COMPETE 2020 (Operational Program Competitiveness and Internationalization), through the Institute of Earth Sciences (UID/GEO/04683/2013) with reference POCI-01-0145-FEDER-007690 and projects DNI-A (ALT20-03-0145-FEDER-000011), ALOP (ALT20-03-0145-FEDER-000004) and INSHIP (H2020, grant 731287). F.M. Lopes is thankful for the FCT scholarship (SFRH/BD/129580/2017) and H.G. Silva to DNI-A and INSHIP projects.

Francis M. Lopes, Ricardo Conceição, Hugo G. Silva, Thomas Fasquelle, Rui Salgado, Paulo Canhoto, Manuel Collares-Pereira. "ECMWF Forecasts of DNI for Optimized Operation Strategies for Linear Parabolic-trough and Central Receiver Systems". (in preparation)

H.G. Silva, P. Canhoto, E. Abreu, Francis M. Lopes, A. Cavaco, J. Neto, M. Collares-Pereira. "Solar Irradiation Gap-Filling with Estimator Matrices (SIGMA) Validated for Portugal (Southern Europe)". (in preparation)

Francis M. Lopes, Ricardo Conceição, Hugo G. Silva, Rui Salgado, Paulo Canhoto, Manuel Collares-Pereira. "Predictive Value of Short-term Forecasts of DNI for Solar Energy Systems Operation". SolarPACES 2018 Proceedings. (submitted for review)

Francis M. Lopes, Hugo G. Silva, Rui Salgado, Afonso Cavaco, Paulo Canhoto, Manuel Collares-Pereira. "Short-term Forecasts of GHI and DNI for Solar Energy Systems Operation: assessment of the ECMWF Integrated Forecasting System in Southern Portugal". Journal of Solar Energy, August 2018, 170, 14-30. doi: 10.1016/j.solener.2018.05.039

Thank you.