
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327150907

Weaving of Metaheuristics with Cooperative Parallelism

Article in Lecture Notes in Computer Science · September 2018

DOI: 10.1007/978-3-319-99253-2_35

CITATIONS

0
READS

17

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Contextual Logic Programming View project

Solving Hard Permutation-based Combinatorial Optimization Problems using Parallel Hybrid Metaheuristics View project

Danny Múnera

University of Antioquia

20 PUBLICATIONS 47 CITATIONS

SEE PROFILE

Daniel Diaz

Université de Paris 1 Panthéon-Sorbonne

99 PUBLICATIONS 1,519 CITATIONS

SEE PROFILE

Salvador Abreu

Universidade de Évora

99 PUBLICATIONS 462 CITATIONS

SEE PROFILE

All content following this page was uploaded by Danny Múnera on 25 September 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/327150907_Weaving_of_Metaheuristics_with_Cooperative_Parallelism?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/327150907_Weaving_of_Metaheuristics_with_Cooperative_Parallelism?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Contextual-Logic-Programming?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Solving-Hard-Permutation-based-Combinatorial-Optimization-Problems-using-Parallel-Hybrid-Metaheuristics?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danny_Munera?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danny_Munera?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Antioquia?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danny_Munera?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Diaz7?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Diaz7?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite_de_Paris_1_Pantheon-Sorbonne?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel_Diaz7?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador_Abreu?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador_Abreu?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_de_Evora?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador_Abreu?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Danny_Munera?enrichId=rgreq-fe2659f1d7afee2014b0bbc97605a0b2-XXX&enrichSource=Y292ZXJQYWdlOzMyNzE1MDkwNztBUzo2NzQ3MTE2NjcyMjQ1ODJAMTUzNzg3NTIwNTg2NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Weaving of Metaheuristics with Cooperative
Parallelism

Jheisson López1,2, Danny Múnera2, Daniel Diaz3, and Salvador Abreu4

1 National University of General Sarmiento, Argentina
jalopez@ungs.edu.ar

2 University of Antioquia, Colombia
danny.munera@udea.edu.co

3 University of Paris 1/CRI, France
daniel.diaz@univ-paris1.fr

4 University of Évora/LISP??, Portugal
spa@uevora.pt

Abstract. We propose PHYSH (Parallel HYbridization for Simple Heu-
ristics), a framework to ease the design and implementation of hybrid
metaheuristics via cooperative parallelism. With this framework, the
user only needs encode each of the desired metaheuristics and may rely
on PHYSH for parallelization, cooperation and hybridization. PHYSH
supports the combination of population-based and single-solution meta-
heuristics and enables the user to control the tradeoff between intensifi-
cation and diversification. We also provide an open-source implementa-
tion of this framework which we use to model the Quadratic Assignment
Problem (QAP) with a hybrid solver, combining three metaheuristics.
We present experimental evidence that PHYSH brings significant im-
provements over competing approaches, as witness the performance on
representative hard instances of QAP.

1 Introduction

Metaheuristics are often the most efficient approach to address the hardest Com-
binatorial Optimization Problems (COP). Metaheuristics are high-level proce-
dures using choices (i.e., heuristics) to limit the part of the search space which
actually gets visited, in order to make problems tractable. Metaheuristics can be
classified in two main categories: single-solution and population-based methods.
Single-solution metaheuristics (S-MH) maintain, modify and stepwise improve
on a single candidate solution, hence the term trajectory-based metaheuristics.
On the other hand, population-based metaheuristics (P-MH), modify and im-
prove a population, i.e. a set of individuals corresponding to candidate solutions.

Metaheuristics generally implement two main search strategies: intensifica-
tion and diversification, also called exploitation and exploration [1]. Intensifica-
tion guides the solver to deeply explore a promising part of the search space. In

?? This work was partly funded by FCT under grant UID/CEC/4668/2016 (LISP).

contrast, diversification aims at extending the search onto different parts of the
search space [8]. In order to obtain the best performance, a metaheuristic should
provide a useful balance between intensification and diversification. By design,
some heuristics are good at one but not at the other.

More generally, each metaheuristic can perform differently according to the
problem or even instance being solved. A single metaheuristic will also vary
depending on its chosen tuning parameters. The current trend is thus to de-
sign hybrid metaheuristics, by combining different methods in order to benefit
from the individual advantages of each one [9]. An effective approach consists
in combining an evolutionary algorithm with a single-solution method (very
often a local search procedure). These hybrid methods are called memetic al-
gorithms [10]. Hybrid metaheuristics tend to be complex procedures, tricky to
design, implement and tune, therefore, most of them only combine two methods.

Despite the good results obtained with the use of hybrid metaheuristics, it
is still necessary to reduce the processing times needed for harder instances [18].
One possible answer entails resorting to parallel execution [5]. For instance, sev-
eral instances of a given metaheuristic can be executed in parallel in order to
develop concurrent explorations of the search space, either independently or co-
operatively by means of communication between concurrent processes. The first
is easiest to implement on parallel computers, as the metaheuristics run oblivious
to each other and execution stops as soon as any of them finds a solution [16,22].
For some problems this provides very good results [3] but in many cases the
speedup tends to taper off when increasing the number of processors [13]. A
cooperative approach entails adding a communication mechanism in order to
share or exchange information among solver instances during the search pro-
cess [20]. However, designing an efficient cooperative method is a dauntingly
complex task [4], and many issues must be solved: What information is ex-
changed? Between which processes is it exchanged? When is it exchanged? How
is it exchanged? How is the imported data used? [21]. Moreover, most cooper-
ative choices are problem-dependent (and sometimes even instance-dependent).
Bad choices result in poor performance, possibly much worse than what could
be obtained with independent parallelism. However, a well-tuned cooperative
scheme may significantly outperform the independent approach.

In 2014, we proposed the Cooperative Parallel Local Search framework (CPLS)
for the cooperative parallel execution of local search metaheuristics [14,13]. The
user only has to encode the LS procedure and can rely on CPLS to obtain
a parallel application able to run concurrently and cooperatively several in-
stances of this LS procedure. At runtime, the outcome is a parallel exploration
of the search space with candidate solution interchange. All low-level parallel
mechanisms (task creation/destruction, mapping to physical resources, synchro-
nization, communication, termination,. . .) are transparently handled by CPLS.
CPLS has been successfully used to tackle stable matching problems [15] and
very difficult instances of the Quadratic Assignment Problem (QAP) [12]. We
later extended CPLS to allow the user to run different metaheuristics in parallel.
CPLS has enabled a simpler way to hybridize metaheuristics, by exploiting its

solution-sharing cooperative parallelism mechanism. At runtime, the parallel in-
stances of each different metaheuristic communicate their best solutions, and one
of them may forgo its current computation to adopt a better solution from the
others, hoping to converge faster. The expected outcome is that a solution which
may be stagnating for one solver, has a chance to be improved on by another
metaheuristic. CPLS has been successfully used to develop a very efficient hybrid
solver for QAP [11]. However, CPLS was designed for local search metaheuris-
tics: its cooperation mechanisms can only handle single-solution metaheuristics.
When pursuing hybridization this limitation becomes too severe.

In this paper we propose a framework for the Parallel HYbridization of Simple
Heuristics (PHYSH), which eases the implementation of hybrid metaheuristics
using cooperative parallelism. As in CPLS, the user only needs to code each of
the desired metaheuristics, independently, and may rely on PHYSH to provide
both parallelism and cooperation to get “the best of both worlds”. PHYSH is
highly parametric and the user has control over the trade-off between intensifi-
cation and diversification. Single-solutions methods are in charge of intensifying
the search while population-based methods can be used to provide diversification
through the evolution of a population. We also sketch a prototype implemen-
tation, available as an open source library written in the IBM X10 concurrent
programming language. needs only code the desired metaheuristic, PHYSH API.
We used this implementation to develop a parallel solver for QAP by hybridiz-
ing 3 metaheuristics: a Genetic Algorithm, an Extremal Optimization procedure
and a Tabu Search method. The resulting solver performs extremely well on the
hardest instances of QAP.

The rest of this paper is organized as follows: in section 2 we describe the
framework, while in section 3 we discuss implementation issues. In section 4
we carry out an experimental evaluation on hard QAP instances. Finally, we
summarize our results and draw plans for future developments in section 5.

2 The PHYSH Framework

The aim of PHYSH is to offer the user an environment for the development of
hybrid and parallel metaheuristics. By transparently managing all of the tech-
nical details of parallel programming as well as mechanisms for hybridization,
PHYSH allows the user to focus on metaheuristic codings and problem modeling.
The resulting parallel hybrid search process starts from different points in the
search space, attempting to ensure convergence on proper solutions while escap-
ing local extrema. We achieve this with multiple concurrent worker teams, each
one tasked with visiting a different region of the search space. Figure 1 depicts a
search space where red regions contain high-quality solutions which is explored
by 4 teams in parallel: 2 teams are intensifying the search in a promising region
while the 2 others are diversifying the search in order to reach other rich region.

Teams are composed of the following components: a set of search units, a
diverse and an elite populations. The main active element of the framework
is the search unit (SU) which encapsulates a single metaheuristic that can be

Team 3

Team 4

Team 2

Team 1

Fig. 1: PHYSH search process

either a S-MH or a P-MH. If the SU contains a S-MH, it takes the role of
an intensifier otherwise (implementing P-MH) it takes the role of a diversifier.
The elite population (EP) retains the best individuals found by the intensifiers,
while the diverse population (DP) holds individuals sent by diversifiers. The
interaction patterns between the different components that make up a team
establish a parametric four-way migratory flow process (see Figure 2). In each
case a parameter controls the migration frequency.5

– Elite Emigration (ee): from the intensifier worker to the EP.
– Diverse Emigration (de): from the diversifier worker to the DP.
– Elite Immigration (ei): from the EP to the diversifier worker.
– Diverse Immigration (di): from the DP to the intensifier worker.

Diverse Population
(DP)

Individual 1
…

Individual n

Elite Population
(EP)

Individual 1
…

Individual m

Diversifiers

Meta-
heuristic

Meta-
heuristic

Intensifiers

Meta-
heuristic

Meta-
heuristic

de

ei

di

ee

Fig. 2: PHYSH team structure

The intensifiers (resp. diversifiers) must apply a selection policy to determine
which individuals emigrate to the EP (resp. DP). EP and DP population im-
plement an acceptance policy for deciding whether the incoming individual is

5 Terms “immigration” and “emigration” are from the metaheuristics point-of-view.

accepted or rejected (discarded). For immigration flows, intensifiers and diver-
sifiers request individuals respectively from DP and EP. Once again a selection
policy is implemented on the populations to define how to chose an individual
and send it to the corresponding entity.

Our framework follows the design principle of separating policy form mech-
anism. As a result, this process constitutes a flexible interaction model between
intensifiers and diversifiers which eases the hybridization of simple metaheuris-
tics, effectively promoting cross-fertilization among different types.

Different mechanisms can be implemented for the same policy e.g., an elitist
or non-elitist mechanism. In the first case we favor elite individuals, while in the
second we may, for instance, select the most diverse individual or even adopt a
stochastic stance. We may assign several mechanisms for the same policy to a
component, in that case the mechanisms are applied in a round-robin fashion
until they succeed in the (selection/acceptance) pipeline.

An intuitive configuration could assign elitist mechanism to the intensifiers,
non-elitist mechanism to the diversifiers, and both types of mechanism to the
populations. We decided to make this a configurable option, as it provides rich
choices of search strategy.

In PHYSH, the programmer may easily control the balance between intensi-
fication and diversification (see Figure 3). Take the proportion of SUs used for
the intensifiers vs. diversifiers: it may be tuned to achieve a specific balance. For
instance, if more intensification is needed for a given instance, one may increase
the number of SUs in the role of intensifier. The intensification/diversification
level may also be tweaked by varying the number of teams in the execution:
given a fixed number of processing units, using more teams with a lower SU
count will increase the diversification on the search.

Overall execution
Number of teams in the execution

Less teams with higher SU per team More teams with lower SU per team

Inside a Team
Proportion of SU used on the Intensifier vs. Diversifier

More SU on the intensifier More SU on the diversifier

More intensification More diversification

Fig. 3: PHYSH Intensification-Diversification control

The PHYSH framework is designed to adapt to different parallel archi-
tectures: shared-memory multiprocessors as well as distributed systems with
network-connected MP nodes. SUs are meant to be mapped to physical proces-
sors, while teams may be configured very flexibly.

3 PHYSH×10: a Prototype Implementation

We implemented our prototype in the X10 programming language which is a
high level object-oriented programming language, focused on concurrency and
distribution. X10 supports a wide range of parallel platforms and it has been
in active developemnt by IBM research since 2004. X10 is based on the Asyn-
cronous Partitioned Global Address Space model (APGAS). Using this model,
computation and data are partitioned into places which are abstractions for mu-
table, shared-memory regions that can contain global references to locations in
other places, as well as worker threads operating on this memory.

In adoption of common practice for metaheuristics tools, PHYSH×10 presents
a clear separation between available metaheuristics and the problems that can
be solved. We have implemented a genetic algorithm (GA), a robust tabu search
(RoTS) and an extremal optimization (EO) procedure. Consequently, the diver-
sifiers are built from SUs that contain a GA, while the other two metaheuristics
are available for the SUs in the intensifiers. Figure 4 displays the main classes of
PHYSH×10, a few application-specific ones and their relationships.

Fig. 4: PHYSH×10 UML Diagram of the main classes

PHYSH×10 uses the features offered by X10-APGAS model to assign avail-
able physical processing resources. Accordingly, each SU is allocated to an X10
place, so that intensifiers and diversifiers operate as a distributed system. As ex-
plain above, SUs are grouped to form teams. Each team is composed of tz SUs.
The number of teams is thus #cores/tz. EP and DP populations are bound to
a single SU within each team. These populations have a parametric size i.e., epz
individuals for EP and dpz individuals for DP. Each component implements the
most convenient mechanism for the acceptance and selection criteria.

At present, PHYSH×10 provides the following selection mechanisms:

– Best : best individual found in the search process.

– Current : all eligible individuals are selected (for S-MH the current configu-
ration is the unique eligible individual.)

– Random: an individual is randomly selected from the elegible set.

The following acceptance mechanism are also provided:

– Elitist : The individual is accepted if it is better than the worst in the target
population (if it is not present yet.)

– Probabilistic: The individual is accepted, regardless of its cost, with a given
probability (if it is not present yet.)

– Maximizer : The individual is accepted if its average distance to the other
individuals is greater than a defined threshold.

Intensifiers implement the current mechanism for the selection policy i.e., SU
sends its current configuration to perform the emigration to the EP. Parame-
ter elite emigration period (eep) controls the periodicity of this communication.
Intensifiers also request an immigrant individual from DP each diverse immigra-
tion period (dip). To accept or deny this individual intensifiers implement an
elitist mechanism for the acceptance policy (for S-MH the target “population”
is current solution of the metaheuristic).

Diversifiers implements a random mechanism for the selection policy. This
mechanism requires a parameter to define the percentage of the population eligi-
ble for emigration (ppfe). The individual to emigrate is randomly chosen among
the top ppfe% of the SU’s population (the best individuals). Parameter diverse
emigration period (dep) controls the periodicity of this emigration process. Di-
versifiers also request an immigrant from EP each elite immigration period (eip).
Individual diversifiers implement an elitist acceptance mechanism.

To simplify the assignment of these parameters we define two general values:
emigration period ep and immigration period ip. Considering teams of size tz (a
team embeds tz SUs) and a problem of size of n, the default values are computed
as follows: eip = ep/tz, dep = ip/n, eep = ep/n and dip = ip.

4 Experimental Evaluation

To evaluate the performance of our framework, we developed PHYSH-QAP 6: a
parallel hybrid solver for QAP which combines three metaheuristics: a Genetic
Algorithm (GA) [7], a Robust Tabu Search (RoTS) [19] and an Extremal Opti-
mization procedure (EO) [12]. PHYSH-QAP is built on top of PHYSH×10. We
consider three sets of very hard benchmarks: the 33 hardest instances of QAPLIB
and two sets of even harder instances: Drezners dreXX and Palubeckis InstXX
instances. All experiments have been carried out on a cluster of 16 machines,
each with 4 × 16-core AMD Opteron 6376 CPUs running at 2.3 GHz and 128
GB of RAM. The nodes are interconnected with InfiniBand FDR 4× (i.e., 56
GBPS). We had access to 4 nodes and used up to 32 cores per node.

6 The source code is available from https://github.com/jlopezrf/COPSolver-V_2.0

https://github.com/jlopezrf/COPSolver-V_2.0

4.1 Evaluation of PHYSH-QAP on QAPLIB

QAPLIB is a collection of 134 QAP problems of different sizes [2]. The instances
are generally named as nameXX where name corresponds to the first letters of the
author and XX is the size of the problem. For each instance, QAPLIB also in-
cludes the Best Known Solution (BKS), which is sometimes the optimum. Many
QAPLIB instances are easy for a parallel solver, we therefore only considered
the 33 hardest instances, as reported in [12]. Each problem instance is executed
30 times, stopping as soon as the BKS is reached or when a time limit of 5min
is hit, using 64 cores. PHYSH-QAP was configured with four teams, each of size
tz = 16 embedding 1 diversifier running GA, 8 intensifiers running RoTS and 7
intensifiers running EO. The size for the elite population and the diverse popu-
lation was set to 4 (epz = dpz = 4). The ppfe parameter is instance-dependent
(we only experimented with values 0, 50 and 100).

BKS ppfe #BKS APD BPD WPD Time #adopt

els19 17212548 50 30 0 0 0 0.0 0.1
kra30a 88900 100 30 0 0 0 0.0 0
sko56 34458 50 30 0 0 0 1.8 0.5
sko64 48498 50 30 0 0 0 2.0 0.3
sko72 66256 50 30 0 0 0 9.8 1.2
sko81 90998 50 30 0 0 0 22.4 1.6
sko90 115534 100 30 0 0 0 104.4 6.3
sko100a 152002 100 27 0.001 0 0.016 129.3 3.4
sko100b 153890 0 30 0 0 0 52.4 1.0
sko100c 147862 0 30 0 0 0 77.5 1.3
sko100d 149576 0 30 0 0 0 64.9 1.2
sko100e 149150 0 30 0 0 0 49.4 0.9
sko100f 149036 100 29 0.000 0 0.005 103.7 2.4
tai40a 3139370 50 20 0.025 0 0.074 173.9 4.7
tai50a 4938796 100 8 0.133 0 0.336 262.0 10.3
tai60a 7205962 0 1 0.242 0 0.368 292.7 9.5
tai80a 13499184 50 0 0.460 0.335 0.547 300.0 8.6
tai100a 21052466 0 0 0.352 0.167 0.463 300.0 22.6
tai20b 122455319 100 30 0 0 0 0.0 0.0
tai25b 344355646 50 30 0 0 0 0.0 0.1
tai30b 637117113 50 30 0 0 0 0.1 1.3
tai35b 283315445 0 30 0 0 0 0.3 1.8
tai40b 637250948 0 30 0 0 0 0.4 2.5
tai50b 458821517 0 30 0 0 0 6.7 0
tai60b 608215054 0 30 0 0 0 10.9 0
tai80b 818415043 0 30 0 0 0 42.0 1.3
tai100b 1185996137 0 29 0.001 0 0.024 143.4 4.9
tai150b 498896643 50 0 0.190 0.085 0.410 300.0 10.1
tai64c 1855928 0 30 0 0 0 0.2 0.1
tai256c 44759294 50 0 0.264 0.211 0.312 300.0 4.4
tho40 240516 0 30 0 0 0 1.1 0.1
tho150 8133398 0 1 0.021 0 0.043 298.8 29.7
wil100 273038 100 26 0.000 0 0.002 144.7 5.2

Summary 771 0.051 0.024 0.079 96.8 4.2

Table 1: PHYSH-QAP on hard QAPLIB instances (64 cores, timeout=5min)

Table 1 has all the results. For each instance we have the BKS, the ppfe pa-
rameter used, the number of times the BKS is reached (across the 30 executions),
the Average Percentage Deviation (ADP) which is the average of the 30 relative
deviation percentages computed as follows: 100× Sol−BKS

BKS , the Best Percentage
Deviation (BPD) which corresponds to the relative deviation percentage of the
best solution found among the 30 executions, the Worst Percentage Deviation
(WPD) which corresponds to the worst solution, the average execution time
given in seconds which corresponds to the elapsed (wall) time, and includes the
time to install all solver instances, solve the problem communications and the
time to detect and propagate the termination and, finally, the average number of
times the winning SU adopted an individual from the diverse/elite populations.

On this set of 33 hardest instances, even with a limit of time of 5min PHYSH-
QAP is able to find the BKS at least once for 29 instances. Moreover, it is
even able to reach the BKS systematically at each replication for 21 instances.
For the 4 remaining instances (tai80a, tai100a, tai150b and tai256c), the
quality of solutions returned by PHYSH-QAP is very good, around 0.2% of
the BKS. The summary row has interesting numbers. The average ADP is only
0.051%, the average BPD is 0.024% and the average WPD is 0.079%. These
numbers confirm that all runs provide high quality solutions; even the worst
runs provide good results. For instance, in the worst case (tai80a), the worst
solution among 30 runs is within just 0.547% of the BKS. Performance-wise,
PHYSH-QAP averages just 96sec to find a solution. If we do not take into
account the 4 unsolved instances (whose time is bounded by the time limit), the
average run time is 70sec. The number of adopted configurations on the wining
SU is 4.2, on average, showing that the hybridization is effectively taking place.

Comparison with another parallel hybrid solver for QAP: ParEOTS is a
hybrid solver for QAP built on the top of the CPLS framework. ParEOTS com-
bines RoTS and EO and has shown to perform very well. Indeed, on the hardest
instances of QAPLIB, it outperforms most of state-of-the-art methods [11].

For this comparison we selected the 15 hardest instances from Table 1. We
then ran ParEOTS using the parameters reported in [11] in the same execution
environment as for PHYSH-QAP: same machine, using 64 cores with a time
limit of 5min and 30 repetitions per instance.

Table 2 presents the results. To compare the two solvers, compare the number
of BKS found, then (in case of a tie), the APDs and finally the execution times.
For each benchmark, the best-performing solver row is highlighted and the dis-
criminant field is enhanced in bold font. PHYSH-QAP outperforms ParEOTS on
13 out of 15 of the hardest QAPLIB instances while the reverse only occurs for
one instance (tai150b). Our implementation systematically solves 4 instances
which are not fully solved on ParEOTS (sko81, sko90, sko100c and tai64c).
The summary row shows that PHYSH-QAP obtains a total #BKS higher than
ParEOTS (232 vs. 195). It is worth noticing that this quality of solutions is
obtained in a shorter execution time (190sec vs. 208sec).

PHYSH-QAP ParEOTS

#BKS APD Time #BKS APD Time

sko81 30 0 22.4 25 0.002 70.6
sko90 30 0 104.4 29 0.000 116.5
sko100a 27 0.001 129.3 25 0.003 128.9
sko100c 30 0 77.5 29 0.000 127.3
tai40a 20 0.025 173.9 20 0.025 184.2
tai50a 8 0.133 262.0 3 0.144 289.8
tai60a 1 0.242 292.7 0 0.270 300.0
tai80a 0 0.460 300 0 0.460 300.0
tai100a 0 0.352 300 0 0.358 300.0
tai100b 29 0.001 143.4 22 0.015 181.4
tai150b 0 0.190 300.0 0 0.130 300.0
tai64c 30 0 0.2 28 0.004 20.0
tai256c 0 0.264 300.0 0 0.272 300.0
tho150 1 0.021 298.8 0 0.019 300.0
wil100 26 0 144.7 14 0.001 213.9

Summary 232 0.113 190.0 195 0.114 208.8

Table 2: PHYSH-QAP vs ParEOTS (64 cores, timeout=5min)

4.2 Evaluation of PHYSH-QAP on harder instances

We evaluated our hybrid solver on two sets of instances, artificially crafted to
be very difficult for metaheuristics: the dreXX instances proposed by Drezner
at al. [6] and the InstXX instances by Palubeckis [17]. These instances are
generated with a known optimum. For this test we used the same machine,
with 128 cores and a time limit of 10min with 30 repetitions. We used the
same framework configuration as in Section 4.1 for QAPLIB. We could not yet
experiment with different values for ppfe so we use ppfe = 100 for all instances.

#BKS APD best Time

dre21 30 0 356 0.0
dre24 30 0 396 0.0
dre28 30 0 476 0.0
dre30 30 0 508 0.1
dre42 30 0 764 0.9
dre56 30 0 1086 11.5
dre72 30 0 1452 90.9
dre90 23 2.757 1838 281.2
dre110 6 14.997 2264 549.4
dre132 5 11.404 2744 558.2

Summary 244 2.915 149.2

#BKS APD best Time

Inst20 30 0 81536 0.0
Inst30 30 0 271092 0.1
Inst40 30 0 837900 3.2
Inst50 30 0 1840356 7.7
Inst60 30 0 2967464 11.8
Inst70 30 0 5815290 35.7
Inst80 30 0 6597966 78.0
Inst100 17 0.038 15008994 476.4
Inst150 0 0.122 58411484 600.0
Inst200 0 0.123 75495960 600.0

Summary 227 0.028 181.3

Table 3: PHYSH-QAP on Drezner and Palubeckis (128 cores, timeout=10min)

Table 3 presents the results obtained on both benchmarks. Regarding Drezner’s
instances, PHYSH-QAP is able to optimally solve all instances. To best of our
knowledge, no other dedicated solver for QAP has ever reported an optimal so-
lution either for dre110 or dre132 (highlighted in green in the table). Moreover,
all instances of size n ≤ 72 are systematically solved at each replication. Regard-
ing Palubeckis’ instances, the optimum is found for instances with n ≤ 100 (and
systematically found at each replication for n ≤ 80). For size n > 100, clearly a
limit of 10min is too short. Nevertheless the quality of obtained solutions within
this time limit is very good with an APD around 0.12%. It is worth noting that
for Inst150 and Inst200, the solution computed by PHYSH-QAP improves
on the best solutions ever published (corresponding best costs computed are
highlighted in green in Table 3).

5 Conclusion and Future Directions

We have proposed PHYSH: a new framework for the efficient resolution of
Combinatorial Optimization Problems combining single-solution metaheuristics,
population-based metaheuristics, cooperative parallelism and hybridization. We
have used our X10 implementation of this framework to construct a hybrid solver
for the Quadratic Assignment Problem which combines up to three metaheuris-
tics. This solver turns out to perform exceptionally well, particularly on very
hard instances of QAP.

We plan to study the impact of each parameter in more detail; including ex-
perimentation with techniques for parameter auto-tuning, e.g. using F-Race. We
also plan to add new metaheuristics to the prototype, particularly population-
based methods. This enriched implementation we will enable uas to address a
wider range of problems. Finally, it will be interesting to experiment on differ-
ent parallel architectures, for instance GPGPUs or Intel MIC, using the X10
language, which greatly abstracts on machine architectural specificities.

References

1. Blum, C., Roli, A.: Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys 35(3), 268–308 (2003)

2. Burkard, R.E., Karisch, S., Rendl, F.: QAPLIB - a Quadratic Assignment Problem
Library. European Journal of Operational Research 55(1), 115–119 (1991)

3. Caniou, Y., Codognet, P., Richoux, F., Diaz, D., Abreu, S.: Large-scale Parallelism
for Constraint-Based Local Search: the Costas Array Case Study. Constraints
20(1), 30–56 (2015)

4. Crainic, T., Gendreau, M., Hansen, P., Mladenovic, N.: Cooperative Parallel Vari-
able Neighborhood Search for the p-Median. Journal of Heuristics 10(3), 293–314
(2004)

5. Crainic, T., Toulouse, M.: Parallel Meta-Heuristics. In: Gendreau, M., Potvin,
J.Y. (eds.) Handbook of Metaheuristics, {I}nternational {S}eries in {O}perations
{R}esearch & {M}anagement {S}cience, vol. 146, pp. 497–541. Springer US (2010)

6. Drezner, Z.: The Extended Concentric Tabu for the Quadratic Assignment Prob-
lem. European Journal of Operational Research 160(2), 416–422 (2005)

7. Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution
of the quadratic assignment problem. Computers & Operations Research 35(3),
717–736 (2008)

8. Hoos, H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Mor-
gan Kaufmann / Elsevier (2004)

9. Misevicius, A.: A Tabu Search Algorithm for the Quadratic Assignment Problem.
Computational Optimization and Applications 30(1), 95–111 (jan 2005)

10. Moscato, P., Cotta, C.: Memetic algorithms. Handbook of Applied Optimization
157, 168 (2002)

11. Munera, D., Diaz, D., Abreu, S.: Hybridization as Cooperative Parallelism for
the Quadratic Assignment Problem. In: 10th International Workshop, HM 2016.
Lecture Notes in Computer Science, vol. 9668, pp. 47–61. Springer International
Publishing, Plymouth, UK (2016)

12. Munera, D., Diaz, D., Abreu, S.: Solving the Quadratic Assignment Problem with
Cooperative Parallel Extremal Optimization. In: The 16th European Conference
on Evolutionary Computation in Combinatorial Optimisation. Porto (2016)

13. Munera, D., Diaz, D., Abreu, S., Codognet, P.: A Parametric Framework for Coop-
erative Parallel Local Search. In: Blum, C., Ochoa, G. (eds.) European Conference
on Evolutionary Computation in Combinatorial Optimisation (EvoCOP). Lecture
Notes in Computer Science, vol. 8600, pp. 13–24. Springer, Granada, Spain (2014)

14. Munera, D., Diaz, D., Abreu, S., Codognet, P.: Flexible Cooperation in Parallel
Local Search. In: Symposium on Applied Computing, SAC’2014. pp. 1360–1361.
ACM Press, Gyeongju, Korea (2014)

15. Munera, D., Diaz, D., Abreu, S., Rossi, F., Saraswat, V., Codognet, P.: Solving
Hard Stable Matching Problems via Local Search and Cooperative Parallelization.
In: AAAI. Austin, TX, USA (2015)

16. Novoa, C., Qasem, A., Chaparala, A.: A SIMD tabu search implementation for
solving the quadratic assignment problem with GPU acceleration. Proceedings of
the 2015 XSEDE Conference on Scientific Advancements Enabled by Enhanced
Cyberinfrastructure - XSEDE ’15 pp. 1–8 (2015)

17. Palubeckis, G.: An Algorithm for Construction of Test Cases for the Quadratic
Assignment Problem. Informatica, Lith. Acad. Sci. 11(3), 281–296 (2000)

18. Saifullah Hussin, M.: Stochastic Local Search Algorithms for Single and Bi-
objective Quadratic Assignment Problems. Ph.D. thesis, Université de Bruxelles
(2016)

19. Taillard, É.: Robust Taboo Search for the Quadratic Assignment Problem. Parallel
computing 17(4-5), 443–455 (1991)

20. Talbi, E.G., Bachelet, V.: COSEARCH: A parallel cooperative metaheuristic. Jour-
nal of Mathematical Modelling and Algorithms 5(1), 5–22 (2006)

21. Toulouse, M., Crainic, T., Gendreau, M.: Communication Issues in Designing Co-
operative Multi-Thread Parallel Searches. In: Osman, I., Kelly, J. (eds.) Meta-
Heuristics: Theory&Applications, pp. 501–522. Kluwer Academic Publishers, Nor-
well, MA. (1995)

22. Tsutsui, S., Fujimoto, N.: An Analytical Study of Parallel GA with Independent
Runs on GPUs, vol. 8 (2013)

View publication statsView publication stats

https://www.researchgate.net/publication/327150907

	Weaving of Metaheuristics with Cooperative Parallelism

