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Sumario

Otimizac¢iao com objetivos e restri¢coes flexiveis

A programacdo linear e a otimizag¢ao nao linear sdo estudadas do ponto de vista da analise ndo-standard, nos
casos em que a funcdo objetivo e/ou as restrigdes ndo sao totalmente especificadas, permitindo de facto alguma

imprecisdo ou flexibilidade em termos de pequenas variagoes.

A ordem de grandeza de tais variagdes sera modelada por neutrizes, que sdo subgrupos convexos aditivos da
reta real ndo-standard, e por nimeros externos, que sdo a soma de um nimero real com uma neutrix. Esta
abordagem preserva as caracteristicas essenciais de imprecisdo, mantendo regras de calculo bastante fortes e

eficazes.

Funcgdes, sequéncias e equagdes que envolvem nimeros externos sdo designadas de flexiveis. Consideram-
se problemas de otimizagdo com fungdes objetivo e/ou restricdes flexiveis em que sdo dadas as condigdes
necessarias e suficientes para a existéncia de solugdes 6timas ou aproximadamente dtimas, tato para proble-

mas de otimiza¢do linear como néo linear.

Para exemplificar a programacao linear nesta configuracdo sdo estudados, sistemas flexiveis de equacdes lin-
eares. As condigdes para a solubilidade de um sistema flexivel por métodos usuais tais como a regra de Cramer e
o mo todo de eliminacao de Gauss-Jordan sdo estabelecidas. Além disso, € considerado um método de paramet-
ros para resolver sistemas flexiveis onde sdo apresentadas formulas de solu¢des dependendo dos pardmetros. O

conjunto de solu¢des de um sistema flexivel é expresso em termos de vetores externos e neutrizes.

Para estudar a otimizagdo ndo linear com objetivos e restrigdes flexiveis, sdo desenvolvidas ferramentas de

analise para sucessoes e funcdes flexiveis.

Palavras chave: Otimizacao, incerteza, nimero externo, sistema flexivel, fun¢ao flexivel, analise ndo-standard

Xvii






Abstract

Optimization with flexible objectives and constraints

Both linear programming and non-linear optimization are studied from the point of view of non-standard anal-
ysis, in cases where the objective function and/or the constraints are not fully specified, indeed allow for some
imprecision or flexibility in terms of some limited shifts.

The order of magnitude of such shifts will be modelled by neutrices, additive convex subgroups of the non-
standard real line and external numbers, sums of a neutrix and a non-standard real number. This approach

captures essential features of imprecision, maintaining rather strong and effective rules of calculation.

Functions, sequences and equations which involve external numbers are called flexible. We consider optimiza-

tion problems with flexible objective functions and/or constraints.

Necessary and sufficient conditions for the existence of optimal or approximate optimal solutions are given for

both linear and non-linear optimization problems with flexible objective functions and constraints.

To deal with linear programming in this setting, flexible systems of linear equations are studied. Conditions for
the solvability of a flexible system by usual methods such as Cramer’s rule and Gauss-Jordan elimination are
established. Also, a parameter method is considered to solve flexible systems. Formulas of solutions depending
on parameters are presented. The set of solutions of a flexible system is expressed in terms of external vectors

and neutrices.

In order to investigate non-linear optimization with flexible objectives and constraints, we develop tools of

analysis for both flexible sequences and functions.

Keywords: Optimization, uncertainty, external number, flexible system, flexible function, non-standard anal-

ysis
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Introduction

The main purpose of this work is to study optimization problems, where firstly the objective function and/or the
constraints are not fully specified and secondly the processing of data involves approximations and propagations

of errors.

Mathematical models may not transmit completely information and some factors maybe lacking. For instance,
in many situations we do not fix the amount we will spend for what we want buy, but only approximately. Some
goods, like houses, cars do only have approximate values which are subject to negotiations. Imprecisions may
also be subjective: usually the seller knows the market better than customers. Or in the process of producing
goods we may not know all factors affecting this process which will be reflected in the definite price. In addition,
data may come from physical measuring and statistical testing will never give precise outcomes. We may
only be able to estimate upper and lower bounds of unknown qualities, or sometimes it is difficult to find the
probability distribution. As a consequence, it may be more natural if variables range over a subset of R, instead

of representing precise real numbers.
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Also functions used in mathematics models tend to be complicated and then we commonly make approximations
to implement more easily. All these imprecisions and uncertainties are present when we are processing the data,
to which we add also errors of calculations and rounding-off. As a result, in practice, outcomes of these models

represent reality only in approximations.

In classical mathematics, uncertainties can be expressed by either the functional o(-) and O(-), by interval
calculus [24, [17], by parameters or by using random variables like in statistics and stochastic processes [30].

All these methods are not very effective in dealing with algebraic operations and thus with error propagation.
The functional notions o(-), O(+) do not satisfy all algebraical properties and moreover lack total order which
causes complexities and inefficiency. The situation is even worse for interval calculus and calculus based on

random variables, moreover there are some difficulties to implement these operations in practice.

In this work we will use neutrices - convex additive groups of non-standard real line, and external numbers -the

sum of a real number and a neutrix to model uncertainties.

An external number is an external set of real numbers relatively close to a given number (see [22, 23, (11, 19, 20]).
These numbers capture essential features of imprecisions. In fact, they are stable under some shifts, additions
and multiplications. For example 1 + £ = £+ £ = £ - £ = £, where £ is the set of all limited numbers
of non-standard real line. These properties of invariance induce flexibility and possibilities of neglecting and
simplification to external numbers and operations on them. In fact, the term neutrix is borrowed from Van
der Corput [8] who introduced it in the form of rings of functions, with the same objective of neglecting and
simplification. We observe that Van der Corput’s calculus, like the calculus of o's and O’s does not respect all
algebraic operations and total order.

Operations on external numbers and their rules of calculation respect more algebraic operations and also total
order. In this work we exploit several advantages which lead to simplifications and efficiency in calculations.
External numbers were introduced by Van den Berg and Koudjeti, [22, 23] and further developed by Van den
Berg, Dinis and Julia Justino [[1 1}, 13, 12, [19].

Functions and sequences with external numbers are called flexible. An optimization problem such that the values
of the objective function and/or variables are external numbers is called an optimization problem with flexible
objective and constraints. We will consider both linear programming and non-linear optimization with flexible
objective and constraints. As for both cases, we study necessary and sufficient conditions for the existence of

optimal solutions.

The theory of linear programming is based on the theory of linear systems and matrix calculus. Similarly, in
order to study linear programming with flexible objective and constraints, we first need to investigate matri-
ces, determinants and also systems of linear equations in which coefficients are not real numbers but external

numbers, called flexible systems. In our setting equalities become inclusions.

To study non-linear optimization problems and determine optimality conditions, tools of analysis of both flexible

functions and sequences are needed such as convergence, continuity and differentiation.

The thesis has the following structure.



Chapter 2 is devoted to neutrices and external numbers. We will prove some properties related to the order
relations, the external infimum and supremum, absolute values and norm of external numbers, and n-th roots

of an external number. Results in this chapter are necessary to study the next chapters.

In Chapter 3 we will study vectors, matrices and determinants with external numbers. Adapted versions of
notions and results in classical linear algebra are developed here, and deal with, for instance, properties of a
determinant, the notions of linear independence and dependence of vectors with external numbers, the notion
of rank of a matrix, and the relationship between the rank of a set of vectors and of a matrix. Unfortunately,
the equality between the maximal number of independent row vector and the rank of a matrix determined via
minors in this context is not clear. Different notions of rank of a matrix with external numbers are given. One
is based on minors, one is based on the maximal number of independent row vectors and the other is based on
both minor and the rank of a representative matrix which is a matrix over R. Some conditions are considered

such that at least one of them is equal to other.

Chapter 4 is dedicated to present results on systems of linear equations with external numbers. In general, the
usual methods like Cramer’s rule or the Gauss-Jordan elimination must be adapted. In the thesis “Nonstandard
linear algebra with error analysis ” by Julia Maria da Rocha Vilaverde Justino [[19], conditions were given
to guarantee that the Cramer’s rule can be applied to the non-singular non-homogeneous flexible systems of
linear equations. We will extend these results to non-singular flexible systems. We will also present conditions
such that the Gauss-Jordan elimination works well on non-singular flexible systems. We will apply the results
in Chapter 3 to singular flexible systems. To be more precise, we will transform a non-singular system to
an equivalent system whose rank is equal to the number of equations. Then some variables will be seen as
parameters and we express the in terms of these parameters. We can apply Cramer’s rule or the Gauss-Jordan
elimination to the latter flexible system to find solutions. A solution formula is given. In the last section, a
parameter method will be used to solve a flexible system. The neutrix parts of the constant terms of a flexible
system will be seen as sets of parameters. Under certain conditions, exact solution formulas of flexible systems

are expressed with these parameters.

Chapter 5 concern sequences with external numbers. We call them flexible sequence. An adapted version
of the notion of convergence is developed for this kind of sequences. We will present several properties of
convergence, which deal with operations, boundedness, convergence of subsequences and the Cauchy criterion.
In particular, we will show that if a flexible sequence converges to an external number then all elements of
this sequence, except at most finite terms of the sequence go inside the limit. We call this property strong

convergence.

Similar properties of analysis are studied in Chapter 6 in the context of flexible functions. We will also con-
sider the notions of continuity, derivative, higher derivatives as well as their properties they include an inverse

function theorem and an implicit function theorem.

In Chapter 7 we will study linear programming with flexible objective and constraints. We consider two cases.
In the first case, we investigate the problem in which the objective function is flexible, but the domain is precise.
We provide a condition such that the problem has optimal solutions. Then we deal with the general case in which
coefficients in both objective function and constraints are external numbers. We will use the results of the first

case taking representatives of the coefficients in constraints. We will present conditions such that we can find
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an optimal solution of the original problem from an optimal solution of the problem with the precise domain.

In Chapter 8 we will investigate non-linear optimization problems with flexible objective and precise domain.
We will build necessary and sufficient conditions for the existence of optimal or approximate optimal solutions.

We will use different approaches to construct optimality conditions.

First of all, we generalize a well-known classical result which says that the derivative of a differentiable function
f: X — R vanishes at an extreme point. In this context, the notion of /N-derivative of a flexible function given

in Chapter 6 is used instead of ordinary derivative should be equal to a neutrix and does not need to be zero.

Next representatives of the objective function are used to construct optimality conditions. Conditions are given
to guarantee that we can find optimal/approximate optimal solutions of a given optimization problem from
an optimal solution of the problem whose objective function is a representative of the original function. This
corresponds to a conventional problem, so we can apply results in classical optimization theory. We also use the
relationship between the notions of the external infimum or supremum and the optimal value of a representative
function of the objective function to give optimality conditions. If an optimization problem whose objective
function is a representative has optimal solutions, and the relationships between external supremum or infimum
and the value of the flexible function at an optimal solution of this problem satisfy some conditions then we can
know that the original problem has optimal solutions or not. In some case, we also can find these optimal or

approximate optimal solutions.

Also, by treating each external number as a collection of parameters we present conditions such that optimal
solutions of the original problem can be found from the set of optimal solutions of optimization problems with

respect to parameters.

Then each flexible function will be seen as a set-value mapping. We will modify the notion of derivative in
the theory of set-valued mapping and then use this notion to build necessary and sufficient conditions for the

existence of optimal or approximate optimal solutions.

Finally we extend the Lagrange multiplier method for non-linear optimization to the setting of external numbers.



Neutrices and external numbers

The purpose of this chapter is to present common background necessary to the rest of the thesis. First of all, this
thesis will use nonstandard analysis introduced by Robinson [[15, 28] in the setting of model theory. Our setting
is the axiomatic approach to nonstandard analysis Internal Set Theory (IST) which was introduced by Nelson

[25], see also [[14, 23], for background.

IST is an extension of Zermelo-Fraenkel set theory ZFC. The language of IST adds to the primitive symbol &
a new unary predicate st, which stands for standard. Formulas that involve the predicate st are called external,
the others are called internal and correspond to formulas of conventional set theory. We can freely use the terms
such as external function, external sequence corresponding to external formulas or internal function, internal

sequence corresponding to internal formulas.

The set of nonstandard numbers R is defined in IST by the same formula as in conventional set theory. However,
the nonstandard real line R has not only standard numbers but also nonstandard numbers. A real number € is

1
called infinitesimal if for all standard numbers n € N, one has |¢| < —. A real number w is called unlimited
n



6 CHAPTER 2. NEUTRICES AND EXTERNAL NUMBERS

or infinitely large if |w| > n, for all standard n € N. Non-zero infinitesimals and unlimited numbers are

nonstandard.

An internal set is a collection of mathematical entities defined by an internal formula. For example, let
€ > 0 be an infinitesimal, the collection of real numbers S = {x € R : —e < = < €} is an internal set

but not a standard set. IST only deals with internal sets. Now consider the collection of all infinitesimals
1 .. . . . .

© = {e € R|Vst(n) €N, |¢| < } This is not an internal set. Also, obviously, some properties of classical
n

mathematics is not true for this collection. For example, © is bounded but the infimum of this set does not
exist. In [21] extended the bounded part of IST it extended to a theory of external sets, which we adopt in this
thesis; external sets are collections of mathematical entities which satisfy external formulas. More examples of
external sets are the set of all positive unlimited numbers, denoted by o6, the set of all limited numbers , denoted
by £, which are real numbers but not unlimited numbers, or the set of all appreciable numbers, denoted by @,

which are positive limited numbers that are not infinitesimal.

Neutrices and External numbers were introduced in [22, 23], typically are external subsets of R. Many notions
and properties are common with ordinary real numbers, for instance, one may define algebra operations, order
relations, supremum, infimum, the opposite entry of a given external number, its absolute value and related
properties, norm, and n-th roots. Notions and results are contained in [[14, [11], 22, 23, 25, 26]. Many of them
are recalled but we also prove some new properties. The properties presented here are necessary for the next

chapters.

2.1 Neutrices

Definition 2.1.1. A neutrix is an additive convex subgroup of the set of nonstandard real numbers R.

So a neutrix is an external subset of R.

Note that a non-empty convex set /N of R is a neutrix if and only if

(i) N is symmetric with respect to 0,

(i) m - N = N for all standard n € N.

In contrast to the conventional real line which has only two trivial neutrices {0} and R, the nonstandard real line

has an infinity of neutrices. All neutrices are external sets, except the two neutrices above. The most common

neutrices are © and £. Some other neutrices, with € a positive infinitesimal, are e©, €£, £ = ﬂ [—€", €],
st(n)eN
@ 1 1
fe € = U [—e ne e nel.
st(n)eN

Let € > 0 be infinitesimal and

S={fR— R \{0}}.
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Then () [—f(e), f(€)] is a neutrix. We see that the cardinal of S is larger than the cardinal of N. In fact, we
st(f)es
can define a neutrix with similar constructions using arbitrary cardinalities.

We denote by N the collection of all neutrices. It is an “extended class”, but in [[12, 13] Dinis and Van den
Berg show that a model can be found where it acts as a set. In this work we use the term “set of neutrices”
with abuse of language. Note that \V is totally ordered by inclusion. For more details on neutrices, we refer to
[IL1], 22, 23, 3].

Operations on A are defined as the Minkowski operations.

Definition 2.1.2. The operations on N are defined as follows: for A, B € N, and t € R,
A+ B={a+b|(a,b) € (AxB)},
A-B={a-b|(a,b) € (AxB)},
tA={t- a:‘:v € A},
and
A:B={ceR|c.BC A}
We will present some useful properties of operations on A" which will be frequently used in this work. For more

details and their proofs, we refer readers to [22].

Proposition 2.1.3 ([22]). Let A, B € N. One has

(i) A+ B =max{A, B}.

(ii) tA = Aforall |t| € @and £A = A.

Proof. (). Assume that A C B. Then one has
B<A+B<B+B=B.

1
(il). Without loss of generality, we assume that ¢ > 0. Then there exists standard n € N such that — < t < n.

n
A 1
Also, one proves by external induction [IST] shows that nA = A, this implies that A = R _ 2y CtA C

n n
nA = A and hence tA = A.

Moreover, obviously, A C £A. Now let z € £A. Then there exists u € £,v € A such that z = uv. Because
u € £, there exists ¢ € @ such that u € [—t,t]. This implies thatuA C tA = A.Sox € Aand hence £.A C A.
We conclude that A = £A. O

So the neutrix £ acts as the identity element for multiplication on N and neutrices are invariant under multipli-

cation by appreciable numbers.
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Example 2.1.4. One has

Ho+£=£ O+e£=0.

(E£=££0=0; cOe£=€0.

o:0=££:0==~,

Definition 2.1.5. ([22, p. 53]). A neutrix N is said to be idempotent if N - N = N.

For example, © and £ are idempotent neutrices since ©-© = @ and £-£ = £. Let € > 0 be infinitesimal. Using

the Minkowski operations it is easy to verify that @ + @ = @ and b+ 96 =0b. As a consequence £¢7, ge

are idempotent neutrices. However, e£ is not idempotent since e£ - £ = €2£ C ef.
If N is an idempotent neutrix and n € N is standard, by External induction we have N* = N - N--- N = N.

The next result states that every neutrix is represented by the product of a positive real number and an idempotent

neutrix.

Proposition 2.1.6 ([23, 22]). Let A is a neutrix. Then there exists a real positive number t and a unique

idempotent neutrix I such that A =1t - 1.

2.2 External numbers

An external number is the sum of a real number and a neutrix. So each external number has the form o = a+ A,
where a € R is called a representative of « and A € N is called the neutrix part of o, denoted by N (). We
also call a the real part of a. If 0 & o« = a + N(«v), we call « zeroless

For example, « = 14+-€0, § = @ and v = € are external numbers, here € is a positive infinitesimal. In particular,

neutrices and real numbers are external numbers.

Convention 2.2.1. From now on, we write an external number « in the form o« = a + A, we always using the

lower-case as a representative of o and the upper-case as the neutrix part of .

Note that for each external number «, the neutrix part N(«) is unique but its representative is not. In fact,
a=b+ N(«) forall b € a. For example, 1 + £ =0+ £ = £.

Once again, the collection of all external numbers is a class, denoted by [E. Similarly to neutrices, we also use
the term “subset” of E with an abuse of language.

Two external numbers are either distinct or one is contained in the other.

Lemma 2.2.2 ([22]). Let o = a + A, 8 = b+ B be two external numbers. Then
anNf=0vVvaCpvpCa.

Proof. AssumethataN g # (0. Letz € anNB. Thena =z + Aand 8 =z + B. So, if A C Bthen«a C 3, if
B C Athen 8 C a. O
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Notation 2.2.3. Let «, 3 be two external numbers. We write o#3 if a N 3 = ().

Next we define the opposite element of a given external number. Then we will present some of its properties.
Definition 2.2.4. Let o« = a + A be an external number. We call —a = —a + A the opposite number of c.

Proposition 2.2.5. Let o € E be an external number. Then —a = {—z|x € a}.

Proof. Let o € E be an external number. Onehas —a« = —a+A=—-a—A=—(a+A) ={-zlz €a}. O

Corollary 2.2.6. Definition does not depend on the choice of the representative of .

Proof. Assume that « = b+ A. One has —a = {—z|z € a} = —a + A. O

Definition 2.2.7. Let o« = a + A be an external number. We call « positive if it contains only positive numbers,
negative if it contains only negative numbers, and neutricial if « is a neutrix. A external number is called

non-negative if it is either positive or neutricial and non-positive if it is either negative or neutricial.

Proposition 2.2.8. Let o = a + A be a zeroless external number. Then

(i) « is positive if and only if a > A,
(ii) « is negative if and only if a < A.
Proof. We will prove the first part, the second can be done similarly. Assume that « is positive. If a < A then

uw=a+x < 0forall x € A, which is a contradiction. If a € A then 0 € «, a contradiction. Hence a > A.

Conversely, assume that @ > A. Then for all u € a one has u = a + x > 0. So a = a + A is positive. O

Example 2.2.9. Let € > 0 be infinitesimal. Consider the external numbers @ = €£, 5 =2+ @,y = —1 + €Q.
Then « is neutricial, 3 is positive and -y is negative.

Definition 2.2.10. Let @ = a + A be an external number. The absolute value of « is defined by
la| = |a] + A.

Example 2.2.11. Let oy = @, a0 = —1 4+ @, a3 = 3 + e£ with € > 0 an infinitesimal. Then |a1| = @, |ag| =
1+ @ and |ag| = 3 + €¢£.

Proposition 2.2.12. Let a = a + A be a zeroless external number. Then |o| = {|z||z € a} .

Proof. Let{ = {\xHx € a} . We show that £ = |a|. We consider two cases: a > Aand a < A.

For the first case, let € |a|. Then x = |a| + u with u € A. Since a > A, one has x = |a| + u = a + u > 0.
Then x = |a + u| € £ Hence |a| C £. On the other hand, let y € £. Theny = |a +v| = a + v = |a| + v since
a> A.Soy € |a|. Hence & C |a. One concludes that £ = |a].
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For the second case, let = € |a|. Then z = |a| + u withu € A. Becausea < Aonehasz = —a+u = —(a+
(—u)). Also, (a+ (—u)) < 0,50 z = |a+ (—u)| € & Hence |a| C £. Conversely, lety € . Theny = |a + ul
for some u € A. Because a < A,onehasa+u < 0.Soy = —(a+u) = —a+ (—u) = |a| + (—u) € |af
since (—u) € A. Hence & C |«|. We obtain || = &. O

Note that the conclusion above is not true in the case « is neutricial.
Corollary 2.2.13. Let o = a + A be a zeroless external number. The definition of absolute value of o does not

depend on the choice of the representative of «.

Proof. Assume that « = b+ A. Then |a| = [b| + A = {|z||z € a} = |a| + A. O

2.2.1 Operations on external numbers

In this section we recall operations and some of their properties on [E. For more details, we refer to [22, [L1].

Operations on external numbers such as: subtraction, addition, multiplication, division are defined by the
Minkowski law. However, in practice, implementing these operations are much easier as shown below. The
formulas in Proposition were introduced in [22, 23] without proof. We rewrite them here with full proof.

Proposition 2.2.14. ([23, p.151], [22, p.89)). Letaa = a+ A, 3 = b+ B € E be external numbers. Then

(i) atf=at+b+max{A,B} =a+b+ A+ B,

(ii) af = ab+ max{aB,bA, AB} = ab+ Ab+ Ba + AB.

Proof. (i) We will prove only the addition, the subtraction can be done similarly. One has a + 8 = {z + y!x €
a,y € B ={(a+u)+(b+v)|lucAveB}={(a+b)+(u+v)|uc AveB}=(a+b)+(A+B)=
a+ b+ max{A4, B}.

(id) One has

af={z-ylrea,yep}={(at+u)(b+v)|uecAve B}
:{ab+au+bv+uv’u€A,v€B} Cab+ Ab+aB + AB.

Conversely, let z € ab + Ab+ aB + AB. We will show that z € o3 and hence ab + Ab+ aB + AB C af.
We consider three cases. Firstly, we assume that « is a neutrix. Then we can take a = 0. It follows that
ab+ Ab+ aB + AB = Ab + AB. If (3 is zeroless then AB C bA. So ab + Ab+ aB + AB = bA. Hence
x € bA = ba C af. If Bis anecutrix then ab+ Ab+aB+ AB = AB. Itimplies thatx € AB = 3. Secondly,
we assume that [ is a neutrix, and « is zeroless. With analogous arguments we have € a8. Finally we assume
that both «, 3 are zeroless. Then ab+ Ab+aB+ AB = ab+bA+aB.IfaB C bAthenab+ Ab+aB+AB =
ab+bA = {ab—l—bu}u € A} C afp. IfbA C aBthenab+Ab+aB+AB = ab+aB = {ab—i—av‘v € B} C ap.
Thus one always has ab + Ab+ Ba + AB C af.
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We conclude that a8 = ab + bA + Ba + AB = ab + max{aB,bA, AB}. O

Definition 2.2.15. Let « = a+ A € E be an external number and st(n) € N. We define with External induction

the power o™ of a by

For example, ©? = @ - © = @ and (1 + €£)? = (1 + €£)(1 + €£) = 1 + €£.

Note that for n € N standard, in general, o™ # {2"|x € a}. For example, 0> = © - © = @ but {?|e € 0} =
@ is the set of non-negative infinitesimals, which is strictly included in @. Also {z?|z € a} C o?.

Remark 2.2.16. (i) If «, (3 are zeroless, we have a8 = ab + max{aB,bA}.
(ii) In general, (o + 3)C # aC + BC if C is a neutrix. For example, (1 + (—1))@ = 0- @ = 0 whereas
1-@+4 (—1)@ = @. See [[11] for conditions of the equality.
We below list some properties of operations on external numbers.

Lemma 2.2.17 ([22, 20]). Leta = a+ A, B = b+ B,y = ¢ + C be external numbers and N be a neutrix.
Then

N
(i) If B is zeroless, one has N = bN, and — = o

| =

(i) (a+ A)-N =aN + AN.
(iii) (a+ A)B = aB + AB.

(iv) z(a+ B) = xa+ zf forall z € R.

(v) Subdistributivity: (o + 8)y C oy + 8.

(vi) If la| > A, it holds that N ((a + A)") = a" ' A, for n € N standard.

Proof. (i) Since f3 is zeroless, one has |b| > B. So BA C bA. Hence bA + BA = max{bA, BA} = bA.

A
Moreover, by Lemma one has 3 = Ab% = Ab/b? = A/b.

(i) If « = a + A is a neutrix, the conclusion is trivial. We assume that « is zeroless. For each real number
x € N, one has x(a + A) = xa+ xA C Na + NA. Then (a + A)N C aN + AN. Conversely, Since «
is zeroless, one has AN C aN. So aN + AN = aN. Obviously, aN + AN = aN C (a + A)N. Hence
(a+ A)N =aN + AN.

(iil) One has (a + A)B = ab+ aB + bA + AB. By (ii), Ab + AB = A(b+ B). Also, ab + aB = a(b + B).
So (a+ A)B =af + AB.

(i) By (iid), for all z € R one has z(ov + 8) = z((a + b) + (A+ B)) = z(a + b) + 2(A+ B) = za + zb+
rtA+azB=x(a+A)+x(b+ B) =va+2f.
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() Let 2 € (a+3)y. There exist real numbers v € o, v € 3, € ysuchthatz = (u+v)t = ut+vt € ay+ 4.
Hence (o + 3)y C ay + (7.

(vi) One has (a + A)? = (a + A)(a + A) = a® + 2aA + A2 Since |a| > A, it holds that A% C |a|A.
So (a + A)? = a® + 2aA = a® + aA. Assume that the claim is true for n € N with n standard. That is
(a+A)" = a"+a" "L A. Then (a+A)" = (a+A)"(a+A) = (a"+a" L A)(a+A) = a" T +2a" A+a" 1 A2
Once again, since |a| > A, one has a® 1A C a"A. So a™™' + 2a"A + a" 1A% = a"! 4 a"A. Hence,
(a + A"t = g+l 4 g A. By external induction, we conclude that (a + A)" = a™ + a" !4, foralln € N
standard. O

1
Lemma 2.2.18 ([22, Prop. 2.7.15,p. 73]). , Let o« =1+ A, where A C ©. Then — =a =1+ A.
o

Proof. Lety € R be an infinitesimal. If y > 0, we have

1
1-y<——<1-7 2.1y
1+y 2
or
2.2
1_y2= "¥=1- (2:2)
Ify < 0, we have
1
1-2< = <1y 2.3)
27 1+y
or ) .
— <1 < . 2.4
=y = VST 24
1
Using these inequalities we first verify that T4 C 1+ A. Lete € A. Ife > 0, by inequality (2.1)) one
has1 — € < < 1-—¢/2.Since 1l —€ € a,1 —€/2 € a and « is convex, this implies that €
1+4+e€ ) 1+e€
[1—€,1—¢/2] Ca=1+ A.Ife <0, then by inequality (2.3), one has 1 — % < T < 1 — e. Similarly, it
€
1
implies that =1+A H Cc1+ A
implies a1+€€a + encel+A_ +
1 1
Next we check 1 + A C T4 Lete € A. If € > 0 then, by inequality (2.2) one has =2 <1l+e<
—€
1 1 1 1 1
T Since /21— € T+ 4 and « is convex which implies that o is convex, we have 1 4+ ¢ €
1 1 1
[1_76/2, :] - o If € < 0 then, by inequality (2.4) it holds that 1< < 1+4e< =2 For
1 1 1 1
the same arguments, we have 1 4+ € € [:, m] C = Hence 1 + A C T4 We conclude that
1
1+A=—. O
AT

Lemma 2.2.19 ([22, Prop. 3.2.10, p. 83]). Let & = a + A be zeroless. Then A/a C @.

A A A
Proof. Because « is zeroless, |a| > A. Then forallz € — = Tal we have || < 1. On the other hand — is a
a a a



2.2. EXTERNAL NUMBERS 13

) A ) . A
neutrix, so — C £. Also, there is no neutrix between © and £, consequently — C ©. ]
a a

Proposition 2.2.20 ([23, p.151],[22, p. 89]). Letaa=a+ A, = b+ B € E be zeroless. Then

1 o 1 A

Wz ata

L a af a 1 "
(ll) E = biz = g + b—Qmax{aB,b }

Proof. (i) By Lemma R.2.18, one has

1 1 1 1 1 1 1 N(a) «
a a+A a(l+A/a) al+A/a a( +4/a) a+ a? a?
1
(il) Because % = aﬁ, the conclusion follows by Part (§). O

Definition 2.2.21. Let o € E be zeroless. We define N («)/a the relative uncertainty of a, denoted by R(«).

The relative uncertainty of an external number « is independent of the choice a by Lemma R.2.17(§). Moreover
R(a) C @.

Lemma 2.2.22 ([20]). Let o = a + A be a zeroless external number. Then o N @« = ().

Proof. Suppose that & N @« # (. Then there exists x € « N @a. So x = ae € a + A for some a € a,a # 0
and € € . It follows thate € 1 + A/a C 1 + @, which is a contradiction. Hence o N @« = . O

Definition 2.2.23. ([20, Def. 2.3, p10]). Let A be a neutrix and o € [E be an external number. The number o
is called an absorber of A if A C A, and an exploder of A if A C aA. We denote by @ the set of all real
numbers which are absorbers of N and by ¢¢ 5 the set of all real numbers which are exploders of V.

Example 2.2.24. Let € > 0 be infinitesimal. Then e is an absorber of @ since e C @. It is also an absorber of

1. .
£ because e£ C © C £. Moreover — is an exploder of © since © C £ C @
€ €

Remark 2.2.25. By Proposition 2.1.3(f), no appreciable number is an absorber of a neutrix. Also, any unlimited
number is not an absorber. Hence, if a number is an absorber of a neutrix, it must be an infinitesimal number.
However, it is not true that every infinitesimal is an absorber of a given neutrix. For instance, let € > 0 be
infinitesimal. Then € - £ = ¢ - ﬂ [—€", €] = ﬂ [—€", "] = £,

st(n)eN st(n)eN

Proposition 2.2.26. Let ¢ € R\ {0} be a limited number and B be a neutrix. If c¢ is not an absorber of B then

B
cB=—=B8B.

Cc

B B
Proof. Because c is limited, we have B C —. On the other hand, c is not an absorber of B, it holds that — C B.
c c

So E = B and hence B = ¢B. O
c
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Remark 2.2.27. Let a € E be limited, i.e., there exists a limited number ¢ € R such that || < t and B be a
neutrix. Then o - B C B.

The multiplication on external numbers is not distributive but it is subdistributive as shown in Property () of

Proposition 2.2.17. As a consequence, the multiplication on matrices over [E are not associative or distributive

1 1
[20, p.35]. For example, let A = 0 ,B= [ ) 8] ,C = = . One has
1 1 1 0 0
(AB)C = e
0 0] (-1 0 ) 0

and
@

A(BC) = @

ool (o

However, in some special cases the associative law is true.

So (AB)C # A(BC).

Lemma 2.2.28. Let A = [a;;] be an m x n real matrix, B = [B;j] be an n X p neutrix matrix, i.e, all of its

entries are neutrices, and C' = [C}] px1 be a matrix whose entries are either real numbers or neutrices. Then
A(BC) = (AB)C.

Proof. Put AB = D; = [Bij|mxp- One has
Bij = anBij + - -+ + ainBn;

forall1 <i < m,1 < j < p. Because B;; is a neutrix for 1 <7 < n,q < j < p, also 3;; is a neutrix for all
1<i<m,1<j<p

So (AB)C = D1C = [&;]mx1, where

a; =PinC1+ -+ BipCp
=(ainBi1+ -+ ainBp1)C1 + -+ (ainBip + - -+ + ainBrp)Cp. (2.5)

On the other hand, let BC' = Dy = [ni]px1. Thenn, = BCy + --- + BjpCp forall 1 < ¢ < n. Put
A(BC) = ADs = [(i]lmx1. By Lemma R.2.17(iv]) we have

G =anm + -+ ainMn
=a;1(B11C1 + -+ + B1,Cp) + - -+ + ain(Bp1C1 + - - - + BppCy)
=a;1B11C1 + - -+ a1 B1,Cp + - - - + a4in Bp1C1 + - - - + ain BppC)y
=(ainB11 + -+ ainBn1)C1 + - + (@i Bip + - + @in Bip) Cp. (2.6)

Hence (AB)C = A(BC). O



2.2. EXTERNAL NUMBERS 15

2.2.2 Order relations on external numbers

In this work we use the order relation on external numbers were studied by Koudjeti and Van den Berg [22]. In
[12, 13] another order relation on external numbers was constructed, but it does not contemplate the inequalities
“ > 7or“ > 7 soit lacks flexibility in some situations like optimization. The relation presented here
overcomes this restriction, however, care is needed in interchanging < and > as shown below. We choose this
order relation because it is easy to transform a minimization problem to a maximization problem and vice versa.
In particular, it enables to transform constraints in linear programming (see Chapter 7) into the canonical form.

Also, it is suitable to define optimal solutions in chapters 7 and 8.

Definition 2.2.29. Let « = a + A, = b + B be two external numbers. We define the order relations on

external numbers as follows:

(1) a > gifand only if Vx € a Jy € Sz > y).
(i) a > Bifand only if Vo € aVy € B(z > y).
(ili) o < Bifand only if Vo € oy € Bz < y).
(iv) a < Bifand only if V € aVy € Sz < y).
Example 2.2.30. Let € be a positive infinitesimal. Then 1 + e£ > @, e < @ and € > ©.

Remark 2.2.31. (i) Intuitively, we have o < f if and only if (—o0, o] C (—o0, ] and « > f if and only if
[, +00) C [B, +00).

(i1) If A, B are two neutrices, then A C B if and only if A < B or A > B. Note that the larger neutrix is
always on the right side.

(iii) Clearly @ < g if and only if 5 > «. However o > (3 is not equivalent to 5 < «. For example, we have
© >£f£and © < £, yet£ £ @. As a consequence, it can occur simultaneously that « < A« > [ without
« and (8 being equal. In fact, it happens if a C .

(iv) Let v be an external number and N be a neutrix. One has a C N ifand only if |a| < N.

The next proposition present characterizations of the order relations on external numbers.

Lemma 2.2.32 ([22]). Let o, 8 be two external numbers. Then

(i) a < Bifandonlyifa < BAanf=0.
(ii) « > Bifandonlyifa> B ANanf =0.
(iii) o < Bifandonly ifa < BV o C 5.

(iv) a > Bifandonlyifa > 5V a C 8.
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Proof. (i) Assume that o < 3. It follows directly by the definition that o < /3. Suppose that o N 3 # (). Then

there exists x € o,z € B. It contradicts the definition of o < .

Conversely, assume that « < 5V o N B = (). We suppose that & £ (. There exists x € a,y € [ such that
x > y. Since N 3 = (), it holds that = > y. On the other hand o < 3, by the definition, there exists z € 3 such
that x < 2. Again, since N3 = (), it holds that y < < z. Because (3 is convex, it follows that = € [y, 2] C 3,

which is a contradiction to o« N 3 = ). Hence o < .
(B) The argument is similar.

(iif) If o < /3 then a < B3 by the definitions. If « C 3 then for all € o, there exists y € (3 such that z < y.
Soa < 6.

Conversely, assume that o < 3. If « N 3 = () then by Part (i) we have a < 3. Otherwise, suppose that 3 C «.
Then there exists ¢ € « such that x¢ > y for all y € (3, a contradiction to o < 5. Hence o C (3.

The argument is similar. O
g

We below present some properties of order relations on external numbers which will be used in Chapters 4 and
5.

Let o, 8 be two external numbers. We first remark that o £ § does not imply o > 3 (or 8 < «). For example,
a=4£,0=0. Thena £ g and a ¥ 5. However, we have the following results.

Lemma 2.2.33. Let N be a neutrix and o, 3 be two external numbers such that N (o) C N, N(5) C N. Then
a+ N £ B+ N impliesa+ N > 3+ N.

Proof. Observethat N(a+N) = N(B+N) = N.If (a+N)N(B+N) # 0, there exists z € (a+N)N(B+N).
It follows that « + N = 3+ N = x + N, a contradiction to the hypothesis. So (o« + N) N (8 + N) = . If
a+ N < B+ N we have a contradiction. Hence o + N > 5+ N. O

Corollary 2.2.34. Let o, B be two external numbers such that N («) = N(B). Then o £ 3 implies o > f3.

Proof. 1t follows from Lemma with N = N(a) = N(5). O

Lemma 2.2.35. Let o, 5 be two external numbers. One has o < (3 if and only if —a > —f.

Proof. One has o < fifand only Vo € «, Jy € f(z < y). This is equivalent to V (—x) € (—«),3(—y) €
(—=B) (—x > —y). Once again it holds if and only if —a > —f. O

Proposition 2.2.36. Let «, 3,7 be external numbers. If « — 3 < ~y then o + N(B) <  + 7.

Proof. Writta=a+ A, =b+B,y=c+C.If N(f) =B CC = N(y),then 3+~ =c+b+ C.Onthe
other hand, & — 8 < «y implies that « + N(B) < v+ b=~ + (.
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If N(vy) € N(8) then N(yv+ ) = B C A+ B = N(a — ). We first prove that « + N(8) Ny + 8 = 0.
Suppose that there exists z € a + N(5) Ny + . Thena+ N(8) =+ A+ Band f+v = = + B. It follows
that 3+~ C o+ N(f). In particular, b+ ¢ € a+ N () implies that ¢ € a + 3, a contradiction. Also, one has
a€a+ N(B),b+cep+yanda < b+ cby the assumption. Hence o + N(5) < 8 + 7. O

Corollary 2.2.37. Let o, 3, be external numbers. If a« — B < ~y then o < B + 7.
Proof. By Proposition onehas a+ N(B) < 8+ ~.Also,0 € N(B)soa < 5+ 7. O

With an analogous argument to the proof of Proposition R.2.36, one has

Proposition 2.2.38. Let «, 3,7 be external numbers. If n < a — B thenn + < «a + N(B). In particular,
n+p8 <o

Proposition 2.2.39. Let o, 5,7y be external numbers. If o < B then a+ v < 5+ 7.

Proof. Letx € a+ . Thenx = u+ v withu € aand v € ~. Since o < 3, there exists ¢ € 3 such that u < ¢.
It followsthatx =u+v <t+v=ywithy € +~. Hencea+v < 5+ 7. O

Proposition 2.2.40. Let o be an external number and [3 be a zeroless, positive external number. Then |o| < 3

ifand only if —3 < o < 3.

Proof. Assume that |a| < 3. We consider two cases:

Case 1: « is neutricial. We need to show that —3 < «. Suppose that there exists © € o and v € —f such that
u < v. Observe that — 3 is negative, so v < 0. Since « is a neutrix and u, 0 € a, one derives that v € [u, 0] C a.
Consequently —v € « and by Proposition one has —v €  and hence o N § = v, a contradiction. So
—-B<a<p.

Case 2: « is zeroless. Letu € v and v € B. Then |u| € |a| by Proposition R.2.12. So |u| < wv, that is
—v < u < wvforallu € a. Also, for v € —f3 one has v < u. Hence —f8 < . Moreover, a < |a| < (. So
—B<a<p.

Conversely, assume that —5 < a < . If « is neutricial then |a| = o < (. If a is zeroless, let y € || and
v € . Then y = |u| with some u € « by Proposition 2.2.12. Since —3 < o < 3, it holds that —v < u < .
Soy = |u] < w. Since y € |a|,v €  are arbitrary, one concludes that |o| < £. O

Proposition 2.2.41. Let € > 0 be a positive real number and o, 3 be two external numbers. If |a — 3| < € then
B—e<a<e+p.

Proof. By Proposition 2.2.40, one has —e < o« — 8 < e. It follows that —e + 8 < o < € + (8 by Corollary
and Proposition 2.2.38. 0

Proposition 2.2.42. Let o, 8 € E be two external numbers. Then
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(i) |a| < Bifandonly if a < fand —a < B.
(ii) B <|a|ifandonly if B < aor f < —au

Proof. (§) Assume that || < . If N (a) < a, then —a < N(a). Hence —a < N(a) < a = |a| < 3. Hence

a < fand —a < B. If a < N(a), then N(a) < —a. So a < N(a) < —a = |a| < 8. Again a < 3 and
—a < fB.Ifa= N(a),then |a]| =a=a <.

Conversely, assume that & < §and —a < . If N(a) < @, then |a]| = o < fand if @« < N(«), then
la| = —a < 5.

(i) Assume firstly that 3 < |a|. If N(a) < o, then § < |a| = aand if & < N(a), then § < |a| = —a.
Suppose secondly that 3 < aor f < —a. Inthecase f < a, if N(a) < a,then § < a = |a|and if & < N(a),
then § < a < N(a) < —a = |a]. Inthe case f < —a, if N(a) < a,onehas f§ < —a < N (a) < a = |af,
and if @« < N («), one has § < —a = |«|. Hence always 3 < |a. O

Proposition 2.2.43 (Triangular inequality). Let o, 8 € E. Then |a+ | < |a| + |8].

Proof. Clearly a + 3 < |a| + |8]. Also —(a + 8) = —a — 8 < |a| + |B|. By Proposition 2.2.42(f) one
concludes that |a + 8| < || + |3]. O

Lemma 2.2.44. Let o, 3 € E. Then

la =B+ N(I8]) = la = Bl + N (Ja]) = | = B]. 2.7

Proof. One has N (Ja — 3]) = N (a) + N (B). Hence |o — 3| = |a — | + N (o) + N (5). Also N («) =
N (|a]) and N (8) = N (|3|). This implies (2.7). O

Proposition 2.2.45. Let o, € E. Then |a| — |5] < |a — f|.

Proof. Using Proposition one has
lal <Ja+N(B)| = o+ —B| <|a—Bl+15]. (2.8)

By compatibility with addition |a| — |8] < |a + 8] 4+ N(|8]). Then |a| — || < |a — 8] by LemmaR.2.44. O

Proposition 2.2.46. Let o, § € E be two external numbers. Then ||| — |B]| < | — B

Proof. By Proposition2.2.45 one has |a|—|3| < | — B|and |8|—|a| < |8 — a| = |a — B]. Then ||a| — |B]] <
| — 3| by Proposition 2.2.42.(f). O
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2.3 n-th roots of an external number

The n-th roots of an external number appear naturally when we use the neutrix-derivative to find approximate
optimal solutions in Section B.2. Let &« = a + A be an external number and n € N be standard. An n-th root of
« is an external number S whose n-th power is «. For n = 2 we call it a square root and for n = 3 we call it a

cube root.
For example, a square root of @ is @, a square root of £ is £ because ©? = @ and £2 = £.

In general, if & = I is an idempotent neutrix, the n-th root of I is I. We denote by {/T the n-th root of I. If
a = A is an arbitrary neutrix, by Proposition R.1.6, there exists a real number ¢ > 0 and the unique idempotent
I such that A = t.I. Then the n-th root of A is {/A = {/tI. Clearly, this definition does not depends on ¢.

Definition 2.3.1. Let &« = a + A be a positive external number. We define the positive n-th root of o and
denoted {/« as the principal n-th root of o .

We have A
Vo= a+ ——. 2.9
Vo= vat L (2.9)
Indeed, by Lemma R.2.17(vi) we have (/o))" = (/a)" + (¥a)" ! < (L/A;l> =a+A=aqa.
a™~

We will prove that formula (2.9) does not depend on the choice of the representative of «. Indeed, let 5 =

A
YVa = Ya+ Vot = b+ B. Note that 8" = «. Assume that « = a’ + A and /a = b’ + B’, where
am~
A
b = /a' and B’ = ———— . We will show that

=V +B. (2.10)

Because o’ = a+ x with x € A, itholds that (') = a’ = a+ 2 € a+ A = a = ™. This implies that b’ € .
To complete the proof, we show that

B=D.
Since b’ € 3, one has 3 = b’ + B. On the other hand, (V' + B')* = aand " = (V) + B)* =a =a+ A. By

Lemma R.2.17(v), we obtain (')~ B’ = (b/)" !B = A. Hence B = B’. Thus formula (2.10) holds and so
formula (2.9) does not depend on the choice of a representative a of c.

Remark 2.3.2. If a = a + A is negative and if n € N is even, there is no n-th root of «. However, if n € N is
odd, the n-th root of « is defined by formula (2.9).

Example 2.3.3. Leta =440,8 = —274+€0,y = e+ €@, = wk, where € > 0 is an infinitesimal and w > 0

is an unlimited number. Then \/a =2+ @, /8 = =3+ €0, /7 = e+ i? = /e +/eo and V/§ = VWL
€
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2.4 External supremum and infimum of an external set

In classical mathematics, it is well-known that every bounded set in R has an infimum and a supremum . How-
ever, it is no longer true in nonstandard analysis. For example, @ is bounded but it has neither infimum nor
supremum. In this section we present notions of external supremum and external infimum such that every

external subset of R has both an infimum and a supremum.

We will present some notions such as cut, external cut, upper boundary and lower boundary of an external cut,
infimum, supremum and some of their properties. They will be used to prove results related to optimization
problem with a flexible objective function in Chapter .

Definition 2.4.1. A cut of R is a pair (A, BB) of subsets of R satisfying

(i) AUB=R
() ANB =10,

(iii) Forallz € A,y € Bonehas z < y.

The set A is called a lower halfline of R and B is called an upper halfline of R.

The cut is said to be external if either A or BB is external set. Otherwise, it is said to be internal .

For example A = (—o00,1 + @) and B = [1 + @, +00) is an external cut.

Remark 2.4.2. Note that for each halfline of R there always exists one boundary which is an external number.
In fact, let (A, B) be a cut of R. As a consequence of results in [4], there exists an external number « such that
A = (—00,a] or A = (—o0, ). We say « is the upper boundary of the lower halfline A. It is also said to be
the lower boundary of the upper halfline.

Convention 2.4.3. Let v € E. To be unambiguous, we denote by (—oo,v) = {z € R’x <7}, (—o0,q] =
{z e R|z <7}, (7,400) = {z € Rly < z},[y,4+00) = {z € R|z > ~}.

Definition 2.4.4. Let S be a set of external numbers. We define P(.S) as the set of all real numbers which
belong to at least one external number in S. That is,

P(S)={z €R|Fa € 5,z € a}.
We call it the projection of S on R.

Example 2.4.5. Let $; = {£ € E[¢ < 0} and S; = {z € R|® < z}. Then P(S;) = (—o0,?] and
P(S2) = (@, +00).

Remark 2.4.6. Considering a set of external numbers, we will always determine the external infimum or the

external supremum in the context of the projection of that set on R.
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Definition 2.4.7. [22] Let S be a set of external numbers.

The lower convexification of S is the set

conv(S)={acE|3fe SAa<i} (2.11)

The upper convexification of S is the set

conv(S)={acE|Ide SAa>} (2.12)

The convexification of S, denoted by conv(S), is the intersection in [E of conv(.S) and conv(S).

Example 2.4.8. Let S(©, £]. Then conv(S) = (—o0, £] and conv(S) = (@, +00). So conv(S) = S.
Let .S be any non-empty set of external numbers not containing the external number R. Then

(i) P(conv(S)) is a lower halfline of R.
(if) P(conv(S)) is a upper halfline of R.

(iii) P(conv(S)) is an interval whose upper boundary coincides to the one of P(conv(.S)) and whose lower

boundary coincides to one of P(conv(S)).

Definition 2.4.9 ([22]). Let .S be a non-empty set external numbers. We define

(i) The least upper bound of S is the upper boundary of P(conv(S)), denoted by sup(.5).
(if) The greatest lower bound of S is the lower boundary of P(conv(.S)), denoted by inf(.S).

Example 2.4.10. (a) Let S; = {¢ € E[¢ < ©},5 = {z € R|® < x}. Then P(S;) = (—00,?] and
P(Ss) = (0, +00). Hence sup(S1) = @ and inf(S2) = @.

(b) Let @ = (©,£]. Then P(@) = @. So inf(@) = @,sup(@) = £. This example is somewhat surprising

because @ C £ and the infimum of @ is strictly included in the supremum of @.

The following proposition shows some properties of infimum and supremum of external subsets. We will refer
to them in optimization problems of the next chapters.

Proposition 2.4.11 ([22]). Let S be a non-empty set of external numbers being bounded from above and let ~y
be a given external number. Then = is the least upper bound of S if and only if one of the following statements
holds:

(i) (yNeonv(S) =0) A (Vo <, 6 € S|6> a).

(ii) (y C conv(S)) A (V6 €S, 6 <).
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Proof. We assume that + is the least upper bound of S. Then by the definition one has P(conv(.S)) = (—o0, )
or P(conv(S)) = (—o0,]. We will prove that -y satisfies condition () or (ii). We always have yNconv(S) = 0
or v N conv(S) # 0.

If v N conv(S) = 0, we have P(conv(S)) = (—o0, 7). One also has P (conv(S)) = U (—o0,d] C R.
oes

Let « < . Then o C U(—oo,é] = (—00,7). It follows that there is dp € S such that &« C (—o0, dp]. We

oes
denote V = {0 € S}a CH}IfV =0, thenaw < 0g. IfV # B then 5 = |J 4. Then 8 € E. Clearly 5 < - and
1%
PB,y)={zeR|f<az<y}C U(—oo,é] = (—o00,7). Letn € (B,7). Then there exists 6; € S such

0es
that n < ;. Because of a < 3 < 7, this implies o < 6.

If v N conv(S) # B then P(conv(S)) = (—o0o,~| and hence v C conv(S). For § € S, clearly, § € conv(S).
So § C (—o0,v] and thus 6 < .

Conversely, we assume that y € I satisfies condition (f) or (if). We need to prove that ~ is the least upper bound
of S.

Assume that + satisfies (f). We will show that
P (conv(5)) = | J (=00, 6] = (—0,7). (2.13)
0es
Since v N conv(S) = (), for all 6 € S one has § < . This implies that

|J (—00,4] € (—00,7). (2.14)
6€eS

Conversely, let € (—o0, 7). By (i), there exists § € S such that z < §. It follows = € U (—o0, d] and hence
6eS

(—00,7) € [ J (=00, 4. (2.15)
6eS

Formulas (2.14) and (2.15) imply formula (2.13)) and hence 7 is the least upper bound of S.

Assume that +y satisfies (ii). We will show that P(conv(S)) = (—o0,7]. Indeed, the assumption v C conv(S)
implies that (—oo,y] € P (conv(S)). Also for x € P (conv(S)), there exists £ € conv(S) such that x €
¢ C P(conv(S)). By formula (.11 there is § € S such that ¢ < 4. Again by (i), we have § < ~ and hence
z € (—00,7]. So P(conv(S)) = (—o0,]. This implies that -y is the least upper bound of S. O

Similarly, we have the following property for the greatest lower bound of a subset of E.

Proposition 2.4.12 ([22]). Let S be a non-empty set of external numbers being bounded from below. An external
number 1 is the greatest lower bound of the set S if and only if one of the following statements holds

(i) nNconv(S) =0 A (Yo > 1, 36 € S|6 < a).
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(ii) (n Cconv(S)) A (Vs €S, 6 >n).

Remark 2.4.13. Let v = inf(S) and = sup(S). Then « N conv(S) # ( is equivalent to v C conv(S) and
nNconv(S) # B is equivalent to n C conv(S).

2.5 Norm on E"

In this section we define a norm of vectors whose components are external numbers. We will use it to study

Lagrange multipliers and also to investigate the /NV-derivative of vector functions presented in chapters 6 and 8.

Definition 2.5.1. Let n € N be standard. A mapping || - || : E” — E is said to be a norm on E™ if it satisfies

conditions:

(1) 0 < ||la|, forall & € E™ and ||a|| = 0 <= a = 0.
(i) lla+ 8l < ol + 18] forall o, 5 € E.

(iii) ||ral| = |r]||a forallr € R, o € E™.

Example 2.5.2. Let || - || : E" — E be given by

ol = max |ag| forall o= (ai,...,0n)€E"

20ty

Then one has

(i) Obviously 0 < ||| forall & € E® and ||a|| = 0 <= o = 0.

(i) The triangular inequality ||« + S| < |la|| + ||3]] holds for all v, § € E™. Indeed, by Proposition

we have

la+Bll = max |a;+Bi| = i, + Big| < |vip] +18ip] < max o[+ max |Bi] = [la|| + || B]].
{1 } i€{1,...,n} i€{1,...,n}

yeees Tl

(iii) Clearly, ||ra| = |r|||af forallr € R, o € E™.

So || - || is a norm on E™.
Example 2.5.3. Let|| - || : E” — E be given by

lal| = /a3 +---+a2 forall a=(a,...,a,) € E™
Then

(i) Obviously 0 < |||, forall « € E" and ||at|| = 0 <= o = 0.
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(ii) Leta = (a1,..., ), 8= (P1,--.,0n) € E™. To verify the triangle inequality we first prove that

{a, BY < |||l - I1B]] forall «,p € E", (2.16)

where (o, 8) = > «;3;. Note that
i=1

{]|ul| }u €a} C|al forall «oeE" (2.17)
and if «, B € [ are non-negative, then
(a+ B)? = a® + 2 + 2a8. (2.18)

Let x € [(«, B)|. We need to prove that there is y € ||«|| - ||8]| such that 2 < y. Because = € |(«a, )|,
we have z = |(u,v)| with u € a,v € (. It follows from the Cauchy-Schwarz inequality that |(u, v)| <
lull - [lo]l- Puty = [[ul| - [[o[| € ]| - [|3]] by @.17). Thenx < y. So [(a, B)| < [la]| - | BII-

On the other hand, by subdistributivity and formulas (2.17), (2.18) we have

n

la+BI7 =D (i+B)* <D (af + 87 +20;-Bi) =Y i+ B +2) aifi
i=1 i=1 i=1 i=1 i=1

=l + 11817 + 2(v, B) < llall* + 18117 + 2llell - 18] = (lleell + 1812

It follows that ||a + S| < |laf| + ||5]|-

(iii) Clearly ||ra| = |r|||a| forall 7 € R, a0 € E™.

We conclude that || - || is a norm on E™.



Matrices and vectors with external
numbers

In this chapter we study matrices and vectors with uncertainties in terms of external numbers. In Section .1 we
will start by introducing some special matrices and vectors which will be useful in the sequel. In Section B.2 we
present some properties of the determinant and its minors of a matrix with external numbers which are necessary
for the study of flexible systems in the next chapter. Some of these properties are not identical with classical
results. In Section B.3 we will generalize some notions of traditional linear algebra such as linearly independent
and dependent vectors. Some properties will be presented. The relationships between linear dependence and
linear independence of a set of vectors with external numbers as well between vectors with external numbers
and their representatives are investigated. In section B.4 we study the rank of a matrix with external numbers.
In classical linear algebra, it is well-known that the rank of a matrix determined via determinants is equal to
the maximum number of independent row vectors, but in our context this relation is less evident. So different
notions of rank of a matrix with external numbers are given. The first, based on the determinant, is called

minor-rank, the second, based on the maximum number of independent row vectors, is called row-rank, and the

25
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last one, based on both the determinant and the rank of a representative matrix, is called strict rank. It is shown

that under some conditions we have equalities.

3.1 Some notions and notation of matrices and vectors over E

We introduce some special matrices and vectors with external numbers which will be used frequently in this

work. Let
Qi Q2 o Qi
A =
AUml Om2 - Qmp
B1
be an m x n matrix with a;; € Efor1 <i <m,1 <j<n.LetB=|: |orB=(B,...,0m)" with
Bm

Bi € E be a column vector over E. We denote by M., ,,(F') the set of all m x n matrices in F’, where F is

either R or E. When m = n we simply write M,,(F).

We will use the following notations: [&| = max |ag;/, A= max A;;, A= min Ay, [B| = max [Bi],
1<i<m 1<i<m 1<i<m 1<i<m
1<j<n 1<j<n 1Z5<n

B = max B;, B = min B;. We will always assume that @& is zeroless. We define below some special

1<i<m 1<i<m

matrices.

Definition 3.1.1. A matrix of the form

1+An A -+ A,

Anl An2 1+Ann
where neutrices A;; C @ for 1 <4, j < n, is called a near identity matrix .

1+0 e£

Example 3.1.2. The matrix
€0 1+€£

is a near identity matrix.

Matrices with @] = 1+ A, A C @ play an important role in our work.

Definition 3.1.3. A matrix A = [jlmxn € Mmn(E), with [a| = 1+ Aand A C @, is called a reduced
matrix . A matrix P = [a;;] € My, (R) is called reduced if |a;;| < 1and a;; = 1.

Example 3.1.4. The following matrix is a reduced matrix
1+ 0.0+er —1+e£

A= |-024+€20 034+er —04+ ¢t
0142 02+4+ef 0.7+€f

Definition 3.1.5. A matrix A = [o;;] € My, ,(E) is called non-singular if m = n and det(.A) is zeroless.

Otherwise we call it singular.



3.2. PROPERTIES OF DETERMINANTS WITH EXTERNAL NUMBERS 27

Definition 3.1.6. Let A = [a;;] € My, ,(E). A matrix R = [a;5] € My, ,(R), with a;; € «y; for all
1 <i<m,1 <j<n,is called a representative matrix of A. In particular, if A is a reduced matrix and R is a

representative matrix of .4 which is reduced then we call R a reduced representative matrix of A.

Definition 3.1.7. Let 3 = (31, ...,n) € E™. If B is a neutrix, 3 is called an upper neutrix vector. Moreover,

avector b = (by,...,by,), where b; € §; for 1 < i < n, is said to be a representative of 3.

Example 3.1.8. The vector 8 = (e + 20,0, + €2£) is an upper neutrix vector since 3 = @ is a neutrix. The

vector B = (1 +20,0,2+ e£) is not an upper neutrix vector since 3 = 2 + £ is zeroless.

Definition 3.1.9. Foreach 1 < k < n, avector in the form eff) =(A1,..., A1, 1+ A%, Agyq, ..., Ay) € ET,

where neutrices A; C @ for 1 < ¢ < n, is called a near unit vector .

3.2 Properties of determinants with external numbers

We start this section by showing that the Laplace expansion of a determinant along a column or a row is not an

equality, but an inclusion.

We denote by A, ; the (4, j) minor of A, that is the determinant of (n — 1) x (n — 1) submatrix of A that results

from removing the i-th row and the j-th column of A.

Proposition 3.2.1 ([20]). Let n € N be standard. Let A = [o;j] € My, (E) and A = det(.A). Then for all

je{l,..,n},
(=17 A+ + (1) oAy € A

Proof. We only prove it for j = 1, the other cases are similar. Let S), be the set of all permutations of {1,...,n}

and o € S,,. The Laplace expansion along the first column and subdistributivity yields

a11A11 — @210 4 -+ oy (1) AL
o Z (sen(0) o2+ Ao(mn) + -+ + am Z (sgn(0)ap(1)1 -+ Yo(n—1)(n—1))

UESn O'GSn
o(1)=1 o(l)=n
- Z a1 (Sgl’l(O’)OéU(g)Q T aa(n)n) +eoet Z Qnl (Sgn(a)aa(l)l T ao’(nfl)(nfl))
O'ESn UESn
o(1)=1 o(l)=n
aip o Oin
= Z (sgn(o) o)1 - Ao(n-1)n-1)Xom) =det | = 1 | =A.
oS Qnl Qnn

O

The next result shows that, for reduced matrices corresponding to each column (row), there is a minor of (n —
1)*-order such that the minor is the same order of magnitude as the determinant. It also gives a lower bound

for absolute values of minors of (n — 1)*-order.
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Proposition 3.2.2 ([20]). Let n € N be standard and A = |oy;] € M, (EE) be a reduced square matrix of order
n. Suppose that A = detA is zeroless. Then for each j € {1,...,n}, there exists i € {1,...,n} such that

’Am“ > QA.

Proof. For simplicity we prove only the case j = 1, the other cases are proved analogously. By Proposition
3.2.1 one has
a11A11 — @91log + -+ i (—1)"TA, L CA.

Suppose that A; 1 € @A forall i = 1,...,n. Because the matrix is reduced, it holds that |a;;| < 1 + @, for
alll1 <i4,5 <n.Soa;1A;1 C(1+0)2A=0Aforalli=1,...,n. Consequently,

1111 — a21Ao1 + -+ a1 (—1)" A, 1 C OA.

So a11A11 — agAog + - + anl(—l)”“An’l C AN @A, a contradiction to Lemma R.2.29, for A is
zeroless. O
The results below give an upper bound of the minors and their neutrix parts of a reduced matrix.

Let A € M, ,(E). We denote by M;, _, j,..j. the k x k minor of A by holding only rows {i; ...} and

columns {j; ... ji} from A.

Proposition 3.2.3. Let n € N be standard and A = [o;j] € M, (E) be a reduced matrix. Letk € {1,...,n}
andl1 <i1 <---<ip<n, 1 <j; < - <jp <n. Then

Proof. LetI = {iy,...,ix},J = {j1,.-.,Jk}- Let Sg be the set of all bijections o: I — J. Because A is a
reduced matrix, it follows that |o;;| <14 @ forall 1 <i,j < n. So

’Mi1~~~ik7j1~~~jk‘ = Z Sgn(a)aila(il) c Qo (iy)

oc€Sk
<D i) - e £ Y- 1+ @)
oESE oESE
=kl(1+ ©@).

Because n € N is standard and £ < n, it follows that k! < £. Consequently, k!(1 + @) < £. Hence

Lemma 3.2.4. Let n € N be standard and A = [o;;] € My (E) be a reduced non-singular matrix. Let
A=detA, ke{l,...,ntand1 <i; < - <ip<n, 1 <j1 <---<jp <n. Thenforalll <k <n,one
has

N (Mil---ikvjl---jk) - A
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In particular N(A) C A.

Proof. LetI = {i1,...,ix},J = {j1,...,jr}- Let Sk be the set of all bijections o: I — .J. Because A is a
reduced matrix, it follows that |a;;| < 1+ Aforalll <i,j <n.So

N (Mil-..ik,j1...jk) =N Z Sgn(a)aila(il) < Qo)

oc€ESk
= " N (Qofin) Vo) € D0 N ((1+DF) = Y A= kA=A
oESK c€Sk c€Sk
When k = n we obtain that N(A) C A. O

3.3 Linear dependence and independence of vectors

A neutrix can be seen as a generalization of zero, so a vector such that all of its components are neutrices plays
a role as zero vector in classical linear algebra. In the definition of linear dependence of vectors with external

numbers below, a neutrix vector is used instead of the zero vector.

Definition 3.3.1. A vector A = (A4,...,A,), where A; is a neutrix for all 1 < i < n, is called a neutrix

vector.

Definition 3.3.2. A set of vectors in E™
V=Aa,...,an}

where o; € E™ for 1 < ¢ < m is called linearly dependent if there exist real numbers t1, to, ..., t,, € R, at least

one of them being non-zero, and a neutrix vector A = (A, As, ..., A,,) such that

tiog +taag + - - -+ tay, = A.

Otherwise, the set of vectors V' = {a, ..., ay, } is called linearly independent.
Remark 3.3.3. AsetV = {ai,- -, q,} of vectors in E" is linearly independent if and only if that ¢ +
toag + - - -+t = A, where A is a neutrix vector, implies t; = --- = t,,, = 0.

Example 3.3.4. Let e > 0 be infinitesimal. Then the vectors a; = (14 @, €@, —2+€£), g = (—2+ 0, £, 4+
€£) in E3 are linearly dependent, since 2a1 + az = (0, €£, €£) is a neutrix vector.

Example 3.3.5. The vectors a; = (1 + ©,€@), ag = (@, 1 + €£) with € > 0 in [E? are linearly independent.
Indeed, let t1,t2 € Rand A = (A;, Ag) is a neutrix vector such that ;1 + toas = A. Then there are vectors
x1=(14+n,e() € ag and zo = (¥, 1 + ev) € ag, where 7, {, ¥ are infinitesimal, such that t121 + toxo = 0.
It is equivalent to the following

ti(1+n) +t290 =0

ti¢+t2(1 +ev) =0

This implies that t; = to = 0. Hence the vectors «q, g are linearly independent.
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Example 3.3.6. Let e > 0 be infinitesimal. The set of vectors {ar; = (1+ 0, €@, —2+¢€£), a0 = (@, €L, e£)} C

E3 is linearly dependent, since Oc; + ap = (@, €£, €£) is a neutrix vector.

A generalization of this example above is the following result, which has an obvious proof.

Proposition 3.3.7. Any set of vectors with external numbers including a neutrix vector is linearly dependent.

We next present some useful properties of vectors in [E”. We start by characterizing linearly independence and

dependence of vectors with external numbers via representatives.

Theorem 3.3.8. Let

V={& = (&1, &) 6 = (1,--,80) - &m = (Gmts - &)} CE"

be a set of vectors, with §;; = a;; + Ajj forall1 <i < mand1 < j <n. Then
(i) ThesetV of vectors in E" is linearly dependent if and only if for all 1 < ¢ < m, there exist representatives
x; = (i1, .. -, xin) € R™ of & such that x4, . . ., xy, are linearly dependent.
(ii) The set V' of vectors in E" is linearly independent if and only if every set {x1, ..., xn} of vectors in R",

where x; € &; for 1 < i < 'm, is linearly independent.

Proof. ([l) Suppose that the vectors &1, . . . , &, are linearly dependent. By the definition, there exist real numbers

t1,...,tm, at least one of them being non-zero, and a neutrix vector A = (A, ..., A,) such that
t1&1 +tabo + - +tmbm = A.

Consequently, the vector @ = (0, ..., 0) € t1&1+t28a+- - -+tm&m. Hence there exist vectors z; € &;,1 = 1,...,m
such that t1z1 + texs + - - - + typxy, = 0. That is, the set of vectors {x1, ..., ., } is linearly dependent.

Conversely, suppose that there exists a set of vectors V' = {x1, ...,z } C R", withx; € & foralli =1,....m
such that x1, ..., z,, are linearly dependent. Then there exist real numbers ¢, ..., t,,, at least one of them being
non-zero, such that t121 + toxs + - - -+t = 0. Let x; = (241, ..., Tip) forall i = 1,...,m. Then

tix1; + -+ tmTmj =0forall j =1,...,n. (3.1)

Because x; € &,7 = 1,...,m, one has §;; = x;; + A;j foralli = 1,...,m;j = 1,...,n. From (B.1)) one obtains
that

€+ Ftm&mj =ti(zr + Arj) + -+t (@mj + Amyg)
=t121; +  + by + 1AL o+ b A
:tlAlj —+ -+ thmj = Aj

for all 5 = 1, ..., n. Hence the vectors &1, ..., &, are linearly dependent.
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(il) Assume that the set of vectors {£1, ..., &, } in E™ are linearly independent. Suppose on contrary that there
exist representatives x; of & for 1 < i < m such that {z1,...,x,,} are linearly dependent. By Part (fi) one
concludes that &1, . .., &, are linearly dependent, a contradiction. Hence there exists no representative x; of §;

for 1 < i < msuchthat xy,...,x,, are linearly dependent.

Conversely, suppose that for all 1 < ¢ < m and for all representatives z; of &; one has {x1, . .., zy, } are linearly
independent. Suppose that {{1,...,&,} are linearly dependent. By Part (0), there exists representatives x; of
& forall 1 < i < msuchthat {x1,...,x,,} are linearly dependent, a contradiction. Hence {&1,...,&,,} are
linearly independent. O

Observe that a set of linearly dependent vectors may have a set of linearly independent representative vectors.

Example 3.3.9. Let ¢ > 0 be infinitesimal. Consider the set of vectors {&; = (©,@),&2 = (0,€)}. Then
{&1,&2} is linearly dependent, since &1 + £ = (@, @). Now we take 1 = (€,0) € & and 29 = &. Then
{&1, &2} is linearly independent.

Proposition 3.3.10. Every set of vectors {{1, ..., &m} C E", where m > n, is linearly dependent.

Proof. Let a; = (ai1,...,ain) € & be a representative of ;,1 < i < m. Because m > n then the set of

vectors

V={a1=(a11,---,01n)s- -y am = (@m1,-- -, Gmn) }
in R™ is linearly dependent. Hence, by Theorem B.3.8, the set of vectors {1, . . ., &, } is linearly dependent. []

Proposition 3.3.11. Let S = {&1,- - , &} be a set of vectors in E" and k € N be standard.

(i) If'the set S is linearly dependent, any set of k vectors including S is linearly dependent.

(ii) If'the set S is linearly independent, any set of vectors included in S is linearly independent.

Proof. (i) Let
V= {517---7§m7£m+17- . a{k} c E"™.

Because the set S of vectors is linearly dependent, there exists real numbers ¢4, ..., t,,, all of them are not
equal to zero simultaneously, and a neutrix vector A = (A, ..., Ay) such that t1&; + - - + t,,6, = A. Let
t'=(t1,.--,tm,0,...,0). Thent' #6 = (0,...,0)and t1&1+ - +tm&m+0&mi1+- - -+0& = (A1, ..., Apn),
which is a neutrix vector in E”. Hence V is linearly dependent.

(i) Let V7 be a set of vectors included in S. Suppose that V" is linearly dependent. Because V'’ C S, by Part

(i) the set S of vectors is linearly dependent, a contradiction. O

Definition 3.3.12. Let V = {&1, ..., &, } be a set of vectors in E”. The maximum number of linearly indepen-
dent vectors of V' is called the rank of the given set of vectors.

Example 3.3.13. Let& = (1+ 0,0, —1+€2),& = (-1 + €£,e0, 1 + @) with € > 0 is infinitesimal. Then
the set of vectors {&1, &2} is linearly dependent, since £ + &2 = (@, @, ©). The rank of given set of vectors is
1.



32 CHAPTER 3. MATRICES AND VECTORS WITH EXTERNAL NUMBERS

Definition 3.3.14. Let &; = (a1, ..., i) € E™ 1 <4 < m. The matrix

a1p Q12 o Qg
A=
Am1 Q2 - Qmp
is called the coordinate matrix of the given vectors and is denoted by [£1, . .., &n 7.

For a set of n vectors in E™ linear independence and dependence is determined by the determinant of its coor-

dinate matrix.

Theorem 3.3.15. A set V = {ay,- - ,an} of n vectors in E", where a; = (a1, ..., Q) for 1 < i < mn, is
linearly independent if and only if
o111 Q12 cc Qlp
det

Qpl Qp2 - QOpp

is zeroless.

Proof. Put a;; = a;j + A;jj forall 1 <4,5 < nand

Q11 Q@12 o Olp

A:

Qpl Qp2 - Qpp

Assume that det(A) is zeroless. Suppose that the set V of vectors is linearly dependent. By Theorem B.3.§,
there exists a set of vectors a; = (a1, ..., a;n) € R™, where a; € «; is a representative of o; foralli = 1, .., n,

which is linearly dependent. It follows that

ail a2 -+ Qlp
det| @ ¢ .. | =0
apl QAp2 - QApn
So
[a11 + A1 app+ Ais -+ apn + Am
det(A) =det : : , :
_anl + Anl an2 + An2 R Ann
ailr a2 o Qi
=det | : ¢ .. i |+ N(det(A)) = N(det(A)),
_anl An2 **° QAapn

which is a contradiction.
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Conversely, assume that the set of vectors {av, ..., ay, } is linearly independent. Suppose that det(.A) is a neutrix.

Then there exist vectors {x1, ..., z,}, where z; = (a;1,...,ai,) € o forall i € {1,...n}, such that
ail a2 G1n
det : =0
anl Aanp2 - dpp

Hence the set of vectors {z1, T2, ..., 2,, } is linearly dependent. By Theorem B.3.8, the set of vectors {a, ..., o, }
is linearly dependent, a contradiction. O

This proposition enables us to verify whether a set of vectors with external numbers is linearly independent or

not.

Example 3.3.16. (a) The set of vectors
{a1=(1+0,24 €0, ef), a0 = (=14 €2, €D, —1 + €£), a3 = (60,2 + €@, —1 + €*£)}

is linearly dependent, since
1+0 24€0 e£
14+ €0 €D —14+e£|=0.
€0 2+e0 —1+€%

(b) The set of vectors
{m=(140,24€2), = (~1+€0,e0)} C E?

is linearly independent, since
1+0 2+
—1+e0 4%,

=24€0.

Corollary 3.3.17. If a matrix A = [aij]nxn over IE has two identical representatives of rows then det(.A) is

neutricial.

Proof. Putay; = (a1, ..., q4y,) foralli =1,...,nand S = {a, ..., a, }. Because the matrix .A has two identical
representatives rows, the set of vectors S is linearly dependent. By Theorem B.3.15, det(.A) is neutricial. [

The corollary is also true if we use columns instead of rows.

3.4 On the ranks of a matrix over E

In this section three notions of rank of a matrix over E are given, respectively based on minors, based on the
maximum number of independent row vectors, and based on the minors and the rank of a representative matrix.

In general, these three notions do not match. Conditions for the equality of these notions of ranks are presented.
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Firstly we define the rank of a matrix over E via minors of the matrix.

Definition 3.4.1. Let A = [o;;] be an m x n matrix over E. We say that the minor-rank of A is r, denoted
by mr(.A) = r, if there exists a zeroless minor of order r of A and every minor of order k of A, with k > r, is

neutricial.

Obviously mr(A) < min{m, n}.

1 2 -1 £
Example 342 Let A= | 2 19 T Then
-2 —d+e 24€0
1+ 2+4+0 1+0 —14¢€£
M = = @7 M = prg
PRI 2 44 PET 9 24e
2 —1 £
Mz 23 = o e ©, and M; 1 = 1+ © zeroless. Hence mr(A) = 1.
—44+€e 24€0

Proposition 3.4.3. Let A = [a;;] be an m x n matrix over E. Then mr(A) = mr(AT).
Proof. Itis a consequence of the fact that det(A) = det(AT). O

Next we define the rank of a matrix over E through the maximum number of linearly independent row vectors

of the matrix.

Definition 3.4.4. Let A = [oy;] € My, ,(E). The maximal number of linearly independent row vectors is
called the row-rank of A, denoted by r(.A).

So the row-rank of a matrix is equal to the rank of the set of row vectors of the matrix presented in Definition
3.3.12.

Theorem 3.4.5. Let A = [tij]mxn be a matrix over E. such that mr(A) = r < min{m, n}. Then there exist r

row vectors of A, which are linearly independent. As a consequence r(A) > mr(A).

Proof. Because mr(A) = r, we may suppose without loss of generality that the minor

Q11 Oy
det(M) = det
Qr1p o Qpp
is zeroless. Let & = (1, ..., a4p), for 1 < i < mberow vectors of Aand &, = (a1, ..., a4 ), forl <i<m

be vectors in E”. By Theorem and the fact that det(M) is zeroless, the set of vectors {&1, ..., & } is linearly
independent.

We will prove that &1, . . ., &, are linearly independent. Assume that t1&1 + -+ -+ ¢,.& = (A1, ..., Ay). Thatis,
forall 1 < j <mn,onehastiaij+toag; +---+trap; = Aj. It follows that t1&] +- - +t,.&. = (A1, ..., Ap).
Because {{], ..., &} is linearly independent, one has ¢; = --- = t, = 0. Hence the set of vectors {&1, ..., &}
is linearly independent by Remark B.3.3. O
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For a square matrix over E, linear independence and dependence of row vectors in a matrix are completely
characterized by the determinant as shown in Theorem B.3.15. However, unlike classical linear algebra, for
rectangle matrices A of order m x n with m # n, it is difficult, in practice, to verify whether the maximum
number of independent row vectors is equal to the minor-rank of .4 or not, or equivalently to verify that if all
minors of order r of A are neutricial, the respective r row vectors are linearly dependent or not. To overcome
this difficulty we introduce below another notion of the rank for matrices over [E charactered via both minors

and the rank of a representative. We call it strict rank.
Definition 3.4.6. Let A =[] %, be a matrix over E. A number r € N is called the strict rank of the matrix
A, denoted by sr(A) = r, if the following holds:

(i) There is a zeroless minor of order r of A.

(ii) There is a representative matrix A = [a;;] € M, (R) of A such that the rank of (A) is r.
Clearly, in the case of non-singular matrices condition (f) implies the condition i. So the three notions of rank
coincide. However for non-singular matrices, in particular for non-square matrices, the equalities are not easy

to verify. Below we show that if we know the strict rank, we know the minor-rank and the row-rank. Then
conditions are given for the other relationships to hold.

Theorem 3.4.7. Let A be an m x n matrix over E. If st(A) = r then mr(A) =r.
Proof. Because sr(.A) = r, there exists a zeroless minor of order r of A. By the definition of minor-rank of a
matrix one has mr(A) >r. Let Ay, = A;, ., i,...i, be a minor of order k of A with & > r. Because there exists

a representative matrix A= [a;j] of A such that rank(fl) = r, we have det(flk) = det(flilmik,il,_ik) =0. So
det(Aj;,..iy.ir..i, ) is a neutrix. One concludes that mr(A) =r. O

Corollary 3.4.8. Let A be an m X n matrix over E. Then sr(A) < mr(A).

Theorem 3.4.9. Let A =[] be an m x n matrix over E. If st(A) = r then r(A) = r.

Proof. Assume that sr(A) = 7. Then there exists a representative matrix A of A such that rank(A) = r.

aix - Ay
Without loss of generality, we may assume thatdet(A,) =det | : ... : | #0.Leti e {r+1,n}. Then
ar1 Qo
the set of vectors
{a1 = (a11,...,a1n), ..., ar = (ar1,. .., Qrp), a5 = (i1, . -, Gin) }
is linearly dependent. This implies that the set of vectors
{Oél = (Oéll, e ,Oéln), e, O = (arl, e ,Oérn), oy = (Oéﬂ, N ,Oéin)}

is linearly dependent. So the number of linearly independent vectors is at most r.
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Moreover sr(.A) = r, by Theorem we have mr(.A) = r. By Theorem there are exactly r linearly

independent row vectors in .A. O

Corollary 3.4.10. Let A be an m x n matrix over E. Then st(A) < r(A).

We end this section by studying several conditions such that the minor-rank, the row-rank, and the strict rank

are equal.

Theorem 3.4.11. Let A = [0ij|mxn be a matrix over E. Assume that r(A) = r and there is a zeroless minor
of order r of A. Then st(A) = r.

Proof. Because there are exactly r linearly independent row vectors in A, by Theorem there is a set of
real vectors V' = {a1,...,an}, where a; € a; = (a1, ...,qy) forall 1 < i < m, such that the maximum
number of linearly independent vectors in V' is r. It follows that the rank of the matrix A= laj] is r. Also

there is a zeroless minor of order r of A, we conclude that sr(.A) = r. O

The proposition below shows that if the minor-rank of a matrix is equal to the number of columns minus one, it

is equal to the row-rank.

Proposition 3.4.12. Let A = |o;] € My, (E) such that mr(A) =n — 1. Then

Proof. If m = n — 1, the conclusion follows by Theorem and Theorem B.4.11|. Assume that m > n — 1.
Let& = (v1, ..., i), for 1 < i < m. Because mr(.A) = n — 1, by Theorem B.4.3, there are (n — 1) linearly
independent row vectors in 4. Suppose on contrary that (.A4) > n — 1. Then there are n linearly independent

vectors in A. Without loss of generality, we suppose that &1, ..., &, are linearly independent. By Theorem
Q11 Qip
it holds thatdet | : ., i | is zeroless. Hence mr(.A) > n, a contradiction. So r(A) = n — 1.
Qpl - Qnp
By Theorem we have sr(A) =n — 1. O
1+© 1
Example 3.4.13. Let A = |1+ e+ ¢ 1|.Then mr(A) = 1. By Proposition B.4.12, we have r(A) =
1+© 1
sr(A) = 1.

Next, we will show that if a matrix has a submatrix such that the relative uncertainty is included in all the neutrix

parts of the remaining entries, the minor-rank is equal to the row-rank.

For convenience, we use the following notations.
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Notation 3.4.14. Let A = [aj] = [asj + Aij] € Miypn(E) such that mr(A) = 1. Let I = {i1,...,4,} and

J = {i1,...,i,} be such that det (A;;) = det(A;, i, j,..j.) is zeroless. We denote A; = max A;j;, and
€
1%i§m
A;c = min A;;.
Aagc j?J 1]
1<i<m
Theorem 3.4.15. Let A = [aij] be an m x n reduced matrix over E, with o;; = a;j + Azj forall1 <i <m

Ay

and 1 < j < n. Suppose that det(Ar)

st(A) = .

C Ajc for1 <i<m, and mr(A) =r. Then r(A) = r. In particular

Proof. If r = m, the conclusion follows by Theorem B.4.9. Assume that » < m. Because mr(A) = r, without
loss of generality, assume that

(S E I A P
det(Ayy) =det | : (3.2)
Qrp 0 Opp
is zeroless. We will demonstrate that every set {1, ..., &, &} is linearly dependent forall i € {r+1,...,m}.
To do this, we prove that there is a set of vectors
{a1 = (CLH, ey aln), e, Qp = (arl, c. ,am), a; = (aﬂ, . ,am)},

with apq € apj,p € {1,...,1,i},q € {1,...,n} satisfying

air - Qi Ay
det| © =0, (3.3)
Qr1 o Qpp Ay
il v Qi QG
forallj € {r+1,...,n}.
For j = r + 1, because mr(.A) = r one has
11 s Qap Qg(p4)
det
Qr1 0 Opp Op(pgd)
Qi1 Qe Q(ry)

is a neutrix. Consequently, there exist a,s € oy, forall p € {1,...,r,i},s € {1,...,r + 1} such that

ailp - A1r o Q1(r41)

det| =~ | =o. (3.4)
arl =t Qrr Qp(r41)
air o Gir Qi(p41)

Hence formula (B.3) is true for j = r + 1. Let k € N, 4+ 1 < k < n be arbitrary. We need to prove that there
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is a column ay, = (a1, . .., ark, aix)’ such that ay, € apy forallp € {1,...,7,i} and
aip -+ A1y Qlg
det| © 7 | =o, (3.5)
Ary - Qpp  Qpk
aip v Qi Qg

where a,; is defined by formula 8.4) p € {1,...,7,i} and s € {1,...,r}. Because mr(.A) = r, one has

a1 o Q1 Qg
det
Qrp -+ Opp Opf
Qi1 O Qi
1s a neutrix. As a result, there are row vectors
I / / A / / /A / /
ay = (allv AR alwalk)v ceey Qe = (arlv sy Qppy ark)?% - (aih sy Gy aik)
such that a;; € aj and det(T') = 0 with
/ / /
ayy v Ay gy
T= (3.6)
/ / /
Ay 70 G Qpp
/ / /
Qi1 Qi Qg

To complete the proof, one shows that there exists €;;, € A;; such that the column vector

ex=(0,...,0, eik)T

satisfies
/
aip - ailr Qg
det | - o ) =0.
/
Qr1 - Qpp Q.
/
@il Qi Gyt €k
That is, we need to find ¢;; such that
! 0
air -0 Al Qg aix -+ QAair
det | - B | +det| - B | =0.
/
Arl - Qpp Qpp ary -+ ape 0
/
a;1 o Qi A Qi1 Qi €k

Using the Laplace expansion along the (7 + 1)-th column for the second determinant, the above condition
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becomes
ai air ayy
d.€; + det / =0, (3.7)
Gry Qry A
ail e G Ay,
where
ail - Qi
d = det
Qr1 - Qpp
Because ays, ags € aqs forall g,s € {1,...,r}, we have
(gs = Gy + €45, Where g5 € Ags.
So
aypy o oay aj, ayy +en aj, + e ay
n=det| - T = det ) :
arl - App Qg Ay + €11 a;‘r + € a;k
ap o G ay aj; + €1 ap. + €y aj

Let S(,11) be the set of all bijections o: {1,...,7,i} — {1,...,7,k+ 1}. Then

n= Z Sgn(U)(aig(n + €15(1))

UGST+1

=detT + v.

(afro(’/‘) + 67“0(7“))’a;0(i)

Because det(T) = 0, one has n = v. We will show that 7 = v € A;. Observe that v is the sum of terms
which contains at least one €, with p € {1,...,r,i} and s € {1,...,7}. Because ¢,s € A,s C A for all
se{l,...,r},pe{l,...,ri}and|a},| < |og| <1+ @fork e {l,...,n}andl € {1,...,m}, each term
of v 1s included in ZJ(I +0o) = Ay Hence,n=v € Aj.

A
Also, by formula (B.2) we have d € det(.A;;). It follows that 7‘] C A c C Ay, by the assumption. So
Ay
d

e =L C e C Aa (3.8)

QU3

€ik = —

Hence the vector
exr=10,...,0, —n/d]T

satisfies (B.7). That is, formula (B.3) is satisfied with a , = (@), . ..,d.,,da}, —n/d)T.

Because k € {r +1,...,n} is arbitrary, one concludes that (3.3) holds forall k € {r +1,...,n}. So the set of

vectors

{al - (a117' T 7a1n)7"' , A = (a’r’17' t 7a7’n)7ai - (ai17' o 7ain)}
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is linearly dependent for alli € {r + 1,...,m}. By Theorem B.3.§, the set of vectors

V:{alz(ally"' 7a1n)7”’ 7aT:(aT17"' 7arn)7ai:(ai17"‘ Jain)}
is linearly dependent for each i € {r +1,--- ,m}. Hence r(A) = r.
The last conclusion follows by Theorem B.4.11|. O

Finally we show if all entries of a given matrix .4 have the same neutrix parts, the minor-rank is equal to the
strict rank, and therefore to the row-rank.

Theorem 3.4.16. Let A = [a;j] € My, ,(E) be a reduced matrix with N (oi;j) = Ajj = Aforall1 <i<m
and 1 < j < n. Assume that mr(A) = r. Then r(A) = sr(A) = r.

Proof. 1If m = r, the conclusion follows by Theorem and Theorem B.4.11]. Assume that 7 < m. Because
mr(A) = r, there exists a submatrix .4, of A such that det A, is zeroless. We can also choose det(.A;) such that
the absolute value of det A, is the maximum minor comparing to all the absolute value of the minors of order r
of A. For simplicity, we may assume that

o ot oy
det(A,)=det| : .. ¢ | =d+D=A Iiszeroless.
Qrp 0 Oy
Letp € {r+1,...,m} be arbitrary. We will prove that, there exists a set of representative vectors
{al = (alla ce 7a1n)v sy Qp = (arh S arn)a ap = (ap17 S apn)}
of {a1,..., o, ap}, such that the set of vectors {a1, ..., a,,ap} is linearly dependent.

With an analogous argument as in the proof of Theorem we show that

air o Qi A

det| = | =0Oforallr+1<j<n, (3.9)
Qr1 = Qpy  Qpj
aplr - Qpr  QApj

where a;; € ay;fori € {1,...,r,p},j € {1,...,r,r}arefixed. Putuy; = (als, .. ,am,aps), se{l,...,n}.

For j = 1 + r, formula (B.9) is true. Let k € {r + 2,...,n} be arbitrary. Because mr(A) = r, one has
11 - Q. Ok

det | R " | is a neutrix. Consequently, there exist aj; € agj foralli € {1,...,rk} and
Qrp  ++ Opp Opf

Qpl - Qpr Opk
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j€{1,...,r,p} such that

/ !/ /
ayy - a4y Ay
det . / = 0
Qpq Ay Gy,
/ !/ /
a‘pl apT’ apk
This means that the set of column vectors
I / / AN ! / ! o ! /
{U1 = (ay1, - Gpy, ) Uy = (@ o Gy Q) Uy = (A5 - '?arlwapk)}
is linearly dependent. As a consequence, there exist real numbers ¢4, . . ., ¢, such that

up, =t + -+t

=t1(ur +€e1) + -+t (ur +€)

:(tlul +"'+tru7")+(t161 +"'+t7“61”)7 (310)
r+1 dpq
where €; = (€1q,...,€rq, €pg) € A7 = A x --- x A We also have t, = PR 1 < q <, where
ajy allq—l ayy allq—i-l eay,
dpq = det : : ' :
a;ﬂl T a;“qfl a;‘k a;“q+1 T a;‘r
vy

Moreover d # 0, dp, € Apy, and <1+ @ since det(.A;) is maximum, one derives

tier+ - +tre. € AT

Put

up = uﬁﬂ — (tier + -+ trer) = (a1ks - - - Ark, Qpic)-

Then agi, € agr,q € {1,...,r,p}. By formula (B.10) one has

up =t1ur + - - - + trup.

So the set of vectors {uy, ..., u,,uy} is linearly dependent. Hence
aip - alr alg
det | ~ T | =0.
Qr1 - Qpp  Qrg
ap]_ .. apr apk,'

Hence formula (8.9) holds for j = 7 + 1,...,n. Consequently, the set of vectors {ay, ..., a,, ap} is linearly
dependent. It follows that {cv, ..., a,, o} is linearly dependent forallp € {r+1,...,m}. Sor(A) = r. By
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Theorem we obtain sr(A) = 7. O



Flexible systems of linear equations

4.1 Introduction

In this chapter we will study a system of linear equations in which coefficients are external numbers. It is well-
known that many problems of engineering and economics are modelled in terms of systems of linear equations.
Data which form the system often involve imprecisions. As a result, the coefficients of the system contain
uncertainties. Also in practice solving a linear system implies many successive computer operations, so next
to problems of propagation of errors appear problems of rounding off. We will use external numbers to model

these imprecisions. A system of linear equations with external numbers is called a flexible system.

Part of this chapter is motivated by Chapter 7. We will apply results in this chapter to construct conditions such

that a linear optimization problem with flexible objective function and constraints has optimal solutions.

In section #.2 we define flexible systems, consider several types of solutions and also distinguish some special

systems.

43
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In general common methods like Cramer’s rule, the Gauss-Jordan elimination do not work on flexible systems.

In Section #.3 we will present conditions such that Cramer’s rule can be applied to non-singular flexible systems.

In Section 4.4 we will present an explicit formula for Gauss-Jordan elimination method in the case of linear
systems. We will express Gauss operations in terms of multiplications of matrices. Then we apply this formula
to study conditions such that we can use Gauss-Jordan elimination method to solve non-singular flexible systems

of linear equations.

Using results developed in chapter B, in Section .3 we give necessary and sufficient conditions so that singular
flexible systems have solutions. Also, solution formulas are given.

In the final section we use a parameter method to deal with flexible systems. We will treat the neutrix parts of
constant terms of a flexible system as sets of parameters. Taking advantages of the group properties of neutrices,

under certain conditions formulas of solutions of a flexible system depending on parameters are given.

Convention 4.1.1. In this chapter we always assume that m,n € N are standard.

4.2 Some basic notions

We start this section by defining some notions related to flexible systems, that is a system in which coefficients
are external numbers. Then we will classify flexible systems into several different categories. Notions of
solutions of a flexible system are also given.

Because an external number is an external set of real numbers, in flexible systems inclusions are used instead

of equalities.

Definition 4.2.1 ([19]). Let n, m € N be two standard natural numbers and o;; = a;; + A;j, B; = b; + B; for
ie{l,...,m},j €{1,...,n} be external numbers. A system of the form

andi+ ot - taés Chi+ B
: : R : : 4.1)
am1é1t  amelet - F+amnén € by + Bp
is called a flexible system of linear equations, or a flexible system (for short).
B b1 + By
We call A = [a;5] € My, (E) the coefficient matrix, B = | : | = : the constant term vector
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&1
each 3; a constant term , £ = | . | the variable vector, and
&n
ajp aiz o arn P
[AlB] =
Qml Qm2 * Omn Bm

the augmented matrix of the system.

Then the system (&.1)) can be represented in the matrix form A¢ C B.

Definition 4.2.2. The flexible system (.1]) is said to be

(i) non-singular if its coefficient matrix A is non-singular. Otherwise, we call it singular.

(if) homogeneous if all the constant terms /3; for ¢ € {1,...,m} are neutrices.
(iil) upper homogeneous if B is an upper neutrix vector.
(iv) non-homogeneous if it is not upper homogeneous.

Example 4.2.3. Let € > 0 be infinitesimal. Consider the flexible systems

%)

1+2)& + e£62
®) { e+e20.

-
el + (1+0) C

) (1+e2)l1 + (2+e£)2 — B+0)s Co
(e£)&1 + @& +  (20)&3  Cef.

1+0 e£

(a) One has A = det
€D 1+0

So the given flexible system is non-singular and upper homogeneous, although the constant term € + €2Q is

zeroless. Hence the system is not homogeneous.

45

= 1+ @ is zeroless and | 3| = max{©, € + €20} = © is a neutrix.

(b) Because || = max{®,e£} = @ and the number of rows is m = 2 which differs from the number of

columns n = 3, the given flexible system is singular. Also, all the constant terms are neutrices, hence the given

flexible system is homogeneous.

From the definition and the examples above, it is clear that a homogeneous system is upper homogeneous,

however, in general, the converse is not true, as shown by Example §.2.3(a).

Remark 4.2.4. For an upper homogeneous flexible system A¢ C B all the constant terms of the system are
included in the largest neutrix. In fact, 3; C B = |3| foralli = 1,...,n. Indeed, one has |3;| < |3| = B.

Assume that |3;| N B = (), then for all y € |3;|, and for all z € B, it follows that y < z. Now we take

2 € B,z < 0,and y > 0, a contradiction. Hence 3; C B.
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An arbitrary flexible system can be transformed to an equivalent system such that the absolute value of every
coefficient is less than or equal to 1 + @. For this kind of systems, easier to treat with, we call it a reduced

flexible system.
Definition 4.2.5. A flexible system is called reduced if its coefficient matrix is reduced.

Example 4.2.6. For ¢ > 0 an infinitesimal, the following system is a reduced system

(1+0)a+(1/2+ef)a—c0&3 C14+0
(—1+e£)é1 + & — (1/3+e£)és C -2+ 0.

The kinds of solutions of a given flexible systems are defined as follows.

Definition 4.2.7 ([[19]). A vector of external numbers £ = (&1, ...,&,) is called an admissible solution of the
flexible system (4.1 if it satisfies the system. In particular, if ¢ € R™ then we call it a real admissible solution. A
solution ¢ = (&1,...,&,) of the system (4.1)) is said to be maximal if there is no external (internal) vector 7 O &
satisfying the system. If £ = (&1, ..., &,) satisfies the system with strict equalities, the vector £ = (&1, ...,&p)

is called an exact solution of the system.

4.3 Cramer’s rule for non-singular flexible systems

Note first that, in general, Cramer’s rule is not true for flexible systems as shown in the following example.

Example 4.3.1. For ¢ > 0 be infinitesimal, consider the homogeneous flexible system

(1+e2)é1 + (e+20) Ce0
€& + (1+e£)ée Cef.

One has
14+e0 e+ €0

A = det =1+e€£ iszeroless.
€D 1+e£
Hence the system is non-singular. Let

2 2

det(My) —det |[©F T Z g
e£ 14 €£
1 2

det(My) =det| 7 9| — e,

€D e£

Applying classical Cramer’s rule to the system one has

B det(Ml) B €2

_ 2

SH A _1+6£_6£’
_det(Mg)_ e£ — £
2T A 14 T

However, it is not a valid solution of the system. Indeed, substituting &1, &> into the first equation of the system,
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one obtains
(1+e0)EE+ (e +E0)e =L L 2 0.

Hence &1, &5 do not satisfy the first equation.

In [[19], J. Justino and I.P. van den Berg have shown that under certain conditions upon the sizes of uncertainties
Cramer’s rule holds for non-singular, non-homogeneous flexible systems of linear equations. We will extend
this result to all non-singular flexible systems of linear equations. This means that we can also apply the result

to upper homogeneous, in particular to homogeneous non-singular flexible systems.

4.3.1 Main results on Cramer’s rule

Consider a flexible system of the form

o111+ appéet+ - Faé, C b+ By
) ) ) ) ) 2)

an1£1+ an2€2+ T +ann§n C b, + By,

where n € N is a standard number. Put
A =det(A)=d+ D,

where A = [a;j]nxn is the coefficient matrix of the system. We define

aip ccoai-1 P Q1(j+1) 0 n
M; = :
Qpl -+ Qpj—1 Bn An(j+1) " Onn
ann cccoa-1 biooqgry o Qi
M;(b) = SR
Q1 0 Q=1 by Quyn o nm
ain - ag—1 bioaygyny o ain
Mj(a, b) = . .
ap1 -+ Apj—1 by an(j+1) °°° ann

To study flexible systems we need to control uncertainties of entries in matrices and vectors. To do this, we will
use the following definition.

Definition 4.3.2. Let A = [o;] be an n x n matrix and 5 = (f1, . .. , Bn)T be a column vector over E.

(i) The relative uncertainty of A is defined by R(A) = A
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(ii) The relative precision of B is defined by P(B) = B/p if 3 is zeroless, and by P(B) = B : Bif 3 =

1S a neutrix.

This definition is an extended version of the definition in [20]. In fact, we include the case where the maximal
term is a neutrix. For the division of two neutrices, we refer to Definition

Definition 4.3.3. Consider the system (#.2). The following conditions are called the Cramer conditions of

system (4.2).
(i) R(A) € P(B)
(i) A/@" is not an absorber of B
(i) B = B.
Remark 4.3.4. For reduced flexible systems, if a given system is upper homogeneous, the condition R(A) C

A
P(B) implies N B C B. As aconsequence, in the case of reduced upper homogeneous non-singular flexible
system the conditions that B = B = B and that A is not an absorber of B imply that R(A) C P(B). Also, the

A
relative uncertainty of A becomes R(A) = N sincea =1+ Awith A C @.

It is easier to work with reduced flexible systems. The following theorem says that every flexible system is
equivalent to a reduced system and every Cramer condition satisfied by the original system is also satisfied by

the reduced system.

Theorem 4.3.5. Let n € N be standard, A = [0;j]nxn be a non-singular matrix over E, @ € @ and B =
(ﬁl...ﬁn)T € E" be a column vector. Let A' = |« ”]nm where a” = %for all 1 < i,5 < n and
= (f1,... ,BZI)T where 3] = %for 1 <i < n. Consider the two following flexible systems
ALCB 4.3)
and
A¢Ch. (4.4)

The following statements hold:

(i) The flexible system (B.4) is reduced.

(ii) The two flexible systems above are equivalent, that is the set of solutions of the two systems are the same.

(iti) If a Cramer condition is satisfied by system (B.3), it is also satisfied by system (.4).

To prove this theorem we need some lemmas.

Lemma 4.3.6. Let n € N be standard, A = [a;j]nxn be a non-singular matrix over E, @ € & and B =
(B, .., Bn) be a column vector, where B; € E forall 1 < i < n. Let A’ = |« Z]]nxn where a % for all
Bi

1<i,j<nand B = (B1,...,3,)" where 3, = —f0r1<z<n One has
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(i) R(A) = R(A),

(i) P(B) = P(B).

Proof. () Because @ is zeroless, o/ = 2 is zeroless. For @’ € @, there exists ¢ € @ such that @’ = E By
a a
Lemma R.2.17(f), one has
77,’1_1 — SISO _ J— J—
Al d (A/a) - (c” Lian 1) Aet Aar!
n_ _ _ _ _
RA) = —4,—= Ao ==X = = EW.
(il) We consider two cases.
Case 1: f3 is zeroless. Then
P(B')=B'/B" = (B/a)/ (8/a) = B/B = P(B).
Case 2: (3 is neutricial. Then
P(B') = (B/a): (E/E) = P(B).
O
Lemma 4.3.7. Let n € N be standard, A = [ozij]nxn be a non-singular matrix over E, @ € @ and B =
(B1---Bn)T € E" be a column vector. Let A' = [a;j]nxn, where oz;j = @for all1 < 4,5 < n and
a

B = (B, ,B)1, where B = @for 1 < i < n. Wedenote A = det(A), A" = det(A").
a

Then

(i) A/a™ is not an absorber of B implies that A’ = det(A’) is not an absorber of B'.

(ii) B = Bifandonly if B’ = B'.

Proof. (i) Because A /@™ is not an absorber of B, also A/@" is not an absorber of B. This means that B C
(A/a™) - B. On the other hand, B’ = B/a C (A/a") - (B/a) = A’ - B'. Hence A is not an absorber of B'.

— B
(i) This follows from the facts that B == and B = O
a

Proof of Theorem §.3.3. () We have@ = @/a =1+ A C 1+ @. The fact|ay;| < |a| forall 1<i,j<n
Q4 a
= || <|=

implies <1+ @ forall 1<i4,j<n.Hence the system (§.4) is reduced.

/

a

a

(i) Note that @ is zeroless, so @ # 0. A vector £ = (&1,...,&,)7 is a solution of the system (§.3)) if and only

ifZaijfj C B; forall 1 < ¢ < n, hence also Zaijfj /a C B;/a, forall 1 < i < n. The latter is
j=1 J=1
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n

equivalent to Z (aij/a) &5 C Bi/a, forall 1 < i < n. Once again, these inclusions hold if and only if { is a
j=1
solution of the system (¢.4).

(fii) This follows by Lemmas and 4.3.7. O

We show below that the Cramer conditions are sufficient to guarantee that Cramer’s rule can be applied to non-
singular flexible systems. This result is a generalization of Theorem 4.4 in [20, p.19] on non-homogeneous,

non-singular flexible systems.

Theorem 4.3.8. Assume that the flexible system (8.2) is non-singular. The following holds.

(i) If R(A) C P(B) then

_ ( detM, (b) detMn(b)>
3 < T (4.5)

is an admissible solution of the flexible system (§.2).

(ii) If R(A) C P(B) and A/@" is not an absorber of B then

_(detM, (b) detM,,(b)
6—( AT A > (4.6)

is an admissible solution of the flexible system (§.2).

(iii) If R(A) C P(B), A/a™ is not an absorber of B and B = B then

detMy detM,
= ... 4.7
5 < A ? ) A > ( )

is the maximal solution of the flexible system (&.2).

Note that

<detM1(b) detMn(b)> c <detM1(b) detMn(b)> c (del detMn) 58)

7 ey 7 A A - A A
Due to this fact, these vectors have at least one common representative vector = (1, ...,x,) which is a
solution of a linear system
anri+ ce +ainTy, = bl
an11 +-0 FapnTn = by,

with a;; € ajjand b; € 5; forall 1 <4,5 <n.

The condition A /@™ being not too small to become an absorber of B can be seen as a generalization of the con-
dition in classical linear algebra of the determinant of a non-singular system of linear equations being different

from zero.
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is called the Cramer-solution.

detM, detMn>T
ot

Definition 4.3.9 ([20]). The column vector £ = <

To prove Theorem we need some auxiliary results.

Lemma 4.3.10. Consider the system (B.2). Assume that it is reduced, non-singular and upper homogeneous.
Then

(i) |det(M;)| € B, in particular N (det(M;)) C B.
(i) N (det(M;(0))) € 4B,
Proof. Let S, be the set of all permutations of {1,...,n} and o € S,,. Put

To = Qo)1 - Yo (j-1)(j-1) Yo (j+1)(j+1) - - - Yo (n)n-

Because the system is reduced, |o;;| < |a|=1+AC 1+ @and A C @. So

ol <al<(1+o)t=1+0. (4.9)
Moreover,
det(M))] = | S sen(0)10B)| < D 108t -
oESy gESy

(i) The system is upper homogeneous, so 3; C B by Remark §#.2.4. Formula (4.9) implies

|det(M;)] < D |1eBop] < Y |1+ @)B| =n!(1+©)B=B.
oESh oESh

Hence |det(M;)| C B.

(il) By Lemma R.2.17(vi) and the definition of 7, one has N(v,) € N(1 + A)"~! = A. Furthermore the
system is upper homogeneous, sob; C B,i = 1,...,n. Asaresult, for 1 <i < n,

N (det(M;(1) ) = N <Z sgn (o) %ba(j)> = > N (vbe)
o€Sy o€Sn

= Z bo(yN(vs) Cn!B-ACB
O’GSn

- A.

O

Lemma 4.3.11. Assume that the system (B.2) is reduced, non-singular and upper homogeneous, and satisfies
the condition R(A) C P(B). Let A = det(A) = d + D and ¢ = (&1,...,&,)T be an admissible solution,

where 5 = x; + X; € Eforall j € {1,...,n}. LetT = max |z|. Then
<j<n
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(i)) If N(&) € Bforje{1,...,n}, then N (i aij§j> C N(By), foralli € {1,...,n}.
j=1

Proof. (i) Because A is non-singular, the determinant A is zeroless. In particular d # 0. By Cramer’s rule, the
det(Mi(a,b)) det (M,

y e y
AX = b, where A = [a;j]nxn is a representative of A, X = [z;],,x1 is the variable column and b = [b;],,x1

det(Mj(a, b
e(fi(a)) for Somek E {17,n}By Lemma E’

det(My(a, b)) € detM; C B. So, condition R(A) C P(B) implies

T
column vector x = < (a, b)) > is the unique solution of the classical linear system

is the constant term vector. It follows that T =

- _ - det(Mk(a,b)) A = A
A T=A——+— QE‘B—Z‘BQE.
(i) One has
N D g | =D (N (o) &+ aiN()) (4.10)
=1 j=1

Let £ = max |¢;]. One considers two cases.
1<j<n

Case 1: £ = & is a neutrix with some k € {1,...,n}. We have & = N(&). If N(&) C Bforall j €
{1,...,n} one derives £ = & = N (&) C B. Because |§;| < £ C B,onehas§; C Bforalll < j <n. It
follows from (#.10) and the fact N (aij) € A C © that

N(Zn:aijgj) C zn: <§Z+a§> =B C N(B).
j=1 j=1

Case 2: £ = max |&;] is zeroless. Then by (4.10) and Part (§), we have
<j<n

n

N(ipmﬂgE:@A+dﬁZMB+
j=1

J=1

A)CB+B=BCN(@B).

Sl

Note that

(i) Leté = (&1,...,&,) € E"and x = (x1,...,x,) € R™ be a representative of £. Then

Zaijfj = Zaijxj +ZO&UN(&) (4.11)
j=1 j=1 j=1
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So the vector £ = (&1, ...,&,)7 is a solution of the system ({.2) if and only if

a1+ +appr, € 6; forall 1 <i<n, (4.12)
and
Zaw (&) C N(Bi) forall 1<i<n. (4.13)
. . . . . 1 1 D
(if) If A is a non-singular matrix, then A = det(A) = d + D withd # 0 and — = - + — by Lemma
A d d?
£.2.20(i). Hence
N(1/A) = D/d* = D/A%. (4.14)

Proof of Theorem £.3.8 For non-homogeneous non-singular flexible systems, we refer to the proof in [[19].
Now we suppose that the system is upper homogeneous. We consider two cases.

det(M;(a, b))

Case 1: the system is reduced. By formula (4.§), the vector = = (1, ..., x,)T, where z; = for

1 < i < n, is a representative of all the three vectors above. Note that 2z = (x1,...,2,)" is a solution of the
n
system > a;;x; = b;, where a;; € ayj for 1 < i,j < n, by Cramer’s rule. By Lemma [£.3.11(f) one has
j=1
QT+ QinTn = (a1 + Az + - (i + Ain)Tn
= (an@1 + - + ainwp) + (Aiwy + - + Aipy)
Cbi+Az C b+ BC b+ B =B

So formula (.12) is satisfied. To complete the proof of this case we will verify the condition (§.13)).

(i) Assume that R(A) C P(B). Because the system is reduced and upper homogeneous, this condition becomes

%E C B. By Lemma f.3.10(i),
N (W) — éN (det(M;(b))) < ZA (4/8)-BC B @.15)

det(M; (b
As a consequence, N(§;) = N (e(d]()) C B forall j = {1,...,n}. By Lemma B.3.11|{i),
Za” (&) € N Zawfj C N(B;) forall 1 < i < n, so formula (4.13) is satisfied. Hence & =

T
(det(]\jl(b))’ o det(d”(b))> is a solution of the non-singular and upper homogeneous system (§.2).

(il) Because A is not an absorber of B, one has B C AB and therefore

B/ACB. (4.16)
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Also by formula (4.14)), for all j € {1,...,n} it holds that

N(j)=N <(jle’t(]\iﬁ(b))> = %N(deth(b)) + det(M; (b)) - N <i)

1 D N (det(M;(b))) det(M;(b)) D
= SN (det(M; (b)) + det(M; (b)) - <5 = Tt — A & (4.17)
On the other hand, R(A) C P(B),s %E 2? C B. From formula (4.17), Lemma and Lemma

we obtain

N(&) < AdB +(B/A) - (4/A) §B+i<i-3> CB+B/ACB+B=B

By Lemma §.3.11|(ii), one has ZO‘U (&) C N(Zawfl) C N(B;), forall 1<i<n.

T
Hence £ = <det(]\il(b)), e W) is a solution of the non-singular and upper homogeneous system
®.2).

(iii) Furthermore, if B = B = B then by Lemma §.3.10(f) and Lemma B.2.4,

N(g) = N (de“AMJ‘)) _ %N (det(M;)) + (det(M;)) - N (i) c %B + B% C B.

Then Lemma §.3.11)(i) yields Za” (&) C N(Z%gl) C N(B;), forall 1 < i < n.Hence the

det(M7) det(

T
column vector £ = ( ")> is a solution of the flexible system A{ C B.

A T A
Finally we will show that ¢ defined as above is the maximum solution. Let ¢ = ((1,...,¢,)” be any solution
of the given system and choose y; € (; forall j = 1,...,n. Then for every choice of representatives a;; €

aij, 1 <i,5 < nthereexistb; € f1,...,b, € B, such that

a11yi+ ayst+ - FaYn =b
ap1y1+ ap2y2+ -+ +appYn = bn
Put
aip - Gip
d = det
apl -+ Aapn
M;(a,b) _ det det r
Theny; = JSL’ ) e(A )forl <j<mnandso(; C e(A ) . Henc f—(det(i\/h)?”,,det%")>

is the maximal solution.
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Case 2: the system is not reduced. By Theorem [4.3.3, the given system is equivalent to the reduced system

it ajpbot o Fa) & C b+ By
: : KR : : (4.18)
ab &1+ algbot - +alén C by + B
A short calculation shows that forall 1 < ¢ < n,
det(M;(b))  det(M;(b)) detM](b)  det(M;(b)) q det(M])  det(M;) 419
¢ - a4 N T A "™Ta T Ta *.19)
where
04/11 R O/lj—l ,31 O/l(j-}-l) . O/ln
M; = : : .
Oy o a;zj—l n a%(j+1) e O,
ap o ohq by O‘/1(j+1) Ay,
Mj(b) = s :
U a1 bn o) s

and d’ is a representative of A'.

Also, if the condition in Part () is satisfied by the given system, by Theorem it is also satisfied by the

system (4.18). By formula (4.19) and the conclusion in Case 1, the vector £ = (&1, ..., &,) defined by (8.3) is
an admissible solution of the system (4.1§) and hence it is an admissible solution of the system (4.2).

With analogous arguments the second and the last part can be proved. 0

The following result provides another condition to guarantee that there exist real admissible solutions by Cramer’s

rule for non-singular flexible systems.
Theorem 4.3.12. Consider the following non-singular reduced flexible system

o+ o Famr, € b+ By
: : : (4.20)
ap1T1 +--- Japprn C by + B,

Let A = det(A) = d + D, with A = [®ijlnxn € Mu(E). If A/JA C B thenu = (uy,...,u,), where
_ det(Mj(a, b))

uj = pi for1 < 3 <n, is areal admissible solution of the system.

For reduced systems, condition R(A) = A/A C B is weaker than condition R(A) C P(B) if || € 6. Also

A _
if — C P(B) = B/J3, the point = defined above is a solution of the system. Combining this fact with the result
in Theorem we obtain the following.
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A _
Corollary 4.3.13. Consider the non-singular reduced flexible system (8.20). If N C max {E, B/p } then
det(Mj(a, b))

¥ for 1 < j < n, is a real solution of the system (%.20).

u=(u1,...,up), where uj =

det(M;(a,b
Proof of Theorem §.3.12. 1t is clear that u = (uy,...,u,), where u; = (Zl(a))

solution of the system

forl < j <mn,isa

apri+ o0 Fapr, = b
(4.21)
ap1r1  +-0 Fappr, = by
by Cramer’s rule. So
ajpuit+ oo Fau, © b+ By
: : : (4.22)

Gn1uUl +--0 Fappun S by + By

det(M;(a,b)) —
M.Ag£BgBiforalllSiﬁn-ThiS

Also, by Proposition B.2.3, one obtains that w; - Ay C y B

implies that
n n
ZO&Z‘J‘CL‘]‘ = Zaijxj + Aijxj Cb;+ B; + ZBl =b;+B;, forall 1<i<n.
j=1 j=1 j=1

Thus z is a solution of the system (4.20). ]

The result below shows that if a homogeneous flexible system has the constant term vector with identical com-
ponents, the Cramer-solution is equal to the neutrix vector. This is a generalization of the result in classical

algebra which says that the zero vector is the unique solution of a non-singular homogeneous linear system.
Theorem 4.3.14. Consider a homogeneous non-singular and flexible system #.2). Assume also that the system
satisfies all the Cramer conditions. Then the vector (B s B) is the Cramer-solution of the system (4.2).
To prove this result, we need the following.

Lemma 4.3.15. Suppose that the flexible system ((.2) is non-singular and satisfies all the Cramer conditions.

Then forall j € {1,...,n},
det(M;)\
N (A) =B

In addition, if the system is homogeneous, for all 1 < j <n,

. det(Mj)
B=—1" (4.23)

Proof. For the case of non-homogeneous systems, we refer to the proof in [20, p.78]. We now suppose that the

system is homogeneous. By Theorem [.3.5, we can also assume that the system is reduced. Let j € {1,...,n}
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be arbitrary. Because B = B = B and by Lemma [§.3.10,
det(M;) € B. (4.24)

On the other hand |M;;| > @A for some i € {1,...,n} by Proposition B.2.2, so there exists t > @ such that
|M;;| = |tA]. Moreover, A is not an absorber of B, hence B C BA C tBA = BM;j forsomei € {1,...,n}.
By Proposition we obtain

BC (=1 BMyj+ -+ (=1)"""BM,,

1+4n - agy B ey o o
C det :

Qi o0 Qe Boangry o amn
:det(Mj).

Thus B = det(M;). By Proposition R.2.24,

det(Mj)
A

HenceBzN( )for1<j<n. O

Proof of Theorem 1.3.14. Because the system satisfies all the Cramer conditions, by Theorem §.3.§, the vector
det(Mi)

€= (&,...,&)T with & = A ,1 < 4 < nis the Cramer-solution of the system. Moreover, the
. det(M; ]

system is homogeneous, so by Lemma we have (M) = B forall 1 < ¢ < n. Hence the vector

¢ =(B,...,B)7T is the Cramer-solution of the system (&.2). O

Remark 4.3.16. Assume that the flexible system (§.2) satisfies the Cramer conditions. By Lemma §.3.13, the
Cramer-solution of the system is of the form §; = x; + B, forall ¢ € {1,...,n}, where z = (x1,...,z,) isa

solution of the linear system

aityit+  apyet+ oo tapyn =
an1Y1+ ap2y2+ -+ FapnYn = bna
where a;; € a;5,b; € f; foralli,j € {1,...,n}.

4.3.2 Some examples

The following example illustrates the conditions of Part (fif) of Theorem for an upper homogeneous flexible

system. It also shows that the Cramer’s rule does not fully holds.
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Example 4.3.17. Let € > 0 be infinitesimal. Consider the following upper homogeneous flexible system

(1+€0)8 + e£€o c @
(24+e2)1 + (1+e@)fs C e+ed.

1+ €0 ef
24+e0 14€e0
and A = 1 + £ € @, hence A is not an absorber of B. Also B = @ implies P(B) = B: B = €0 : © = €£.

A.-av 1
= e£. It follows that R(A) = P(B) = €f.

One has A = det = 1 + €£ is zeroless, so the system is non-singular. Moreover B = €©

o
A
So the conditions of Theorem §.3.8([i) are satisfied by the system. For €1, €5 € @, let

In addition A = e£and @ = 2 + €@, n = 2,50 R(A) =

€ e£
det(My (b)) = det 6;@ | = atdaote)
1+ €20 €1

det(M2(b)) = det = e(l+e) 26+ (€0 +e10).

24+ €0 €+ €€

By Theorem we conclude that the vector ¢ = (£1,&2) € E? given by

det (M (b c
6 = et(M (b)) _ €1+ €(e1 © +ef) et e(Eer + £0

d A ) 1+e£

et(M 1+ 62) — 261 + (e @ +
& = (A2( ) _ e(l+e) 16—1F 6;(6@ €ao) _ €(1 4 €2) — 2e1 + (€ O +610) + £ + €1k

is an admissible solution of the given system.

det(M 1 ) o
’[71 = =
However, the vector n = (11, 72) with det 6\42) is not a solution of the system. Indeed,

one has (24 e2) @ +(1 + e@)0 = @ € € + €, so it does not satisfy the second equation of the system.

Te following example deal with an homogeneous flexible system which satisfies only the conditions of Theorem

B38@E.

Example 4.3.18. Let € > 0 be infinitesimal. Consider the homogeneous flexible system

(1+e2)é1 + (e+20) Ce0
€0 & + (1+e2£)¢  Cef.

1+e0 e+ €0
€@ 1+
and B = €20, so A is not an absorber of B. Furthermore,

Because A = det = 1+ € @ is zeroless, the system is non-singular. Moreover, A € @

A

R(A) L' c0(1+e0)

an
A 14+ e

= 6®’
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and
PB)=B:B=0:e£=¢0.

Hence
R(A) = P(B).

So the system just satisfies conditions of Theorem §.3.8([i) and does not satisfy those of Theorem §.3.§fiii) since
B # B. Forb; € €20,by € €£, let

by €+ €20
det(M;(b)) = det = by — boe + bie%£ 4 bye?0,
( 1( )) b2 1+62£ 1 2 1 2
1 b
det(My(0) = det| C = by tbieo thyeo.
€D b

Applying Theorem [.3.8(i) one concludes that the vector & = (£, &)7T given by

det (M (b by — boe + eby £ + b2
. (M) _ by —bre+eh€+bePo b1 — boe + ebi £ + ba20),
d t(]\% ) byteb b
_ de 2 byt €bhy 2€ _
5 = A = T reo = by + €eby © +bee@,

is an admissible solution of the given system.

det(Ml) det(Mg)

However, note that (£1,&2) = ( A A ), with
2 2
det(My) = det|©9 Tl -
£ 1+é%
1 2
det(Ms) = det @ 62® = &f
€D £

1s not a valid solution. Indeed, we have

_ det(M;) €L

2
p— p— £
& A 1+ e ‘
det( M. 2¢
g =) L oy
A 14+ €0

Substituting it into the first equation of the system, we have
(14 €e@)eL+ (e + Q)L = £ D 2 0.

Hence this vector does not satisfy the first equation.

Next we have a homogeneous flexible system satisfying all Cramer’s conditions.
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Example 4.3.19. Let € > 0 be infinitesimal. Consider the homogeneous flexible system

(1+e@)é1 + (e+0)e C  ef
e0é + (1+e)& C €.

l+e e+e€f
€0 1+€%

so A is not an absorber of B. Furthermore, A = ¢®, B = B = ¢£,50 P(B) = B : B = £ and R(A) =
Z . anfl

Because A = det = 1 + €® is zeroless, the system is non-singular. Moreover A € @,

= e@; hence R(A) C P(B). Thus the system satisfies all the Cramer conditions. Let

A
£ 2
det(M;) = det oeteol
e£ 1+
1 £
det(Ms3) = det LI ] ef.
€D €L
Theorem says that the vector (£1,&)7 given by
detM; e£
p— p— p— £
= A 14 €k ‘
detM, e£
= = = £
&2 A 1+ e£ ‘

is the maximal solution of the system. Moreover, if we verify it by substituting &1, & into the system, we obtain

that
(14+e0)ef + (e+0)ef =€k
(€0)(e£) + (1+€2£)ef = k.

Hence it is a valid solution of the system.

The following example shows that although the determinant is infinitesimal, the Cramer conditions still are

satisfied.

Example 4.3.20. Let ¢ > 0 be infinitesimal. Consider the system
r + y C 14£°
(I+e)x + y C £e%,

1 1
) ) — —e¢ is zeroless and not an absorber of B = £e®. A short calculation shows
+e

that R(A) = 0, P(B) = £¢* and hence R(A) C P(B). Applying Theorem we conclude that the vector

One has A = det
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§ = (&1, &2) given by

14+ g% 1
det
L% 1 1
51 = — = _— —|— £6¢O
. —€ €
1 1+ £
det m P
€ € 1
& = - - e + L%

—€

is the maximal solution of the system.

Finally, we have a flexible system satisfying only the condition R(.A) C P(B) of Theorem §.3.§(#).

Example 4.3.21. Let ¢ > 0 be infinitesimal. Consider the system

(1+e+e@)r + y C £e
(1+e2)z + (1+e@)y € 1+ £e

l14+e+e0 1
14+ €0 1+e0

We have A = det = € + €O is zeroless. Moreover, B = B = €£. So A is an absorber

A
of B. In addition, the system is reduced, so R(.A) = N @ and P(B) = e£ : £ = £. Hence R(A) C P(B).

Hence the conditions of Part (f) of Theorem are satisfied. Fort; € e£, 15 € 1 + £ let

t 1
det(M; (b)) = det| = t—tr+teD.
ta 14+€e0
1 t
det(Mz(b)) = det teted i = tot ety —t1 +11e @+l @.
14+ ew to

Using Theorem §.3.8()) we conclude that the vector & = (&1, &) given by

det(Ml (b)) t1 —lo+t1€e@
1= - 7 — - - -
d €
¢ det(Mg(b)) to + €to —t1 +11€ © +t2e®
9= — =
d €

is an admissible solution of the system.

4.4 Gauss-Jordan elimination method for non-singular flexible systems

The Gauss-Jordan elimination is a well-known and widely used method for solving linear systems and com-
puting inverses of matrices. The procedure is simple to state and implement. However, if we apply the Gauss-
Jordan elimination to transform a matrix over [E into a near identity matrix /4 we may change the orders of
magnitudes of neutrix parts of elements of the matrix. To know how Gauss operations affect the neutrix parts

we will explicit these operations and then we will apply it to deal with non-singular flexible systems.

Also, the Gauss-Jordan elimination method does not work on all flexible systems. For example, consider the
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flexible system

2 — c 1
voov s e (4.25)
-z + y C €£.
By adding the first one to the second row we have
2r — c 1
oy s iTe (4.26)
T c 14+ 0.

Now & = (1 + @, 1+ @) is a solution of the system below. However, the vector & is not a valid solution of

the original system. This means that the two systems are not equivalent.

In this section we will provide conditions to guarantee that the Gauss-Jordan elimination can be applied to
non-singular flexible systems. We also consider some special kinds of systems which satisfy these conditions.

From now on we use the following notations.

Notation 4.4.1. Letn € N be standard and A = [a;5] € M,, (E). Foreach k € {1,...,n}, let1 <i3 <--- <
ip<nandl1 <j1 <- - <jp <n.

(a) We denote by A;, i, ji..j. the k x k matrix formed by removing from A the rows whose indices do not
belong to {i1,...,i,} and columns whose indices do not belong to {j1,...,j;} and by M;, 4, 4. =
det(As, . iy 1.5, ) @ k x k minor of A.

Qip o Qi Qiy

(b) For k > 1,k +1 < 4,57 < n we write by Mi(];) = det | - R " |. Note that we added
Qg1+ Qg Qgj
A A

Jj-th column (ayy, ..., agj, al-j)T and the i-th row (o1, ..., 4, a;j) to the k x k principal submatrix

o1t 0k
of A. For k = 0 we write Mi((;.) = qyj forall 1 <i,j <mn.

Q1 - Ok
(c) We write M,gf“kfl) = M®),
(k)

1,J

)

(d) We write m;, ., j..j, as arepresentative of M; and m® asa

k).

m

. k
T T I as a representative of Mi(j

representative of M (

We start by showing that we can modify a given matrix such that the resulting matrix satisfies the condition
i3] < i

Proposition 4.4.2. Let n € N be standard and A = [ojlnxn € Myu(E) be a non-singular matrix. Let
P = [aijlnxn € My (R) be a representative of A. We can change rows and columns of P such that it satisfies

the following condition
)m(k.)‘ < ‘m(’“;) 4.27)
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forallk+1<1,5 <n,where m{® — agj forall1 <i,j <n.

i?j

Proof. Let |m = max
22 1] k+1<i,j<n

ambiguous, we refer to the notation m(*) (P) as the principle minor of order k of P instead of m®*). We do

mg?‘ Then the equality (#.27) is equivalent to 771,(;6,)g = Mmyy1. To be un-

similarly for mgf;-_l) (P) and my41(P).

Let I = {1,...,n}. Assume that [, (P)| = |apq| # |a11|. Let o1: I — I be a permutation defined by

joifj ¢ {l,q}
o1(j) =41 ifj=q
q ifj=1
and 71: I — I be a permutation defined by
i ifi g {1,p}

(i) =41 ifi=p
p ifi=1

Let P = {aﬁ})} = [aT(i)o(j)] . In fact, the matrix P(!) is formed from the original matrix by two successive

changes, starting by exchanging the g-th column and the first column in P, and then by exchanging the p-th row
and the first row. Consequently, 7y (P()) = aﬁ) = ap,. Hence the condition ({.27) is satisfied for k = 1.
Suppose that we have constructed permutations o7, . .., 0%, 71, . . ., 7, such that the matrix P(¥) = [agﬂ)} =
[am(i)gk(j)mn(i)gl(j)] satisfies the condition mz(’l]) (P(k)) < mi+D) (P(k)) = My41 (P(k)) foralll <1<k
and1 <i,5 <.

We now compare the terms 7y, | (P(k)) and m(F+1) (P(k)) of P(%). Assume that \mkH(P(’“))\ = ’m&@ (Pk) ’ #*

’m,(ﬁl kil (Pk)‘ for some r, s > k + 1. Let o;.41: I — I be a permutation defined by

J ifjZ{k+1,s}
o+1(j) =Sk+1 ifj=s
s i =k+1,
and 741: I — I be a permutation defined by
i ifi ¢ {k+1,r}
Ter1(i) = qk+1 ifi=r
r ifi =k+ 1.
Let P+1) = {al(,kjfl)] = [ai’il (Joxss(j)| - In other words, the matrix P+ resulted from P*) by two

successive changes, starting by exchanging the st column and the (k + 1) column in P®), and then by
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exchanging the r*" row and the (k + 1)*" row.
Observe that the operation 7x10%1 does not affect the submatrix

(k) (k)

o . ok
PR =1
off - off
Hence for 1 < [ < k one has
iy ()| = o5 ()] < ()] - o ().
foralll <i,j <n,wherei’ =7,}(i) € {I,....n} and j' = o 1, (j) € {l,...,n}.

Also ‘ml(jgl,kﬂ (P(Hl))‘ = ‘m$k2 (P(k))‘ Because k + 1 < 7.} (i),07. 1, (j) < nforallk+ 1 <i,j <n,
it follows that

i) (P0)] = ‘m%l(i),o;il(j) (P(k)>‘ < 2 (PO)] = i (P49
Hence ‘m(k“) (P+D) )| = ‘mkﬂ k1 (73(’““))) = M1 (P(k+1))‘ )

Using (external) induction, we conclude that the matrix P(") = [O‘Z(Z)'] = [0, (i)on(j)..71 (1)o (j)) Obtained after

carrying out n times of above operations satisfies the condition (#.27) forall 1 < k < n. O

4.4.1 Explicit formulas for Gauss-Jordan elimination

The explicit formulas for the Gauss elimination, which transforms an arbitrary matrix into a triangular matrix,
are given in some articles and books such as [[16, [18, 32, 27]. In these works the authors represented elements
of a matrix (system) after applying & steps of the Gauss elimination in terms of the ratio of two minors. In [33],
an explicit formula of Gauss-Jordan elimination, which transforms an arbitrary matrix into the identity matrix
was introduced. In all these studies the proofs tend to use advanced results in algebra. In [20], the Gauss-
Jordan elimination formula was obtained by a process of successive multiplication of elementary matrices. The
procedure transforms each column in a given matrix into a unit vector. They did not give a detailed proof. We
will present here a proof for the explicit formula of Gauss-Jordan elimination based on some basic properties of
determinants, induction and direct calculations. Then we will apply this formula to prove that the Gauss-Jordan

elimination can be used to solve flexible systems under some suitable conditions.

Definition 4.4.3. A matrix P = [aj]nxn € My n(R) is called Gauss-Jordan eliminable if for 1 < k < n,

aip a2 - Qlg

as; az - a
m®) = det .21 ?2 ) Qk # 0.

agl1 Qg2 -+ Qg
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Let P = [aij]nxn € Mpn(R) be a reduced Gauss-Jordan eliminable matrix. For every p € {1,...,2n — 1}

we define matrices G, as follows

1 0 0
—ag; 1 0
g1 = {gg)]nm = 321
—ap1 0 1
1 ifi=j+#k
Gor s — [gi(]gk—m}nxn, where ggk_m =<0 - ifi#j ke {2, ..,n},
mm(k) ifi=j=k (4.28)
Gok—1 = {ggk_l)}nm, where
0 WEARER
1 ifi—j
gty = (_1)k:+z‘mlm(k*l)71(~}€~(j1*)1)(i+1)-~k fl<i<ki—k ke {2,..n).
L _—
_m(}cfl) ifi >k, j =k,

Notation 4.4.4. We denote by G(-) the successive multiplications of matrices

Gon-1(Gan—2(- -+ (G1(+))))-

We call G the Gauss-Jordan procedure, and for 1 < p < 2n — 1, G, the Gaussian operation matrices .

In addition, we write Gy = I, the identity matrix of order n. Then G(.) = Gay,—1(G2n—2(- - - (G1(Go(.))))).

k
[O‘z(j)]nxn-

For each matrix A € M,,(E) we write A®) = G.(Gr_1(- - - (G1(Go(A)))))

Convention 4.4.5. Because of Proposition f.4.2, from now on we always assume that G is the Gauss-Jordan
procedure of a matrix which satisfies the condition (#.27). In case A € M.,,(E) we choose a representative of
A such that it satisfies this condition.

Theorem 4.4.6. Let P = [aijlnxn € My (R) be a reduced Gauss-Jordan eliminable matrix. Then

- (2k—1) (2k—1)7
10 --- 0 a5 1) al,
. (2k—.1) ‘ (21;—1)
-1 ! ey T
P70 = Gop—1 (Gor—2 (- (G1(P)))) = Lapiyy o G
0 o@D O (2k-1)
D (k1) (k+1) %(k+1)n
' (21;;—1) ‘ (21;—1)
-0 0 e 0 an(k+1) “o Gpn
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forallk +1 < j <n, where

m®)
irj yy

@h=1) _ ) k) Fizkel 4200

K ; i—1)(i+1)...kj . ’
Lo BNy

in particular
(k+1)
(2k—-1) M
Uk+1) (k1) = k) (4.29b)

Proof. We will prove the theorem by induction. A short calculation shows that it is true for £ = 1. Assume

that it holds for k. Because of the inductive assumptions, we have

PR —go (... G1(P))

M1, .k2..(k+1) (2k—1) (2k—1)
1 -+ 0 —1)kHl s AR
- m(F) “10+2) “1n
1 1 kal...k‘,l...(k—l)(k—i-l) (21;—1) (21;—1)
0 --- (—1) ® Ups2) ay,
= m+1) (2k—1) (2k—1)
0 --- 0 R a ceea
(k) (k+1)(k+2) (k+1)n
m(kl)c—l-l (2k—1) (2k—1)
n, - -
_0 - 0 m(k) an(k+2) s Onn |

and formulas (#.294), (#.29H) hold. We need to prove that it holds for & + 1, that is

_ (2k+1) (2k+1)7
L0 - 0 ajiy - ap,
' (21;+1) ' (2l~;+1)
0 ki) Tk
2k+1 2k+1
PR =Gy (Gaia(--- (GUP)) = [0 0 -+ 1 a0 o ol
0 o2k tD) L (2k+D)
A k+2) (k+2) k+2)n
) (2k'+1) ' (2h+1)
_0 0O --- 0 an(k+2) s QGnon
where
(k+1)
m; e ,
eret) _ ) e =kt g =kt (4302)
i . i—1)(7 j o ; ‘
(71)k+z+1m1~~~(k+1)71~--((k+11§ DT e < k42 <5 <,
m
and
(k+2)
(2k+1) _m
Dy =T (4.30b)

We do it in two steps. In the first step we show that the (k + 1)-th column of the matrix P(?*+1) is a unit vector.
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In the second step we verify formulas (4.30a) and (4.301).

As for the first step, one has

PR = G, (P(%*l))

0 - 0
N 1
m
00 --- gy 0
00 - 0 e 1
[ M. k2. (k+1)
1 0 (M=
(1) -~
B kal...k.,l...(k—l)(k-&-l)
0 1 (-1 »
ey
0 0 -
(k)
mn,k—H
_O 0 p—r)
r mi. k2.(k+1)
1 .-+ 0 B Y% o S L YA
(1) ®
. 2km1...k;1...(k—1)(k+1)
- 0 1 (-1 o ®)
10 --- 0 1
(k)
mn,k—H
_() e 0 5

(2k—1)
@ (k+2)

(2k—1)
Qg (k+2)

(2k—1)
Dk41) (k+2)

(2k—1)
@ (k+2)

(2k)
@ (k+2)

(2k)
Do (k+2)
(2k)
(k1) (k+2)

(2k)

@ (k+2)

(2k—1)
in

(2k—1)
Ak

(2k—1)
(k+1)n

2k—1
a7(1n )

apy |

(2k)
akn

(2k)
pt1n

alin’
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So

k2 VL k2. (k+1)

1 - 0 (-1 e 0 0
0 .. 1 (71)2“1 M1 k1..(k—1)(k+1) 0 0
m(k)
o -0 1 0 - 0
N mgﬂQ k1
0 -+ 0 ——1 1 0
(k)
M, k+1
_0 e 0 - 0 --- 1_
i M. k2..(k+1) (2k) (2k) ]
1 0 (_1)k+1T al(k+2) aln
' ' ml...k.,l‘..(k—l)(k—l-l) (21;) (ék)
0 --- 1 (=% m(®) U (k+2) o gy
(2k) (2k)
0 -0 (k)l Oprykt2) = Ykerin
0 .- 0 M2, k+1 (2k) o (2k)
) @ (k+2)(k+2) (k+2)n
m(k])f 1 2k 2k
_0 ... 0 n’;’(k—;_ ail(k)Jr2) a%n) |
r (2k+1) (2k+1)T
1 00 ap) - o
' (21;+1) ‘ (21;+1)
o P o B 98
0 -0 Ck+1)(k+2) ~ Yketin
' o (2k;+1) ' (21;+1)
_0 ..o 0 0 Uyt ) o an

Hence the (k + 1)-th column of Goy 11 (- - - (G1(P))) is a unit vector.

As for the second step we compute agkﬂ)(l <1< n,k+2 < j <n)and show that they satisfy formulas

(#.304) and (4.30b). We consider three cases.

Case 1: i =k + 2. Let )
1 . 0 a§§k+1)

Tkt2) = 6 @k
s
+
k+2)j |

[en}

&
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Then
o (2k+1)

det (Tik42),) = U k+2);°
Observe that Ty is obtained from Py (r42) 1. (k+1); by multiplying it successively by G, ..., Gor 41 and
that the G2,41,0 < r < k do not affect the determinants. In fact, they represent the operations of adding a
multiple of one row to another. For each r € {1, ...,k + 1}, the operation G2,_2 represents the multiplication

(r-1)
m .. E+1

of the r-th row by R In addition det (Pl,._(k+2)71__(k+1)j) = m,&jé}, SO

k
agi Q}; —det (T(y2,5)) = det(Ga)det(Gy) . . . det(Gog)det Py 9 1...(k+1);)

(k+1)
m() (k+1) Mt

Mm@ m® ) k2 T )

forall k+2<j<n.

(k+1)

3 . 2k+1 my 2,k+2 m(
In particular for j = k + 2, agk+;)()k+2) _ kA2k+

k+2)

mk+1) T g (k+1)

Thus formula (4.304) and (¢.306) hold fori = k + 2and k + 2 < j<n.

Case2: i1 >k+2and k+2 <j <n.Let

1 e 1 (k+1) aij
Uij =
Ak+1)1 " O(k4+1)(k+1) O(k+1)5
ail T Ai(k+1) Qij

Then det (U; ;) = m* | Also operations Gy, . . . Gog1 transform the matrix U; ; into

1,J
_1 0 ag‘ij‘-i-l)_
S L :
iy = (2k+1)
0 -1 k+1)j
0 ... 0 ij?k+1)

With an analogous argument as in Case 1, one obtains

det (U7 ;) =7 = det(Ga)det(Gy) - - - det(Gar,)det (U )

k+1
1 m2) mk) D) mz(j :
" m®@ B m(k+1) i,J T oD

Hence (#.30d) holds fori > k+2and k+2 < j < n.
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Case3: i< k+2andk+2 < j <n.Let

1 S ay(i-1) aii+1) o G1(k+1) aij
ag-n1 - A6E-1)6E-1)  A6E-1)@E+1) 7 AGE-1)(k+1)  B>i—1)j
Vig=1 an - -y Qi(it1) o Gigk) ij
Aa+nr o A=) A6 T AL (kL) A1)
[ A(k+1)1 " Qk+1)(i—-1) YR+ T AR (k1) A(k41)5

Note that V:L,j = Pl...(k-‘rl),1...(i—l)(i+1)...(k+1)j’ so that

det(Vij) = Mi. (k1)1 (i=1) (i41)... (k1)

Operations Gy, . . ., Gop41 transform the matrix V; ; into

2k+1)7]
1 --- 00 --- 0 agj )
10 --- 0 &Y
Z,j - ’L(]
2k+1)
01 - e
. . . (2k.:+1)
_0 o000 -+ 1 i)

Expanding the determinant along the ¢-th row we obtain that

det(V};) = (—1)+F+1gZH+ 4.31)

Once again, with analogous arguments as in Case 1, one obtains

det(V ;) =det(V; ;)det(G2)det(Gy) . . . det(Gay)

1 m® mk) M (k+1),1..(i—1)(i+1)...(k+1)j
=M. (k+1),1...(i—1) (i+1)...(k+1)5 @ @ k) = (D) . (432)

Formulas (#.31)) and (#.32)) imply that

(_1)i+k+1a(2k+l) M (k+1),1..(— 1) (i+1)...(k+1)5
ij - m(k+1) :

So
(2k+1) (71)i+k+1 M (k41),1.. (5= 1) (i41)... (k+1)5
ij - m(k+1) :

Hence formula (#.304) holds for 1 <i < k+2and k +2 < j < n. 0
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In particular, when k£ = n one has

Corollary 4.4.7. Let P = [aij|nxn be a reduced Gauss-Jordan eliminable matrix. We have

Gon-1(Gak(- .. (G1(P)))) = In.

Letn € N be standard and P = [aijlnxn € My(R) be a reduced Gauss-Jordan eliminable matrix. For

1<p<2n—1L1et PP =Gy(Gyil... (GL(P)))) = [ ]scn.

A limited number does not blow up neutrices. We will show that entries of the coefficient matrix obtaining after
k Gauss-Jordan elimination steps with £ € N an odd number are limited. As a sequence, all entries of G'a,—1
with p € N are limited.

Lemma 4.4.8. Let n € N be standard and P = [aij]nxn € My (R) be a reduced Gauss-Jordan eliminable
matrix. Then a(p) is limited for all 1 < 1,5 < nandp =2k — 1.

Proof. We apply external induction. Because P is reduced, |a;;| < 1 forall 1 < 4,j < n. This implies that

agjl-)‘ = |aij — ai1 - a1;| < laij| + |a] - |ay;| < 2forall 2 < ¢ < n,1 < j < n.Fori = 1, one has

’a%)‘ =|ayj| < 1foralll < j < n. Hence a(;) is limited for 1 < ¢, j < n. Suppose that ag-k_l)

(2k+1)

1s limited for

k < mnandforall 1 <1,j < n. Because the g-th column of a; is a unit vector for 1 < j < k+1, the entries

of these columns are limited. We just need to show that al(j + ) is also limited for 1 < i <n,k+2 < j < n.
One has
N aZ ™V ifiA k41
Z(.j ) = mE+D
@H) ifi=Fk+1.
(k) (2k—1) . . . . . . ) .
Soa;;" = a;; is limited by the induction hypothesis, for¢ # k + 1,k +2 < 5 < n. Fori = k + 1 and
(k+1)
m;
k+ 2 < j < n, one has a(?.k) = (k+1) By Convention #.4.3 we have |a )‘ <lforallk+2 < j < n.
m
This implies that a( k+1) agk 1) aﬁi’“ 1) Ei’i)l) is limited forall k +2 < j <n,1<i<n,i #k+ 1.

For ¢« = k + 1 one has that Ei’fﬁ; = Eiljr)l) is limited for k£ + 2 < j < n. Hence a(j 1 is limited for

1<i,j<n. O

Corollary 4.4.9. Let A = [a;j]nxn be a reduced Gauss-Jordan eliminable matrix and Gy, for 1 < m < 2n —1

be the Gauss operation matrices of a representative of A. Then all the entries of Ga,—1 are limited for1 < p < n.

gl((Q;j—rll))) = aZ(Q;’Hl)) foralll1 <i<mn,1<p<2n-—1and

Lemma §.4.8. O

4.4.2 Conditions for solvability of a non-singular flexible system by Gauss-Jordan elimination

We recall two facts of the Gauss-Jordan elimination in classical linear algebra:



72 CHAPTER 4. FLEXIBLE SYSTEM OF LINEAR EQUATIONS

(i) The Gaussian operations do not make any change on the set of solutions of the systems. That is, the system
Alz] = bis equivalent to (GA)[z] = G(b), where G is the Gauss-Jordan procedure.

(if) The Gauss-Jordan elimination determines the solution of every non-singular system. In fact, G(b) is the

unique solution of the given system.
However, in general, these facts are not true for flexible systems. This means

(i) The non-singular flexible systems .A¢ C B may be not equivalent to (G.A)¢ C GB, and

(if) The vector G(/3) may be not equal to the set of all real admissible solutions of a given system.

The following example shows that G B is different from the solution obtained by Cramer’s rule.

Example 4.4.10. Consider the system

24+0)r1 + e@xo Cl+e0
(-14+e@)z1 + (1+0)x2 C24€0.

Using the Gauss operations we obtain

2+ +  €e0x2 Cl4e0
(-1+e@)r1 + (14+0)z2 C2+€0

12R | (1+@)z1 + €@z C1/24€0
— |((-14+e@)z1 + (14+0)z2 C2+€0

R2+R1{(1+®)x1+ cows  C1/24

— eoxr; + (1+0)xs C5/24+€0.

Hence G(B) = (1/2+ €©,5/2 + e©) whereas Cramer’s rule gives us (1/2 + ©,5/2 4+ ©).
Next we will present conditions in order to apply the Gauss-Jordan elimination to flexible systems. Flexible
systems satisfying these conditions will be also called Gauss-Jordan eliminable.

Definition 4.4.11. Consider the flexible system (#.2). It is said to be Gauss-Jordan eliminable if it satisfies the

following conditions.

(1) The system is non-singular,
(i) B=B = B,
(iii) R(A) C P(B),
(iv) The entries a,(ik_l) are zeroless for all 1 < k < n (see Notation §.4.4),

(v) The determinant A/&@" is not an absorber of B.
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Every flexible systems with & zeroless is equivalent to a reduced system. So, from now on, we always assume

that a flexible system is reduced.

Suppose a flexible system does not satisfy the condition (ii). The modified system, in the way that the neutrix
parts of constant terms are always taking to be the smallest neutrix B, does satisfy condition (fi). The set of
solutions of the latter system is a subset of the solutions of the original system. However, both sets of solutions
may very well be equal. Let consider the flexible system §.25, i.e.

(4.33)

Using the method of Section [4.4 it is easy to verify that the exact solution is given by

x 1 1 1
= + O + €L . (4.34)
Yy 1 1 2
Yet if we modify the system (#.33) to

(4.35)

20 — y C 14 €£
—Z + Yy g €£a

the Gauss-Jordan elimination method yields the solution (x,y) = (1 + €£, 1 + e£), which is strictly included in
©.34).

Observe that the conditions that for each 1 < k& < n, |a§]2-k_1)\ < |a,(ik_1)\ forall £ < i,j < n and that A is
(2k-1)

zeroless do not guarantee that o is zeroless. This is shown in the next example.

1 0 0
Example 4.4.12. Let A= |0 © €|, where e > 0 is infinitesimal. Then A = det(.A) = € is zeroless and
0 € 0

|aij| < |aga| forall 2 < i, j < 3. However a = @ is a neutrix.

It is not convenient to use Definition to verify that a given flexible system is Gauss-Jordan eliminable or

not. The reason is because we have to implement Gauss operations to calculate A2?~1 1 < p < k to check if

(2k=1) is zeroless or not. Next, we will present some conditions to guarantee that a,ﬁkil)

the pivot element of A
is zeroless without carrying out Gauss operations. This means that we can check a given flexible system is
Gauss-Jordan eliminable or not without performing Gauss operations. To do that we first need to determine the

neutrix part and a representative of a,?kk_l).

The result below determines the neutrix parts of the entries of a matrix after applying 2k — 1 steps of the Gauss-

Jordan elimination. It also gives an estimate for the neutrix part of the pivot element of Ak~

Notation 4.4.13. Let n € N be standard and A = [o;j]nxn € My (E). We write

Lij = max {A4,;}, forall 1<i,j<n. (4.36)
1<p<i
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Lemma 4.4.14. Let n € N be standard and A = [a@-j]nxn be a non-singular matrix over E. Then for all

k+ 1 <4,5 < n, the neutrix parts of agk are given by

AS) = Ajj +an Ay,

(k—1) (4.37)
(2k—1) _ ,(2k=3) , "k (2k—3)
Az’j _Aij + mk) Ak,j ’
and
(2k—1)
A(k+l)(l<:+l) € Lk+1)(kt1)- (4.38)

Proof. We first demonstrate formula (#.37). Clearly, A%) = A;; + a;1Ay;. For the second equality, one has

(2k—1) (2k—3) aZF ¥ (2k—3) (2k—3) aZ* ¥ (2k—3)
A = max { A}’ kA = Ay s A forall k41 < i, j < n. Also by

1] ij > (2k—3) " Tkj (2k—3)
ik (k—1) (k allgk
(2k=3)  p(k=1) ) (k-1) (k=
formula (4.29) we have a”; 3y = l’kk / 7 = Z’kk . Hence formula (4.37) is proved.
al(dC -3) m(k) /m(k=1) mk)

Next we prove formula (#.38). For p = 1, one has Agjl.) = max{A4;j,ai1 A1} C L;j, forall2 < 4,5 < n.In

particular A%) C Lo9s. Suppose that Agki?’) C L;; forall £ < 4,7 < n. We will show that Agkfl) C L;j
k—1
forall K +1 < 14,7 < n. Indeed, by Convention which implies nizk)) < 1fori,j > k+ 1, and by
formula (4.37) we have
(k—=1)
Agk_l) = max {Ag.k_g), mﬁk) A,(j-k_g)} C max {L;j, Lij} = Lij.
In particular AGY ) L) = N (aﬁi’i‘li&m) € Lik+1)(k+1): -

The next result gives an estimation of a representative of the pivot element of A2¥~1) 5o that, in some cases, it

enables us to verify whether the pivot element of A1) is zeroless or not.

Theorem 4.4.15. Let n € N be standard and A = [oj|nxn be a reduced non-singular matrix over E. Let
(k+1)
m

A =det(A) =d+ D. Foreachl <k <n, ifa,(jﬁk_i%) is zeroless then | —~—
m(k)

> QA.
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Proof. Foreachl <k <n — 1 we have

ACRD =Gor 1 ((Gag—a(- -~ G1(A))))

- 2k—1 2k—1 2k—1 2k—1)7
1+ An A(12 ) Agk ) ag(kﬂ) agn )
2k—1 2k—1 2k—1 2k—1 2k—1
Agl 1+ Aé2 R O‘gk ) aé(k—&-l) o O‘gn )
2k—1 2k—1 2k—1 2k—1 2k—1) | _ ¢ (2k—1
= A%l : AI(fQ ; 1+(Al(ck) : ( lg(k;l% O‘E(m )) = [az(’j )]nxn
2k—1) (2k—1 2k—1 2k—1 2%k—1
At Atz 0 Ak Yy T Yt
2k—1 2k—1 2k—1 2%k—1 2k—1
_Ail ) A?(12 ) Afzk ) 1(1(k+1)) N A
(2k—1) m(k+1) (2k—1) mz(f) m(k+1) (2k—1)
Suppose oncontrarythata(k+1)(k+1) = € @A. From a;; ‘ =" | ‘a(k:-i-l)(k:-i-l)
(2k—1)

forall k +1 < 4,5 < n one derives that a ceoAforallk+1<i,j<n.

]
Let S,,_, be the set of all permutations of {k+1,...,n}ando € S,,_. Put APE=1) — det (A,(f_fflzlkﬂn) =
d@=1) 4 DEk=1) where

d®N = %" SgII(U)al(jfl_al()lHl) . af:(;)l) € (@A) * CoA. (4.39)

oESH_k

(2k-1)

On the other hand a = 1forall 1 <i <k, sod®~1 is also a representative of det(A%*~1)). Applying

the successive Laplace expansions we obtain

mE=D =2 @ ]

(2k-1)| _ . dl =
(d ‘—\det(gzk) det(Goi—) -+ det(Ga) - d] = | T B

d
m) |

By formual (#.39), it follows that d € m*).»A. By Proposition itholdsthatd € @A. Henced € @ ANA.
Because A is zeroless, one has a contradiction to Lemma 2.2.22. O

The two next results present conditions to know that the pivot element of A%~ is zeroless, without the need
to effectuate Gauss operations. This means that the condition (i) of Definition is satisfied.

Theorem 4.4.16. Let n € N be standard and A = [0;j]nxn be a reduced non-singular matrix over E. Assume
(k+1)
m

m(k)

(2k—1)

that Xkt 1) (k+1)

> Ligsy kg1 foralll <k <n—1. Then

’ is zeroless forall 1 <k <n — 1.

Proof. By formula (#.38) one has N <agiiz)12k+l)) C L(x+1)(k+1) and formula (#.29) shows that agi’_:)l()kﬂ) =
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mkE+1)
————. By the assumption we have
m(k)
(k+1)
(2k—1) m | @k-1)
N (a(k+l)(k+l)) < Likgnyeyr) < m® | ‘a(k-i-l Y(k+1)|
This means that agil_fl)l()kﬂ) is zeroless for kwith1 < k <n —1. O
Theorem 4.4.17. Let n € N be standard and A = [ozij]nxn be a reduced non-singular matrix over E. Let
L (k+1)
A =det(A). If A C QA then N > @A. Moreover O‘Ezil)l()kﬂ) is zeroless for all 1 < k <n — 1.

Proof. Let A = GIA = [« Ul)]nm Then a%) = m(® and a(j) (]1) for all 2 < 4,7 < n. Suppose
that m® € QA. Because’ ‘ = ’m(l)‘ < ‘m ‘ = ‘am)‘ for 2 < 4,5 < n, it follows that ’a(;)‘ € 0A

for all 2 < i,j < n. Let S,_; be the set of all permutations of {2,...,n} and 0 € S,_;. Put A1) =
det (A2 na. n) =dM + DM where

dM = Z sgn(a)agf)@) caM e (@A) C oA.

no(n)
gESH_1

Also d = d) since G; does not change the determinant of P = [a;j]nxn. Hence dY =d e AN A a
m®
contradiction. Thus | = |m(2)] > @A. On the other hand, by formula (#.38) we have N (aéQ)) CAC

m(r+1)

OA. So a%) is zeroless. We now assume by induction that > @A foralll <r <k — 1. Because

m(T)

) ~ ) m{+ ) :
N( a, +1)(T+1)) A C @A, by formula (B.38) it holds that Uy )(rt1) = ) +N ( (r+1)(r+1)> is

(k+1)
m(k)

(k+1)
1 @k-1) _m
) C A € @A and hence Ot 1) (ki) = —

zeroless for all 1 < r < k — 1. Then Theorem implies that > @A. Also by formula (4.38) we

obtain that NV (a( k—1)

2 (2k—1) .
(k+1)(k+1) +N (oz )) is zeroless. [J

(k+1)(k+1

For Gauss-Jordan eliminable flexible systems, entries of Go, do not make any change to the neutrix parts of

constant terms .

Lemma 4.4.18. Suppose that the flexible system (&.2) is Gauss-Jordan eliminable. Then

(k+1) (k)
m m
e B = m(k+1)B: Bforalll <k<n-1.

(k+1)
Proof. By Theorem there exists ¢t € [@, o] such that m 5 ‘ € t|A|foralll < k <n—1.0n
m

the other hand, Proposition and the facts that A is not an absorber of B and that is limited yield that
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(k+1)
A-B=B. Also 0 is limited by Lemma §.4.8. Hence, by Proposition 2.1.3(ii) we have
m
m (k1)
B=ABC[tA|B = ‘7‘3 C£B=B.
m(k)
7n(k-&-l) o . m(k)
0 B =B forall 1 <k <n — 1. This implies that B=Bforalll <k <n-1. O
m(k) m(k+1)

Similarly, Gauss operations do not change the neutrix part of the constant terms.

Lemma 4.4.19. Assume that the system (&.2) is Gauss-Jordan eliminable. Then

Proof. We will prove it by external induction. Due to Remark and the fact that coefficients of reduced

systems are limited, we have

1 0 B B
—ay
GBl=BYwa=| . . ||:i]=
P 5
—apy 0 - 1

Suppose by induction that G,(G,—1(- - - (G1([B])))) = [B]. We will prove that G,11(G,(- - - (G1([B])))) = [B].
We consider two cases.

Case 1: p+ 1 = 2k for some k € {1,...,n — 1}. Then, by the inductive hypothesis and Lemma {4.4.18 we

have

Gp+1(Gp -+ (G1([B]))) =Gar. - [B]

10 0 0
0 0 0
. B B
= (k) ] =
o0 --- me 0 ) )
m(k+1) B B
00 --- 0 e 1

Case2: p+1 =2k + 1 forsome k € {1,...,n — 1}. Then, due to Corollary #.4.9 we have

(_1>k+i+1 M. k1..(i—1)(i4+1)..k+1 cs
m(k)
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(k)

m:
and Zk’il) € £foralli,e {1,...,n},k € {1,...,n —1}. So, by Remark 2.2.27 we obtain
m

Gp+1(Gp - -+ (G1([B]))) =Ga2k+1 - [B]

r -0 (_1)k+2w 0 --- 0
m(k)
1\ 2k41 MLk L (k1) (k+1)
0 1 (-1 o 0 0 . i
- m(k) N I e
0 - 0 _Mhe2k41 Lol sl s
m(k)
(k)
My k41
_Q o 0 . s 0 1_

Because n € N is standard, by external induction we conclude that G[B] = Gap—1(Gon—2(--- (G1(B)))) =
[B]. O

As regards to flexible systems, equalities are replaced by inclusions. Next we investigate the relationship be-

tween the multiplication of matrices and inclusion relationships.

The result below shows that the multiplication between a matrix and a vector with external numbers preserves

inclusion relationships on these vectors.

Lemma 4.4.20. Let A = [aj] be n x n matrix over E and v = (v1,...,%),8 = (B1,...,0n)T be two

column vectors in &" such that v; C B; foralli =1,...,n. Then
Ay C AB.
n n
Proof. One has Z a7y C Z a;jf; foralli =1,...,n. Hence Ay C AB. O
j=1 j=1

Gauss operations preserve inclusion relationships on vectors with external numbers.

Lemma 4.4.21. Let G be the Gauss-Jordan matrix of A = [a;j]nxn on R. Let vy = (71, , )T, B8 =
(B1,--+, Bn)T, where v;, 3; € E, foralli € {1,...,n} such thaty; C 3;. Then G() C G(B).

Proof. Foreachp € {1,...,2n — 1}, letU, = GUp—1 = [wi]nx1,Vp = GpVp—1, Withlly = v,V = 5. By
Lemma , one has U1 C Vi. Suppose now that 4, C V,. By Lemma we obtain Uy, 1 = Gpr1U), C
Gp+1Vp = Vp41. By external induction we conclude thatf, C V), forallp = {1,...,2n — 1}. In particular for
p = 2n — 1 we obtain G(y) C G(p). O
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4.4.3 Main results on the Gauss-Jordan elimination method

For Gauss-Jordan eliminable systems the Gauss operations do not change the set of solutions.

Theorem 4.4.22. Assume that the flexible system (#.2) is Gauss-Jordan eliminable. Then the system (8.2) is
equivalent to the system (g(A))f C Gg(B).

We prove this theorem by showing that the set of all real admissible solutions of both systems are equal to the
Cramer-solution of the given system. We do this in two steps. In the first step, we prove that the external set of
all real admissible solutions of the system (4.2) equals the Cramer-solution. In the second step, we demonstrate
that the set of all real admissible solutions of the system (G.A){ C GB equals the Cramer-solution of the original

system.

Theorem 4.4.23. Suppose that the flexible system (8.2) is Gauss-Jordan eliminable. Then the set of all its real

admissible solutions is equal to the Cramer-solution of the given system.

Proof. Let S be the external set of all real admissible solutions of the system and z = (1, ...,z,)T € S. Let
& be the Cramer-solution of the system. Because the Cramer-solution is maximal, we have z € & and hence
S CE&.

On the other hand, let y = (y1,...,%,)" € R™ be a representative of € = (£1,...,&,)T. Then
n n

Zaijyj - Zaijﬁj C pB; forall i€ {1, ey n}

j=1 j=1
So y is a real admissible solution of the system and hence £ C S. Combining these two facts we conclude that
S=¢. O
In the next step we will show that the Cramer-solution equals the set of all real admissible solutions of the system
(GA)E C GB. We call these solutions Gauss-solutions.

Definition 4.4.24 ([20]). Letz = (x1,...,2,)7 € R" be a real column vector. The column vector z is called a
Gauss-solution of the system (i.2)) if for every representative of aij, 1 <i<m,1 < j <n,and corresponding
matrices one has

(GA)z C GB.
So a Gauss-solution is a real admissible solution of the system (G.A)¢ C GB.
The below theorem says that the external set of Gauss-solutions is equal to the Cramer-solution.
Theorem 4.4.25. Suppose that the flexible system (#.2) is Gauss-Jordan eliminable. Then the Cramer-solution

of the flexible system (&.2) is equal to the external set of all Gauss-solutions.

To prove this theorem we first demonstrate some auxiliary results. The proposition below generalizes [20,

Theorem 5.36, p. 82] for non-homogeneous non-singular flexible systems. Here we state not only for non-
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homogeneous but also for upper homogeneous flexible systems, in particular, for homogeneous flexible systems.

We also give a new proof for it.

Proposition 4.4.26. Suppose that the flexible system (8.2) is Gauss-Jordan eliminable. Let

det(M7) det(M,,) )T

x:(xl,...,xn)Te( A A

Then x = (x1,...,7,)" € Mu1(R) is a Gauss-solution of (8.2).

det(Mi)
A

Proof. Because z; € foralli € {1,...,n}, we have

Q11 . Olp T B1
-
ap1  crr Opp Tn /Bn
By Lemma @.4.21), this implies
a1y v Qi | | B1
g cg
apl Opp Tn /Bn

On the other hand, by Lemma we have

a1l v Qip| |71 o1 ot Qi x1
g =19
apl o Qpn| |Tn apl ** Qpn Tn
Hence
o111 Op ] /81
g cg
Qi - Qo T Bn
Sox = (1,...,2,) is a Gauss-solution of the system (&.2). m
An o A
Lemma 4.4.27. Let A= | : .. i | ,[B] = (B,...,B) besuch that A;j, B are neutrices for all
Ay - A

i,j€{l,....,n}andu = (uy,...,u,)" €R™ Ifu+ Au C B thenu; € B.

Ajqug + -+ Ajpuy,

Proof. The vector Au = : is a neutrix vector, so 0 € A;ju; + -+ + A;pu, for all

Aptur + -+ Appuy
i€{l,...,n}. Henceu € u + Au C B.
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The following result is stated in [20, Prop. 5.35, p. 80]. We here give a new proof for it.

Proposition 4.4.28. Suppose that the system (4.2) is Gauss-Jordan eliminable. Let x = (x1,. ..
,yn)T be two Gauss-solutions of the system and u; = x; — y;, for all 1 < i < n. Then u; € B for all

(yl,...
1=1,...,n.

Proof. By subdistributivity, one has

75Un)T7 Yy =

-0411 aln- -Ul Q11 Qin 1 — Y1
g =19
a1 | ) |Un Qn1 Qnn, Tn — Yn
_0411 aln_ _331 Qi Qln Y1
clg e ¢ :
| ant | ) |Tn a1 Qnn, Yn
b1+ B by + B b1 B b1 B B B
cg : -G : =G || +G || =G| |-G |:|=9|:|=1|]|>
b, + B b, + B by, B by, B B B
by Lemma §#.4.19. On the other hand,
E Q1n U1 1 ain ug An An uy
g =g +16| :
a1 Qnn Up Gn1 Gnn Unp, Ant Ann Unp,
[ ] An An Uy
=] +]9] : : :
| Un, | Al Ann Up,
It follows that
uy A Ain Uy B
+ : : c |
Uy, A Ann Uy, B

By Lemma §.4.27, u; € B foralli € {1,...,n}.

We will extend Theorem 5.37 of [20] which is stated for non-homogeneous systems. We prove that it is true for

both non-homogeneous and upper homogeneous systems.

Proposition 4.4.29. Suppose that the flexible system (8.2) is Gauss-Jordan eliminable. Let x = (x1, . . .

be a Gauss-solution of the system. Then

T; €

det(Mi)

A

s )T

forall 1<i<n.
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Proof. Leta;j € oyj,1 <i,5 <n,b; € f;,1 <i<nandx = (z1,...,x,) be a Gauss-solution.
Put
L aggoy bioaigyny o am
dj = det . .
anl - Qpj-1) bn, An(j4+1) *°° Aann

foreach j € {1,...,n} and

1 A1n
d = det :
Gpl ° Qnp
.. d d . .
By Proposition §.4.26, the vector zg = ( El’ ceey F”)T is a Gauss-solution of the system (f.2). Let z =

(z1,...,2,)7 be an arbitrary Gauss-solution of (#.2). Then by Proposition and Lemma one

d; d; det( M; d; det(M; det(M;
hasxi€§+B:j ](\17(]\6/[<A Z))foralli:1,...,7’L.MoreoverCZ+N(e(A )): e(AZ)forall
t .
t=1,...,n. Hence z; € e(AZ)forallz':l,...,n. O
Proof of Theorem 1.4.23. 1t follows from Proposition and Proposition #.4.29. O

Proof of Theorem .4.2]. By Theorem §.4.23, the external set of all Gauss-solutions is the same to the Cramer-
solution of the system (#.2). Moreover, by Theorem the Cramer-solution exactly equals the set of real
admissible solutions of the system (4.2). It follows that the sets of real admissible solutions of both systems
(#.2) and (G.A)¢ C B are the same. Therefore, the both systems are equivalent. O

Corollary 4.4.30. Suppose that the flexible system (8.2) is Gauss-Jordan eliminable. Then a vector x =
(z1,...,2,)T € R™ is a real admissible solution of the system (8.2) if and only if it is a Gauss-solution.

The theorem below gives an explicit formula for the set of all Gauss-solutions of the system §.2. In fact, the

vector G([3) is the external set of all Gauss solutions.

Theorem 4.4.31. Suppose that the flexible system A C B, where A = [tijlnxn With oij = aij + Aij €
E and B = [b; + B]nx1 with by + B € E, is Gauss-Jordan eliminable. Then GB is the external set of all

Gauss-solutions of the given flexible system.

To prove Theorem we first prove the following lemmas. In two the next lemmas we use following notions

Notation 4.4.32. Consider the Gauss-Jordan eliminable flexible system (4.2) with coefficient matrix A =
[aij] € Mu(E). We write A = [Ajjlnxn, where A;; is the neutrix part of «;; for all 1 < ¢,j < n and
b= (b1,...,b,)T as arepresentative of B. Let B’ = GB.

Lemma 4.4.33 ([20, prop. 5.32, p. 75]). Assume that the flexible system (8.2) is Gauss-Jordan eliminable and
non-homogeneous. Then

(GA) - [B] € [B].
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Proof. The condition R(A) C P(B) and Proposition imply that A C B/j3. As a consequence
AjCACB/BCO

forall 1 < ¢,5 < n. Due to Lemma we have

Ayl - Aq, B/B B/B B/b B/b
G| : Lo Cg ) s e =g e
B --- B B --- B B/b --- B/b
1 1 B |
_b . . . _b . . . - . . .
B --- B B --- B B/b --- B/b

By Lemma we obtain that

Ay -+ Anl [B B/b --- B/b| [B o --- o| [B B B

A o Aw| |B B/b --- B/b| |B 2 --- o| |B B B

Lemma 4.4.34. Assume that the flexible system (8.2) is homogeneous and Gauss-Jordan eliminable. Let A as
in Notation .4.32. We choose b; € ;,1 < i < n such that ‘50’ = b = max |bi| € B. Put
<i<n

Gy (Go(A)) = (A r<ijen, (4.40a)
Gp(Gp1--- (Go([b])) = B )1 <i<n, (4.40b)
forp=0,...,2n — 1, where AZ(»?) = A;j, b? =biand b= (by,...,by)". Put 5(17)’ = max bgp)’. Then
(i) A%))b C B, forallp € {0,...,2n — 1}.
(ii) R(GA) C P(BB').
Proof. () We will prove this part by external induction. Forp =0,G 0(A) = IA = A. The condition
R(A) = & € P(B) and formula (T408) yield A5 € A5 C 25 C 47 C B foralli,j & {L....n}. Thus

(»)

the claim is true for p = 0. Assume that the claim is true for p. That is Ag? b C B. We will prove that it is

true for p 4 1. This means we need to show that the entries of the matrix G, 11 [Ag? )] satisfy the condition of

P+1) b§p+1)‘ = ‘bﬁf“" for some ¢ € {1,...,n}, and by formulas (4.40b), (4.40d) we

(f). Because b = max
1<i<n

obtain

B(p+1 b(p+1 Zg p+1)b < Z )g p+1) ‘ ‘bgp)‘ < Zn: \gé’}“)\g(p)
j=1
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and
AP+ _ g(P+1)A(P) +g( +1)A( p) (4.41)

i il 15 in

Ifp+1=2k+1forsomek € {1,...,n — 1}, by the induction hypotheses and Corollary which says
that g(pﬂ) c£forall1 <4¢,5 < n,one has

AFEIRT (g AR 4 g0 A (Z

gé)—&-l ‘ B(?))

m

(gZ(fH)AgJ;)g(p) 1 g(p+1)A%)5(p)> Z

(p+1)’

(o8B +- 4+ g2VB) (zn: gffﬂ)) C B.

=1

If p+ 1 = 2k for some k € {1,...,n — 1}, we verify the condition (f) in two separate cases: i # k + 1 and
t=k+ 1

Case 1: Fori # k+ 1land 1 < i < n, the row ggpﬂ) is a unit vector, so the i-th row in AP+ satisfies
+1
AP — AP ang

7

(k)
D _ 4P (p) ™M () 3(p) n
b(p+ ) = (blp yeoe ’bkp " (k1) bkﬁ—lvbka_%'” 7b1(1 )> :

. IfE(pH) :by(«p) forsomer € {1,...,n}\{k+ 1} thenforalli #k+ 1,1 <i<mnand1l<j<none

has
A£§a+1)b(p+1) Ag)bgp) c Ag)g(p) C B,

by the induction hypothesis.

p+l) _ m®)

. 165 7y b,(szl, thenforall¢ # k +1,1 <¢ <nand1 < j < n one has, using Lemma
m
(k) (k) (k)
(p+1)7(p+1) () M (p+1) m (»)7(P) m _
A o =4 mE+1) bhe1” € m(k+1)Aij b C WB =B

Case 2: For i = k + 1, by formula (4.41)) one has

forall 1<j5<n.

e 1157 = b'?) for some r € {1,...,n}\ {k + 1}, due to Lemma .4.1§ for all 1 < j < n one has

A+ D) _ b c Y o g o m®

k)0 = o Aent € s EmAeent S e P =E
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_ (k)
- 1FpPTY = n(lk =y b,(szl then for all 1 < j < n, again using Lemma one has
m

(k) (k) (k) |2 k) |2
(p+1) z(p+1) ™M (p) m (p+1) m () 17 m .
A(k+1)jb T ) (kD)5 (k1) CkHL < (m(k—i-l)) A(k+1)jb < (m(k+1)> B=5.

Hence the claim holds for all p € {0,...,2n — 1}.

(i) Let G(A) = A’ = [A];] and A’ = | max Aj;. We consider two cases. If b + B is zeroless, applying Part
<ij<n

(0 with p = 2n — 1 we have

Agjgn—l)g(%—l) =AU CB forall 1<i,j<n.

_ _ A _
So AW C B. Also A’ = det(GA) = 1+ D’ and o/ = 1, hence R(GA) = R(A’) = N A" C B/ =

P(B).1f 8 =¥ + B is neutricial, by Lemma we have A"+ [B] = G(A) - [B] C [B]. As a consequence,
Z/

Z’-BQB,andsinceA’:1+DwehaveR(A’):E:Z/QB:B:P(B’). O

Proof of Theorem {.4.31. 1f the system is homogeneous then GB = [B]. Also, by Theorem #.3.14, the Cramer-
solution of the system is the vector ¢ = (B, ..., B)T. So GB is the external set of all Gauss-solution of the

given system.

We now assume that the system is non-homogeneous. Let a%- be fixed representatives of o;; for1 < 7,5 < n
with a; = 1. Consider the flexible system

(GA)E C GB. (4.42)

Note that G(A) = 14 is a near identity matrix and G[B] = [B] by Lemma §.4.19. So N(GB) = [B]. Put

GB=[V + BJ. (4.43)

Because A’ = det(GA) = 1 + D’ C 1+ @ is zeroless, the system (#.42) is non-singular. Also, obviously, A’
is not an absorber of B. By Lemma one has R(GA) C P(GB).

det(M!
Hence the system (i.42) satisfies all the Cramer conditions. In addition, by Proposition we have V < (A/ J ) ) =
B forall1 < j < n, where
1+ A - A’l(j_l) by + B A/1(j+1) e AL,
Mj - : . : : : :
Al e A;l(j_l) b, + B A/n(j-i-l) 1+ A,
Applying Cramer’s rule to the system (4.42) the vector £ = (£1,...,&,)" with
det(M})  det(M/(d', V")) det(M?) ‘
£ = A’J = J1 + N( A/j):b;+B,1§j§n. (4.44)
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is the Cramer-solution of the system. From formulas (4.43) and (#.44) we obtain & = GB. Moreover, because
of Theorem §.4.29, the vector £ = (&1,...,&,) is the external set of all Gauss-solutions of the system ({.42).
By Theorem we conclude that ¢ = GB is the external set of all Gauss-solutions of the system (#.2). [

4.5 Singular flexible systems

In this section we investigate singular flexible systems of the form

atéi+  apb+ - +aé, Cbhi+ By
: : - : : (4.45)
O‘mlgl“‘ am2€2+ cee +amn£n - bm + B,

where m,n € N are standard and «;5, 3; € E, forall1 <i <m,1 < j < n.

Note that in this case we do not require that m = n. Even if m = n it may not be necessary that det(.A) is

zeroless.

In classical linear algebra we know that if a linear system has rank r, the system has exactly r independent
equations. So we can reduce the given system to an equivalent system with exact r equations. Then some
variables are seen as parameters and the solutions of the system are expressed through these parameters. Here
we use a similar technique to deal with singular flexible systems.

This section has the following structure.

In Subsection we give a necessary condition such that a flexible system has a solution. For a classical
system of linear equations we know that if the rank of the coefficient matrix is not equal to the rank of the
augmented matrix, the system has no solution. We will generalize this result to a flexible system by using the
strict rank of the coefficient matrix and the augmented matrix of a given flexible system. If both strict ranks are

equal to each other, we call it simply the strict rank of a flexible system.

In Subsection we will show that a flexible system with identical neutrix parts in the constant term vector
can be transformed into an equivalent system such that the entries in each column of the augmented matrix have

the same neutrix parts.

In Subsection we will investigate the relationship between the solutions of a given flexible system and
its associated homogeneous system. Recall that in classical linear algebra the set of all solutions of a non-
homogeneous linear system equals the sum of the set of solutions of its associated homogeneous linear system

and a particular solution of the original system. We will prove that it is still true for flexible systems.

In the next subsections we will consider several special cases of flexible systems. We will provide sufficient
conditions such that a flexible system has a solution. A solution formula corresponding to each case is given.
In fact, in Subsection we deal with flexible systems such that the coefficients have the same neutrix parts.
In Subsection we study flexible systems with the strict rank equal to the number of rows. In Subsection
we investigate flexible systems with the strict rank not equal to the numbers of rows.
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4.5.1 Necessary condition for the existence of solutions of a flexible system

A flexible system has a solution only if the strict rank of the coefficient matrix is equal to the strict rank of the

augmented matrix.

Theorem 4.5.1. Consider the flexible system (8.43). If st(A) # st([A|B]), the system (B.43) has no solution.

Proof. Assume that sr([A|B]) = r and sr(A) = s < 7. Let o} = (u1,..., i, 3) € E"" and o =
(i1, .. ain) € E® for 1 < ¢ < m. By Theorem there are exactly r linearly independent row vec-
tors. Without loss of generality, we assume that V; = {«/, ..., o} are linearly independent. Similarly, since
sr(A) = s, we assume that Vo = {a, ..., as} is linearly independent with s < r. Then there are real numbers

t1,...,ts, with at least one of them is not zero, and a neutrix vector D = (D1, ..., D,,) such that

Qg1 +tiog + -+ teog = (D1, ..., Dy). (4.46)

S
C Vj is linearly independent, so 8511 + thﬂz‘ is not a neutrix
i=1

On the other hand, vectors o, - - - ,o/(s )

S
vector. Otherwise, combining with (4.46), one derives that o+ Z ticl, is a neutrix vector, and therefore
i=1

the vectors {a/, ...,/ } C Vi are linearly dependent, a contradiction.

Suppose on contrary that the system (#.43) has a solution. Let z = (z1, . .., ;) be a solution of the system. So

n
Zaijx]— Cp; forall 1<i<m.

j=1
It follows that
n S S
Z (Oésj + Ztiaij)znj C Bs+1 + Ztlﬁz forall 1<i¢<m. (4.47)
j=1 i=1 i=1

However, by formula (4.46), the left side of condition (4.47) is a neutrix vector, while the right side is a zeroless
vector, which is a contradiction. Hence the system has no solution. 0

In case of the strict ranks of both coefficient and augmented matrices are identical we call it the rank of a flexible

system.

Definition 4.5.2. Consider the flexible system (4.45). We say that the system has the strict rank r if sr(A) =
st(A|B) = r.

Example 4.5.3. Let € > 0 be infinitesimal. Consider the following system

1 4+ €£

-
C —1/2 4+ £

1+ 0)+ (1+e+e0)a+ (1+0)&
§at+ &3
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Then the augmented matrix of the system is

140 14+e+€0 140 146

B = .
5] 0 1 1 —1/24€f

So sr ([A|B]) = 2 = sr(.A) and hence the strict rank of the given system is 2.

4.5.2 [Equivalent flexible systems

We can simplify singular flexible systems by transforming them into equivalent systems in which all the entries

in each column of the coefficient matrices have the same neutrix parts.

Definition 4.5.4. A flexible system

onri+ - o, Cbhi+ DB

am1r1+ - FompTm S by + By
is said to be Gaussian equivalent to a system

oo+ - 4o, SO+ By

Chpyar+ o Aot C Y+ Bl

if the sets of Gauss-solutions of the two systems are the same.

A flexible system with a constant term vector with identical neutrix parts can be transformed to an equivalent

system where neutrix parts of the entries in each column are the same.

Theorem 4.5.5. Consider the flexible system

anri+ 0 +aT,  Cbh+ B
: : : (4.48)
am1T1+ o FampTm C by + B.
Then the flexible system
(ayy + Av)z+ - +(d), + Az, C U+ B
: : : (4.49)
(@1 + At - e + An)zm S by, + B,

where Aj = 1r<niagjn {A;;} for 1 < j < n, is Gaussian equivalent to system B.49).

Before we give a proof of this theorem we will illustrate how the theorem works by the following example.
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Example 4.5.6. Consider the following flexible system

{ ( 1+o)a+ (£t (-2+e@)3 C2+0 (4.50)

—-3+e0)s1+ 2+0)s+  (B+e2)és CH+ 0.

In the first column the neutrix part in the second row is smaller than in the first row, so we add the first row to

the second row and we obtain the equivalent system

(1+2)&+ (e£)éot+ (-2+e0)é3 C2+0
(—2+0)a+ (2+0)a+ (—1+e2)é3 CT+O0.

Now the neutrix parts in the first column are the same. Next we do it for the second column. The neutrix part in
the first row is smaller than in the second row so we add the second row to the first row. Once again, we obtain

the equivalent system

(-14+0)+ 2+0)a+ (—1+e0)3 CI+0
(—24+0)+ 2+0)a+ (1+e0)3 CT7+o0.

Note that the neutrix parts of all entries in each column are now the same.

The following lemma says that adding one row to another does not change the set of real admissible solutions.

Lemma 4.5.7. Consider the flexible system

€ bh + B 4.51)
c .

o111+ 0 FQpTy
b, + B.

11+ - FoopTy,
Then system (B.51)) is Gaussian equivalent to the following system:

< b+ B (4.52)
c .

ajrit+ -+ A1nTn
( bo+01 + B.

a1 + 0411)$1+ R (agn + Oéln)xn

Proof. Letx = (x1,...,,) be a Gauss-solution of the system (§.51)). To prove that x is a Gauss-solution of

the system (4.52), we just need to show that x satisfies the second row. Because z is a Gauss-solution of the

system (B.51),

by + B.

oz + - +omer, € b + B
Q1T + -+ opTy C

It follows that

(a1 + an1)xr + -+ + (a2n + a1n) Ty = (01121 + -+ + Q1pZy) + (2121 + -+ - + Q2pty)

Cbhi+B+by+B=0b+by+ B.
Conversely, suppose that z = (21, ..., z,) is a Gauss-solution of the system (.52). We will show that

a1 + -+ oy C (o1 + a11)xr + - -+ (Q2n + Q1n) @y — (1121 + - - - + Q1 Tn). (4.53)
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Indeed,

(a1 + aq1)xr + -+ + (a2 + a1n)Tp — (Q1121 + -+ + Q1R Ty)
= (a21x1 +---+ a?nl'n) + (0511551 +---+ alnxn) - (allxl +-- alnxn)

=91 T1 + -+ + Qon®n + (A11z1 + -+ Arpay) = (a21 + A1)z + -+ (a2n + Ay, (4.54)

where A ; = max{A;;, Ag;} forj =1,...,n. Also

Q1 Z1 + -+ QonTn = (a21 + A21)x1 + - + (agn + Aop) Ty C (a21 + A1)xr + -+ + (a2, + A )Ty,
(4.55)

It follows by formulas (4.54)) and (4.53) that formula (%.53) holds.

Because x is a Gauss-solution of the system (4.52)), and by formula (4.53) we have

a9y + -+ agpry Cby+B+by+ B—(by+ B)=by+ B.

So x satisfies the second equation of the system (#.51)). Obviously, x satisfies the first equation of the system
(B.51)). Hence  is a Gauss-solution of the system (B.51)).

Thus the two systems (4.51]) and (#.52) are Gaussian equivalent. O

Because of the lemma above we can transform every flexible system into a system which has the same neutrix
parts in each column. For those systems we can generalize the result above by showing that adding to a row a
limited scalar multiple of another row does not change the set of solutions.

Lemma 4.5.8. Consider the flexible system

a1z + - + oapxn € b1+ B (4.56)
agrry + --- 4+ oonzn & b2+ B,
where A;j = A; forall i = 1,2. Let t € R be limited. Then the system (8.58) is equivalent to
appry + o+ AnTn S b1+ B (4.57)
(a1 +tar)zr + -+ 4+ (oop +taw)r, S by +thy + B.

Proof. Letx = (x1,...,x,) be a Gauss-solution of the system (#.56). To prove that z is a Gauss-solution of
the system (4.57), we just need to show that z satisfies the second row. Since  is a Gauss-solution of the system

(#.58), we have
oz + -+ apr, b+ B

aonxr1 + -+ aopxy, C by + B.
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It follows that

(21 +tor)zr + - - + (q2n + taap) Ty Zt(a11331 +eee Oé1n33n) + (Oé21331 + e Ot2ni13n)
Ctby +tB + by + B =tby + by + B,
since t € £.

Conversely, suppose that x = (21, ..., x,) is a Gauss-solution of the system (#.57). We will show that
a1 + -+ + oy = (21 + tanr)zy + - - + (2n + taan) Ty, — tlanizr + - - + tap,x,). (4.58)
Indeed, because ¢t € £, one has tA; C A; forall 1 < j < n. It follows that

(21 +tar)wy + - - - + (Q2n + tong) T, — t(on121 + -+ + Q1p®y)
:(0421331 +-+ Oéznfrn) + t(Oé1196'1 + o anrn — tlor 4+ A+ Oé1n36n))

=a1®1 + -+ a2pxp + (AT + - F EALT,) = @171 + -+ QopTy.
Because x is a Gauss-solution of the system (4.57) and by formula (%.58),

aglxl—i—w-—i—agn:cnCtb1+b2+B—(tb1+B):b2+B.

It shows that z satisfies the second equation of the system (i.56). Obviously, z satisfies the first equation of the
system (§.56). Hence x is a Gauss-solution of the system (#.56).

So systems (#.56) and (#.57) are equivalent. O

Proof of Theorem §.5.3. For each column j, let A; =  max {Ai;} = Ay forsome k € {1,...,m}. Forall
Sitsm

i # ke {l,...,m},if Ay C Ay = Zj, we add the k-th row to i-th row. The new transformed system is
equivalent to the given system by Lemma }.5.7. Also Ay = Zj forall i = 1,...,m. Applying this process
forall j € {1,...,n} the system will take the form (4.49), and this last system is equivalent to the system
(B.48). O

Convention 4.5.9. From now on, we consider flexible systems in the form

anxi+ - 4o, S fi=b+B
: : : (4.59)
am1T1+ 0 FampTn, C /Bm = bm + B.

Note that in this form we have B = B = B. By Theorem , we can always assume that a;; = a;; + A;;
with A;; = Ap; = Aj foralli # k;i,k € {1,...,m} and forall j = 1, ..., n. This means the neutrix parts of

the entries on each column in A are the same.

Suppose that the strict rank of the system is 7, where » < min{m, n}. Hence, without loss of generality, we
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aip e Qip
may assume that 4; = | : .. ! | is non-singular with A = det(.4;) zeroless.

Qr1p 0 Qpp

We also suppose that the flexible system (4.59) satisfies the following assumptions:

(i) The submatrix A; is reduced.

(i) Let A; = max Aj and A, = [o;] be the submatrix of A formed by all entries of A which do not belong
<j<r

to A;. Let A, = 11n<in< A; be the minimum neutrix part of the entries in .4,.. Then A C A,
L= Ar

(ifi) R(A) C P(B).
(iv) A is not an absorber of B.

Definition 4.5.10. A flexible system of the form (#.59) satisfying all the assumptions above is said to be so/v-
able.

Remark 4.5.11. If all the coefficients of a given system have the same neutrix parts, the second assumption is

satisfied automatically.

4.5.3 An associated homogeneous system

In this subsection we will present a relationship between the sets of solutions of a given flexible system and its

homogeneous system.

Definition 4.5.12. The system of the form

ar o | & By

N

(4.60)

am1 - Qmp n B,
is called the associated homogeneous flexible system of the system (4.45).

We denote by Sp, Sg the sets of all Gauss-solutions of the system (#.43) and (#.60), respectively.

Proposition 4.5.13. Consider the system (8.45). Suppose that = = (x1,29,...,2,)7,y = (y1, 92, -+, yn)"

are two Gauss-solutions of the system. Put u; = x; — y;, for 1 < i < n. Then

o o | |w By

N

(4.61)

am1 - Omn Un, B,
Proof. Because both z, y are two Gauss-solutions of the given system, we have

a1 T + -+ iy C G
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and
Q1 Y1+ QinYn C Bi
for all 1 < ¢ < m. It follows from the subdistributivity that for all i € {1,...,m},
Qitu1 + -+ Qg =i (11— Y1) + -+ Qin(Tn — Yn)

g(ailxl + e ainxn) - (ailyl + e ainyn)
CBi — Bi = Bi.

Hence u satisfies (4.61)). [
We show that the set of all solutions of a non-homogeneous flexible system can be expressed as the sum of the
set of solutions of its associated homogeneous system and a particular solution of the original system.

Theorem 4.5.14. Consider the two systems (#.49) and (B.60). We have
SO =x0 + SH7

where zog = (29, ..., 20T is a particular Gauss-solution of the system (@.43).

rrn

Proof. Letx = (21, ,2,)" € So. By Proposition 4.5.13, it holds that u = (uy, ..., u,)", withu; = z;—a)
for 1 < ¢ < n, is a solution of the system (). This means that u € Sy and hence x = xg + u € g + Sg.
So So C zg+ Sg.

On the other hand, let u = (uq, ..., un)T € Sp. Then the system () is satisfied by u. Let x = xg + u. One
has for each i € {1,...,n},

Qi1+ F Qi =i (2Y Fup) 4 F @i (@ + )
Q(Oéilw(f +e Oémxg) + (asrur + - - inuy)

CBi + Bi = i

Hence x € Sp and therefore xy + Sy C So. O

According to the proposition above, to solve a system A.£ C B we just need to find a concrete Gauss-
solution and solve the associated homogeneous flexible system of the given system. Also note that if g =

(azgo), e ,567(10)) € R" is a solution of the linear system
anzi+ o tapr,  =b
(4.62)
am1T1+ - FamnTn = by,

where a;; € oyj,b; € £;.1 <i < n,1 <j < m,itis also a solution of the flexible system (8.49). This guides

us how to find a concrete Gauss-solution of a given system.
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4.5.4 The flexible system with identical neutrix parts

In this subsection we consider a special form of flexible systems in which the strict rank of the system is equal to
the number of equations and all neutrix parts of the coefficients are the same. To be more detailed, we investigate

the reduced system of the form:

anri+  apret+ - Fopr, Cb+ B
: : : (4.63)

Om1T1+  apmara+ - Famp®, C by + B,

where a;; = a;; + Aand |a;j| = |a;; + A <1+ @; A C @ and sr(A) = m < n, here A = 5] € My, o (E)
is the coefficient matrix of the system (#.63). Since sr(.A) = m, without loss of generality, we assume that

Q11 Q12 Qg
Q1 Qa2 o Qaoym
A =det | | } | =d+D
am1 Om2 - Omm
1s zeroless. Let
Q11 Q12 o Qo
Qo1 Qa2 o Qoy
-Al = . . . . ’
AUm1l Qm2 - Qmm
and
lag| = max [ag;l.
1<i,j<m
We write
_ n .
o oy b+ B - kTr Qi(j41) 0 Qam
J J
k=m+1
Mj = : : : : : (m+1<j<n). (464)
n
Qm1 r Qpj—1) bm + B — g AmkTk  Om(j+1) “°° Qmm
L k=m+1 _

Note first that although the system (§.63) is reduced the matrix .4; may be not.

Theorem 4.5.15. Assume that the system (8.63) satisfies following conditions:

(i) A;is an m x m reduced matrix,
(ii) A is not an absorber of B,

(i) R(A;) € P(B).
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Then the set of all Gauss-solutions of the system (B.63) is given by

det(M;) det(M,,)
A tm €

T €

S = {(wl,...,xn)T

,ijB:A,Vj—m—i—l,...,n}. (4.65)

Proof. Observe that if x = (1, x,...,7,)T is a Gauss-solution of the system (4.63) then A.z; C B forall
1 < j <n,thatis
T; € (B:A) forall j=1,...,n. (4.66)

Letz; € (B : A) forall j=m+1,...,n. Then the system (.63 is equivalent to

anry + 0+ amTm € b+B - imy1Tm — 0 —  QipTyp
a1x1 + -+ emTm € b+ B — aogmyiTm — o —  Qopy
amizr + 0 4+ agmTm S bp+ B — Ayym+1Lm  — = Opmpdn.

n
Because ) Ajjxz; C Bforall 1 <i < m,the system above becomes

Jj=m+1
anry + -+ ammm € b+B — aimt1Tm — 0 —  GInTp
a1 + -+ mTm S b+ B — amt1Tm — - — G
. (4.67)
am1T1 + 0+ T © bm +B - Amm+1Tm — - — OmnpTn.

We will show that the system (#.67) satisfies all the Cramer conditions in Definition for all values z; €
B: A m+1 < j <mn. To do this we just need to verify that form + 1 < j < n,1 < i < m and for all
zj € (B:A),

n
Alb+B-— Z Q;i;Tj
j=m+1

C B.
d
Because |a;;| <14 @, onehas foralli=1,...,m,
n n
Al b, +B— Z Qi T =AB+ | b; — Z Qi T 5 A
j=m+1 J=m+1
n n
C AB + b;A — Z (aijxj . A) C AB + b;A — Z aijB
j=m+1 j=m+1
n
C AB + b;A — Z (1+®)BC B+bA—B=0bA+B.
j=m+1

Also R(A;) € P(B). Soforall1 <i <m,

biA/A C B.
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Indeed, if 3 is zeroless then BA/A = bA/A C B. It follows that b; A/A C B,1 < i < m. Similarly, if 3is a
neutrix then 3 = Band b; C 3 = B. Sob;A/A C BA/AC Bfor1 <i<m.

i B B .
Moreover |A| = |d + D| < £ is zeroless and not an absorber of B, so N B by Proposition 2.2.24.
Consequently, forallt =1,...,m,

A bi+B— En: aijxj

. det(M. j) . . . .
Applying Theorem to the system (4.67), one has & i = A for 1 < 5 < m is the maximal solution
. . det(M det( M, .
ofthesystem()w1threspectto:rjGB:A(m+1§]§n). So e(Al),..., G(Am) is the
set of all Gauss-solutions of the system (4.67) by Theorem §.4.25. That is, the set S given by (#.63) is the set
of all Gauss-solutions of the system (4.63). O
Example 4.5.16. Let € > 0 be an infinitesimal. Consider the following homogeneous flexible system
1+2)r1 + (e+0)r2 + Q3 Co
1
G1+®W1-%(1+®W2—%(§+®MB co.
The system is reduced with @ = 1 + © and B = ©. The determinant
1
Amdet| 79 T 1 _io-1t0c@
-1+ 14+0
. 1 . . A
is not an absorber of B. Let A4; = to o ero . Then A; is a reduced matrix, R(A;) = — = @ and
-1+0 14+0 A

P(B)=©: @ =£,s0 R(A;) C P(B) and hence all of the conditions of the Theorem are satisfied. For
x3 € © : © = £, the system is equivalent to

N
O

1+0)x1 + (e+@)z2
(-14+2)r1 + (1+0)rs C —cw3t+ Q.

Applying Cramer’s rule to this system, one has

%) €+ O
§r=det| 1 /A =0
—§$3+® 1+0
1+0 %) 1
&y = det 1 JA=——x3+4+ Q.
-1+0 —sa3+0 2

2
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Hence the set of all Gauss-solutions of the system is given by
1
S = {(@,—21'3 + @,l‘g) T3 € £} .

As for flexible systems whose strict rank equals the number of rows but the neutrix parts are not identical, we

can apply the theorem to them by using upper and lower neutrix of the entries in .4 allowing to find the upper
and lower bounds of the set of all Gauss-solutions. The theorem below shows the relationships between these

two sets of solutions.

Theorem 4.5.17. Consider the following reduced system

anri+  apret+ - Fopr, Cb+ B
(4.68)

m1T1+  amarat+ 0 Fampe, C by + B,
where a;; = a;; + Aij € E and || = |a;; + Aij| < 1+ @. Suppose that the strict rank of the system is m.

Let A= max A;jand A= min A;;. Consider the two following systems, respectively

1<j<n 1<j<n
1<i<m 1<i<m
A1+ Apxet+ - gz, CH+ B
: : : : (4.69)
AmiTi+  Amazot+ - FAppxn C by, + B,
where \;j = a;; + A and
Mzt yezret+ 0 +vrn S+ B
: : (4.70)
Ym1T1t+ Ym2Z2t 0 FYmaZn C b + B,

where v;j = a;j + A

Let S1, S, Sy be the sets of all Gauss solutions of the systems (4.70)), (4.68), (4.69), respectively. Then

S1CSC8,.

Furthermore, the conclusion does not depend on choosing a;; € ;.

n
Proof. As for the first inclusion, let 2 = (x1,22,...,2,)" € S;. Then Z a;jx; € by + B, for all a;; € oy
j=1
and x; -ACBforalli=1,...,m. Asa consequence, ; - A;; C ij C B. So

n
Zaijf’:jerj‘Aij Ch+Bfori=1,...,m.
j=1
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n
That means Z ajjz; C By, foralli € {1,...,m} and hence x € S. Since x € S is arbitrary, this implies
j=1
S CS.

n
As for the second inclusion, let y = (y1,%2,...,%n)] € S be arbitrary. Then Z ai;y; € b; + B for all
j=1

n

a;j € agjandy; - A Cy;- Ay C Bforalli e {1,...,m}. It follows that Z (aijy; +y; - A) C b; + B for
j=1

alli=1,...,m.Soy = (y1,...,yn)’ € Sz and hence S C Ss. Ol

4.5.5 The flexible system with the strict rank equal to the number of rows

In this subsection we consider flexible systems of the from (#.59) such that the strict rank of a given system is
equal to the number of equations. Because of Convention one has A; = [@j]mxm is non-singular. We
will give some conditions to guarantee that singular flexible systems can be solved.

Put
_ n -
an o ooqey b+ B-— Z iR 01(j41) 0 Oam
k=m+1
M; = : ,
n

Qm1l 0 Qup(j-1) bm + B — Z AmkTk  Cm(j+1) " Omm

L k=m+1 d
forje{l,...,m}and N;j=B:Ajforje{m+1,...,n}. (4.71)

Theorem 4.5.18. Assume that the flexible system (4.59) is solvable and r = m, where r is the strict rank of the
system. Then the external set of all Gauss-solutions of the system is given by

det(Mj)

S:{(J}l,...,Sﬂn)T ijTforlgjgmandijNj for m+1§j§n}. (4.72)

Remark 4.5.19. There is an analogy between formula (#.72) and parameter presentations of a solution of a
given system of equation in classical linear algebra. The first part of formula (4.72) expresses a particular

solution. As for the second part, classically the parameters range over R and here over neutrices.

Proof of Theorem {.5.18. Suppose that z = (z1,...,2,)7 is a Gauss-solution of the system (4.59). Then
zj € B: Ajforallj =1,...,n. Foreachj = m+1,...,n, we choose z; € B : A;. Then the system is
equivalent to the following one:

anrit+ 0 FaimTm S+ B —ayminTmei— 0 —Q1ply
: : (4.73)

amiT1+ o FammTm C by + B “Am(m+1)Tm+1—  ° —Amndn-
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We will show that all the Cramer conditions in Definition are satisfied for the system (4.73). We just need
to verify the condition R(A,,) C P(B), where P(B) = B/ with

‘B‘ = 12%’;1 {|bz - (ai(m+1)$m+1 + -+ ainxn)‘} ;

i.e. we need to verify the following condition
n _
A
bi—'z Q55 KQB
j=m+1

foralli =1,...,mandforallz; € B: Aj,j=m+1,...,n.Foreachz; € B: Aj,m+1 < j <n,since
laij| <1+ ©, it follows that

aijijaij(B:Aj)gB:AT, forall 1+m<j3<n,1<1<m.

Then

A A, B
az-ja:j'—l - (B:A,,)-—l:—-(Al :Ar) forall 1+m<j<n,1<i<m. (4.74)
A A A
Moreover, by the second hypothesis A C A, , one has A A, C £. It follows that
B — B

By formulas (#.74), (#.79) we have

A
aija?j.—lngoralli:1,...,mandj:m+1,...,n.

A

A
Also, by condition R(A;) C P(B), it follows that Klbi C Bforalli =1,...,m. Because of subdistributivity,

we have

= A A A
bi— E aij:nj ZlgblKl— E <aij$j~Al> §B+(n—m)B:B, forallizl,...,m.
j=m+1 j=m+1

det(M,, det(M,,)\ "
Applying Theorem to the system (4.73), the vector © (A ) sy e A )
(

and hence the set of all Gauss-solutions of the system ) corresponds to each z; € B : A, for j =

is the Cramer-solution,

m4+1,...,n.

Thus the external set of all Gauss-solutions of the system (4.59) is given by (4.72). O

Remark 4.5.20. Although the arguments in the proof base on Cramer’s rule, we can also apply Gauss-Jordan
elimination to solve the non-singular system (f.73)) for zj € Nj,j = m+1,...,nif A is Gauss-Jordan

eliminable.
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Example 4.5.21. Consider the flexible system, with ¢ > 0 infinitesimal,

(1+e2)z1 + D) + £ + (1/24+0)zs C ©
(—-1+e2)z1 + (1+e£)zs + (I+ef)as + (—1+0)zy C ©
14+ €0 £ 14+e0 £

The system is reduced and A; = is areduced matrix such that A = det =

—14+en 1+ —14+e0 1+€%

1 + €@ 1s zeroless.

(i) Ay = €?£ C A] = €0 C A3 = £ C @ = Ay, hence the second assumption is satisfied with 4; = e C
A, = €f.

(i1) the strict rank of the system equals the number of equations which is 2.
1
(iii) R(A) =e0 CP(B)=0:e0 = £

(iv) A € @ is not an absorber of B = @.

Thus the system satisfies all conditions above. Due to Theorem §.5.18, one has

-1/2 2g 1
det(My) = det | “V/PTet@ R Lo
23+ T4+ 14 €£ 2
1 —1/2 1
det(Ms) = det e [2wat© =—-I3+ =24+ Q@
—14+e® —x3+244+0 2
and
det(Ml) 1
T € = —§$4 +©
c detﬁ\fz) " 1 Lo
x =—x3+ =x .
2 A 3+ 574
Hence the set of all Gauss-solutions of the system is
1 1 1
S = —§x4+®,—x3+§x4+®,x3,x4 xr3 € E@,.%’4 eL,. (4.76)

Now we solve the system by Gauss-Jordan elimination.

The augmented matrix of the system is of the form

1+e2 €’£ £  1/240 ©

[A[B] = )
—1+e0l 14+€¢f 14+e£ —-14+0 ©

It is easy to see that the both principle minors of [.4|B] are appreciable, also the other conditions are satisfied as



4.5. SINGULAR FLEXIBLE SYSTEMS

above. Hence we can apply the Gauss-Jordan elimination to solve this system. One has

[A|B] =

Lyt L, [1+e0 &% et 1/12+® %
— 13%) 14+ 628 1+ef —§+® %)

So we obtain

2 2

1 1
S = ——Xy+ O, —x3+ T4+, T3,T4

which corresponds to the Gauss solutions of (§.76).

4.5.6 The flexible system with the strict rank not equal to the number of rows

1+e2 €2£ £ 1/24+0 ©
—14+e0l 14+€£ 14ef —-140 @

1
T3 € -, x4 €L,
€
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We now deal with flexible systems of the form (#.59) in which » < m. To study this kind of systems, like
in linear algebra, we first prove that it is equivalent to a system which has exactly  rows, and then applying

Theorem we find the external set of solutions of the given system.

Theorem 4.5.22. Consider the flexible system (#.59). Assume that the strict rank of the system is r, where

a0y
r < min{m,n}. Let A = det(A4;) = det

Qr1 - Oypp
absorber of B. Then the system (4.59) is equivalent to the following one

anri+ oo +apr, C b+ B

|m e

Qr1X1+ - F0pTn

The theorem follows from the following lemmas.

Lemma 4.5.23. Consider the flexible system (4.59). For 1 <i < m, let

Qint+1 = bi + B = ai(ny1) + Aitns1)

b, + B.

. We also assume that A is zeroless and not an

4.77)

be the (n + 1) column in the augmented matrix [A|B). Assume that the strict rank of the system is r and

a1 0 Qap

A =det(A;) =det | : .. | iszerolessandnotan absorber of B. Taking a;; € o;; for

1<1<m
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and1 < j<n+1.Forallje{l,....,n+1}andk € {r+1,...,n} let

agj ag1 - Qg

, ai; ai; - Qi
W@ =1. . .

Qrj Qr1 - Ay

and, for alli € {1,...,r, k} by removing the first column and the (i + 1) row of W (§), we denote

[am ame o are |
a1l a2 - Qi
Wi(j) = |a@-11 -2 - aG-1)r
ai+1)1  a@G4+1)2 " A6+
L ar1 Qr2 Qry |
Let
dki = (_1)i+2det (WZ(])) ) fOl"i € {]‘a <. ,’I"}
ail aiz -+ Glp 4.78)
d = det
L Qr1 QAr2 - Gpp
Then
(i) Forje€ {l,...,n+ 1} one has
1
Qg5 = —a(dkl.alj + -+ dkr.arj). (4.79)
(ii) Vector
1
Oék‘i‘g(dklal +--~+dkrar) = (Al,...,An,B) (4.80)

is a neutrix vector.

Remark 4.5.24. By changing rows, we can choose dy; and d such that |dy;| < |d|.

Proof of Lemma §.5.23. (i) Let oy = (v, -+ ,Qins1y) € E" foralli € {1,...,m}. Since sr(A) =
st[A|B] = r and det(.A4;) is zeroless, the vector system £ = {ai;...;a,; a4} is linearly dependent for all
k€ {r+1,...,m}. By the definition of linear dependence, there exists a set of vectors

Vi ={a; - ;ar; a5}

which is linearly dependent, where a; = (a;1, ..., @int+1) € a4, € {1,...,r k}.
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One has det(W(j)) =0, forall j =1,...,n+ 1. Indeed, if 1 < j < r then W (j) has the two equal columns
a; and hence det(W(j)) = 0. If r + 1 < j < n + 1, because the set of vectors V' = {a1;--- ;a,;ax} is
linearly dependent, then det(W (j)) = 0.

Expanding the determinant det(W( ])) along the first column we obtain
det(W(j)) = dp1.a1; + dg2.a25 + -+ +dgr.arj +d.ag; =0foralll < j <n+ 1.

It follows that
dpi.a1 + dga.as + -+ + dp.ar +d.ap, = 0.

Moreover, by (#.78) and the definition of T;(5), one has d € A and d # 0. Hence

1
ap = _E (dkl.al —i—---—i—dkr.ar), (4.81)
ie,forallj e {1,...,n+ 1},
agj = —— (dir.ary + -+ dir.j)
(i) Let
1
o = ay + g(dklal +o b dirar) = (agy + Aps -5 Gy + B (4.82)

By formula (4.79), one can choose aj; =0forall j =1,...,n+1andhence o = (Ay}y,. .., Ay, B'), where
1 T
/
i = Aj+ 7 i:E 1 (dki-Aj)

and

T dk
B =B i p 4.83
2 (5] e

forall j = 1,...,n + 1. Since |dy;| < |d| by Remark §.5.24, we have

dyi

<Ll 4.84

By formulas (4.84), (4.80), (¢.83) and r being standard, one has Azj = Ajand B = Bforallk = r +
1,...,m. ]

Lemma 4.5.25. Consider the flexible system (8.59). Assume that the strict rank of the system is r < min{m, n}
Qi oo Qqp

and A = det(A;) = det| : .. i | is zeroless and not an absorber of B. Then the system (.59) is
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equivalent to

aprit+ o o, © b + B
) (4.85)
amri+ 0 +aeprT, S b + B

Proof. Letx = (x1,...,7,)T is a Gauss-solution of the system (#.59). We will prove that z is also a Gauss-
solution of the system (#.83). To do it we just need to verify that  satisfies the (r + 1)** row of the system
(#.89), because the other rows are automatically satisfied.

n
Since x = (x1,...,2,)T is a solution of the system (4.59), one has 5 a;jr; C b+ Bforalli =1,...,m
j=1

Also di; € £, and d is not an absorber of B, so forall i € {1,...,7},

%aijxj = Fk Qi T4 C Fk (bz + B) C %bz + B. (4.86)

j=1 j=1

Applying formula (#.79) with j = n + 1, because forall 1 < i < r, @j(n+1) = bi, one obtains that
dkz
br, + Z b = 0. (4.87)

Also by formula (4.80),
d i
Aj = oy + § ’“ (4.88)

Combining (#.88) and (#.87) with formula (4.86) one obtains

Al.:cl—l—---—i—An.:L‘n—Z(ak]—i—z d >

7=1
—Zak]ajj+zz oz”w] Zakavj—l—zz aZ]:L‘]
7j=11i=1 i=1 j=1
Cb; +B+Z<b +B> <bk+zd’“ ) (r+1)B
=1
=(r+1)B=B.

So z satisfies the (r + 1) row, and hence z is a solution of the system (@.85).
Conversely, suppose = = (x1,...,x,)T is a solution of the system (#.85). Then
n
Zaijarj - bi + B,
j=1

forall 1 < i < r and formula (4.86) is still true.
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n
For each k > r arbitrary, using formulas (4.79), (4.87) and the fact that > a;j - x; € b; + B one has
j=1
~ d d
Ok k
ZO‘WJ Z<Z l >$J+ZA.%-J ZA“”JJFZ : Zaij"f"’j
7j=1 \:=1 7j=1
~ d d d
CB+Z—ﬂ b; + B) B+Z RLyy +ZﬁB—bk+B
Hence z is a solution of the system (§.59).
We conclude that the system (4.59) is equivalent to the system (4.85). O

For flexible systems which have the same neutrix parts in each column then we can remove the rows whose

coefficients are neutrices.

Lemma 4.5.26. Consider the following system

a11er]  + + aipTy

arT1 + +  oppTy

Az + + Az,

where o;j = ai; + Aj foralli € {1,...,r}andj e {1,...,
r < min{m,n}, and

Q11

A = det(A;) = det
Qrl

Cc b + B

: (4.89)
C b + B
- B,

n}. Assume that the strict rank of the system is

iy

Qpp

is zeroless and not an absorber of B. Then the given system is equivalent to

a1+

or1r1 e

+Q1nTn

+QrpTn

C hh+B
(4.90)

C b+ B.

Proof. Tt is clear that all solutions of the system (4.89) are solutions of the system (4.90).

Conversely, if z = (z1,...,x

is a solution of the system (%.89).

Proof of Theorem 1.5.2]. The theorem is a direct consequence of the three lemmas aforementioned.

n
)T is a solution of (#.90) then A; - x; C B. It follows Y. A;z; C B. Hence =

j=1
O

O

The theorem below gives a formula for the Gauss-solutions of a general system.

Theorem 4.5.27. Suppose that a flexible system of the form (#.59) is solvable.
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Then the set of Gauss-solutions of the system is given by

M.
S = {(xl,xg,...,xn) IS det(A J>

JJorje{l, ... r}ia; GNj,forjE{r—i—l,...,n}},
where N; = B : Aj and M; is defined by @.71)).

Proof. By Theorem the given system is equivalent to the following

appri+ o tapr, € b+ B
: : : (4.91)
o1 z1+ 0 Fapr, C b+ B.

Since the matrix A satisfies all the basic assumptions, applying Theorem to the system (#.91]), one has

det(M,;
S = {(a:l,xg,....,a;n) xj € e(A j), forje{l,...,r};z; € N, forje{r—i—l,...,n}},
where N; = B : A; and M; is defined as @.71). O

Remark 4.5.28. Note that interchanging two rows, and multiply each element of a row by a non-zero, appre-
ciable scalar do not change the set of solutions of a flexible system. Combining with Lemma we see that
the following Gauss operations do not affect the set of solutions of a flexible system of the form (#.59).

(i) Interchange any two rows.

(i1) Multiply a row by a non-zero, appreciable scalar.
(ii1)) Add to a row a limited scalar multiple of another.
We call these operations the restricted Gauss operations, , the process of using these operations to transform a
given matrix to an upper triangular matrix is called restricted Gauss elimination.
Moreover, we can apply the restricted Gauss elimination not only for reduced systems but also for every systems

satisfying the conditions B = B = B and A;; = Ajj = A; forall1 < i,k <m,1<j <n.

The example below illustrates the restricted Gauss operations. It is also can be seen as an application of Theorem

B.5.27.

Example 4.5.29. Consider the flexible system, with ¢ > 0 infinitesimal,

( 1
(1+e0)z1 + <2+6£>x2 + ors € 2 + O
1 1 1
<2+e® 1 + (—§+6£)x2 + (—Z+®)x3 c -1 + o
1 5 1
—gte@)a 4 (—pteb)a (—Z—|—®)x3 c -3 + o
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Applying the restricted Gauss elimination to [A4|B] of the system, ons has

[ 1
1+e2 —+e£ @ 2+ 0
1 1 1
[A|B] = 5te@ —s+e —2+0 -1+0
1
_—54‘6@ —6+6£ _Z_'_@ -3+ 0
i 1
LQ_%LI L+eo 5 +ek %) 240
7 1
— %) —§+e£ —~+0 240
1
L3+ =L L - _
3+2 1_ €@ —12+e£ 4+® 2+ 0
i 1
L3s—Lo |1+€e0 §+€£ %) 24+ o
3 24
o €@ 1tk S+0 40
_7L2 | @ ef %) @
17 3 2
L1_§L2 1+6® e£ g‘f‘@ ?"‘@
24
—jl €D 1+ ef - + O - + O
Lz + §L2 | €@ e£ @ %)
Hence the given system is equivalent to
3 2
(1+e0)z1 + eLxry + <14+@ rg C - + ©
3 24
eory + (14+ef)zy + ?—F@ T3 C - + .
So the strict rank of the system is 2.
Let
A= 14+e0 £ .
€D 1+ e£
So A = det(A;) = 1 + £ is zeroless. The matrix .4; also satisfies
(i) A; is a reduced matrix,
(i) A, =e£C A =0,
(iii) R(A2) = €e£ C P(B) = @,
(iv. B=B=B=0.
Observe that the given system reduces to
3 2
(1+e2)r1+ ef.zo C——a3+=-4+0
Pooool wset

€D 1+ (14 e£)xo

N
|
I
By
+
|
+
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Applying Theorem }.5.27, the external set of Gauss-solutions of the system is given by

S = 23 +®%—§ +0 €£
- 7 14'7/'3 77 71'3 , L3 €3 .

The following example emphasizes the operation of interchange two rows.

Example 4.5.30. Consider the following system, with € > 0 infinitesimal,

14+ef)z1 + (2+e@)rs + (-1+2)r3 € 1 + ©
e£x; + (—de+ed)ry + (e+@)xs C 3¢ + ©
efry + (—4+e@)rs + (1+2)z3 € 3 + 0.
Because ago = —4¢e + €© is an absorber of B = @, the restricted Gauss operation of multiplying to the second
row by the scalar — is not true.
a2

However, if we change the second row and the third row then we obtain the equivalent system

(1+ef)zr + (2+e@)rs + (-1+0)r3 C 1 + ©
ey + (—4+e@)r2 + (1+@)23 € 3 + ©
efx; + (—de+e@)ry + (e+Q)r3 C 3¢ + O.
Using the restricted Gauss elimination to the latter system, one has
[1+et 2+ec0 -1+0 1+0
ABl=| £ —4+e@ 1+0 340
| £ —de4+ e €e+0 3e+0©
[1+et 24ec0 —-140 1+0
—> £ —4+e0 14+0 3+0
L3 — €L2 ¢
| €£ €D @ ©
_1 +e£ %) = + O > + ®_
—]>- € € 9 9
Lol | & —4+e@ 1+0 340
2 | £ 3% @ .
- 1 5 -
1L 1+e£ €0 -—-+0 B + O
— L, 3
4 £ 1+ ——+0 -S40
— 4 4
| £ €D © © ]
Then the given system is equivalent to
1 5
1+ ef)zi+ ezt (- +0)zz C %Jr@
eLx1+ (1 + E@)$2+ (_Z + @)$3 - —Z + ©.
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$3€£}.

So the set of solutions is given by

s={(21 10 -2+int0
- 2 2(173 ) 4 4‘7:3 7'7:3

The restricted Gauss operations are not applicable to the next example.

Example 4.5.31. Consider the following system

(1+ef)zy + (1+e@)zs + (-14+@)r3 € 1 + ©
e£r1 + (e+e@)rs + (24+0)r3 C 3¢ + ©
efx1 + (—2e+eQ)ry + (—4+Q)x3 C —6e + O.
Since ase = € and ags = —2¢ are absorbers of B = ©, we can not implement the Gauss operations for this
1+ef 1
system. This is because that A = det +£6 + 62 is an absorber of B. The same is true for originating
€ €et+e
from first two columns.
. 1+e£ —-14+0 . . . ..
If we consider A; = ; 2t then det(.4;) is zeroless. However, it does not satisfies the condition
€

A; C A,. Hence we can not apply the theorem above for this system.

4.6 A parameter method to solve flexible systems

In this section we reconsider flexible systems of the form

o111+ a1l + -+ aén € hh+ B
. . : . : (4.92)

amlgl + am2§2 + o+ amnén C by + B,
where a;;, 8 € Efor1 <i<m,1<j5<n.

The neutrices in the constant terms may be seen as the sets of parameters. Then we can treat it as a system
of linear equations with parameters. Formulas of solutions depending on parameters are given respectively for
non-singular system, singular system with the strict rank equal to the numbers of equation, and singular system
with the strict rank not equal to the number of equations. These formulas write the neutrix part of the solutions
in terms of n-dimensional neutrices. It is shown in [3]] that neutrices in n-dimensional space have always such

a representation.

Notation 4.6.1. Let a be a external number and v = (uy,...,u,)? € M,y 1(R) be a column vector for

1 < j < n, here n is standard. We refer to cu as xu = (zuy, ..., zu,)’ withz € a.

We denote N; = 12ng1 {B;:A;j}forl <j<nand oejT = (aij,... ,amj)T be the j-th column of A, aJT be
_7/_

a representative of Oé]T.
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The the system (#.92) is transformed to a system such that the coefficient matrix of the latter system are a real

matrix.

Theorem 4.6.2. The system (4.92) is equivalent to

aié&r + anb + - 4+ awéy € b+ B
: : . : : (4.93)
amél + am2ée + -+ amnén € b + By,
& e Nj,jed{l,...,n},
where a;; € o;j,1 < 1,5 < n.
Proof. The vector & = (£1,...,&,)T € R™ is a solution of system (4.92) if and only if
(a1 +An)& 4+ (a2 +A4)e + - + (e +A4Awm)é < b + B
(aml + Aml)€1 + (amZ + Am2)§2 + -+ (amn + Amn)gn C bm + Bma
This is equivalent to
at§y + anfe + -+ awés € b + B
amér + am2be + -+ amnén € by + Bp,
and A;;&; C B; forall 1 <¢ <mand 1 < j < n, the latter is equivalent to {; € N; forall1 < j < n. ]
all oo Q1p
LetP=| : .. . | bearepresentative of the coefficient matrix such that the rank of P is equal to the
Am1 - Omn

strict rank of the system.

4.6.1 Non-singular systems

Theorem 4.6.3. Assume that System (8.92) is non-singular. Then the set of solutions of the system is given by
n
S = (P—lb +y BiP_leZ) N ( o, Nm) (4.94)
i=1

where Nie; = (0,...,0,N;,0,...,0)T and b= (by,...,by).

Proof. By Theorem [.6.2, a vector £ = (£1,...,&,)T € R" is a solution of system (#.92) if and only if it is a
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solution of
an§s + ae&e + - 4+ aé, € b+ B

: : . : : (4.95)
anlél + am2§2 + -+ anngn € by, + B,

and satisfies the condition {; € N;,1 < j < n.

On the other hand, the point £ is a solution of the system (4.99) if and only if there exists ¢; € B; for all
i €{1,...,n} such that

anér + aée + -+ awén = bitea

CLn1§1 + an2§2 + -+ anngn = by +en.

Using Notation this implies that
(e S
i=1

n
(P‘lb +3 BZ-P_lei> ,
=1

where [¢] = (&1,...,6,)7 € M, 1(R). Because &; € N;, that is H € @}, (N,e;), we obtain

€| e (Po+ ;:;Bz‘P_lei) N (@ Niew).

O
Example 4.6.4. Consider the flexible system
14+2)z + (14+e)y € ©
(I+ef)x — (14+ef)y C €L
The system is equivalent to
<
{ Tty Eeo (4.96)
x — y € €£
with
refyek (4.97)

The vector £ = (z,%) € R? is a solution of the system (4.96) if and only if

r + y = €
r — Yy = €9,
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1
) + £ ( 2 ) . Combining with (#.97)

where €1 € @, €2 € e£. A short calculation shows that (x) =0 ( 1
Yy 2

(6= () N CG) ()= () ()

4.6.2 Singular systems with the strict rank equal to the number of equations

N[ N[

we obtain

N[ N[

Next we consider the flexible system (4.92) with the strict rank equal to the number of equations. This means

sr(A) = st[A|B] = m. So a representative

ail o Qp

Aml *°° Amn
of A has strict rank m. We assume without restriction that

air o Aim
det(M)=det | : - : # 0. (4.98)
am1  *° Gmm
Theorem 4.6.5. Assume that the system (#.92) satisfies the condition that the strict rank of the system is equal
to the number of equations. Then the set of solutions of the system is given by

B T )

&1
Em M1 i BiM_le,- "~ —M_la;‘g n
S = (517 s 75”) 5 = 0 + 0 + Z R e(n—m) ﬂ ( @izl Nlel)
m+1 i=1 k=m-+1 k
[ &
where e,(fnfm) is the k-th unit vector in R™"™™,

Proof. A vector & = (&1,...,&,) € R™ is a solution of the system (4.93) if and only if there exist ¢; € B;, 1 <
¢ < m such that it is a solution of the following linear system

a1 + apée + -+ awméy = bite
: : - : : (4.99)
am1£1 + am2€2 + -+ amn&n = by +e€m.
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and satisfies the condition §; € N; for 1 < j < n. The system (#.99) is equivalent to

anét + 0+ amém = b+ a —  aymy)Smt1 — o — anbn
(4.100)
ami§r + 0+ ammém = b+ em — am(m+1)5m+1 — = amnén.
By seeing &, m + 1 < k < n as parameters, the set of solutions of the system (.100) is given by
&1
=Mt e M e+ e M ey — i Ml — o — &M al
Em
=M"'b+BiM ey +--+ ByM e, —-RM 'al ., — - —RM 'al
m n
=M~'b+> BM 'e;— Y RM 'af.
=1 k=m+1
Hence we obtain that
&1
13 M| S| BiM e = —M~tal
" = 0 + Z ' 0 l + Z R (n—m)
Em+1 i=1 k=m+1 k
[ o

&1
Because & € N;,onehas | : | € ( ey Niei). By Theorem we conclude that the set of solutions of the

&n

system (§.92) is given by

(5

&n

S = (61""a€n)

Example 4.6.6. Let € > 0 be an infinitesimal. Consider the flexible system

1 + ©

2+e2)r + 1+e@)y + (1+@)z
2 + €0.

C
(1+e@)r + (1+ef)y + B+ew)z C
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2 1
A short calculation shows that the system has strict rank 2. Let M = (1 1) . Then
1 -1 1 =1\ (1 -1
M—l — , M_lb — ,
-1 2 -1 2 2 3
1 =1\ /1 -2
-1 2/)\3 5)°

Using Theorem we find that the solutions ¢ = (z,v, 2) € R3 of the system are given by

T _ —
3 =

M 1q

x -1 1 -1 2 1 0 0
yl=1[3|+o|-1]|+co| 2 [+R|-5]| [N [£|o]|+2|1]|+£]0
z 0 0 0 1 0 0 1
-1 1 -1 2
0 0 0 1

4.6.3 Flexible systems with strict rank less than the number of equations

In case the strict rank of system is less than the number of equations we need some conditions such that a
parameter method can be applied.

Because the strict rank of system is » < min{m, n}, without restriction of generality, we assume that A =

a1y
det

Qrl

Theorem 4.6.7. Assume that the strict rank of system (8.92) is r < min{m,n}, B = B = B and A is not an

ar

is zeroless and det(M ) = det

Qpp

a1

arl

A1y

£ 0.

Qry

absorber of B. Then the set of solutions of the system is given by

where e,gn_r)

CST

&1

&r

£r+1

,&n)

&n

is the k-th unit vector in R(

n—r)'

r

2

=1

BM e,
0

+ ) R

k=r+1

n—r)

—M‘laf
(
k

[)nes e
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Proof. By Theorem the system is equivalent to

047‘151

+ a0

a11ér + appé +

—+

+ amén

+ arn&n

-

b+ B

4.101)

br + B.

Applying Theorem to system (%.101)), the set of solutions of the given system is

. -
&1
13 M~ " |BMe¢; " —M~tal
S: (515"'5£n): é_ " = 0 + 0 ' + Z R (nfT‘)k m(@:;l Nlel)
T+l i=1 k=r+1 Ck
\ L &n A J
O
aiy air
' Ai—1)1 AG—-1)r
Let Mﬁ,? = ag1 Ay be a submatrix of P formed by remaining the first » columns and the r
A(i+1)1 A(i+1)r
ari e Gy

rows {1,...,i—1,k,i+

1,..

Lriof Pywithr+1<k<mandl <i<r.

Theorem 4.6.8. Consider the flexible system (8.92). Assume that the strict rank of system is r < min{m,n}
and that

det (Mf,?) o

“det(0) is not an absorber of By, forall1 <1 <r,r+1<k <m,

(i)
(ii) BiC Byforr+1<k<m,1<:i<r.

Then the set of solutions of the system is given by

&1
B 5 (M " | B;M e, " ~M~1d] —
n
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(n—)

where e;, is the k-th unit vector in R7"=7).

Lemma 4.6.9. Consider the flexible system (#.92). Assume that the strict rank of system is r < min{m,n} and
satisfies assumptions ({) and (i) in Theorem H.6.8. Then the system #.92) is equivalent to

annéy + a2 + -+ awé, € b+ B

) ) ' ’ ’ (4.102)
arl§1 + ar2§2 + -+ arngn € b-+DB,

& eN;,1<i<n.

Proof. Obviously, a vector z = (1, ...,2,) € R is a solution of the system (4.92)), then it is a solution of the

system (.102).

Conversely, assume that £ = (£1,...,&,) € R™ is a solution of system (4.102). We only need to prove that ¢
satisfies equation % of the system (.92) for r + 1 < k < m.Forr 4+ 1 < k < n, letny = (ag1, ..., A, bi) €

R™*!, Since the matrix [P|b] has the strict rank 7, there exist real numbers ¢1, . . ., ¢, such that the row k-th of
the matrix [P|b] can be expressed by
M =t + -+t (4~103)
det (M;,?)
Also we have |t;| = “det(M) for 1 < i < r. By assumption (f), the ¢; is not an exploder of B, for all

1 <1 < r,wehave t; By C Bj. By assumption (E) we have

t1B1+ - t,Br Ct1 By, + -+ + t. By, C 7By = By (4.104)

Because & = (£1,...,&,) is a solution of the system (#.102), we have

a11ér + apé + - 4+ appé, € b+ B
aT1§1 + ar2£2 + -+ arn{n € b+ B,
It follows that
t1611&1 + tia&e + - 4+ tran&n € ti(bi + Bp)
tT’aT’lgl + trar2§2 + -+ trarnén € tr(br + BT’)

Consequently,

(t1a11£1 +tia1282 + - + tlalngn) +- (trarlgl +lrarobo + - + trarngn)
Ct1(b1 + B1) + - + tr(by + By).
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It is equivalent to

(trars + -+ trar )& + (traiz + -+ tra) o + -+ (atn + - + trarm) &
C(tiby + -+ teby) + (1B + - + 1. B,).

By formulas (#.103) and (#.104) this implies that ag1&1 + -+ - agnén C by + (8181 + -+ + £, B;) C by + By,
forallr +1 <k <n.

We conclude that two systems (#.102) and (#.92) are equivalent. O

Proof of Theorem .6.8. By Lemma }.6.9, the system is equivalent to system (4.102). Applying Theorem

to this system, the set of solutions of the given system is

( r 7 3\

&1
. M| N |BM e = ~M~tal .
s={(ee: |5 | = + U YR | N (e M)
§ri1 0 i—1 0 k=r+1 €k

\ &n
O

Remark 4.6.10. In many cases, we can interchange rows of P such that assumptions (i) and (fi) of Theorem
are satisfied. In particular, we can always interchange rows of a flexible system such that |det(M)| >
|det (M;,?) |. As a consequence, the assumption (f) of Theorem is satisfied.

In case A and M;,? are appreciable numbers, the assumptions (§) and (i) are always satisfied.

Example 4.6.11. Let € > 0 be an infinitesimal. Consider the following system

1+0)r + (1+e2)y + 32 € 1 + ©
1I+ef)r — (1+e@)y + 2z C 2 + €
(2e+e)x + efy + bez C 3¢ + .
1 1 3 1 L1
A short calculation shows that the system has strictrank 2. Let P=] 1 -1 2 2 |and M = [1 1] .
2 0 5e 3¢ B

We have A = detM = 2, MQ%) = —2¢, MQ(? = 2¢. So assumption (f) of Theorem is satisfied. Clearly,
assumption (i) of Theorem is also satisfied.

The system is equivalent to

(4.105)

r + vy + 32 € 1 + ©
T — Yy + 2z € 2 4+ €£

withx € £,y € £,z € R.
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We also have

N ([ } } N (o) (o
yl=[-3|+o|3]|+et|-L[+R| -3 [ |e]o]+£|[1|+R]o0
2 0 0 0 1

Il
(e} | N[
DN|—
N~ ©
N}
+
Q
(el SN ST
+
o)
e
o | N
[N
N— o
+
H
o
N[— DojCt
N~——



Flexible sequences

This chapter is devoted to the study of sequences with uncertainties in terms of external numbers. We will call

this kind of sequences flexible sequences.
The chapter has the following structure.
In Section p.1f we introduce the notion of a flexible sequence and give some examples.

We will consider two types of convergence for flexible sequences. Firstly, in Section .2, we generalize the
notion of convergence of a classical sequence to flexible sequences in terms of approaching external numbers.
Secondly, basing on a well-known result in non standard analysis which says that every standard sequence
converges to a, the n-th term of the sequence belongs to a + @ with n unlimited, in Section 5.3 we will define
another notion of convergence for flexible sequences. We call it strongly convergent. The relationship between
two notions of convergences are studied. In fact, if the neutrix of the limit is not zero we prove that the two
notions of convergences are equivalent. Properties of and operations on these kinds of limits are considered. We

also study the relationship between the convergence of subsequences and of a given flexible sequence. Because,

119
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in general, induction may not apply to external formulas, we can not use it to construct subsequences like in
classical mathematics. To overcome this drawback we use the notion of cofinal set to define the subsequences of
a flexible sequence. Then we will show that every flexible sequence has an internal subsequence which satisfies
all properties of a conventional subsequence. The Cauchy criterion for the convergences of flexible sequences

is also presented.
In the last section we will introduce notions of convergences of vector flexible sequences.

Acknowledgement: The idea to study flexible sequences comes from Bruno Dinis (University of Lisboa) who

also prove some elementary properties of convergence.

5.1 Definition and example

Definition 5.1.1. A mapping u: N — E, of the form |J (1 Iuw where U,V are standard sets and
st(u)eU st(v)eV
I: U x V= N x P(R) is an internal set-valued mapping, is called a flexible sequence; we denote such a

flexible sequence usually by {u, }.

1
Example 5.1.2. (a) The sequence u: N — E given by u,, = — + @ forall n € N {u,} is a flexible sequence.
n

u= ) {{n}x{i+[—;7u},neN}.

st(m)eN

Observe that we can write

(b) Let € > 0 be infinitesimal. Let u: N — [ be given by u,, = n + ne® foralln € Nand v: N — [ be
given by
Q, ifnef
1+0, ifngt.

VUn =

Then {u,}, {v,} are two flexible sequences. Indeed, in the first case we can express
n on
U = m {{TL}X{TL‘FE[—E,E}},TLGN}
st(m)eN
and

(Y0, [ () e

st(q)ENst(p)eEN
11
Jl N N o< {ie]|-o]bneraa)
st(q) €N st(p)eN pp

Using the Reduction Algorithm v can be expressed by only one union and one intersection, meaning that v

has the form as in the definition.
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5.2 N-convergence

Motivated by the fact that a neutrix may be seen as generalized zero. In this section we will introduce a notion of
N-convergence for flexible sequences, reduces to the classical notion of limit when the neutrix /V is zero. Then
we will show that properties on limits still hold for the notion of [V-convergence on flexible sequences with
some modifications. The relationship between IV-convergence of a subsequence and a given flexible sequence
are investigated. Finally the Cauchy criterion for N-convergence of flexible sequence is studied.

5.2.1 Definition and example

Definition 5.2.1. Let IV be a neutrix. A sequence u: N — [E is said to N-converge to o € E if
VecEe> N3dng e NVn € N(n>ng = |u, —al <e).

Then we also call « a N-limit of {u,, }. We write wu,, 7 o or N-limu,, = a.

A flexible sequence which is not N-convergent to any element o € E is called NV-divergent.

One could replace the condition € € E in the definition above by the condition € € R.

Theorem 5.2.2. Let N be a neutrix and u: N — E be a flexible sequence. Then uy, 7 a if and only if

Ve e Re> N 3ng € NVn € N(n > ng = |u, —al <e). (5.1

Proof. 1f u, T a, formula (5.1)) is satisfied since R C E.

Conversely, assume that formula (5.1)) holds. For every ¢ € E,e > N there exists v € R,N < v < e. By
formula (), there is ng € N such that for all n > ng, one has |u,, — | < v < e. Hence u,, 7 Q. ]

Clearly every sequence is R-convergent. So, in the remainder of this chapter we always assume that N # R.
The other extreme case is N = 0 corresponding to the usual notion of convergence. In this case we adopt the
usual notation and terminology, i.e. we say that {u,,} converges to « (the real number) and write u,, — « or

limu,, = a.

1
Example 5.2.3. (a) Consider the flexible sequence u: N — E given by u,, = % + —©. Then u,—> 1
n n
and u,, 7 14+ ©.

(b) Lete > 0be an infinitesimal and u: N — E be a sequence defined by u,, = (—1)"e forall n € N. We know
that the sequence is divergent in the classical sense. However, the terms always belong to ©, so @-lim u,, =
@-lim(—1)" = @.

(c) Let NV be a fixed neutrix in E and u: N — E be a sequence defined by u,, = s, + N, where {s,, } is a real

sequence which converges to a € R. We show that {u,, } is N-convergent to a + N. For ¢ > N, because
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Sn — a, there exists ng € N such that |s,,, — a| < €/2 for m > ng. So for m > ngy we have

\um—a|:\sm+N—a\g]sm—al+N<§+N<e.

5.2.2 Some elementary properties

Proposition 5.2.4. Let N be a neutrix and {u,} be a sequence that N-converges to some element o = a +
N («) € E. Let M be a neutrix such that N < M. Then {u,,} also M-converges to . Moreover, there exists

the smallest neutrix My such that {u,} is My-convergent.

Proof. Firstly, let e > M. Then e > N. Since {u,} N-converges to «, there exists ng € N such that for all
n > ng, |u, — | < e. Hence {u,,} M-converges to .

Secondly, without loss of generality, we may assume that u,, is N-convergent to a neutrix. Let L = {M €
N | {uy}is M-convergent} and M be the infimum of L. By Proposition the neutrix Mo = p- I, where 1
is an idempotent neutrix and p € R is a positive. Upon dividing by p we may assume that M itselfis idempotent.
If My = © then © € L, so the conclusion is trivial. Otherwise, My is not isomorphic to ©. Suppose that the
sequence is not My-convergent. Let ¢ > M. For all n € N there exists a element m > n such that ¢ < u,,.
However €@ < ¢, so u,, is not ep-convergent. Also My C €@. So e@ ¢ L. By the first part for every neutrix
M € L wehave e C M. It follows that e C My, a contradiction. Hence w,, is My-convergent. OJ

In practice, obviously, we prefer to work with neutrices which are as small as possible.

Note that for a given flexible sequence its N-limits are not unique. In fact, N-convergence is unable to distin-
guish between elements whose ”distance” is less than or equal to the neutrix N. That is, /N-limits are unique
up to modulo N in the sense that if {u,} N-converges to two (possibly distinct) elements «, 5 € E then the

absolute value of their difference must be less than V.

Proposition 5.2.5. Let u: N — [ be a flexible sequence and let o, € E. Assume that u, 7 o and
0
U, — B. Then
No
(i) N (a) C Np.
(ii) |a — 5| < Np.
(iii) u, — a+ Ny.
No
(iv) uy T v forall v C o+ Ny.
0

Proof. (i) Suppose on the contrary that Ny C N(a). Let ¢ € R be such that Ny < ¢ < N (). Then there
exists ng € such that for n > ng we have

N (a) < N (Jup, —a]) < |up, —al <e < N(a),
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which is a contradiction.

(i) Suppose u, 7 o and u, ? B with |« — 8| > Ny. For eg = |a2;ﬁ| > Ny, there exists ng € N such that
0 0

lun, — a| < €g for n > ng and there exists n; € N such that |u,, — 3| < € for n > ny. Let kK = max {ng, n1 }.
Then for n > k,

la =Bl < o= un 4+ up = B < o — un| + |un — B < 260 = o — f],

a contradiction. Hence |ov — 3| < Np.

(iii) Let € > Ny. Then €/2 > Ny/2 = Ny. Because u,, 7 «v, there exists ng such that |u,, — a| < €/2 for all
n > ng. It follows that
|up, — a4+ No| = |up, —a| + No<€/2+¢€¢/2=c¢

for all n > ng. Hence u,, T a+ Ny.
0

(iv) For v C a + Ny we have |u,, — | < |u, — a + No| < € for all n > ng, and hence u,, 7 O
0

In the previous proposition if Ny = 0, it follows from (i) that « = /3. Hence in this case we get the same

conclusion as the classical notion of limit.

Assume o, 3 are two N -limits of a given flexible sequence. From Proposition we conclude that 6 C a+ N
anda C S+ N.

Remark 5.2.6. A flexible sequence {u,,} is N-divergent if and only if foreacha =a+ A € E; A C N there
is €g > N satisfying that for every n € N, there exists ng > n such that

€0 < |up, — al. (5.2)

From Remark the inequality (5.2) can not be substituted by |u,, — a| > €.

Convention 5.2.7. Because of Proposition [5.2.9, for the sake of simplicity, from now on we always take N as
the neutrix part of a N-limit of a given flexible sequence. This means that if N-limu,, = a then N(a) = N.

It is easy to see that a flexible sequence which is eventually a constant to some « € E, the sequence is NV («)-

convergent to that constant.

A flexible sequence N-converges to « if and only if every real part of the sequence N-converges to a real part

of o and the neutrix part of the sequence N-converges to the neutrix part of a.

Proposition 5.2.8. Let u: N — E be a sequence such that u, = an, + An an, € R foralln € N. Let
a=a+ N €E, aeR. Then u, Tozifandonlyifan TaandAn TN'

Proof. Assume first that a, - ¢ and A4, - N. For e > N, there exist k,! € N such that |a,, — a| < ¢/2
forn > kand |A, + N| = |A, — N| < e/2forall n > . Let m = max {k,[}. Then for n > m it holds that

lup — ] = lan+ Ap —a+ N|<l|a, —a|+ A, — N| <€/2+¢€/2=¢€
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Hence u,, 7 Q.

Assume that u,, 7 a. Let e > N. Then there exists ng € N such that |u,, — «| < €/2 foralln € N,n > nq.
It follows that |a,, — a| < |a, + Ap —a+ N| = |u, —a] < eforalln € N;n > ng. So ay, - @ On the

other hand for all n > ng,n € N we have
IN (up) — N|=lan —an+a—a+ A, + N| < |uy, — a|+|an — a| < |up — a|+|u, — o < €/24€/2 = .

Hence A, 7 N. O

5.2.3 Boundedness

Definition 5.2.9. A sequence u: N — [ is said to be

(i) bounded if there exists @ € E such that & # R and |u,| < «, for all n € N. Otherwise, we call it
unbounded.

(ii) eventually bounded if there exists ng and o # R such that for all n > no, |u,| < a.

Example 5.2.10. Consider the flexible sequences

1 1
@) u,=—+ —0foralln € N,
n o n

0 ifnef
(b) Up =

n ifné&£,

R ifn ek
(C) Zn =

1+0 ifngt.

Then {u,} is bounded since |u,| < 2 for all n € N; {v,} is unbounded; and {z, } is eventually bounded, but
not bounded.

Proposition 5.2.11. Every N-convergent sequence is eventually bounded.
Proof. Let N be a neutrix and {u, } be a sequence such that u,, - o Let € > N. Then there exists ng € N

such |u, — a| < € that for n > ng. It follows that |u,| — |a| < |u, — a| < € for all n > ng. This implies that
lun| < €+ |a| for all n > ny. Hence {u,, } is eventually bounded. O

Lemma 5.2.12. Let o € E be an external number such that o # R. Then there exists a neutrix N such that
N #Rand o C N.

Proof. Let N = af. Then N # Rand o C N. O
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We use the previous lemma to show that bounded sequences N-converge to N for some neutrix V.

Proposition 5.2.13. Let {uy,} be an eventually bounded sequence. Then there exists a neutrix N such that
u, — N.
N

Proof. Because the sequence {u,, } is eventually bounded, there exists an element & € E, v # R and ng € N
such that |u,| < a for all n > ng. By Lemma 5.2.12, there exists a neutrix N such that |u,,| < a < N. Then
for all e > N we have |u,| < € forall n € N,;n > ng. Hence u, 7 N. O

5.2.4 Monotonicity

Let u: N — R and nyp € N. In classical mathematics a real convergent sequence u, > 0 (n > ng) has a

non-negative limit. We give an adapted version for /N-convergent sequences.

Proposition 5.2.14. Let N be a neutrix and ng € N. Let w: N — E be such that N < u,, for n > ng. Assume
that u, 7 aforsomea=a+ N € E. Then N < a.

Proof. If « = N, the conclusion is obvious. Assume that « is zeroless. Suppose on contrary that o = a+ N <
N.Lete = —g > N. There exists kg € N, kg > ngsuchthatforalln € N, n > kg itholds that |u, —a+N| < e.

. 3 S
Soa—€¢ < u, +N < a+eforalln > ky. This means §a < U, < g < N forall n > kg, which is a
contradiction to the assumption. Hence N < a. O

Proposition 5.2.15. Let N be a neutrix and u: N — E,v: N — E be two flexible sequences such that
U 7 Q, Up 7 B, for some «, B € E. Assume that there is ng € N such that u,, < v, for all n > ng. Then
a < f.

Proof. Write « = a + N, 3 = b+ N. Suppose that o £ 5. By Corollary we have § < a. This implies
that e = “T_b > N. So there exist ny,ny € N such that |u,, — a| < e forn > n; and |v,, — 8| < e for n > no.
Let ng = max {ng, n1,n2}. Then for n > n3 we have

a—b a—1b

vngvn+N<b+6:b+T—a 5

=a—¢e<u,+ N.
It follows that v,, < u,, for all n > ng, which is a contradiction. Hence o« < 3. ]

Remark 5.2.16. With similar arguments the conclusions in two propositions above are also true for the inequal-
ity >.

We prove next a version of the squeeze theorem for N-convergence. The squeeze theorem enables one to
calculate the N-limit of a sequence (u,,) by comparison with two other sequences whose N-limits are equal

and already known or easy to calculate.
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Theorem 5.2.17 (Squeeze theorem). Let M, N be neutrices and u: N — E v: N — E w: N — E be
flexible sequences such that u,, 7 Q, Wy 7 a, for some o € E. Assume that there is ng € N such that for
n > ng, Un < Uy < Wy Then vy, m a. In particular, if N = M then v, 7 Q.

+

Proof. Lete € Rande > N + M. Thene > N and e > M. So there exist n1, n2 € N such that |u, —a| <€
forn > n; and |w, — a| < € forn > na. Let ng = max {ng, n1,ns}. Then for n > ng, by Proposition
and Proposition

—€e<Up—a<v, —alw, —a<e

By Proposition it holds that |v, — a| < e for n > n3. Hence, by Theorem [.2.2, we conclude that
Un N—]\Z «. In particular, if M = N, the conclusion follows by the fact M + N = N. O]
+

5.2.5 Operations on /N-limits of sequences

Theorem 5.2.18. Let N, M be two neutrices and u: N — E,v: N — E be flexible sequences such that
Up, T o and v, 7 B, for some o, B € E. Then

Up +v, — a—+ 6.

In particular, if M = N then u,, + v, 7 o+ p.

Proof. Assume that u,, 7 « and vy, 7 8. Lete > N+ M. Thene > M and ¢ > N. So there exists
no,n1 € N such that |u,, — a| < ¢/2 forall n > ng and |v,, — B| < €/2 for all n > ny. Let p = max {ng, n1}.
Then for all n > p, by Lemma P.2.43, we have

€ €
|(un+vn)—(a—|—,6’)]§|un—a|+|vn—ﬁ|<§+§:6.

Henceun—i-vnma—i—ﬁ. In particular, if N = M then N + M = N. So u, + v, 704—1—5. ]
_l’_

In an analogous way one has the following result.

Theorem 5.2.19. Let N, M be neutrixs and let u: N — E v: N — [E be flexible sequences such that
Up, 7 a and vy, 7 B, for some «, B € E. Then

(Up, — vp) N+—]\>/[a—5.

In particular, if N = M then (u,, — vy,) - B.

In the following proposition we show that if {u,, } is N-convergent and c is precise then {cu,, } is cN-convergent.

Proposition 5.2.20. Let N be a neutrix, u: N — E be a flexible sequence such that u,, 7 o, for some o € E.
Let c € R. Then cuy, —N> ca.
C.
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Proof. 1f ¢ = 0, the conclusion is trivial. Assume ¢ # 0. Let e > ¢N = |¢|N. So €/ |c| > N. Hence there is
no € N such that for n > ng one has |u, — a| < €/ |c|. Because c is precise, the distributivity holds. It follows
that
€
|cuy, — cal = |c(un — a)| = || |un, — o] < || B =e.
We conclude that cu,, 7 ca. O
C

Example 5.2.21. Let w be unlimited and consider the constant sequence u,, = w + £. Then u,, ? w and
UpW —£> w? +w£. However, wu,, is not £-convergent to w? 4+ w£. Indeed, one has wu,, = ww+£) = w2+ wE.
w.

Suppose that wu, ? w? + wk. Lete € wf and € > £. For all n € N one has € < |wu,, — w?| = w£, which is

a contradiction.

Next we present an adapted version of a classical result stating that the product of a bounded sequence with a

sequence which converges to zero converges to zero.

Proposition 5.2.22. Let u,v: N — E be flexible sequences such that ., ? 0. If there exists o € E such
that a # R and |v,| < «, for alln € N, then (u,vy,) — 0.
(0%

Proof. Without restriction of generality we assume that the element « satisfying |v,| < « is precise. Let
€ > aN. Then there exists ng € N such that |u,| < €/« for all n > ng. Then for all n > ny we have

€
|unvp| = |un| jvn| < a— =€
«

Hence (unv,) — 0. O
aN

Now we turn to the problem of evaluating the /V-limit of the product of two flexible sequences. This requires

a somewhat delicate approach, as illustrated by the following example.

Example 5.2.23. Let w be unlimited and {y,, } be the constant sequence defined by y,, = w?+wf foralln € N,
Then y,, — w?. Then y2 = w? + 2w3E + wW?E = w* + w3£. Consequently (YY) — w*. However {y,yn}
w w3f

is wf-divergent.

Let M, N be neutrices. Let {u,, } be a M-convergent sequence and (v, ) be a N-convergent sequence. As seen in
Example 5.2.23, in some cases, the product sequence {u,,v, } may be neither N-convergent, nor M -convergent
and not even (N M )-convergent. However, the sequence {u,v,,} is K -convergent, for a neutrix K.

Theorem 5.2.24. Let M, N be neutrices and « = a + N, =b+ M. Let u: N — E,v: N — E be such
that uy, Ta,vn 7 B.Let K =N+ M + N2+ M? + aM + BN. Then u,v, 7 apf.

Proof. Putu, = a, + A, and v, = b, + B,,. Let e > K. Then, by Lemma and subdistributivity, we
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have

Uy, — af| = lapby + an By + b Ap + A By, — af| (5.3)
<lanbn — af| + an By + by Ay + Ap By
< lan(bp — B) + Ban — aB| + +anBp + by Ay + A, By,
< |an(bn — B)| + bl|an — a| + M|an| — Ma + a, By, + by Ay + Ay B,

We show first that there exists pg € N such that for n > py one has
(anllbn — B] < /7. (54)

We consider two cases, (i) @ € N and (i) @ ¢ N. In case (i) we can take a = 0. Because ¢ > N2 we have
V€ > N. So there exists ng € N such that |a,| < /€ for n > ng. Also e > M? implies /e > M and hence
Ve/7 > M. It follows that there exists n; > ng such that |b,, — 3| < \/e/7 for all n > n;. As a result, for
n > ny it holds that

anllbn — B] < Vee/T= ¢/,

as required. In case (ii) we have |a| > N. So there exists ny such that |a,,| < 2|a| for all n > ny. On the other

hand € > |a|M = aM implies %H > M. It follows that there exists n3 > ng such that |b, — 8| < 146 |
a a

for all n > ngs. Consequently, |ay||by, — 8] < 2|a||by, — 8] < €/7 for all n > ns, as required. Formula (5.4)

follows by putting pg = max{ni,ns}.
Secondly we show that there exists p; € N such that for n > p; one has,

lan| M < €/7. (5.5)

As above we distinguish the cases (i) a € N and (ii) ¢ € N. In case (i) one has, as above, that for n > ng it
holds that |a,| < /€ and that \/€/7 > M. So |a,|M < /e-/€/7 = €/7. In case (ii), as above, for n > ng it
holds that |a,|M < 2|a|M < ¢/7. Hence (5.3) holds by putting p; = max{ng,ns}.

Thirdly we show that there exists po € N such that for n > ps,

bl|lan — a| < €/T. (5.6)

Note that if b € M then we may assume b = 0 and the result follows. Assume that [b| > M. Because

€ > BN = bN, we have ﬁ > N. So there exists p2 € N such that |a,, — | < ﬁ for all n > po. Hence
(6.6) holds for n > ps.
Fourthly we prove that there exists p4 € N such that for n > py,

|bn|An < €/T. (5.7

Again we consider two cases. (i) b ¢ M and (ii) b € M. In case (i) we have |b,| < 2|b| for n > n4. On the
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other hand, by Proposition we obtain that A, —~ A. Also € > bN implies N < ¢/|b|. It follows that

N < i\b\ So there exists ko such that |A,,| < i’b'

n > py it holds that |b,|A, < 2|b|A, < €/7.In case (ii) we may assume that b = 0. Because ¢ > M?2, on

for all n > ko. Put py = max{ny, ko}. Then for all

has €/7 > M?. Hence \/E > M. By Proposition we have b, 7 0. So there exists n5 € N such that

|b| < \/5 for n > ns. On the other hand, because \/E > N there exists n7 € N such that 4,, < \/E for

n > ny. Put ng = max{ns,ny}. Then |b,|A, < ¢/7 for all n. > ng, as required. Hence (5.7) holds by taking

pa = max{ns, ng}.

Similarly, there exists ps such that
anBp < ¢€/7 forall n > ps. (5.8)

As argument above, there exists ki, ko such that B,, < /e forall n > k; and A,, < \/¢/7 for all n > ko. Put
pe = max{ki, ka}. Then for all n > pg,
AnB, < /7. (5.9)

Clearly,
Ma < €/7. (5.10)

Let k = max{po, ..., ps}. Then, from (5.3)-(5.10)we conclude that |u,v,, — a| < € for all n > k. Hence
Uy Up, 7 af. ]

In practice several neutrices occurring in the neutrix K can be neglected, according to circumstances. In fact,
if N, M C £ we can neglect the terms N2 + M?2. Also, if £ C M, N we can neglect the terms N + M.

In classical mathematics, if €2 > 0 then € > 0. In the case of a neutrix M, if €2 > M it is not always true that
€ > M. For example, let e = w and M = w£. Then €2 > M, but e ¥ M.

In the proof above, as long as the terms of product sequences are outside the limit neutrix we can not always
use e-estimates, but sometimes we should resort to €2-estimates. We can illustrate this by considering the two
following sequences u, v: N — [E given by

u, = wf foralln € N

and

n/2 ifn <wt
Uy =
0 ifn > w?,

2

where w € N is unlimited. Then u,, —£> wf and v, — 0. Let e = w® > wf. Then |v,| < € for all

n € N,n > w? and |u,| < € for all n € N. However, for n = w? we have |u,v,| < € and |u,.v,| £ €. As
a consequence, if we neglect the terms N2 + M?2 in the neutrix K, in general, it does not guarantee that these

terms are less than e for all ¢ > K.

Finally we turn to the quotient of sequences. Let N be a neutrix and {u,} be a N-convergent sequence. In
virtue of Theorem it is enough to study the sequence (1/uy,).
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Definition 5.2.25. A flexible sequence u: N — [ is said to be zeroless if u,, # N(u,) foralln € N, i.e. if
0 ¢ u, foralln € N.

Lemma 5.2.26. Let N be a neutrix and {a,} be a zeroless real sequence such that ay, 7 a, for some a <

R, |a| > N. Then there exists ng € N such that for n > ny,

al/2 < |ay| < 2]al.

Proof. Let e = |a| /2. Clearly |a| /2 > N. So there exists ng € N such that for all n > ng one has |a,, — a| <
€ = |a|/2. It follows that |a| — |a|/2 < |a,| < |a| + |a|/2 = 3|a|/2. Hence for all n > ny, |a|/2 < |a,| <
3/2la| < 2|al. O

Theorem 5.2.27. Let N be a neutrix and u: N — E be a zeroless sequence such that uy, 7 o, for some

zeroless a = a + N € E, where |a| > N. Then the sequence (1/uy,) is N /a®-convergent to 1/c.

Proof. Write u,, = a,, + A, foralln € N. Let e > N/a?. Then a®¢/b > N for all b € @. Because u,, is
N-convergent to o, by Proposition it holds that A,, N-converges to N and that a,, N-converges to a. So
there exists ng such that for all n > ny,

|A, — N| < a®¢/3 (5.11)

and
la — a,| < a®¢/6.

Formula (5.11]) implies | A,,| < a?¢/3 for all n > ng. By Lemma 2.2.20(f) and the fact there exists n; € N such
that |a|/2 < |ay| < 2|a| for all n > n; we obtain that for all n > k = max{ng, n;}

1 1| |up o |aPun—ala|l  |aan —ala| | a®An +a2N
u, o |a2 a%| a2a? B a2a? a’a?
< la — an| N a’A, + 4la|>N
- apa a*/4
la — ap| +An+N - a’e/6  a’e/3 +a’¢/3
=e.
- a?/2 a? a?/2 a?
Hence (1/uy,) is N /a?-convergent to 1/a. O

Theorem 5.2.28. Let {uy,}, {v,} be flexible sequences such that {v,} is zeroless and N be a neutrix. Assume
that uy, 7 a and vy, 7 B. Then the sequence Un i K-convergent to g, where K = N + M /3% + N? +

Un, B
M\> N M
<62> —I—E—I—a@.

Proof. 1t follows from Theorem and Theorem [5.2.27. ]

5.2.6 Subsequences

In general, in non-standard analysis induction can not apply induction to an external formula, so we can not

define subsequences of a flexible sequence like in classical mathematics. We will use the notion of cofinal
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set instead of subsequences of a flexible sequence. This is a generalization of classical definition because an

internal cofinal set is a subsequence.

Definition 5.2.29. Let X C P(N x R) be such that X # (. A set J C X is called cofinal if

Vk e N3n > k(n,z) € J.

It is easy to see that the number of elements of a cofinal set can not be finite.

We denote by Py(J) the projection of J on N and { Pg(.J)} the projection of .J on E.

Definition 5.2.30. Let u: N — [ be a flexible sequence. Each cofinal set J of u = {(n,u,) : n € N} is
called a subsequence of {uy,}. We write {uy,, } p,(s) € {tn}-

Next proposition gives a characterization of /N-convergence in terms of the N-convergence of its subsequences.

Proposition 5.2.31. Let N be a neutrix, « = a + N € E and {u,} be a flexible sequence. Then uy, 7 aif

and only if every subsequence {un,, } p,(.1) € {un}, we have uy,, - @

Proof. Assume first that {u,, } is N-convergent to a.. Let J be a cofinal set of {u} and {un,, } () € {un}-
Let € > N. Then there exists ng € N such that for all n > ny, |u,, — a| < e. Also J is a cofinal set, so there
exists k € N such that k& > ng. As a consequence, for all n,, € Py(J), ny, > k > ng we have |u,,, — a| <.
We conclude that u,,,, - The other implication is obvious because {u,, } is a subsequence of itself. O

1
Example 5.2.32. Consider the flexible sequence u: N — E defined by u,, = (—1)" + —@, n € N. Then {u,,}
n

1
is a divergent sequence. Indeed, we consider two subsequences ug, = 1 + 2—@ and ugp1 = —1+ 1 Q.
n

n
One has ug, — 1and ug,+1 — —1. Also 1 — (=1) = 2 > 0. Applying Proposition we conclude that
the sequence {u, } is divergent.

An external subsequence may not satisfy all useful properties of conventional subsequences. The theorem below
says that every real sequence has an internal subsequence.

Theorem 5.2.33. Let a: N — R be a real sequence. There exists an internal subsequence of {ay,}.

Proof. 1f {a,} is an internal sequence, the conclusion is trivial. We now suppose that {a,} is an external

sequence. Let {a} = {(n,a,) : n € N}. The external set {a} can be represent as a = U H,, where
st(x)eX
H, = ﬂ I, with XY standard sets and I: X x Y = P(N x R) is an internal set-valued mapping for all
st(y)eYy

x € X,y €Y. There exists z € X such that H, is cofinal set, otherwise, {a} is included in a finite set, which
is a contradiction. This implies that for all st(y) € Y, I, is cofinal. So V"7 C Y 3J (V'y € Y(J C 1))

and J is cofinal and internal. Indeed, we can take J = m I..,. By the Idealization principle, there exists an

st(y)eZ
internal cofinal set J of {a} such that for all st(y) € Y one has J C I,,. Hence J C H,. So J is an internal

subsequence of a. O
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5.2.7 N-Cauchy sequences

Intuitively, a sequence {u, } is a Cauchy sequence if the terms of the sequence become arbitrarily close to each
other as the sequence progresses. In other words the difference between terms of the sequence converges to 0.
In this section we use the notion of /N-convergence defined above in order to generalize the notion of Cauchy
sequence to sequences in which the difference between terms of the sequence is arbitrary close to a given neutrix.

Definition 5.2.34. Let V be a neutrix. A flexible sequence u: N — E is said to be a N-Cauchy sequence if
for all e > N there exists ng € N such that for all n, m € N, m,n > ng one has |u, — u,| < €.

Remark 5.2.35. Similarly to Theorem 5.2.2, to verify whether a given flexible sequence is N-Cauchy or not,
it is sufficient to do it with all € € R, instead of € € E.

A flexible sequence {u,, } is a N-Cauchy sequence if and only if for all e > N, there exists p € N such that for
all k € Nand n > p one has |uy, 1 — un| < €.

Example 5.2.36. Let N be a fixed neutrix and u: N — [ be a sequence defined by u,, = s, + N, where {s,, }
is a Cauchy sequence. We will show that {u,,} is a N-Cauchy sequence. Let ¢ > N arbitrary. Then there is
no € N such that for m,n > ng, |spm — sn| < 6, for § < N. This implies that

[t — tn| = |8m + N — (sp + N)|
=lsm—S$n+ N|<|sm—8p| + N<I+ N<N+N<e

Hence {u,} is an N-Cauchy sequence.

Proposition 5.2.37. Let {u,} be a flexible sequence with u,, = a, + A, € E for alln € N. If the flexible
sequence {uy} is N-Cauchy, then {a,}, { A} are two N-Cauchy sequences.

Proof. Because {u,,} is a N-Cauchy sequence, for each ¢ > N there exists ng such that for all n > ng and for
all p > 0 one has |upty — un| < €. Thatis |aptp + Aptp — (an + Ap)| = |antp — an| + Ap + Apyp < e It
follows that A,, + A4+, < € and |a,, — an4p| < €. Hence {a,, }, {A,} are both N-Cauchy sequences. O

Proposition 5.2.38. Let {A,,} be a flexible sequence of neutrices. If { A, } is N-Cauchy then A, -~ N.

Proof. Lete > N. Because {A,} is N-Cauchy, there exists ng € N such that for all n € N, n > ng and for
all p > O one has |A,, 1), + Ap| < €/2. Also A, < Ay, + Ay 1y, 50 Ay, < €/2 for all n > ng. This implies that
]An—N]:An+N<e/2+e/2:e;henceAnTN. O

Lemma 5.2.39. Let {a,} be an internal real sequence. If {a,} is N-Cauchy then {a,} is N-convergent.

Proof. Because {a,} is a real N-Cauchy sequence, it is bounded. Also {a,} is internal, so there exists a
subsequence {ay,, } of {a,} which convergent to a for some @ € R. Lete > N. Then ¢/2 > N. So there
exist ny,ns € N such that |a,,, — a| < €¢/2 for all n,, > ny and |a,, — a,| < €/2 for all m,n > ng. Let

no = max{ni, ng}. Then forall n > ngitholds that |a,—a| = |a,—an,, +an,, —a| < |ap—an,,|+|an,, —a|] <
€. O
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Proposition 5.2.40. Let {a,} be a real sequence and N be a neutrix. Let {a} = {(n,a,) : n € N}. Assume
that {ay} is N-Cauchy. If there exists an N-convergent subsequence {an,, } p,(yy € {a}, where J is a cofinal
set of {a}, then {ay} is N-convergent.

Proof. Assume that a,,, 7 b for some b € R. Let € > N. Then there exist n1, no € N such that |a,,,, —b| <
/2 for all n,, > ny and |a,, — an| < €/2 for all m,n > na. Let ng = max{ny,no}. Then for all n > ng it
holds that n,, > n > ng. So |a, — b| = |an, — an,, + an,, — b| < |an,, — an| + |an,, — b] < € forall n > ng.

Hence {a,} is N-convergent to b. O

Theorem 5.2.41. Let u,, = a, + Ay, for all n € N be a flexible sequence. Then {u,} is N-convergent if and
only if {uy} is N-Cauchy.

Proof. We assume that u,, 7 « for some a € E. Then there exists ng € N such that for n > ng we have

|un, — a| < €/2. So for m,n > nyg it holds that

[t — Un| < |tm — up + N| = |up, — @ — uy, + @

<| |+ | <+
U — | + |up —a| < = + = =e.
> (Um n 9 B €

Hence {u, } is an N-Cauchy sequence.

Conversely, we assume that {u, } is N-Cauchy. By Theorem [5.2.33), there is an internal subsequence {a,,,,} C
{an}. Since {a,} is N-Cauchy, the sequence {a,,, } is N-Cauchy. So {a,,,} is N-convergent by Lemma
5.2.39. 1t follows that {a,,} is N-convergent by Proposition .2.40. Also, the sequence {A,,} is N-Cauchy, so
A, - N by Proposition 5.2.38. By Proposition we conclude that {u, } is N-convergent. O

Let N be a neutrix. Next proposition states that if a sequence has two [N-convergent subsequences whose

N-limits are sufficiently far then it cannot be /N-convergent.

Proposition 5.2.42. Let N be a neutrix and {u,, } be a flexible sequence. Let {u} = {(n,uy,) : n € N}. Assume
that there exist subsequences {un,, } p,(1)> {Uny, } Py(K) Of {un}, where J, K are two cofinal sets of {u}, such
that uy,, 7 Un Band N < |ac— f3|. Then {u,} is N-divergent.

Proof. Suppose that {u,,} is N-convergent. Let € be such that N < ¢ < |a — 3|. By Proposition 5.2.41,
there exists ng € N such that |u,, — u,| < €/3 for all n,m > ng. On the other hand, because u,y,,, ﬁ o,
there exists n; € N such that |u,,, — «| < €/3 for all n > ny. Also ug, —~ 3, so there exists ny € N
such that |ug, — S| < €/3 for all n > ng. Let kg = max{ng, n1,n2}. Then for n > kg one has |a — 3] <
o — wupm,, | + |um,, — ug, | + |ug, — B8] < €/3+¢€/3+¢/3 =€ <|a— S|, acontradiction. Hence, {u,, } is not

N-convergent. O
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5.3 Strong convergence

A well-known property of a real standard sequence a,, is that it converges to a if and only if a,, € a + @ for all
n unlimited. Next we generalize this fact to a flexible sequence. We will show that a flexible sequence {u, }
N-converges to « € E with N # 0, then there exists an index ng such that u,, C « for all n > ng. We call it

strongly convergent.

In this section we will also present properties and operations of strong limits. We will show that properties
which hold for limits also hold for strong limits. In addition, we introduce the notion of strongly N-Cauchy
sequence and demonstrate that flexible sequences are strong /N-completely Cauchy, i.e. every strongly N-

Cauchy sequence is N-convergent and vice versa.

5.3.1 Definition and example

Definition 5.3.1. Let {u,,} be a flexible sequence and o = a + A be an external number. The sequence {u, }
is said to be strongly convergent to « if there exists ng € N such that for all n > ng one has u,, C . We write

Limu,, = « or u, — «. The external number « is called a strong limit of {u,}.

1
Example 5.3.2. Consider the flexible sequence u,, = — + ©. Then Limu,, = @.
n

Obviously, every flexible sequence is strongly convergent to R. From now on, unless otherwise stated, when

we say « is a strong limit we implicitly assume that o # R.

Also, if a # R is a strong limit of {u,, }, for every neutrix M, N(«) C M it holds that o + M is a strong limit

of {uy, }. So in practice we prefer to find neutrices which are as small as possible.
Observe that if u,, < « then N(u,) C N(«) for all n > ng. Moreover, it is easy to see that if u,, — «

then u,, T)) «. However, in general, the converse is not true. For example, consider the flexible sequence
N(«

1 1 .
Uy = — + —@. Then u,, — 0 but u,, is not strongly convergent to 0.
non

5.3.2 Operations on strong convergence

The behaviour of the strong limit under operations is as expected, but the proofs are easier than the case of the
ordinary N-limit.
Proposition 5.3.3. Let {u, }, {v,} be two flexible sequences and v € E. Assume that Limu,, = o and Limv,, =
B, where a = R, 3 # R. Then

(i) Lim(yu,) = yLimu,, = yo.

(ii) Lim(u,, £+ v,) = Limu,, + Limv,, = a £ .

Proof. The properties follow from the definition of strong convergence. O
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Proposition 5.3.4. Let {u,}, {v,} be two flexible sequences and N, M be two neutrices. Assume that u, — «
and v, < [ for some o, B € E. Then {unv,} is strongly convergent to o.f3.

Proof. By assumptions there exists ng such that for all n > ng, v, € « and v, C B. This implies that

upvy, C af forall n > ng, and hence u,v, — af. O

Proposition 5.3.5. Let {u,} be a zeroless sequence. Assume that u, — «, where a € R is zeroless. Then
1

Unp, Q

1 1
Proof. Because u,, — «, there exists ng € N such that u,, C « for all n > ng. It follows that — C — for all
Uy
1

1
n > ng. Hence — «— —. O
Up, «

Proposition 5.3.6. Let {u,} be a flexible sequence. If {uy} is strongly convergent to « then |uy,| is strongly

convergent to |a|.

Proof. Assume that u,, — «. Then there exists ng € N such that v,, C « for all n > ng. This means
Up —a C N(a). So ||up| — ||| < |up — ] € N(a). It follows that |u,| C |af for all n > ng. One concludes
that |u,| — |a.| O

Next we present a version of squeeze theorem for strong limits.

Proposition 5.3.7. Let {u,}, {v,}, {wy} be flexible sequences. Assume that u, < w, < v, foralln € N and

Uy — a, Uy > a. Then w, — o.

Proof. Forn € N, letu, = an, + Ay, v = by + Bp,w, = d,, + D, and @ = a + A. We may assume that
always a,, < b, < ¢, forall n € N. Because u,, — «, there exists n; € N, n; > ng such that u,, C « for all

n > np. Similarly, since v,, < a, there exists ny > ng such thatv,, C « forall n > ng. Let p = max{ni, na}.

We prove that w,, C « for all n > p. Let n > p. Then we have the following cases:
Case 1: w,, € v,. Then w,, C «.
Case 2: wy, < v, and u,, < wy. Then wy, C [a,, b, C a.

Case 3: wy, < v, and u,, C wy,. Then a,, + D;} C [an, by) C . In particular, D;} C N(«a). Because N («) is
symmetric, one concludes that D,, C «a. So w,, C a.

Hence w,, C « for all n > k and we conclude that w,, — «. O

5.3.3 Some properties of strongly convergent flexible sequences

We below obtain similar results on properties of strong limits as in the case of N-limits.
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Proposition 5.3.8. Let {u,} be a flexible sequence and o € E. Then {u,} is strongly convergent to « if and
only if every subsequence {un} p,(.yy of {un}, one has {up,(y)} is strongly convergent to c.

Proof. Assume that u,, < «. So u,, C « for all n > ng. For a subsequence {u,,} Pu(J) there exists k €
Px(J) > ng. This implies that u,,, C « forall m € Py(J), m > k > ng. We conclude that {U/n}PN(J) is
strongly convergent to c.

The converse is trivial because {u,, } is a subsequence of itself. O

Proposition 5.3.9. Let {u,} be a flexible sequence and « € E. If {u,,} is strongly convergent to «, then {u,}

is eventually bounded.

Proof. We have u,, C « for all n > ng. Because a # R, it holds that {u,,} is eventually bounded. O

Proposition 5.3.10. Let {u,} be a flexible sequence, where u,, = a,, + A, for alln € N. Then u, — «if
and only if a,, — «and A, — N(«a).

Proof. 1t follows by the fact that u,, C « if and only if a,, € « and A,, C N(«). O

5.3.4 The relationship between /N-limits and strong limits

Next we investigate the relationship between N-convergence and strong convergence. We first consider it for a
real sequence and then for a flexible sequence. We will show that the two notions are equivalent when N # 0.

Proposition 5.3.11. Let {a,,} C R be an internal sequence and N # 0 be a neutrix such that a,, ¢ N for all

n. Then {a,} is not N-convergent to N.

Proof. Firstly we assume that for all n € N, a,, > N. We consider two cases.

Case 1: The sequence {ay,} is convergent to a for some a € R. Then a ¢ N. Indeed, suppose that a € N. Let
€ € N, e > 0. Then there exists ng € N such that |a,, — a| < € for all n > ng. So |ay| < |a| + € for all n. > ny.
Because |a|+€ € N, it follows that a,, € N for all n > ng, which is a contradiction to the assumption. Suppose
that a < N. Let o = |a|/2 > N. Then there exists ny € N such that |a, — a| < np forall n € N,n > nq.
This implies that a,, < a + 19 = a/2 < 0 for all n > ny, a contradiction. Hence a > N.

Suppose that a,, 7 N.Let N < e =a/2. Thena/2 =a — € < a, < a+ € forall n > ng. It follows that
lan—N|=an,+N >a/2+N > a/4 > N forall n > ng, which is a contradiction. Hence NV is not a /N-limit
of (ay).

Case 2: The sequence {a,, } is divergent. Suppose on contrary that a,, -~ N. Then {a,} is bounded. So there
exists a subsequence {a,, } C {an} such that {a,,, } has a limit b € R. By Case 1, the subsequence {an,, }
does not N-converge to IV, a contradiction to Proposition 5.2.31. Hence N is not a N-limit of {a,, }.

Secondly, let {a,, } be an arbitrary sequence. Suppose that a,, ' N. Then |ay,| - N with |a,| > N for all

n € N, which is a contradiction. Hence {a,, } is not N-convergent to V. O
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Theorem 5.3.12. Let {ay, } be areal sequence and N # 0 be a neutrix. Assume that a,, 7 N.Thena, — N.

Proof. Because a, 7 N, we may assume that {a,,} is bounded. Suppose that for each n € N there exists
p € Nsuchthatp > nanda, ¢ N. Let J = {(n,a,) : a, € N}. Then J is cofinal. By Theorem [.2.33,
there is an internal subsequence K of J. Let b, = a,,n € Pyn(K). Because {ay} is N-convergent to N,
by Proposition the sequence {b,,} is N-convergent to N with b, ¢ N for all n € Py(K), which is a
contradiction to Proposition p.3.11. Hence there exists ng € N such that u,, € N for all n > ng. We conclude
that a,, — N. O

Corollary 5.3.13. Let {a,} be a real sequence and N # 0 be a neutrix. Assume that a,, ? « for some
a € E. Then a, — «a.

Proof. Let « = a + N. Because a,, 7 «, we have a,, — a 7 N. By Proposition above, it follows that
a, —a — N andhencea,, — a+ N = «a. ]

Lemma 5.3.14. Let A = {(n, An)} C P(N x R) be a cofinal external set, where A,, is a non-empty for all
n € Py(A). Then there exists a cofinal internal set J = {(k, ar)} C NxR such that ay, € Ay forallk € P(J).

Proof. We have A = U ﬂ I, where X, Y are standard and /: X x Y = P(N x R) is an internal set-
st(z)eX st(y)eY
valued mapping forallz € X,y € Y. Let H, = ﬂ I, Because A is cofinal, there exists st(z) € X such

st(y)eY
that H, is cofinal. It follows that for all st(y) € Y, I, is cofinal. Hence V*/™Z C Y 3J V'y € Z, J C I,

In fact, we can take J = ﬂ I.,. By the idealization principle we have
st(y)eZ

VY € YT C Ly,

where J is internal and cofinal. Because J is internal, applying the axiom of choice we have that for each
k € Px(J) there exists ay, : (k,ay) € J, thatis, ar, € Ay forall k € Py(J). O

Proposition 5.3.15. Let { A, } be a neutrix sequence and N # 0 be a neutrix. If A, - N, there exist ng € N
such that for all n > ng we have A, C N.

Proof. Suppose on contrary that for all n € N there exist p, > n such that N C A4, . Let
D={(n,A,\N): N C A,}.

Then D is cofinal. By Lemma [.3.14, there exists an internal subsequence {b;,} such that b, € A, \ N for all
k € P(J). Because A, 7 N, we have by, T) N, a contradiction to Lemma 5.3.11. Hence there exists ng
such that for all n > ng we have A,, C N. O

Lemma 5.3.16. Let {u,} with u, = a, + A, be a flexible sequence and N # 0 be a neutrix. If u, 7 N,
there exists ng € N such that for all n > ng we have u,, C N.
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Proof. Because u, —> N, by Proposition 5.2.§ we have a,, —> N and A, —> N. By Proposition [5
and Theorem [5.3.12) - there exist n1,no € Nsuch that a,, € N for all n > ny and A C N forall n > no. Let
no = max{ni, na}. Then for all n > ny we have u,, C N. O

Theorem 5.3.17. Let u,, be a flexible sequence and o« € E be an external number with N («) # 0. Then
Uy, —> aif and only if u, — «.
N(a)

Proof. Assume that u,, — « with N(«) # 0. Then there exists ng € N such that u,, C « forall n > ng. It
follows that u,, — .

N(a)
Conversely, assume that w,, ﬁ a. Then u,, — « m N (c). By Lemma 5.3.16, there exists ng € N such that
o o
un —a C N(a) for all n > ng. This implies that u,, C « for all n > ny. O

5.3.5 Strong Cauchy sequences

Definition 5.3.18. Let N be a neutrix. A flexible sequence {u,, } is said to be a strongly N-Cauchy sequence
if there exists ng € N such that u,, — u,,, € N for all n, m > nyg.

Theorem 5.3.19. Let N be a neutrix. Let {u,} be a flexible sequence with w,, = a,, + A, for alln € N. Then
{un} is a strongly N-Cauchy sequence if and only {a,,},{A,} are strongly N-Cauchy sequences.

Proof. 1t follows by the fact that u,, — u,, C N if and only a,, — a,, C N and A,, — A,, C N. O

Lemma 5.3.20. Let {a,} be a real internal sequence and N be a neutrix. If {a,} is strongly N-Cauchy then

{an} is strongly convergent to « = a + N for some a € R.

Proof. If N = 0 then there exists ng € N and a constant c such that a,, = ¢ for all n > ng. So a,, is strongly
convergentto c+ N = c. If N # 0, because {a,, } is strongly N-Cauchy, it is bounded. It follows from Theorem
that there exists an internal subsequence {a,, } of {a,} such that {a,,, } is convergent to a for some
a € R. Also, N # 0, there exists ng € N such that a,,, € a+ N for all m,, > ng. Because the sequence {a,, }
is strongly N-Cauchy, there exists pg € N such that a,,, — a,, € N for all m,n > po. Let kg = max{ng,po}.
Then for all n > kg we have a,, —a = a, — @y, + am,, —a € N + N = N. It follows that a,, € a + N for
all n > ko. Hence {a, } is strongly convergent to a + V. O

Theorem 5.3.21. Let {u,} be a flexible sequence with u,, = a, + Ay, for alln € N. Then {uy} is strongly
convergent to « if and only if {uy,} is a strongly N («)-Cauchy sequence.

Proof. Assume that {u,, } is strongly convergent to « for some oo = a + N(«) € E. Then there exists ng such
that for all n > ng we have u,, C a. It follows that u,, —a C N(«) for all n > ng. So for all n,m > ng we
have u,, — Uy, = up — a + a — uy € N(a) + N(a) = N(«). Hence {u,} is strongly N («)-Cauchy.

Conversely, assume that N is a neutrix and {u,, } is strongly N-Cauchy. Then there exists ng such that for all
n > ng we have u, — u,, € N. It follows that A, C N for all n > ng. By Theorem , there exists an
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internal subsequence {a,,, } of {a, }. Since {u,} is strongly N-Cauchy, by Theorem we have that {a,, }
is strongly N-Cauchy which implies that {a,,,, } is also strongly N-Cauchy. Then {a,,,, } is strongly convergent
to a+ N for some a € R by Lemma[5.3.20. So there exists pg such that for all n > py it holds that a,,, —a € N.
Also, because {ay,} is strongly N-Cauchy, there exists p; such that for all n,m > p;, we have a,, — a,, € N.
Let kg = max{po, p1}. Then forall n > ko, it holds that a,, —a = a, — asp,, + am, —a € N+ N = N. Hence
{ay,} is strongly convergent to a + N. By Proposition we conclude that {u,, } is strongly convergent to
a+ N. O

5.4 Flexible sequences in [£”

In this section we expand results on flexible sequences in [E to a vector flexible sequence in EP in which we
always assume that p € N is standard. Vector flexible sequences are used when we study the convergence

of a flexible function of several variables in the next chapter. We will use the norm ||« = max |a;| with
<i<p

a=(ai,...,ap) € EP.
Definition 5.4.1. A mapping u: N — [EP is called a flexible sequence in EP.

Definition 5.4.2. Let IV be neutrices and {u,, } be a flexible sequence in EP. The sequence {u,,} is said to be
N-convergent to a vector &« = (v, ..., qp) if for all € > N there exists ng € N such that for al n > ny we
have d(uy, @) < e. Then we also say that « is an N-limit of the sequence {u,, } and we write N-limu,, = a.

Similar to sequence in [E, we assume that N (a;) = N forall 1 <i < p.
9 . 1 1
Example 5.4.3. Let u: N — E“ be givenby u,, = ( 1 + @, — + —€® |. Then u,, - (14+0,@).
n o n

Theorem 5.4.4. Let {u,} be a flexible sequence in EP with u,, = (u1p, ..., upy) for alln € N, N be a neutrix
and o = (aq,...,a,) € EP. Then u, 7 « if and only if u;, 7 a; foralll <i <p.

Proof. Assume that u,, 7 a. Then for € > N there exists ng such that for all n > ng we have d(u,, o) < €.

It follows that for all n > ng we have |u;, — ;| < d(up, @) < e, with1 < i < p. So N-limu;, = «;.

Conversely, assume that u;, T a; forall1 < ¢ < p. Fore > N,and 1 < i < p there exists n;g € N such
that for all n > n;o we have |u;, — a;] < e. Let ng = max{nio,...,ny0}. Then for all n > ng we have

d(up, o) = ll’il?é(p |tin — a;| = |ugn — ax| < €. We conclude that w,, 7 . O

Definition 5.4.5. A flexible sequence u: N — EP with u,, = (u1in,...,upn),n € Nis said to be strongly
convergent to & = (o, ..., op) € E™ if the flexible sequence w;, is strongly convergent to a; for 1 < i < p.

Then we write u,, < « or Limu,, = «.. The vector &« = (v, ..., ay,) is also called a strong limit of {u,,}.

Example 5.4.6. Let ¢ > 0 be infinitesimal. Consider the flexible sequence u: N — E? given by u,, =

1 1\"
<n+e®,+ <1+> e£> for all n € N. Then u,, — (1 + €0, €£).
n+1 n n






Flexible functions

This chapter is devoted to the study of functions with uncertainties. We only consider functions with precise
variables and imprecise values. The imprecisions are modelled by external numbers. A function such that its

values are external numbers is called a flexible function.
The structure of the chapter as follows.
In Section .1, we introduce the notion of flexible function and give some examples.

In Section .2 we generalize some topological notions. By using neutrices instead of zero, we introduce the

notions of M -neighbourhood, an M -interior point, an M-ball, where M is a neutrix

In Section .3 the convergence of flexible functions is considered. Like Chapter 5 we will develop an adapted
version of traditional convergence of function for a flexible function in terms of neutrices. Properties and
arithmetic operations of this kind of limit as well. We also present the relationship between the convergence of
a flexible sequence and of a flexible function. The Cauchy criterion for the convergence of a flexible function

is obtained as in conventional analysis.

141



142 CHAPTER 6. FLEXIBLE FUNCTIONS

In Section b.4 We introduce one-sided convergence for flexible functions and study the relationship to both-sided

convergence.

In Section 6.3 we define a notion of continuity for flexible functions. Properties of and arithmetical operations

on continuous flexible functions are investigated.

Recall that a standard function f is uniformly continuous if and only if f(x + @) C f(x) + @ for all z.
Generalizing this properties we introduce in section [p.4 a notion of inner convergence and of inner continuity.

Some properties and arithmetic operations are considered.

In order to construct the derivative of a flexible function in Section 6.7 we introduce another notion of conver-
gence, which is called outer convergent. Using this notion we define so-called M x N-derivatives of first and
higher order of flexible functions. Monotonicity of these functions is studied in Section [.§.

In Section b.9 we introduce the M x N-partial derivative and the M x N-total derivative for flexible functions
of several variables. The relationship between the two notions is studied. Also, we will provide conditions
such that an implicit function or an inverse function is M x N-totally differentiable in Sections and [6.11].
The study of the various types of differentiation is motivated by Chapter 8 on approximate optimal solutions of
optimization problems with flexible objective functions.

6.1 Definitions and example

Definition 6.1.1. Let X C R", X # (). A mapping F': X — E, ofthe form |J (| Iy, where U,V are
st(u)eU st(v)eV
standard sets and I: U x V' = X x P(R) is an internal set-valued mapping, is said to be a flexible function. A

flexible real function f defined on X such that f(z) € F(z) for all z € X is called a representative of F'. The
mapping Np: X — E defined by Np(z) = N(F(x)) for x € X is called the neutrix part of F'; observe that
the neutrix-part is also a flexible function. In general, we call a flexible mapping N: X — N a neutrix-function.
Then for each flexible function F' defined on X and for all x € X we have F'(xz) = f(x) + Np(z).

We recall that as a consequence of Nelson’s Reduction Algorithm [|14] every external set with internal elements

can be expressed in the form (1 Iuw where U, V are standard sets and I: U x V' = X x P(R) is an
st(u)eU st(v)eV
internal set-valued mapping.

Convention 6.1.2. In the whole chapter whenever we mention X C R" we implicitly assume that n € N is
standard and X # ).

Example 6.1.3. a. A mapping F: R — E given by F/(z) = sinx + cosz - @ for z € R is a flexible function.
Indeed, let V' = N and for n € N we define I: N = R x P(RR) given by

I, = {{:U} X {sinx + [—g, co:x] } , T € R}.

n

Then F = [\ I.
st(n)eN
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The function f: R — R given by f(x) = sinz for z € R is a representative of F' and Ny: R — N given
by Np(z) = cosz - @, x € R is the neutrix part of F.

b. Let € > 0 be infinitesimal and F': R — E be given by

e’ + €L ifref
F(x) =
In(z) + e*ew ifx &£

Observe that the function F' can be expressed by

F = U U {{z} x {e* + [—en,en]},—m <z < m}

st(m)eN st(n)eN

U ﬂ {{x} X {1n:c+ex (—%,%)} T & [—m,m]}

st(m)eN st(k)eN

By the Reduction Algorithm the mapping F' can be expressed only by one intersection and one union relation.

Hence F' is a flexible function.

c. For example, the mapping F: R — N given by F'(z) = e” - €@ for all z € R, is a neutrix-function.

6.2 Some topological notions

Treating a neutrix as a kind of generalized zero we will expand classical notions of topology in which conditions
related to zero are replaced by neutrices, in such a way that if the neutrix is zero we obtain the classical notions.
These notions allow us to study properties of convergence and continuity of a flexible function. Also, it enables
us to measure the order of magnitude of uncertainties of local optimal solutions in Chapter 8.

Recall that in the classical mathematics, x¢ is an accumulation point of X if every ball of radius » > 0, centered
at x¢ contains points of X which are different from x¢. In this context, we generalize this notion with a condition
that » > M instead of » > 0.

Let d be a metric on R™ and M be a neutrix.

The open ball centered at zg of radius » > M
B(zg,r) = {x € R"|d(z,x0) <1}

is called the open M-ball centered at xq of radius r .

The closed ball centered xq of radius » > M
Blzo;r] = {z € R”|d(az,m0) <r}

is called the closed M-ball centered at x( of radius r.
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In case M = 0 we use usual notations.

Later on we also use the following notion: the outer M-ball centered at x¢ of radius r > M by
By (xg,7m) = {x € R"|M < d(x,z0) <T}.

Definition 6.2.1. Let S C R™ be not empty and g € R™. Let M be a neutrix. We say that xq is M-close to S
if there exists « € S such that d(z, xg) € M.

Let S be a non-empty subset of R" and M be a neutrix. Then every point of S is M-close to S. Another
example, for instance, every infinitesimal is @-close to {0}.
Every appreciable point is not @-close to @.

Definition 6.2.2. Let X C R", X = () and xg € R™. We say that x( is an M-accumulation point of X if for
all § > M one has B(zo;6) N (X \ {zo + M}) # 0.

In case M = 0 we have the usual notion of accumulation point so, we may use the terminology accumulation

point instead of 0-accumulation point.

Example 6.2.3. a. 0 is a @-accumulation point of X = (—1, 1). In this example, O is a point which belongs to
X. However, like the classical definition, an M -accumulation point of a set may not belong to this set. For
example, 0 is a @-accumulation point of X = @ but it does not belong to X.

b. Let eg > 0 be infinitesimal. Then ¢j is an accumulation point of ©@.

Definition 6.2.4. Let M be a neutrix. Let zp € R™ and U C R” be a non-empty subset. We say that xg
an M-interior point of U if there is r > M such that B(xo;7) C U. Then the subset U is said to be an
M -neighbourhood of xy. Similarly, if M = 0, we use the usual terminology.

For example, © is a neighbourhood of 0, but not a @-neighbourhood of 0 and @ is a @®-neighbourhood of all
its members. Let € > 0 be infinitesimal. Then B(0; ¢) C R? is a 0-neighbourhood of zg = (0, ¢/2).
Also, we have that 1 is a @-interior point of £ and w is an £-interior point of w£, here w is unlimited.
Definition 6.2.5. Let « € E and U C R. The set U is said to be a real neighbourhood of « if and only if there

exists an open interval V' = (a,b) C Rsuchthata C V C U.

For example, the subset U = £ is a real neighbourhood of 1 4+ ©@.

6.3 Both-sided M x N-limits

In general, the classical notion of convergence can not apply to flexible functions. Using neutrices as a kind of
generalized zero we generalize the notion of convergence of real function in traditional mathematics to flexible

functions. We also investigate properties and operations of these convergences.
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6.3.1 Definition and example

Definition 6.3.1. Let M, N be neutrices, X C R" and F: X — E be a flexible function. Let o be an M-

accumulation point of X and @ = a + A be an external number. We say that o is a M x N-limit of I at xg,

written ]\N4 lim F(z) = a,ifforalle € E, e > N, thereexists 6 > M suchthatforallz € X,0 < d(z, ) < 0
T

Tr—r
we have |F(z) — af < e.

In this case we also say that F'(z) is M x N-convergent to & when x approaches x.

If F'(z) is not M x N-convergent to any element in E, we say that it is M x N-divergent.

In case M = N # 0 we use the notation M- lim F(x), in case M = 0, N # 0 we use the notation

T—T0

N lim F(z) instead of §; lim F(x). In particular, if M = N = 0, the notion reduces to conventional
T—T0 T—T0

one, so we use the usual notation as the classical one.

Similarly to the definition of N-limit of a flexible sequence, in the definition above we also can replace the

condition € € E by the condition € € R.

Example 6.3.2. Consider the flexible function given by F'(z) = x + = - @ for all x € R. One has
o-lim(z+z-0)=1+0.
z—1

Indeed, let € > ©, taking 6 = ¢/2 > ©. Then forallz € R, |z — 1| < § one has |F(x) — (1 + ©)| =
lz—1|+0<€/2+¢€/2 =k

Remark 6.3.3. Using the notion of a neighbourhood of an external number we can rewrite the definition of
M x N-limits at one point. In fact, % lim F(x) = « if and only if for each real neighbourhood V' of «, there
T—T0

exists § > M such that forall z € X, 0 < d(z,z¢) < d one has F'(x) C V.

6.3.2 Properties and operations

The neutrix part of an M x N-limit must be included in V.

Proposition 6.3.4. Assume that §; lim F(x) = . Then N(a) C N.

T—rT0

Proof. We write o = a+ A. Suppose on the contrary that N C A. Let e € A be a real number such that NV < e.
Then there exists 6 > M such that |F(z) —a| = | f(x)+ Np(z) —a+ A| < e. It follows that | f (z) —a| < e. So
|f(z)—al € N(a) = A. Asaresult, e < |f(z) —a+ Np(x)+ A| = Np(z)+ A < ¢, which is a contradiction.
We conclude that A = N(a) C N. O

In contrast to a conventional convergence, M x N-limits of a given flexible function at a point are not unique.
In fact, if « is an M x N-limit of F' at x, then every element 3 C o + N is also an M x N-limit of F’ at .
We will show that the M x N-limit is unique up to the neutrix V.
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Proposition 6.3.5. Assume that §; lim F(z) = aand §; lim F(z) = 3. Thena — 3 C N.
T—T0 T—T0

Proof. Suppose that & — € N. This implies that N < |o — 8] or N C a — . Pick ¢ € R such that
N < e < |a — fB|. So there are 61,02 > M such that for all z € X,0 < d(z,x0) < 4 it holds that
|F(z) —a| <¢/2and forallz € X,0 < d(x,z0) < d2 we have |F(z) — | < €/2. It follows that

e<la—pl<|a—F(z)+ F(z) - 6| < [F(z) —a| +|F(z) - 8] <€/2+€/2 =€,

which is a contradiction. Hence o — 5 C N. O

In fact, if a is an M x N-limit of F at xg, every external number 5 C o + N is also an M x N-limit of F" at

Q.

Proposition 6.3.6. Let M, N be neutrices and F: X — E be a flexible function. Assume that o € E is an
M x N-limit of F at xo. Then o + N is also an M x N-limit of F' at xo. In addition, every 5 € E such that
B8 —a C Nisan M x N-limit of F at x.

Proof. For e > N one has ¢/2 > N. Because o € E is an M x N-limit of F' at z, there exists § > M such
that forall x € X,0 < d(x,x0) < d one has |F(z) — a| < €/2.So |F(z) — (o« + N)| = |F(z) —a|+ N <
€/2+¢/2 = €. Hence a + N is an M x N-limit of F' at xy.

In addition, by Proposition we have N(a) C N. So f—a C N implies 5 C o+ N. As above, we obtain
that 5 is an M x N-limit of F at . O

Convention 6.3.7. Because of Proposition p.3.6, unless stated otherwise, we always assume that if AN4 lim F(x)
Tr—T0
a, then N(a) = N.

Proposition 6.3.8. Let My, N1, Ma, Ny be neutrices such that Ma C My and Ny C Na. Let F: X — E be a

flexible function and xo € R™ be a M-accumulation point of X. Assume that Ale lim F(z) = «. Then
Tr—T0

Nz s —
YA mlggo F(x) = a.

Proof. Let € > Ns. Because N1 C No, it holds that ¢ > N;. Also, by assumption that Ale lim F(z) = «,
Tr—x0
there exists § > M such that

forall z € X with 0 < d(z,z0) < d we have |F(z) — a| <e. (6.1)

On the other hand, M, C Mj, it holds that § > M. From (6.1]) we conclude that ANfQ lim F(x) = a. O

T—TQ

Because of this result, when we consider M x N-limits we are implicit in working with the largest M and the

smallest [NV possible.
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Each flexible function is expressed by a sum of two components: a real part and the neutrix part. The result
below indicates that if there exists M x N-limit of a flexible function at one point, there also exist M x N-limits

of its components at this point and vice versa.

Theorem 6.3.9. Let M, N be two neutrices and I be a flexible function defined on X C R". Let f be

a representative of F' and Nf be the neutrix part of F. Let xoy be an M-accumulation point of X. Then

Mxlggo F(z) =a=a+ N ifand only lszlgalO f(z) =aand y; xgrgo Np(z) = N.

Proof. Assume that Y lim F(z) = a + N. Let ¢ > N. There exists § > M such that for all z € X,0 <
Tr—rxQ

d(x,z9) < 6 one has |F(z) — o = |f(x) —a+ Np(x) + N| < e It follows that |f(x) — a|] < € and
(Np(z) + N) < e. Hence §; lim f(z) = aand }; lim Np(z) = N.
T—T0

Tr—x0

Conversely, we assume that §; lim f(z) = aand {; lim Ng(z) = N.Lete > N.Itholds thate/2 > N and
T—T0 T—x0

hence there exists ; > NN such that forall z € X,0 < d(x,z0) < ¢; one has |f(z) — a|] < €¢/2 and 3 > N
such that for all 2 € X,0 < d(z,z0) < 82, it holds that (Np(z) + N) < €/2. Put § = min{d1, 62}. Then for
allz € X,0 < d(z,z0) < § we have |F(z) — a| = |f(z) — a| + (Np(z) + N) < €/2+ ¢/2 = €. Hence
N 1 —

o mlggo F(z) = a. O
Next propositions state how the limit of a flexible function behaves under algebraic operations, and to what
extent the involved neutrices need to be adjusted.

Theorem 6.3.10. Let M, N1, Ny be neutices and o, 5 € E. Let F, G be flexible functions defined on X C R"

and xq is an M-accumulation point of X. Assume that ]]\\/[[1 lim F (z) =« anaﬂ]\\g2 lim G (x) = (8. Then
Tr—x0o T—rT0

@ 4 lim (F+G)(z) = a+ B, where N = Ny + Ns.

T—T0

(i) 3 lim (F — G)(z) = a — 3, where N = N + Na..

T—T0

(iii) Let k € R. Then ¥ lim (kF) (z) = ko

Tr—xQ

. N1 1; _
(iv) 37 Jim |F (z)] = Jal.

Proof. () Lete > N. Then e > N; and € > N». Because J\N/} lgn F(x) = a, there exists 61 > M such that
T—T0
forallz € X,0 < d(x,x0) < 01 one has F(x) — | < €/2. Similarly, because ]\Nf 1Lm G(z) = f3, there exists
T—T0
d2 > M such that for all z € X,0 < d(x,x9) < 2 one has |G(x) — 5| < €/2. Put 69 = min{d1, J2}. Then
0o > M and forall x € X,0 < d(x,z0) < dp one has |F(z) + G(x) —a— | < |F(x) — a| + |G(x) — 5] <
€/2+¢€/2 =e.

(i) The proof is similar to the proof of Part (f).

(iii) If & = 0, the conclusion is trivial. We assume that k& # 0. Let ¢ > kN; = |k|N;. This implies that

ﬁ > Ni. Because ﬁl lim F(x) = a, there exists 69 > M such that forall z € X,0 < d(z, xg) < dp one has
Tr—xTQ
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|F(z) — of < €/|k|. It follows that |kF'(z) — ka| = |k||F(x) — af < |k|ﬁ = €. Hence ]févl xl;nzgo (kF) (x) =
ka.
(iv)) The result follows from the fact that || F(z)| — |o| < |F(z) — af. O

Theorem 6.3.11. Let M, N1, Ny be neutices and o, 3, € E. Let F, G be flexible functions defined on X C R"
and x(y be an M-accumulation point of X. Assume that JA\Q lim F(z) = aand JA\? lim G(z) = 5. Then
T—x0 T—T0

N lim (FG)(x) = aB,

T—rT0

where N = Ny + Ny + N + N3 + aNy + BNy.

Proof. Write F(z) = f(z) + A(x), G(z) = g(x) + B(x) forallz € X and « = a + N1, 8 = b+ Na. Then

[F(2)G () — af| =|f(2)G(z) — af + A(2)G(2)] < [f(2)G(x) = f(2)5 + [(2)B — af + A(z)G(z)|
<[f(@)[|G(x) = Bl + [b]|f (z) — ol + Nof () + Noa + A(x)g(x) + A(x)B(z)  (6.2)

Let € > N. We first show that there exists 6; > M such that forall z € X,0 < d(z,z¢) < 6; one has

F@)|G() — 8] < . (6.3)

We consider two cases, (i) @ € Nj and (ii) a € N;. For the case (i) we can take ¢ = 0. The inequality
€ > N12 implies \/e > Nj. Hence there exists k1 > Nj such that for all z € X,0 < d(z,x0) < k1 we have
|f(z)| < v/e. Similarly, one has /e > Nj. So 1/€/6 > Nj and hence there exists ko > M such that for
all z € X,0 < d(x,z0) < k2 one has |G(x) — ] < v/¢/6. Let 61 = min{ky, ko} > M. Then that for all
z € X,0 < d(x,z9) < 61, we obtain

F@)IG@) -8 < 5.

as required. For the case (ii) we have |a| > N; and hence there exists p; such that forz € X, 0 < d(z, o) < p1,

|f(z) — a| < |a|, which implies that | f(z)| < 2|a|. Also € > |a|Na, so %H > Nj. There exists py > M
a

~° Let 91 = min{p1, p2}. Then for all

12|a|’
z € X,0 <d(z,x0) < ) we obtain |f(z)||G(x) — | < 2|a|]|G(x) — B] < %, as required.

such that for x € X,0 < d(x,x0) < p2 it holds that |G(z) — 5| <

Secondly, we indicate that there exists 62 > M such that for x € X,0 < d(x,zg) < J2 it holds that

|b]|f(x) — af < €/6. (6.4)

Note that if b € N, we can choose b = 0 and the result follows. Assume that |b| > Ny. The inequality

€ > BN1 = bN; implies £ > Nj. Then there exists dy such that for all x € X,0 < d(x,z9) < J2 one has

6[0|
|f(z) —al < . Hence (6.4) holds.

€

61|
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Thirdly we show that there exists d3 > 0 such that for z € X,0 < d(z,xg) < d3 one has,
|f(z)| N2 < €/6. (6.5)

As above we distinguish the cases (i) a € N and (ii) a € N. For the case (i), similarly to the first part, there
exists k1 > M such that for all z € X,0 < d(x,x0) < k1 one has |f(z)| < /€ and that \/e/6 > Nj. Let
d3 = ky. Then for all z € X,0 < d(x,x0) < 03 it holds that | f(x)| N2 < y/e./€/6 = ¢/6. For the case (ii),
taking 93 = py, forall 2z € X, 0 < d(z,zg) < 83 it holds that | f(z)| N2 < 2|a|N2 < €/6. Hence (6.5) holds.

Fourthly, we prove that there exists 64 > M such that for all x € X,0 < d(z, x¢) < 04 one has
lg(x)|A(x) < €/6. (6.6)

Again we distinguish two cases. (i) b € N and (ii) b ¢ Na. (i) Again we can choose b = 0. Since € > N2

one has ¢/6 > NZ2. Hence \/g > Na. Also 47 lLrn g(x) = 0, so there exists ps > M such that for all
T—T0
r € X,0 < d(z,x0) < ps it holds that |g(x)| < \/E Moreover, since \/E > Nj there exists py > M

such that for all z € X,0 < d(x,z0) < p4 it holds that A(z) < é Let 04 = min{ps,psa}. Then, for

all z € X,0 < d(z,z09) < 04 we have |g(z)|A(z) < €/6, as required (ii) Let ¢ = |b| > Nj. Then there
exists ps > M such that for all z € X,0 < d(z,z9) < ps it holds that |g(x) — b| < |b|, which implies that

lg(x)| < 2|b|. Furthermore € > b.Ny, so N; < ¢/|b|. It follows that N; < %“)‘ Then there exists pg > M

such that for all z € X,0 < d(x,z9) < pe one has |[A(z)| < Put 04 = min{ps, ps}. Then for all

€
0]
x € X,0 < d(zx,r9) < &4 one has , |g(x)|A(x) < 2|b|A(z) < ¢/6. Hence (6.6) holds.

Finally, we saw that for all z € X,0 < d(z,z9) < py it holds that A(z) < \/e/6. Similarly, there exists
pr such that for all z € X,0 < d(z,x0) < p; one has B(x) < \/% Put 65 = min{p4, p7}. Then for all
z € X,0 < d(z,x0) < d5 one has

A(z)B(x) < €/6. (6.7)
Clearly,
Noa < €/6. (6.8)
Let &g := min{dy, ..., 85 }. Then, from (6.2)-(6.8), we conclude that, for all z € X,0 < d(x,x) < & one has
(FG)(z) — af| < €. Hence lim = af. O
T—T0

Remark 6.3.12. Note that in case N1, Ny C £, we can neglect the term N12 + N22. So N = Nj + Ny + N12 +
N22 4+ alNg + BN1 = N1 + No + aNy + SN;. In case «, 3 are zeroless, N reduces to N = alNy + SN;.

Example 6.3.13. Let w be unlimited and F': R — E be a flexible function given by F'(z) = e* + w£.

We have %* lin% (e + wf) = wf. However, 2 = F - F is not ® x wf-convergent to wf. In fact, it is
T—

© x w?£-convergent to w2£.
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Example 6.3.14. Let € > 0 be infinitesimal F, G: R — [E be flexible functions given by
F(r) =sinz + (22 + 1)e@
and
G(x) = ¢TI 4 cos - ef.
Then we have

@ lim F(x) = €0

z—0

and

Also, € © +€£ = e£. However, F' - G is not e£-convergent to (¢@) (ee% + e£) because NV (e @ (ee% + e£)) =
ee% - €@ > e£. In fact, we have

ol % =
(e<0) im (F - G)(x) = (e®) (eEQ + 6£) =e €0

z—0
by Theorem with Ny = €0, 8 = e +efand N = N 5.

Theorem 6.3.15. Let M, N be neutrices. Let F' be a flexible function defined on X C R" and xq be an M-
accumulation point of X. Assume that there exists 6 > M such that F(x) is zeroless for all € X,0 <

d(x,x0) < § and that 3} li)m F(z) = a, where || > N. Then
T—T0

where K = N /a?.

Proof. Leta = a + N, F(x) = f(x) + A(x) forall z € X. Lete > K. Then ¢ > N/a?. So there exists
M < p; < 6 such that for all z € X,0 < d(x,29) < p; one has |f(z) — a| < a’¢/4 and by Theorem [.3.9,
there also exists M < py < § such that for all z € X,0 < d(x,2¢) < p2 one has (A(z) + N) < a%¢/2.
Moreover |a| > N, so there exists M < ps < 0 such that for all z € X,0 < d(z,z9) < p3 one has
|f(z) —a| < |F(z) — a| < |a|, which implies that |f(x)| < 2|a|. Similarly, there exists M < py < ¢
such that for all z € X,0 < d(z,x0) < p4 one has |a|/2 < |f(x)|. Let p5 = min{ps,ps}. Then for
allz € X,0 < d(z,70) < ps one has a?/4 < f%(x) < 4a®. Let p = min{py, p2,ps}. Then for all
x € X,0 < d(x,zp) < pone has

’ 1 1 ‘ :’ F(r) o) ‘(IQF(J/‘) —fz(x)a’ < ’a—f(x)‘ a’A(z) — f2(x)N

F(z) ol 1f2(z) a2l f2(z)a? f(x)a F2(z)a?
- 2A(x) — 4a®N 2¢/4 Alz) + N
< aQJ/c;x)’ : (?4/4 — < ’226//2 = (322 b <epzrea=c
Henceﬁ lim —— = 1. O

z—xo F(x)  «
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Corollary 6.3.16. Let M, N1, No be neutices and o, € E. Let F,G be flexible functions defined on X
and xq is an M-accumulation point of X. Assume that G(z) is zeroless in an M-neighbourhood of xy and
N1 : _ N2 1 —

o lim F(x) = aand }f mlggoG(x) = B. If | 8] > Na then

Tr—T0

where N = N1 + No/B% + N + (No/3?)? +04(N2/52) + BN1.

1 1
Proof. Using Theorem [6.3.15, one has £ lim W "~ B where K = N»/B32. The Corollary follows by
z—z0 G(z
1
applying Theorem to the flexible functions F'(z) and Gl where N5 is replaced by K. O
T

Example 6.3.17. Let € > 0 be infinitesimal, w > 0 be unlimited. Consider flexible functions I, G, H: R —
E given by F(z) = "t + 0z,G(z) =1+ 2+ (e® )e* and H(z) = e + e @ x forz € R.

. .1
(a) We have ©- hm0 F(x) =e“(1 4+ @). So, by Theorem the function I is not only @ x @-convergent
T

¢ and % I 1 1 @
-convergent, and ¢, lim —— = — + ——.
e2w gen © 250 F(z) e¥ e

but also @ x

G(x)
H(z)

(b) Also, <@ lir% G(z) = 1 + e and by Convention we have € lir% H(z) = €+ € © . Note that
r— T—

. 1 1
is not 0 X e®-convergent to o when x approaches 0, because e C N < i 6®> = ©. However,
€+ €0 €+ €0
.G . 1 1
by Corollary the function (z) is 0 x @-convergent to rteo_1 +oatz=0.
H(z) €et+ew €

In the next result we state one version of the squeeze theorem for M x N-limits of flexible functions.

Theorem 6.3.18. Let M, N be neutrices and F, G, H be flexible functions defined on X C R". Assume that
F(z) < G(z) < H(z) forallz € V C X, where V is an M-neighbourhood of x¢ and li}m F(z) =
T—T0

N 1; _ N 13 —
o mlggo H(z) = «. Then y; whﬁrgclo G(z) = a.

Proof. Lete > N. Because 3, lim F(x) =1 lim H(x) = q, there exists § > M such that |F(z) —a| < ¢
r—To T—x0
and |G(z) —a| < eforallz € V,0 < d(z,z¢) < d. Moreover, forall z € V one has F'(z) —a < G(z) —a <
H(z) — a. It follows that |G (z) — o < max{|H (z) — a|, |F(z) — a|} < e. Hence ¥} ILrn Gx)=a O
T—T0

We know that in classical analysis, if a function is bounded from above by a constant ¢, and has a limit, the limit

is less than or equal to this constant. We state below a version for M x N-limits of flexible functions.

Theorem 6.3.19. Let M, N be neutrices and F' be a flexible function defined on X C R"™ such that F(x) <

B+ N forall x € X. Let x¢ be an M-accumulation point of X. Assume that 5\\2 lim F(z) = a. Then
T—T0

a< B+ N.
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Proof. If « C 8 + N, the conclusion is trivial. We assume that o« € 5 + N. Because N(«a) = N by
Convention .3.7, it follows that o N (3 4+ N) = (. Suppose that o > 3 + N. This implies that « — 3 > N
by Proposition 2.2.38. Let € be a real number such that N < € < a — (3. There exists 6 > M such that for
all z € X,0 < d(z,z9) < 0 one has |F(x) — a| < e. Consequently, « — e < F(x) + N. It follows that
a—(a—p) <a—e< F(x)+ N and hence N + 5 < F(x) + N. One obtains that F'(x) > 3+ N, which is
a contradiction. We conclude that o < 3+ N. ]

Let f be a real function defiend on X. In classical mathematics it is well-known that a function f has the limit
[ at a point z if and only if for every sequence {x,} C X converges to xg, the sequence f(x,) converges to
. We show below that if a flexible function has M x N-limits at x, for every sequence w,, M-converges to
xo + M, the sequence F'(u,) N-converges to the M x N- limit of F" at zy. Also, if M = 0, the converse is
true.

Theorem 6.3.20. Let p € N be standard, F be a flexible function defined on X C RP and xq be an M-
accumulation point of X. The following statements hold:

If 3 lim F(x) = B, one has N- ILm F(xy,) = B for every sequence {x,} C X \ {xo} which M-converges
n oo

T—T0
to xg.

Proof. Assume that 3, 1Lm F(z) = Band{x,} C X\{zo}, M- liﬁ\m xn, = xo. Wewill prove that N- lim F'(x,) =
T—x0 n—00

n—oo
B.

Lete > N. Because }; lim F(z) = 3, there exists § > M such that for all z € X with 0 < d(z,z0) < & one
T—T0

has |F'(z) — 8| < e. Also N- lim x,, = x, so there exists ng such that for all n > ny one has 0 < d(x,,, z¢) <
n—0o0
J. It implies that |F'(zy,) — 8| < € for all n > ngy. Hence N- ILm F(xy,) = p. O
n o

We present below the Cauchy criterion for convergence of flexible functions. In some situations we can not
calculate M x N-limits of flexible function but we want to know if the function is M x N-convergent or not.

The Cauchy criterion is a useful tool to do this.

Theorem 6.3.21 (Cauchy criterion). Let F' be a flexible function defined on X C R™ and M, N be neutrices.
Let xg be an M -accumulation point of X. Then F' is M x N-convergent at xq if and only if for all e > N, there
exists 6 > M such thatforall z,x' € X, 0 < d(x,x9) < 0, 0 < d(2',x0) < it holds that |F(x)—F ()] < e.

Proof. Assume that F is M x N-convergent at 2. Then thereis o € E such that 4} 1i>m F(z) = a.Lete > N.
T—T0

There exists & > M such that forall z, 2’ € X, 0 < d(x,x¢) < 0, 0 < d(2',20) < d wehave |F(z)—a| < €/2
and |F(2') — o| < €/2. It follows that |F(z) — F(2)| < |F(z) —a| + |F(2') —a| <€/2+€/2 =€.

Conversely, let {z,,} C X such that z, 7 xo. By the assumption, the sequence F'(x,) is N-Cauchy.
Because of Theorem it holds that F'(z,,) @ + N. Lete > N. There exists 6 > M such that for all
z,x' € X, 0 < d(z,z9) < 9,0 < d(x',z9) < § we have |F(z) — F(a')| < /2. Also limz,, = zo, so there
is ng € N such that for all n > ng, 0 < d(xy,,z9) < J. Because F(zy) 7 a + N, there exists mg such
that for all n > ng, |F(z,) —a+ N| < ¢/2. Lety € X,0 < d(y,zp) < ¢ and p > max{mg,no}. Then
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|F(y)—a+N| < |F(y)—F(xp)|+|F(zp)—a+N| < €/2+¢/2 = e. We conclude that F'is M x N-convergent
toa + N at x. L]

6.4 One-sided M x N-limits

In this section we only consider flexible functions of one variable. This means that the domain of function X

1s a subset of R.

Sometimes it is not necessary or impossible to consider two-sided convergence. For instance, let F': @ — E
be a flexible function defined by F'(z) = x + @ - x, © € @. Then 0 is a @-accumulation point of X = @. In
this case when we investigate the @-convergence of F' at 0, we can only consider argument = > 0 4+ ©. This

means that € @ can only approach 0 from above.

Also behaviours of some flexible functions are quite different when x approaches z( from one side to another.

For example, consider the flexible function

2 +or ifxr>0
F(z) =
sinz +© ifx <0.
Then F'(0) = 0, while F'(z) = @ forz € @,z < 0.
Limits of flexible functions when x approaches a point from one side are called one-sided limits.
Definition 6.4.1. Let M, N be two neutrices and a1, as be external numbers. Let F: X C R — E be a
flexible function and x( be an M -accumulation of X.

(1) The external number « is called a left M x N- limit of F' at xq, written as

Nolim F(z) = ax,

=T
if forall € > N there exists 0 > M such that forall z € X, 0 < zp—x < d itholds that |F'(z) — a1 < e.

(i) The external number «y is called a right M x N-limit of F' at xg, written as

~ lim F(z) = a2,
x~>:p0

if for all e > N there exists 6 > M such that forallz € X, 0 < z —x( < ¢ it holds that | F'(z) — aa| < €.
Remark 6.4.2. It is easy to verify that the results stated above for both-sided limits also hold for one-sided

limits.

As for relationships between both-sided and one-sided limits, there exists an M x N-limit of F' at x if and

only if there exist a left M x N- limit and a right M x N-limit, and both of them are equal.
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Theorem 6.4.3. There exists AN/[ lgn F(x) = « if and only if there exist left and right M x N-limits of F' at
T—>T0
xo, and

N olim F(z) =4 lim F(z) = a.
T—=T( T

Proof. Assumethat}; lim = a. Lete > N. Thenthere exists § > M suchthat forallz € X,0 < |[z—z¢| < §

T—T0

we have |F'(z) — a| < e. Hence forall z € X, 0 <  — zp < 0 it holds that 0 < |z — x¢| < ¢ and hence
|F(x)—a| <eSo lirn+ F(z) = a. Similarly, forallz € X,0 < g —x < ditholds that 0 < |z —xg| < §

.',B—>£L’O

and hence |F(z) — a| < e. So lim F(r) = a.
$—>I0

Conversely, we assume that §; lim F(z) = lim F(x) = a. Lete > N. Then there exists d1,d > M
=T T

such that forall z € X, 0 < x9p —x < d; one has |F(z) —a| < eand forallz € X,0 < = — 29 < &2
one has |F(z) — a| < e. Put § = min{d1,02} > M. Then forallz € X,0 < |z — x| < 4, it follows that
O0<z—2p<d<dand0 < zp—x < <. Hence |F(z) — a| <. O

6.5 Continuity

Using M x N-limits we develop continuity for flexible functions. For sake of simplicity, we denote by Ny =
Nr(zo) the neutrix part of F'(xo).

6.5.1 Both-sided continuity

Definition 6.5.1. Let F' be a flexible function defined on X C R” and M, N be neutrices. Let g € X be an
M -accumulation point of X. The flexible function F is said to be M x N-continuous at ¢ if 4 wl;n;() F(x) =
F(xp). In particular, if N = N(F(xg)), the function F' is said to be M-continuous at x(. Furthermore, if
M = 0 then F' is said to be continuous at xg.

From the definition of M x N-limit, a flexible function £ is M - continuous at z if and only if for every € > Nj,
there exists 6 > M such that for all z € X, d(x,z9) < 0 we have |F(x) — F(z0)| < e.

The proposition below give us one characterization of continuity of flexible functions.

Proposition 6.5.2. A flexible function F is M x N-continuous at xq if and only if for every neighbourhood V
of F(xg) + N there exists 6 > M, such that for all x € X with d(x,x¢) < § one has F(x) € V.

Proof. Let f be a representative of F'. Assume that F' is M-continuous at zo. Let V' be an arbitrary neigh-
bourhood of F'(xo) + N. By the definition of neighbourhood V, there exists a real number ¢ > N such that
F(xo)+N C (f(xo)—¢, f(xg) +€) C V.Because F'is M x N-continuous at x, there exists > M such that
|F'(z) — F(z0)| < e. This means that f(xg) — e < F(x) + Nr(zo) < f(xo) +€eforallx € (xg — §,z0 + ).
Hence F'(x) € (f(x0) — €, f(xg) +€) CV forallz € X, d(x,x0) < 9.
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Conversely, assume that for every V' a neighbourhood of F'(xg) + N there exists > M such that for all
x € X,d(xz,z9) < 6, one has F'(x) € V. We need to prove that F' is M x N-continuous at zp. We take
V = (F(z0) — €, F(x0) +¢€) with e > N. Then V is a neighbourhood of F'(x¢) + N. By the assumption, there
exists 0 > M such that for all z € X,d(z,z9) < ¢ implies F(x) € V = (F(xzo) — €, F(xo) + €). That is
F(zg) — € < F(x) < F(xg) + €. Then |F(z) — F(zo)| < € + Np(zo). Also, Np(xzg) < N < e it follows
that |F'(z) — F(zo)| < e. Hence F'is M x N-continuous at zg. O

Example 6.5.3. Let € be infinitesimal. Consider the internal functions defined by

xTr) =
€, 1’20, j() 1, CEZO

f (z) = arctan(z/¢), g () :{ —e, <0 { 1, z<0

The first function is a well-known example of a continuous, not S-continuous function, in our terminology, it
is neither @-continuous nor @ x @-continuous. It is not difficult to see that g is not continuous at zo = 0 but is
0 x @-continuous. The function j is clearly neither continuous nor 0 X @-continuous at xo = 0. However j is

0 x £-continuous at that point.

Example 6.5.4. Let F': R — E be given by

o ifrxreo
0 ifzé&o.

F(z) =

Then F' is @-continuous at 0.

Examples (6.5.3) and (6.5.4) show that in our definition of continuity, the continuity of a flexible function
depends on the order of magnitude considered. Due to Proposition a flexible function F'is M x N-
continuous, then it is M’ x N’-continuous with M’ < M and N < N'.

Let F:X = P(R) be a set-valued map. Recall that F' is called upper semi-continuous at xq if for every
neighbourhood U of F'(x), there is a 6 > 0 such that forall x € X,0 < d(z,zg) < d we have F(z) C U.
Hence the notion of M -continuity of a flexible function becomes the notion of upper semi-continuity of a set-

valued map. However, consider the function

0 ifx=0
© ifz #0.

F(x) =

If F' is seen as a set-valued mapping, it is not upper semi continuous at 0. In fact, it is lower semi-continuous
at 0. In our definition it is 0 X @-continuous at 0. We see that in some cases our definition implies upper

semi-continuity and some other cases it implies lower semi-continuity.

Example 6.5.5. Let F: R — E be a flexible function given by F(z) = 22 + @ - 2 for x € R. Then F is

continuous at xy = 0, but not @-continuous at xy = 0.
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6.5.2 One-sided continuity

Definition 6.5.6. Let I be a flexible function defined on X C R and M, N be neutrices. The flexible function F’
is said to be left M x N-continuous at ¢ if there exists § > M such that [z, z9+6) C X and §; lim F(z) =

l’*>$0

F(xo)

Definition 6.5.7. Let F' be a flexible function defined on X C R and M, N be a neutrices. A flexible function F’

is said to be right M x N-continuous at x if there exists § > M such that (xo—9, o] C X and Y lim+ F(x) =
$—>£KO

F(xo).
As consequence of Theorem .4.3, one has:

Theorem 6.5.8. A flexible function F is M x N-continuous at xq if and only if it is left and right M x N-

continuous at x.

We next define the continuity of a flexible function on a closed interval.

Definition 6.5.9. Let F' be a flexible function defined on [a, b] and M, N be neutrices. Assume that there exist
01,02 > M such that [a,a + 1) C [a,b] and (b — d2,b] C [a,b]. The flexible function F'(x) is said to be
M x N-continuous on [a,b] if it is M x N-continuous on (a, b) and left M x N-continuous at a and right

M x N-continuous at b.

6.5.3 Operations on continuous flexible functions

We consider how the continuity of flexible functions behaves under algebra operations. As a result of Theorem

and Theorem one obtains the following.

Theorem 6.5.10. Let N1, No, M be neutrices and xoy € R". Let F' be M x Ni-continuous function and G be

an M x Na-continuous function at x = xq. Then

(i) The flexible function F' + G is M x K-continuous at xg with K = N7 + Na.
(i) The flexible function F' — G is M x K-continuous at xo with K = Nj + No.
(iii) Let £ € R. Then (kF’) is M x K-continuous at z(, where K = k..

(iv) The flexible function F'- GG is M x K-continuous at xo, where K = N1 + Ny + N12 + N22 + F(x9)- N+
G(.T()) . Nl.

We now turn to continuity of a composition of function between a real function and a flexible function.

Theorem 6.5.11. Let N1, No be neutrices and I C R™, J CR"™. Let f: I — J be a real function, G: J — E
be aflexible function. Let H: I — T be the composition of f and G defined by H (x) = G (f (x)) forallx € I.
If f is K x M-continuous at the point o and G is M x N-continuous at f (xg) then H is K x N-continuous

at xq.
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Proof. Let e > N. Because GG is M x N-continuous at yg = f (x¢), there exists n > M such that for all
y € J,d(y, f (z0)) < n it holds that |G (y) — G (f (z0))| < e. Moreover f is K x M-continuous at o,
there exists & > K such that for all z € I, d(z,z9) < § we have d(f (z), f (z9)) < n. It follows that for
all x € I,d(x,z9) < d one has |H (x) — H (z9)| = |G (f (x)) — G (f (x0))| < e. We conclude that H is
K x N-continuous at x. O

6.6 Inner convergence and inner continuity

It is well-known that a standard function f defined on standard X C R is continuous if and only if f is S-
continuous at every limited real number € X, meaning that f(x + @) C f(z) + ©@. The function f is
uniformly continuous if and only if f(z + @) C f(z) + @ for all x € R. Taking this guide we define another
notion of convergence and continuity for flexible functions. We replace the neutrix @ on the left side by an
arbitrary neutrix and the term on the right side by an external number. We call it an inner convergence. Also,

this notion is corresponding to the notion of strong convergence of a flexible sequence.

The word “inner” implies that we only consider real points in ¢ + M and also the values of f at these points

are inside the limit.

Definition 6.6.1. Let M/ = (My,...,M,) # 0 be a neutrix vector and @« = a + A € E. Let F be a flexible
function defined on X C R" and xy € R" such that o + M C X. We call « an inner limit of F' at xo + M if
F(z) Caforallz € xg+ M \ {zo}. Then we write

lim F(z) = a.
r—xo+M

We also say that F'(x) is inner convergent to o when x approaches xo + M.

. . . : x Y
E le 6.6.2. Consider the flexible function F by F(z) = .
xample onsider the flexible function F' given by F'(x) PR + R +0-(z+y)

for all z,y € R. Then lim F(z) = o.
(z,y)—(0,0)+(2,)

By this definition of limit it is easy to see that the following operations hold.

Theorem 6.6.3. Let M be a neutrix and F, G be flexible functions defined on X. Assume that lim F(x) =

r—xo+M
a, lim G(z)= . Then
r—xo+M

® w—}i?lM(F +G)(z) =a+ b

(i) lim (F—G)(z)=a—p.

z—zo+M

(iii)  lim o kF(z) = ka for k € R.

r—xo+

(iv) lim (FG)(z)=a-p.

rz—xo+M

F
(v) If G(x) is zeroless for all x € xo + M \ {xo} and (3 is zeroless then x_}laijg}_M Ggi = %.
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As for strong convergence we also obtain a squeeze theorem.

Theorem 6.6.4. Let F' be a flexible function defined on X C R™, M = (M, ..., M,) # 0 be a neutrix vector
and xo be point such that vo + M C X. Assume that F(z) < G(z) < H( for all v € xo+ M \ {zo}.
Assume also that  lim F(x)= lim H(x)=o«.Then lim G(z)=

r—xo+M r—xo+M rz—xo+M

Proof. Letx € xg + M \ {zo} and u € G(z). Since F(z) < G(z) < H(z), there are v; € F(x) and

vy € H(zx) such that v; < u < vy. Also F(x) C «, H(z) C «. It follows that u € a. So G(z) C « for all

r € xg+ M\ {zo}. Hence lim G(z)=a. O
r—xo+M

As for relationship between limits of flexible functions and limits of flexible sequences we obtain the same

result as classical mathematics.

Theorem 6.6.5. Let o« € E, M = (M, ..., M,) # 0 be a neutrix vector and F be a flexible function defined

on X C R". Let zg € R" such that vo + M \ {zo} C X. Then lim MF(I) = « if and only if for every
T—xT0+

sequence {x,} C X \ {0}, zn — x0 + M, it holds that F(z,,) — «.

Proof. Assume that lim F(z) = a, witha = a+ A. Let {z,,} € X \ {20}, 2, <= 20 + M. Then there

r—xo+M
exists ng € N such that for all n > ng one has z,, € zo + M. It follows that F'(z,,) C « for all n > ng. This

means that LimF'(z,,) = a.

Conversely, we assume that F'(z,,) < « for every sequence {z,} C X, z,, < xo + M. We need to prove that

lim u F(z) = . We suppose that it is not true. Then there is 2’ € o+ M \ {zo} such that F(z’) Z a. Let
r—xo+

z, = 2’ foralln € N. Then z,, < o + M. This implies that F'(z,,) = F(2') C «, a contradiction. O

Next theorem shows that a flexible function is inner convergent if and only if it satisfies the Cauchy criterion.

Theorem 6.6.6. Let F' be a flexible function defined on X C R™, M = (M, ..., M,) # 0 be a neutrix vector
and xg be point such that to+M C X. Then lim F(x) = a+ N ifand only ifforall x,x' € xo+ M\ {xo}

rz—xo+M
we have F(x) — F(z') C N.

Proof. Assumethat lim F(z) =a+ N.Letxz, 2’ € zo+ M \ {z0}. One has F(x) — F(2') C F(x) —

x—xo+M

a+a—F(x')CN+N=N.

Conversely, let x,, = x¢ + l < xg + M. There exists kg such that for all n > kg we have x,, € x¢o + M. Also
F(x,) is N-strongly Cauch@. By Theorem 5.3.21], it follows that LimF(z,,) = a 4 N. So, there exists ng € N
such that for all n > ng we have F'(x,,) C a + N. This means that F'(z,,) —a C N. Let mo = max{ko, ng}.
Lety € 2o+ M\ {zo}and p > mg. Thenz, € o+ M \ {zo}. It follows that F'(y) — F'(z,) C N. As aresult,

F(y) —a+a— F(zp) C N.Since a — F(x,) C N, one has F(y) —a C N. Hence limMF(x) =a+ N.
T—x0+

O
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Corresponding to the notion of inner limit, we define here another notion of continuity of a flexible function.
As argued at the beginning of this section, this notion can be seen as a generalization of the notion of uniform

continuity of a standard function.

Definition 6.6.7. X C R", M = (Mj,..., M,) # 0 be a neutrix vector and N be a neutrix. Let F: X — E
be a flexible function and 2y + M C X. The function F' is said to be M x N-inner continuous at xq if

lim F(z)= F(z9) + N.Incase N = Np(xo) we say that F' is M -inner continuous at z.
x—xo+M

Example 6.6.8. (a) Let F: R?> — E be a flexible function defined by F(z,y) = sin(rx)cosy + (2% ©
+y2e£) + @ and zp = (1,0). Let M = (@, e£). Then F is M-inner continuous at zg.

(b) Let F: R — Ebe givenby F(z) = *T@ = ¢*(1+©@). Then F is @-inner continuous at z € £. However,

it is not @-inner continuous at x ¢ £.

As a sequence of Theorem [.6.3, we obtain the followings.

Theorem 6.6.9. Let M = (M, ..., M,) # 0 be a neutrix vector and N1, No be neutrices. Let N = Ny + Ny
and X C R"™. Let F,G be flexible functions defined on X, with F(z) = f(x) + Np(x) and G(z) = g(z) +
Ng(z) for x € X and xy € R™ such that xo + M C X. Assume that F' is M x Ni-inner continuous, G is

M x No-inner continuous at xo. Then

(i) F + G is M x N-inner continuous at x.
(ii) F — G is M x N-inner continuous at x.
(iii) kF is M x kNi-inner continuous at xq for all k € R.
(iv) FG is M x K-inner continuous at xo, where K = N1G(zo) + NoF (xo) + N1 Na.
(v) If G(x) 4+ Ny is zeroless for all x € xy+ M, the function (F /G) is M x K-inner continuous at o, where

. F(JI()) + N F(CEU) + Ny .
K= o(z0) - 2 (z0) (Ng(zo) + Na).

6.7 The M x N-derivative of a flexible function

F(z) - F(xo)

T — X

When x approaches xg the neutrix part of the expression , in general, approaches R. For example

@ . . . . .
— tends to R when x approaches 0. So we can not use the classical technique to build the notion of derivative

T
for flexible functions. However, for a neutrix and a point =, which x is not an absorber of N, we have that

— C N. Using this fact we will construct the notion of derivative for a flexible function. To do it we will

x
introduce another notion of limit, called an outer limit. In chapter 8 we will use the notion of derivative to
construct necessary conditions for the existence of an approximate local optimal solution of optimization with

flexible objective functions.
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6.7.1 Outer limit

Let F' be a flexible function and M be a neutrix. In this section we consider behaviour of F'(z) when z ap-

proaches xg, but x always stays outside of zg + M.

Definition 6.7.1. Let X C R"™, F: X — [ be a flexible function and o« = a + A be an external number.
Assume that xg is an M-accumulation point of X . We say that « is an M x N-outer limit of F at xg, if for
all e > N, there exists 6 > M such that forall z € X, M < |z — xg| < 0 one has |F(x) — «| < e. We write

N- lim F(z)=a.
x—xo+M

Then we also say that F'(x) is M x N- outer convergent to o when x approaches z.

The ”outer” here hints that x approaches xg but always stays the outside of xg + M.

Remark 6.7.2. Similarly to Proposition it is true that if « is an M x N-outer limit of F' at xg then
N(a) € N and o+ N isan M x N-outer limit of F at zg.

When M = 0, the notion of M x N-outer limit coincides exactly with the notion of M x N limit.

Example 6.7.3. One has ©- ligl}m(x + 2@) = ©. Indeed, let e > ©. Let § = €/2 > @. Then for all z € R,
T—
O < |z| < dwehave |[F(z) — F(0)|=|lr+20| <e€/2+¢€/2=¢.

The difference between an M x N-limit and an M x N -outer limit is that an M x N-limit considers values of
a given function at points z € R with |z — z¢| € M while an M x N-outer limit does not. As a consequence
it is easy to see that if « is an M x N-limit of F' at g, it is an M x N-outer limit of F' at xy. That is

M lim F(z) =a= N- lim F(z)=a. (6.9)

T—x0 r—xo+M

Remark 6.7.4. Because of (6.9), the results which hold for M x N-limits also hold for M x N-outer limits.

Similarly to M x N-limits we also have notions of one-sided M x N-outer limits.

Definition 6.7.5. Let F': X C R®™ — E be a flexible function and zg € R"™ be an M-accumulation point of
X. An external number « is called a left M x N- outer limit of F at xg if for all ¢ > N there exists 6 > M
such that for all M < xzy — 2 < § we have |F(z) — F(z)| < e. We write

N- lim F(z)= .
r—xo+M—

An external number 3 € E is called a right M x N-outer limit of F' at x if for all ¢ > N there exists 6 > M
such that forall z € X, M < x — x9 < § we have |F(z) — F(z¢)| < €. We write

N- lim F(z) =8

z—xo+M+
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Remark 6.7.6. It is easy to see that N- lim F(z) = « if and only if
x—xo+M

N- lim F(z)=N- lim F(z)=o.

z—xo+Mt r—x0+M—

6.7.2 The notion of M x N-derivative

Using the notion of outer limit we define the M x N-derivative of a flexible function. It will be used to determine
conditions for the existence of (approximate) optimal solutions in Chapter 8. This notion of derivative is devoted

to a function of one variable.

Definition 6.7.7. Let M, N be neutrices, F: X C R — E be a flexible function and 2y € X be an M-
accumulation point of X. The flexible function F' is called M x N-differentiable at x( if the M x N-outer

F(x) — F(xo)

T — Zg
dNF
at xo and denoted by dN—x(:ro) or Y, DF(z0). So
M

limit of the fraction exists. Then this M x N-outer limit is called the M x N-derivative of F'

dNF F(x)—F
INE oy =N tim F@ = F0)
dyx z—zo+M T — T
dF F(z)—-F
In particular, in case N = Np(xg) we call it M-derivative and write —— (xg) = lim M. We
de T—To T — X0

also say that F' is M -differentiable at z.

Convention 6.7.8. Because of Remark 6.7.4, from now on, we always assume that the neutrix part of the
M x N-derivative of F' at g is N.

Example 6.7.9. Let F be a flexible function given by F(z) = 22 + @ for all z € R. One has

2 2
dF(xo): lim T+ -5+ 0

S =220+ @.
dox =T+ T — o

Indeed, we have Np(z) = @ forallz € R. Lete > @.Letd = ¢/2 > ©@. Thenforallz € R, @ < d(z,x0) < ¢

one has

F(z)— F(z 24+ —-224+0
Mfz@om‘:‘ 0 fgxﬁ@‘
T — X0 T — X0
:‘x+x0+x - —2x0+®‘<d(az,x0)+®<e/2+e/2:e.
— T

Example 6.7.10. Let F be a flexible function given by F'(x) = z + - © forall x € R and zy € R. One has
dp F dF
—2~ (x9) = 14 ©. Note that ——(0) does not exist. Indeed, we have Nz(0) = 0. Let ¢y > 0 be a fixed

dox dox
; F(z) - F(0) F(x) - F(0)
x—0

does not
xz—0

infinitesimal. Then =14 @ > ¢ for all z € R which implies that lin%)
T—r

exist.

Definition 6.7.11. Let M, N be neutrices, F': X — I be a flexible function and g € X C R be M-
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accumulation point of X. The left M x N-derivative of F at x is defined and written as follows:

dnyF_ F(x) - F
N (z9) = N-  lim M.
dyz z—zo+M— T — To

The right M x N-derivative of F' at x( is defined and written as follows:

dnF F(x)—-F
NTF (2) = N-  lim M'
dyx z—zo+ M+ T — To

Theorem 6.7.12. The M x N-derivative of F' at x exists if and only if the left and right M x N-derivatives

of F at xq exist and they are equal to each other.

The theorem is a consequence of Remark [.7.6.

Theorem 6.7.13. Let M, N1, No be neutrices. Let F', G be flexible functions defined on X C R and x¢ € X is
an M-accumulation point of X. Assume that F' is M x Ni-differentiable at xy and G is M x Ns-differentiable
at xo. Let K = (N1 + Na). Then

(i) The flexible function (F + G) is M x K-differentiable at x¢ and

dy(F £+ G)
dMJZ

i
- dMJ}

dy,G
dM.CU

(o) (zo) £ (o).

(ii) For k € R, the flexible function kF' is M x kNi-differentiable at xy and

delF
dyx

dn, F
dyz

(z0) =k - (z0)-

The theorem is a consequence of Remark and Theorem [6.3.10.

6.7.3 Higher order derivatives

Definition 6.7.14. Let F': X — E be a flexible function and N: X — N be a neutrix-function. Let M be a
neutrix. We say that the flexible function F'is M x N-differentiable on X if F'is M x N (x)-differentiable at
z forallx € X. Incase N(z) = Np(x) for all x € X we say that F' is M -differentiable on X.

Example 6.7.15. Let F be a flexible function given by F'(xz) = 22 + @. Then F is @-differentiable on R.

Example 6.7.16. The function F(x) = x? + @z is not @-differentiable on R because it is not @-differentiable

F(z) - F 2 —w?
at £ = w ~ oo. Indeed, we have (2) ) _ 7 rro-w oW =4+ w+ w Since
T —w T —w T —w
F(z)—F
|z —w| € @onehas © C w® = M Hence ©- lim M does not exist. However, by the
w ToWw+0Q Tr—Ww

7 —
above, I'is © x w®-differentiable at w.

Definition 6.7.17. Let N1: X — A be aneutrix-function and F be a flexible function. Let M7, M5 be neutrices.

Assume that I is M x Nj-differentiable on X. Then ]A\?(I)DF is a flexible function defined on X with the
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neutrix part N (z) and a representative g(z). That is for all z € X, the value of M x Nj(z)-derivative of F
has the form
MO D) = g(a) + Ni(x). (6.10)

If this flexible function is Na-differentiable at ¢ € X, we say that the function F'is (M, M3) x (N1, Na)-
differentiable of degree 2 at xy, where N1 = Nj(z9), and its derivative is called the second (M, Ms) X
(N1, No)-derivative or the (M7, Ms) x (N1, Na)-derivative of degree 2, denoted by %]X/}ID2F(330). So

NNk, D2F (z) = 3.0 (N, DF) (o).

By external inductive, for every standard n € N we define the (M, ..., M,) x (Ny,..., Ny,)-derivative of
degree n by
Tyeeesy n an ,N —
AN D P (o) = 3 D (N N DUTIF) (o),

LCEREEY)

where M, N; are neutrices for 1 < i < n.

6.8 Monotonicity

Many flexible functions are locally constant at each point. For example, consider the flexible function F'(x) =
z+ @ for x € R. Let 2y € R then for all z € xy + @ one has F'(x) = F(x(). Because of this fact, we should
consider monotonicity of flexible functions with certain order steps of variables.

Note that a < [ is not equivalent to 5 > « where «, § are external numbers. Then the monotonicity of a

flexible function depends on a relationship considered.

Definition 6.8.1. Let F': X — [E be a flexible function. The function F’ is said to be

(i) increasing with order step M on X if F(x) > F(y) forallz,y € X,z —y > M,
(i) strictly increasing with order step M on X if F(x) > F(y) forallz,y € X,z —y > M,
(iii) decreasing with order step M if F(z) < F(y) forall z,y € X,z —y > M,
(iv) strictly decreasing with order step M if F(z) < F(y) forall z,y € X,z —y > M.
The function F' which is decreasing with order step M or increasing with order step M is called monotone with
order step M.

In case M = 0 we call it increasing, decreasing, monotone, respectively.

Example 6.8.2. The flexible function F'(x) = z + @ is strictly @-increasing on R. Indeed, for all z,y €
R,y—x>@,onehas F'(y) — F(z) =y—z+ @ > Q.

In classical mathematics if f’(z9) > 0, there is & > 0 such that f(z) is increasing on (z¢ — d, z¢ + ¢) and if
f'(x¢) < 0, there is ) > 0 such that f(x) is decreasing on (z9 — 1), o + 7). Using neutrices N instead of zero,

we develop a version for flexible functions.
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Proposition 6.8.3. Let M, N be neutrices such that N4 C M and F be a flexible function defined on X C R.
dnF

Assume that F(x) is M x N-differentiable at xo € X and dL(xo) > N. Then there exists § > M such that
MT

(i) F(x) — F(xzo) < N forallz € X,M < xg—x <9,

(ii) F(z)— F(xg) > N forallx € X, M <z —x9 < 0.
In particular, if Np(z9) C N we have

(i’) F(z) < F(xo)forallz € X, M < xg—x <9,

(ii’) F(x) > F(xg)forallz € X,M < x —xo <.

dNF dNF
(o)

dyx

(o)

dyF
Proof. Since (zg) > N,lete € > N be arepresentative of W:ET By the definition of the

N
dyx
. . F(z) - F dnF o
M x N-derivative, there exists > M such that | (z) (z0) _ dn (z0)| < e. It follows by Proposition

T — xo dyx
that

dNF F - F
NE L Pl Fla)
dyrx T — Xo

M(xo)

dnF
Note that dN (xg) —€= dyz > N. On the other hand, Ny C M, so x — z¢ ¢ M implies that z — xg
z

forall z € X, M < |z — x| < 6. (6.11)

2
is not an absorber of N. Hence, forall z € X, M < x — 29 < ¢, formula (b.11]) implies F'(z) — F(zo) > N.

In particular, if Np(z9) C N, this implies F'(z) > F(zo).

Forallz € X, M < zo — x < 6, formula (6.11)) implies F'(x) — F(xg) < N. In particular, if Ng(zo) C N, it
follows that F'(x) < F(xp) forallz € X, M < zy —x < 4. O

With similar arguments we obtain the following.

Proposition 6.8.4. Let M, N be neutrices such that N4 C M and I be a flexible function defined on X C R.

dNF
Assume that F' is M x N-differentiable at xo € X and dN
MT

(z9) < N. Then there exists § > M such that

(i) F(x)— F(xzo) > N forallz € X,M < xg—x <9,

(ii) F(x) — F(zo) < N forallz € X,M < x —x < 9.

In particular, if Np(z9) C N, we have

(i’) F(x) > F(xo)forallz € X,M < xq—x <9,

(ii’) F(x) < F(xg)forallz € X,M <x — x5 <.
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6.9 The M x N-differentiability of a vector flexible function
6.9.1 The M x N-partial derivatives of a flexible function of several variables

This section is devoted to studying differential a flexible function of several variables. We will apply these

results to investigate an optimization problem.

We known that partial derivatives of a function of several variables at a point are defined as the derivative
of a function of one variable by fixing other variables as constants. Analogously, we define M x N-partial

derivatives of flexible functions of several variables.

Definition 6.9.1. Let n € N be standard, X C R™ and M;, N; be neutrices for 1 <i <n. Let F: X — Eis
a flexible function defined on X. Let zyp = (mgo), . ,x%o)) € R™ be such that

{x = (xgo), . ,xgo_)l,mi,xgi)l,...,xglo)) € R"|M; < d(z,xp) < 5} NX N\ {zo} #0.

We say that the flexible function F' has an M; x N;-partial derivative corresponding to the i-th variable, x;, at
the point z if the following M; x N;-outer limit exists:

0 0 0 0 0 0
Ne  lim F(xg),...,xl(_)l,xijxg_s_)l,...,:m(l))—F(asg),...,x%))
(2
o=z M; T; — wgo)
. . . . . onN. F dnF
The M; x N;-partial derivative corresponding to the variable x; at ¢ is denoted by AL (xo) or N (x0).
Hence
0 0 0 0 0 0
3NZ.F($0)_NA_ lim F(xg)7...,x§_)1,xi,xl(+)1,...,x%))—F(xg ,...,x%))
- K3
O, i J:—):cl(.o)—i-Mi T; — xEO)

6.9.2 The M x N-total derivative of a vector flexible function of several variables

We now define the total M x N-derivative of a vector flexible function of several variables.

Definition 6.9.2. Let M, N be neutrices and F': X C R™ — [E™ be a function with F' = (F7, ..., F,,). We
say that F'is M x N-totally differentiable if there exists an m x n matrix A = [®j|mxn € Mmn(E) such
that

c <N- lim HF(l'()—i-h) —F(:C()) —Ah”) .
||| —0+M [A]]

Then the matrix A is called the M x N-total derivative of F at x¢ and we write A = {; DF (o).

Similarly to the derivative of a flexible function of one variable, the neutrix parts of all entries of §; DF(z) are

included in N. So we always take the neutrix parts of all entries of §, DF(z) are N.
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Theorem 6.9.3. Let F: X CR" — K™ be an M x N-totally differentiable at a, where a is an M-interior
point of X. Then for eachi € {1,...,m} the function F;: X — E is M x N-totally differentiable at a.

Proof. Let A =1, DF(a) and A; be a row vector of A for 1 < i < m. One has

[Fi(a+h) - Fi(a) - (A, h)| < max |Fi(a+ h) — Fy(a) = (Ag, h)] = [|F(a + ) — F(a) — AR .

ke{l,...m}
Then Fi(a+h) — Fi(a) — (Ai, )| _ |F(a+h) — F(a) — Ah
o< [Filath) = Fila) = {(Ai )| _ IF(ath) — Fla) - AR
il 7] N
when ||h|| — M, ||h|| ¢ M. This implies that
|0+ 7]
So F; is M x N-totally differentiable at a. U

Theorem 6.9.4. Let X C R"™ and F': X — E be N-totally differentiable at a, where a is an M -interior point
of X. Then F has M x N-partial derivatives with respect to the variable x; for everyi € {1,...,n} at a.

Proof. Let A = [oy] € M ,(E) be the M x N-total derivative of F' at zy. Since F is M x N-totally
differentiable at a, we have

0c (N_ lim | F'(a+h) — F(a) —Ahll>
||hl|—0-+M A

In particular h = h;e; with h; € R, 1 <4 < n we obtain
F(a+h)—F(a) —Ah:F(al,...,ai_l,ai—i—hi,aiﬂ,...,an)—F(a) — oyh;.

It follows that

0c <N- lim |F(a1,...,ai_1,ai+hi,ai+1,...,an)—F(a)—aihi|>
|hi| =0+ |hi
v IEath) — F(a) — A
IRl =0+ 172
Hence A; = OnE (a), Vi=1,...,n. O
M

6.9.3 The M x N-partial derivatives of a composite function

Recall that in classical mathematics if f is differentiable at ;o and ¢ is differentiable at yo = f(x) thenh = go f
is differentiable at x¢. We now investigate conditions to guarantee that h is M x N-differentiable.

Definition 6.9.5. Let f: R — [ be a flexible function and N, M be neutrices. Let b = (by,...,by) € R™.
We say that f is M-outer N-inner continuous at b if there exists » > M such that forall y = (y1,...,ym) €
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R™ M < |y —b] <r,foreach0 < k <m,andiy,...,ip € {1,...,m} forall u = (uy,...,u) with

byifp € {i1,...,ix}
yp ifp & {ir, ... i}

one has

fly) = f(u) CN.

Example 6.9.6. Consider the flexible function F': R? —; E given by F(z,y) = z+y+x%¢ ©+e£y. Then F is
e£-outer @-inner continuous at wy = (xg,yo) € £x£. Indeed, letr > e£,r € @. Forallw = (z,y) € B(wy,r)

and u = (u1,u2) where u; = z¢ V u; = z and ug = yo V ug = y, we have
|F(w) — F(u)] = |z +y + 2% @ +efy — (u1 + up + uie @ +ujet)| < |v — 20| + |y — yo| + @ C @.

Theorem 6.9.7. Let N1, No, My, My be neutrices. Let f: R™ — E be a flexible function, a = (ay, . ..,ay) €
R™ and p: R™ — R™ be a vector function and b = p(ai, . ..,a,) = (bi,...,by), with b; = ;(a) for all
je{l,...,m}. Let g = f o p: R" — E be a flexible function defined by g(z) = f(p1(x), ..., om(z)) for

every x = (z1,...,%,) € R™. Assume that

(i) @ is My x Ni-totally differentiable at a = (aq,...,a,) € R",

(i) fori € {1,...,m}, letz; = (a1,...,a;—1,a;+h,ait1,an). Then we have @;(z;)—pi(a) — Ma, ©i(z)—
vi(a) ¢ My when h — My, h ¢ M,

(iii) f is Mo-outer No-inner continuous and Ms x No-totally differentiable at b.

Then
OkY () =y~ Ot (b) 0Pk () (6.12)
O, T — Yk Oy i ’
m 0 0
where K = > K, with K, = Ny + Ny + N? + N2 + Wq(a).N2+ N,/ (b1,...,bm) - Ni.
=1 O, i O, Yq

Proof. Leti € {1,...,n} be arbitrary. Put 6 = g(2) — g(a) = f(p(z:)) — f(e(a));y; = ¢;(2i),1 < j < m.
One has

é_f(ylvaym)_f(b1,7bm) c f<y1aaym) _f(ylw"aymflabm)
h h - h
f(yla‘*'7ym—17bm) _flfyla"'7ym—27bm—17bm) 4t f(y17b27"'7bm)h_f(b17"'7bm) D.

+

We prove only that the first term is K ,,-partial differentiable with respect to the variable x;. The other terms

are treated similarly. Then the conclusion follows from the sum rule.
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One has
57m :f(yla"'vym) _f(yla"'aym—hbm) o f(yla"'vym) _f(yla"'aym—hbm) . ym_bm
h — h N Ym — bm h

By assumption (i), if » — M, h ¢ M; we have yj —bj — Ms,y; —bj ¢ My j =1,...,m. By the

assumption that f is Ms-outer No-inner continuous, it follows

Fyr - ym=1,ym) SF(b1s- -, bme1,ym) + N
f(y17 AR 7ym—17bm) gf(b17 . '7bm—17bm> +N27

for all (yl, . ,ymfl) € BM2 ((bl, ceey bmfl), 1"). Hence

f(yla'-'vym> _f(yl(z)v'--aymflabm) c F1, . b1, ym) — f(b1, - b1, bm) + No

Ym — bm - Ym — bm
8sz
— bi,...,bm).
Ny (9M2ym( ! )
Also, Ym = bin = Pm(2i) = pm(a) — M(a) when h — Mj, h ¢ M. Hence, by Theorem 6.3.11], it
h h Ny 8M1xi
holds that

Om On, f
h K—m> 8M2ym

8N190m
(b1, ...,bm) Dar. 1 (a),

0 0
where K, = Ny + Ny + N2 + N2 + 209™ () . N, + N2 (biy...,bm) - Ny.
aMlxi angm
Similarly, for g € {2,...,m} one has
57(1 :f(yl, e 7yq7bq+17- . ;bm) - f(yl, NN 7yq—17bq7 . 7bm)
h h
8sz 8N190(1
— bi,...,bm) - a),
Ky 3M2yq( ! m) 8M1«Tz’( )
0 0
whereKq:N1+N2+N12+N22 Nl(pq( ) - N2+Lf(bl,...,bm)-Nl.ByTheoremonehas
aJ\/I1$’L 8]V[qu
m
On, f ON, Pk
D — 2/ L .
Z 3M2yk alez( @)

=1

On, f b) : O P (a). One concludes that g (a) = & 0N, f b) on, ‘Pk(

1)
This implies that — —
P h O, % x; =1 O Yk O, %

K ;21 Oy
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6.10 The inverse flexible function theorem

In conventional mathematics the inverse function theorem and the implicit function theorem play a key role
in the Lagrange multiplier method. Below we investigate under which conditions inverse functions or implicit

functions are N-differentiable.

Theorem 6.10.1. Let N, M be neutrices, X C R" be an open set and a be an M -interior point of X. Let Z be
an M-neighbourhood of a, Z C X and f: X — R" be an internal function satisfying

(a) fis M x N-differentiable on X,
(b) f is continuously differentiable on X,

(c) f"is M x N-continuous and invertible at a, and

HU“@YWFI>N, (6.13)

(d) H (f’(gn))f1 H is not an absorber of N for all x € Z,
(e) f'(z) € \iDF(z)forallz € Z,
0 |If(x+h)— f(x)|| <r||h| forall z,z + h € Z, and for some r € R, where r—! is not an absorber of M,

(g) [ maps an open M-neighbourhood of a to an open M-neighbourhood of b, that is for every open M-
neighbourhood U of a and f(U) =V then V is an open M-neighbourhood of b with b = f(a).

Then

(i) There exists an open M-neighbourhoods U and V' of a and b, respectively, such that f is one-to-one
mapping on U and f(U) =V.
(ii) if g is the inverse function of f definedin V by g(f(x)) = x, (x € U) then g is M x N-totally differentiable
-1
atband Y Dg(y) = (f’(g(y))) + N.
To prove this theorem we recall the following result.
Theorem 6.10.2 ([31], p. 209]). Let 2 be the set of all invertible linear operations on R™.
(i) IfAeQ,Be LR"), and
|A—B|-||A7"] <1,
then B € Q.

(i) §)is an open subset of L(R™), and the mapping A — A~' is continuous.
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Proof of Theorem [6.10.1. (i) Put f'(a) = A, and put

1

A= (6.14)
2(| A=

Note that A > N by condition (6.13). Moreover, because f’ is M x N-continuous at a, there is an open M -ball
U ofradius r > M, centered at a such that for all z € U it holds that

1f'(z) = Al < X (6.15)
We associate to each y € R™ a function ¢, defined by
p(x) =+ ANy — f(2)), (Vz € X). (6.16)

Note that f(z) = y if and only if z is a fixed point of ¢. Because ¢/(z) = I — A~ 1 f'(x) = A~Y(A — f'(z)),
(6.14) and (6.13) imply that for all z € U,

1
' (2)]] < 2 (6.17)
Hence )
lo(r1) — @(x2)]| < 5\!931 — 22|, (w1,722 €U) (6.18)

by the mean value theorem in several variables. By the contraction principle [31], it follows that ¢ has the
unique fixed point z in U, so that f(xz) = y for exactly one 2z € U. Hence f is 1-1 in U.

Next, put V = f(U). By assumption (), V is an open M-neighbourhood of b = f(a).

(i) Lety € V,y € V and k € R" such that y + k € V. Then there exists z € U,z 4+ h € U such that
y=f(x),y+k=f(z+h). (6.19)
With ¢ as in (6.16) we obtain
olx+h)—px)=h+ A f(z) = fla+h)]=h— Ak
By (6.18) it holds that Hh - A_lkH < ||| Hence |A7 k|| > L|h|. Also [[A7 k| < |[A7Y| - [|&]], so
Rl < 2 A7H]- Kl = A7 (6.20)

By (6.14), (6.13) and Theorem 6.10.2, f’ (z) has an inverse, say 7. Note that from (6.19) and g = f~* we have
9(y) =x,9(y + k) = = + h. Also, from equality k = f(z + h) — f(z)and T = (f(a:))_1 we obtain

9y +k)—gly) =Tk =h—Tk=-T[f(z+h) - f(z) - f'(2)h].
Combining with the inequality (6.20) one has

T N f(+h) - fx) - f(@)h]]
A 2]

Hg(erk)—g(y)—TkH
2
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Because ||k| — M, ||k|| ¢ M, formula (6.20) and assumption () imply that ||h|| — M, ||h|| ¢ M. Because of
assumptions (d) and (g), the right side of the last inequality M/ x N-converges to 0. It follows that the left side

-1
is M x N-converges to 0. So ¢(y) = (f’(g(y))) € ¥ Dg(y). We conclude that ), Dg(y) = ¢'(y) + N. O

6.11 The implicit flexible function theorem

Using the inverse function theorem we prove M x N-totally differentiability of implicit functions.

In the result below, a point in R"*™ is written as (z,y) € R"™™ with x = (21,...,2,) € R"and y =
(yh s 7ym) € R™.

Theorem 6.11.1. Let M, N be neutrices such that M C N and g: X — R™ with X C R™"™™ be an internal
vector function. Let (a,b) with a = (a1, ...,a,) € R", b= (by,...,by) € R™ be an M-interior point of X
such that g(a,b) = 0. Let Z be an M -neighbourhood of (a, b). Suppose that

(a) gis M x N-differentiable at (a,b),

(b) g is continuously differentiable on X,

(c) ¢ is M x N-continuous at (a,b), and ¢'(z,y) € Y, Dg(x,y) for all (z,y) € Z,

1 - 0 - 0
0 - 1 - 0
(d) Let A(z,y) = . . ) where
TR n - Lntm
Am1 - Amn " Gmndm
9gi . :
a’ij:Mg;(x?y)al:lv---am;]:1,...,1’L+m.

-1
Assume that A(z,y) is invertible for all (z,y) € Z and H (A(a, b))_lH > N and H (A(z, y))_1H is not
an absorber of N for (x,y) € Z, where Z is an M-neighbourhood of (a,b),

(e llg(z +h) —g(z)|| < r||h| forall z,x + h € Z and r € R such that v~ is not an absorber of M.

Then there exists an open M-neighbourhood U of (a,b) and an open M-neighbourhood W C R™ of b such
that the following property holds.

For every x € W corresponds a unique y such that
(x,y) € U and g(x,y) = 0. (6.21)
If this y is defined to be h(x) then h is N-differentiable at a and h(a) = b, and for all € W

g(x,h(x)) = 0. (6.22)
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Proof. We first change variable by putting y; = x,,4; forall 1 < j < m. Note that from assumption (d) we

have the Jacobi determinant

dg1 g dg1
o (a,5) 0y2 (a,5) OYm (a,5)

|J| = : : : #0.
o (a,5) 0y2 (a,5) OYm (a,5)

The existence of h is implied by the implicit theorem [31], so it is sufficient to prove that h is M x N-
differentiable.

Define F' by
F(z,y) = (z,9(z,y)). (6.23)

Note that F’(x,y) = A(z,y). So F satisfies all conditions of Theorem 6.10.1|. Then F has the inverse function,
say G. By Theorem b.10.1, the flexible function G is M x N-differentiable. On the other hand (:p, h($)) =
G(x,0). Hence h is M x N-differentiable at a. O



Linear programming with flexible
objectives and constraints

7.1 Introduction
In optimization problems, input and/or output data are normally not precise. As mentioned before we can model
these imprecise amounts by neutrices. This chapter is devoted to studying linear programming problems with

uncertainties by using neutrices to model imprecise quantities. In this model, coefficients are not real numbers

but external numbers. In fact, we investigate problems of the form
n
F(x) = zajmj = (o, ) — min(max) (7.1a)
j=1

173



174 CHAPTER 7. LINEAR PROGRAMMING WITH FLEXIBLE OBJECTIVES AND CONSTRAINTS

subject to the constraints

n

> Bijrj > i, 1 € M,
i=1

n
D=1 > Bijxj <, i€ M (7.1b)
i=1

n
> Bijr; €y, 1 € Ms,
=

where n € N is standard, M7, Mo, M3 are disjointed subsets of N7 and «, 3, v; are external numbers for all
je{l,...,n},i € M with M = My U My U Ms.

The functions in this model are not linear but nearly linear in sense that f(ax + By) < af(x) + Bf(y). This
is caused by the fact that the addition operation on external numbers is not distributive but sub-distributive.
We call the problem (7.14)-(7.10) a nearly linear programming problem with flexible objective function and

constraints or simply a nearly linear programming problem.

In this chapter we will consider two cases. In the first case we deal with the problem in which the objective
function is flexible and the values of variables are precise. A sufficient condition for the existence of optimal
solutions are given. In the second case we study the problem in which the coefficients of the objective func-
tion, the constraints and the values of variables are external numbers. In this case, the domain is not precise.
Conditions are constructed to guarantee that an optimal solution of a nearly linear programming problem may

be determined through solving an associated ordinary linear programming problem.

We start by introducing some notions regarding solutions of the problem, some remarks about expressions of

the domain, and about the relationship between a maximization problem and a minimization problem.

Definition 7.1.1. A point 2o € E is called a feasible solution of the problem (7.1d)-(7.1Y) if z satisfies all the
constraints of D.

Definition 7.1.2. A feasible solution 2y € D is called an optimal solution of problem (7.1a)-(7.18) if for all
z € D, F(z) > F(x0) (F (x) < F(xo), respectively) and written z,,:. In particular, if z( is an optimal
solution of a minimization problem then we call it a minimizer , if it is an optimal solution of a maximization

problem we call it a maximizer.

Note that F'(z) < F(z0) is not equivalent to F'(xo) > F(x) (see the definition of order relations in Subsection
.2.2). Also, from the definition of order relations on external numbers a point g is a minimizer of a nearly
linear programming problem if and only if for all z € D, F(z¢) < F(x) or F(z) C F(xo). Similarly, o is
a maximizer if and only if for all z € D, F(z) < F(x) or F(z) C F(xo). However, it is sufficient to study
minimization problems. Indeed, o < f if and only if —a > — and hence a point 2y € D is a maximizer of

a nearly linear programming problem with a objective function F' if and only if x( is a minimizer of a nearly

n
linear programming problem with the objective function G = —F. Moreover, the inequality ) B;jz; <
i=1

n n
is equivalent to ) —Bijxj > —y; and the constraint > Bijx; € v can be transformed into two inequalities
=1 i=1

K3
n n

> Bijw; > viand ) Bijx; < ;. Consequently, every nearly linear programming problem can be transformed
i=1 i=1
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to the form B
F(z) = Zaixi = (o, ) — min (7.2a)
i=1
subject to the constraints
n
D:Z,&jx]’ >, 1€ {1,...,m}. (7.2b)
i=1

In the problem ({7.24d)-([7.26), by choosing representatives of the coefficients in the objective function and con-

straints we may form an ordinary linear programming as follows:

n
F(x) = Zci:ci = (¢, ) — min (7.3a)
i=1
subject to the constraints
n
Dr=>) agw;>b,ic{l,...,m}, (7.3b)
i=1

where a;;, b;, c; € R are representatives of 3;;,v;, o, respectively.

The problem ([7.3d)-(7.3H) is said to be an associated linear programming problem of the nearly linear program-
ming problem (7.24)-(728).

It is worth to note that, in some cases, finding optimal solutions of an associated linear programming problem of
the nearly linear programming problem ([7.2d)-(7.2t) does not give full information on optimal solutions of the
nearly linear programming. As shown in the next example, there are optimal solutions of a linear programming
problem of the form (f7.3d)-(7.35) which are not optimal solutions of the nearly linear programming ({7.34d)-

(.39
Example 7.1.3. Let € > 0 be infinitesimal. Consider the nearly linear programming problem
F(x) = (e + @) — min (7.4a)
subject to the constraint
0<z <1, (7.4b)

Clearly zp = 1 is an optimal solution of the problem and F'(1) = @. Also x = 0 is not an optimal solution
since F'(0) = 0. We now consider the associated linear programming problem

f(x) = ex — min (7.5a)

subject to
0<z< 1. (7.5b)

Obviously zp = 0 is a minimizer of the problem and f(0) = 0. Also = 1 is not a minimizer of the problem
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([7.5d)-(.5H).

7.2 Nearly linear programming with a precise domain

In this section we will study a special form of the nearly linear programming problem (7.24)-(7.24) in which
the domain is a subset of R™. This means that the variables are real numbers. To be more precise, we will

investigate the nearly linear programming of the form

flx) = Zaixi = (a, ) — min (7.6a)
i=1
subject to constraints
D= Zaij:z:j >b; forall : € {1,...,m}, (7.6b)
j=1

where o = ¢; + B; € Eand a;;,b; € Rforalli € {1,...,m},j € {1,...,n}. We write

c=(c1,¢2,...,¢), B=(Bq,...,Bp). (7.7)

Recall that in linear programming, if an objective function is bounded from below on the domain D and D
contains no line, the linear programming problem has an optimal solution at some vertices of ). We state

below a similar result.

Theorem 7.2.1. Consider the nearly linear programming problem ([1.6d)-({7.6Y). Assume that F is bounded
from below on D and the domain D contains no line. Then the nearly linear programming problem (7.64)-
(7.6Y) has optimal solutions. Also, there exists an optimal solution which is an extreme point of D.

To prove this theorem we recall some definitions and results in the linear programming theory. For more details,
we refer to [29, 2] .

Definition 7.2.2. A face of a convex set C'is a convex subset C’ of C' such that every line segment in C' with a
relative interior point in C” has both endpoints in C’. That is, for all z,y € C, if there exists z = Az + (1 — \)y
for some 0 < A < 1and z € C' then z,y € C'. The zero-dimensional faces of C are called the extreme points
or the vertices of C'. So a point x is an extreme point of C'if from expression z = (1 —\)y+ Az, wherey, z € C
and 0 < A < 1 we obtain that x = y = z.

A direction of R™ is an equivalence class of the set of all closed half-lines of R” under the equivalence relation
of being a translation. The direction of the half-line {x + Ay|A > 0}, where y # 0, is then by definition the set
of all translates of the half-line, and this set does not depend on x. We will also call this the direction of y. Two
vectors in R™ have the same direction if and only if they are positive scalar multiples of each other. The zero

vector has no direction.

Definition 7.2.3. Let C’ be a half-line face of a convex set C. We call a direction of C’ an extreme direction of

C.
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The following result is an adapted version of Theorem 1.1 of [2].

Theorem 7.2.4. Let C be a closed convex set, containing no line. We denote by V(C') the set of all extreme
points of C and U (C') the set of all extreme directions of C. Then

C =coV(C)+coneU(C),

where co V (C) is the convex hull of V (C') and cone U (C') is the convex cone hull of U(C)).

Theorem 7.2.5 (Krein-Milman). Every non-empty line-free closed convex set has at least an extreme point.

We next recall some properties of a polyhedral convex set. A polyhedral convex set in R™ is a set which can
be expressed as the intersection of a finite collection of closed half-spaces, i.e. as the set of solutions to a finite

system of inequalities of the form
Dz{xéR”‘(ai,a}>2bi,izl,...,m}. (7.8)
For polyhedral convex sets of the form ([7.§) we can characterize their faces as follows. Denote
Iy, = {i]l <i<m} (7.9)

and
Iy :={i € I,,] {aj,x) = b;,Vx € D}. (7.10)

It is clear that I may be an empty set. For each set of indices I such that Iy C I C I,,,, we write
Fr .= {x! <a,~,x> =b;,i €1, <ai,x> > b0 € Im\f}

and
M; = {z| (a;,x) = b;,i € I}.

It is easy to see that 'y C My and D = F7,.

Proposition 7.2.6. Assume that D is a polyhedral convex set defined by (1.8). Then a set F is a face of D if
and only if it is of the form

F :={x| (a;z) = b;,i € I,{aj,x) > b;,i &1},

where In C I C I,,.

Proposition 7.2.7. Let D C R" is a polyhedral defined by (1.8) and I is a set of indices satisfying In C I C I,
where Iy, Iy, is denoted as (7.9) and (7.10). Let

Fr:={x| (ai,x) = bi,i € I,{a;,xz) > b;,i € I, \ I}

be a face of D. Then
dim F1 = n — rank{a;| ¢ € I}.
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Definition 7.2.8. Let D C R™ be a polyhedral defined by ([7.8). A point xy is said to satisfy the i-th constraint
strictly if (xo, a;) = b;.

Corollary 7.2.9. Assume that D C R" is a polyhedral convex set defined by ({1.8). Then z is an extreme point
of D if and only if it satisfies strictly at least n independent constraints.

Remark 7.2.10. If the number of constraints m is standard and D is a non-empty line-free, polyhedral convex

set, the number q of extreme points of D is also standard.

Proof of Theorem [7.2.1. Because D is a closed, convex set containing no line, by Theorem [7.2.4, for each
P p . k 4 .

x € D there exist \; > 0, 1; > 0 with )~ \; = I suchthatz = ) Nz + > uju(ﬂ), where z() are extreme
i=1 i=1 j=1

points and u(7) are extreme directions. We have
D k
F(x) = <a, Z Az Z,uju(j)>
i—1 j=1
P k D k
= <c, Z Xz 4 Z,uju(j)> + <B, Z Xz 4 Z,uju(j)> ,
i=1 j=1 i=1 j=1

where () = (21, ..., 2,) foralli € {1,...,p} and u') = (uj1,...,u;,) forall j € {1,...,k}. Then
P

Z /\lx(z) :)\1(:611, .. ,:Ziln) + -+ )\p(fL‘pl, ... ,.%’pn)
=1

:((/\1%11 + -+ )\p:cp1), e (Alxln + -+ )\pxpn)>.
Similarly

k
> pjul) = ((mun o k), - (v e Mkulm))-
i=1

It follows that

/4

k
S a3 put) =
j=1

=1

((Ma?n + o ApTp1) F (- k) - (AT o ApTpn) F (U, - F Mkukn)>.

So

p k
<B, ZA@:U(” + ZM;’U(])> =B ((chn o Apzpr) + (paunn -+ Mkukl)) +ot
i=1 j=1

Bn<()\1x1n o ApTpn) o+ (s o+ /Lku,m))

Observe that for each B, # 0, one has uy, = -+ - = ug, = 0. Indeed, suppose on contrary that there exists an
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index s such that psug. # 0, by the definition of extreme direction it holds that

(Mxir + -+ Xpzpr) + (1t + -+ + fstsy + -+ + pplipy) € D
for all s > 0. Taking ps — oo, one has

BT((/\lulr + -+ /\pupr) + (Alxlr + o Asugr + 000 Apupr)) - R

P
It follows that <B S Nz ® Z _1 Mju > — R. That is, F'(z) — R, which is a contradiction to the
i=1

k .
lower boundedness of F'. This implies that <B, > uju(J )> = 0. As a consequence,
j=1

D k P
<B’ PETRES S Mju<j>> - <B, > /\ix(i)> .
i=1 j=1 i=1

Hence
p ' k ' p '
F(z) = <c, PRYERESY uju(1)> - <B, > )\ix(’)> . (7.11)
i—1 j=1 i1
We will show that i
<c, Z,uju(j)> > 0. (7.12)
j=1
k k k )
Onehas { ¢, Y u; =" {e,puul9) . Suppose that ( ¢, > pjul?) ) < 0. Then there is an index jo such
Jj=1 j=1 j=1
that

Because u7%) is an extreme direction of D, we can take ttj, — oo and fix other factors. By formula (.11 one
derives that f(z) — —oo, which is a contradiction to the assumption that f is bounded from below on D. By

formulas (f7.11)) and (7.12), one has
x) > <C,Z)\ix(’)> + <B,Z)\ix(l)> = <c+ B, Z)\ix(z)> .
i=1 i=1 i=1
Moreover, by subdistributivity,

P

p p
<c+ B, Z)\ix(i)> - ZM <C+ B,$(i)> = Z)\z’<(01 + By)xin + -+ (e + Bn)l“m>-
i—1 i=1

=1

Hence

p p
<C+ B,Z/\iw(i)> Z ( c1+ Bi)xi + - (cn + Bn)ﬂfm)-
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Let ¢ be the number of extreme points of D. Then ¢ is a standard number by Remark [7.2.10. We choose an

extreme point 2° of D such that

(%) = min ((e1+ Bi)wa + - (en + Ba)win).
i€{1,....,q}

That is,
<(C1 + Bi)xin 4 -+ (cn + Bn>xzn> > {(a,2%)

foralli =1,...,q.

One concludes that 20 is an optimal solution of the nearly linear programming problem ([7.6d)-(7.6H). O

Remark 7.2.11. In case all B; # 0,7 = 1,...,n, the nearly linear programming has a solution (such that the
optimal value differs from R) if and only if the domain D is compact. Indeed, in this case, it is clear from the
proof that u¥) = 0 for all j. Hence D is bounded. This implies that D is compact because D is a polyhedral.

7.3 Nearly linear programming with flexible objective and constraints

In this section we study a nearly linear programming in which coefficients in both the objective function and

the constraints are external numbers. To be more detailed we investigate a problem of the form
n
f(x) = Ajz; — min (7.13a)
j=1

subject to the constraints

D =) ayz; > p;i=bi+B,ic{l,. .. m} (7.13b)
j=1

where )\j € E and Qg ﬁz € E.

Consider a nearly linear programming of the form (7.13d)- (7.13Y). Taking a;j € ajj, b; € B and ¢; € Aj for

alli € {1,...,n},7 € {1,...,m} we form the classical linear programming problem
n
f(z) = Zle‘j — min (7.14a)
j=1
n
subject to the constraints D = Zaij:pj >b;,i€{1,...,m}. (7.14b)
j=1

Next, we investigate the relationship between the sets of optimal solutions of these two problems. The next two
examples show that this relationship is not always obvious. The first example shows that the two sets of optimal
solutions are different. The second example shows that a solution of the problem ({7.144)-(f7.145) does not need
to satisfy (7.130).
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Example 7.3.1. Let € > 0 be infinitesimal. Consider the nearly linear programming problem
F(z) = (e+ @) — min (7.15a)

subject to the constraint
0<z<l. (7.15b)

Clearly zp = 1 is an optimal solution of the problem and F'(1) = @. Also x = 0 is not an optimal solution
since F'(0) = 0. We now consider the associated linear programming problem

f(x) = ex — min (7.16a)

subject to
0<z <1, (7.16b)

Obviously z¢p = 0 is a minimizer of the problem and f(0) = 0. Also = 1 is not a minimizer of the problem

([7.16d)-([7.168).

Example 7.3.2. Consider the nearly linear programming problem
f(z,y) = —y — min (7.17a)

subject to the constraints
(1+e0)r+ (e+e)y <1+€£
D= (7.17b)
x,y > €f,

and the associated linear programming problem

f(z,y) =2 —y — min (7.18a)
subject to the constraints
r+ey <1
Dp = v= (7.18b)
z,y > 0.

1

Geometrically, it is easy to see that the point A { 0, — | is the unique optimal solution of the problem ([7.184)-
€

(7.18H). However, the point A does not belong to D.

Below we modify some notions in the theory of linear programming in away that we can apply them to nearly

linear programming problems.

Definition 7.3.3. Consider the nearly linear programming problem ([7.134)-(7.13b). Let I,,, = {1,...,m} and
Iy = {l el: <ai,x> C G;,Vx € D}
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ForeachsetI,Iy C I C I, the set

n
Fr=XazeD:Y oz Cpicl
i=1

is called a pseudo-face of D.

n
We say that the Pseudo-face F' has dimension n—k, denoted by dim F' = n—k, ifthe flexible system ) a;jz; C
j=1

Bi, ¢ € I determining F' has the rank k.

We next present conditions such that an optimal solution of a nearly linear programming problem may be deter-
mined through a solution of an associated linear programming problem. One of the condition is that the neutrix
parts of constant terms of constraints are identical. This is consistent with our conditions to solve a flexible

system of linear equations by the Gauss-Jordan method.

Theorem 7.3.4. Assume that the problem

n
flx) = xiA\i — min (7.19a)
j=1
subject to the constraints
n
Dr=> ayx; >bii € In = {i,...,m} (7.19b)
j=1

has an optimal solution x,p, Where oy is a vertex of Dy, i.e. Top is a solution of the system
n
Zaijxj =b;,1 € {il,...,’in}, (7.20)
=1

and that
(i) The flexible system corresponding to the system (1.20), of the form
Zaijxj C Bii € {i1,...,in} =P (7.21)

satisfies the Cramer conditions.
(ii) Topt -AC Band@- B C B.
(iii) Every singular flexible system defining the face Fr, Iy C I C I, is solvable in the sense of Definition
4.5.10.
Then ciopt = Topt + B is an optimal solution of problem (7.134) (7.13H).

Proof. We observe that the system (7.20) satisfies the Cramer conditions, so by Remark §.3.16, Qopt = Topt+B
is a solution of the system (7.21)). Also, condition (fi) yields Qopt = Topt + B € D. We first assume that
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~v=(dy + D1,...,d, + D,) is an interior point of D, that is for all i € {1,...,m} we have
n
Zaij% > b, + B.
j=1
We shall prove that f(v) > f(aopt). Let 2 = (21,...,2,) € 7. Then
n
Zaijzi > b; + Bforalli € {1,...,m}.
j=1

n

It follows that ) a;jz; > b; forall i € {1,...,m}. So z is an interior point of Dg. Hence, f(2) > f(xopt) >
i=1
f(aopt)-

Next we we assume that v € F7 which is defined by the system

n
> aijr; CBiiel (7.22)
j=1

We will show that f(y) > f(cpt). Assume that dim F; = n — k. By Theorem there exists a set of
indices K = {iy,...,i,} € I N Py such that the system ({7.22) is equivalent to

a1y + o+ o € b — Ak 1The1 — 0 — QinTo + B, 1 € K. (7.23)
Also, by Theorem the set of solutions of the system (7.23) is given by
S = {(3:1+B,...,$k+B,mk+1,...,xn) v, € N;=B: A1 € {1...,n}},

where (z1, ..., x,) is a solution of the linear system
ai1T1 + -+ @ik + g r1Tk+1 + -+ ainTn = byt € K. (7.24)

In addition, each point y = (y1,...,¥yn) € 7 is a solution of (7.22) since v € F;. Hence y; € z; + B,i =
l,...,kand y; = z4,i = k+1,...,nwithz = (x1,...,2,) € Dg. It follows that f(y) C f(x1 +
B,...,zr + B,xg41,...,%n). Hence f(y) > f(x1 + B,...,zx + B, Tky1,...,Tn). Also, x € Dg implies

k n
f(x) > f(aopt). Because Y \;B C > \;B, we have
i=1 i=1

k n
fy) > fr1+B,...,z+ B, xky1,...,xn) = f(2) —1—2)\1-3 > f(zopt) +Z)\iB = f(wopt + B).
i=1 i=1

This equality is true for all y € ~, we conclude that f(7y) > f(cpt)- O

Remark 7.3.5. In particular, if the coefficients of the objective function in the nearly linear programming
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problem ([7.194)-(7.191) are real numbers, the problem reduces to the ordinary linear programming problem
(7.144)-([7.14H). In order to find an optimal solution of this problem we can use classical methods, for instance
the complex method to find an optimal solution z,,; of the problem (7.144d)-(7.14Y). Also, if all conditions
(0)-(iii) are satisfied, we conclude that Zopt + B 1s an optimal solution of the original problem.

Corollary 7.3.6. Assume that the flexible function f(x) = Z \jxj is bounded from below on the domain Dg

given by (1.14Y) and D, does not contain a line. Let Topt be an optimal solution of the problem (1.194)-(7.198)
which is a vertex of Dgr. Then copt = Topt + B is an optimal solution of of the problem (7.134)-(7.131).

Proof. By Theorem [7.2.1], the problem (7.194)-(7.194) has an optimal solution Zopt at vertex of Di. Using
Theorem we conclude that oyt = xopt + B is an optimal solution of of the problem (7.134)-([7.13H). O

Example 7.3.7. Let € > 0 be infinitesimal. Consider the nearly linear programming problem
f(z,y) = —z +y — min (7.25a)

subject to the constraints
1+e0)x+ (1 +ef)y <14+ €£
p={! Jo+ (1+ekly (7.25b)
T,y > €k

and the associated linear programming problem

f(z,y) = —z +y — min (7.26a)
subject to the constraints
r+y<1
D= (7.26b)
z,y > 0.

By a geometrical method, we find that the point A(1,0) is an optimal solution of the problem (7.26). Also A is

r + y =1
y = 0.

We verify that the problem satisfies all conditions in Theorem [7.3.4.

a vertex of Dg defined by the system

The flexible system corresponding to this system

{(l—i-e@)w + (1+eb)y
y

N 1N

e£

satisfies the Cramer conditions

(i) R(A) € P(B)

(i) A =1+ e is not an absorber of B = e£ and B = B.
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This flexible system define an point A’ = (1 + €£, e£).
Also Tope = 1, A = e£, B = e£. So the condition T - A C B is satisfied.
Moreover, subsystems defining pseudo-faces of D are solvable.

Using Theorem we conclude that the point A" = (1 + €£, e£) is an optimal solution of the near linear
programming (7.23) and the minimal value is

F(A) =1+ €L

Remark 7.3.8. It is natural to study nearly linear programming problems with different imprecisions of con-
stants terms of constraints. Indeed, on some quantities we may have very precise information while other
quantities may only be roughly known. To do this it seems to be necessary to develop more the theory of exact

solutions of flexible systems of linear equations of Section }.4.

Below we illustrate this by an example with different imprecisions of the constant terms to see how it works.
Example 7.3.9. Let € > 0 be infinitesimal. Consider the nearly linear programming problem
f(z,y) = —z +y — min (7.27a)

subject to the constraints
I+eo)z+ (1+ef)y <1+€k
D=qz>¢ek (7.27b)

y=>0

and the associated linear programming problem

f(x,y) = —x+y — min (7.28a)
subject to the constraints
r+y<1
D= v= (7.28b)
z,y > 0.

By a geometrical method, we find that the point A(1, 0) is an optimal solution of the problem (7.28). Also A is
a vertex of Dp defined by the system
r + y =1
{ y = 0.

We verify that the problem satisfies all conditions in Theorem [7.3.4.

The flexible system corresponding to this system

1 4+ €£

{(1+6®)1‘ + (1+ef)y
y
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()= () ==() == () -

By a geometrical method we see that the vector (g, 7) given by (7.29) is a minimizer of the problem (7.27).
Substituting this vector in the objective function we find the optimal value is given by

has a solution

fopt =-1+0.



Non-linear optimizations with
flexible objectives

In this chapter we investigate non-linear optimization with flexible objective functions. We only consider the
case in which variables are precise, this means values of variables are real numbers. We will introduce not
only the notion of optimal solution, but also of N-optimal solution, where N is a neutrix. The latter is a kind
of “flexible” optimal solution, in the sense that it is approximate optimal. In some cases we can not find exact
optimal solutions, yet we can find such approximate solutions. We will consider both global and local optimality.
Necessary and sufficient conditions for the existence of both optimal and nearly optimal solutions are presented.

Firstly, we will extend the well-known result which says that the derivative of a differentiable function at an
extreme point vanishes. To this end we introduce the notion of [V-derivative. We also state a similar result for

an extreme point of a function of several variables by using N-partial derivatives.

Secondly, optimality conditions will be expressed through representatives of an objective function. After study-

ing the general case, we will continue with a special form of objective functions. In fact, we consider the op-

187
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timization problems in which the objective functions have the expansion F'(z) = f(z) + gi(z)Ny + -+ +
gn(z) Ny, where f, g1, ..., gn are real functions and Ny, ..., N, are given neutrices. An optimal solution of an
optimization problem with objective function F' is characterized via an optimal solution for f, where the neutrix

part is determined by the maximal values of |g;| and V; with 1 < i < n.

Thirdly, we will apply a parameter method to study this kind of optimization problem. In fact, we will treat
external numbers as a collection of parameters. For each value of parameter we obtain a conventional opti-
mization problem. Conditions which enable us to find optimal or approximate optimal solutions of the original

problem through the sets of optimal solutions of problems corresponding to values of parameters are given.

Fourthly, we will use techniques of the theory of set-valued mapping to investigate these problems. Because the
values of an objective function are external sets, some results in set-valued mapping theory do not fit completely
for these functions. So we will modify notions in the theory of set-valued mapping, for instance, the notion of
derivative, so that we can apply them to our problems.

Finally we present a necessary condition for optimality which is similar to the Lagrange multiplier. In fact we
will show that there exist multipliers such that NV -partial derivatives of the Lagrange function of an optimization

problem are not zero but included in a suitable neutrix.

Convention 8.0.1. Through the whole chapter, unless otherwise stated, we always assume that n € N be

standard and NN is a neutrix.

8.1 Some notions and elementary properties

We study optimization problems with flexible objective functions which have the form

in ¥ F 1
min F(z) or max F(z) (8.1)

where F'(x) is a given flexible function defined on X with X C R™, X # ().

An optimal solution of an optimization problem with a flexible objective function is defined as follows.

Definition 8.1.1. Let X C R", X # (), zg € X and F be a flexible function defined on X. The point z is
called

(i) a minimal solution of the minimization problem mi)rg F(z)if F(x) > F(xo) for all x € X. Then we also
ze
call g a minimizer and F'(z¢) the minimal value or the minimum.

(ii) a maximal solution of the maximization problem max,cx F'(z) if F'(z) < F(zo) for all z € X. Then we

also call z¢ a maximizer of the problem and F'(x() the maximal value or the maximum.

A minimal or maximal solution is called an optimal solution.

Remark 8.1.2. By the definition of order relationship on the set of external numbers, a point ¢ € X is:
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(i) a minimizer of F' on X if and only if for each z € X and for all y € F(x) there exists z € F(z() such
that y > z. Also for all x € X it holds that F'(x) > F(x¢) or F\(z) C F(xp).

(ii) a maximizer of ' on X if and only if for each x € X and for all y € F'(x) there exists z € F'(x) such
that y < z. Also for all x € X it holds that F'(x) < F(x¢) or F\(x) C F(xp).

Let F: X — P(R) be an internal set-valued mapping. Recall that a point zp € X is said to be a minimizer of
F on X if there exists yo € F'(zp) such that yo is a minimizer of F(X), thatis forall z € X,y € F(x) we
have y > yo (see [[7]). In our approach, values of F' are external sets, in general, there does not exist an element
Yo satisfying this definition. However, the definition of minimizer in our model is similar to the classical one in
some sense, as shown in Remark B.1.2(f).

Example 8.1.3. Let F: [0, +00) = X — E bea flexible function defined by F'(x) = x3+(:c2+1)@+§ x €

er’
[0, +00). Consider the optimization problem mi§ F(x).
TE

£
For every z € [0, +00) one has F(z) = 23 + (22 + 1) © +% > @ = F(0). Then zp = 0 is a minimizer of F’
e
on [0, +00). Also every point 2y € @,z > 0 is a minimizer of F on [0, +-00).

However we can not find a real number yo € ImF satisfying the condition y > yq for all y € ImF'.

Assume that z is a minimizer of F' on X and F'(zy) is the minimal value. Two cases may occur: F'(zg) < F(z)
or F(x) C F(xp). In the second case we have Np(x) € Np(zg). So, in our context, if we have the same
value with different uncertainties, we will choose a value with a larger uncertainty. A similar argument holds for
maximal solutions. We also note that if the inequality F'(z¢) < F'(x) holds for all z € X, we can not conclude

that ¢ is a minimizer. For example, let F': [0, 1] — E be given by

4+ if0<x<1
0 ifz =0.

F(x) =

Then F(0) = 0 < F(x) for all z € [0,1]. However, z = 0 is not a minimizer of F' on [0, 1] since it does not
satisfy F'(x) > F(0) forall z € [0, 1]. Indeed, one has F'(¢) = @ # 0 = F(0), where € > 0 is an infinitesimal.
Similarly, if F'(xg) > F(z) for all z € X, it does not mean that z( is a maximizer of F on X.

Often an optimization problem with a flexible objective function does not have an optimal solution. We may,
however, find “nearly” optimal solutions. Recall that a point z( is a minimizer of an internal function f on
X with X C R™if f(x) — f(z9) > 0,Vx € X, and an e-minimizer of f on X if for all z € X one has
f(zo) < f(x)+eor f(zo)— f(x) < e. Substituting 0 or € above by a neutrix N, we can generalize approximate
optimal solutions for optimization with flexible objectives. We call it a N-optimal solution.

Definition 8.1.4. Let X C R" X # ()and F': X — [ be a flexible function. Let N be a neutrix and xg € X.
The point xg is called

(1) an N-minimizer or an N-minimal solution of the minimization problem mi)r} F(z) if for all z € X one
TE

has F'(z) — F(xo9) > N. Then F(xy) is called the N-minimal value or the N-minimum.
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(i1) The point xq is called an N-maximizer or an N-maximal solution of the maximization problem max F(x)
re

if F(z) — F(xzg) < N forall z € X. Then F'(z0) is called the N-maximal value or the N-maximum.

The N-minimal or N-maximal value is called the N-optimal value and an N-minimal or /N-maximal solution

is called a N-optimal solution or a N-optimal point. 1t is also called a N-extreme point.

Example 8.1.5. Let F: R — E be given by F(z) = 22 + @ - , « € R. Consider the optimization problem

in F'(x).
P

This problem has no solution. Indeed, suppose on contrary that it has an optimal solution g € R. Clearly
x = 0 is not a minimizer because of Remark and the fact that for e € @, € > 0 one has F'(0) C F'(¢). So
xo # 0. If g & @ it holds that x% + @ -z > F(0), which is a contradiction. Consequently, o € @, xg # 0
and hence F(z0) = ¢ - ©. Let e = \/|zo] € @. Then 0@ C €. It follows that F(zg) = 22 + © - 29 =
10® C €@ = €2 + ¢ - @ = F(e), which is a contradiction since g is a minimal solution. So the problem has

no solution.

However, this problem has @-optimal solutions. We will show that every g € © is an @-minimizer of F' on
R. Foreachz € 0, F(z) = 2>+ @ -2 C @ andforz ¢ ©, F(z) = 22+ - © > . Since zg € @, it follows
that F'(z) — F(zo) > @ forall z ¢ @ and F'(x) — F(zg) C © forall x € @. Hence F(z) — F(z9) > © for
all z € R. This means that xg € © is an @-minimizer of the problem.

The following result shows that an N (x()-optimal solution is an optimal solution and vice versa.

Proposition 8.1.6. Consider the optimization with flexible objective of the form (B.1)). A point zo € X is an

N (xo)-minimizer (maximizer) of F on X if and only if xq is a minimizer (maximizer) of F on X.

Proof. Wewrite F'(z) = f(z)+ Np(x) forallz € X. We prove the case of minimization problem, the another
case is done similarly. Since x9 € X is an Np(xo)-minimal solution, one has F'(x) — F(z9) > Np(xo) for
all z € X. It follows that F'(x) + Np(zo) > f(xo) + Nr(zo) = F(x0) for all z € X. On the other hand,
F(z) C F(z) + Np(x) forallz € X. So F(z) > F(z) + Np(z9) > F(xo) forall z € X. Hence zg is a

minimizer of F' on X.

Conversely, assume that 2o € X is a minimizer of ' on X. Then F'(z) > F(x¢) for all z € X. This implies
that F'(z) — f(xg) > Np(xo) forall z € X. We consider two cases. For the case F'(x) — f(x0) C Np(xg) we
have F'(x) — f(x0) + Np(x0) = Np(xg),s0 F(x) — F(x¢) = Np(xo). For the case F'(z) — f(xz9) > Np(x0)
we have F(z) — f(zo) + N(zo) = F(z) — F(z9) > Np(x0). So F(x) — F(z9) > Np(zo) forall xz € X.
We conclude that xq is an Np(zp)-minimizer of /' on X. O

For local optimal solutions, in some cases, we would like to have information on the size of the neighbourhood
of a local solution in which an objective function reaches the minimum. For this approach we can classify
different orders of magnitudes of the size of the neighbourhood by using neutrices. We call it an M-local N-

optimal solution, where M, N are two neutrices.

Definition 8.1.7. Let F': X — E be a flexible function and xg be a point in X. The point zg € X is called
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(i) an M-local N-minimizer or M-local N-minimal solution of the problem mi§ F(x) if there exists § > M
S

such that (g — d,29 +0) C X and F'(z) — F(x¢) > N forall z € (xg — d, 29 + 9).

(i1) an M-local N-maximizer or a M-local N-maximal solution of the problem max F(z) if there exists 6 >
re

M such that (zg — 6,20 + ) C X and F(z) — F(zp) < N forall z € (zg — 4,0 + 9).

In particular, for minimization problems, if N = Ng(z¢) we call xg a M-local minimizer. If M = 0, we call

xo a local N-minimizer. In addition, if both N and M are zeros, we call xg a local minimizer.

We have similar definitions for maximization problems.

Example 8.1.8. Let F: R — E be a flexible function defined by F/(z) = 2® — 3z + 1 + @z. We will show
that every z ~ —1 is an ©-local maximizer and every x ~ 1 is an @®-local minimizer of F'. We first prove that

x = —1 is an @-local maximizer of F' and then we do it for x ~ —1,x # 1. The case = ~ 1 is done similarly.

Put f(z) = 2% — 3z + 1 for all z € R. A short calculation shows that 71 = —1 is a local maximizer of f and
xg = 11is a local minimizer of f. In fact, for z € (—o0,1 4+ @) we have f(z) < f(—1)andz € —1 + @ we
have F'(z) — F(—1) C ©. This means that

F(z) < F(-1), Vo ~ —1. (8.2)
On the other hand, for each z € (—2,1+ @) \ {—1 + @}, it holds that

F(z) < F(-1). (8.3)

Indeed, we consider two cases. For the case in which x is standard, because f(z) is standard and —1 is a local
maximal point of f, we have f(z) — f(—1) = z < @, where z is standard. It follows that F'(z) — F(—1) =
f(z) — f(=1)+ @ = z+ @ < @. For the case in which z is not standard, let y be the standard part of z. Then
forall z € (2,14 ©) we have F(z) C F(y) + @. The first case shows that F(y) — F(—1) < @ and hence
F(z)— F(-1) < ©. Thus F(z) — F(—1) < o forallz € (—2,14+ @) \ {—1 4+ @}. This implies that

F(z) < F(-1) forallz € (-2,1+ @)\ {-1+@}. (8.4)

From (B.2) and (8.4) we conclude that 2y = —1 is an @-local maximizer of F.

Secondly, we will show that points g € —1 + @, xzg # —1 are also ®-local maximizers of F' on R. We note
that F'(zg) — F(—1) = @ or F(z9) = F(-1) + @, so F(x) — F(z9) = F(x) — F(-1) + @ < © for all
z € (—2,14+ ©). Hence F(z) < F(—1) forall z € (—2,1 4+ ©). So zg is an @-local maximizer of F.

Similarly, we conclude that g € 1 4+ @ is an ©-local minimizer of F'.

It is easy to see that 1 = —1 is not an £-local maximizer of F" and x5 = 1 is not an £-local minimizer of F'.

An M-local optimal solution, as shown by the next proposition, is also an M’-local optimal solution with
M’ < M. As a consequence, in practice we tend to determine M -local optimal solutions with the largest
possible M.
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Proposition 8.1.9. Let F': X C R"™ — E be a flexible function and N, M, M’ be neutrices such that M’ < M.
Consider the optimization problem (B.1]). Assume that xo € X is an M-local N-optimal solution of (B.1)). Then

xq is also an M'-local N-optimal solution of this problem.

Proof. Without loss of generality we assume that g is an M-local N-minimal solution of problem (B.1)). Then
there exists § > M such that (z¢9 — 6,20 + ) C X and F(z) — F(zg) > N forallx € (zg — 6,20 + J). On
the other hand, M’ C M and § > M yield 6 > M’. By Definition one concludes that z is an M’-local
N-minimal solution of the problem (B.1). O

Proposition 8.1.10. Let F: X C R™ — E be a flexible function and N, N’ be neutrices such that N < N’.
Consider the optimization problem (B.1)). Assume that xo € X is an N-optimal solution of (B.1)). Then xq is an
N'-optimal solution of (B.1)).

Proof. We will prove the proposition for N-minimizers, the case of NV-maximizers is done similarly. Because ¢
is an N-minimizer of F'on X, we have F'(x) — F'(x¢) > N forall z € X. This implies that F'(z) — F(x9) C N
or F(z) — F(zo) > N. We will show that F'(z) — F(z9) € N or F(z) — F(z9) > N’ forallz € X.

If F(x)—F(z9) € Nthen F(x)—F(z9) € N',since N C N'. If F(x)—F(x9) > N then F(x)—F(z9) > N’
or F(z) — F(x0) C N'. Indeed, otherwise, we have two cases: (i) N’ C F(x) — F(x) or (ii) F(z) — F(x¢) <
N'. If (i) happens then N C N’ C F(x) — F(x¢), which is a contradiction. If (i7) happens, we have
F(z) — F(z9) < N, which is a contradiction. O

Remark 8.1.11. The conclusion is also true for M -local N-optimal solutions.

Combining these two results we obtain the following.

Proposition 8.1.12. Let F: X C R" — E be a flexible function and N, N', M, M’ be neutrices such that
M' < M and N < N'. Consider the optimization problem (B.1l). Assume that a point xq is an M-local
N-optimal solution of B.1]). Then ¢ is an M'-local N'-optimal solution of (B.1)).

Proof. Because of Proposition the point z is an M’-local N-optimal solution of the optimization problem
(B.1)). By Proposition we conclude that x( is an M’-local N’-optimal solution of the optimization problem

B.1)). O

We end by proving that a maximum problem can be transformed into a minimum problem and vice versa.

Proposition 8.1.13. Let F be a flexible function defined on X C R". A point x¢y € X is a minimizer of F on
X if'and only if x¢ is a maximizer of —F on X.

Proof. By Lemma R.2.33, it holds that F'(x) > F(xg) if and only if —F(2) < —F(x0) for all z € X. Then

xo 1s a maximizer of —F on X if and only if x¢ is a minimizer of F' on X. ]

Note that the conclusion above also holds for M -local N-optimal solutions.
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8.2 Nearly optimal points and /NV-derivatives

The necessary condition of an N-optimal point says that the neutrix part of the /V-optimal value must be included
in N.

Proposition 8.2.1. Let F: X C R" — E be a flexible function and N be a neutrix. Consider the optimization
problem (B.1)). Assume that xo € X is an N-optimal solution of the optimization problem (B.1]). Then Np(zo) C
N.

Proof. Suppose on contrary that N C Np(zg). Because ¢ is an N-optimal point, without loss of generality,
we assume that z( is an N-minimizer of ' on X. By the definition, it holds that F'(z) — F'(z¢) > N for all
z € X and zp € X. Forz = 29 € X we obtain that F'(z) — F(x9) = Np(xo) DO N. This implies that
F(x) — F(xz9) # N, which is a contradiction. O

Note that the equality F'(z) — F'(x¢) > N forall z € X is not equivalent to F'(xz) > F(zg)+ N forallz € X.
For example, let N = 0 and F(x) = 22 + @. Then F(x) > F(0) + N = F(0) + 0 for all z € R. However,
F(e) — F(0) = @ # 0 = N where €0 is infinitesimal. So, from the expression F'(z) > F(x¢) + N for all
x € X we can not conclude that x¢ is an N-optimal solution of F' on X. Yet, as a consequence of Proposition

B.2.1|, a point g € X is
(i) an N-minimizer of ' on X if and only if

F(x) > F(xzo) + N, Yz € X,
Np(xzo9) € N.

(i1) an N-maximizer of F' on X if and only if

F(z) < F(zg) + N, Vz € X,

In contrast to classical continuity of an internal function, even we have an M x N-inner continuous function it
does not guarantee that this function obtains the maximum and minimum on a closed interval.

T if —1<230,

For example, consider a function F: [-1,1] — E given by F(z) = This

—1—2 f0gz<1
function is ©® x @-inner continuous, but it does not have the maximal value, even the @-maximal value. Also

observe that F' is not © X @-continuous at x = 0.

In classical mathematics it is well-known that the derivative of a differentiable function vanishes at an extreme
point. For a function of several variables, the partial derivatives also vanish at an extreme point. Here, by using
the notion of M x N-derivative for a flexible function of one variable and M x N-partial derivatives for a

flexible function of several variables we obtain similar results.
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Theorem 8.2.2. Let N, M be neutrices such that & C M and X C R, X # (. Let F be a flexible defined
on X. Assume that xq is an M-local N-minimizer of F' on X and x is an M -interior point of X. Assume also

that F' is M x N-differentiable at xy. Then

dvF
m(l’o) = N.
dnF F(z) — F(z)

= a+ N = «. So, for all ¢ > N there exists

P " Assume that = N- lim
roof. " dyx (o) z—wo+M T — xg

dp > M such that forall x € X, M < |z — x| < & one has

F(x)—F
|Mfa+]\7\<e. (8.5)
T — X0
This implies that
F —F
0+ N—e< L@ =Flo) (8.6)
Tr — X
forall M < zg — x < dp and
F —F
F@) = F@0) | N ceyasN 8.7)
Tr — X

forall M < x — xg < dg.

On the other hand, the point x¢ is an M-local N-minimizer of " on X, so
F(z) = F(zo) 2 N (8.8)

forallz € X, |x — zo| < 1. Put & = min{dy, d; }. Note that @ C M, so for |x| > M it holds that x is not
an absorber of N. As aresult, forall z € X, M < zg — x < §, we have

F(x) — F(xo) < N

< < N.
r — X0 T — X0
This implies
F(zx)—-F
M+N§N+N:N (8.9)
T — X0
forallz € X, M < zg — z < 6. From (8.6) and (8.9) imply
a+N—-—e< N (8.10)

N
T — X T x— X
analogous arguments we obtain

F(x)—F
Similarly, from (8.8) one has (z) (z0) > > Nforallz € X,M < x — xq < 6. Using (8.7) and

a+N+e>N (8.11)
foralle > Nandx € X, M < xg—x <.

Formulas (8.10) and (B.11)) imply @ € N. Indeed, if a < N, we choose ¢ = —a/2 > N thena + ¢+ A =
a/2+A < N, which is a contradiction to (B.11)). Ifa > N, takinge = a/2 > N thena+A—¢ = a/2+A > N,



8.3. CONDITIONS FOR OPTIMALITY VIA REPRESENTATIVES OF OBJECTIVE FUNCTIONS 195

dyvF
which is contradictory to (8.10). Thus dN (xg) = N. Ol
MT

By this result, if M x N-derivative of F' at a point differs from /N, we conclude that this point is not an M -local

N-extreme point of F'.

Example 8.2.3. Let F: R — [ be a flexible function given by F(z) = 22 + @ for all 2z € R. We have

F F
ij—(x) =22+ ©. So, forall z &€ @, Cjﬁ—(m) = 22+ © ¢ @ and hence, they are not @-local @-minimizers
ox T
of F.

Next we present a necessary condition for the existence of an /NV-extreme point of a flexible function of several

variables.

Theorem 8.2.4. Let M, N be neutrices such that O C M, F': X C R" — E be a flexible function and

20 = (ibgo), e ,xﬁ?)) € X is an M-interior point of X. Assume that (°) is an M-local N-extreme point of
ONF

F and that F is M x N-total differential at 2(°). Then %(w(o)) = N.

M T
Proof. Foreachi € {1,...,n}, put G(x;) = F(:pgo), e %((1)17 x, xl(?r)l, e :1:7(10)). Since (%) is an M-local
N-extreme point of F', it holds that a:z(o) is an N-extreme point of G. By Theorem [8.2.2, ]\N4DG (azgo) ) =
= N. O
B )

8.3 Conditions for optimality via representatives of objective functions

In this section we will use representatives of the objective function to construct optimality conditions. An
optimal/ approximate optimal solution of an optimization problem with flexible objective function will be char-
actered through optimal solutions or the optimal value of a conventional optimization problem in which the
objective function is a representative of the original objective function. The latter problem is called an associ-
ated optimization problem of (B.1]). This is an ordinary optimization problem, we may use advantage results in
the classical theory of optimization to deal with it. We will start with a general form and then with a special
form of objective function. We will present two kinds of conditions. We first use the relationship between
the external infimum (supremum) of the image of an objective function and the minimal (maximal) value of
a representative to construct conditions. With this approach we will overcome some drawbacks of using the

M x N-derivative, for instance, the optimality condition based on the notion of M x IN-derivative does not

work when M = 0, because the ratio tends to R when x — xg approaches to 0.

Tr — X0

8.3.1 General forms

Definition 8.3.1. Let X C R", X # () and F: X — E be a flexible function. Consider the optimization
problem

:rgréi)r} F(x). (8.12)
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Let f be an internal representative of F'. The minimization problem

Eéi}% fx) (8.13)

is called a representative problem of (8.12).

The results below give conditions so we can find an optimal solution of an optimization problem with flexible

objective function by solving a representative problem.

Theorem 8.3.2. Let N be a neutrix. Consider the optimization problem (8.12) and the representative problem

(B.13). Assume that xq is an N-optimal solution of (8.13) and that Np(x) C N for all x € X. Then xq is an
N-optimal solution of the optimization problem (8.12).

Proof. We write F(x) = f(z) + Np(x). By the assumptions, we have F'(z) = f(x) + Np(z) — f(xo) +
Nrp(zo) = f(x) — f(x0) + Np(x) + Np(x0) > N+ Np(x) + Np(z9) = N forall z € X. We conclude that
o is an optimal solution of the optimization problem (B.12). O

In particular, we obtain a sufficient condition for the existence of optimal solution as follows.

Theorem 8.3.3. Consider the optimization problem (8.12) and the representative problem (8.13). Assume that
x is a optimal solution of (8.13) and that N (x) C Np(xg) for all v € X. Then x is an optimal solution of
the optimization problem (B.12).

Proof. By assumption we have F'(z) = f(z) + Np(z) > f(zo) + Nrp(z) > f(z0) + Np(xo) forall z € X.
We conclude that z is an optimal solution of (8.12). O

Similarly, we have a sufficient condition for the existence of local optimal solutions.

Theorem 8.3.4. Let X C R", I': X — E be a flexible function, | be a representative of F' and N be the
neutrix part of F'. Let M, N be neutrices. Assume that

(i) xo € X is an M-local optimal point of f on X and that there exists an M-neighbourhood U of xq such
that Np(x) C Np(xo) for all x € U. Then x is an M-local optimal point of F on X.

(i) xo € X is an M-local N-optimal point of f on X and that there exists an M-neighbourhood U of xg
such that Np(z) C N for all x € U. Then x is an M-local N-optimal point of F on X.

Theorem 8.3.5. Let F' be a flexible function defined on X C R" and f be a representative of F. Assume that
xo € X is a minimizer of f on X. Let X = {x € X‘F(x) N F(xo) # @}. If there exists x1 € Xq such that

F(z1)= U F(z) then F(x1) is a minimizer of F on X.
z€Xg

Proof. We will show that for all x € X, F(x) > F(x1). Forall z € Xy we have F'(x) C F(x1), in particular,
F(z1) = f(x0) + Np(z1). Forz € X \ Xy it holds that (i) F'(x) N F(x1) # 0 or (ii) F'(z) > F(x1). For the
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case (i), this implies F'(z) C F'(x1). Indeed, suppose on contrary that F'(x1) C F(x). Then F(xg) C F(x1) C
F(z). It follows that z € X and hence F'(xz) C F(z;), which is a contradiction.

So forall z € X we have F'(x) > F(x1). This means x; is a minimizer of ' on X. O

With a similar arguments we obtain

Theorem 8.3.6. Let F' be a flexible function defined on X C R"™ and f be a representative of F'. Assume that
xo € X is a maximizer of f on X. Let Xy = {x € X‘F(x) N F(xg) # @}. If there exists x1 € Xq such that

F(x1) = U F(x) then F(x1) is a maximizer of F on X.
z€Xg

Applying this result, in order to find an optimal solution of an optimization problem with a flexible objective

function we will make the following steps.

We first choose an appropriate representative f of F', for instance, continuous, differentiable, convex, etc. Then

we use classical methods, for instance the Lagrange multiplier method, to solve the optimization problem with

objective function f. Next we calculate the set Xo = {z € X |F(x) N F(zo) # 0}. In the last step we verify

if there exists a point 1 € X such that F'(z1) = |J F(z), we conclude that x; is an optimal solution of the
z€Xo

given problem.

In the following result we use the notions of external infimum and external supremum to give sufficient condi-

tions for N-optimal solutions.

Notation 8.3.7. Let X C R" and F: X — E be a flexible function defined on X. We denote p =
inf (ImF) ,0 = sup (ImF) and N, the neutrix part of 1, IV, the neutrix part of .

Recall that ImF' = |J F(x) = F(X).
reX

Theorem 8.3.8. Let F be a flexible function defined on X C R™ X # (). Both of the following statements
hold.

(i) If pnconv(ImF') # O then F' achieves N,-minimum on X, i.e. there is xo € X such that for all x € X
one has F(x) — F(xg) > N,. In fact, every xy € X such that F(xo) C pis an Ny-minimal solution.
(ii) If o N conv(ImF) # O then F achieves Ny-maximum on X, i.e. there exists x;, € X such that for all

z e X F(x) — F(z) < No. In fact, every x(, € X such that F(x() C o is an Ny-maximal solution.

Proof. We will prove the first statement, the second is done similarly. We first show that there exists §p € ImF’
such that o N v # (). Indeed, suppose on contrary that for all § € ImF,u < §. For all £ € conv(ImF),
by Definition R.12, there exists § € ImF such that ¢ > § > p, which is a contradiction to the assumption
p N conv(ImE') # 0.

In particular, from Proposition .4.12(fi) we have

F(xo) =09 C p, forsome zpe€ X. (8.14)
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On the other hand, forall z € X suchthat F'(x) C ponehas F'(x)—F(zg) C p—p = Ny, ie. F(x)—F(xg) >
N,.Forxz € X and F(x) € p, the fact F'(x) > p implies F(x) > pu. So F(x) — 1 > Ny. Also, by formula
(B-14) we have yu = F(x0) + N,,. It follows that F(z) — F(z¢) > F(x) — F(x0) + N, = F(z) — u > N,,.

Hence for all z € X one has F'(x) — F(x9) > N,. We conclude that ¢ is an N,-minimizer of F'on X. [J

Example 8.3.9. Let F: X = [0, +00) be given by F(z) = €% + e£2? + @x, x € [0, +00), here € > 0 is
an infinitesimal. Consider the optimization problem mi§ F(x) = miQ(ex + e£2? + @x). A short calculation
re TE
shows that inIfKF(x) =1+ @and F(0) =1 € 1+ ©. Using Theorem we conclude that 2o = 0 is an
faS

@-minimizer of F on [0, +00).

Remark 8.3.10. In classical mathematics, the fact that inf (ImF') N ImF # () implies that inf(ImF’) € ImF'.
It does not hold anymore in our context. Indeed, let F: R — E be given by F(z) = 2% + 20 forall x € R.
Then we have ;Iel]g(F(x)) = @ and hence inf (ImF) NImF = @ NImF # () because 0 € @ N F(0). However,
© & ImF.

Next we provide characterizations through representatives of F' such that the conditions y N conV(ImF ) # 0
and o N conv(ImF') # () of Theorem is satisfied.

Proposition 8.3.11. Let F be a flexible function defined on X C R™, X # (. If there exists a representative f

of F such that f has a minimizer xo on X,
inf (ImF) N ImF # 0.

As a consequence, inf(ImF') N conv (ImF") # (.

Proof. Foreach x # x, there are three cases as follows: F(z) > F(x¢), F(x) < F(zg) or F(x)NF(xq) # 0.
Note that F'(z) N F(zg) # 0 ifand only if F'(z) C F(x¢) V F(zo) C F(x). However, the case F(z) < F(x0)
can not happen. Indeed, if F/(x) < F(x¢), it follows that f(z) < f(zo) + Np(xo) and hence f(z) < f(zo),
which is a contradiction to the fact that f(x¢) is the minimal value.

Denote Xy = {z € X|F(x) N F(x0) # 0}. Since zy € Xy we have X # ). Also F(z) = f(x0) + Np(x)
for all z € X,. Because F'(z) > F(xo) or F(z) N F(xg) # 0, one has

inf(ImF) = inf{F(z) Lz € Xo} —infS ) F(z)p = flxo) + inf Np(a),

ex
z€Xo v !
F(z0)CF ()

where X = {z € Xy, F(z9) C F(x)}. On the other hand

inf Np(z)= Ny isaneutrix. (8.15)
reX

Indeed, suppose on contrary that in)g Np(x) = a =a+ Ais zeroless. Then « N Np(z) = () forall x € X;.
reX1

It follows that 2 N Np(z) = ) for all x € X since 2« is zeroless and Np(z) is a neutrix. In particular
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o < 2a < Np(z) for all 2 € X, which is contradiction to Proposition 2.4.12(§). The fact (8.13) implies
Np(x) C Ny forallz € X;. Consequently, F'(x) C f(zg)+No forall z € X;andhence F(x) C f(zo)+
No forall z € X since F(z) C F(z) forallz € Xg \ Xi. So f(zo) € inf (ImF') N F(z). This means
that inf(ImF") N ImF # (). The conclusion inf(ImF") Nconv (ImF') # ) follows by ImF C conv(ImF). [

For maximization problems, we have a similar result.

Proposition 8.3.12. Let F be a flexible function defined on X C R"™, X # () and f be a representative of F. If
f achieves a maximum on X at x,
sup (ImF) NImF # 0.

As a consequence, sup(ImF’) € conv(ImF).

Proof. We use analogous arguments as in the proof of Proposition 8.3.11]. O
Next theorem shows that an optimization with flexible objective function has an approximate optimal solution
if a representative has a minimum or a maximum.

Theorem 8.3.13. Let F be a flexible function defined on X C R™, X # () and f be a representative of F. Then
following statements are true:

(i) If f achieves a minimum on X, the function F' achieves an N,-minimum on X.

(ii) If f achieves a maximum on X, the function F achieves an N,-maximum on X.

Proof. Theorem follows directly from Proposition 8.3.11|, Proposition and Theorem [8.3.8. O

Corollary 8.3.14. Let X C R", X # () be an internal set and F be a flexible function defined on X . Assume that
[ is a continuous internal representative of I on X and X is a compact set. Then F' achieves an N,,-minimum

and an Ny-maximum on X.

Proof. Because f is a continuous internal function and X is an internal compact set, it achieves its minimum
and maximum on X. The conclusion follows by Theorem B.3.13. ]

We can use results of the ordinary optimal theory to verify whether a representative problem has the minimum
(maximum) and find its optimal solutions. For instance, we can apply the Lagrange multiplier method to find
approximate solutions. To be more specific, we consider the optimization problem with flexible objective

min F(z) = min (f(x) + N(2))

subject to constraints
a(z1,...,z,) = 0

gm(z1, ... xn) = 0,
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where f,g;,i € {1,...,m} are internal functions whose partial derivatives are continuous.

In this case we can apply the Lagrange multiplier method to find an minimizer of

min

min f(z)

subject to the constraints
g(r1,...,z,) = 0
gm(z1, ..., x,) = 0.

Assume that z¢ is a minimizer of f satisfying the constraints. Then, by Proposition 8.3.11, the given problem
has N,,-solution and this solution yy satisfies F'(yo) N F'(zg) # 0.

The following theorem gives some characterizations of optimal solutions.

Theorem 8.3.15. Let F: X — E be a flexible function defined on X C R", f be an internal representative
of F and Ny be the neutrix part of F. Assume that zo € X is a minimizer of (8.12) and f is continuous at x,.

The followings three statements are true:

(i) If Np(xo) # O then there is a real positive number 0 such that for all x € B(xg,0) we have F(x) —
F(xo) = Np(xo). This means that

f(x) = f(zo) € N(xo)
Np(x) € Np(zo)

Sorall x € B(xo,0).

(ii) For x € X such that Np(xo) C Np(z), it holds that f(x) — f(xo) > Np(z) for all representatives f(x)
of F.

(iii) If Np(xo) = 0, the partial derivative of each totally differentiable representative f(x) of F(x) at g is 0.
Proof. (i). Since x¢ is a minimizer of (8.12), we have F(z) > F(xg). So
F(z) — F(z0) = Np(zo). (8.16)

On the another hand Np(zg) # 0, so Np(z) + Np(zg) = max{Np(x), Np(zo)} # 0. This implies that
f(z0) + Np(x) + Np(zo) is a neighbourhood of f(z¢). By continuity of f at z¢, there is a § > 0 such that
f(x) € f(zo) + Np(xo) + Np(x) forall x € B(xg,d). Hence

F(z) — F(z9) = Np(x) + Np(zo) forall z € B(xo, 9) (8.17)

Suppose on contrary that Np(xg) C Np(x)+Np(z9) = Np(z). Thenthereexistsy € Np(x) = F(x)—F(x0)
such that y < z for all z € Ny (x), which is a contradiction to (8.16). Thus Np(x) + Np(x¢) € Np(zo), i.e.
Np(z) € Np(xg). By formula (B.17) this implies F'(x) — F(z0) € Np(x) forall x € B(zo,6).
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(il). We suppose that there exists a representative f of F' such that Np(zo) C Np(z) and f(z) — f(xg) €
Np(x). Then F(x0) = f(x0)+ Nr(zo) > f(x0)+Nrp(z) = f(x)+ Np(z) = F(z), which is a contradiction.

0

(iif). Let f be a totally differentiable representative of F. If 8—f
2

of f. It follows that there exists x; € X such that f(z1) < f (xzo) and Np(x1) 2 Np(xg). Consequently,

f(x1) + Np(z1) 2 f(x0) + Np(zo). We conclude that gg{ (z9) = 0. O

Remark 8.3.16. By the theorem above, if a point ¢ is a minimizer, the neutrix-function N () achieves local

(xg) # 0, the point ¢ is not a minimizer

maximum at zg or Np(zg) = 0.

8.3.2 Special forms

In this part we will present optimality conditions of an optimization problem with flexible objective function in
which the objective function has the form F'(z) = f(z) + g1(z)N1 + - - - + gr(x) Ng, where N;,1 < i < k
are neutrices and g;, f are real function, for 1 < ¢ < k. We will show that under some appropriate conditions,
an solution of the optimization problem with the objective function F' can be determined via a solution of the
problem with objective function f and maximizers of g; on the domain, for 1 < ¢ < k. We start with the function
F of the form F'(x) = f(x) 4+ g(z)N and then with F'(x) = f(z) + +g1(x) N1 + - - - + gi(z) Ni.

Theorem 8.3.17. Let X C R", X # Qand F: X — E be aflexible function defined by F(x) = f(x)+g(x)-N

forall x € X, where f, g are real functions defined on X and N is a scalar neutrix. Assume that xo € X is a
minimizer of f on X and x1 € X is a maximizer of |g| on X. If |g(x0)|/|g(x1)| is not an absorber of N then
xo is a minimizer of F on X. In particular, if o = x1 then x is optimal solution of (8.12).

Proof. If g(x) = 0 forall x € X or N = 0, the conclusion is trivial. We assume that there is x € X such
that g(z) # 0 and N # 0. It implies that max lg(x)| # 0, 1i.e. g(x1) # 0. Because x( is a minimizer of
f(z) on X, we have f(zo) < f(x). On the other hand, |g(z)| < |g(x1)| for all z € X. It follows that
g(x)- N C g(x1) - N. Also note that, 0 < |g(z0)|/|g(x1)] = A < 1 is not an absorber of N, it follows that
N /X = N by Proposition 2.2.2d. Consequently, g(x) - N C g(z1) - N = (g(w0)/A) - N = g(wo) - N. Hence,
f(z)+g(x)- N > f(zo) + g(zo) - N forall z € X. In particular, when z¢ = x; we have |g(zo)|/g(z1)] =1

which is not an absorber of N. This implies the last conclusion. O

Remark 8.3.18. In this theorem we need the condition that |g(x¢)|/|g(x1)| is not an absorber of N. In some

special cases this condition is easy to verify. We list here some these cases.

(i) If g(x0), g(x1) € £@ then g(x0)|/|g(x1)| € @ are not an absorber of N.
(i) If g is a standard function on X and ¢, 21 are standard points, then the condition is true if g(xg) # 0.

(iii) Assume that g is standard and continuous on X, g(x) # 0 forallz € X, and |g(x1)| € @. If 29 € X N £
then g(xo)/g(x1) is not an absorber of N. Indeed, since g(x) is standard, for all st(z) € X, g(x) is
standard. Also g(x) # 0, it follows that g(z) € @ for st(x) € X. On the other hand, for zg € X N £,
there exists st(z) such that zgp ~ z. Since g(x) is continuous so that g(z¢) ~ g(z) € @. It follows by
remark 1 above that g(xg)/g(z1) is not an absorber of N.
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(iv) Assume that the function g is continuous, standard and satisfies the conditions g(z) € @ = x € © for all
z e X, |g(x1)| € @. Ifzp € £@N X then g(xp)/g(x1) is not an absorber of N. In particular, xo # 0 is
standard, then the condition is true. Indeed, because g(x) is standard, it follows that g(z) is standard for all
st(x). In particular, |g(x)| € @. Because x; is standard, |g(x1)| € @. Also zp € £@ N X so that there
exists st(z) such that zp ~ z. On the other hand, g(z) is continuous, it implies that g(z¢) ~ g(z) € @.
By Remark B.3.18(i), g(20)/g(z1) is not an absorber of N.

To generalize Theorem B.3.17, where F(z) = f(z) + g1(z)N1 + - - - 4 gi(z) Ny, we need first the following

lemma:

Lemma 8.3.19. Put G(z) = g1(z)N1 + -+ + gi(x) N = max{g1(z)N1,...,gx(x) N} where g;(x),1 <
i < k are real functions on X C R", X # () and Ny, ..., Ny are scalar neutrices. Assume that there exists
x; which is a maximizer of |g;(x)| on X, for 1 < i < k. Then there exists x,, € {x1,...,xx} such that
G(zy) = max{G(z1),...,G(xk)} = gm(Tm) - Nm.

Proof. Assume that G(z,,) = max{G(z1),...,G(xk)} = gr(@m)Ny. Since x, is a maximizer of g, on X, we
have g, (zm) Ny C gr(2z,)N,. So

G(zm) = 9r(@m)Ny C gr(2r)N, C g1(2p) N1+ -+ + g (2 ) N, = G(2). (8.18)

On the other hand, it holds that G (z,.) C G(zy,). It follows by (B.18) that G(z,,) = G(x,) = g, (z,) - N,. O

Applying the Theorem for G(x) we obtain one more general result as follows:

Theorem 8.3.20. Let X C R™, X # () and F: X — E be a flexible function given by F(z) = f(z) +
g1(x)N1 + -+ + g (z) Ny, where f(z),g9i(z),1 < i < k are internal functions and Ny, ..., Ny are scalar
neutrices. Assume that xo € X is a minimizer of f(x) on X and x;,1 < i < k are maximizers of |g;(x)| on X,
respectively. Let x,, € {x1,...,x} be a point such that G(z,,) = max{G(z1),...,G(xk))} = gm(Tm)Nm.
If |gm(20)|/|gm (xm)| is not an absorber of Ny, the point x is an optimal solution of optimization problem
(B.12). In particular, if o = x,, then xq is an optimal solution of (B.12).

Proof. The theorem follows from Lemma and Theorem [B.3.17. O

Example 8.3.21. Consider the optimization problem

min F'(z) = min (ZL‘Q +

z€R z€R 1+ 1132)

The function f(x) = 2% obtains the minimum at o = 0 and g(z) = . +1 5 > 0 obtains the maximum at .
x

22 C Np(0) = @ forall z € X. Hence = = 0 is an optimal solution.

x

So NF(JJ) =

Example 8.3.22. Let F: X = [0,1] — E be given by F(z) = e + cosxz @ +In(1 + z)ef with € > 0 an

infinitesimal. Consider the problem m[in] F(x).
z€[0,1
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Let f(z) = €%, g1(x) = cosx,go(x) = In(1 + x) and G(z) = cosxz @ +1In(1 + x)ef for all x € [0, 1].
Now x = 0 is a minimizer of f on [0, 1] and z = 0 is also a maximizer of ¢g; on [0, 1]. In addition, z = 1
is a maximizer of g2 on [0, 1]. As a consequence, max{G(0),G(1)} = G1(0) = @. By Theorem we
conclude that z = 0 is a minimizer of F" on [0, 1].

8.4 Optimality conditions based on parameter methods

In this section we use a parameter method to study an optimization problem with flexible objective function. In
fact, we will consider the optimization problem of the form

a{ﬂr&i}r}F(w;al,...,an), (8.19)

where X C R", X # (), a;, 1 < ¢ < n are external numbers and

F(x;al,...,ozn):{F(x;al,...,an) a; € ag, (1 Sign)}.

In this case we will treat external numbers as a collection of parameters. The optimization problem

min F'(x;a1,...,a 8.20

zeX ( y U1, ) n) ( )

is called an associated optimization problem with precise objective of the problem mi)r% F(z;0q,...,0p), where
xe

(a1,...,an) € (a1,...,ap).

Next we provide conditions such that an optimal solution or an approximate optimal solution of the problem
(B.19) can be determined through the sets of optimal solutions of problems of the form (8.20).

Theorem 8.4.1. Let X C R, X # Q) and F(., 1, ..., ay) be a flexible function defined on X. Consider the

optimization problem

a{"réiQF(x;al,...,an). (8.21)
Let S(ai,...,...,ay) be the set of optimal solutions of the problem
;nei)lg F(z;a,...,ap) (8.22)

foreach (a1,...,an) € (a1,...,00). If ﬂ S(ay,...,an) is not empty, every point

(a1y...,an)

To € m S(al,...,an)

(a1yeeeytn)

is an optimal solution of (8.21)).

Proof. We will show that F'(z;a,...,ap) > F(xo;0q,...,a,). Indeed, for each z € X, taking y €
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F(x;aq,...,a,). Then there exists a; € «a;,1 < i < n such that y = F(z;aq,...,a,). Since g €
N S(ai,...,ay), one has xg € S(ay,...,a,). It follows that y = F(x;a1,...,a,) > F(xo;a1,...,a,)

a;eo
which belongs to F'(xg; o, ..., ay). Hence F(z; a1, ..., a0) > F(xo;aq,...,ap). O

For each a; € a;,1 < i < n we have a conventional optimization problem mi)l} F(x,ai,...,a,). So we can
e

apply results in the classical optimal theory to solve this problem. Then we verify the condition

ﬂ S(alv"'aan)#w'

(a1, s0m)

If this set is not empty then we can find optimal solutions. As a consequence we apply this result for convex

functions of one variable.

Theorem 8.4.2. Suppose that for each (ai,...,a,) € (aa,...,ay), the function F(x;aq,...,ay) is convex
and differentiable on X. Let S(aq, . .., ay,) be the set of solutions of the equation

F'(z;a1,...,a,) = 0. (8.23)

Assume also that ﬂ S(ay,...,an) is not empty. Then every point xy € ﬂ S(ay,...,a,) is an

(alz"'7an) (Oél,...,Oén)

optimal solution of the problem (B.21)).

Proof. Since the function F(x;aq,...,a,) is convex on X, S(aq,...,a,) is the set of optimal solutions of

mi}l} F(z;ay,...,ay,). This implies that zq is an optimal solution of the problem (8.19) by Theorem (8.4.1). [
xe

Example 8.4.3. Consider the following problem

in F(z) = (1 2.
min () =1+0)x

For each ¢ € ©, one has
F'(z,e) = (1+¢€)2z and F"(x,¢) = 2(1 +¢€) > 0.

Consequently, the function F'(z, €) is convex and the set of optimal solution of its is S, = 0. Hence the optimal

solution of the given problem is x = 0.

Theorem 8.4.4. Let F': X — E be a flexible function of the form and N be a neutrix. Let S(ay, ..., ay)
be the set of solutions of problem 8.2( for (a1, . ..,a,) € (a1,...,an)and S = |J S(a1,...,a,). Assume

a; €
1<i<n

that F(u) — F(v) C N forall u,v € S and S(as,...,a,) # 0 foralla = (ay,...,a,) € @ = (a1,..., ).

Then every point in S is an N-optimal solution ofmig F(x).
re

Proof. Letv € S. We will show that F'(z) — F'(v) > N forall z € X. By assumption we have F'(z) — F'(v) >
Nforallz € S. Letz € X\ S.Picky € F(z)and z € F(v). Then there exists a;, a; € o, 1 < i < nsuch that
y=F(z;a1,...,a,) and z = F(v,d},...,a)). Letug € S(a1,...,a,). Wehavey > F(up;ai,...,a,). So

y—z=y— F(uo;a1,...,an) + F(ug;ai,...,an) — 2z > N.Hence F(z) — F(v) > N. O
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Example 8.4.5. Let F:: (0,00) — E be given by F'(x) = —In(x)(1 + €£) + x for all z > 0. Consider the

problem mig F(z). We will show that every point in 1 + e£ is @-minimizer of F' on (0, c0).
>

Let f(z, ) = —In(x)(1 4 p) +x forx > 0, i € e£. A short calculation shows that 2, = 1+ p is a minimizer
of f(.,p) on (0,00). Let S = 1 + €£. Then for u,v € S we have F(u) — F(v) C ©. By Theorem we

conclude that every point in S is an @-minimizer of F' on (0, c0).

Theorem 8.4.6. Let X C R", X # () and

F: X—E

x— F(z;0q,...,0p) = {F(x;al,...,an) a; € oy, (1<i < n)}
be a flexible function. Let M, N be neutrices. Let S(ay, ..., ay) be the set of optimal solutions of

?éi;? F(z,a1,...,ay) (8.24)

Sforeach a = (ay,...,a,) € a = (a1,...,ay) and S = ﬂ S(ay,...,an). Assume that F is M x N-

(0617...,(}”)
strongly continuous on X and S # (. Then every point vo € X being M-close to S is a minimizer or N-

minimizer of F' on X.

Proof. Let zyp € X be M-close to S. Then there exists z{, € S such that zy € x(, + M. Because F is M x N-
strongly continuous, it holds that
F(wo) C F(a}) + N. (8.25)

By Theorem B.4.2, the point x(, is an optimal solution of the problem ®.19). If Np(z0) € N, from formula
(B.29) we conclude that x is an N-optimal solution of the problem (B.21)). Otherwise we conclude that zg is

an optimal solution of F" on X. O

Example 8.4.7. Consider the problem
min F(z) = |z| + @.
z€eR
One has, for each ¢ € @ the problem miﬂr{g F(z,€) takes optimal solution S = {0} if ¢ > 0 and S. = {=*e¢}
TEe

if € < 0. Therefore, the set of optimal solutions of the problem is S = ©. We give a sufficient condition for

approximate solutions.

8.5 Optimality conditions based on set-valued mapping

Each external number is an external set of real numbers, so each flexible function can be seen as a set-valued
mapping. However, the values of a flexible function are usually external sets, hence some results of the theory of
set-valued mapping may not apply. Below we use the notion of radical cone to construct a type of derivative of
flexible functions. Then we apply this notion to formulate necessary and sufficient conditions for the existence

of optimal solutions of an optimization problem with flexible objective functions.
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Definition 8.5.1. Let F': X — E be a flexible function defined on X C R™, X ## ().

(i) The graph of F, denoted by Gr(F), is the set of points

Gr(F) = {(x,y)|x €eX,ye F(z)}.

(if) The epigraph of F', denoted by epi(F'),

epi(F) = {(z,y)|3z € F(z),z <y} .

Definition 8.5.2. Let X C R". A flexible function F: X — E is said to be convex if epi(F’) is convex.

For example, the flexible function F: R — [E be given by F'(z) = e* + @ for x € R. Then F is convex on
R. Indeed, we have epi(F) = {($,y) ER?|y >e” + @}. Let (z1,y1), (x2,y2) € epi(F) and X € [0, 1]. We
need to show that (x,y) = A1, y1) + (1 — A)(x2, y2) € epi(F). One has

A1+ (L =Ay2) > A€ +0)+ (1= N)(e?2+0) =X (1= Ne?+ X0 +(1-N)O.
Because e” is convex on R, it follows that
Ae®L(1 — N)e®2 > ermit(1-Nzz, (8.26)

Also, we show that
Ao+(1-MNo=o. (8.27)

For A € @, A > 0, it holds that 1 — € € @. So formula (8.27) holds. For \ € [0, 1], A ¢ @, formula (B.27) also
holds.

Formulas (8.26) and (8.27) imply that
)\yl + (1 - )\y2) > 6)\$1+(1—)\)12 +0.

Hence M\(x1,y1) + (1 — A) (22, y2) € epi(F'). We recall some notions in the theory of set-valued mapping. For
more details we refer to the article [[7] and books [5, [l]. The definitions below are as in [5, Def. 2.54, p. 44].

Let S C R™ and x € R™.

(1) The radical cone is defined by

Rs(z)={h € X :3t*>0,vt € [0,t*],z +th € S}. (8.28)

(i) The contingent (Bouligand) cone is defined by

Ts(z) = {h € R™ : 3t,10, d(x + toh, S) = o(ts)} . (8.29)
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(iii) The inner tangent cone is defined by

Ti(z) = {h € R" : d(x + th,S) = o(t),t > 0}. (8.30)

(iv) The Clark tangent cone is defined by

TS(x) := {h € R" : Vt,, | 0,2, —>g x,3h, —> h suchthat Vn,z, +toh, € S}.  (8.31)

In the article [[7] the contingent derivative is defined and written as

CF(z0,y0) = Tai(r) (7o, Yo)

and derivative of F' at (x¢, yo) is defined as written as

DF(z0,y0) = TGy (0, Y0)-
In other words, y € C'F(zo,y0)() ifand only if (2,y) € T (r) (70, y0) andy € DF (o, yo)(z) if and only if
(.’L‘, y) € T§'<$07 Z/O)

Using these notions, in [[7] necessary and sufficient conditions for maximality of problems ma;(( F(z) are given,
T

where F': X = P(R) is an internal set-valued mapping.
The two theorems below are modified versions of results in [[7] which are stated for the case F'(z) C R,z € X.

Theorem 8.5.3. Let F: A = P(R) be a set-valued mapping. If xq is a maximal point of F at yo, for all x € A
CFa(zo,y0)(x) <0,

and hence
DFy(z0,%0)(x) <0.

Theorem 8.5.4. Let F' be concave on a convex set A C Dom(F). If DF (xo,yo)(z — z0) N [0, +00) = {0} for
all © € A, then xq is a maximal point at vy, i.e. yo € F(x0) and for all y € ImF we have y < 1.

As for F' a flexible function, in general, F'(A) is an external set. We can not use formulas (B.29)-(B.31) since the
distance from a point to an external set does not exists. Because the notion of radical cone does not use the
notion of metric, we will modify this notion and then apply it to construct necessary and sufficient conditions

for optimality problems with flexible objectives.

Definition 8.5.5. Let F': X — E be a flexible function defined on X C R"™. Let (z¢, yo) = Gr(F'). We define
the radical derivative of F at (xq,yo) € Gr(F)

DF(z0,0) = {(m,y) € R"| (o, yo) + t(x, y) € epi(F), V¢ € [0, 1]}.

We write y € DF(xo,y0)(x) if and only if (x,y) € DF(zo, yo)



208 CHAPTER 8. NON-LINEAR OPTIMIZATIONS WITH FLEXIBLE OBJECTIVES

Example 8.5.6. Consider the flexible function F: R — E given by F(z) = 22 4+ @. It is easy to verify that
F'is convex on R. We have
DF(0,0) = {(w,y) € Rz’y > 2% + @}

and
DF(~1,1) = {(x,y) e RQ‘y >@-124+0- 1}.

Indeed, let (z,y) € DF(—1,1). Then (—1,1) + (x,y) € epi(F).Soy +1> (z — 1) + ©.

Generalizing Example (B.5.6), let F: R — E be a flexible convex function on R. Then

DF(xo,yo0)(z — x0) = {y — Y0, Yy > F(CU)}

for all z € R. Indeed, let z € DF (g, yo)(z — x0). Then (x0,y0) + (z — x0,2) € epi(F). This implies that
z+yo > F(x). Puty = z + yo. Then DF (zo,yo)(x — z0) = {y —yoy > F(x)}.

Theorem 8.5.7. Let F': X C R" — E be a flexible function and N be the neutrix part of F'. Assume that xg

is a minimizer of F' on X. Then

DF(zo,y0)(x) NR_ C Np(xo) forall ze€ X.

Proof. Letyy € F(xp). We suppose to contrary that there exists Z, ¢ such that § € DF(xo,y0)(2) "R_,y &
N(xp). Because §j € R_, the fact § & N(x) implies that § < N(xg). Since, § € DF(xo,y0)(Z), by the
definition, there exists (x,y) € epi(F) such that

rot+T ==

Yot+y=y.
One has (x,y) € epi(F) so that
y > F(z) > F(wo) = yo + Nr(zo). (8.32)

Also § < Np(xp). It follows that
y=1yo0+9 <yo+ Nr(zo),

which is a contradiction to (8.32). O

To illustrate this theorem we consider the simple following examples.

Example 8.5.8. Consider the flexible function F: R — E given F(z) = 22 + @. We knew that x = 0 is an
minimizer of 7 on R and Nz (0) = @. Also

DF(0,0) = {(:C,y) c Rz‘y > 22 +@}.
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For z ¢ ©, we have DF(0,0)(x) = {y‘y > 22 + @ > ©}. It follows that DF(0,0)(z) NR_ =0 C @ =
N (0). For z € @ we have DF(0,0)(z) = {y|y > @}. It follows that DF(0,0)(z) N R_ = @. We see that

the conclusion is true in this case.

Using this theorem we also know that the point z = —1 is not a minimizer of ' on R. Indeed, we have
C(-1,1) € Gr(F) and DF(-1,1)(1) = {y € R|y > —1 + @}. It follows that DF(—1,1)(1) N R_ ¢
Np(—1) = ©@. By Theorem we conclude that C'(—1, 1) is not a minimizer of F' on R.

Example 8.5.9. Lete > 0 be infinitesimal. Consider the flexible function F: R — E given by F'(x) = |x|+e€£
for all z € R. Clearly, z = 0 is a minimizer of ' on R and Np(0) = e£. We also have that

DF(0,0) = {(z,y) € R" |y > |z] + €£}.

Then for x ¢ e£ we have DF'(0,0)(z) NR_ =0 C e£ = Np(0), for z € £ we have DF(0,0)(z) NR_ =
ef£ = Np(0). So the conclusion is true in this case.

In addition, using this theorem we can verify that x = 1 is not a minimizer of ' on R. Indeed, we have C' =
(1,1) € Gr(F) and DF(1,1) = {(z,y) € R? |y > (|z+1|+e£—1). It follows that —1 € DF(1,1)(—1)NR_
and —1 € e£. So DF(1,1)(—1) NR_ & e£ = Np(1).

Theorem 8.5.10. Let F'(x) be a convex flexible function on X. If DF(xo,yo)(x — x¢) NR_ C Np(xo), the

point x is a minimizer of F(z) on X.

Proof. Suppose on contrary that x( is not a minimizer of F' on X. Then there exists 21 € X and y; € F(x1)
such that y; < F(z9) = yo + Np(xp). This implies that y; — yo < Np(xg). Moreover, (xg,yo) + (1 —
z0,Y1—Y0) = (z1,y1) € Gr(F) C epi(F'). Because epi(F') is convex, one has (xo, yo) +t(x1 — 20, y1 —Yo) =
(zo(1—t)+ta1, yo(1—t)+ty1) € epi(F) forallt € [0, 1]. It follows that ys —yo € DF (20, yo)(z1 —z0) NR_
and y; — yo < Np(xg), which is a contradiction to the assumption. Hence ¢ is a minimizer of F'on X. [

8.6 Lagrange multiplier

In this section we develop a modified version of the Lagrange multiplier method for optimization problem with

flexible objective function. Recall that a conventional optimization problem has a minimizer x, the Lagrange

multiplier method confirms that there exist multipliers A = (A1,..., \;,) such that
of &y 99 :
P i =0j=1,...,
oz (o) + El oz, (o) = 0(j n)
9i(wo) =0

In this context we will show that there are Lagrange multipliers and a neutrix K such that

ONF mo o 0g; .
§—— - =1,...
v (o) + z; /\Zaxj (xg) CK(j=1,...,n)

gi(l‘o) = 0.
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Let F: R” — E be a flexible function. Consider the optimization problem

in F’ 8.33
min F(z) (8.33a)
subject to the constraints
g(z1,...,zy) = 0
: : (8.33b)
gm(z1, ... xn) = 0,

where m < n.

Theorem 8.6.1. Let N1, No, My, My be neutrices such that (N1) 4 € My, (N2)a C No. Consider the problem
(B.334)-(B.33H). Let h = (h1, ..., hm) be a vector implicit function determined by the constraints (B.33H).
Assume that F' is My x Na- totally differentiable, and g; is My x Ni-totally differentiable for alli =1,... m.

Let H(x) = Y. H;(x) where H;(x) = N1+ No + N + N2 + aNl (x)Na + 8N2 (x)N1. We assume that
i=1

Ml’L 21

xoisan H (mo_)-minimizer of the problem (8.33d)-(8.33H), and that

(i) The function g; is continuously differentiable on R™.

(ii) The derivative g’ is My X Ni-continuous at xo and ¢'(x) € %Dg(a:)for all x € Z, here Z is an M,
neighbourhood of x,

(iii) ||g(z + h) — g(x)|| < r||h|| for all z,x + h € Z where Z is an My-neighbourhood of xo and v~ is not

an absorber of M.
1 ... 0 e 0
0o .- 1 e 0 das
(iv) Let A(x) = , where a;j = Ji (),1 <i<m;1 <j<n Then
aixr - Ai(p—m) " Qin dz;
aml e am(n_m) e a/mn

| A= (z0)|| 7t > Ny and H (A({L‘))_l H is not an absorber of N1 on an M-neighbourhood of x.
(v) The flexible function F' is Ma-outer Na-inner continuous at .

(vi) The flexible function F is My x H (xq)-totally differentiable at x:.

Then there exist a neutrix K and \©) = (\1,..., \) € R™ such that

8N2F m dg; .
xo)+ >N o) CK(j=1,...,n
S (o) + 350 p ) € K )

gi(zg) =0

where K is determined through N, the partial derivatives of g;(xo) and N-partial derivatives of h;(ug) with

up = (@, 29 ) hue) = @2 al), @0 = (uo, h(ug)).

yYn—m n—m-+1?
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Proof. Let xy,_pm4j = yj,1 < j < m. Because the vector function g = (g1, ..., gm) satisfies all conditions
in Theorem p.11.1], the system (8.33H) determines the implicit function h: U € R"™ — R™ such that for all
u=(z1,...,Zp-m) €U, h(u) = (h1(v),..., hm(w)).

On the other hand, F' (z1, ..., Zn—m, h1(Tzys - s Tnem)s .-, Am(T1, ..
xg, due to Theorem it holds that

.y Tn—m)) has the H (zp)-minimum at

F
%(xo):H(xo)EHo, forall ¢=1,...,n—m.
oM, T

By formula (6.12) we have

aNQ 8N2 On, hi )
1 N E = H, for all =1,... —m.

Hence there exist a neutrix G and representatives

F
S (x0) of <§N2 (1:0)> forall 1 < j < n — msuch

MaLj Maj
that On f onf Ok onf . Onh
No N2 N1/l N> N1 lm
To) + T ug) + -+ T ug) = G C Hy. 8.34
ove27 ) T B B MO T By 0 By ) o 69
g 991
o) ™
In addition, by assumption (i) it holds that |.7| = det : . : = 0, the system
Ogm Agm
a1 (z0) B (z0)
A Am——
U (w0) - A G (w0) = S0 (a0)
(8.35)
A Am = 27
' 9ym OYym ( 0) o aym (xO) OYm (550)
has the unique solution A\(9) corresponding to unknown variables \;,i = 1,. .., m.

dg; .
Furthermore, because g;(x1,...,z,) = 0foralli = 1,...,m, it holds that Ji (z)=0,Vi=1,.... m;Vj=

0 N
1,...,n. By the formula of composition derivatives, for each j = 1,...,n — m we have
dgn og ohy 891 Ahyn,
91 -0
B, 0¥ G i, 0+ e )
(8.36)
o m 9gm , Oh Om . Ohm
I (50) o+ I (0) 5 (g) o+ ug) = 0.

g, )t g (@)
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Let A; = f 09 Nj. Due to O, (ug) = %(uo) + Nj, formula implies
i=1 0y; JVed] Ox;
o1 o9 On, I on ON P
991 991 —A
oz, (zo0) + o (SUO)aMlxj( up) + . (o) Dz (ug) = Ay
99gm Ogm On, h1 9gm ON b
Y9m —A,.
oz, - (w0) + n (o )8M1$j (up) + -+ + 0 (o) iz (uo)
It follows that
o dg On, P on On P
\ o9 — A
(G )+ G ) G )+ G o) ) ) = -
8gm agm 8N1 hy 8gm aNl hom,
. 99m — A A,
o (Gt ) G ) G )+ 2 ) T ) ) =
Put \;A; = L;,Vi=1,...,m. As aresult,
o~ Jg; . Ogi On, h1 . 0gi ON, hm
Mot (x0) + > Ai 1 Fo >N :
; D, =) 2 a1 0 ayr ;) 2; a1 “ Bz, (10
L+t Ly (8.37)
Subtracting (B.37) from (8.34) we obtain
On, 391 on, f 3N1 h1 agz aNl hl
i i
(aMz% z; 3% ) <8M2yl (o) Iy w] Z ayl 5M1$3
aNQf 81\71 891 a]\[1
NN ANj——
<8M2ym (o) OMla:J Z; 8y1 OMlx]
G4 Lt 4Ln=K.  (838)
Because of subdistributivity it follows that
on, f | Jg; No f = g On, h1
- DA - DA
(2 -t (- $or )
ON, . 99 ONy P
* * <8M233m (xO) ; )\Z axl (x0)> aM1l‘j <UO)
on, f o~ Jg; on, f On, P = g On, h1
c S A2 -
- <8M2:vj (o) ; oz, (zo) | + D (xO)aMll'j( ) ; B2, (Io)aMl% (uo)
8N2f aN1 - 892 aN1 hom,
- CK. .
Tt <8M2wm( 0 6M1xj Z)\ axm OMlxj( 0) | € (8.39)



8.6. LAGRANGE MULTIPLIER

By formula (8.33) we obtain

ON, 891 agz
i + i
(ed - 3o ) (aM Lm -3ng

6N2 “ 891 aNl hm, o

O, xm

By (B39 and (840) one has 2/ (2) — 3271, 0, 2%
Mo Oz,

(JUQ) e K.

o,
aMl x]

213



214 CHAPTER 8. NON-LINEAR OPTIMIZATIONS WITH FLEXIBLE OBJECTIVES



Bibliography

[1] J. P. Aubin, H. Frankowska, Set-valued analysis, Birkhduser Boston (1990).

[2] R. G. Batson, Necessary and sufficient conditions for Boundedness of extreme points of unbounded convex

set, Journal of mathematical analysis and applications, 130, 365-374 (1988).

[3] L P.van den Berg, 4 decomposition theorem for neutrices, Annals of Pure and Applied Logic 161 851-865
(2010).

[4] L. van den Berg, Nonstandard asymptotic analysis, Springer-Verlag (1987).

[5] J. F. Bonnans, A. Shapiro, Perturbation analysis optimization problems, Springer-Verlag New York, Inc.
(2000).

[6] N. G. Bruijn, Asymptotic analysis, North Holland (1961).

[7] H. W. Corley, Optimality conditions for maximizations of set-valued functions, Journal of optimization

theory and applications: vol. 58, No. 1, July (1988).

[8] J. G. van der Corput, Neutrix calculus, neutrices and distributions, MRC Tecnical Summary Report, Uni-
versity of Wisconsin (1960).

[9] N. Cutland, Nonstandard Analysis and Its Applications, Cambridge University Press (1988).
[10] F. and M. Diener (eds.), Nonstandard Analysis in Practice, Springer Universitext (1995).

[11] B. Dinis, I. P. van den Berg, Algebraic properties of external numbers, Journal of Logic & Analysis 3:9,
1-30 (2011).

[12] B. Dinis, I. P. van den Berg, On the quotient class of non-archimedean fields, url:
http://arxiv.org/abs/1510.08714 (2015).

[13] B. Dinis, I. P. van den Berg, Characterization of distributivity in a solid, url:
http://arxiv.org/abs/1510.08722 (2015).

215



216 BIBLIOGRAPHY

[14] A.J. Franco de Olivera, I.P. van den Berg, Matemdtica nao standard. Uma introdug¢ao com aplicagoes,
Fundado calouste Gulbenkian. Lisbon (2007).

[15] A. E. Hurd, P. A. Loeb, An introduction to Nonstandard real analysis, Academic Press, INC. (1985).
[16] F. R. Gantmacher, The theory of matrices, Volume one. NY: Chelsea Publishing Co. (1959).

[17] M. W. Gutowski, Power and beauty of interval methods, Cornell University, url:
http://arxiv.org/abs/physics/0302034 (2003).

[18] A.S. Householder, The theory of matrices in numerical analysis, NY: Dover Books (1964).

[19] J. Justino, I. P. van den Berg, Cramer’s rule applied to flexible systems of linear equations, Electronic
Journal of Linear Algebra, Volume 24, 126-152 (2012).

[20] J. Justino, Nonstandard Linear Algebra with Error Analysis, in PhD thesis, University of Evora (2013).

[21] V. Kanovei, M. Reeken, Nonstandard Analysis, Axiomatically, Springer Monographs in Mathematics
(2004).

[22] F. Koudjeti, Elements of Calculus with an application to Mathematical Finance, PhD thesis. Labyrint
Publication, Capelle a/d IJssel. The Netherlands (1995).

[23] F.Koudjeti, I. P. van den Berg, Neutrices, external numbers and external calculus, In Nonstandard Analysis
in Practice, p. 145-170. F. and M. Diener eds., Springer Universitext (1995).

[24] R. E Moore, R. B. Kearfott, M. J Cloud An introduction to interval analysis, Society for Industrial and
Applied mathematics (2009).

[25] E. Nelson. Internal set theory: A new approach to nonstandard analysis, Bulletin of the American Math-
ematical society, Volume 83, Number 6, November (1977).

[26] E. Nelson, Radically elementary probability theory, Princeton, New Jersey (1987).

[27] D.S. Parker, Explicit Formulas for the results of Gaussian Elimination, url: http://web.cs.ucla.edu (1995).
[28] A. Robinson, Non-standard Analysis, Princeton University Press (1974).

[29] R. T. Rockafellar, Convex Analysis, Princeton, New Jersey Princeton University Press (1970).

[30] R. T. Rockafellar, Optimization under uncertainties, University of Washington (2010).

[31] W. Rudin, Principles of mathematical analysis, third edition, McGraw-Hill, Inc. (1978).

[32] A. Schrijver, Theory of linear and integer Programming, NY: J. Wiley & Son (1986).

[33] Yi Li, An Explicit construction of Gauss-Jordan elimination matrix, url: http://arXiv.0907.5038v.[cs.SC].
29 July (2009).



Index

N-divergent,
N-inner continuous,

(My, M) x (N1, No)-derivative of degree 2,
(M, ..., My) x (Ny,..., Ny,)-derivative of

degree n,
M -ball,
M -continuous,
M -local N-maximizer, [191
M -local N-minimizer, [19]
M -local minimizer, |191
M -neighbourhood,
M -outer N-inner continuous,
M x N-limit

left,

M x N-continuous, ,
left,
right,

M x N-convergent,
M x N-derivative, [16]]

left,

right,
M x N-differentiable, [[61],
M x N-divergence,
M x N-limit,

right,
M x N-partial derivative,
M x N-total derivative, |L65
M x N-totally differentiable,
N-converge, [121]
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N-limit, [[21],
N-maximal value,
N -maximizer,
N-maximum,
N-minimal value,
N -minimizer,
N-minimum,
N-optimal value,

absolute value, [,
absorber,

bound

greatest lower, 1],
least upper,

constant term, @
continuous,
convexification,
Cramer
-solution,
conditions, g

decreasing with order step M,
dimension of pseudo-face,
direction,

extreme,
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external, f§
cut,
function,
number, [
limited,
negative, [
non-negative, [
non-positive, [
positive, 0
zeroless, B
sequence,
external formula, [

extreme point,

face,
flexible

system of linear equations, 44

function, {142
convex, R06

sequence,
bounded,
eventually bounded,
unbounded,
zeroless,

system, @
associated homogeneous,
Gauss-Jordan eliminable, b4, 72
homogeneous, #3
non-homogeneous, #3
non-singular, 43
reduced, #q
singular, #3
solvable,
upper homogeneous, 43

Gauss-Jordan procedure, 63

increasing with order step M,
infimum,
inner convergent,
internal, §
cut,

function,

INDEX

sequence, f§

limit
M x N-outer,
left,
right,
inner,
strong,
linearly
dependent, P9
independent, @
local N-minimizer, [191
local minimizer, 191
lower
boundary,
convexification,
halfline,

M-close,

matrix
coefficient, 44
representative

reduced, 27

augmented, 43
coordinate, B2
Gaussian operation, [63
near identity,
non-singular, 26
reduced,
representative, 27
singular,

maximizer, 174,

maximum, |1 88

minimal value,

minimizer, [ 74,

minimum,

minor-rank, B4

monotone with order step M,

nearly linear programming,
nearly linear programming problem with flexible
objective function and constraints,

neutricial, §
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neutrix,
idempotent, §
part, §, [123,

nonstandard
analysis, [

norm, 23

number
appreciable,
infinitely large,
infinitesimal, §
limited,
nonstandard, E
standard, §

unlimited, §
outer M-ball,

point
M -interior,
N-extreme,
N-optimal,
accumulation,
power n of an external number,
problem
representative,
projection, 20
pseudo-face,

radical derivative, 207
real neighbourhood,
real part, §
relative

precision, 4§

uncertainty, [13, {7
representative, §,
restricted Gauss elimination,
restricted Gauss operations,
root,
row-rank, B4

second (My, Ms) x (N1, No)-derivative,
sequence

N-Cauchy,

strongly N-Cauchy,
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set
cofinal,
solution
M -local N-maximal,
M-local N-minimal,
N-maximal,
N-minimal,
N-optimal,
admissible, @
real, g
exact, 44
feasible,
Gauss, [79
maximal, f4,
minimal,
optimal, [L74,
strict rank, B3
strictly decreasing with order step M,
strictly increasing with order step M,
strong limit,
strongly convergent,
subdistributivity,
subsequence, [[31]
supremum,
system
Gaussian equivalent,
strict rank of, 87

upper
boundary,
convexification,
halfline,

vector
constant term, @
variable, #3
near unit, 27
neutrix, 29
rank of,
representative, 27
upper neutrix, 27

vertex,
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