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Sumário

Otimização com objetivos e restrições flexíveis

A programação linear e a otimização não linear são estudadas do ponto de vista da análise não-standard, nos
casos em que a função objetivo e/ou as restrições não são totalmente especificadas, permitindo de facto alguma
imprecisão ou flexibilidade em termos de pequenas variações.

A ordem de grandeza de tais variações será modelada por neutrizes, que são subgrupos convexos aditivos da
reta real não-standard, e por números externos, que são a soma de um número real com uma neutrix. Esta
abordagem preserva as características essenciais de imprecisão, mantendo regras de cálculo bastante fortes e
eficazes.

Funções, sequências e equações que envolvem números externos são designadas de flexíveis. Consideram-
se problemas de otimização com funções objetivo e/ou restrições flexíveis em que são dadas as condições
necessárias e suficientes para a existência de soluções ótimas ou aproximadamente ótimas, tato para proble-
mas de otimização linear como não linear.

Para exemplificar a programação linear nesta configuração são estudados, sistemas flexíveis de equações lin-
eares. As condições para a solubilidade de um sistema flexível por métodos usuais tais como a regra de Cramer e
o mo todo de eliminação de Gauss-Jordan são estabelecidas. Além disso, é considerado ummétodo de parâmet-
ros para resolver sistemas flexíveis onde são apresentadas fórmulas de soluções dependendo dos parâmetros. O
conjunto de soluções de um sistema flexível é expresso em termos de vetores externos e neutrizes.

Para estudar a otimização não linear com objetivos e restrições flexíveis, são desenvolvidas ferramentas de
análise para sucessões e funções flexíveis.

Palavras chave:Otimização, incerteza, número externo, sistema flexível, função flexível, análise não-standard
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Abstract

Optimization with flexible objectives and constraints

Both linear programming and non-linear optimization are studied from the point of view of non-standard anal-
ysis, in cases where the objective function and/or the constraints are not fully specified, indeed allow for some
imprecision or flexibility in terms of some limited shifts.

The order of magnitude of such shifts will be modelled by neutrices, additive convex subgroups of the non-
standard real line and external numbers, sums of a neutrix and a non-standard real number. This approach
captures essential features of imprecision, maintaining rather strong and effective rules of calculation.

Functions, sequences and equations which involve external numbers are called flexible. We consider optimiza-
tion problems with flexible objective functions and/or constraints.

Necessary and sufficient conditions for the existence of optimal or approximate optimal solutions are given for
both linear and non-linear optimization problems with flexible objective functions and constraints.

To deal with linear programming in this setting, flexible systems of linear equations are studied. Conditions for
the solvability of a flexible system by usual methods such as Cramer’s rule and Gauss-Jordan elimination are
established. Also, a parameter method is considered to solve flexible systems. Formulas of solutions depending
on parameters are presented. The set of solutions of a flexible system is expressed in terms of external vectors
and neutrices.

In order to investigate non-linear optimization with flexible objectives and constraints, we develop tools of
analysis for both flexible sequences and functions.

Keywords: Optimization, uncertainty, external number, flexible system, flexible function, non-standard anal-
ysis
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1
Introduction

The main purpose of this work is to study optimization problems, where firstly the objective function and/or the
constraints are not fully specified and secondly the processing of data involves approximations and propagations
of errors.

Mathematical models may not transmit completely information and some factors maybe lacking. For instance,
in many situations we do not fix the amount we will spend for what we want buy, but only approximately. Some
goods, like houses, cars do only have approximate values which are subject to negotiations. Imprecisions may
also be subjective: usually the seller knows the market better than customers. Or in the process of producing
goods wemay not know all factors affecting this process which will be reflected in the definite price. In addition,
data may come from physical measuring and statistical testing will never give precise outcomes. We may
only be able to estimate upper and lower bounds of unknown qualities, or sometimes it is difficult to find the
probability distribution. As a consequence, it may be more natural if variables range over a subset of R, instead
of representing precise real numbers.

1



2 CHAPTER 1. INTRODUCTION

Also functions used inmathematics models tend to be complicated and then we commonlymake approximations
to implement more easily. All these imprecisions and uncertainties are present when we are processing the data,
to which we add also errors of calculations and rounding-off. As a result, in practice, outcomes of these models
represent reality only in approximations.

In classical mathematics, uncertainties can be expressed by either the functional o(·) and O(·), by interval
calculus [24, 17], by parameters or by using random variables like in statistics and stochastic processes [30].

All these methods are not very effective in dealing with algebraic operations and thus with error propagation.
The functional notions o(·), O(·) do not satisfy all algebraical properties and moreover lack total order which
causes complexities and inefficiency. The situation is even worse for interval calculus and calculus based on
random variables, moreover there are some difficulties to implement these operations in practice.

In this work we will use neutrices - convex additive groups of non-standard real line, and external numbers -the
sum of a real number and a neutrix to model uncertainties.

An external number is an external set of real numbers relatively close to a given number (see [22, 23, 11, 19, 20]).
These numbers capture essential features of imprecisions. In fact, they are stable under some shifts, additions
and multiplications. For example 1 + £ = £ + £ = £ · £ = £, where £ is the set of all limited numbers
of non-standard real line. These properties of invariance induce flexibility and possibilities of neglecting and
simplification to external numbers and operations on them. In fact, the term neutrix is borrowed from Van
der Corput [8] who introduced it in the form of rings of functions, with the same objective of neglecting and
simplification. We observe that Van der Corput’s calculus, like the calculus of o′s and O′s does not respect all
algebraic operations and total order.

Operations on external numbers and their rules of calculation respect more algebraic operations and also total
order. In this work we exploit several advantages which lead to simplifications and efficiency in calculations.
External numbers were introduced by Van den Berg and Koudjeti, [22, 23] and further developed by Van den
Berg, Dinis and Julia Justino [11, 13, 12, 19].

Functions and sequences with external numbers are called flexible. An optimization problem such that the values
of the objective function and/or variables are external numbers is called an optimization problem with flexible
objective and constraints. We will consider both linear programming and non-linear optimization with flexible
objective and constraints. As for both cases, we study necessary and sufficient conditions for the existence of
optimal solutions.

The theory of linear programming is based on the theory of linear systems and matrix calculus. Similarly, in
order to study linear programming with flexible objective and constraints, we first need to investigate matri-
ces, determinants and also systems of linear equations in which coefficients are not real numbers but external
numbers, called flexible systems. In our setting equalities become inclusions.

To study non-linear optimization problems and determine optimality conditions, tools of analysis of both flexible
functions and sequences are needed such as convergence, continuity and differentiation.

The thesis has the following structure.
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Chapter 2 is devoted to neutrices and external numbers. We will prove some properties related to the order
relations, the external infimum and supremum, absolute values and norm of external numbers, and n-th roots
of an external number. Results in this chapter are necessary to study the next chapters.

In Chapter 3 we will study vectors, matrices and determinants with external numbers. Adapted versions of
notions and results in classical linear algebra are developed here, and deal with, for instance, properties of a
determinant, the notions of linear independence and dependence of vectors with external numbers, the notion
of rank of a matrix, and the relationship between the rank of a set of vectors and of a matrix. Unfortunately,
the equality between the maximal number of independent row vector and the rank of a matrix determined via
minors in this context is not clear. Different notions of rank of a matrix with external numbers are given. One
is based on minors, one is based on the maximal number of independent row vectors and the other is based on
both minor and the rank of a representative matrix which is a matrix over R. Some conditions are considered
such that at least one of them is equal to other.

Chapter 4 is dedicated to present results on systems of linear equations with external numbers. In general, the
usual methods like Cramer’s rule or the Gauss-Jordan elimination must be adapted. In the thesis “Nonstandard
linear algebra with error analysis ” by Júlia Maria da Rocha Vilaverde Justino [19], conditions were given
to guarantee that the Cramer’s rule can be applied to the non-singular non-homogeneous flexible systems of
linear equations. We will extend these results to non-singular flexible systems. We will also present conditions
such that the Gauss-Jordan elimination works well on non-singular flexible systems. We will apply the results
in Chapter 3 to singular flexible systems. To be more precise, we will transform a non-singular system to
an equivalent system whose rank is equal to the number of equations. Then some variables will be seen as
parameters and we express the in terms of these parameters. We can apply Cramer’s rule or the Gauss-Jordan
elimination to the latter flexible system to find solutions. A solution formula is given. In the last section, a
parameter method will be used to solve a flexible system. The neutrix parts of the constant terms of a flexible
system will be seen as sets of parameters. Under certain conditions, exact solution formulas of flexible systems
are expressed with these parameters.

Chapter 5 concern sequences with external numbers. We call them flexible sequence. An adapted version
of the notion of convergence is developed for this kind of sequences. We will present several properties of
convergence, which deal with operations, boundedness, convergence of subsequences and the Cauchy criterion.
In particular, we will show that if a flexible sequence converges to an external number then all elements of
this sequence, except at most finite terms of the sequence go inside the limit. We call this property strong
convergence.

Similar properties of analysis are studied in Chapter 6 in the context of flexible functions. We will also con-
sider the notions of continuity, derivative, higher derivatives as well as their properties they include an inverse
function theorem and an implicit function theorem.

In Chapter 7 we will study linear programming with flexible objective and constraints. We consider two cases.
In the first case, we investigate the problem in which the objective function is flexible, but the domain is precise.
We provide a condition such that the problem has optimal solutions. Then we deal with the general case in which
coefficients in both objective function and constraints are external numbers. We will use the results of the first
case taking representatives of the coefficients in constraints. We will present conditions such that we can find
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an optimal solution of the original problem from an optimal solution of the problem with the precise domain.

In Chapter 8 we will investigate non-linear optimization problems with flexible objective and precise domain.
We will build necessary and sufficient conditions for the existence of optimal or approximate optimal solutions.
We will use different approaches to construct optimality conditions.

First of all, we generalize a well-known classical result which says that the derivative of a differentiable function
f :X → R vanishes at an extreme point. In this context, the notion ofN -derivative of a flexible function given
in Chapter 6 is used instead of ordinary derivative should be equal to a neutrix and does not need to be zero.

Next representatives of the objective function are used to construct optimality conditions. Conditions are given
to guarantee that we can find optimal/approximate optimal solutions of a given optimization problem from
an optimal solution of the problem whose objective function is a representative of the original function. This
corresponds to a conventional problem, so we can apply results in classical optimization theory. We also use the
relationship between the notions of the external infimum or supremum and the optimal value of a representative
function of the objective function to give optimality conditions. If an optimization problem whose objective
function is a representative has optimal solutions, and the relationships between external supremum or infimum
and the value of the flexible function at an optimal solution of this problem satisfy some conditions then we can
know that the original problem has optimal solutions or not. In some case, we also can find these optimal or
approximate optimal solutions.

Also, by treating each external number as a collection of parameters we present conditions such that optimal
solutions of the original problem can be found from the set of optimal solutions of optimization problems with
respect to parameters.

Then each flexible function will be seen as a set-value mapping. We will modify the notion of derivative in
the theory of set-valued mapping and then use this notion to build necessary and sufficient conditions for the
existence of optimal or approximate optimal solutions.

Finally we extend the Lagrange multiplier method for non-linear optimization to the setting of external numbers.



2
Neutrices and external numbers

The purpose of this chapter is to present common background necessary to the rest of the thesis. First of all, this
thesis will use nonstandard analysis introduced by Robinson [15, 28] in the setting of model theory. Our setting
is the axiomatic approach to nonstandard analysis Internal Set Theory (IST) which was introduced by Nelson
[25], see also [14, 23], for background.

IST is an extension of Zermelo-Fraenkel set theory ZFC. The language of IST adds to the primitive symbol ∈
a new unary predicate st, which stands for standard. Formulas that involve the predicate st are called external,
the others are called internal and correspond to formulas of conventional set theory. We can freely use the terms
such as external function, external sequence corresponding to external formulas or internal function, internal
sequence corresponding to internal formulas.

The set of nonstandard numbersR is defined in IST by the same formula as in conventional set theory. However,
the nonstandard real line R has not only standard numbers but also nonstandard numbers. A real number ϵ is
called infinitesimal if for all standard numbers n ∈ N, one has |ϵ| < 1

n
. A real number ω is called unlimited

5
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or infinitely large if |ω| > n, for all standard n ∈ N. Non-zero infinitesimals and unlimited numbers are
nonstandard.

An internal set is a collection of mathematical entities defined by an internal formula. For example, let
ϵ > 0 be an infinitesimal, the collection of real numbers S = {x ∈ R : −ϵ ≤ x ≤ ϵ} is an internal set
but not a standard set. IST only deals with internal sets. Now consider the collection of all infinitesimals

⊘ =

{
ϵ ∈ R

∣∣∀st(n) ∈ N, |ϵ| < 1

n

}
. This is not an internal set. Also, obviously, some properties of classical

mathematics is not true for this collection. For example, ⊘ is bounded but the infimum of this set does not
exist. In [21] extended the bounded part of IST it extended to a theory of external sets, which we adopt in this
thesis; external sets are collections of mathematical entities which satisfy external formulas. More examples of
external sets are the set of all positive unlimited numbers, denoted by∞̸, the set of all limited numbers , denoted
by £, which are real numbers but not unlimited numbers, or the set of all appreciable numbers, denoted by @,
which are positive limited numbers that are not infinitesimal.

Neutrices and External numbers were introduced in [22, 23], typically are external subsets of R. Many notions
and properties are common with ordinary real numbers, for instance, one may define algebra operations, order
relations, supremum, infimum, the opposite entry of a given external number, its absolute value and related
properties, norm, and n-th roots. Notions and results are contained in [14, 11, 22, 23, 25, 26]. Many of them
are recalled but we also prove some new properties. The properties presented here are necessary for the next
chapters.

2.1 Neutrices

Definition 2.1.1. A neutrix is an additive convex subgroup of the set of nonstandard real numbers R.

So a neutrix is an external subset of R.

Note that a non-empty convex set N of R is a neutrix if and only if

(i) N is symmetric with respect to 0,

(ii) n ·N = N for all standard n ∈ N.

In contrast to the conventional real line which has only two trivial neutrices {0} andR, the nonstandard real line
has an infinity of neutrices. All neutrices are external sets, except the two neutrices above. The most common
neutrices are⊘ and £. Some other neutrices, with ϵ a positive infinitesimal, are ϵ⊘, ϵ£, £ϵ̸∞ =

∩
st(n)∈N

[−ϵn, ϵn],

£e
−
@
ϵ =

∪
st(n)∈N

[−e
−
1

nϵ , e
−
1

nϵ ].

Let ϵ > 0 be infinitesimal and
S = {f : R −→ R+ \ {0}}.
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Then
∩

st(f)∈S
[−f(ϵ), f(ϵ)] is a neutrix. We see that the cardinal of S is larger than the cardinal of N. In fact, we

can define a neutrix with similar constructions using arbitrary cardinalities.

We denote by N the collection of all neutrices. It is an “extended class”, but in [12, 13] Dinis and Van den
Berg show that a model can be found where it acts as a set. In this work we use the term “set of neutrices”
with abuse of language. Note that N is totally ordered by inclusion. For more details on neutrices, we refer to
[11, 22, 23, 3].

Operations on N are defined as the Minkowski operations.

Definition 2.1.2. The operations on N are defined as follows: for A,B ∈ N , and t ∈ R,

A+B = {a+ b | (a, b) ∈ (A×B)},

A ·B = {a · b | (a, b) ∈ (A×B)},

tA = {t · x
∣∣x ∈ A},

and
A : B = {c ∈ R | c.B ⊆ A}.

Wewill present some useful properties of operations onN which will be frequently used in this work. For more
details and their proofs, we refer readers to [22].

Proposition 2.1.3 ([22]). Let A,B ∈ N . One has

(i) A+B = max{A,B}.

(ii) tA = A for all |t| ∈ @ and £A = A.

Proof. (i). Assume that A ⊆ B. Then one has

B ≤ A+B ≤ B +B = B.

(ii). Without loss of generality, we assume that t > 0. Then there exists standard n ∈ N such that
1

n
≤ t ≤ n.

Also, one proves by external induction [IST] shows that nA = A, this implies that A =
nA

n
=

1

n
A ⊆ tA ⊆

nA = A and hence tA = A.

Moreover, obviously, A ⊆ £A. Now let x ∈ £A. Then there exists u ∈ £, v ∈ A such that x = uv. Because
u ∈ £, there exists t ∈ @ such that u ∈ [−t, t]. This implies that uA ⊆ tA = A. So x ∈ A and hence £.A ⊆ A.
We conclude that A = £A.

So the neutrix £ acts as the identity element for multiplication onN and neutrices are invariant under multipli-
cation by appreciable numbers.
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Example 2.1.4. One has

(i) ⊘+ £ = £; ⊘+ ϵ£ = ⊘.

(ii) £ · £ = £; £ · ⊘ = ⊘; ϵ⊘ ·ϵ£ = ϵ2 ⊘ .

(iii) ⊘ : ⊘ = £; £ : ⊘ = £.

Definition 2.1.5. ([22, p. 53]). A neutrix N is said to be idempotent if N ·N = N.

For example,⊘ and £ are idempotent neutrices since⊘·⊘ = ⊘ and £ ·£ = £. Let ϵ > 0 be infinitesimal. Using
the Minkowski operations it is easy to verify that @+@ = @ and ∞̸+ ∞̸ ≠∞. As a consequence £ϵ̸∞, £e

@
ϵ

are idempotent neutrices. However, ϵ£ is not idempotent since ϵ£ · ϵ£ = ϵ2£ ⊂ ϵ£.

If N is an idempotent neutrix and n ∈ N is standard, by External induction we have Nn = N ·N · · ·N = N.

The next result states that every neutrix is represented by the product of a positive real number and an idempotent
neutrix.

Proposition 2.1.6 ([23, 22]). Let A is a neutrix. Then there exists a real positive number t and a unique
idempotent neutrix I such that A = t · I.

2.2 External numbers

An external number is the sum of a real number and a neutrix. So each external number has the form α = a+A,
where a ∈ R is called a representative of α and A ∈ N is called the neutrix part of α, denoted by N(α). We
also call a the real part of α. If 0 ̸∈ α = a+N(α), we call α zeroless

For example, α = 1+ϵ⊘, β = ⊘ and γ = ϵ are external numbers, here ϵ is a positive infinitesimal. In particular,
neutrices and real numbers are external numbers.

Convention 2.2.1. From now on, we write an external number α in the form α = a+A, we always using the
lower-case as a representative of α and the upper-case as the neutrix part of α.

Note that for each external number α, the neutrix part N(α) is unique but its representative is not. In fact,
α = b+N(α) for all b ∈ α. For example, 1 + £ = 0 + £ = £.

Once again, the collection of all external numbers is a class, denoted by E. Similarly to neutrices, we also use
the term “subset” of E with an abuse of language.

Two external numbers are either distinct or one is contained in the other.

Lemma 2.2.2 ([22]). Let α = a+A, β = b+B be two external numbers. Then

α ∩ β = ∅ ∨ α ⊆ β ∨ β ⊆ α.

Proof. Assume that α ∩ β ̸= ∅. Let x ∈ α ∩ β. Then α = x+A and β = x+B. So, if A ⊆ B then α ⊆ β, if
B ⊆ A then β ⊆ α.
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Notation 2.2.3. Let α, β be two external numbers. We write α#β if α ∩ β = ∅.

Next we define the opposite element of a given external number. Then we will present some of its properties.

Definition 2.2.4. Let α = a+A be an external number. We call −α ≡ −a+A the opposite number of α.

Proposition 2.2.5. Let α ∈ E be an external number. Then −α = {−x|x ∈ α}.

Proof. Let α ∈ E be an external number. One has−α = −a+A = −a−A = −(a+A) = {−x|x ∈ α}.

Corollary 2.2.6. Definition 2.2.4 does not depend on the choice of the representative of α.

Proof. Assume that α = b+A. One has −α = {−x|x ∈ α} = −a+A.

Definition 2.2.7. Let α = a+A be an external number. We call α positive if it contains only positive numbers,
negative if it contains only negative numbers, and neutricial if α is a neutrix. A external number is called
non-negative if it is either positive or neutricial and non-positive if it is either negative or neutricial.

Proposition 2.2.8. Let α = a+A be a zeroless external number. Then

(i) α is positive if and only if a > A,

(ii) α is negative if and only if a < A.

Proof. We will prove the first part, the second can be done similarly. Assume that α is positive. If a < A then
u = a + x < 0 for all x ∈ A, which is a contradiction. If a ∈ A then 0 ∈ α, a contradiction. Hence a > A.

Conversely, assume that a > A. Then for all u ∈ α one has u = a+ x > 0. So α = a+A is positive.

Example 2.2.9. Let ϵ > 0 be infinitesimal. Consider the external numbers α = ϵ£, β = 2 +⊘, γ = −1 + ϵ⊘.
Then α is neutricial, β is positive and γ is negative.

Definition 2.2.10. Let α = a+A be an external number. The absolute value of α is defined by

|α| = |a|+A.

Example 2.2.11. Let α1 = ⊘, α2 = −1 +⊘, α3 = 3+ ϵ£ with ϵ > 0 an infinitesimal. Then |α1| = ⊘, |α2| =
1 +⊘ and |α3| = 3 + ϵ£.

Proposition 2.2.12. Let α = a+A be a zeroless external number. Then |α| =
{
|x|
∣∣x ∈ α

}
.

Proof. Let ξ =
{
|x|
∣∣x ∈ α

}
.We show that ξ = |α|. We consider two cases: a > A and a < A.

For the first case, let x ∈ |α|. Then x = |a|+ u with u ∈ A. Since a > A, one has x = |a|+ u = a+ u > 0.
Then x = |a+ u| ∈ ξ. Hence |α| ⊆ ξ. On the other hand, let y ∈ ξ. Then y = |a+ v| = a+ v = |a|+ v since
a > A. So y ∈ |α|. Hence ξ ⊆ |α|. One concludes that ξ = |α|.
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For the second case, let x ∈ |α|. Then x = |a|+ u with u ∈ A. Because a < A one has x = −a+ u = −(a+

(−u)). Also, (a+(−u)) < 0, so x = |a+(−u)| ∈ ξ. Hence |α| ⊆ ξ. Conversely, let y ∈ ξ. Then y = |a+u|
for some u ∈ A. Because a < A, one has a + u < 0. So y = −(a + u) = −a + (−u) = |a| + (−u) ∈ |α|
since (−u) ∈ A. Hence ξ ⊆ |α|.We obtain |α| = ξ.

Note that the conclusion above is not true in the case α is neutricial.

Corollary 2.2.13. Let α = a+A be a zeroless external number. The definition of absolute value of α does not
depend on the choice of the representative of α.

Proof. Assume that α = b+A. Then |α| = |b|+A =
{
|x|
∣∣x ∈ α

}
= |a|+A.

2.2.1 Operations on external numbers

In this section we recall operations and some of their properties on E. For more details, we refer to [22, 11].

Operations on external numbers such as: subtraction, addition, multiplication, division are defined by the
Minkowski law. However, in practice, implementing these operations are much easier as shown below. The
formulas in Proposition 2.2.14 were introduced in [22, 23] without proof. We rewrite them here with full proof.

Proposition 2.2.14. ([23, p.151], [22, p.89]). Let α = a+A, β = b+B ∈ E be external numbers. Then

(i) α± β = a± b+max{A,B} = a± b+A+B,

(ii) αβ = ab+max{aB, bA,AB} = ab+Ab+Ba+AB.

Proof. (i) We will prove only the addition, the subtraction can be done similarly. One has α+ β = {x+ y
∣∣x ∈

α, y ∈ β} = {(a+ u)+ (b+ v)
∣∣u ∈ A, v ∈ B} = {(a+ b)+ (u+ v)

∣∣u ∈ A, v ∈ B} = (a+ b)+ (A+B) =

a+ b+max{A,B}.

(ii) One has

αβ =
{
x · y

∣∣x ∈ α, y ∈ β
}
=
{
(a+ u)(b+ v)

∣∣u ∈ A, v ∈ B
}

=
{
ab+ au+ bv + uv

∣∣u ∈ A, v ∈ B
}
⊆ ab+Ab+ aB +AB.

Conversely, let x ∈ ab+ Ab+ aB + AB. We will show that x ∈ αβ and hence ab+ Ab+ aB + AB ⊆ αβ.

We consider three cases. Firstly, we assume that α is a neutrix. Then we can take a = 0. It follows that
ab + Ab + aB + AB = Ab + AB. If β is zeroless then AB ⊆ bA. So ab + Ab + aB + AB = bA. Hence
x ∈ bA = bα ⊆ αβ. If β is a neutrix then ab+Ab+aB+AB = AB. It implies that x ∈ AB = αβ. Secondly,
we assume that β is a neutrix, and α is zeroless. With analogous arguments we have x ∈ αβ. Finally we assume
that both α, β are zeroless. Then ab+Ab+aB+AB = ab+bA+aB. If aB ⊆ bA then ab+Ab+aB+AB =

ab+bA = {ab+bu
∣∣u ∈ A} ⊆ αβ. If bA ⊆ aB then ab+Ab+aB+AB = ab+aB = {ab+av

∣∣v ∈ B} ⊆ αβ.

Thus one always has ab+Ab+Ba+AB ⊆ αβ.
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We conclude that αβ = ab+ bA+Ba+AB = ab+max{aB, bA,AB}.

Definition 2.2.15. Let α = a+A ∈ E be an external number and st(n) ∈ N. We define with External induction
the power αn of α by

αn = α · α · · ·α.

For example, ⊘2 = ⊘ · ⊘ = ⊘ and (1 + ϵ£)2 = (1 + ϵ£)(1 + ϵ£) = 1 + ϵ£.

Note that for n ∈ N standard, in general, αn ̸= {xn|x ∈ α}. For example, ⊘2 = ⊘ · ⊘ = ⊘ but {ϵ2|ϵ ∈ ⊘} =

⊘+ is the set of non-negative infinitesimals, which is strictly included in ⊘. Also {x2|x ∈ α} ⊆ α2.

Remark 2.2.16. (i) If α, β are zeroless, we have αβ = ab+max{aB, bA}.

(ii) In general, (α + β)C ̸= αC + βC if C is a neutrix. For example,
(
1 + (−1)

)
⊘ = 0 · ⊘ = 0 whereas

1 · ⊘+ (−1)⊘ = ⊘. See [11] for conditions of the equality.

We below list some properties of operations on external numbers.

Lemma 2.2.17 ([22, 20]). Let α = a + A, β = b + B, γ = c + C be external numbers and N be a neutrix.
Then

(i) If β is zeroless, one has Nβ = bN, and
N

β
=

N

b
.

(ii) (a+A) ·N = aN +AN.

(iii) (a+A)β = aβ +Aβ.

(iv) x(α+ β) = xα+ xβ for all x ∈ R.

(v) Subdistributivity: (α+ β)γ ⊆ αγ + βγ .

(vi) If |a| > A, it holds that N
(
(a+A)n

)
= an−1A, for n ∈ N standard.

Proof. (i) Since β is zeroless, one has |b| > B. So BA ⊂ bA. Hence bA + BA = max{bA,BA} = bA.

Moreover, by Lemma 2.2.20 one has
A

β
= A

β

b2
= Ab/b2 = A/b.

(ii) If α = a + A is a neutrix, the conclusion is trivial. We assume that α is zeroless. For each real number
x ∈ N , one has x(a + A) = xa + xA ⊆ Na + NA. Then (a + A)N ⊆ aN + AN. Conversely, Since α
is zeroless, one has AN ⊂ aN. So aN + AN = aN . Obviously, aN + AN = aN ⊆ (a + A)N. Hence
(a+A)N = aN +AN.

(iii) One has (a+ A)β = ab+ aB + bA+ AB. By (ii), Ab+ AB = A(b+ B). Also, ab+ aB = a(b+ B).
So (a+A)β = aβ +Aβ.

(iv) By (iii), for all x ∈ R one has x(α+ β) = x
(
(a+ b) + (A+B)

)
= x(a+ b) + x(A+B) = xa+ xb+

xA+ xB = x(a+A) + x(b+B) = xα+ xβ.
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(v) Let x ∈ (α+β)γ. There exist real numbers u ∈ α, v ∈ β, t ∈ γ such that x = (u+v)t = ut+vt ∈ αγ+βγ.
Hence (α+ β)γ ⊆ αγ + βγ.

(vi) One has (a + A)2 = (a + A)(a + A) = a2 + 2aA + A2. Since |a| > A, it holds that A2 ⊆ |a|A.

So (a + A)2 = a2 + 2aA = a2 + aA. Assume that the claim is true for n ∈ N with n standard. That is
(a+A)n = an+an−1A.Then (a+A)n+1 = (a+A)n(a+A) = (an+an−1A)(a+A) = an+1+2anA+an−1A2.

Once again, since |a| > A, one has an−1A ⊆ anA. So an+1 + 2anA + an−1A2 = an+1 + anA. Hence,
(a+ A)n+1 = an+1 + anA. By external induction, we conclude that (a+ A)n = an + an−1A, for all n ∈ N
standard.

Lemma 2.2.18 ([22, Prop. 2.7.15, p. 73]). , Let α = 1 +A, where A ⊆ ⊘. Then
1

α
= α = 1 +A.

Proof. Let y ∈ R be an infinitesimal. If y ≥ 0, we have

1− y ≤ 1

1 + y
≤ 1− y

2
(2.1)

or
1

1− y/2
≤ 1 + y ≤ 1

1− y
. (2.2)

If y < 0, we have
1− y

2
≤ 1

1 + y
≤ 1− y (2.3)

or
1

1− y
≤ 1 + y ≤ 1

1− y/2
. (2.4)

Using these inequalities we first verify that
1

1 +A
⊆ 1 + A. Let ϵ ∈ A. If ϵ ≥ 0, by inequality (2.1) one

has 1 − ϵ ≤ 1

1 + ϵ
≤ 1 − ϵ/2. Since 1 − ϵ ∈ α, 1 − ϵ/2 ∈ α and α is convex, this implies that

1

1 + ϵ
∈

[1− ϵ, 1− ϵ/2] ⊆ α = 1 +A. If ϵ < 0, then by inequality (2.3), one has 1− ϵ

2
≤ 1

1 + ϵ
≤ 1− ϵ. Similarly, it

implies that
1

1 + ϵ
∈ α = 1 +A. Hence

1

1 +A
⊆ 1 +A.

Next we check 1 + A ⊆ 1

1 +A
. Let ϵ ∈ A. If ϵ > 0 then, by inequality (2.2) one has

1

1− ϵ/2
≤ 1 + ϵ ≤

1

1− ϵ
. Since

1

1− ϵ/2
,

1

1− ϵ
∈ 1

1 +A
and α is convex which implies that

1

α
is convex, we have 1 + ϵ ∈

[
1

1− ϵ/2
,

1

1− ϵ
] ⊆ 1

α
. If ϵ < 0 then, by inequality (2.4) it holds that

1

1− ϵ
≤ 1 + ϵ ≤ 1

1− ϵ/2
. For

the same arguments, we have 1 + ϵ ∈ [
1

1− ϵ
,

1

1− ϵ/2
] ⊆ 1

α
. Hence 1 + A ⊆ 1

1 +A
. We conclude that

1 +A =
1

1 +A
.

Lemma 2.2.19 ([22, Prop. 3.2.10, p. 83]). Let α = a+A be zeroless. Then A/a ⊆ ⊘.

Proof. Because α is zeroless, |a| > A. Then for all x ∈ A

a
=

A

|a|
we have |x| < 1. On the other hand

A

a
is a
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neutrix, so
A

a
⊂ £. Also, there is no neutrix between ⊘ and £, consequently

A

a
⊆ ⊘.

Proposition 2.2.20 ([23, p.151], [22, p. 89] ). Let α = a+A, β = b+B ∈ E be zeroless. Then

(i)
1

α
=

α

a2
=

1

a
+

A

a2
.

(ii)
α

β
=

αβ

b2
=

a

b
+

1

b2
max{aB, bA}.

Proof. (i) By Lemma 2.2.18, one has

1

α
=

1

a+A
=

1

a(1 +A/a)
=

1

a

1

1 +A/a
=

1

a
(1 +A/a) =

1

a
+

N (α)

a2
=

α

a2
.

(ii) Because
α

β
= α

1

β
, the conclusion follows by Part (i).

Definition 2.2.21. Let α ∈ E be zeroless. We define N(α)/a the relative uncertainty of α, denoted by R(α).

The relative uncertainty of an external number α is independent of the choice a by Lemma 2.2.17(i). Moreover
R(α) ⊆ ⊘.

Lemma 2.2.22 ([20]). Let α = a+A be a zeroless external number. Then α ∩ ⊘α = ∅.

Proof. Suppose that α ∩ ⊘α ̸= ∅. Then there exists x ∈ α ∩ ⊘α. So x = aϵ ∈ a+ A for some a ∈ α, a ̸= 0

and ϵ ∈ ⊘. It follows that ϵ ∈ 1 +A/a ⊆ 1 +⊘, which is a contradiction. Hence α ∩ ⊘α = ∅.

Definition 2.2.23. ([20, Def. 2.3, p10]). Let A be a neutrix and α ∈ E be an external number. The number α
is called an absorber of A if αA ⊂ A, and an exploder of A if A ⊂ αA. We denote by ⊘N the set of all real
numbers which are absorbers of N and by∞̸N the set of all real numbers which are exploders of N .

Example 2.2.24. Let ϵ > 0 be infinitesimal. Then ϵ is an absorber of ⊘ since ϵ⊘ ⊂ ⊘. It is also an absorber of
£ because ϵ£ ⊂ ⊘ ⊂ £.Moreover

1

ϵ
is an exploder of ⊘ since ⊘ ⊂ £ ⊂ ⊘

ϵ
.

Remark 2.2.25. By Proposition 2.1.3(i), no appreciable number is an absorber of a neutrix. Also, any unlimited
number is not an absorber. Hence, if a number is an absorber of a neutrix, it must be an infinitesimal number.
However, it is not true that every infinitesimal is an absorber of a given neutrix. For instance, let ϵ > 0 be
infinitesimal. Then ϵ · £ϵ̸∞ = ϵ ·

∩
st(n)∈N

[−ϵn, ϵn] =
∩

st(n)∈N

[−ϵn, ϵn] = £ϵ̸∞.

Proposition 2.2.26. Let c ∈ R \ {0} be a limited number and B be a neutrix. If c is not an absorber of B then

cB =
B

c
= B.

Proof. Because c is limited, we haveB ⊆ B

c
.On the other hand, c is not an absorber ofB, it holds that

B

c
⊆ B.

So
B

c
= B and hence B = cB.
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Remark 2.2.27. Let α ∈ E be limited, i.e., there exists a limited number t ∈ R such that |α| ≤ t and B be a
neutrix. Then α ·B ⊆ B.

The multiplication on external numbers is not distributive but it is subdistributive as shown in Property (v) of
Proposition 2.2.17. As a consequence, the multiplication on matrices over E are not associative or distributive

[20, p.35]. For example, let A =

[
1 1

0 0

]
, B =

[
1 0

−1 0

]
, C =

[
⊘
⊘

]
. One has

(AB)C =

([
1 1

0 0

][
1 0

−1 0

])[
⊘
⊘

]
=

[
0

0

]

and

A(BC) =

[
1 1

0 0

]([
1 0

−1 0

][
⊘
⊘

])
=

[
1 1

0 0

][
⊘
⊘

]
=

[
⊘
0

]
.

So (AB)C ̸= A(BC).

However, in some special cases the associative law is true.

Lemma 2.2.28. Let A = [aij ] be an m × n real matrix, B = [Bij ] be an n × p neutrix matrix, i.e, all of its
entries are neutrices, and C = [Ci]p×1 be a matrix whose entries are either real numbers or neutrices. Then
A(BC) = (AB)C.

Proof. Put AB ≡ D1 = [βij ]m×p. One has

βij = ai1B1j + · · ·+ ainBnj

for all 1 ≤ i ≤ m, 1 ≤ j ≤ p. Because Bij is a neutrix for 1 ≤ i ≤ n, q ≤ j ≤ p, also βij is a neutrix for all
1 ≤ i ≤ m, 1 ≤ j ≤ p.

So (AB)C = D1C ≡ [αi]m×1, where

αi =βi1C1 + · · ·+ βipCp

=(ai1B11 + · · ·+ ainBn1)C1 + · · ·+ (ai1B1p + · · ·+ ainBnp)Cp. (2.5)

On the other hand, let BC ≡ D2 ≡ [ηi]n×1. Then ηi = Bi1C1 + · · · + BipCp for all 1 ≤ i ≤ n. Put
A(BC) = AD2 ≡ [ζi]m×1. By Lemma 2.2.17(iv) we have

ζi =ai1η1 + · · ·+ ainηn

=ai1(B11C1 + · · ·+B1pCp) + · · ·+ ain(Bn1C1 + · · ·+BnpCp)

=ai1B11C1 + · · ·+ ai1B1pCp + · · ·+ ainBn1C1 + · · ·+ ainBnpCp

=(ai1B11 + · · ·+ ainBn1)C1 + · · ·+ (ai1B1p + · · ·+ ainBnp)Cp. (2.6)

Hence (AB)C = A(BC).
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2.2.2 Order relations on external numbers

In this work we use the order relation on external numbers were studied by Koudjeti and Van den Berg [22]. In
[12, 13] another order relation on external numbers was constructed, but it does not contemplate the inequalities
‘‘ ≥ ” or ‘‘ > ”, so it lacks flexibility in some situations like optimization. The relation presented here
overcomes this restriction, however, care is needed in interchanging ≤ and ≥ as shown below. We choose this
order relation because it is easy to transform a minimization problem to a maximization problem and vice versa.
In particular, it enables to transform constraints in linear programming (see Chapter 7) into the canonical form.
Also, it is suitable to define optimal solutions in chapters 7 and 8.

Definition 2.2.29. Let α = a + A, β = b + B be two external numbers. We define the order relations on
external numbers as follows:

(i) α ≥ β if and only if ∀x ∈ α ∃y ∈ β(x ≥ y).

(ii) α > β if and only if ∀x ∈ α ∀y ∈ β(x > y).

(iii) α ≤ β if and only if ∀x ∈ α ∃y ∈ β(x ≤ y).

(iv) α < β if and only if ∀x ∈ α ∀y ∈ β(x < y).

Example 2.2.30. Let ϵ be a positive infinitesimal. Then 1 + ϵ£ > ⊘, ϵ ≤ ⊘ and ϵ ≥ ⊘.

Remark 2.2.31. (i) Intuitively, we have α ≤ β if and only if (−∞, α] ⊆ (−∞, β] and α ≥ β if and only if
[α,+∞) ⊆ [β,+∞).

(ii) If A,B are two neutrices, then A ⊆ B if and only if A ≤ B or A ≥ B. Note that the larger neutrix is
always on the right side.

(iii) Clearly α < β if and only if β > α. However α ≥ β is not equivalent to β ≤ α. For example, we have
⊘ ≥ £ and⊘ ≤ £, yet £ ̸≤ ⊘. As a consequence, it can occur simultaneously that α ≤ β∧α ≥ β without
α and β being equal. In fact, it happens if α ⊆ β.

(iv) Let α be an external number and N be a neutrix. One has α ⊆ N if and only if |α| ≤ N.

The next proposition present characterizations of the order relations on external numbers.

Lemma 2.2.32 ([22]). Let α, β be two external numbers. Then

(i) α < β if and only if α ≤ β ∧ α ∩ β = ∅.

(ii) α > β if and only if α ≥ β ∧ α ∩ β = ∅.

(iii) α ≤ β if and only if α < β ∨ α ⊆ β.

(iv) α ≥ β if and only if α > β ∨ α ⊆ β.
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Proof. (i) Assume that α < β. It follows directly by the definition that α ≤ β. Suppose that α ∩ β ̸= ∅. Then
there exists x ∈ α, x ∈ β. It contradicts the definition of α < β.

Conversely, assume that α ≤ β ∨ α ∩ β = ∅. We suppose that α ̸< β. There exists x ∈ α, y ∈ β such that
x ≥ y. Since α∩β = ∅, it holds that x > y. On the other hand α ≤ β, by the definition, there exists z ∈ β such
that x ≤ z.Again, since α∩β = ∅, it holds that y < x < z. Because β is convex, it follows that x ∈ [y, z] ⊂ β,
which is a contradiction to α ∩ β = ∅. Hence α < β.

(ii) The argument is similar.

(iii) If α < β then α ≤ β by the definitions. If α ⊆ β then for all x ∈ α, there exists y ∈ β such that x ≤ y.

So α ≤ β.

Conversely, assume that α ≤ β. If α ∩ β = ∅ then by Part (i) we have α < β. Otherwise, suppose that β ⊂ α.
Then there exists x0 ∈ α such that x0 > y for all y ∈ β, a contradiction to α ≤ β. Hence α ⊆ β.

(iv) The argument is similar.

We below present some properties of order relations on external numbers which will be used in Chapters 4 and
5.

Let α, β be two external numbers. We first remark that α ̸≤ β does not imply α > β (or β < α). For example,
α = £, β = ⊘. Then α ̸≤ β and α ̸> β. However, we have the following results.

Lemma 2.2.33. Let N be a neutrix and α, β be two external numbers such that N(α) ⊆ N,N(β) ⊆ N. Then
α+N ̸≤ β +N implies α+N > β +N.

Proof. Observe thatN(α+N) = N(β+N) = N. If (α+N)∩(β+N) ̸= ∅, there exists x ∈ (α+N)∩(β+N).
It follows that α + N = β + N = x + N , a contradiction to the hypothesis. So (α + N) ∩ (β + N) = ∅. If
α+N < β +N we have a contradiction. Hence α+N > β +N.

Corollary 2.2.34. Let α, β be two external numbers such that N(α) = N(β). Then α ̸≤ β implies α > β.

Proof. It follows from Lemma 2.2.33 with N = N(α) = N(β).

Lemma 2.2.35. Let α, β be two external numbers. One has α ≤ β if and only if −α ≥ −β.

Proof. One has α ≤ β if and only ∀x ∈ α, ∃y ∈ β(x ≤ y). This is equivalent to ∀ (−x) ∈ (−α) , ∃ (−y) ∈
(−β) (−x ≥ −y). Once again it holds if and only if −α ≥ −β.

Proposition 2.2.36. Let α, β, γ be external numbers. If α− β < γ then α+N(β) < β + γ.

Proof. Write α = a+A, β = b+B, γ = c+C. IfN(β) = B ⊆ C = N(γ), then β + γ = c+ b+C. On the
other hand, α− β < γ implies that α+N(β) < γ + b = γ + β.
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If N(γ) ⊂ N(β) then N(γ + β) = B ⊆ A + B = N(α − β). We first prove that α + N(β) ∩ γ + β = ∅.
Suppose that there exists x ∈ α+N(β)∩ γ+β. Then α+N(β) = x+A+B and β+ γ = x+B. It follows
that β+ γ ⊆ α+N(β). In particular, b+ c ∈ α+N(β) implies that c ∈ α+β, a contradiction. Also, one has
a ∈ α+N(β), b+ c ∈ β + γ and a < b+ c by the assumption. Hence α+N(β) < β + γ.

Corollary 2.2.37. Let α, β, γ be external numbers. If α− β < γ then α < β + γ.

Proof. By Proposition 2.2.36 one has α+N(β) < β + γ. Also, 0 ∈ N(β) so α < β + γ.

With an analogous argument to the proof of Proposition 2.2.36, one has

Proposition 2.2.38. Let α, β, γ be external numbers. If η < α − β then η + β < α + N(β). In particular,
η + β < α.

Proposition 2.2.39. Let α, β, γ be external numbers. If α ≤ β then α+ γ ≤ β + γ.

Proof. Let x ∈ α+ γ. Then x = u+ v with u ∈ α and v ∈ γ. Since α ≤ β, there exists t ∈ β such that u ≤ t.

It follows that x = u+ v ≤ t+ v = y with y ∈ β + γ. Hence α+ γ ≤ β + γ.

Proposition 2.2.40. Let α be an external number and β be a zeroless, positive external number. Then |α| < β

if and only if −β < α < β.

Proof. Assume that |α| < β. We consider two cases:

Case 1: α is neutricial. We need to show that −β < α. Suppose that there exists u ∈ α and v ∈ −β such that
u ≤ v.Observe that−β is negative, so v ≤ 0. Since α is a neutrix and u, 0 ∈ α, one derives that v ∈ [u, 0] ⊆ α.
Consequently −v ∈ α and by Proposition 2.2.5 one has −v ∈ β and hence α ∩ β = v, a contradiction. So
−β < α < β.

Case 2: α is zeroless. Let u ∈ α and v ∈ β. Then |u| ∈ |α| by Proposition 2.2.12. So |u| < v, that is
−v < u < v for all u ∈ α. Also, for v ∈ −β one has v < u. Hence −β < α. Moreover, α ≤ |α| < β. So
−β < α < β.

Conversely, assume that −β < α < β. If α is neutricial then |α| = α < β. If α is zeroless, let y ∈ |α| and
v ∈ β. Then y = |u| with some u ∈ α by Proposition 2.2.12. Since −β < α < β, it holds that −v < u < v.
So y = |u| < v. Since y ∈ |α|, v ∈ β are arbitrary, one concludes that |α| < β.

Proposition 2.2.41. Let ϵ > 0 be a positive real number and α, β be two external numbers. If |α− β| < ϵ then
β − ϵ < α < ϵ+ β.

Proof. By Proposition 2.2.40, one has −ϵ < α − β < ϵ. It follows that −ϵ + β < α < ϵ + β by Corollary
2.2.37 and Proposition 2.2.38.

Proposition 2.2.42. Let α, β ∈ E be two external numbers. Then
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(i) |α| ≤ β if and only if α ≤ β and −α ≤ β.

(ii) β ≤ |α| if and only if β ≤ α or β ≤ −α.

Proof. (i) Assume that |α| ≤ β. If N (α) < α, then −α < N(α). Hence −α < N(α) < α = |α| ≤ β. Hence
α ≤ β and −α ≤ β. If α < N(α), then N(α) < −α. So α < N(α) < −α = |α| ≤ β. Again α ≤ β and
−α ≤ β. If α = N(α), then |α| = α = α ≤ β.

Conversely, assume that α ≤ β and −α ≤ β. If N(α) ≤ α, then |α| = α ≤ β and if α < N(α), then
|α| = −α ≤ β.

(ii) Assume firstly that β ≤ |α|. If N(α) ≤ α, then β ≤ |α| = α and if α < N(α), then β ≤ |α| = −α.
Suppose secondly that β ≤ α or β ≤ −α. In the case β ≤ α, ifN(α) ≤ α, then β ≤ α = |α| and if α < N(α),
then β ≤ α < N(α) ≤ −α = |α|. In the case β ≤ −α, if N(α) ≤ α, one has β ≤ −α ≤ N (α) ≤ α = |α|,
and if α < N (α), one has β ≤ −α = |α|. Hence always β ≤ |α|.

Proposition 2.2.43 (Triangular inequality). Let α, β ∈ E. Then |α+ β| ≤ |α|+ |β|.

Proof. Clearly α + β ≤ |α| + |β|. Also −(α + β) = −α − β ≤ |α| + |β|. By Proposition 2.2.42(i) one
concludes that |α+ β| ≤ |α|+ |β|.

Lemma 2.2.44. Let α, β ∈ E. Then

|α− β|+N (|β|) = |α− β|+N (|α|) = |α− β| . (2.7)

Proof. One has N (|α− β|) = N (α) + N (β). Hence |α− β| = |α− β| + N (α) + N (β). Also N (α) =

N (|α|) and N (β) = N (|β|). This implies (2.7).

Proposition 2.2.45. Let α, β ∈ E. Then |α| − |β| ≤ |α− β|.

Proof. Using Proposition 2.2.43 one has

|α| ≤ |α+N (β)| = |α+ β − β| ≤ |α− β|+ |β| . (2.8)

By compatibility with addition |α|− |β| ≤ |α+ β|+N(|β|). Then |α|− |β| ≤ |α− β| by Lemma 2.2.44.

Proposition 2.2.46. Let α, β ∈ E be two external numbers. Then ||α| − |β|| ≤ |α− β|.

Proof. By Proposition 2.2.45 one has |α|−|β| ≤ |α− β| and |β|−|α| ≤ |β − α| = |α− β|. Then ||α| − |β|| ≤
|α− β| by Proposition 2.2.42.(i).
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2.3 n-th roots of an external number

The n-th roots of an external number appear naturally when we use the neutrix-derivative to find approximate
optimal solutions in Section 8.2. Let α = a+A be an external number and n ∈ N be standard. An n-th root of
α is an external number β whose n-th power is α. For n = 2 we call it a square root and for n = 3 we call it a
cube root.

For example, a square root of ⊘ is ⊘, a square root of £ is £ because ⊘2 = ⊘ and £2 = £.

In general, if α = I is an idempotent neutrix, the n-th root of I is I . We denote by n
√
I the n-th root of I . If

α = A is an arbitrary neutrix, by Proposition 2.1.6, there exists a real number t > 0 and the unique idempotent
I such that A = t.I . Then the n-th root of A is n

√
A = n

√
tI. Clearly, this definition does not depends on t.

Definition 2.3.1. Let α = a + A be a positive external number. We define the positive n-th root of α and
denoted n

√
α as the principal n-th root of α .

We have
n
√
α = n

√
a+

A
n
√
an−1

. (2.9)

Indeed, by Lemma 2.2.17(vi) we have ( n
√
α)n = ( n

√
a)n + ( n

√
a)n−1

(
A

n
√
an−1

)
= a+A = α.

We will prove that formula (2.9) does not depend on the choice of the representative of α. Indeed, let β =

n
√
α = n

√
a +

A
n
√
an−1

≡ b + B. Note that βn = α. Assume that α = a′ + A and n
√
α = b′ + B′, where

b′ = n
√
a′ and B′ =

A
n
√

(a′)n−1
. We will show that

β = b′ +B′. (2.10)

Because a′ = a+ x with x ∈ A, it holds that (b′)n = a′ = a+ x ∈ a+A = α = βn. This implies that b′ ∈ β.

To complete the proof, we show that
B = B′.

Since b′ ∈ β, one has β = b′ + B. On the other hand, (b′ + B′)n = α and βn = (b′ + B)n = α = a+ A. By
Lemma 2.2.17(vi), we obtain (b′)n−1B′ = (b′)n−1B = A. Hence B = B′. Thus formula (2.10) holds and so
formula (2.9) does not depend on the choice of a representative a of α.

Remark 2.3.2. If α = a+A is negative and if n ∈ N is even, there is no n-th root of α. However, if n ∈ N is
odd, the n-th root of α is defined by formula (2.9).

Example 2.3.3. Let α = 4+⊘, β = −27+ϵ⊘, γ = ϵ+ϵ⊘, δ = ω£, where ϵ > 0 is an infinitesimal and ω > 0

is an unlimited number. Then
√
α = 2+⊘, 3

√
β = −3 + ϵ⊘,

√
γ =

√
ϵ+

ϵ⊘√
ϵ
=

√
ϵ+

√
ϵ⊘ and 4

√
δ = 4

√
ω£.
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2.4 External supremum and infimum of an external set

In classical mathematics, it is well-known that every bounded set in R has an infimum and a supremum . How-
ever, it is no longer true in nonstandard analysis. For example, ⊘ is bounded but it has neither infimum nor
supremum. In this section we present notions of external supremum and external infimum such that every
external subset of R has both an infimum and a supremum.

We will present some notions such as cut, external cut, upper boundary and lower boundary of an external cut,
infimum, supremum and some of their properties. They will be used to prove results related to optimization
problem with a flexible objective function in Chapter 8.

Definition 2.4.1. A cut of R is a pair (A,B) of subsets of R satisfying

(i) A ∪ B = R

(ii) A ∩ B = ∅,

(iii) For all x ∈ A, y ∈ B one has x < y.

The set A is called a lower halfline of R and B is called an upper halfline of R.

The cut is said to be external if either A or B is external set. Otherwise, it is said to be internal .

For example A = (−∞, 1 +⊘) and B = [1 +⊘,+∞) is an external cut.

Remark 2.4.2. Note that for each halfline of R there always exists one boundary which is an external number.
In fact, let (A,B) be a cut of R. As a consequence of results in [4], there exists an external number α such that
A = (−∞, α] or A = (−∞, α). We say α is the upper boundary of the lower halfline A. It is also said to be
the lower boundary of the upper halfline.

Convention 2.4.3. Let γ ∈ E. To be unambiguous, we denote by (−∞, γ) = {x ∈ R
∣∣x < γ}, (−∞, γ] =

{x ∈ R
∣∣x ≤ γ}, (γ,+∞) = {x ∈ R

∣∣γ < x}, [γ,+∞) = {x ∈ R
∣∣x ≥ γ}.

Definition 2.4.4. Let S be a set of external numbers. We define P (S) as the set of all real numbers which
belong to at least one external number in S. That is,

P (S) =
{
x ∈ R

∣∣∃α ∈ S, x ∈ α
}
.

We call it the projection of S on R.

Example 2.4.5. Let S1 = {ξ ∈ E
∣∣ξ ≤ ⊘} and S2 = {x ∈ R

∣∣⊘ < x}. Then P (S1) = (−∞,⊘] and
P (S2) = (⊘,+∞).

Remark 2.4.6. Considering a set of external numbers, we will always determine the external infimum or the
external supremum in the context of the projection of that set on R.
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Definition 2.4.7. [22] Let S be a set of external numbers.

The lower convexification of S is the set

conv(S) = {α ∈ E | ∃δ ∈ S ∧ α ≤ δ}. (2.11)

The upper convexification of S is the set

conv(S) = {α ∈ E | ∃δ ∈ S ∧ α ≥ δ}. (2.12)

The convexification of S, denoted by conv(S), is the intersection in E of conv(S) and conv(S).

Example 2.4.8. Let S(⊘, £]. Then conv(S) = (−∞, £] and conv(S) = (⊘,+∞). So conv(S) = S.

Let S be any non-empty set of external numbers not containing the external number R. Then

(i) P (conv(S)) is a lower halfline of R.

(ii) P (conv(S)) is a upper halfline of R.

(iii) P (conv(S)) is an interval whose upper boundary coincides to the one of P (conv(S)) and whose lower
boundary coincides to one of P (conv(S)).

Definition 2.4.9 ([22]). Let S be a non-empty set external numbers. We define

(i) The least upper bound of S is the upper boundary of P (conv(S)), denoted by sup(S).

(ii) The greatest lower bound of S is the lower boundary of P (conv(S)), denoted by inf(S).

Example 2.4.10. (a) Let S1 = {ξ ∈ E
∣∣ξ ≤ ⊘}, S2 = {x ∈ R

∣∣⊘ < x}. Then P (S1) = (−∞,⊘] and
P (S2) = (⊘,+∞). Hence sup(S1) = ⊘ and inf(S2) = ⊘.

(b) Let @ = (⊘, £]. Then P (@) = @. So inf(@) = ⊘, sup(@) = £. This example is somewhat surprising
because @ ⊂ £ and the infimum of @ is strictly included in the supremum of @.

The following proposition shows some properties of infimum and supremum of external subsets. We will refer
to them in optimization problems of the next chapters.

Proposition 2.4.11 ([22]). Let S be a non-empty set of external numbers being bounded from above and let γ
be a given external number. Then γ is the least upper bound of S if and only if one of the following statements
holds:

(i) (γ ∩ conv(S) = ∅) ∧ (∀α < γ, ∃δ ∈ S
∣∣ δ > α).

(ii) (γ ⊂ conv(S)) ∧ (∀δ ∈ S, δ ≤ γ).
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Proof. We assume that γ is the least upper bound of S. Then by the definition one has P (conv(S)) = (−∞, γ)

or P (conv(S)) = (−∞, γ]. We will prove that γ satisfies condition (i) or (ii). We always have γ∩conv(S) = ∅
or γ ∩ conv(S) ̸= ∅.

If γ ∩ conv(S) = ∅, we have P (conv(S)) = (−∞, γ). One also has P (conv(S)) =
∪
δ∈S

(−∞, δ] ⊂ R.

Let α < γ. Then α ⊂
∪
δ∈S

(−∞, δ] = (−∞, γ). It follows that there is δ0 ∈ S such that α ⊆ (−∞, δ0]. We

denote V = {δ ∈ S
∣∣α ⊆ δ}. If V = ∅, then α < δ0. If V ̸= ∅ then β =

∪
δ∈V

δ. Then β ∈ E. Clearly β < γ and

P (β, γ) ≡
{
x ∈ R

∣∣β < x < γ
}
⊂
∪
δ∈S

(−∞, δ] = (−∞, γ). Let η ∈ (β, γ). Then there exists δ1 ∈ S such

that η ≤ δ1. Because of α ≤ β < η, this implies α < δ1.

If γ ∩ conv(S) ̸= ∅ then P (conv(S)) = (−∞, γ] and hence γ ⊂ conv(S). For δ ∈ S, clearly, δ ∈ conv(S).
So δ ⊂ (−∞, γ] and thus δ ≤ γ.

Conversely, we assume that γ ∈ E satisfies condition (i) or (ii). We need to prove that γ is the least upper bound
of S.

Assume that γ satisfies (i). We will show that

P (conv(S)) =
∪
δ∈S

(−∞, δ] = (−∞, γ). (2.13)

Since γ ∩ conv(S) = ∅, for all δ ∈ S one has δ < γ. This implies that∪
δ∈S

(−∞, δ] ⊆ (−∞, γ). (2.14)

Conversely, let x ∈ (−∞, γ). By (i), there exists δ ∈ S such that x < δ. It follows x ∈
∪
δ∈S

(−∞, δ] and hence

(−∞, γ) ⊆
∪
δ∈S

(−∞, δ]. (2.15)

Formulas (2.14) and (2.15) imply formula (2.13) and hence γ is the least upper bound of S.

Assume that γ satisfies (ii). We will show that P (conv(S)) = (−∞, γ]. Indeed, the assumption γ ⊂ conv(S)
implies that (−∞, γ] ⊆ P (conv(S)). Also for x ∈ P (conv(S)) , there exists ξ ∈ conv(S) such that x ∈
ξ ⊂ P (conv(S)). By formula (2.11) there is δ ∈ S such that ξ ≤ δ. Again by (ii), we have δ ≤ γ and hence
x ∈ (−∞, γ]. So P (conv(S)) = (−∞, γ]. This implies that γ is the least upper bound of S.

Similarly, we have the following property for the greatest lower bound of a subset of E.

Proposition 2.4.12 ([22]). Let S be a non-empty set of external numbers being bounded from below. An external
number η is the greatest lower bound of the set S if and only if one of the following statements holds

(i) η ∩ conv(S) = ∅ ∧ (∀α > η, ∃δ ∈ S
∣∣δ < α).
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(ii) (η ⊂ conv(S)) ∧ (∀δ ∈ S, δ ≥ η).

Remark 2.4.13. Let γ = inf(S) and η = sup(S). Then γ ∩ conv(S) ̸= ∅ is equivalent to γ ⊂ conv(S) and
η ∩ conv(S) ̸= ∅ is equivalent to η ⊂ conv(S).

2.5 Norm on En

In this section we define a norm of vectors whose components are external numbers. We will use it to study
Lagrange multipliers and also to investigate theN -derivative of vector functions presented in chapters 6 and 8.

Definition 2.5.1. Let n ∈ N be standard. A mapping ∥ · ∥ : En → E is said to be a norm on En if it satisfies
conditions:

(i) 0 ≤ ∥α∥, for all α ∈ En and ∥α∥ = 0 ⇐⇒ α = 0.

(ii) ∥α+ β∥ ≤ ∥α∥+ ∥β∥ for all α, β ∈ E.

(iii) ∥rα∥ = |r|∥α∥ for all r ∈ R, α ∈ En.

Example 2.5.2. Let ∥ · ∥ : En → E be given by

∥α∥ = max
i∈{1,...,n}

|αi| for all α = (α1, . . . , αn) ∈ En.

Then one has

(i) Obviously 0 ≤ ∥α∥ for all α ∈ En and ∥α∥ = 0 ⇐⇒ α = 0.

(ii) The triangular inequality ∥α + β∥ ≤ ∥α∥ + ∥β∥ holds for all α, β ∈ En. Indeed, by Proposition 2.2.43
we have

∥α+β∥ = max
i∈{1,...,n}

|αi+βi| = |αi0 +βi0 | ≤ |αi0 |+ |βi0 | ≤ max
i∈{1,...,n}

|αi|+ max
i∈{1,...,n}

|βi| = ∥α∥+∥β∥.

(iii) Clearly, ∥rα∥ = |r|∥α∥ for all r ∈ R, α ∈ En.

So ∥ · ∥ is a norm on En.

Example 2.5.3. Let ∥ · ∥ : En → E be given by

∥α∥ =
√

α2
1 + · · ·+ α2

n for all α = (α1, . . . , αn) ∈ En.

Then

(i) Obviously 0 ≤ ∥α∥, for all α ∈ En and ∥α∥ = 0 ⇐⇒ α = 0.
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(ii) Let α = (α1, . . . , αi), β = (β1, . . . , βn) ∈ En. To verify the triangle inequality we first prove that

|⟨α, β⟩| ≤ ∥α∥ · ∥β∥ for all α, β ∈ En, (2.16)

where ⟨α, β⟩ =
n∑

i=1
αiβi. Note that

{∥u∥
∣∣u ∈ α} ⊆ ∥α∥ for all α ∈ En. (2.17)

and if α, β ∈ E are non-negative, then

(α+ β)2 = α2 + β2 + 2αβ. (2.18)

Let x ∈ |⟨α, β⟩|. We need to prove that there is y ∈ ∥α∥ · ∥β∥ such that x ≤ y. Because x ∈ |⟨α, β⟩|,
we have x = |⟨u, v⟩| with u ∈ α, v ∈ β. It follows from the Cauchy-Schwarz inequality that |⟨u, v⟩| ≤
∥u∥ · ∥v∥. Put y = ∥u∥ · ∥v∥ ∈ ∥α∥ · ∥β∥ by (2.17). Then x ≤ y. So |⟨α, β⟩| ≤ ∥α∥ · ∥β∥.

On the other hand, by subdistributivity and formulas (2.17), (2.18) we have

∥α+ β∥2 =
n∑

i=1

(αi + βi)
2 ≤

n∑
i=1

(
α2
i + β2

i + 2αi · βi
)
=

n∑
i=1

α2
i +

n∑
i=1

β2
i + 2

n∑
i=1

αiβi

=∥α∥2 + ∥β∥2 + 2⟨α, β⟩ ≤ ∥α∥2 + ∥β∥2 + 2∥α∥ · ∥β∥ = (∥α∥+ ∥β∥)2.

It follows that ∥α+ β∥ ≤ ∥α∥+ ∥β∥.

(iii) Clearly ∥rα∥ = |r|∥α∥ for all r ∈ R, α ∈ En.

We conclude that ∥ · ∥ is a norm on En.



3
Matrices and vectors with external

numbers

In this chapter we study matrices and vectors with uncertainties in terms of external numbers. In Section 3.1 we
will start by introducing some special matrices and vectors which will be useful in the sequel. In Section 3.2 we
present some properties of the determinant and its minors of a matrix with external numbers which are necessary
for the study of flexible systems in the next chapter. Some of these properties are not identical with classical
results. In Section 3.3 we will generalize some notions of traditional linear algebra such as linearly independent
and dependent vectors. Some properties will be presented. The relationships between linear dependence and
linear independence of a set of vectors with external numbers as well between vectors with external numbers
and their representatives are investigated. In section 3.4 we study the rank of a matrix with external numbers.
In classical linear algebra, it is well-known that the rank of a matrix determined via determinants is equal to
the maximum number of independent row vectors, but in our context this relation is less evident. So different
notions of rank of a matrix with external numbers are given. The first, based on the determinant, is called
minor-rank, the second, based on the maximum number of independent row vectors, is called row-rank, and the
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last one, based on both the determinant and the rank of a representative matrix, is called strict rank. It is shown
that under some conditions we have equalities.

3.1 Some notions and notation of matrices and vectors over E

We introduce some special matrices and vectors with external numbers which will be used frequently in this
work. Let

A =


α11 α12 · · · α1n

...
... . . . ...

αm1 αm2 · · · αmn



be an m × n matrix with αij ∈ E for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Let β =


β1
...

βm

 or β = (β1, . . . , βm)T with

βi ∈ E be a column vector over E. We denote by Mm,n(F ) the set of all m × n matrices in F , where F is
either R or E. Whenm = n we simply writeMn(F ).

Wewill use the following notations: |α| = max
1≤i≤m
1≤j≤n

|αij |, A = max
1≤i≤m
1≤j≤n

Aij , A = min
1≤i≤m
1≤j≤n

Aij ,
∣∣β∣∣ = max

1≤i≤m
|βi|,

B = max
1≤i≤m

Bi, B = min
1≤i≤m

Bi. We will always assume that α is zeroless. We define below some special
matrices.

Definition 3.1.1. A matrix of the form

IA =


1 +A11 A12 · · · A1n

...
... . . . ...

An1 An2 · · · 1 +Ann

 ,

where neutrices Aij ⊆ ⊘ for 1 ≤ i, j ≤ n, is called a near identity matrix .

Example 3.1.2. The matrix

[
1 +⊘ ϵ£
ϵ⊘ 1 + ϵ£

]
is a near identity matrix.

Matrices with |α| = 1 +A, A ⊆ ⊘ play an important role in our work.

Definition 3.1.3. A matrix A = [αij ]m×n ∈ Mm,n(E), with |α| = 1 + A and A ⊆ ⊘, is called a reduced
matrix . A matrix P = [aij ] ∈ Mm,n(R) is called reduced if |aij | ≤ 1 and a11 = 1.

Example 3.1.4. The following matrix is a reduced matrix

A =

 1 +⊘ 0.5 + ϵ⊘ −1 + ϵ£
−0.2 + ϵ2⊘ 0.3 + ϵ⊘ −0.4 + ϵ£
0.1 +⊘ 0.2 + ϵ£ 0.7 + ϵ£

 .

Definition 3.1.5. A matrix A = [αij ] ∈ Mm,n(E) is called non-singular if m = n and det(A) is zeroless.
Otherwise we call it singular.
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Definition 3.1.6. Let A = [αij ] ∈ Mm,n(E). A matrix R = [aij ] ∈ Mm,n(R), with aij ∈ αij for all
1 ≤ i ≤ m, 1 ≤ j ≤ n, is called a representative matrix of A. In particular, if A is a reduced matrix and R is a
representative matrix of A which is reduced then we call R a reduced representative matrix of A.

Definition 3.1.7. Let β = (β1, . . . , βm) ∈ En. If β is a neutrix, β is called an upper neutrix vector. Moreover,
a vector b = (b1, . . . , bn), where bi ∈ βi for 1 ≤ i ≤ n, is said to be a representative of β.

Example 3.1.8. The vector β =
(
ϵ+ ϵ2⊘,⊘, ϵ+ ϵ2£

)
is an upper neutrix vector since β = ⊘ is a neutrix. The

vector β1 =
(
1 + ϵ2⊘,⊘, 2 + ϵ£

)
is not an upper neutrix vector since β = 2 + ϵ£ is zeroless.

Definition 3.1.9. For each 1 ≤ k ≤ n, a vector in the form e
(k)
A = (A1, . . . , Ak−1, 1+Ak, Ak+1, . . . , An) ∈ En,

where neutrices Ai ⊆ ⊘ for 1 ≤ i ≤ n, is called a near unit vector .

3.2 Properties of determinants with external numbers

We start this section by showing that the Laplace expansion of a determinant along a column or a row is not an
equality, but an inclusion.

We denote by∆i,j the (i, j)minor ofA, that is the determinant of (n−1)× (n−1) submatrix ofA that results
from removing the i-th row and the j-th column of A.

Proposition 3.2.1 ([20]). Let n ∈ N be standard. Let A = [αij ] ∈ Mn(E) and ∆ = det(A). Then for all
j ∈ {1, ..., n},

(−1)j+1α1j∆1,j + · · ·+ (−1)j+nαnj∆n,j ⊆ ∆.

Proof. We only prove it for j = 1, the other cases are similar. Let Sn be the set of all permutations of {1, . . . , n}
and σ ∈ Sn. The Laplace expansion along the first column and subdistributivity yields

α11∆1,1 − α21∆2,1 + · · ·+ αn1(−1)1+n∆n,1

=α11

∑
σ∈Sn
σ(1)=1

(
sgn(σ)ασ(2)2 · · ·ασ(n)n

)
+ · · ·+ αn1

∑
σ∈Sn
σ(1)=n

(
sgn(σ)ασ(1)1 · · ·ασ(n−1)(n−1)

)
⊆
∑
σ∈Sn
σ(1)=1

α11

(
sgn(σ)ασ(2)2 · · ·ασ(n)n

)
+ · · ·+

∑
σ∈Sn
σ(1)=n

αn1

(
sgn(σ)ασ(1)1 · · ·ασ(n−1)(n−1)

)

=
∑
σ∈Sn

(
sgn(σ)ασ(1)1 · · ·ασ(n−1)(n−1)ασ(n)n

)
= det


α11 · · · α1n

... . . . ...
αn1 · · · αnn

 = ∆.

The next result shows that, for reduced matrices corresponding to each column (row), there is a minor of (n−
1)th-order such that the minor is the same order of magnitude as the determinant. It also gives a lower bound
for absolute values of minors of (n− 1)th-order.
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Proposition 3.2.2 ([20]). Let n ∈ N be standard andA = [αij ] ∈ Mn(E) be a reduced square matrix of order
n. Suppose that∆ = detA is zeroless. Then for each j ∈ {1, . . . , n}, there exists i ∈ {1, . . . , n} such that

|∆i,j | > ⊘∆.

Proof. For simplicity we prove only the case j = 1, the other cases are proved analogously. By Proposition
3.2.1 one has

α11∆1,1 − α21∆2,1 + · · ·+ αn1(−1)n+1∆n,1 ⊆ ∆.

Suppose that ∆i,1 ⊆ ⊘∆ for all i = 1, . . . , n. Because the matrix is reduced, it holds that |αij | ≤ 1 + ⊘, for
all 1 ≤ i, j ≤ n. So αi1∆i,1 ⊆ (1 +⊘)⊘∆ = ⊘∆ for all i = 1, . . . , n. Consequently,

α11∆1,1 − α21∆2,1 + · · ·+ αn1(−1)n+1∆n,1 ⊆ ⊘∆.

So α11∆1,1 − α21∆2,1 + · · · + αn1(−1)n+1∆n,1 ⊆ ∆ ∩ ⊘∆, a contradiction to Lemma 2.2.22, for ∆ is
zeroless.

The results below give an upper bound of the minors and their neutrix parts of a reduced matrix.

Let A ∈ Mm,n(E). We denote by Mi1...ik,j1...jk the k × k minor of A by holding only rows {i1 . . . ik} and
columns {j1 . . . jk} from A.

Proposition 3.2.3. Let n ∈ N be standard and A = [αij ] ∈ Mn(E) be a reduced matrix. Let k ∈ {1, . . . , n}
and 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jk ≤ n. Then

|Mi1...ik,j1...jk | ≤ £.

Proof. Let I = {i1, . . . , ik}, J = {j1, . . . , jk}. Let Sk be the set of all bijections σ: I → J. Because A is a
reduced matrix, it follows that |αij | ≤ 1 +⊘ for all 1 ≤ i, j ≤ n. So

|Mi1...ik,j1...jk | =

∣∣∣∣∣∣
∑
σ∈Sk

sgn(σ)αi1σ(i1) . . . αikσ(ik)

∣∣∣∣∣∣
≤
∑
σ∈Sk

∣∣αi1σ(i1)

∣∣ . . . ∣∣αikσ(ik)

∣∣ ≤ ∑
σ∈Sk

(1 +⊘)k

=k!(1 +⊘).

Because n ∈ N is standard and k ≤ n, it follows that k! ≤ £. Consequently, k!(1 + ⊘) ≤ £. Hence
|Mi1...ik,j1...jk | ≤ £.

Lemma 3.2.4. Let n ∈ N be standard and A = [αij ] ∈ Mn(E) be a reduced non-singular matrix. Let
∆ = detA, k ∈ {1, . . . , n} and 1 ≤ i1 < · · · < ik ≤ n, 1 ≤ j1 < · · · < jk ≤ n. Then for all 1 ≤ k ≤ n, one
has

N (Mi1...ik,j1...jk) ⊆ A.
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In particular N(∆) ⊆ A.

Proof. Let I = {i1, . . . , ik}, J = {j1, . . . , jk}. Let Sk be the set of all bijections σ: I → J. Because A is a
reduced matrix, it follows that |αij | ≤ 1 +A for all 1 ≤ i, j ≤ n. So

N (Mi1...ik,j1...jk) =N

∑
σ∈Sk

sgn(σ)αi1σ(i1) . . . αikσ(ik)


=
∑
σ∈Sk

N
(
αi1σ(i1) · · ·αikσ(ik)

)
⊆
∑
σ∈Sk

N
(
(1 +A)k

)
=
∑
σ∈Sk

A = k!A = A.

When k = n we obtain that N(∆) ⊆ A.

3.3 Linear dependence and independence of vectors

A neutrix can be seen as a generalization of zero, so a vector such that all of its components are neutrices plays
a role as zero vector in classical linear algebra. In the definition of linear dependence of vectors with external
numbers below, a neutrix vector is used instead of the zero vector.

Definition 3.3.1. A vector A = (A1, . . . , An), where Ai is a neutrix for all 1 ≤ i ≤ n, is called a neutrix
vector.

Definition 3.3.2. A set of vectors in En

V = {α1, . . . , αm}

where αi ∈ En for 1 ≤ i ≤ m is called linearly dependent if there exist real numbers t1, t2, ..., tm ∈ R, at least
one of them being non-zero, and a neutrix vector A = (A1, A2, ..., An) such that

t1α1 + t2α2 + · · ·+ tmαm = A.

Otherwise, the set of vectors V = {α1, . . . , αm} is called linearly independent.

Remark 3.3.3. A set V = {α1, · · · , αm} of vectors in En is linearly independent if and only if that t1α1 +

t2α2 + · · ·+ tmαm = A, where A is a neutrix vector, implies t1 = · · · = tm = 0.

Example 3.3.4. Let ϵ > 0 be infinitesimal. Then the vectorsα1 = (1+⊘, ϵ⊘,−2+ϵ£), α2 = (−2+⊘, ϵ£, 4+
ϵ£) in E3 are linearly dependent, since 2α1 + α2 = (⊘, ϵ£, ϵ£) is a neutrix vector.

Example 3.3.5. The vectors α1 = (1 +⊘, ϵ⊘), α2 = (⊘, 1 + ϵ£) with ϵ > 0 in E2 are linearly independent.

Indeed, let t1, t2 ∈ R and A = (A1, A2) is a neutrix vector such that t1α1 + t2α2 = A. Then there are vectors
x1 = (1 + η, ϵζ) ∈ α1 and x2 = (ϑ, 1 + ϵυ) ∈ α2, where η, ζ, ϑ are infinitesimal, such that t1x1 + t2x2 = 0.

It is equivalent to the following t1(1 + η) + t2ϑ = 0

t1ζ + t2(1 + ϵυ) = 0

This implies that t1 = t2 = 0. Hence the vectors α1, α2 are linearly independent.
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Example 3.3.6. Let ϵ > 0 be infinitesimal. The set of vectors {α1 = (1+⊘, ϵ⊘,−2+ϵ£), α2 = (⊘, ϵ£, ϵ£)} ⊂
E3 is linearly dependent, since 0α1 + α2 = (⊘, ϵ£, ϵ£) is a neutrix vector.

A generalization of this example above is the following result, which has an obvious proof.

Proposition 3.3.7. Any set of vectors with external numbers including a neutrix vector is linearly dependent.

We next present some useful properties of vectors in En. We start by characterizing linearly independence and
dependence of vectors with external numbers via representatives.

Theorem 3.3.8. Let

V = {ξ1 = (ξ11, . . . , ξ1n), ξ2 = (ξ21, . . . , ξ2n), . . . , ξm = (ξm1, . . . , ξmn)} ⊂ En

be a set of vectors, with ξij = aij +Aij for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then

(i) The set V of vectors in En is linearly dependent if and only if for all 1 ≤ i ≤ m, there exist representatives
xi = (xi1, . . . , xin) ∈ Rn of ξi such that x1, . . . , xm are linearly dependent.

(ii) The set V of vectors in En is linearly independent if and only if every set {x1, . . . , xm} of vectors in Rn,
where xi ∈ ξi for 1 ≤ i ≤ m, is linearly independent.

Proof. (i) Suppose that the vectors ξ1, . . . , ξm are linearly dependent. By the definition, there exist real numbers
t1, . . . , tm, at least one of them being non-zero, and a neutrix vector A = (A1, . . . , An) such that

t1ξ1 + t2ξ2 + · · ·+ tmξm = A.

Consequently, the vector θ = (0, ..., 0) ∈ t1ξ1+t2ξ2+· · ·+tmξm.Hence there exist vectorsxi ∈ ξi, i = 1, ...,m

such that t1x1 + t2x2 + · · ·+ tmxm = 0. That is, the set of vectors {x1, ..., xm} is linearly dependent.

Conversely, suppose that there exists a set of vectors V ′ = {x1, ..., xm} ⊂ Rn, with xi ∈ ξi for all i = 1, ...,m

such that x1, ..., xn are linearly dependent. Then there exist real numbers t1, ..., tm, at least one of them being
non-zero, such that t1x1 + t2x2 + · · ·+ tmxm = 0. Let xi = (xi1, ..., xin) for all i = 1, ...,m. Then

t1x1j + · · ·+ tmxmj = 0 for all j = 1, ..., n. (3.1)

Because xi ∈ ξi, i = 1, ...,m, one has ξij = xij +Aij for all i = 1, ...,m; j = 1, ..., n. From (3.1) one obtains
that

t1ξ1j + · · ·+ tmξmj =t1(x1j +A1j) + · · ·+ tm(xmj +Amj)

=t1x1j + · · ·+ tmxmj + t1A1j + · · ·+ tmAmj

=t1A1j + · · ·+ tmAmj = Aj

for all j = 1, ..., n. Hence the vectors ξ1, ..., ξm are linearly dependent.
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(ii) Assume that the set of vectors {ξ1, . . . , ξm} in En are linearly independent. Suppose on contrary that there
exist representatives xi of ξi for 1 ≤ i ≤ m such that {x1, . . . , xm} are linearly dependent. By Part (i) one
concludes that ξ1, . . . , ξm are linearly dependent, a contradiction. Hence there exists no representative xi of ξi
for 1 ≤ i ≤ m such that x1, . . . , xm are linearly dependent.

Conversely, suppose that for all 1 ≤ i ≤ m and for all representatives xi of ξi one has {x1, . . . , xm} are linearly
independent. Suppose that {ξ1, . . . , ξn} are linearly dependent. By Part (i), there exists representatives xi of
ξi for all 1 ≤ i ≤ m such that {x1, . . . , xm} are linearly dependent, a contradiction. Hence {ξ1, . . . , ξm} are
linearly independent.

Observe that a set of linearly dependent vectors may have a set of linearly independent representative vectors.

Example 3.3.9. Let ϵ > 0 be infinitesimal. Consider the set of vectors {ξ1 = (⊘,⊘), ξ2 = (0, ϵ)} . Then
{ξ1, ξ2} is linearly dependent, since ξ1 + ξ2 = (⊘,⊘). Now we take x1 = (ϵ, 0) ∈ ξ1 and x2 = ξ2. Then
{ξ1, ξ2} is linearly independent.

Proposition 3.3.10. Every set of vectors {ξ1, . . . , ξm} ⊂ En, wherem > n, is linearly dependent.

Proof. Let ai = (ai1, . . . , ain) ∈ ξi be a representative of ξi, 1 ≤ i ≤ m. Because m > n then the set of
vectors

V = {a1 = (a11, . . . , a1n), . . . , am = (am1, . . . , amn)}

inRn is linearly dependent. Hence, by Theorem 3.3.8, the set of vectors {ξ1, . . . , ξm} is linearly dependent.

Proposition 3.3.11. Let S = {ξ1, · · · , ξm} be a set of vectors in En and k ∈ N be standard.

(i) If the set S is linearly dependent, any set of k vectors including S is linearly dependent.

(ii) If the set S is linearly independent, any set of vectors included in S is linearly independent.

Proof. (i) Let
V = {ξ1, . . . , ξm, ξm+1, . . . , ξk} ⊂ En.

Because the set S of vectors is linearly dependent, there exists real numbers t1, . . . , tm, all of them are not
equal to zero simultaneously, and a neutrix vector A = (A1, . . . , An) such that t1ξ1 + · · · + tmξm = A. Let
t′ = (t1, . . . , tm, 0, . . . , 0). Then t′ ̸= θ = (0, . . . , 0) and t1ξ1+· · ·+tmξm+0ξm+1+· · ·+0ξk = (A1, . . . , An),
which is a neutrix vector in En. Hence V is linearly dependent.

(ii) Let V ′ be a set of vectors included in S. Suppose that V ′ is linearly dependent. Because V ′ ⊆ S, by Part
(i) the set S of vectors is linearly dependent, a contradiction.

Definition 3.3.12. Let V = {ξ1, . . . , ξm} be a set of vectors in En. The maximum number of linearly indepen-
dent vectors of V is called the rank of the given set of vectors.

Example 3.3.13. Let ξ1 = (1 +⊘,⊘,−1 + ϵ⊘), ξ2 = (−1 + ϵ£, ϵ⊘, 1 +⊘) with ϵ > 0 is infinitesimal. Then
the set of vectors {ξ1, ξ2} is linearly dependent, since ξ1 + ξ2 = (⊘,⊘,⊘). The rank of given set of vectors is
1.
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Definition 3.3.14. Let ξi = (αi1, . . . , αin) ∈ En, 1 ≤ i ≤ m. The matrix

A =


α11 α12 · · · α1n

...
... . . . ...

αm1 αm2 · · · αmn


is called the coordinate matrix of the given vectors and is denoted by [ξ1, . . . , ξm]T .

For a set of n vectors in En linear independence and dependence is determined by the determinant of its coor-
dinate matrix.

Theorem 3.3.15. A set V = {α1, · · · , αn} of n vectors in En, where αi = (αi1, . . . , αin) for 1 ≤ i ≤ n, is
linearly independent if and only if

det


α11 α12 · · · α1n

...
... . . . ...

αn1 αn2 · · · αnn


is zeroless.

Proof. Put αij = aij +Aij for all 1 ≤ i, j ≤ n and

A =


α11 α12 · · · α1n

...
... . . . ...

αn1 αn2 · · · αnn

 .

Assume that det(A) is zeroless. Suppose that the set V of vectors is linearly dependent. By Theorem 3.3.8,
there exists a set of vectors ai = (ai1, ..., ain) ∈ Rn, where ai ∈ αi is a representative of αi for all i = 1, .., n,
which is linearly dependent. It follows that

det


a11 a12 · · · a1n
...

... . . . ...
an1 an2 · · · ann

 = 0.

So

det(A) =det


a11 +A11 a12 +A12 · · · a1n +A1n

...
... . . . ...

an1 +An1 an2 +An2 · · · ann +Ann



=det


a11 a12 · · · a1n
...

... . . . ...
an1 an2 · · · ann

+N
(
det(A)

)
= N

(
det(A)

)
,

which is a contradiction.
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Conversely, assume that the set of vectors {α1, ..., αn} is linearly independent. Suppose that det(A) is a neutrix.
Then there exist vectors {x1, . . . , xn}, where xi = (ai1, . . . , ain) ∈ αi for all i ∈ {1, ...n}, such that

det


a11 a12 · · · a1n
...

... . . . ...
an1 an2 · · · ann

 = 0.

Hence the set of vectors {x1, x2, ..., xn} is linearly dependent. By Theorem 3.3.8, the set of vectors {α1, ..., αn}
is linearly dependent, a contradiction.

This proposition enables us to verify whether a set of vectors with external numbers is linearly independent or
not.

Example 3.3.16. (a) The set of vectors

{α1 = (1 +⊘, 2 + ϵ⊘, ϵ£), α2 = (−1 + ϵ⊘, ϵ⊘,−1 + ϵ£), α3 = (ϵ⊘, 2 + ϵ⊘,−1 + ϵ2£)}

is linearly dependent, since ∣∣∣∣∣∣∣
1 +⊘ 2 + ϵ⊘ ϵ£

−1 + ϵ⊘ ϵ⊘ −1 + ϵ£
ϵ⊘ 2 + ϵ⊘ −1 + ϵ2£

∣∣∣∣∣∣∣ = ⊘.

(b) The set of vectors
{η1 = (1 +⊘, 2 + ϵ⊘), η2 = (−1 + ϵ⊘, ϵ⊘)} ⊂ E2

is linearly independent, since ∣∣∣∣∣ 1 +⊘ 2 + ϵ⊘
−1 + ϵ⊘ ϵ⊘

∣∣∣∣∣ = 2 + ϵ⊘ .

Corollary 3.3.17. If a matrix A = [αij ]n×n over E has two identical representatives of rows then det(A) is
neutricial.

Proof. Put αi = (αi1, ..., αin) for all i = 1, ..., n and S = {α1, ..., αn}. Because the matrixA has two identical
representatives rows, the set of vectors S is linearly dependent. By Theorem 3.3.15, det(A) is neutricial.

The corollary is also true if we use columns instead of rows.

3.4 On the ranks of a matrix over E

In this section three notions of rank of a matrix over E are given, respectively based on minors, based on the
maximum number of independent row vectors, and based on the minors and the rank of a representative matrix.
In general, these three notions do not match. Conditions for the equality of these notions of ranks are presented.
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Firstly we define the rank of a matrix over E via minors of the matrix.

Definition 3.4.1. Let A = [αij ] be an m × n matrix over E. We say that the minor-rank of A is r, denoted
by mr(A) = r, if there exists a zeroless minor of order r of A and every minor of order k of A, with k > r, is
neutricial.

Obviously mr(A) ≤ min{m, n}.

Example 3.4.2. Let A =

[
1 +⊘ 2 +⊘ −1 + ϵ£
−2 −4 + ϵ 2 + ϵ⊘

]
. Then

M12,12 =

∣∣∣∣∣1 +⊘ 2 +⊘
−2 −4 + ϵ

∣∣∣∣∣ = ⊘, M12,13 =

∣∣∣∣∣1 +⊘ −1 + ϵ£
−2 2 + ϵ£

∣∣∣∣∣ = ⊘,

M12,23 =

∣∣∣∣∣ 2 +⊘ −1 + ϵ£
−4 + ϵ 2 + ϵ⊘

∣∣∣∣∣ = ⊘, andM1,1 = 1 +⊘ zeroless. Hence mr(A) = 1.

Proposition 3.4.3. Let A = [αij ] be anm× n matrix over E. Then mr(A) = mr(AT).

Proof. It is a consequence of the fact that det(A) = det(AT ).

Next we define the rank of a matrix over E through the maximum number of linearly independent row vectors
of the matrix.

Definition 3.4.4. Let A = [αij ] ∈ Mm,n(E). The maximal number of linearly independent row vectors is
called the row-rank of A, denoted by r(A).

So the row-rank of a matrix is equal to the rank of the set of row vectors of the matrix presented in Definition
3.3.12.

Theorem 3.4.5. Let A = [αij ]m×n be a matrix over E. such that mr(A) = r ≤ min{m, n}. Then there exist r
row vectors of A, which are linearly independent. As a consequence r(A) ≥ mr(A).

Proof. Because mr(A) = r, we may suppose without loss of generality that the minor

det(M) = det


α11 · · · α1r

... . . . ...
αr1 · · · αrr


is zeroless. Let ξi = (αi1, . . . , αin), for 1 ≤ i ≤ m be row vectors ofA and ξ′i = (αi1, . . . , αir), for 1 ≤ i ≤ m

be vectors inEr. By Theorem 3.3.15 and the fact that det(M) is zeroless, the set of vectors {ξ′1, ..., ξ′r} is linearly
independent.

We will prove that ξ1, . . . , ξr are linearly independent. Assume that t1ξ1 + · · ·+ trξr = (A1, . . . , An). That is,
for all 1 ≤ j ≤ n, one has t1α1j + t2α2j + · · ·+ trαrj = Aj . It follows that t1ξ′1+ · · ·+ trξ

′
r = (A1, . . . , Ar).

Because {ξ′1, . . . , ξ′r} is linearly independent, one has t1 = · · · = tr = 0. Hence the set of vectors {ξ1, ..., ξr}
is linearly independent by Remark 3.3.3.
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For a square matrix over E, linear independence and dependence of row vectors in a matrix are completely
characterized by the determinant as shown in Theorem 3.3.15. However, unlike classical linear algebra, for
rectangle matrices A of order m × n with m ̸= n, it is difficult, in practice, to verify whether the maximum
number of independent row vectors is equal to the minor-rank of A or not, or equivalently to verify that if all
minors of order r of A are neutricial, the respective r row vectors are linearly dependent or not. To overcome
this difficulty we introduce below another notion of the rank for matrices over E charactered via both minors
and the rank of a representative. We call it strict rank.

Definition 3.4.6. LetA = [αij ]m×n be a matrix over E. A number r ∈ N is called the strict rank of the matrix
A, denoted by sr(A) = r, if the following holds:

(i) There is a zeroless minor of order r of A.

(ii) There is a representative matrix Â = [aij ] ∈ Mm,n(R) of A such that the rank of (Â) is r.

Clearly, in the case of non-singular matrices condition (i) implies the condition ii. So the three notions of rank
coincide. However for non-singular matrices, in particular for non-square matrices, the equalities are not easy
to verify. Below we show that if we know the strict rank, we know the minor-rank and the row-rank. Then
conditions are given for the other relationships to hold.

Theorem 3.4.7. Let A be anm× n matrix over E. If sr(A) = r then mr(A) = r.

Proof. Because sr(A) = r, there exists a zeroless minor of order r of A. By the definition of minor-rank of a
matrix one has mr(A) ≥ r. LetAk = Ai1...ik,i1...ik be a minor of order k ofA with k > r. Because there exists
a representative matrix Â = [aij ] of A such that rank(Â) = r, we have det

(
Âk

)
= det

(
Âi1...ik,i1...ik

)
= 0. So

det
(
Ai1...ik,i1...ik

)
is a neutrix. One concludes that mr(A) = r.

Corollary 3.4.8. Let A be anm× n matrix over E. Then sr(A) ≤ mr(A).

Theorem 3.4.9. Let A = [αij ] be anm× n matrix over E. If sr(A) = r then r(A) = r.

Proof. Assume that sr(A) = r. Then there exists a representative matrix Â of A such that rank(Â) = r.

Without loss of generality, we may assume that det(Âr) = det


a11 · · · a1r
... · · ·

...
ar1 · · · arr

 ̸= 0. Let i ∈ {r+1, n}. Then

the set of vectors

{a1 = (a11, . . . , a1n), . . . , ar = (ar1, . . . , arn), ai = (ai1, . . . , ain)}

is linearly dependent. This implies that the set of vectors

{α1 = (α11, . . . , α1n), . . . , αr = (αr1, . . . , αrn), αi = (αi1, . . . , αin)}

is linearly dependent. So the number of linearly independent vectors is at most r.
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Moreover sr(A) = r, by Theorem 3.4.7 we have mr(A) = r . By Theorem 3.4.5 there are exactly r linearly
independent row vectors in A.

Corollary 3.4.10. Let A be anm× n matrix over E. Then sr(A) ≤ r(A).

We end this section by studying several conditions such that the minor-rank, the row-rank, and the strict rank
are equal.

Theorem 3.4.11. Let A = [αij ]m×n be a matrix over E. Assume that r(A) = r and there is a zeroless minor
of order r of A. Then sr(A) = r.

Proof. Because there are exactly r linearly independent row vectors in A, by Theorem 3.3.8 there is a set of
real vectors V = {a1, . . . , am}, where ai ∈ αi = (αi1, . . . , αin) for all 1 ≤ i ≤ m, such that the maximum
number of linearly independent vectors in V is r. It follows that the rank of the matrix Â = [aij ] is r. Also
there is a zeroless minor of order r of A, we conclude that sr(A) = r.

The proposition below shows that if the minor-rank of a matrix is equal to the number of columns minus one, it
is equal to the row-rank.

Proposition 3.4.12. Let A = [αij ] ∈ Mm,n(E) such that mr(A) = n− 1. Then

mr(A) = sr(A) = n− 1 = r(A).

Proof. Ifm = n− 1, the conclusion follows by Theorem 3.4.5 and Theorem 3.4.11. Assume thatm > n− 1.

Let ξi = (αi1, . . . , αin), for 1 ≤ i ≤ m. Because mr(A) = n− 1, by Theorem 3.4.5, there are (n− 1) linearly
independent row vectors in A. Suppose on contrary that r(A) > n− 1. Then there are n linearly independent
vectors in A. Without loss of generality, we suppose that ξ1, . . . , ξn are linearly independent. By Theorem

3.3.15 it holds that det


α11 · · · α1n

... . . . ...
αn1 · · · αnn

 is zeroless. Hence mr(A) ≥ n, a contradiction. So r(A) = n − 1.

By Theorem 3.4.11 we have sr(A) = n− 1.

Example 3.4.13. Let A =

 1 +⊘ 1

1 + ϵ+ ϵ2⊘ 1

1 +⊘ 1

 . Then mr(A) = 1. By Proposition 3.4.12, we have r(A) =

sr(A) = 1.

Next, we will show that if a matrix has a submatrix such that the relative uncertainty is included in all the neutrix
parts of the remaining entries, the minor-rank is equal to the row-rank.

For convenience, we use the following notations.
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Notation 3.4.14. Let A = [αij ] ≡ [aij + Aij ] ∈ Mm,n(E) such that mr(A) = r. Let I = {i1, . . . , ir} and
J = {i1, . . . , ir} be such that det (AIJ) = det (Ai1...ir,j1...jr) is zeroless. We denote AJ = max

j∈J
1≤i≤m

Aij , and

AJC = min
j ̸∈J

1≤i≤m

Aij .

Theorem 3.4.15. Let A = [αij ] be an m× n reduced matrix over E, with αij = aij + Aij for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n. Suppose that
AJ

det(AIJ)
⊆ AJC for 1 ≤ i ≤ m, and mr(A) = r. Then r(A) = r. In particular

st(A) = r.

Proof. If r = m, the conclusion follows by Theorem 3.4.5. Assume that r < m. Because mr(A) = r, without
loss of generality, assume that

det(AIJ) = det


α11 · · · α1r

... . . . ...
αr1 · · · αrr

 (3.2)

is zeroless. We will demonstrate that every set {ξ1, . . . , ξr, ξi} is linearly dependent for all i ∈ {r+1, . . . ,m}.
To do this, we prove that there is a set of vectors

{a1 = (a11, . . . , a1n), . . . , ar = (ar1, . . . , arn), ai = (ai1, . . . , ain)},

with apq ∈ αpj , p ∈ {1, . . . , r, i}, q ∈ {1, . . . , n} satisfying

det


a11 · · · a1r a1j
... . . . ...

...
ar1 · · · arr arj

ai1 · · · air aij

 = 0, (3.3)

for all j ∈ {r + 1, . . . , n}.

For j = r + 1, because mr(A) = r one has

det


α11 · · · α1r α1(r+1)
... . . . ...

...
αr1 · · · αrr αr(r+1)

αi1 · · · αir αi(r+1)


is a neutrix. Consequently, there exist aps ∈ αps for all p ∈ {1, . . . , r, i}, s ∈ {1, . . . , r + 1} such that

det


a11 · · · a1r a1(r+1)
... . . . ...

...
ar1 · · · arr ar(r+1)

ai1 · · · air ai(r+1)

 = 0. (3.4)

Hence formula (3.3) is true for j = r + 1. Let k ∈ N, r + 1 < k ≤ n be arbitrary. We need to prove that there
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is a column ak = (a1k, . . . , ark, aik)
T such that apk ∈ αpk for all p ∈ {1, . . . , r, i} and

det


a11 · · · a1r a1k
... . . . ...

...
ar1 · · · arr ark

ai1 · · · air aik

 = 0, (3.5)

where aps is defined by formula (3.4) p ∈ {1, . . . , r, i} and s ∈ {1, . . . , r}. Because mr(A) = r, one has

det


α11 · · · α1r α1k

... . . . ...
...

αr1 · · · αrr αrk

αi1 · · · αir αik


is a neutrix. As a result, there are row vectors

a′1 = (a′11, . . . , a
′
1r, a

′
1k), . . . , a

′
r = (a′r1, . . . , a

′
rr, a

′
rk), a

′
i = (a′i1, . . . , a

′
ir, a

′
ik)

such that a′ij ∈ αij and det(T ) = 0 with

T ≡


a′11 · · · a′1r a′1k
... . . . ...

...
a′r1 · · · a′rr a′rk
a′i1 · · · a′ir a′ik

 . (3.6)

To complete the proof, one shows that there exists ϵik ∈ Aik such that the column vector

ϵ.k = (0, . . . , 0, ϵik)
T

satisfies

det


a11 · · · a1r a′1k
... . . . ...

...
ar1 · · · arr a′rk
ai1 · · · air a′ik + ϵik

 = 0.

That is, we need to find ϵik such that

det


a11 · · · a1r a′1k
... . . . ...

...
ar1 · · · arr a′rk
ai1 · · · air a′ik

+ det


a11 · · · a1r 0
... . . . ...

...
ar1 · · · arr 0

ai1 · · · air ϵik

 = 0.

Using the Laplace expansion along the (r + 1)-th column for the second determinant, the above condition
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becomes

d.ϵik + det


a11 · · · a1r a′1k
... . . . ...

...
ar1 · · · arr a′rk
ai1 · · · air a′ik

 = 0, (3.7)

where

d = det


a11 · · · a1r
... . . . ...

ar1 · · · arr

 .

Because aqs, a′qs ∈ αqs for all q, s ∈ {1, . . . , r}, we have

aqs = a′qs + ϵqs, where ϵqs ∈ Aqs.

So

η ≡ det


a11 · · · a1r a′1k
... . . . ...

...
ar1 · · · arr a′rk
ai1 · · · air a′ik

 = det


a′11 + ϵ11 · · · a′1r + ϵ1r a′1k

... . . . ...
...

a′r1 + ϵr1 · · · a′rr + ϵrr a′rk
a′i1 + ϵi1 · · · a′ir + ϵir a′ik

 .

Let S(r+1) be the set of all bijections σ: {1, . . . , r, i} → {1, . . . , r, k + 1}. Then

η =
∑

σ∈Sr+1

sgn(σ)(a′1σ(1) + ϵ1σ(1)) · · · (a′rσ(r) + ϵrσ(r)).a
′
iσ(i)

≡detT + ν.

Because det(T ) = 0, one has η = ν. We will show that η = ν ∈ AJ . Observe that ν is the sum of terms
which contains at least one ϵps with p ∈ {1, . . . , r, i} and s ∈ {1, . . . , r}. Because ϵps ∈ Aps ⊆ AJ for all
s ∈ {1, . . . , r}, p ∈ {1, . . . , r, i} and |a′kl| ≤ |αkl| ≤ 1 +⊘ for k ∈ {1, . . . , n} and l ∈ {1, . . . ,m}, each term
of ν is included in AJ(1 +⊘)r = AJ . Hence, η = ν ∈ AJ .

Also, by formula (3.2) we have d ∈ det(AIJ). It follows that
AJ

d
⊆ AJC ⊆ Aik by the assumption. So

ϵik = −η

d
∈ AJ

d
⊆ AJC ⊆ Aik. (3.8)

Hence the vector
ϵ.k = [0, . . . , 0,−η/d]T

satisfies (3.7). That is, formula (3.5) is satisfied with a.k = (a′1k, . . . , a
′
rk, a

′
ik − η/d)T .

Because k ∈ {r+1, . . . , n} is arbitrary, one concludes that (3.3) holds for all k ∈ {r+1, . . . , n}. So the set of
vectors

{a1 = (a11, · · · , a1n), · · · , ar = (ar1, · · · , arn), ai = (ai1, · · · , ain)}
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is linearly dependent for all i ∈ {r + 1, . . . ,m}. By Theorem 3.3.8, the set of vectors

V = {α1 = (α11, · · · , α1n), · · · , αr = (αr1, · · · , αrn), αi = (αi1, · · · , αin)}

is linearly dependent for each i ∈ {r + 1, · · · ,m}. Hence r(A) = r.

The last conclusion follows by Theorem 3.4.11.

Finally we show if all entries of a given matrix A have the same neutrix parts, the minor-rank is equal to the
strict rank, and therefore to the row-rank.

Theorem 3.4.16. Let A = [αij ] ∈ Mm,n(E) be a reduced matrix with N (αij) = Aij ≡ A for all 1 ≤ i ≤ m

and 1 ≤ j ≤ n. Assume that mr(A) = r. Then r(A) = sr(A) = r.

Proof. Ifm = r, the conclusion follows by Theorem 3.4.5 and Theorem 3.4.11. Assume that r < m. Because
mr(A) = r, there exists a submatrixAr ofA such that detAr is zeroless. We can also choose det(Ar) such that
the absolute value of detAr is the maximum minor comparing to all the absolute value of the minors of order r
of A. For simplicity, we may assume that

det(Ar) = det


α11 · · · α1r

... . . . ...
αr1 · · · αrr

 ≡ d+D = ∆ is zeroless.

Let p ∈ {r + 1, . . . ,m} be arbitrary. We will prove that, there exists a set of representative vectors

{a1 = (a11, . . . , a1n), . . . , ar = (ar1, . . . , arn), ap = (ap1, . . . , apn)}

of {α1, . . . , αr, αp}, such that the set of vectors {a1, . . . , ar, ap} is linearly dependent.

With an analogous argument as in the proof of Theorem 3.4.15 we show that

det


a11 · · · a1r a1j
... . . . ...

...
ar1 · · · arr arj

ap1 · · · apr apj

 = 0 for all r + 1 ≤ j ≤ n, (3.9)

where aij ∈ αij for i ∈ {1, . . . , r, p}, j ∈ {1, . . . , r, r} are fixed. Put us =
(
a1s, . . . , ars, aps

)
, s ∈ {1, . . . , n}.

For j = 1 + r, formula (3.9) is true. Let k ∈ {r + 2, . . . , n} be arbitrary. Because mr(A) = r, one has

det


α11 · · · α1r α1k

... . . . ...
...

αr1 · · · αrr αrk

αp1 · · · αpr αpk

 is a neutrix. Consequently, there exist a′ij ∈ αij for all i ∈ {1, . . . , r, k} and
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j ∈ {1, . . . , r, p} such that

det


a′11 · · · a′1r a′1k
... . . . ...

...
a′r1 · · · a′rr a′rk
a′p1 · · · a′pr a′pk

 = 0.

This means that the set of column vectors

{
u′1 = (a′11, . . . , a

′
r1, a

′
p1), . . . , u

′
r = (a′1r, . . . , a

′
rr, a

′
pr), u

′
k+1 = (a′1k, . . . , a

′
rk, a

′
pk)
}

is linearly dependent. As a consequence, there exist real numbers t1, . . . , tr such that

u′k =t1u
′
1 + · · ·+ tru

′
r

=t1(u1 + ϵ1) + · · ·+ tr(ur + ϵr)

=(t1u1 + · · ·+ trur) + (t1ϵ1 + · · ·+ trϵr), (3.10)

where ϵq = (ϵ1q, . . . , ϵrq, ϵpq) ∈ Ar+1 = A× · · · ×A.We also have tq =
dpq
d

, 1 ≤ q ≤ r, where

dpq = det


a′11 · · · a′1q−1 a′1k a′1q+1 · · · a′1r
... . . . ...

... . . . ...
...

a′r1 · · · a′rq−1 a′rk a′rq+1 · · · a′rr

 .

Moreover d ̸= 0, dpq ∈ ∆pq, and
∣∣∣∣dpqd

∣∣∣∣ ≤ 1 +⊘ since det(Ar) is maximum, one derives

t1ϵ1 + · · ·+ trϵr ∈ Ar+1.

Put
uk = u′k − (t1ϵ1 + · · ·+ trϵr) ≡ (a1k, . . . , ark, apk).

Then aqk ∈ αqk, q ∈ {1, . . . , r, p}. By formula (3.10) one has

uk =t1u1 + · · ·+ trur.

So the set of vectors {u1, . . . , ur, uk} is linearly dependent. Hence

det


a11 · · · a1r a1k
... . . . ...

...
ar1 · · · arr ark

ap1 · · · apr apk

 = 0.

Hence formula (3.9) holds for j = r + 1, . . . , n. Consequently, the set of vectors {a1, . . . , ar, ap} is linearly
dependent. It follows that {α1, . . . , αr, αp} is linearly dependent for all p ∈ {r+ 1, . . . ,m}. So r(A) = r. By
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Theorem 3.4.11 we obtain sr(A) = r.



4
Flexible systems of linear equations

4.1 Introduction

In this chapter we will study a system of linear equations in which coefficients are external numbers. It is well-
known that many problems of engineering and economics are modelled in terms of systems of linear equations.
Data which form the system often involve imprecisions. As a result, the coefficients of the system contain
uncertainties. Also in practice solving a linear system implies many successive computer operations, so next
to problems of propagation of errors appear problems of rounding off. We will use external numbers to model
these imprecisions. A system of linear equations with external numbers is called a flexible system.

Part of this chapter is motivated by Chapter 7. We will apply results in this chapter to construct conditions such
that a linear optimization problem with flexible objective function and constraints has optimal solutions.

In section 4.2 we define flexible systems, consider several types of solutions and also distinguish some special
systems.

43
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In general common methods like Cramer’s rule, the Gauss-Jordan elimination do not work on flexible systems.
In Section 4.3 we will present conditions such that Cramer’s rule can be applied to non-singular flexible systems.

In Section 4.4 we will present an explicit formula for Gauss-Jordan elimination method in the case of linear
systems. We will express Gauss operations in terms of multiplications of matrices. Then we apply this formula
to study conditions such that we can use Gauss-Jordan eliminationmethod to solve non-singular flexible systems
of linear equations.

Using results developed in chapter 3, in Section 4.5 we give necessary and sufficient conditions so that singular
flexible systems have solutions. Also, solution formulas are given.

In the final section we use a parameter method to deal with flexible systems. We will treat the neutrix parts of
constant terms of a flexible system as sets of parameters. Taking advantages of the group properties of neutrices,
under certain conditions formulas of solutions of a flexible system depending on parameters are given.

Convention 4.1.1. In this chapter we always assume thatm,n ∈ N are standard.

4.2 Some basic notions

We start this section by defining some notions related to flexible systems, that is a system in which coefficients
are external numbers. Then we will classify flexible systems into several different categories. Notions of
solutions of a flexible system are also given.

Because an external number is an external set of real numbers, in flexible systems inclusions are used instead
of equalities.

Definition 4.2.1 ([19]). Let n,m ∈ N be two standard natural numbers and αij = aij + Aij , βi = bi +Bi for
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} be external numbers. A system of the form

α11ξ1+ α12ξ2+ · · · +α1nξn ⊆ b1 +B1

...
... . . . ...

...
αm1ξ1+ αm2ξ2+ · · · +αmnξn ⊆ bm +Bm

(4.1)

is called a flexible system of linear equations, or a flexible system (for short).

We call A = [αij ] ∈ Mm,n(E) the coefficient matrix, B =


β1
...

βm

 =


b1 +B1

...
bm +Bm

 the constant term vector
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each βi a constant term , ξ =


ξ1
...
ξn

 the variable vector, and

[A|B] =


α11 α12 · · · α1n β1
...

... . . . ...
...

αm1 αm2 · · · αmn βm


the augmented matrix of the system.

Then the system (4.1) can be represented in the matrix form Aξ ⊆ B.

Definition 4.2.2. The flexible system (4.1) is said to be

(i) non-singular if its coefficient matrix A is non-singular. Otherwise, we call it singular.

(ii) homogeneous if all the constant terms βi for i ∈ {1, . . . ,m} are neutrices.

(iii) upper homogeneous if B is an upper neutrix vector.

(iv) non-homogeneous if it is not upper homogeneous.

Example 4.2.3. Let ϵ > 0 be infinitesimal. Consider the flexible systems

(a)

{
(1 +⊘)ξ1 + ϵ£ξ2 ⊆ ⊘
ϵ⊘ ξ1 + (1 +⊘)ξ2 ⊆ ϵ+ ϵ2 ⊘ .

(b)

{
(1 + ϵ⊘)ξ1 + (2 + ϵ£)ξ2 − (3 +⊘)ξ3 ⊆ ⊘
(ϵ£)ξ1 + ⊘ξ2 + (ϵ2⊘)ξ3 ⊆ ϵ£.

(a) One has ∆ = det

[
1 +⊘ ϵ£
ϵ⊘ 1 +⊘

]
= 1 + ⊘ is zeroless and |β| = max{⊘, ϵ + ϵ2⊘} = ⊘ is a neutrix.

So the given flexible system is non-singular and upper homogeneous, although the constant term ϵ + ϵ2⊘ is
zeroless. Hence the system is not homogeneous.

(b) Because |β| = max{⊘, ϵ£} = ⊘ and the number of rows is m = 2 which differs from the number of
columns n = 3, the given flexible system is singular. Also, all the constant terms are neutrices, hence the given
flexible system is homogeneous.

From the definition and the examples above, it is clear that a homogeneous system is upper homogeneous,
however, in general, the converse is not true, as shown by Example 4.2.3(a).

Remark 4.2.4. For an upper homogeneous flexible system Aξ ⊆ B all the constant terms of the system are
included in the largest neutrix. In fact, βi ⊆ B = |β| for all i = 1, . . . , n. Indeed, one has |βi| ≤ |β| = B.
Assume that |βi| ∩ B = ∅, then for all y ∈ |βi|, and for all z ∈ B, it follows that y < z. Now we take
z ∈ B, z < 0, and y ≥ 0, a contradiction. Hence βi ⊆ B.
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An arbitrary flexible system can be transformed to an equivalent system such that the absolute value of every
coefficient is less than or equal to 1 + ⊘. For this kind of systems, easier to treat with, we call it a reduced
flexible system.

Definition 4.2.5. A flexible system is called reduced if its coefficient matrix is reduced.

Example 4.2.6. For ϵ > 0 an infinitesimal, the following system is a reduced system{
(1 +⊘)ξ1 + (1/2 + ϵ£)ξ2 − ϵ⊘ ξ3 ⊆ 1 +⊘
(−1 + ϵ£)ξ1 +⊘ξ2 − (1/3 + ϵ£)ξ3 ⊆ −2 +⊘.

The kinds of solutions of a given flexible systems are defined as follows.

Definition 4.2.7 ([19]). A vector of external numbers ξ = (ξ1, . . . , ξn) is called an admissible solution of the
flexible system (4.1) if it satisfies the system. In particular, if ξ ∈ Rn then we call it a real admissible solution. A
solution ξ = (ξ1, . . . , ξn) of the system (4.1) is said to be maximal if there is no external (internal) vector η ⊃ ξ

satisfying the system. If ξ = (ξ1, . . . , ξn) satisfies the system with strict equalities, the vector ξ = (ξ1, . . . , ξn)

is called an exact solution of the system.

4.3 Cramer’s rule for non-singular flexible systems

Note first that, in general, Cramer’s rule is not true for flexible systems as shown in the following example.

Example 4.3.1. For ϵ > 0 be infinitesimal, consider the homogeneous flexible system{
(1 + ϵ⊘)ξ1 + (ϵ+ ϵ2⊘)ξ2 ⊆ ϵ2⊘

ϵ⊘ ξ1 + (1 + ϵ£)ξ2 ⊆ ϵ£.

One has

∆ = det

[
1 + ϵ⊘ ϵ+ ϵ2⊘
ϵ⊘ 1 + ϵ£

]
= 1 + ϵ£ is zeroless.

Hence the system is non-singular. Let
det(M1) = det

[
ϵ2⊘ ϵ+ ϵ2⊘
ϵ£ 1 + ϵ£

]
= ϵ2£,

det(M2) = det

[
1 + ϵ⊘ ϵ2⊘
ϵ⊘ ϵ£

]
= ϵ£.

Applying classical Cramer’s rule to the system one has
ξ1 =

det(M1)

∆
=

ϵ2£
1 + ϵ£

= ϵ2£,

ξ2 =
det(M2)

∆
=

ϵ£
1 + ϵ£

= ϵ£.

However, it is not a valid solution of the system. Indeed, substituting ξ1, ξ2 into the first equation of the system,
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one obtains
(1 + ϵ⊘)ϵ2£+ (ϵ+ ϵ2⊘)ϵ£ = ϵ2£ ̸⊆ ϵ2 ⊘ .

Hence ξ1, ξ2 do not satisfy the first equation.

In [19], J. Justino and I.P. van den Berg have shown that under certain conditions upon the sizes of uncertainties
Cramer′s rule holds for non-singular, non-homogeneous flexible systems of linear equations. We will extend
this result to all non-singular flexible systems of linear equations. This means that we can also apply the result
to upper homogeneous, in particular to homogeneous non-singular flexible systems.

4.3.1 Main results on Cramer’s rule

Consider a flexible system of the form
α11ξ1+ α12ξ2+ · · · +α1nξn ⊆ b1 +B1

...
... . . . ...

...
αn1ξ1+ αn2ξ2+ · · · +αnnξn ⊆ bn +Bn,

(4.2)

where n ∈ N is a standard number. Put

∆ = det(A) ≡ d+D,

where A = [αij ]n×n is the coefficient matrix of the system. We define

Mj =


α11 · · · α1j−1 β1 α1(j+1) · · · α1n

... . . . ...
...

... . . . ...
αn1 · · · αnj−1 βn αn(j+1) · · · αnn

 .

Mj(b) =


α11 · · · α1j−1 b1 α1(j+1) · · · α1n

... . . . ...
...

... . . . ...
αn1 · · · αnj−1 bn αn(j+1) · · · αnn

 .

Mj(a, b) =


a11 · · · a1j−1 b1 a1(j+1) · · · a1n
... . . . ...

...
... . . . ...

an1 · · · anj−1 bn an(j+1) · · · ann

 .

To study flexible systems we need to control uncertainties of entries in matrices and vectors. To do this, we will
use the following definition.

Definition 4.3.2. Let A = [αij ] be an n× n matrix and β = (β1, . . . , βn)
T be a column vector over E.

(i) The relative uncertainty of A is defined by R(A) =
Aαn−1

∆
.
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(ii) The relative precision of B is defined by P (B) = B/β if β is zeroless, and by P (B) = B : B if β = B

is a neutrix.

This definition is an extended version of the definition in [20]. In fact, we include the case where the maximal
term is a neutrix. For the division of two neutrices, we refer to Definition 2.1.2

Definition 4.3.3. Consider the system (4.2). The following conditions are called the Cramer conditions of
system (4.2).

(i) R(A) ⊆ P (B)

(ii) ∆/αn is not an absorber of B

(iii) B = B.

Remark 4.3.4. For reduced flexible systems, if a given system is upper homogeneous, the condition R(A) ⊆

P (B) implies
A

∆
·B ⊆ B. As a consequence, in the case of reduced upper homogeneous non-singular flexible

system the conditions that B = B = B and that∆ is not an absorber of B imply that R(A) ⊆ P (B). Also, the

relative uncertainty of A becomes R(A) =
A

∆
, since α = 1 +A with A ⊆ ⊘.

It is easier to work with reduced flexible systems. The following theorem says that every flexible system is
equivalent to a reduced system and every Cramer condition satisfied by the original system is also satisfied by
the reduced system.

Theorem 4.3.5. Let n ∈ N be standard, A = [αij ]n×n be a non-singular matrix over E, a ∈ α and B =

(β1 . . . βn)
T ∈ En be a column vector. Let A′ = [α′

ij ]n×n where α′
ij =

αij

a
for all 1 ≤ i, j ≤ n and

B′ = (β1, . . . , β
′
m)T where β′

i =
βi
a

for 1 ≤ i ≤ n. Consider the two following flexible systems

Aξ ⊆ B (4.3)

and
A′ξ ⊆ B′. (4.4)

The following statements hold:

(i) The flexible system (4.4) is reduced.

(ii) The two flexible systems above are equivalent, that is the set of solutions of the two systems are the same.

(iii) If a Cramer condition is satisfied by system (4.3), it is also satisfied by system (4.4).

To prove this theorem we need some lemmas.

Lemma 4.3.6. Let n ∈ N be standard, A = [αij ]n×n be a non-singular matrix over E, a ∈ α and B =

(β1, . . . , βn)
T be a column vector, where βi ∈ E for all 1 ≤ i ≤ n. Let A′ = [α′

ij ]n×n where α′
ij =

αij

a
for all

1 ≤ i, j ≤ n and B′ = (β1, . . . , β
′
m)T where β′

i =
βi
a

for 1 ≤ i ≤ n. One has
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(i) R(A) = R(A′),

(ii) P (B) = P (B′).

Proof. (i) Because α is zeroless, α′ =
α

a
is zeroless. For a′ ∈ α′, there exists c ∈ α such that a′ =

c

a
. By

Lemma 2.2.17(i), one has

R(A′) =
A′ a′

n−1

∆′ =

(
A/a

)
·
(
cn−1/an−1

)
∆/an

=
A.cn−1

∆
=

A.αn−1

∆
= R(A).

(ii) We consider two cases.

Case 1: β is zeroless. Then

P (B′) = B′/β′ = (B/a) /
(
β/a

)
= B/β = P (B).

Case 2: β is neutricial. Then
P (B′) = (B/a) :

(
B/a

)
= P (B).

Lemma 4.3.7. Let n ∈ N be standard, A = [αij ]n×n be a non-singular matrix over E, a ∈ α and B =

(β1 · · ·βn)T ∈ En be a column vector. Let A′ = [α′
ij ]n×n, where α′

ij =
αij

a
for all 1 ≤ i, j ≤ n and

B′ = (β1, · · · , β′
m)T , where β′

i =
βi
a

for 1 ≤ i ≤ n. We denote∆ = det(A),∆′ = det(A′).

Then

(i) ∆/αn is not an absorber of B implies that ∆′ = det(A′) is not an absorber of B′.

(ii) B = B if and only if B′ = B′.

Proof. (i) Because ∆/αn is not an absorber of B, also ∆/an is not an absorber of B. This means that B ⊆
(∆/an) ·B. On the other hand, B′ = B/a ⊆ (∆/an) · (B/a) = ∆′ ·B′. Hence ∆′ is not an absorber of B′.

(ii) This follows from the facts that B′
=

B

a
and B′ =

B

a
.

Proof of Theorem 4.3.5. (i) We have α′ = α/a = 1+A ⊆ 1+⊘. The fact |αij | ≤ |α| for all 1 ≤ i, j ≤ n

implies
∣∣∣α′

ij

∣∣∣ = ∣∣∣αij

a

∣∣∣ ≤ ∣∣∣∣αa
∣∣∣∣ ≤ 1 +⊘ for all 1 ≤ i, j ≤ n. Hence the system (4.4) is reduced.

(ii) Note that α is zeroless, so a ̸= 0. A vector ξ = (ξ1, . . . , ξn)
T is a solution of the system (4.3) if and only

if
n∑

j=1

αijξj ⊆ βi for all 1 ≤ i ≤ n, hence also

 n∑
j=1

αijξj

 /a ⊆ βi/a, for all 1 ≤ i ≤ n. The latter is
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equivalent to
n∑

j=1

(αij/a) ξj ⊆ βi/a, for all 1 ≤ i ≤ n. Once again, these inclusions hold if and only if ξ is a

solution of the system (4.4).

(iii) This follows by Lemmas 4.3.6 and 4.3.7.

We show below that the Cramer conditions are sufficient to guarantee that Cramer’s rule can be applied to non-
singular flexible systems. This result is a generalization of Theorem 4.4 in [20, p.19] on non-homogeneous,
non-singular flexible systems.

Theorem 4.3.8. Assume that the flexible system (4.2) is non-singular. The following holds.

(i) If R(A) ⊆ P (B) then

ξ =

(
detM1(b)

d
, . . . ,

detMn(b)

d

)
(4.5)

is an admissible solution of the flexible system (4.2).

(ii) If R(A) ⊆ P (B) and ∆/αn is not an absorber of B then

ξ =

(
detM1(b)

∆
, . . . ,

detMn(b)

∆

)
(4.6)

is an admissible solution of the flexible system (4.2).

(iii) If R(A) ⊆ P (B),∆/αn is not an absorber of B and B = B then

ξ =

(
detM1

∆
, . . . ,

detMn

∆

)
(4.7)

is the maximal solution of the flexible system (4.2).

Note that (
detM1(b)

d
, . . . ,

detMn(b)

d

)
∈
(
detM1(b)

∆
, . . . ,

detMn(b)

∆

)
⊆
(
detM1

∆
, . . . ,

detMn

∆

)
. (4.8)

Due to this fact, these vectors have at least one common representative vector x = (x1, . . . , xn) which is a
solution of a linear system 

a11x1+ · · · +a1nxn = b1
... . . . ...

...
an1x1 + · · · +annxn = bn,

with aij ∈ αij and bi ∈ βi for all 1 ≤ i, j ≤ n.

The condition∆/αn being not too small to become an absorber ofB can be seen as a generalization of the con-
dition in classical linear algebra of the determinant of a non-singular system of linear equations being different
from zero.
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Definition 4.3.9 ([20]). The column vector ξ =

(
detM1

∆
, . . . ,

detMn

∆

)T

is called the Cramer-solution.

To prove Theorem 4.3.8 we need some auxiliary results.

Lemma 4.3.10. Consider the system (4.2). Assume that it is reduced, non-singular and upper homogeneous.
Then

(i) |det(Mj)| ⊆ B, in particular N
(
det(Mj)

)
⊆ B.

(ii) N
(
det
(
Mj(b)

))
⊆ A ·B.

Proof. Let Sn be the set of all permutations of {1, . . . , n} and σ ∈ Sn. Put

γσ = ασ(1)1 . . . ασ(j−1)(j−1)ασ(j+1)(j+1) . . . ασ(n)n.

Because the system is reduced, |αij | ≤ |α| = 1 +A ⊆ 1 +⊘ and A ⊆ ⊘. So

|γσ| ≤ αn−1 ≤ (1 +⊘)n−1 = 1 +⊘. (4.9)

Moreover,

|det(Mj)| =

∣∣∣∣∣∑
σ∈Sn

sgn(σ)γσβσ(j)

∣∣∣∣∣ ≤ ∑
σ∈Sn

∣∣γσβσ(j)∣∣ .
(i) The system is upper homogeneous, so βi ⊆ B by Remark 4.2.4. Formula (4.9) implies

|det(Mj)| ≤
∑
σ∈Sn

∣∣γσβσ(j)∣∣ ≤ ∑
σ∈Sn

∣∣(1 +⊘)B
∣∣ = n!(1 +⊘)B = B.

Hence |det(Mj)| ⊆ B.

(ii) By Lemma 2.2.17(vi) and the definition of γσ, one has N(γσ) ⊆ N(1 + A)n−1 = A. Furthermore the
system is upper homogeneous, so bi ⊆ B, i = 1, . . . , n. As a result, for 1 ≤ i ≤ n,

N
(
det
(
Mj(b)

))
= N

(∑
σ∈Sn

sgn (σ) γσbσ(j)

)
=
∑
σ∈Sn

N
(
γσbσ(j)

)
=
∑
σ∈Sn

bσ(j)N(γσ) ⊆ n!B ·A ⊆ B ·A.

Lemma 4.3.11. Assume that the system (4.2) is reduced, non-singular and upper homogeneous, and satisfies
the condition R(A) ⊆ P (B). Let ∆ = det(A) = d + D and ξ = (ξ1, . . . , ξn)

T be an admissible solution,
where ξj = xi +Xj ∈ E for all j ∈ {1, . . . , n}. Let x = max

1≤j≤n
|xj |. Then

(i) A · x ⊆
(
A/∆

)
·B, hence A x ⊆ B.
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(ii) If N(ξj) ⊆ B for j ∈ {1, . . . , n}, then N

(
n∑

j=1
αijξj

)
⊆ N(βi), for all i ∈ {1, . . . , n}.

Proof. (i) Because A is non-singular, the determinant∆ is zeroless. In particular d ̸= 0. By Cramer’s rule, the

column vector x =

(
det
(
M1(a, b)

)
d

, . . . ,
det
(
Mn(a, b)

)
d

)T

is the unique solution of the classical linear system

ÂX = b, where Â = [aij ]n×n is a representative of A, X = [xi]n×1 is the variable column and b = [bi]n×1

is the constant term vector. It follows that x =

∣∣∣∣∣det
(
Mk(a, b)

)
d

∣∣∣∣∣ for some k ∈ {1, . . . , n}. By Lemma 4.3.10i,

det
(
Mk(a, b)

)
∈ detMj ⊆ B. So, condition R(A) ⊆ P (B) implies

A · x = A

∣∣∣∣∣det
(
Mk(a, b)

)
d

∣∣∣∣∣ ⊆ A

d
·B =

A

∆
·B ⊆ B.

(ii) One has

N

 n∑
j=1

αijξj

 =

n∑
j=1

(N (αij) ξj + αijN(ξj)) . (4.10)

Let ξ = max
1≤j≤n

|ξj |. One considers two cases.

Case 1: ξ = ξk is a neutrix with some k ∈ {1, . . . , n}. We have ξk = N(ξk). If N(ξj) ⊆ B for all j ∈
{1, . . . , n} one derives ξ = ξk = N(ξk) ⊆ B. Because |ξi| ≤ ξ ⊆ B, one has ξj ⊆ B for all 1 ≤ j ≤ n. It
follows from (4.10) and the fact N(αij) ⊆ A ⊆ ⊘ that

N
( n∑

j=1

αijξj

)
⊆

n∑
j=1

(
BA+ aB

)
= B ⊆ N(βi).

Case 2: ξ = max
1≤j≤n

|ξj | is zeroless. Then by (4.10) and Part (i), we have

N
( n∑

j=1

αijξj

)
⊆

n∑
j=1

(
xA+ aB

)
= n(B + x A) ⊆ B +B = B ⊆ N(βj).

Note that

(i) Let ξ = (ξ1, . . . , ξn) ∈ En and x = (x1, . . . , xn) ∈ Rn be a representative of ξ. Then

n∑
j=1

αijξj =
n∑

j=1

αijxj +
n∑

j=1

αijN(ξi). (4.11)
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So the vector ξ = (ξ1, . . . , ξn)
T is a solution of the system (4.2) if and only if

αi1x1 + · · ·+ αinxn ⊆ βi for all 1 ≤ i ≤ n, (4.12)

and
n∑

j=1

αijN(ξj) ⊆ N(βi) for all 1 ≤ i ≤ n. (4.13)

(ii) If A is a non-singular matrix, then ∆ = det(A) ≡ d + D with d ̸= 0 and
1

∆
=

1

d
+

D

d2
by Lemma

2.2.20(i). Hence
N(1/∆) = D/d2 = D/∆2. (4.14)

Proof of Theorem 4.3.8. For non-homogeneous non-singular flexible systems, we refer to the proof in [19].
Now we suppose that the system is upper homogeneous. We consider two cases.

Case 1: the system is reduced. By formula (4.8), the vector x = (x1, . . . , xn)
T , where xi =

det
(
Mi(a, b)

)
d

for
1 ≤ i ≤ n, is a representative of all the three vectors above. Note that x = (x1, . . . , xn)

T is a solution of the

system
n∑

j=1
aijxj = bi, where aij ∈ αij for 1 ≤ i, j ≤ n, by Cramer’s rule. By Lemma 4.3.11(i) one has

αi1x1 + · · ·+ αinxn = (ai1 +Ai1)x1 + · · ·+ (ain +Ain)xn

= (ai1x1 + · · ·+ ainxn) + (Ai1x1 + · · ·+Ainxn)

⊆ bi +Ax ⊆ bi +B ⊆ bi +Bi = βi.

So formula (4.12) is satisfied. To complete the proof of this case we will verify the condition (4.13).

(i) Assume thatR(A) ⊆ P (B). Because the system is reduced and upper homogeneous, this condition becomes
A

∆
B ⊆ B. By Lemma 4.3.10(ii),

N

(
det
(
Mj(b)

)
d

)
=

1

d
N
(
det
(
Mj(b)

))
⊆ B ·A

d
=
(
A/∆

)
·B ⊆ B. (4.15)

As a consequence, N(ξj) = N

(
det
(
Mj(b)

)
d

)
⊆ B for all j = {1, . . . , n}. By Lemma 4.3.11(ii),

n∑
i=1

αijN(ξi) ⊆ N

 n∑
j=1

αijξj

 ⊆ N(βi) for all 1 ≤ i ≤ n, so formula (4.13) is satisfied. Hence ξ =

(
det
(
M1(b)

)
d

, . . . ,
det
(
Mn(b)

)
d

)T

is a solution of the non-singular and upper homogeneous system (4.2).

(ii) Because ∆ is not an absorber of B, one has B ⊆ ∆B and therefore

B/∆ ⊆ B. (4.16)
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Also by formula (4.14), for all j ∈ {1, . . . , n} it holds that

N(ξj) = N

(
det
(
Mj(b)

)
∆

)
=

1

∆
N (detMj(b)) + det

(
Mj(b)

)
·N
(

1

∆

)
=

1

d
N
(
det
(
Mj(b)

))
+ det

(
Mj(b)

)
· D

∆2
=

N
(
det
(
Mj(b)

))
d

+
det
(
Mj(b)

)
∆

· D
∆
. (4.17)

On the other hand,R(A) ⊆ P (B), so A

d
B =

A

∆
B ⊆ B. From formula (4.17), Lemma 4.3.10 and Lemma 3.2.4

we obtain

N(ξj) ⊆
A ·B
d

+
(
B/∆

)
·
(
A/∆

)
⊆ B +

1

∆

(
A

∆
·B
)

⊆ B +B/∆ ⊆ B +B = B.

By Lemma 4.3.11(ii), one has
n∑

i=1

αijN(ξi) ⊆ N
( n∑

i=1

αijξi

)
⊆ N(βi), for all 1 ≤ i ≤ n.

Hence ξ =

(
det
(
M1(b)

)
∆

, . . . ,
det
(
Mn(b)

)
∆

)T

is a solution of the non-singular and upper homogeneous system

(4.2).

(iii) Furthermore, if B = B = B then by Lemma 4.3.10(i) and Lemma 3.2.4,

N(ξj) = N

(
det(Mj)

∆

)
=

1

∆
N (det(Mj)) + (det(Mj)) ·N

(
1

∆

)
⊆ 1

∆
B +B

D

∆2
⊆ B.

Then Lemma 4.3.11(ii) yields
n∑

j=1

αijN(ξj) ⊆ N
( n∑

i=1

αijξi

)
⊆ N(βi), for all 1 ≤ i ≤ n. Hence the

column vector ξ =

(
det(M1)

∆
, . . . ,

det(Mn)

∆

)T

is a solution of the flexible system Aξ ⊆ B.

Finally we will show that ξ defined as above is the maximum solution. Let ζ = (ζ1, . . . , ζn)
T be any solution

of the given system and choose yj ∈ ζj for all j = 1, . . . , n. Then for every choice of representatives aij ∈
αij , 1 ≤ i, j ≤ n there exist b1 ∈ β1, . . . , bn ∈ βn such that

a11y1+ a12y2+ · · · +a1nyn = b1
...

... . . . ...
...

an1y1+ an2y2+ · · · +annyn = bn.

Put

d = det


a11 · · · a1n
... . . . ...

an1 · · · ann

 .

Then yj =
Mj(a, b)

d
∈ det(Mj)

∆
for 1 ≤ j ≤ n and so ζj ⊆

det(Mj)

∆
. Hence ξ =

(
det(M1)

∆
, . . . ,

det(Mn)

∆

)T

is the maximal solution.
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Case 2: the system is not reduced. By Theorem 4.3.5, the given system is equivalent to the reduced system


α′
11ξ1+ α′

12ξ2+ · · · +α′
1nξn ⊆ b1 +B′

1
...

... . . . ...
...

α′
n1ξ1+ α′

n2ξ2+ · · · +α′
nnξn ⊆ bn +B′

n.

(4.18)

A short calculation shows that for all 1 ≤ i ≤ n,

det
(
M ′

i(b)
)

d′
=

det
(
Mi(b)

)
d

,
detM ′

i(b)

∆′ =
det
(
Mi(b)

)
∆

and
det
(
M ′

i

)
∆′ =

det(Mi)

d
, (4.19)

where

M ′
j =


α′
11 · · · α′

1j−1 β′
1 α′

1(j+1) · · · α′
1n

... . . . ...
...

... . . . ...
α′
n1 · · · α′

nj−1 β′
n α′

n(j+1) · · · α′
nn,



M ′
j(b) =


α′
11 · · · α′

1j−1 b′1 α′
1(j+1) · · · α′

1n
... . . . ...

...
... . . . ...

α′
n1 · · · α′

nj−1 b′n α′
n(j+1) · · · α′

nn,


and d′ is a representative of∆′.

Also, if the condition in Part (i) is satisfied by the given system, by Theorem 4.3.5 it is also satisfied by the
system (4.18). By formula (4.19) and the conclusion in Case 1, the vector ξ = (ξ1, . . . , ξn) defined by (4.5) is
an admissible solution of the system (4.18) and hence it is an admissible solution of the system (4.2).

With analogous arguments the second and the last part can be proved.

The following result provides another condition to guarantee that there exist real admissible solutions byCramer’s
rule for non-singular flexible systems.

Theorem 4.3.12. Consider the following non-singular reduced flexible system
α11x1+ · · · +α1nxn ⊆ b1 +B1

... . . . ...
...

αn1x1 + · · · +αnnxn ⊆ bn +Bn.

(4.20)

Let ∆ = det(A) = d + D, with A = [αij ]n×n ∈ Mn(E). If A/∆ ⊆ B then u = (u1, . . . , un), where

uj =
det
(
Mj(a, b)

)
d

for 1 ≤ j ≤ n, is a real admissible solution of the system.

For reduced systems, condition R(A) = A/∆ ⊆ B is weaker than condition R(A) ⊆ P (B) if |β| ∈ ∞̸. Also

if
A

∆
⊆ P (B) = B/β, the point x defined above is a solution of the system. Combining this fact with the result

in Theorem 4.3.12 we obtain the following.
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Corollary 4.3.13. Consider the non-singular reduced flexible system (4.20). If
A

∆
⊆ max

{
B,B/β

}
then

u = (u1, . . . , un), where uj =
det
(
Mj(a, b)

)
d

for 1 ≤ j ≤ n, is a real solution of the system (4.20).

Proof of Theorem 4.3.12. It is clear that u = (u1, . . . , un), where uj =
det
(
Mj(a, b)

)
d

for 1 ≤ j ≤ n, is a
solution of the system 

a11x1+ · · · +a1nxn = b1
... . . . ...

...
an1x1 + · · · +annxn = bn

(4.21)

by Cramer’s rule. So 
a11u1+ · · · +a1nun ⊆ b1 +B1

... . . . ...
...

an1u1 + · · · +annun ⊆ bn +Bn.

(4.22)

Also, by Proposition 3.2.3, one obtains that ui · Aij ⊆
det
(
Mj(a, b)

)
d

· A ⊆ £B ⊆ Bi for all 1 ≤ i ≤ n. This
implies that

n∑
j=1

αijxj =
∑
j=1

aijxj +Aijxj ⊆ bi +Bi +
n∑

j=1

Bi = bi +Bi, for all 1 ≤ i ≤ n.

Thus x is a solution of the system (4.20).

The result below shows that if a homogeneous flexible system has the constant term vector with identical com-
ponents, the Cramer-solution is equal to the neutrix vector. This is a generalization of the result in classical
algebra which says that the zero vector is the unique solution of a non-singular homogeneous linear system.

Theorem 4.3.14. Consider a homogeneous non-singular and flexible system (4.2). Assume also that the system
satisfies all the Cramer conditions. Then the vector

(
B, . . . , B

)T
is the Cramer-solution of the system (4.2).

To prove this result, we need the following.

Lemma 4.3.15. Suppose that the flexible system (4.2) is non-singular and satisfies all the Cramer conditions.
Then for all j ∈ {1, . . . , n},

N

(
det(Mj)

∆

)
= B.

In addition, if the system is homogeneous, for all 1 ≤ j ≤ n,

B =
det(Mj)

∆
. (4.23)

Proof. For the case of non-homogeneous systems, we refer to the proof in [20, p.78]. We now suppose that the
system is homogeneous. By Theorem 4.3.5, we can also assume that the system is reduced. Let j ∈ {1, . . . , n}
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be arbitrary. Because B = B = B and by Lemma 4.3.10,

det(Mj) ⊆ B. (4.24)

On the other hand |Mij | > ⊘∆ for some i ∈ {1, . . . , n} by Proposition 3.2.2, so there exists t > ⊘ such that
|Mij | = |t∆|. Moreover,∆ is not an absorber ofB, henceB ⊆ B∆ ⊆ tB∆ = BMij for some i ∈ {1, . . . , n}.
By Proposition 3.2.1 we obtain

B ⊆ (−1)j+1BM1,j + · · ·+ (−1)j+nBMn,j

⊆ det


1 +A11 · · · α1(j−1) B α1(j+1) · · · α1n

... . . . ...
...

... . . . ...
αn1 · · · αn(j−1) B αn(j+1) · · · αnn


= det(Mj).

Thus B = det(Mj). By Proposition 2.2.26,

B =
B

∆
=

det(Mj)

∆
.

Hence B = N

(
det(Mj)

∆

)
for 1 ≤ j ≤ n.

Proof of Theorem 4.3.14. Because the system satisfies all the Cramer conditions, by Theorem 4.3.8, the vector

ξ = (ξ1, . . . , ξn)
T with ξi =

det(Mi)

∆
, 1 ≤ i ≤ n is the Cramer-solution of the system. Moreover, the

system is homogeneous, so by Lemma 4.3.15 we have
det(Mi)

∆
= B for all 1 ≤ i ≤ n. Hence the vector

ξ = (B, . . . , B)T is the Cramer-solution of the system (4.2).

Remark 4.3.16. Assume that the flexible system (4.2) satisfies the Cramer conditions. By Lemma 4.3.15, the
Cramer-solution of the system is of the form ξi = xi + B, for all i ∈ {1, . . . , n}, where x = (x1, . . . , xn) is a
solution of the linear system 

a11y1+ a12y2+ · · · +a1nyn = b1
...

... . . . ...
...

an1y1+ an2y2+ · · · +annyn = bn,

where aij ∈ αij , bi ∈ βi for all i, j ∈ {1, . . . , n}.

4.3.2 Some examples

The following example illustrates the conditions of Part (ii) of Theorem 4.3.8 for an upper homogeneous flexible
system. It also shows that the Cramer’s rule does not fully holds.
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Example 4.3.17. Let ϵ > 0 be infinitesimal. Consider the following upper homogeneous flexible system{
(1 + ϵ2⊘)ξ1 + ϵ£ξ2 ⊆ ⊘
(2 + ϵ⊘)ξ1 + (1 + ϵ⊘)ξ2 ⊆ ϵ+ ϵ⊘ .

One has ∆ = det

[
1 + ϵ2⊘ ϵ£
2 + ϵ⊘ 1 + ϵ⊘

]
= 1 + ϵ£ is zeroless, so the system is non-singular. Moreover B = ϵ⊘

and ∆ = 1 + ϵ£ ∈ @, hence ∆ is not an absorber of B. Also B = ⊘ implies P (B) = B : B = ϵ⊘ : ⊘ = ϵ£.

In addition A = ϵ£ and α = 2 + ϵ⊘, n = 2, so R(A) =
A · αn−1

∆
= ϵ£. It follows that R(A) = P (B) = ϵ£.

So the conditions of Theorem 4.3.8(ii) are satisfied by the system. For ϵ1, ϵ2 ∈ ⊘, let

det
(
M1(b)

)
= det

[
ϵ1 ϵ£

ϵ+ ϵϵ2 1 + ϵ⊘

]
= ϵ1 + ϵ(ϵ1 ⊘+ϵ£)

det
(
M2(b)

)
= det

[
1 + ϵ2⊘ ϵ1

2 + ϵ⊘ ϵ+ ϵϵ2

]
= ϵ(1 + ϵ2)− 2ϵ1 + ϵ(ϵ2 ⊘+ϵ1⊘).

By Theorem 4.3.8 we conclude that the vector ξ = (ξ1, ξ2) ∈ E2 given by

ξ1 =
det
(
M1(b)

)
∆

=
ϵ1 + ϵ(ϵ1 ⊘+ϵ£)

1 + ϵ£
= ϵ1 + ϵ(£ϵ1 + £ϵ)

ξ2 =
det
(
M2(b)

)
∆

=
ϵ(1 + ϵ2)− 2ϵ1 + ϵ(ϵ⊘+ϵ1⊘)

1 + ϵ£
= ϵ(1 + ϵ2)− 2ϵ1 + ϵ(ϵ⊘+ϵ1⊘) + ϵ2£+ ϵ1ϵ£.

is an admissible solution of the given system.

However, the vector η = (η1, η2) with


η1 =

det(M1)

∆
= ⊘

η2 =
det(M2)

∆
= ⊘

is not a solution of the system. Indeed,

one has (2 + ϵ⊘)⊘+(1 + ϵ⊘)⊘ = ⊘ ̸⊆ ϵ+ ϵ⊘, so it does not satisfy the second equation of the system.

Te following example deal with an homogeneous flexible systemwhich satisfies only the conditions of Theorem
4.3.8(ii).

Example 4.3.18. Let ϵ > 0 be infinitesimal. Consider the homogeneous flexible system{
(1 + ϵ⊘)ξ1 + (ϵ+ ϵ2⊘)ξ2 ⊆ ϵ2⊘

ϵ⊘ ξ1 + (1 + ϵ2£)ξ2 ⊆ ϵ£.

Because ∆ = det

[
1 + ϵ⊘ ϵ+ ϵ2⊘
ϵ⊘ 1 + ϵ2£

]
= 1 + ϵ ⊘ is zeroless, the system is non-singular. Moreover, ∆ ∈ @

and B = ϵ2⊘, so ∆ is not an absorber of B. Furthermore,

R(A) =
A.αn−1

∆
=

ϵ⊘ ·(1 + ϵ⊘)

1 + ϵ⊘
= ϵ⊘,
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and
P (B) = B : B = ϵ2⊘ : ϵ£ = ϵ⊘ .

Hence
R(A) = P (B).

So the system just satisfies conditions of Theorem 4.3.8(ii) and does not satisfy those of Theorem 4.3.8(iii) since
B ̸= B. For b1 ∈ ϵ2⊘, b2 ∈ ϵ£, let

det
(
M1(b)

)
= det

[
b1 ϵ+ ϵ2⊘
b2 1 + ϵ2£

]
= b1 − b2ϵ+ b1ϵ

2£+ b2ϵ
2⊘,

det
(
M2(b)

)
= det

[
1 + ϵ⊘ b1

ϵ⊘ b2

]
= b2 + b1ϵ⊘+b2ϵ⊘ .

Applying Theorem 4.3.8(ii) one concludes that the vector ξ = (ξ1, ξ2)
T given by

ξ1 =
det
(
M1(b)

)
∆

=
b1 − b2ϵ+ ϵb1£+ b2ϵ

2⊘
1 + ϵ⊘

= b1 − b2ϵ+ ϵb1£+ b2ϵ
2⊘,

ξ2 =
det
(
M2(b)

)
∆

=
b2 + ϵb1 ⊘+b2ϵ⊘

1 + ϵ⊘
= b2 + ϵb1 ⊘+b2ϵ⊘,

is an admissible solution of the given system.

However, note that (ξ1, ξ2) = (
det(M1)

∆
,
det(M2)

∆
), with

det(M1) = det

[
ϵ2⊘ ϵ+ ϵ2⊘
ϵ£ 1 + ϵ2£

]
= ϵ2£

det(M2) = det

[
1 + ϵ⊘ ϵ2⊘
ϵ⊘ ϵ2£

]
= ϵ2£

is not a valid solution. Indeed, we have

ξ1 =
det(M1)

∆
=

ϵ2£
1 + ϵ⊘

= ϵ2£

ξ2 =
det(M2)

∆
=

ϵ2£
1 + ϵ⊘

= ϵ2£.

Substituting it into the first equation of the system, we have

(1 + ϵ⊘)ϵ2£+ (ϵ+ ϵ2⊘)ϵ2£ = ϵ2£ ⊃ ϵ2 ⊘ .

Hence this vector does not satisfy the first equation.

Next we have a homogeneous flexible system satisfying all Cramer’s conditions.
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Example 4.3.19. Let ϵ > 0 be infinitesimal. Consider the homogeneous flexible system{
(1 + ϵ⊘)ξ1 + (ϵ+ ϵ2⊘)ξ2 ⊆ ϵ£

ϵ⊘ ξ1 + (1 + ϵ2£)ξ2 ⊆ ϵ£.

Because ∆ = det

[
1 + ϵ⊘ ϵ+ ϵ£
ϵ⊘ 1 + ϵ2£

]
= 1 + ϵ⊘ is zeroless, the system is non-singular. Moreover ∆ ∈ @,

so ∆ is not an absorber of B. Furthermore, A = ϵ⊘, B = B = ϵ£, so P (B) = B : B = £ and R(A) =
A · αn−1

∆
= ϵ⊘; hence R(A) ⊆ P (B). Thus the system satisfies all the Cramer conditions. Let

det(M1) = det

[
ϵ£ ϵ+ ϵ2⊘
ϵ£ 1 + ϵ2£

]
= ϵ£

det(M2) = det

[
1 + ϵ⊘ ϵ£
ϵ⊘ ϵ£

]
= ϵ£.

Theorem 4.3.8 says that the vector (ξ1, ξ2)T given by

ξ1 =
detM1

∆
=

ϵ£
1 + ϵ£

= ϵ£

ξ2 =
detM2

∆
=

ϵ£
1 + ϵ£

= ϵ£

is the maximal solution of the system. Moreover, if we verify it by substituting ξ1, ξ2 into the system, we obtain
that {

(1 + ϵ⊘)ϵ£ + (ϵ+ ϵ2⊘)ϵ£ = ϵ£
(ϵ⊘)(ϵ£) + (1 + ϵ2£)ϵ£ = ϵ£.

Hence it is a valid solution of the system.

The following example shows that although the determinant is infinitesimal, the Cramer conditions still are
satisfied.

Example 4.3.20. Let ϵ > 0 be infinitesimal. Consider the system{
x + y ⊆ 1 + £ϵ̸∞

(1 + ϵ)x + y ⊆ £ϵ̸∞.

One has ∆ = det

[
1 1

1 + ϵ 1

]
= −ϵ is zeroless and not an absorber of B = £ϵ̸∞. A short calculation shows

that R(A) = 0, P (B) = £ϵ̸∞ and hence R(A) ⊂ P (B). Applying Theorem 4.3.8 we conclude that the vector
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ξ = (ξ1, ξ2) given by

ξ1 =

det

[
1 + £ϵ−̸∞ 1

£ϵ−̸∞ 1

]
−ϵ

= −1

ϵ
+ £ϵ̸∞

ξ2 =

det

[
1 1 + £ϵ̸∞

1 + ϵ £ϵ−̸∞

]
−ϵ

=
1 + ϵ

ϵ
+ £ϵ−̸∞

is the maximal solution of the system.

Finally, we have a flexible system satisfying only the condition R(A) ⊆ P (B) of Theorem 4.3.8(i).

Example 4.3.21. Let ϵ > 0 be infinitesimal. Consider the system{
(1 + ϵ+ ϵ⊘)x + y ⊆ £ϵ

(1 + ϵ⊘)x + (1 + ϵ⊘)y ⊆ 1 + £ϵ.

We have ∆ = det

[
1 + ϵ+ ϵ⊘ 1

1 + ϵ⊘ 1 + ϵ⊘

]
= ϵ+ ϵ⊘ is zeroless. Moreover, B = B = ϵ£. So ∆ is an absorber

of B. In addition, the system is reduced, so R(A) =
A

∆
= ⊘ and P (B) = ϵ£ : £ϵ = £. Hence R(A) ⊆ P (B).

Hence the conditions of Part (i) of Theorem 4.3.8 are satisfied. For t1 ∈ ϵ£, t2 ∈ 1 + ϵ£ let

det
(
M1(b)

)
= det

[
t1 1

t2 1 + ϵ⊘

]
= t1 − t2 + t1ϵ⊘ .

det
(
M2(b)

)
= det

[
1 + ϵ+ ϵ⊘ t1

1 + ϵ⊘ t2

]
= t2 + ϵt2 − t1 + t1ϵ⊘+t2ϵ⊘ .

Using Theorem 4.3.8(i) we conclude that the vector ξ0 = (ξ1, ξ2) given by

ξ1 =
det
(
M1(b)

)
d

=
t1 − t2 + t1ϵ⊘

ϵ

ξ2 =
det
(
M2(b)

)
d

=
t2 + ϵt2 − t1 + t1ϵ⊘+t2ϵ⊘

ϵ

is an admissible solution of the system.

4.4 Gauss-Jordan elimination method for non-singular flexible systems

The Gauss-Jordan elimination is a well-known and widely used method for solving linear systems and com-
puting inverses of matrices. The procedure is simple to state and implement. However, if we apply the Gauss-
Jordan elimination to transform a matrix over E into a near identity matrix IA we may change the orders of
magnitudes of neutrix parts of elements of the matrix. To know how Gauss operations affect the neutrix parts
we will explicit these operations and then we will apply it to deal with non-singular flexible systems.

Also, the Gauss-Jordan elimination method does not work on all flexible systems. For example, consider the
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flexible system {
2x − y ⊆ 1 +⊘
−x + y ⊆ ϵ£.

(4.25)

By adding the first one to the second row we have{
2x − y ⊆ 1 +⊘
x ⊆ 1 +⊘.

(4.26)

Now ξ0 = (1 +⊘, 1 +⊘)T is a solution of the system below. However, the vector ξ0 is not a valid solution of
the original system. This means that the two systems are not equivalent.

In this section we will provide conditions to guarantee that the Gauss-Jordan elimination can be applied to
non-singular flexible systems. We also consider some special kinds of systems which satisfy these conditions.

From now on we use the following notations.

Notation 4.4.1. Let n ∈ N be standard andA = [αij ] ∈ Mn,n(E). For each k ∈ {1, ..., n}, let 1 ≤ i1 < · · · <
ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n.

(a) We denote by Ai1...ik,j1...jk the k × k matrix formed by removing from A the rows whose indices do not
belong to {i1, . . . , ik} and columns whose indices do not belong to {j1, . . . , jk} and by Mi1...ik,j1...jk =

det(Ai1...ik,j1...jk) a k × k minor of A.

(b) For k ≥ 1, k + 1 ≤ i, j ≤ n we write by M
(k)
i,j = det


α11 · · · α1k α1j

... . . . ...
...

αk1 · · · αkk αkj

αi1 · · · αik αij

. Note that we added

j-th column (α1j , . . . , αkj , αij)
T and the i-th row (αi1, . . . , αik, αij) to the k × k principal submatrix

α11 · · · α1k

... . . . ...
αk1 · · · αkk

 of A. For k = 0 we writeM (0)
i,j = αij for all 1 ≤ i, j ≤ n.

(c) We writeM (k−1)
k,k = M (k).

(d) We writemi1...ik,j1...jk as a representative ofMi1...ik,j1...jk , m
(k)
i,j as a representative ofM (k)

i,j andm(k) as a
representative ofM (k).

We start by showing that we can modify a given matrix such that the resulting matrix satisfies the condition∣∣∣m(k)
i,j

∣∣∣ ≤ ∣∣∣m(k)
k,k

∣∣∣ .
Proposition 4.4.2. Let n ∈ N be standard and A = [αij ]n×n ∈ Mn(E) be a non-singular matrix. Let
P = [aij ]n×n ∈ Mn(R) be a representative of A. We can change rows and columns of P such that it satisfies
the following condition ∣∣∣m(k)

i,j

∣∣∣ ≤ ∣∣∣m(k)
k,k

∣∣∣ (4.27)



4.4. GAUSS-JORDAN ELIMINATION METHOD FOR NON-SINGULAR FLEXIBLE SYSTEMS 63

for all k + 1 ≤ i, j ≤ n, wherem(0)
i,j = αij for all 1 ≤ i, j ≤ n.

Proof. Let |mk+1| = max
k+1≤i,j≤n

∣∣∣m(k)
i,j

∣∣∣. Then the equality (4.27) is equivalent to m
(k)
k,k = mk+1. To be un-

ambiguous, we refer to the notation m(k)(P) as the principle minor of order k of P instead of m(k). We do
similarly form(k−1)

i,j (P) andmk+1(P).

Let I = {1, . . . , n}. Assume that |m1(P)| = |apq| ̸= |a11| . Let σ1: I → I be a permutation defined by

σ1(j) =


j if j ̸∈ {1, q}

1 if j = q

q if j = 1

,

and τ1: I → I be a permutation defined by

τ1(i) =


i if i ̸∈ {1, p}

1 if i = p

p if i = 1

.

Let P(1) ≡
[
α
(1)
ij

]
≡
[
ατ(i)σ(j)

]
. In fact, the matrix P(1) is formed from the original matrix by two successive

changes, starting by exchanging the q-th column and the first column in P , and then by exchanging the p-th row
and the first row. Consequently,m1

(
P(1)

)
= a

(1)
11 = apq. Hence the condition (4.27) is satisfied for k = 1.

Suppose that we have constructed permutations σ1, . . . , σk, τ1, . . . , τk such that the matrix P(k) ≡
[
α
(k)
ij

]
≡[

ατk(i)σk(j)...τ1(i)σ1(j)

]
satisfies the condition m

(l)
i,j

(
P(k)

)
≤ m(l+1)

(
P(k)

)
= ml+1

(
P(k)

)
for all 1 ≤ l ≤ k

and 1 ≤ i, j ≤ l.

We now compare the termsmk+1

(
P(k)

)
andm(k+1)

(
P(k)

)
ofP(k). Assume that

∣∣mk+1(P(k))
∣∣ = ∣∣∣m(k)

r,s

(
Pk
)∣∣∣ ̸=∣∣∣m(k)

k+1,k+1

(
Pk
)∣∣∣ for some r, s > k + 1. Let σk+1: I → I be a permutation defined by

σk+1(j) =


j if j ̸∈ {k + 1, s}

k + 1 if j = s

s if j = k + 1,

and τk+1: I → I be a permutation defined by

τk+1(i) =


i if i ̸∈ {k + 1, r}

k + 1 if i = r

r if i = k + 1.

Let P(k+1) ≡
[
α
(k+1)
i′j′

]
≡
[
α
(k)
τk+1(i)σk+1(j)

]
. In other words, the matrix P(k+1) resulted from P(k) by two

successive changes, starting by exchanging the sth column and the (k + 1)th column in P(k), and then by
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exchanging the rth row and the (k + 1)th row.

Observe that the operation τk+1σk+1 does not affect the submatrix

P(k) =


α
(k)
11 · · · α

(k)
1k

... . . . ...
α
(k)
k1 · · · α

(k)
kk

 .

Hence for 1 ≤ l ≤ k one has∣∣∣m(l−1)
i,j

(
P(k+1)

)∣∣∣ = ∣∣∣m(l−1)
i′,j′

(
P(k)

)∣∣∣ ≤ ∣∣∣ml

(
P(k)

)∣∣∣ = ∣∣∣m(l)
(
P(k+1)

)∣∣∣ ,
for all l ≤ i, j ≤ n, where i′ = τ−1

k+1(i) ∈ {l, . . . , n} and j′ = σ−1
k+1(j) ∈ {l, . . . , n}.

Also
∣∣∣m(k)

k+1,k+1

(
P(k+1)

)∣∣∣ = ∣∣∣m(k)
r,s

(
P(k)

)∣∣∣ . Because k + 1 ≤ τ−1
k+1(i), σ

−1
k+1(j) ≤ n for all k + 1 ≤ i, j ≤ n,

it follows that∣∣∣m(k)
i,j

(
P(k+1)

)∣∣∣ = ∣∣∣∣m(k)

τ−1
k+1(i),σ

−1
k+1(j)

(
P(k)

)∣∣∣∣ ≤ ∣∣∣m(k)
r,s

(
P(k)

)∣∣∣ = ∣∣∣m(k)
k+1,k+1

(
P(k+1)

)∣∣∣ .
Hence

∣∣m(k+1)
(
P(k+1)

)∣∣ = ∣∣∣m(k)
k+1,k+1

(
P(k+1)

)∣∣∣ = ∣∣mk+1

(
P(k+1)

)∣∣ .
Using (external) induction, we conclude that the matrix P(n) ≡ [α

(n)
i′j′ ] ≡ [ατn(i)σn(j)...τ1(i)σ1(j)] obtained after

carrying out n times of above operations satisfies the condition (4.27) for all 1 ≤ k ≤ n.

4.4.1 Explicit formulas for Gauss-Jordan elimination

The explicit formulas for the Gauss elimination, which transforms an arbitrary matrix into a triangular matrix,
are given in some articles and books such as [16, 18, 32, 27]. In these works the authors represented elements
of a matrix (system) after applying k steps of the Gauss elimination in terms of the ratio of two minors. In [33],
an explicit formula of Gauss-Jordan elimination, which transforms an arbitrary matrix into the identity matrix
was introduced. In all these studies the proofs tend to use advanced results in algebra. In [20], the Gauss-
Jordan elimination formula was obtained by a process of successive multiplication of elementary matrices. The
procedure transforms each column in a given matrix into a unit vector. They did not give a detailed proof. We
will present here a proof for the explicit formula of Gauss-Jordan elimination based on some basic properties of
determinants, induction and direct calculations. Then we will apply this formula to prove that the Gauss-Jordan
elimination can be used to solve flexible systems under some suitable conditions.

Definition 4.4.3. A matrix P = [aij ]n×n ∈ Mn,n(R) is called Gauss-Jordan eliminable if for 1 ≤ k ≤ n,

m(k) ≡ det


a11 a12 · · · a1k

a21 a22 · · · a2k
...

... . . . ...
ak1 ak2 · · · akk

 ̸= 0.
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Let P = [aij ]n×n ∈ Mn,n(R) be a reduced Gauss-Jordan eliminable matrix. For every p ∈ {1, . . . , 2n − 1}
we define matrices Gp as follows

G1 =
[
g
(1)
ij

]
n×n

=


1 0 · · · 0

−a21 1 · · · 0
...

... . . . ...
−an1 0 · · · 1



G2k−2 =
[
g
(2k−2)
ij

]
n×n

, where g
(2k−2)
ij =


1 if i = j ̸= k

0 if i ̸= j

m(k−1)

m(k)
if i = j = k,

k ∈ {2, ..., n},

G2k−1 =
[
g
(2k−1)
ij

]
n×n

, where

g
(2k−1)
ij =



0 if j ̸= k, j ̸= i

1 if i = j

(−1)k+i
m1...(k−1),1...(i−1)(i+1)...k

m(k−1)
if 1 ≤ i < k, j = k

−
m

(k−1)
i,k

m(k−1)
if i > k, j = k,

k ∈ {2, ..., n}.

(4.28)

Notation 4.4.4. We denote by G(·) the successive multiplications of matrices

G2n−1(G2n−2(· · · (G1(·)))).

We call G the Gauss-Jordan procedure, and for 1 ≤ p ≤ 2n− 1, Gp the Gaussian operation matrices .

In addition, we write G0 = In the identity matrix of order n. Then G(.) = G2n−1(G2n−2(· · · (G1(G0(.))))).

For each matrix A ∈ Mn(E) we write A(k) = Gk(Gk−1(· · · (G1(G0(A))))) ≡ [α
(k)
ij ]n×n.

Convention 4.4.5. Because of Proposition 4.4.2, from now on we always assume that G is the Gauss-Jordan
procedure of a matrix which satisfies the condition (4.27). In case A ∈ Mn(E) we choose a representative of
A such that it satisfies this condition.

Theorem 4.4.6. Let P = [aij ]n×n ∈ Mn(R) be a reduced Gauss-Jordan eliminable matrix. Then

P 2k−1 = G2k−1 (G2k−2 (· · · (G1(P )))) =



1 0 · · · 0 a
(2k−1)
1(k+1) · · · a

(2k−1)
1n

...
... . . . ...

... . . . ...
0 0 · · · 0 a

(2k−1)
(k−1)(k+1) · · · a

(2k−1)
(k−1)n

0 0 · · · 1 a2k−1
k(k+1) · · · a2k−1

kn

0 0 · · · 0 a
(2k−1)
(k+1)(k+1) · · · a

(2k−1)
(k+1)n

...
... . . . ...

... . . . ...
0 0 · · · 0 a

(2k−1)
n(k+1) · · · a

(2k−1)
nn
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for all k + 1 ≤ j ≤ n, where

a
(2k−1)
ij =


m

(k)
i,j

m(k)
if i ≥ k + 1

(−1)k+i
m1...k,1...(i−1)(i+1)...kj

m(k)
if i < k + 1,

(4.29a)

in particular

a
(2k−1)
(k+1)(k+1) =

m(k+1)

m(k)
. (4.29b)

Proof. We will prove the theorem by induction. A short calculation shows that it is true for k = 1. Assume
that it holds for k. Because of the inductive assumptions, we have

P (2k−1) =G2k−1(. . .G1(P ))

=



1 · · · 0 (−1)k+1
m1...k,2...(k+1)

m(k)
a
(2k−1)
1(k+2) · · · a

(2k−1)
1n

... . . . ...
...

... . . . ...
0 · · · 1 (−1)2k

m1...k,1...(k−1)(k+1)

m(k)
a
(2k−1)
k(k+2) · · · a

(2k−1)
kn

0 · · · 0
m(k+1)

m(k)
a
(2k−1)
(k+1)(k+2) · · · a

(2k−1)
(k+1)n

... . . . ...
...

... . . . ...

0 · · · 0
m

(k)
n,k+1

m(k)
a
(2k−1)
n(k+2) · · · a

(2k−1)
nn


and formulas (4.29a), (4.29b) hold. We need to prove that it holds for k + 1, that is

P (2k+1) =G2k+1(G2k−2(· · · (G1(P )))) =



1 0 · · · 0 a
(2k+1)
1(k+2) · · · a

(2k+1)
1n

...
... . . . ...

... . . . ...
0 0 · · · 0 a

(2k+1)
k(k+2) · · · a

(2k+1)
kn

0 0 · · · 1 a
(2k+1)
(k+1)(k+2) · · · a

(2k+1)
k+1n

0 0 · · · 0 a
(2k+1)
(k+2)(k+2) · · · a

(2k+1)
(k+2)n

...
... . . . ...

... . . . ...
0 0 · · · 0 a

(2k+1)
n(k+2) · · · a

(2k+1)
nn


,

where

a
(2k+1)
ij =


m

(k+1)
i,j

m(k+1)
if i ≥ k + 2, j ≥ k + 2

(−1)k+i+1
m1...(k+1),1...(i−1)(i+1)...(k+1)j

m(k+1)
if i < k + 2 ≤ j ≤ n,

(4.30a)

and

a
(2k+1)
(k+2)(k+2) =

m(k+2)

m(k+1)
. (4.30b)

We do it in two steps. In the first step we show that the (k+1)-th column of the matrix P (2k+1) is a unit vector.
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In the second step we verify formulas (4.30a) and (4.30b).

As for the first step, one has

P (2k) = G2k

(
P (2k−1)

)

=



1 0 · · · 0 · · · 0

0 1 · · · 0 · · · 0
...

... . . . ... . . . ...

0 0 · · · m(k)

m(k+1)
· · · 0

...
... . . . ... . . . ...

0 0 · · · 0 · · · 1


·



1 · · · 0 (−1)k+1
m1...k,2...(k+1)

m(k)
a
(2k−1)
1(k+2) · · · a

(2k−1)
1n

... . . . ...
...

... . . . ...
0 · · · 1 (−1)2k

m1...k,1...(k−1)(k+1)

m(k)
a
(2k−1)
k(k+2) · · · a

(2k−1)
kn

0 · · · 0
m(k+1)

m(k)
a
(2k−1)
(k+1)(k+2) · · · a

(2k−1)
(k+1)n

... . . . ...
...

... . . . ...

0 · · · 0
m

(k)
n,k+1

m(k)
a
(2k−1)
n(k+2) · · · a

(2k−1)
nn



=



1 · · · 0 (−1)k+1
m1...k,2...(k+1)

m(k)
a
(2k)
1(k+2) · · · a

(2k)
1n

... . . . ...
...

... . . . ...
0 · · · 1 (−1)2k

m1...k,1...(k−1)(k+1)

m(k)
a
(2k)
k(k+2) · · · a

(2k)
kn

0 · · · 0 1 a
(2k)
(k+1)(k+2) · · · a

(2k)
k+1n

... . . . ...
...

... . . . ...

0 · · · 0
m

(k)
n,k+1

m(k)
a
(2k)
n(k+2) · · · a

(2k)
nn


.
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So

P (2k+1) =G2k+1(P
(2k))

=



1 · · · 0 (−1)k+2
m1...k,2...(k+1)

m(k)
0 · · · 0

... . . . ...
...

... . . . ...
0 · · · 1 (−1)2k+1

m1...k,1...(k−1)(k+1)

m(k)
0 · · · 0

0 · · · 0 1 0 · · · 0

0 · · · 0 −
m

(k)
k+2,k+1

m(k)
1 · · · 0

... . . . ...
...

... . . . ...

0 · · · 0 −
m

(k)
n,k+1

m(k)
0 · · · 1



·



1 · · · 0 (−1)k+1
m1...k,2...(k+1)

m(k)
a
(2k)
1(k+2) · · · a

(2k)
1n

... . . . ...
...

... . . . ...
0 · · · 1 (−1)2k

m1...k,1...(k−1)(k+1)

m(k)
a
(2k)
k(k+2) · · · a

(2k)
kn

0 · · · 0 1 a
(2k)
(k+1)(k+2) · · · a

(2k)
k+1n

0 · · · 0
m

(k)
k+2,k+1

m(k)
a
(2k)
(k+2)(k+2) · · · a

(2k)
(k+2)n

... . . . ...
...

... . . . ...

0 · · · 0
m

(k)
n,k+1

m(k)
a
(2k)
n(k+2) · · · a

(2k)
nn



=



1 · · · 0 0 a
(2k+1)
1(k+2) · · · a

(2k+1)
1n

... . . . ...
...

... . . . ...
0 · · · 1 0 a

(2k+1)
k(k+2) · · · a

(2k+1)
kn

0 · · · 0 1 a
(2k+1)
(k+1)(k+2) · · · a

(2k+1)
k+1n

... . . . ...
...

... . . . ...
0 · · · 0 0 a

(2k+1)
n(k+2) · · · a

(2k+1)
nn


.

Hence the (k + 1)-th column of G2k+1(· · · (G1(P ))) is a unit vector.

As for the second step we compute a(2k+1)
ij (1 ≤ i ≤ n, k + 2 ≤ j ≤ n) and show that they satisfy formulas

(4.30a) and (4.30b). We consider three cases.

Case 1: i = k + 2. Let

T(k+2),j =


1 · · · 0 a

(2k+1)
1j

... . . . ...
...

0 · · · 1 a
(2k+1)
(k+1)j

0 · · · 0 a
(2k+1)
(k+2)j

 .
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Then
det
(
T(k+2),j

)
= a

(2k+1)
(k+2)j .

Observe that T2k+1 is obtained from P1...(k+2),1...(k+1)j by multiplying it successively by G1, . . . ,G2k+1 and
that the G2r+1, 0 ≤ r ≤ k do not affect the determinants. In fact, they represent the operations of adding a
multiple of one row to another. For each r ∈ {1, . . . , k+ 1}, the operation G2r−2 represents the multiplication

of the r-th row by
m(r−1)

m(r)
. In addition det

(
P1...(k+2),1...(k+1)j

)
= m

(k+1)
k+2,j , so

a
(2k+1)
(k+2)j =det

(
T(k+2,j)

)
= det(G2)det(G4) . . . det(G2k)det

(
P1...(k+2),1...(k+1)j

)
=

1

m(2)
· m

(2)

m(3)
· · · m(k)

m(k+1)
·m(k+1)

k+2,j =
m

(k+1)
k+2,j

m(k+1)
for all k + 2 ≤ j ≤ n.

In particular for j = k + 2, a(2k+1)
(k+2)(k+2) =

m
(k+1)
k+2,k+2

m(k+1)
=

m(k+2)

m(k+1)
.

Thus formula (4.30a) and (4.30b) hold for i = k + 2 and k + 2 ≤ j ≤ n.

Case 2: i > k + 2 and k + 2 ≤ j ≤ n. Let

Uij ≡


1 · · · a1(k+1) a1j
... . . . ...

...
a(k+1)1 · · · a(k+1)(k+1) a(k+1)j

ai1 · · · ai(k+1) aij

 .

Then det (Ui,j) = m
(k+1)
i,j . Also operations G1, . . .G2k+1 transform the matrix Ui,j into

U ′
i,j ≡


1 · · · 0 a

(2k+1)
1j

... . . . ...
...

0 · · · 1 a
(2k+1)
(k+1)j

0 · · · 0 a
(2k+1)
ij

 .

With an analogous argument as in Case 1, one obtains

det
(
U ′
i,j

)
=a

(2k+1)
ij = det(G2)det(G4) · · · det(G2k)det (Ui,j)

=
1

m(2)
· m

(2)

m(3)
· · · m(k)

m(k+1)
·m(k+1)

i,j =
m

(k+1)
i,j

m(k+1)
.

Hence (4.30a) holds for i > k + 2 and k + 2 ≤ j ≤ n.
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Case 3: i < k + 2 and k + 2 ≤ j ≤ n. Let

Vi,j =



1 · · · a1(i−1) a1(i+1) · · · a1(k+1) a1j
... . . . ...

... . . . ...
...

a(i−1)1 · · · a(i−1)(i−1) a(i−1)(i+1) · · · a(i−1)(k+1) a(i−1)j

ai1 · · · ai(i−1) ai(i+1) · · · ai(k+1) aij

a(i+1)1 · · · a(i+1)(i−1) a(i+1)(i+1) · · · a(i+1)(k+1) a(i+1)j
... . . . ...

... . . . ...
...

a(k+1)1 · · · a(k+1)(i−1) a(k+1)(i+1) · · · a(k+1)(k+1) a(k+1)j


.

Note that Vi,j = P1...(k+1),1...(i−1)(i+1)...(k+1)j , so that

det(Vi,j) = m1...(k+1),1...(i−1)(i+1)...(k+1)j .

Operations G1, . . . ,G2k+1 transform the matrix Vi,j into

V ′
i,j ≡



1 · · · 0 0 · · · 0 a
(2k+1)
1j

... . . . ...
... . . . ...

...
0 · · · 1 0 · · · 0 a

(2k+1)
ij

0 · · · 0 0 · · · 0 a
(2k+1)
ij

0 · · · 0 1 · · · 0 a
(2k+1)
ij

... . . . ...
... . . . ...

...
0 · · · 0 0 · · · 1 a

(2k+1)
(k+1)j


Expanding the determinant along the i-th row we obtain that

det(V ′
i,j) = (−1)i+k+1a

(2k+1)
ij (4.31)

Once again, with analogous arguments as in Case 1, one obtains

det(V ′
i,j) =det(Vi,j)det(G2)det(G4) . . . det(G2k)

=m1...(k+1),1...(i−1)(i+1)...(k+1)j ·
1

m(2)
· m

(2)

m(3)
· · · m(k)

m(k+1)
=

m1...(k+1),1...(i−1)(i+1)...(k+1)j

m(k+1)
. (4.32)

Formulas (4.31) and (4.32) imply that

(−1)i+k+1a
(2k+1)
ij =

m1...(k+1),1...(i−1)(i+1)...(k+1)j

m(k+1)
.

So
a
(2k+1)
ij = (−1)i+k+1m1...(k+1),1...(i−1)(i+1)...(k+1)j

m(k+1)
.

Hence formula (4.30a) holds for 1 ≤ i < k + 2 and k + 2 ≤ j ≤ n.
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In particular, when k = n one has

Corollary 4.4.7. Let P = [aij ]n×n be a reduced Gauss-Jordan eliminable matrix. We have

G2n−1(G2k(. . . (G1(P )))) = In.

Let n ∈ N be standard and P = [aij ]n×n ∈ Mn(R) be a reduced Gauss-Jordan eliminable matrix. For
1 ≤ p ≤ 2n− 1, let P (p) ≡ Gp(Gp−1(. . . (G1(P )))) ≡ [a

(p)
ij ]n×n.

A limited number does not blow up neutrices. We will show that entries of the coefficient matrix obtaining after
k Gauss-Jordan elimination steps with k ∈ N an odd number are limited. As a sequence, all entries of G2p−1

with p ∈ N are limited.

Lemma 4.4.8. Let n ∈ N be standard and P = [aij ]n×n ∈ Mn(R) be a reduced Gauss-Jordan eliminable
matrix. Then a(p)ij is limited for all 1 ≤ i, j ≤ n and p = 2k − 1.

Proof. We apply external induction. Because P is reduced, |aij | ≤ 1 for all 1 ≤ i, j ≤ n. This implies that∣∣∣a(1)ij

∣∣∣ = |aij − ai1 · a1j | ≤ |aij | + |ai1| · |a1j | ≤ 2 for all 2 ≤ i ≤ n, 1 ≤ j ≤ n. For i = 1, one has∣∣∣a(1)1j

∣∣∣ = |a1j | ≤ 1 for all 1 ≤ j ≤ n. Hence a(1)ij is limited for 1 ≤ i, j ≤ n. Suppose that a(2k−1)
ij is limited for

k < n and for all 1 ≤ i, j ≤ n. Because the q-th column of a(2k+1)
.j is a unit vector for 1 ≤ j ≤ k+1, the entries

of these columns are limited. We just need to show that a(2k+1)
ij is also limited for 1 ≤ i ≤ n, k + 2 ≤ j ≤ n.

One has

a
(2k)
ij =


a
(2k−1)
ij if i ̸= k + 1

m
(k+1)
i,j

m(k+1)
if i = k + 1.

So a
(2k)
ij = a

(2k−1)
ij is limited by the induction hypothesis, for i ̸= k + 1, k + 2 ≤ j ≤ n. For i = k + 1 and

k + 2 ≤ j ≤ n, one has a(2k)ij =
m

(k+1)
i,j

m(k+1)
. By Convention 4.4.5 we have

∣∣∣a(2k)ij

∣∣∣ ≤ 1 for all k + 2 ≤ j ≤ n.

This implies that a(2k+1)
ij = a

(2k−1)
ij − a

(2k−1)
ik · a(2k)(k+1)j is limited for all k + 2 ≤ j ≤ n, 1 ≤ i ≤ n, i ̸= k + 1.

For i = k + 1 one has that a(2k+1)
(k+1)j = a

(2k)
(k+1)j is limited for k + 2 ≤ j ≤ n. Hence a

(2k+1)
ij is limited for

1 ≤ i, j ≤ n.

Corollary 4.4.9. LetA = [aij ]n×n be a reduced Gauss-Jordan eliminable matrix and Gm for 1 ≤ m ≤ 2n− 1

be the Gauss operationmatrices of a representative ofA. Then all the entries ofG2p−1 are limited for 1 ≤ p ≤ n.

Proof. It follows directly from the fact that
∣∣∣g(2p+1)

i(p+1)

∣∣∣ = ∣∣∣a(2p−1)
i(p+1)

∣∣∣ for all 1 ≤ i ≤ n, 1 ≤ p ≤ 2n − 1 and
Lemma 4.4.8.

4.4.2 Conditions for solvability of a non-singular flexible system by Gauss-Jordan elimination

We recall two facts of the Gauss-Jordan elimination in classical linear algebra:
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(i) The Gaussian operations do not make any change on the set of solutions of the systems. That is, the system
A[x] = b is equivalent to (GA)[x] = G(b), where G is the Gauss-Jordan procedure.

(ii) The Gauss-Jordan elimination determines the solution of every non-singular system. In fact, G(b) is the
unique solution of the given system.

However, in general, these facts are not true for flexible systems. This means

(i) The non-singular flexible systems Aξ ⊆ B may be not equivalent to (GA)ξ ⊆ GB, and

(ii) The vector G(B) may be not equal to the set of all real admissible solutions of a given system.

The following example shows that GB is different from the solution obtained by Cramer’s rule.

Example 4.4.10. Consider the system{
(2 +⊘)x1 + ϵ⊘ x2 ⊆ 1 + ϵ⊘

(−1 + ϵ⊘)x1 + (1 +⊘)x2 ⊆ 2 + ϵ⊘ .

Using the Gauss operations we obtain{
(2 +⊘)x1 + ϵ⊘ x2 ⊆ 1 + ϵ⊘

(−1 + ϵ⊘)x1 + (1 +⊘)x2 ⊆ 2 + ϵ⊘

1/2R1

−→

{
(1 +⊘)x1 + ϵ⊘ x2 ⊆ 1/2 + ϵ⊘

(−1 + ϵ⊘)x1 + (1 +⊘)x2 ⊆ 2 + ϵ⊘

R2 +R1

−→

{
(1 +⊘)x1 + ϵ⊘ x2 ⊆ 1/2 + ϵ⊘
ϵ⊘ x1 + (1 +⊘)x2 ⊆ 5/2 + ϵ⊘ .

Hence G(B) = (1/2 + ϵ⊘, 5/2 + ϵ⊘) whereas Cramer’s rule gives us (1/2 +⊘, 5/2 +⊘).

Next we will present conditions in order to apply the Gauss-Jordan elimination to flexible systems. Flexible
systems satisfying these conditions will be also called Gauss-Jordan eliminable.

Definition 4.4.11. Consider the flexible system (4.2). It is said to be Gauss-Jordan eliminable if it satisfies the
following conditions.

(i) The system is non-singular,

(ii) B = B = B,

(iii) R(A) ⊆ P (B),

(iv) The entries α(2k−1)
kk are zeroless for all 1 ≤ k ≤ n (see Notation 4.4.4),

(v) The determinant∆/αn is not an absorber of B.
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Every flexible systems with α zeroless is equivalent to a reduced system. So, from now on, we always assume
that a flexible system is reduced.

Suppose a flexible system does not satisfy the condition (ii). The modified system, in the way that the neutrix
parts of constant terms are always taking to be the smallest neutrix B, does satisfy condition (ii). The set of
solutions of the latter system is a subset of the solutions of the original system. However, both sets of solutions
may very well be equal. Let consider the flexible system 4.25, i.e.{

2x − y ⊆ 1 +⊘
−x + y ⊆ ϵ£.

(4.33)

Using the method of Section 4.6 it is easy to verify that the exact solution is given by(
x

y

)
=

(
1

1

)
+⊘

(
1

1

)
+ ϵ£

(
1

2

)
. (4.34)

Yet if we modify the system (4.33) to {
2x − y ⊆ 1 + ϵ£
−x + y ⊆ ϵ£,

(4.35)

the Gauss-Jordan elimination method yields the solution (x, y) = (1+ ϵ£, 1+ ϵ£), which is strictly included in
(4.34).

Observe that the conditions that for each 1 ≤ k ≤ n, |α(2k−1)
ij | ≤ |α(2k−1)

kk | for all k ≤ i, j ≤ n and that ∆ is
zeroless do not guarantee that α(2k−1)

kk is zeroless. This is shown in the next example.

Example 4.4.12. Let A =

1 0 0

0 ⊘ ϵ

0 ϵ 0

 , where ϵ > 0 is infinitesimal. Then ∆ = det(A) = ϵ2 is zeroless and

|αij | ≤ |α22| for all 2 ≤ i, j ≤ 3. However α22 = ⊘ is a neutrix.

It is not convenient to use Definition 4.4.11 to verify that a given flexible system is Gauss-Jordan eliminable or
not. The reason is because we have to implement Gauss operations to calculateA(2p−1), 1 ≤ p ≤ k to check if
the pivot element ofA(2k−1) is zeroless or not. Next, we will present some conditions to guarantee that α(2k−1)

kk

is zeroless without carrying out Gauss operations. This means that we can check a given flexible system is
Gauss-Jordan eliminable or not without performing Gauss operations. To do that we first need to determine the
neutrix part and a representative of α(2k−1)

kk .

The result below determines the neutrix parts of the entries of a matrix after applying 2k−1 steps of the Gauss-
Jordan elimination. It also gives an estimate for the neutrix part of the pivot element of A(2k−1).

Notation 4.4.13. Let n ∈ N be standard and A = [αij ]n×n ∈ Mn(E). We write

Lij = max
1≤p≤i

{Apj}, for all 1 ≤ i, j ≤ n. (4.36)
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Lemma 4.4.14. Let n ∈ N be standard and A = [αij ]n×n be a non-singular matrix over E. Then for all
k + 1 ≤ i, j ≤ n, the neutrix parts of α(2k−1)

ij are given by
A

(1)
ij = Aij + ai1A1j ,

A
(2k−1)
ij = A

(2k−3)
ij +

m
(k−1)
i,k

m(k)
A

(2k−3)
k,j ,

(4.37)

and
A

(2k−1)
(k+1)(k+1) ⊆ L(k+1)(k+1). (4.38)

Proof. We first demonstrate formula (4.37). Clearly, A(1)
ij = Aij + ai1A1j . For the second equality, one has

A
(2k−1)
ij = max

{
A

(2k−3)
ij ,

a
(2k−3)
ik

a
(2k−3)
kk

A
(2k−3)
kj

}
= A

(2k−3)
ij +

a
(2k−3)
ik

a
(2k−3)
kk

A
(2k−3)
kj for all k + 1 ≤ i, j ≤ n. Also by

formula (4.29) we have
a
(2k−3)
ik

a
(2k−3)
kk

=
m

(k−1)
i,k /m(k−1)

m(k)/m(k−1)
=

m
(k−1)
i,k

m(k)
. Hence formula (4.37) is proved.

Next we prove formula (4.38). For p = 1, one has A(1)
ij = max{Aij , ai1A1j} ⊆ Lij , for all 2 ≤ i, j ≤ n. In

particular A(1)
22 ⊆ L22. Suppose that A

(2k−3)
ij ⊆ Lij for all k ≤ i, j ≤ n. We will show that A(2k−1)

ij ⊆ Lij

for all k + 1 ≤ i, j ≤ n. Indeed, by Convention 4.4.5 which implies

∣∣∣∣∣m
(k−1)
i,j

m(k)

∣∣∣∣∣ ≤ 1 for i, j ≥ k + 1, and by

formula (4.37) we have

A
(2k−1)
ij = max

{
A

(2k−3)
ij ,

m
(k−1)
i,j

m(k)
A

(2k−3)
kj

}
⊆ max {Lij , Lkj} = Lij .

In particular A(2k−1)
(k+1)(k+1) = N

(
α
(2k−1)
(k+1)(k+1)

)
⊆ L(k+1)(k+1).

The next result gives an estimation of a representative of the pivot element ofA(2k−1) so that, in some cases, it
enables us to verify whether the pivot element of A(2k−1) is zeroless or not.

Theorem 4.4.15. Let n ∈ N be standard and A = [αij ]n×n be a reduced non-singular matrix over E. Let

∆ = det(A) ≡ d+D. For each 1 ≤ k ≤ n, if α(2k−3)
kk is zeroless then

∣∣∣∣∣m(k+1)

m(k)

∣∣∣∣∣ > ⊘∆.
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Proof. For each 1 ≤ k ≤ n− 1 we have

A(2k−1) ≡G2k−1((G2k−2(· · · G1(A))))

=



1 +A11 A
(2k−1)
12 · · · A

(2k−1)
1k α

(2k−1)
1(k+1) · · · α

(2k−1)
1n

A
(2k−1)
21 1 +A

(2k−1)
22 · · · α

(2k−1)
2k α

(2k−1)
2(k+1) · · · α

(2k−1)
1n

...
... . . . ...

... . . . ...
A

(2k−1)
k1 A

(2k−1)
k2 · · · 1 +A

(2k−1)
kk α

(2k−1)
k(k+1) · · · α

(2k−1)
kn

A
(2k−1)
(k+1)1 A

(2k−1)
(k+1)2 · · · A

(2k−1)
(k+1)k α

(2k−1)
(k+1)(k+1) · · · α

(2k−1)
(k+1)n

...
... . . . ...

... . . . ...
A

(2k−1)
n1 A

(2k−1)
n2 · · · A

(2k−1)
nk α

(2k−1)
n(k+1) · · · α

(2k−1)
nn


≡ [α

(2k−1)
ij ]n×n

Suppose on contrary that a(2k−1)
(k+1)(k+1) =

m(k+1)

m(k)
∈ ⊘∆. From

∣∣∣a(2k−1)
ij

∣∣∣ = ∣∣∣∣∣m
(k)
ij

m(k)

∣∣∣∣∣ ≤
∣∣∣∣∣m(k+1)

m(k)

∣∣∣∣∣ = ∣∣∣a(2k−1)
(k+1)(k+1)

∣∣∣
for all k + 1 ≤ i, j ≤ n one derives that a(2k−1)

ij ∈ ⊘∆ for all k + 1 ≤ i, j ≤ n.

LetSn−k be the set of all permutations of {k+1, . . . , n} and σ ∈ Sn−k. Put∆(2k−1) = det
(
A(2k−1)

k+1...n,k+1...n

)
=

d(2k−1) +D(2k−1), where

d(2k−1) =
∑

σ∈Sn−k

sgn(σ)a(2k−1)
k+1σ(k+1) . . . a

(2k−1)
nσ(n) ∈ (⊘∆)n−k ⊆ ⊘∆. (4.39)

On the other hand a(2k−1)
ii = 1 for all 1 ≤ i ≤ k, so d(2k−1) is also a representative of det(A(2k−1)). Applying

the successive Laplace expansions we obtain

∣∣∣d(2k−1)
∣∣∣ = |det(G2k) · det(G2k−2) · · · det(G2) · d| =

∣∣∣∣∣m(k−1)

m(k)

m(k−2)

m(k−1)
· · · m

(2)

m(3)

1

m(2)
d

∣∣∣∣∣ =
∣∣∣∣ d

m(k)

∣∣∣∣ .
By formual (4.39), it follows that d ∈ m(k)·⊘∆.By Proposition 3.2.3 it holds that d ∈ ⊘∆. Hence d ∈ ⊘∆∩∆.
Because∆ is zeroless, one has a contradiction to Lemma 2.2.22.

The two next results present conditions to know that the pivot element of A2k−1 is zeroless, without the need
to effectuate Gauss operations. This means that the condition (iv) of Definition 4.4.11 is satisfied.

Theorem 4.4.16. Let n ∈ N be standard and A = [αij ]n×n be a reduced non-singular matrix over E. Assume

that

∣∣∣∣∣m(k+1)

m(k)

∣∣∣∣∣ > L(k+1)(k+1) for all 1 ≤ k ≤ n− 1. Then
∣∣∣α(2k−1)

(k+1)(k+1)

∣∣∣ is zeroless for all 1 ≤ k ≤ n− 1.

Proof. By formula (4.38) one hasN
(
α
(2k−1)
(k+1)(k+1)

)
⊆ L(k+1)(k+1) and formula (4.29) shows that a(2k−1)

(k+1)(k+1) =



76 CHAPTER 4. FLEXIBLE SYSTEM OF LINEAR EQUATIONS

m(k+1)

m(k)
. By the assumption we have

N
(
α
(2k−1)
(k+1)(k+1)

)
≤ L(k+1)(k+1) <

∣∣∣∣∣m(k+1)

m(k)

∣∣∣∣∣ = ∣∣∣a(2k−1)
(k+1)(k+1)

∣∣∣ .
This means that α(2k−1)

(k+1)(k+1) is zeroless for k with 1 ≤ k ≤ n− 1.

Theorem 4.4.17. Let n ∈ N be standard and A = [αij ]n×n be a reduced non-singular matrix over E. Let

∆ = det(A). If A ⊆ ⊘∆ then

∣∣∣∣∣m(k+1)

m(k)

∣∣∣∣∣ > ⊘∆. Moreover α(2k−1)
(k+1)(k+1) is zeroless for all 1 ≤ k ≤ n− 1.

Proof. Let A(1) = G1A = [α
(1)
ij ]n×n. Then a

(1)
22 = m(2) and a

(1)
ij = m

(1)
ij for all 2 ≤ i, j ≤ n. Suppose

that m(2) ∈ ⊘∆. Because
∣∣∣a(1)ij

∣∣∣ = ∣∣∣m(1)
ij

∣∣∣ ≤ ∣∣m(2)
∣∣ = ∣∣∣a(1)22

∣∣∣ for 2 ≤ i, j ≤ n, it follows that
∣∣∣a(1)ij

∣∣∣ ∈ ⊘∆

for all 2 ≤ i, j ≤ n. Let Sn−1 be the set of all permutations of {2, . . . , n} and σ ∈ Sn−1. Put ∆(1) =

det
(
A(1)

2...n,2...n

)
≡ d(1) +D(1), where

d(1) =
∑

σ∈Sn−1

sgn(σ)a(1)2σ(2) · · · a
(1)
nσ(n) ∈ (⊘∆)n−1 ⊆ ⊘∆.

Also d = d(1) since G1 does not change the determinant of P = [aij ]n×n. Hence d(1) = d ∈ ⊘∆ ∩ ∆, a

contradiction. Thus

∣∣∣∣∣m(2)

m(1)

∣∣∣∣∣ = ∣∣m(2)
∣∣ > ⊘∆. On the other hand, by formula (4.38) we have N(α

(1)
22 ) ⊆ A ⊆

⊘∆. So α
(1)
22 is zeroless. We now assume by induction that

∣∣∣∣∣m(r+1)

m(r)

∣∣∣∣∣ > ⊘∆ for all 1 ≤ r ≤ k − 1. Because

N
(
α
(r)
(r+1)(r+1)

)
⊆ A ⊆ ⊘∆, by formula (4.38) it holds that α(r)

(r+1)(r+1) =
m(r+1)

m(r)
+ N

(
α
(r)
(r+1)(r+1)

)
is

zeroless for all 1 ≤ r ≤ k− 1. Then Theorem 4.4.15 implies that

∣∣∣∣∣m(k+1)

m(k)

∣∣∣∣∣ > ⊘∆. Also by formula (4.38) we

obtain thatN
(
α
(2k−1)
(k+1)(k+1)

)
⊆ A ⊆ ⊘∆ and henceα(2k−1)

(k+1)(k+1) =
m(k+1)

m(k)
+N

(
α
(2k−1)
(k+1)(k+1)

)
is zeroless.

For Gauss-Jordan eliminable flexible systems, entries of G2k do not make any change to the neutrix parts of
constant terms .

Lemma 4.4.18. Suppose that the flexible system (4.2) is Gauss-Jordan eliminable. Then

m(k+1)

m(k)
B =

m(k)

m(k+1)
B = B for all 1 ≤ k ≤ n− 1.

Proof. By Theorem 4.4.17 there exists t ∈ [@, ̸∞] such that
∣∣∣∣m(k+1)

m(k)

∣∣∣∣ ∈ t|∆| for all 1 ≤ k ≤ n − 1. On

the other hand, Proposition 2.2.26 and the facts that ∆ is not an absorber of B and that is limited yield that
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∆ ·B = B. Also
m(k+1)

m(k)
is limited by Lemma 4.4.8. Hence, by Proposition 2.1.3(ii) we have

B = ∆B ⊆ |t∆|B =
∣∣∣m(k+1)

m(k)

∣∣∣B ⊆ £B = B.

So
∣∣∣∣m(k+1)

m(k)

∣∣∣∣B = B for all 1 ≤ k ≤ n− 1. This implies that
∣∣∣∣ m(k)

m(k+1)

∣∣∣∣B = B for all 1 ≤ k ≤ n− 1.

Similarly, Gauss operations do not change the neutrix part of the constant terms.

Lemma 4.4.19. Assume that the system (4.2) is Gauss-Jordan eliminable. Then

G[B] = [B].

Proof. We will prove it by external induction. Due to Remark 2.2.27 and the fact that coefficients of reduced
systems are limited, we have

G1[B] ≡ [B(1)]n×1 =


1 0 · · · 0

−a21 1 · · · 0
...

... . . . ...
−an1 0 · · · 1



B
...
B

 =


B
...
B

 .

Suppose by induction that Gp(Gp−1(· · · (G1([B])))) = [B].We will prove that Gp+1(Gp(· · · (G1([B])))) = [B].

We consider two cases.

Case 1: p + 1 = 2k for some k ∈ {1, . . . , n − 1}. Then, by the inductive hypothesis and Lemma 4.4.18 we
have

Gp+1(Gp · · · (G1([B]))) =G2k · [B]

=



1 0 · · · 0 · · · 0

0 1 · · · 0 · · · 0
...

... . . . ... . . . ...

0 0 · · · m(k)

m(k+1)
· · · 0

...
... . . . ... . . . ...

0 0 · · · 0 · · · 1


·


B
...
B

 =


B
...
B

 .

Case 2: p+ 1 = 2k + 1 for some k ∈ {1, . . . , n− 1}. Then, due to Corollary 4.4.9 we have

(−1)k+i+1m1...k,1...(i−1)(i+1)...k+1

m(k)
∈ £
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and
m

(k)
i,k+1

m(k+1)
∈ £ for all i,∈ {1, . . . , n}, k ∈ {1, . . . , n− 1}. So, by Remark 2.2.27 we obtain

Gp+1(Gp · · · (G1([B]))) =G2k+1 · [B]

=



1 · · · 0 (−1)k+2
m1...k,2...(k+1)

m(k)
0 · · · 0

... . . . ...
...

... . . . ...
0 · · · 1 (−1)2k+1

m1...k,1...(k−1)(k+1)

m(k)
0 · · · 0

0 · · · 0 1 0 · · · 0

0 · · · 0 −
m

(k)
k+2,k+1

m(k)
1 · · · 0

... . . . ...
...

... . . . ...

0 · · · 0 −
m

(k)
n,k+1

m(k)
0 · · · 1



·


B
...
B

 =


B
...
B

 .

Because n ∈ N is standard, by external induction we conclude that G[B] = G2n−1(G2n−2(· · · (G1(B)))) =

[B].

As regards to flexible systems, equalities are replaced by inclusions. Next we investigate the relationship be-
tween the multiplication of matrices and inclusion relationships.

The result below shows that the multiplication between a matrix and a vector with external numbers preserves
inclusion relationships on these vectors.

Lemma 4.4.20. Let A = [αij ] be n × n matrix over E and γ = (γ1, . . . , γn)
T , β = (β1, . . . , βn)

T be two
column vectors in En such that γi ⊆ βi for all i = 1, . . . , n. Then

Aγ ⊆ Aβ.

Proof. One has
n∑

j=1

αijγi ⊆
n∑

j=1

αijβi for all i = 1, . . . , n. Hence Aγ ⊆ Aβ.

Gauss operations preserve inclusion relationships on vectors with external numbers.

Lemma 4.4.21. Let G be the Gauss-Jordan matrix of A = [aij ]n×n on R. Let γ = (γ1, · · · , γn)T , β =

(β1, · · · , βn)T , where γi, βi ∈ E, for all i ∈ {1, . . . , n} such that γi ⊆ βi. Then G(γ) ⊆ G(β).

Proof. For each p ∈ {1, . . . , 2n − 1}, let Up = GpUp−1 = [ui]n×1,Vp = GpVp−1, with U0 = γ,V0 = β. By
Lemma 4.4.20, one has U1 ⊆ V1. Suppose now that Up ⊆ Vp. By Lemma 4.4.20 we obtain Up+1 = Gp+1Up ⊆
Gp+1Vp = Vp+1. By external induction we conclude that Up ⊆ Vp for all p = {1, . . . , 2n− 1}. In particular for
p = 2n− 1 we obtain G(γ) ⊆ G(β).
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4.4.3 Main results on the Gauss-Jordan elimination method

For Gauss-Jordan eliminable systems the Gauss operations do not change the set of solutions.

Theorem 4.4.22. Assume that the flexible system (4.2) is Gauss-Jordan eliminable. Then the system (4.2) is
equivalent to the system

(
G(A)

)
ξ ⊆ G(B).

We prove this theorem by showing that the set of all real admissible solutions of both systems are equal to the
Cramer-solution of the given system. We do this in two steps. In the first step, we prove that the external set of
all real admissible solutions of the system (4.2) equals the Cramer-solution. In the second step, we demonstrate
that the set of all real admissible solutions of the system (GA)ξ ⊆ GB equals the Cramer-solution of the original
system.

Theorem 4.4.23. Suppose that the flexible system (4.2) is Gauss-Jordan eliminable. Then the set of all its real
admissible solutions is equal to the Cramer-solution of the given system.

Proof. Let S be the external set of all real admissible solutions of the system and x = (x1, . . . , xn)
T ∈ S. Let

ξ be the Cramer-solution of the system. Because the Cramer-solution is maximal, we have x ∈ ξ and hence
S ⊆ ξ.

On the other hand, let y = (y1, . . . , yn)
T ∈ Rn be a representative of ξ = (ξ1, . . . , ξn)

T . Then

n∑
j=1

αijyj ⊆
n∑

j=1

αijξj ⊆ βi for all i ∈ {1, . . . , n}.

So y is a real admissible solution of the system and hence ξ ⊆ S. Combining these two facts we conclude that
S = ξ.

In the next step we will show that the Cramer-solution equals the set of all real admissible solutions of the system
(GA)ξ ⊆ GB. We call these solutions Gauss-solutions.

Definition 4.4.24 ([20]). Let x = (x1, . . . , xn)
T ∈ Rn be a real column vector. The column vector x is called a

Gauss-solution of the system (4.2) if for every representative of αij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, and corresponding
matrices one has

(GA)x ⊆ GB.

So a Gauss-solution is a real admissible solution of the system (GA)ξ ⊆ GB.

The below theorem says that the external set of Gauss-solutions is equal to the Cramer-solution.

Theorem 4.4.25. Suppose that the flexible system (4.2) is Gauss-Jordan eliminable. Then the Cramer-solution
of the flexible system (4.2) is equal to the external set of all Gauss-solutions.

To prove this theorem we first demonstrate some auxiliary results. The proposition below generalizes [20,
Theorem 5.36, p. 82] for non-homogeneous non-singular flexible systems. Here we state not only for non-
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homogeneous but also for upper homogeneous flexible systems, in particular, for homogeneous flexible systems.
We also give a new proof for it.

Proposition 4.4.26. Suppose that the flexible system (4.2) is Gauss-Jordan eliminable. Let

x = (x1, . . . , xn)
T ∈

(det(M1)

∆
, . . . ,

det(Mn)

∆

)T
.

Then x = (x1, . . . , xn)
T ∈ Mn,1(R) is a Gauss-solution of (4.2).

Proof. Because xi ∈
det(Mi)

∆
for all i ∈ {1, . . . , n}, we have


α11 · · · α1n

... . . . ...
αn1 · · · αnn



x1
...
xn

 ⊆


β1
...
βn

 .

By Lemma 4.4.21, this implies

G



α11 · · · α1n

... . . . ...
αn1 · · · αnn



x1
...
xn


 ⊆ G


β1
...
βn

 .

On the other hand, by Lemma 2.2.28 we have

G



α11 · · · α1n

... . . . ...
αn1 · · · αnn



x1
...
xn


 =

G


α11 · · · α1n

... . . . ...
αn1 · · · αnn




x1
...
xn

 .

Hence G


α11 · · · α1n

... . . . ...
αn1 · · · αnn




x1
...
xn

 ⊆ G


β1
...
βn

 .

So x = (x1, . . . , xn) is a Gauss-solution of the system (4.2).

Lemma 4.4.27. Let A =


A11 · · · A1n

... . . . ...
An1 · · · Ann

 , [B] = (B, . . . , B)T be such that Aij , B are neutrices for all

i, j ∈ {1, . . . , n} and u = (u1, . . . , un)
T ∈ Rn. If u+Au ⊆ B then ui ∈ B.

Proof. The vector Au =


A11u1 + · · ·+A1nun

...
An1u1 + · · ·+Annun

 is a neutrix vector, so 0 ∈ Ai1u1 + · · · + Ainun for all

i ∈ {1, . . . , n}. Hence u ∈ u+Au ⊆ B.
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The following result is stated in [20, Prop. 5.35, p. 80]. We here give a new proof for it.

Proposition 4.4.28. Suppose that the system (4.2) is Gauss-Jordan eliminable. Let x = (x1, . . . , xn)
T , y =

(y1, . . . , yn)
T be two Gauss-solutions of the system and ui = xi − yi, for all 1 ≤ i ≤ n. Then ui ∈ B for all

i = 1, . . . , n.

Proof. By subdistributivity, one hasG


α11 · · · α1n

... . . . ...
αn1 · · · αnn




u1
...
un

 =

G


α11 · · · α1n

... . . . ...
αn1 · · · αnn




x1 − y1

...
xn − yn



⊆

G


α11 · · · α1n

... . . . ...
αn1 · · · αnn




x1
...
xn

−

G


α11 · · · α1n

... . . . ...
αn1 · · · αnn




y1
...
yn



⊆G


b1 +B

...
bn +B

− G


b1 +B

...
bn +B

 = G


b1
...
bn

+ G


B
...
B

− G


b1
...
bn

− G


B
...
B

 = G


B
...
B

 =


B
...
B

 ,

by Lemma 4.4.19. On the other hand,G


α11 · · · α1n

... . . . ...
αn1 · · · αnn




u1
...
un

 =

G


1 · · · a1n
... . . . ...

an1 · · · ann




u1
...
un

+

G


A11 · · · A1n

... . . . ...
An1 · · · Ann




u1
...
un



=


u1
...
un

+

G


A11 · · · A1n

... . . . ...
An1 · · · Ann




u1
...
un

 .

It follows that 
u1
...
un

+

G


A11 · · · A1n

... . . . ...
An1 · · · Ann




u1
...
un

 ⊆


B
...
B

 .

By Lemma 4.4.27, ui ∈ B for all i ∈ {1, . . . , n}.

We will extend Theorem 5.37 of [20] which is stated for non-homogeneous systems. We prove that it is true for
both non-homogeneous and upper homogeneous systems.

Proposition 4.4.29. Suppose that the flexible system (4.2) is Gauss-Jordan eliminable. Let x = (x1, . . . , xn)
T

be a Gauss-solution of the system. Then

xi ∈
det(Mi)

∆
for all 1 ≤ i ≤ n.
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Proof. Let aij ∈ αij , 1 ≤ i, j ≤ n, bi ∈ βi, 1 ≤ i ≤ n and x = (x1, . . . , xn) be a Gauss-solution.

Put

dj = det


1 · · · a1(j−1) b1 a1(j+1) · · · a1n
... . . . ...

...
... . . . ...

an1 · · · an(j−1) bn an(j+1) · · · ann


for each j ∈ {1, . . . , n} and

d = det


1 · · · a1n
... . . . ...

an1 · · · ann

 .

By Proposition 4.4.26, the vector x0 = (
d1
d
, . . . ,

dn
d
)T is a Gauss-solution of the system (4.2). Let x =

(x1, . . . , xn)
T be an arbitrary Gauss-solution of (4.2). Then by Proposition 4.4.28 and Lemma 4.3.15 one

has xi ∈
di
d

+B =
di
d

+N
(det(Mi)

∆

)
for all i = 1, . . . , n. Moreover

di
d

+N
(det(Mi)

∆

)
=

det(Mi)

∆
for all

i = 1, . . . , n. Hence xi ∈
det(Mi)

∆
for all i = 1, . . . , n.

Proof of Theorem 4.4.25. It follows from Proposition 4.4.26 and Proposition 4.4.29.

Proof of Theorem 4.4.22. By Theorem 4.4.25, the external set of all Gauss-solutions is the same to the Cramer-
solution of the system (4.2). Moreover, by Theorem 4.4.23 the Cramer-solution exactly equals the set of real
admissible solutions of the system (4.2). It follows that the sets of real admissible solutions of both systems
(4.2) and (GA)ξ ⊆ B are the same. Therefore, the both systems are equivalent.

Corollary 4.4.30. Suppose that the flexible system (4.2) is Gauss-Jordan eliminable. Then a vector x =

(x1, . . . , xn)
T ∈ Rn is a real admissible solution of the system (4.2) if and only if it is a Gauss-solution.

The theorem below gives an explicit formula for the set of all Gauss-solutions of the system 4.2. In fact, the
vector G(β) is the external set of all Gauss solutions.

Theorem 4.4.31. Suppose that the flexible system Aξ ⊆ B, where A = [αij ]n×n with αij = aij + Aij ∈
E and B = [bi + B]n×1 with bi + B ∈ E, is Gauss-Jordan eliminable. Then GB is the external set of all
Gauss-solutions of the given flexible system.

To prove Theorem 4.4.31 we first prove the following lemmas. In two the next lemmas we use following notions

Notation 4.4.32. Consider the Gauss-Jordan eliminable flexible system (4.2) with coefficient matrix A =

[αij ] ∈ Mn(E). We write A = [Aij ]n×n, where Aij is the neutrix part of αij for all 1 ≤ i, j ≤ n and
b = (b1, . . . , bn)

T as a representative of B. Let B′ = GB.

Lemma 4.4.33 ([20, prop. 5.32, p. 75]). Assume that the flexible system (4.2) is Gauss-Jordan eliminable and
non-homogeneous. Then

(GA) · [B] ⊆ [B].
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Proof. The condition R(A) ⊆ P (B) and Proposition 2.2.26 imply that A ⊆ B/β. As a consequence

Aij ⊆ A ⊆ B/β ⊆ ⊘,

for all 1 ≤ i, j ≤ n. Due to Lemma 4.4.19 we have

G


A11 · · · A1n

... . . . ...
An1 · · · Ann

 ⊆G


B/β · · · B/β
... . . . ...

B/β · · · B/β

 = G


B/b · · · B/b
... . . . ...

B/b · · · B/b



=
1

b
G


B · · · B
... . . . ...
B · · · B

 =
1

b


B · · · B
... . . . ...
B · · · B

 =


B/b · · · B/b
... . . . ...

B/b · · · B/b

 .

By Lemma 4.4.19 we obtain that

G


A11 · · · A1n

... . . . ...
An1 · · · Ann



B
...
B

 ⊆


B/b · · · B/b
... . . . ...

B/b · · · B/b

 ·


B
...
B

 ⊆


⊘ · · · ⊘
... . . . ...
⊘ · · · ⊘

 ·


B
...
B

 ⊆


B
...
B

 = G


B
...
B

 .

Lemma 4.4.34. Assume that the flexible system (4.2) is homogeneous and Gauss-Jordan eliminable. Let A as
in Notation 4.4.32. We choose bi ∈ βi, 1 ≤ i ≤ n such that

∣∣∣b0∣∣∣ = |b| = max
1≤i≤n

|bi| ∈ β. Put

Gp · · · (G0(A))) = [A
(p)
ij ]1≤i,j≤n, (4.40a)

Gp(Gp−1 . . . (G0([b]))) = [b
(p)
i ]1≤i≤n, (4.40b)

for p = 0, . . . , 2n− 1, where A(0)
ij = Aij , b

0
i = bi and b = (b1, . . . , bn)

T . Put
∣∣∣b(p)∣∣∣ = max

1≤i≤n

∣∣∣b(p)i

∣∣∣. Then
(i) A

(p)
ij b

(p) ⊆ B, for all p ∈ {0, . . . , 2n− 1}.

(ii) R(GA) ⊆ P (B′).

Proof. (i) We will prove this part by external induction. For p = 0, G0(A) = IA = A. The condition

R(A) =
A

∆
⊆ P (B) and formula (4.40b) yield Aijb ⊆ A b ⊆ A

∆
b ⊆ A

∆
β ⊆ B for all i, j ∈ {1, . . . , n}. Thus

the claim is true for p = 0. Assume that the claim is true for p. That is A(p)
ij b

(p) ⊆ B. We will prove that it is
true for p + 1. This means we need to show that the entries of the matrix Gp+1[A

(p)
ij ] satisfy the condition of

(i). Because b(p+1)
= max

1≤i≤n

∣∣∣b(p+1)
i

∣∣∣ = ∣∣∣b(p+1)
q

∣∣∣ for some q ∈ {1, . . . , n}, and by formulas (4.40b), (4.40a) we
obtain

b
(p+1)

= b(p+1)
q =

∣∣∣∣∣∣
n∑

j=1

g
(p+1)
qj b

(p)
j

∣∣∣∣∣∣ ≤
n∑

j=1

∣∣∣g(p+1)
qj

∣∣∣ ∣∣∣b(p)j

∣∣∣ ≤ n∑
j=1

∣∣∣g(p+1)
qj

∣∣∣ b(p),
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and
A

(p+1)
ij = g

(p+1)
i1 A

(p)
1j + · · ·+ g

(p+1)
in A

(p)
nj . (4.41)

If p + 1 = 2k + 1 for some k ∈ {1, . . . , n − 1}, by the induction hypotheses and Corollary 4.4.9 which says
that g(p+1)

ij ∈ £ for all 1 ≤ i, j ≤ n, one has

A
(p+1)
ij b

(p+1) ⊆
(
g
(p+1)
i1 A

(p)
1j + · · ·+ g

(p+1)
in A

(p)
nj

)( n∑
j=1

∣∣∣g(p+1)
ij

∣∣∣ b(p))

=
(
g
(p+1)
i1 A

(p)
1j b

(p)
+ · · ·+ g

(p+1)
in A

(p)
nj b

(p)
) n∑

j=1

∣∣∣g(p+1)
ij

∣∣∣


⊆
(
g
(p+1)
i1 B + · · ·+ g

(p+1)
in B

) n∑
j=1

|g(p+1)
ij |

 ⊆ B.

If p + 1 = 2k for some k ∈ {1, . . . , n − 1}, we verify the condition (i) in two separate cases: i ̸= k + 1 and
i = k + 1.

Case 1: For i ̸= k + 1 and 1 ≤ i ≤ n, the row g
(p+1)
i is a unit vector, so the i-th row in A(p+1) satisfies

A
(p+1)
i = A

(p)
i and

b(p+1) =

(
b
(p)
1 , . . . , b

(p)
k ,

m(k)

m(k+1)
b
(p)
k+1, b

(p)
k+2, . . . , b

(n)
n

)
.

• If b(p+1)
= b

(p)
r for some r ∈ {1, . . . , n} \ {k + 1} then for all i ̸= k + 1, 1 ≤ i ≤ n and 1 ≤ j ≤ n one

has
A

(p+1)
ij b

(p+1)
= A

(p)
ij b(p)r ⊆ A

(p)
ij b

(p) ⊆ B,

by the induction hypothesis.

• If b(p+1)
=

m(k)

m(k+1)
b
(p)
k+1, then for all i ̸= k + 1, 1 ≤ i ≤ n and 1 ≤ j ≤ n one has, using Lemma 4.4.18

A
(p+1)
ij b

(p+1)
= A

(p)
ij

m(k)

m(k+1)
b
(p+1)
k+1 ⊆ m(k)

m(k+1)
A

(p)
ij b

(p) ⊆ m(k)

m(k+1)
B = B

.

Case 2: For i = k + 1, by formula (4.41) one has

A
(p+1)
(k+1)j = A

(p)
ij

m(k)

m(k+1)
for all 1 ≤ j ≤ n.

• If b(p+1)
= b

(p)
r for some r ∈ {1, . . . , n} \ {k + 1}, due to Lemma 4.4.18 for all 1 ≤ j ≤ n one has

A
(p+1)
(k+1)jb

(p+1)
=

m(k)

m(k+1)
A

(p)
(k+1)jb

(p)
r ⊆ m(k)

m(k+1)
A

(p)
(k+1)jb

(p) ⊆ m(k)

m(k+1)
B = B.
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• If b(p+1)
=

m(k)

m(k+1)
b
(p)
k+1 then for all 1 ≤ j ≤ n, again using Lemma 4.4.18 one has

A
(p+1)
(k+1)jb

(p+1)
=

m(k)

m(k+1)
A

(p)
(k+1)j

m(k)

m(k+1)
b
(p+1)
k+1 ⊆

( m(k)

m(k+1)

)2
A

(p)
(k+1)jb

(p) ⊆
( m(k)

m(k+1)

)2
B = B.

Hence the claim holds for all p ∈ {0, . . . , 2n− 1}.

(ii) Let G(A) ≡ A′ = [A′
ij ] and A′ = max

1≤i,j≤n
A′

ij . We consider two cases. If b′ + B is zeroless, applying Part

(i) with p = 2n− 1 we have

A
(2n−1)
ij b

(2n−1)
= A′

ijb
′ ⊆ B for all 1 ≤ i, j ≤ n.

So A′.b′ ⊆ B. Also ∆′ ≡ det(GA) ≡ 1 + D′ and a′ = 1, hence R(GA) = R(A′) =
A′

∆′ = A′ ⊆ B/b′ =

P (B′). If β′
= b

′
+B is neutricial, by Lemma 4.4.33 we have A′ · [B] = G(A) · [B] ⊆ [B]. As a consequence,

A
′ ·B ⊆ B, and since ∆′ = 1 +D we have R(A′) =

A
′

∆′ = A
′ ⊆ B : B = P (B′).

Proof of Theorem 4.4.31. If the system is homogeneous then GB = [B]. Also, by Theorem 4.3.14, the Cramer-
solution of the system is the vector ξ = (B, . . . , B)T . So GB is the external set of all Gauss-solution of the
given system.

We now assume that the system is non-homogeneous. Let a0ij be fixed representatives of αij for 1 ≤ i, j ≤ n

with a011 = 1. Consider the flexible system
(GA)ξ ⊆ GB. (4.42)

Note that G(A) = IA is a near identity matrix and G[B] = [B] by Lemma 4.4.19. So N(GB) = [B]. Put

GB = [b′ +B]. (4.43)

Because ∆′ ≡ det(GA) ≡ 1 +D′ ⊆ 1 +⊘ is zeroless, the system (4.42) is non-singular. Also, obviously, ∆′

is not an absorber of B. By Lemma 4.4.34 one has R(GA) ⊆ P (GB).

Hence the system (4.42) satisfies all the Cramer conditions. In addition, by Proposition 4.3.15we haveN
(det(M ′

j)

∆′

)
=

B for all 1 ≤ j ≤ n, where

M ′
j =


1 +A′

11 · · · A′
1(j−1) b′1 +B A′

1(j+1) · · · A′
1n

... . . . ...
...

... . . . ...
A′

n1 · · · A′
n(j−1) b′n +B A′

n(j+1) · · · 1 +A′
nn

 .

Applying Cramer’s rule to the system (4.42) the vector ξ = (ξ1, . . . , ξn)
T with

ξj =
det(M ′

j)

∆′ =
det
(
M ′

j(a
′, b′)

)
1

+N(
det(M ′

j)

∆′ ) = b′j +B, 1 ≤ j ≤ n. (4.44)
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is the Cramer-solution of the system. From formulas (4.43) and (4.44) we obtain ξ = GB. Moreover, because
of Theorem 4.4.25, the vector ξ = (ξ1, . . . , ξn) is the external set of all Gauss-solutions of the system (4.42).
By Theorem 4.4.22 we conclude that ξ = GB is the external set of all Gauss-solutions of the system (4.2).

4.5 Singular flexible systems

In this section we investigate singular flexible systems of the form
α11ξ1+ α12ξ2+ · · · +α1nξn ⊆ b1 +B1

...
... . . . ...

...
αm1ξ1+ αm2ξ2+ · · · +αmnξn ⊆ bm +Bm

(4.45)

wherem,n ∈ N are standard and αij , βi ∈ E, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Note that in this case we do not require that m = n. Even if m = n it may not be necessary that det(A) is
zeroless.

In classical linear algebra we know that if a linear system has rank r, the system has exactly r independent
equations. So we can reduce the given system to an equivalent system with exact r equations. Then some
variables are seen as parameters and the solutions of the system are expressed through these parameters. Here
we use a similar technique to deal with singular flexible systems.

This section has the following structure.

In Subsection 4.5.1 we give a necessary condition such that a flexible system has a solution. For a classical
system of linear equations we know that if the rank of the coefficient matrix is not equal to the rank of the
augmented matrix, the system has no solution. We will generalize this result to a flexible system by using the
strict rank of the coefficient matrix and the augmented matrix of a given flexible system. If both strict ranks are
equal to each other, we call it simply the strict rank of a flexible system.

In Subsection 4.5.2 we will show that a flexible system with identical neutrix parts in the constant term vector
can be transformed into an equivalent system such that the entries in each column of the augmented matrix have
the same neutrix parts.

In Subsection 4.5.3 we will investigate the relationship between the solutions of a given flexible system and
its associated homogeneous system. Recall that in classical linear algebra the set of all solutions of a non-
homogeneous linear system equals the sum of the set of solutions of its associated homogeneous linear system
and a particular solution of the original system. We will prove that it is still true for flexible systems.

In the next subsections we will consider several special cases of flexible systems. We will provide sufficient
conditions such that a flexible system has a solution. A solution formula corresponding to each case is given.
In fact, in Subsection 4.5.4 we deal with flexible systems such that the coefficients have the same neutrix parts.
In Subsection 4.5.5 we study flexible systems with the strict rank equal to the number of rows. In Subsection
4.5.6 we investigate flexible systems with the strict rank not equal to the numbers of rows.
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4.5.1 Necessary condition for the existence of solutions of a flexible system

A flexible system has a solution only if the strict rank of the coefficient matrix is equal to the strict rank of the
augmented matrix.

Theorem 4.5.1. Consider the flexible system (4.45). If sr(A) ̸= sr
(
[A|B]

)
, the system (4.45) has no solution.

Proof. Assume that sr
(
[A|B]

)
= r and sr(A) = s < r. Let α′

i = (αi1, . . . , αin, βi) ∈ En+1 and αi =

(αi1, . . . , αin) ∈ En for 1 ≤ i ≤ m. By Theorem 3.4.9 there are exactly r linearly independent row vec-
tors. Without loss of generality, we assume that V1 = {α′

1, . . . , α
′
r} are linearly independent. Similarly, since

sr(A) = s, we assume that V2 = {α1, . . . , αs} is linearly independent with s < r. Then there are real numbers
t1, . . . , ts, with at least one of them is not zero, and a neutrix vectorD = (D1, . . . , Dn) such that

αs+1 + t1α1 + · · ·+ tsαs = (D1, . . . , Dn). (4.46)

On the other hand, vectors α′
1, · · · , α′

(s+1) ⊆ V1 is linearly independent, so βs+1 +

s∑
i=1

tiβi is not a neutrix

vector. Otherwise, combining with (4.46), one derives that α′
s+1 +

s∑
i=1

tiα
′
i is a neutrix vector, and therefore

the vectors {α′
1, . . . , α

′
s+1} ⊆ V1 are linearly dependent, a contradiction.

Suppose on contrary that the system (4.45) has a solution. Let x = (x1, . . . , xn) be a solution of the system. So

n∑
j=1

αijxj ⊆ βi for all 1 ≤ i ≤ m.

It follows that
n∑

j=1

(
αsj +

s∑
i=1

tiαij

)
xj ⊆ βs+1 +

s∑
i=1

tiβi for all 1 ≤ i ≤ m. (4.47)

However, by formula (4.46), the left side of condition (4.47) is a neutrix vector, while the right side is a zeroless
vector, which is a contradiction. Hence the system has no solution.

In case of the strict ranks of both coefficient and augmented matrices are identical we call it the rank of a flexible
system.

Definition 4.5.2. Consider the flexible system (4.45). We say that the system has the strict rank r if sr(A) =

sr(A|B) = r.

Example 4.5.3. Let ϵ > 0 be infinitesimal. Consider the following system{
(1 +⊘)ξ1+ (1 + ϵ+ ϵ2⊘)ξ2+ (1 +⊘)ξ3 ⊆ 1 + ϵ£

ξ2+ ξ3 ⊆ −1/2 + ϵ£.
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Then the augmented matrix of the system is

[A|B] =

[
1 +⊘ 1 + ϵ+ ϵ2⊘ 1 +⊘ 1 + ϵ£

0 1 1 −1/2 + ϵ£

]
.

So sr ([A|B]) = 2 = sr(A) and hence the strict rank of the given system is 2.

4.5.2 Equivalent flexible systems

We can simplify singular flexible systems by transforming them into equivalent systems in which all the entries
in each column of the coefficient matrices have the same neutrix parts.

Definition 4.5.4. A flexible system
α11x1+ · · · +α1nxm ⊆ b1 +B1

... . . . ...
...

αm1x1+ · · · +αmnxm ⊆ bm +Bm

is said to be Gaussian equivalent to a system
α′
11x1+ · · · +α′

1nxm ⊆ b′1 +B′
1

... . . . ...
...

α′
m1x1+ · · · +α′

mnxm ⊆ b′m +B′
m

if the sets of Gauss-solutions of the two systems are the same.

A flexible system with a constant term vector with identical neutrix parts can be transformed to an equivalent
system where neutrix parts of the entries in each column are the same.

Theorem 4.5.5. Consider the flexible system
α11x1+ · · · +α1nxm ⊆ b1 +B

... . . . ...
...

αm1x1+ · · · +αmnxm ⊆ bm +B.

(4.48)

Then the flexible system 
(a′11 +A1)x1+ · · · +(a′1n +An)xm ⊆ b′1 +B

... . . . ...
...

(a′m1 +A1)x1+ · · · +(a′m1 +An)xm ⊆ b′m +B,

(4.49)

where Aj = max
1≤i≤m

{Aij} for 1 ≤ j ≤ n, is Gaussian equivalent to system (4.48).

Before we give a proof of this theorem we will illustrate how the theorem works by the following example.
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Example 4.5.6. Consider the following flexible system{
(1 +⊘)ξ1+ (ϵ£)ξ2+ (−2 + ϵ⊘)ξ3 ⊆ 2 +⊘

(−3 + ϵ⊘)ξ1+ (2 +⊘)ξ2+ (3 + ϵ⊘)ξ3 ⊆ 5 +⊘.
(4.50)

In the first column the neutrix part in the second row is smaller than in the first row, so we add the first row to
the second row and we obtain the equivalent system{

(1 +⊘)ξ1+ (ϵ£)ξ2+ (−2 + ϵ⊘)ξ3 ⊆ 2 +⊘
(−2 +⊘)ξ1+ (2 +⊘)ξ2+ (−1 + ϵ⊘)ξ3 ⊆ 7 +⊘.

Now the neutrix parts in the first column are the same. Next we do it for the second column. The neutrix part in
the first row is smaller than in the second row so we add the second row to the first row. Once again, we obtain
the equivalent system {

(−1 +⊘)ξ1+ (2 +⊘)ξ2+ (−1 + ϵ⊘)ξ3 ⊆ 9 +⊘
(−2 +⊘)ξ1+ (2 +⊘)ξ2+ (1 + ϵ⊘)ξ3 ⊆ 7 +⊘.

Note that the neutrix parts of all entries in each column are now the same.

The following lemma says that adding one row to another does not change the set of real admissible solutions.

Lemma 4.5.7. Consider the flexible system{
α11x1+ · · · +α1nxn ⊆ b1 + B

α21x1+ · · · +α2nxn ⊆ b2 + B.
(4.51)

Then system (4.51) is Gaussian equivalent to the following system:{
α11x1+ · · ·+ α1nxn ⊆ b1 + B

(α21 + α11)x1+ · · ·+ (α2n + α1n)xn ⊆ b2 + b1 + B.
(4.52)

Proof. Let x = (x1, . . . , xn) be a Gauss-solution of the system (4.51). To prove that x is a Gauss-solution of
the system (4.52), we just need to show that x satisfies the second row. Because x is a Gauss-solution of the
system (4.51), {

α11x1 + · · ·+ α1nxn ⊆ b1 + B

α21x1 + · · ·+ α2nxn ⊆ b2 + B.

It follows that

(α21 + α11)x1 + · · ·+ (α2n + α1n)xn =(α11x1 + · · ·+ α1nxn) + (α21x1 + · · ·+ α2nxn)

⊆b1 +B + b2 +B = b1 + b2 +B.

Conversely, suppose that x = (x1, . . . , xn) is a Gauss-solution of the system (4.52). We will show that

α21x1 + · · ·+ α2nxn ⊆ (α21 + α11)x1 + · · ·+ (α2n + α1n)xn − (α11x1 + · · ·+ α1nxn). (4.53)
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Indeed,

(α21 + α11)x1 + · · ·+ (α2n + α1n)xn − (α11x1 + · · ·+ α1nxn)

= (α21x1 + · · ·+ α2nxn) + (α11x1 + · · ·+ α1nxn)− (α11x1 + · · ·+ α1nxn)

=α21x1 + · · ·+ α2nxn + (A11x1 + · · ·+A1nxn) = (a21 +A.1)x1 + · · ·+ (a2n +A.n)xn. (4.54)

where A.j = max{A1j , A2j} for j = 1, . . . , n. Also

α21x1 + · · ·+ α2nxn = (a21 +A21)x1 + · · ·+ (a2n +A2n)xn ⊆ (a21 +A.1)x1 + · · ·+ (a2n +A.n)xn.

(4.55)

It follows by formulas (4.54) and (4.55) that formula (4.53) holds.

Because x is a Gauss-solution of the system (4.52), and by formula (4.53) we have

α21x1 + · · ·+ α2nxn ⊆ b1 +B + b2 +B − (b1 +B) = b2 +B.

So x satisfies the second equation of the system (4.51). Obviously, x satisfies the first equation of the system
(4.51). Hence x is a Gauss-solution of the system (4.51).

Thus the two systems (4.51) and (4.52) are Gaussian equivalent.

Because of the lemma above we can transform every flexible system into a system which has the same neutrix
parts in each column. For those systems we can generalize the result above by showing that adding to a row a
limited scalar multiple of another row does not change the set of solutions.

Lemma 4.5.8. Consider the flexible system{
α11x1 + · · · + α1nxn ⊆ b1 +B

α21x1 + · · · + α2nxn ⊆ b2 +B,
(4.56)

where Aij = Aj for all i = 1, 2. Let t ∈ R be limited. Then the system (4.56) is equivalent to{
α11x1 + · · · + α1nxn ⊆ b1 +B

(α21 + tα11)x1 + · · · + (α2n + tα1n)xn ⊆ b2 + tb1 +B.
(4.57)

Proof. Let x = (x1, . . . , xn) be a Gauss-solution of the system (4.56). To prove that x is a Gauss-solution of
the system (4.57), we just need to show that x satisfies the second row. Since x is a Gauss-solution of the system
(4.56), we have α11x1 + · · ·+ α1nxn ⊆ b1 +B

α21x1 + · · ·+ α2nxn ⊆ b2 +B.
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It follows that

(α21 + tα11)x1 + · · ·+ (α2n + tα1n)xn =t
(
α11x1 + · · ·+ α1nxn

)
+
(
α21x1 + · · ·+ α2nxn

)
⊆tb1 + tB + b2 +B = tb1 + b2 +B,

since t ∈ £.

Conversely, suppose that x = (x1, . . . , xn) is a Gauss-solution of the system (4.57). We will show that

α21x1 + · · ·+ α2nxn = (α21 + tα11)x1 + · · ·+ (α2n + tα1n)xn − t(α11x1 + · · ·+ tα1nxn). (4.58)

Indeed, because t ∈ £, one has tAj ⊆ Aj for all 1 ≤ j ≤ n. It follows that

(α21 + tα11)x1 + · · ·+ (α2n + tα1n)xn − t(α11x1 + · · ·+ α1nxn)

=
(
α21x1 + · · ·+ α2nxn

)
+ t
(
α11x1 + · · ·+ α1nxn − t(α11x1 + · · ·+ α1nxn)

)
=α21x1 + · · ·+ α2nxn + (tA11x1 + · · ·+ tA1nxn) = α21x1 + · · ·+ α2nxn.

Because x is a Gauss-solution of the system (4.57) and by formula (4.58),

α21x1 + · · ·+ α2nxn ⊆ tb1 + b2 +B − (tb1 +B) = b2 +B.

It shows that x satisfies the second equation of the system (4.56). Obviously, x satisfies the first equation of the
system (4.56). Hence x is a Gauss-solution of the system (4.56).

So systems (4.56) and (4.57) are equivalent.

Proof of Theorem 4.5.5. For each column j, let Aj = max
1≤i≤m

{Aij} = Akj for some k ∈ {1, . . . ,m}. For all

i ̸= k, i ∈ {1, . . . ,m}, if Aij ⊂ Akj = Aj , we add the k-th row to i-th row. The new transformed system is
equivalent to the given system by Lemma 4.5.7. Also Aij = Aj for all i = 1, . . . ,m. Applying this process
for all j ∈ {1, . . . , n} the system will take the form (4.49), and this last system is equivalent to the system
(4.48).

Convention 4.5.9. From now on, we consider flexible systems in the form
α11x1+ · · · +α1nxn ⊆ β1 = b1 +B

... . . . ...
...

...
αm1x1+ · · · +αmnxn ⊆ βm = bm +B.

(4.59)

Note that in this form we have B = B = B. By Theorem 4.5.5, we can always assume that αij = aij + Aij

with Aij = Akj = Aj for all i ̸= k; i, k ∈ {1, . . . ,m} and for all j = 1, . . . , n. This means the neutrix parts of
the entries on each column in A are the same.

Suppose that the strict rank of the system is r, where r ≤ min{m,n}. Hence, without loss of generality, we
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may assume that Al =


α11 · · · α1r

... . . . ...
αr1 · · · αrr

 is non-singular with ∆ = det(Al) zeroless.

We also suppose that the flexible system (4.59) satisfies the following assumptions:

(i) The submatrix Al is reduced.

(ii) Let Al = max
1≤j≤r

Aj and Ar = [αij ] be the submatrix of A formed by all entries ofA which do not belong

to Al. Let Ar = min
r+1≤j≤n

Aj be the minimum neutrix part of the entries in Ar. Then Al ⊆ Ar.

(iii) R(Al) ⊆ P (B).

(iv) ∆ is not an absorber of B.

Definition 4.5.10. A flexible system of the form (4.59) satisfying all the assumptions above is said to be solv-
able.

Remark 4.5.11. If all the coefficients of a given system have the same neutrix parts, the second assumption is
satisfied automatically.

4.5.3 An associated homogeneous system

In this subsection we will present a relationship between the sets of solutions of a given flexible system and its
homogeneous system.

Definition 4.5.12. The system of the form
α11 · · · α1n

... . . . ...
αm1 · · · αmn



ξ1
...
ξn

 ⊆


B1

...
Bm

 (4.60)

is called the associated homogeneous flexible system of the system (4.45).

We denote by SO, SH the sets of all Gauss-solutions of the system (4.45) and (4.60), respectively.

Proposition 4.5.13. Consider the system (4.45). Suppose that x = (x1, x2, . . . , xn)
T , y = (y1, y2, . . . , yn)

T

are two Gauss-solutions of the system. Put ui = xi − yi, for 1 ≤ i ≤ n. Then
α11 · · · α1n

... . . . ...
αm1 · · · αmn



u1
...
un

 ⊆


B1

...
Bm

 . (4.61)

Proof. Because both x, y are two Gauss-solutions of the given system, we have

αi1x1 + · · ·+ αinxn ⊆ βi
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and
αi1y1 + · · ·+ αinyn ⊆ βi

for all 1 ≤ i ≤ m. It follows from the subdistributivity that for all i ∈ {1, . . . ,m},

αi1u1 + · · ·+ αinun =αi1(x1 − y1) + · · ·+ αin(xn − yn)

⊆
(
αi1x1 + · · ·αinxn

)
−
(
αi1y1 + · · ·αinyn

)
⊆βi − βi = Bi.

Hence u satisfies (4.61).

We show that the set of all solutions of a non-homogeneous flexible system can be expressed as the sum of the
set of solutions of its associated homogeneous system and a particular solution of the original system.

Theorem 4.5.14. Consider the two systems (4.45) and (4.60). We have

SO = x0 + SH ,

where x0 = (x01, . . . , x
0
n)

T is a particular Gauss-solution of the system (4.45).

Proof. Let x = (x1, · · · , xn)T ∈ SO. By Proposition 4.5.13, it holds that u = (u1, . . . , un)
T , with ui = xi−x0i

for 1 ≤ i ≤ n, is a solution of the system (4.60). This means that u ∈ SH and hence x = x0 + u ∈ x0 + SH .
So SO ⊆ x0 + SH .

On the other hand, let u = (u1, . . . , un)
T ∈ SH . Then the system (4.60) is satisfied by u. Let x = x0+u. One

has for each i ∈ {1, . . . , n},

αi1x1 + · · ·+ αinxn =αi1(x
0
1 + u1) + · · ·+ αin(x

0
n + un)

⊆
(
αi1x

0
1 + · · ·αinx

0
n

)
+
(
αi1u1 + · · ·αinun

)
⊆βi +Bi = βi.

Hence x ∈ SO and therefore x0 + SH ⊆ SO.

According to the proposition above, to solve a system A.ξ ⊆ B we just need to find a concrete Gauss-
solution and solve the associated homogeneous flexible system of the given system. Also note that if x0 =

(x
(0)
1 , . . . , x

(0)
n ) ∈ Rn is a solution of the linear system


a11x1+ · · · +a1nxn = b1

... . . . ...
...

am1x1+ · · · +amnxn = bm,

(4.62)

where aij ∈ αij , bi ∈ βi.1 ≤ i ≤ n, 1 ≤ j ≤ m, it is also a solution of the flexible system (4.45). This guides
us how to find a concrete Gauss-solution of a given system.
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4.5.4 The flexible system with identical neutrix parts

In this subsection we consider a special form of flexible systems in which the strict rank of the system is equal to
the number of equations and all neutrix parts of the coefficients are the same. To bemore detailed, we investigate
the reduced system of the form:

α11x1+ α12x2+ · · · +α1nxn ⊆ b1 +B
...

... . . . ...
...

αm1x1+ αm2x2+ · · · +αmnxn ⊆ bm +B,

(4.63)

where αij = aij +A and |αij | = |aij +A| ≤ 1+⊘;A ⊆ ⊘ and sr(A) = m ≤ n, hereA = [αij ] ∈ Mm,n(E)
is the coefficient matrix of the system (4.63). Since sr(A) = m, without loss of generality, we assume that

∆ = det


α11 α12 · · · α1m

α21 α22 · · · α2m

...
... . . . ...

αm1 αm2 · · · αmm

 = d+D

is zeroless. Let

Al =


α11 α12 · · · α1m

α21 α22 · · · α2m

...
... . . . ...

αm1 αm2 · · · αmm

 ,

and
|αl| = max

1≤i,j≤m
|αij |.

We write

Mj =


α11 · · · α1(j−1) b1 +B −

n∑
k=m+1

a1kxk α1(j+1) · · · α1m

... . . . ...
...

... . . . ...

αm1 · · · αm(j−1) bm +B −
n∑

k=m+1

amkxk αm(j+1) · · · αmm


(m+ 1 ≤ j ≤ n). (4.64)

Note first that although the system (4.63) is reduced the matrix Al may be not.

Theorem 4.5.15. Assume that the system (4.63) satisfies following conditions:

(i) Al is anm×m reduced matrix,

(ii) ∆ is not an absorber of B,

(iii) R(Al) ⊆ P (B).
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Then the set of all Gauss-solutions of the system (4.63) is given by

S =

{
(x1, . . . , xn)

T

∣∣∣∣∣x1 ∈ det(M1)

∆
, . . . , xm ∈ det(Mm)

∆
, xj ∈ B : A, ∀j = m+ 1, . . . , n

}
. (4.65)

Proof. Observe that if x = (x1, x2, . . . , xn)
T is a Gauss-solution of the system (4.63) then A.xj ⊆ B for all

1 ≤ j ≤ n, that is
xj ∈

(
B : A

)
for all j = 1, . . . , n. (4.66)

Let xj ∈
(
B : A

)
for all j = m+ 1, . . . , n. Then the system (4.63) is equivalent to

α11x1 + · · · + α1mxm ⊆ b1 +B − α1m+1xm − · · · − α1nxn

α21x1 + · · · + α2mxm ⊆ b2 +B − α2m+1xm − · · · − α2nxn
... . . . ...

...
... . . . ...

αm1x1 + · · · + αmmxm ⊆ bm +B − αmm+1xm − · · · − αmnxn.

Because
n∑

j=m+1
Aijxj ⊆ B for all 1 ≤ i ≤ m, the system above becomes


α11x1 + · · · + α1mxm ⊆ b1 +B − a1m+1xm − · · · − a1nxn

α21x1 + · · · + α2mxm ⊆ b2 +B − a2m+1xm − · · · − a2nxn
... . . . ...

...
... . . . ...

αm1x1 + · · · + αmmxm ⊆ bm +B − amm+1xm − · · · − amnxn.

(4.67)

We will show that the system (4.67) satisfies all the Cramer conditions in Definition 4.3.3 for all values xj ∈
B : A,m + 1 ≤ j ≤ n. To do this we just need to verify that for m + 1 ≤ j ≤ n, 1 ≤ i ≤ m and for all
xj ∈ (B : A),

A

bi +B −
n∑

j=m+1

aijxj


d

⊆ B.

Because |aij | ≤ 1 +⊘, one has for all i = 1, . . . ,m,

A

bi +B −
n∑

j=m+1

aijxj

 = AB +

bi −
n∑

j=m+1

aijxj

A

⊆ AB + biA−
n∑

j=m+1

(aijxj ·A) ⊆ AB + biA−
n∑

j=m+1

aijB

⊆ AB + biA−
n∑

j=m+1

(1 +⊘)B ⊆ B + biA−B = biA+B.

Also R(Al) ⊆ P (B). So for all 1 ≤ i ≤ m,

biA/∆ ⊆ B.
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Indeed, if β is zeroless then βA/∆ = bA/∆ ⊆ B. It follows that biA/∆ ⊆ B, 1 ≤ i ≤ m. Similarly, if β is a
neutrix then β = B and bi ⊆ β = B. So biA/∆ ⊆ BA/∆ ⊆ B for 1 ≤ i ≤ m.

Moreover |∆| = |d + D| ≤ £ is zeroless and not an absorber of B, so
B

∆
=

B

d
= B by Proposition 2.2.26.

Consequently, for all i = 1, . . . ,m,

A

bi +B −
n∑

j=m+1

aijxj


d

⊆ biA+B

d
⊆ B +B = B.

Applying Theorem 4.3.8 to the system (4.67), one has ξj =
det(Mj)

∆
for 1 ≤ j ≤ m is the maximal solution

of the system (4.67) with respect to xj ∈ B : A (m + 1 ≤ j ≤ n). So
{(

det(M1)

∆
, . . . ,

det(Mm)

∆

)}
is the

set of all Gauss-solutions of the system (4.67) by Theorem 4.4.25. That is, the set S given by (4.65) is the set
of all Gauss-solutions of the system (4.63).

Example 4.5.16. Let ϵ > 0 be an infinitesimal. Consider the following homogeneous flexible system (1 +⊘)x1 + (ϵ+⊘)x2 + ⊘x3 ⊆ ⊘

(−1 +⊘)x1 + (1 +⊘)x2 + (
1

2
+⊘)x3 ⊆ ⊘.

The system is reduced with α = 1 +⊘ and B = ⊘. The determinant

∆ = det

[
1 +⊘ ϵ+⊘
−1 +⊘ 1 +⊘

]
= 1− ϵ+⊘ = 1 +⊘ ∈ @

is not an absorber of B. Let Al =

[
1 +⊘ ϵ+⊘
−1 +⊘ 1 +⊘

]
. Then Al is a reduced matrix, R(Al) =

A

∆
= ⊘ and

P (B) = ⊘ : ⊘ = £, so R(Al) ⊆ P (B) and hence all of the conditions of the Theorem 4.5.15 are satisfied. For
x3 ∈ ⊘ : ⊘ = £, the system is equivalent to (1 +⊘)x1 + (ϵ+⊘)x2 ⊆ ⊘

(−1 +⊘)x1 + (1 +⊘)x2 ⊆ −1

2
x3+ ⊘.

Applying Cramer′s rule to this system, one has

ξ1 = det

 ⊘ ϵ+⊘

−1

2
x3 +⊘ 1 +⊘

 /∆ = ⊘

ξ2 = det

 1 +⊘ ⊘

−1 +⊘ −1

2
x3 +⊘

 /∆ = −1

2
x3 +⊘.
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Hence the set of all Gauss-solutions of the system is given by

S =

{(
⊘,−1

2
x3 +⊘, x3

) ∣∣∣∣∣x3 ∈ £

}
.

As for flexible systems whose strict rank equals the number of rows but the neutrix parts are not identical, we
can apply the theorem to them by using upper and lower neutrix of the entries in A allowing to find the upper
and lower bounds of the set of all Gauss-solutions. The theorem below shows the relationships between these
two sets of solutions.

Theorem 4.5.17. Consider the following reduced system
α11x1+ α12x2+ · · · +α1nxn ⊆ b1 +B

...
... . . . ...

...
αm1x1+ αm2x2+ · · · +αmnxn ⊆ bm +B,

(4.68)

where αij = aij +Aij ∈ E and |αij | = |aij +Aij | ≤ 1 +⊘. Suppose that the strict rank of the system ism.

Let A = max
1≤j≤n
1≤i≤m

Aij and A = min
1≤j≤n
1≤i≤m

Aij . Consider the two following systems, respectively


λ11x1+ λ12x2+ · · · +λ1nxn ⊆ b1 +B

...
... . . . ...

...
λm1x1+ λm2x2+ · · · +λmnxn ⊆ bm +B,

(4.69)

where λij = aij +A and 
γ11x1+ γ12x2+ · · · +γ1nxn ⊆ b1 +B

...
... . . . ...

...
γm1x1+ γm2x2+ · · · +γmnxn ⊆ bm +B,

(4.70)

where γij = aij +A.

Let S1, S, S2 be the sets of all Gauss solutions of the systems (4.70), (4.68), (4.69), respectively. Then

S1 ⊆ S ⊆ S2.

Furthermore, the conclusion does not depend on choosing aij ∈ αij .

Proof. As for the first inclusion, let x = (x1, x2, . . . , xn)
T ∈ S1. Then

n∑
j=1

aijxj ∈ bi + B, for all aij ∈ αij

and xj ·A ⊆ B for all i = 1, . . . ,m. As a consequence, xj ·Aij ⊆ xjA ⊆ B. So

n∑
j=1

aijxj + xj ·Aij ⊆ bi +B for i = 1, . . . ,m.
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That means
n∑

j=1

αijxj ⊆ βi, for all i ∈ {1, . . . ,m} and hence x ∈ S. Since x ∈ S1 is arbitrary, this implies

S1 ⊆ S.

As for the second inclusion, let y = (y1, y2, . . . , yn)
T ∈ S be arbitrary. Then

n∑
j=1

aijyj ∈ bi + B for all

aij ∈ αij and yj · A ⊆ yj · Aij ⊆ B for all i ∈ {1, . . . ,m}. It follows that
n∑

j=1

(aijyj + yj ·A) ⊆ bi + B for

all i = 1, . . . ,m. So y = (y1, . . . , yn)
T ∈ S2 and hence S ⊆ S2.

4.5.5 The flexible system with the strict rank equal to the number of rows

In this subsection we consider flexible systems of the from (4.59) such that the strict rank of a given system is
equal to the number of equations. Because of Convention 4.5.9 one has Al = [αij ]m×m is non-singular. We
will give some conditions to guarantee that singular flexible systems can be solved.

Put

Mj =


α11 · · · α1(j−1) b1 +B −

n∑
k=m+1

a1kxk α1(j+1) · · · α1m

... . . . ...
...

... . . . ...

αm1 · · · αm(j−1) bm +B −
n∑

k=m+1

amkxk αm(j+1) · · · αmm


,

for j ∈ {1, . . . ,m} and Nj = B : Aj for j ∈ {m+ 1, . . . , n}. (4.71)

Theorem 4.5.18. Assume that the flexible system (4.59) is solvable and r = m, where r is the strict rank of the
system. Then the external set of all Gauss-solutions of the system is given by

S =

{
(x1, . . . , xn)

T

∣∣∣∣∣xj ∈ det(Mj)

∆
for 1 ≤ j ≤ m and xj ∈ Nj for m+ 1 ≤ j ≤ n

}
. (4.72)

Remark 4.5.19. There is an analogy between formula (4.72) and parameter presentations of a solution of a
given system of equation in classical linear algebra. The first part of formula (4.72) expresses a particular
solution. As for the second part, classically the parameters range over R and here over neutrices.

Proof of Theorem 4.5.18. Suppose that x = (x1, . . . , xn)
T is a Gauss-solution of the system (4.59). Then

xj ∈ B : Aj for all j = 1, . . . , n. For each j = m + 1, . . . , n, we choose xj ∈ B : Aj . Then the system is
equivalent to the following one:

α11x1+ · · · +α1mxm ⊆ b1 +B −a1(m+1)xm+1− · · · −a1nxn
... . . . ...

...
... . . . ...

αm1x1+ · · · +αmmxm ⊆ bm +B −am(m+1)xm+1− · · · −amnxn.

(4.73)
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We will show that all the Cramer conditions in Definition 4.3.3 are satisfied for the system (4.73). We just need
to verify the condition R(Am) ⊆ P (B), where P (B) = B/β with∣∣β∣∣ = max

1≤i≤m

{∣∣bi − (ai(m+1)xm+1 + · · ·+ ainxn
)∣∣} ,

i.e. we need to verify the following conditionbi −
n∑

j=m+1

aijxj

 · Al

∆
⊆ B

for all i = 1, . . . ,m and for all xj ∈ B : Aj , j = m+ 1, . . . , n. For each xj ∈ B : Aj ,m+ 1 ≤ j ≤ n, since
|aij | ≤ 1 +⊘, it follows that

aijxj ∈ aij
(
B : Aj

)
⊆ B : Ar, for all 1 +m ≤ j ≤ n, 1 ≤ i ≤ m.

Then
aijxj ·

Al

∆
⊆ (B : Ar) ·

Al

∆
=

B

∆
·
(
Al : Ar

)
for all 1 +m ≤ j ≤ n, 1 ≤ i ≤ m. (4.74)

Moreover, by the second hypothesis Al ⊆ Ar, one has Al : Ar ⊆ £. It follows that

B

∆
·
(
Al : Ar

)
⊆ £ · B

∆
= B. (4.75)

By formulas (4.74), (4.75) we have

aijxj .
Al

∆
⊆ B for all i = 1, . . . ,m and j = m+ 1, . . . , n.

Also, by conditionR(Al) ⊆ P (B), it follows that Al

∆
bi ⊆ B for all i = 1, . . . ,m. Because of subdistributivity,

we havebi −
n∑

j=m+1

aijxj

 · Al

∆
⊆ bi

Al

∆
−

n∑
j=m+1

(
aijxj .

Al

∆

)
⊆ B + (n−m)B = B, for all i = 1, . . . ,m.

Applying Theorem 4.3.8 to the system (4.73), the vector
(
det(Mn)

∆
, . . . ,

det(Mm)

∆

)T

is the Cramer-solution,

and hence the set of all Gauss-solutions of the system (4.73) corresponds to each xj ∈ B : Aj , for j =

m+ 1, . . . , n.

Thus the external set of all Gauss-solutions of the system (4.59) is given by (4.72).

Remark 4.5.20. Although the arguments in the proof base on Cramer’s rule, we can also apply Gauss-Jordan
elimination to solve the non-singular system (4.73) for xj ∈ Nj , j = m + 1, . . . , n if Al is Gauss-Jordan
eliminable.
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Example 4.5.21. Consider the flexible system, with ϵ > 0 infinitesimal,{
(1 + ϵ⊘)x1 + ϵ2£x2 + ϵ£x3 + (1/2 +⊘)x4 ⊆ ⊘
(−1 + ϵ⊘)x1 + (1 + ϵ2£)x2 + (1 + ϵ£)x3 + (−1 +⊘)x4 ⊆ ⊘.

The system is reduced andAl =

[
1 + ϵ⊘ ϵ2£
−1 + ϵ⊘ 1 + ϵ2£

]
is a reducedmatrix such that∆ = det

[
1 + ϵ⊘ ϵ2£
−1 + ϵ⊘ 1 + ϵ2£

]
=

1 + ϵ⊘ is zeroless.

(i) A2 = ϵ2£ ⊂ A1 = ϵ⊘ ⊂ A3 = ϵ£ ⊂ ⊘ = A4, hence the second assumption is satisfied with Al = ϵ⊘ ⊆
Ar = ϵ£.

(ii) the strict rank of the system equals the number of equations which is 2.

(iii) R(Al) = ϵ⊘ ⊆ P (B) = ⊘ : ϵ⊘ =
1

ϵ
£.

(iv) ∆ ∈ @ is not an absorber of B = ⊘.

Thus the system satisfies all conditions above. Due to Theorem 4.5.18, one has

det(M1) = det

[
−1/2x4 +⊘ ϵ2£
−x3 + x4 +⊘ 1 + ϵ£

]
= −1

2
x4 +⊘

det(M2) = det

[
1 + ϵ⊘ −1/2x4 +⊘
−1 + ϵ⊘ −x3 + x4 +⊘

]
= −x3 +

1

2
x4 +⊘

and 
x1 ∈ det(M1)

∆
= −1

2
x4 +⊘

x2 ∈ det(M2)

∆
= −x3 +

1

2
x4 +⊘.

Hence the set of all Gauss-solutions of the system is

S =

{(
−1

2
x4 +⊘,−x3 +

1

2
x4 +⊘, x3, x4

) ∣∣∣∣∣x3 ∈ 1

ϵ
⊘, x4 ∈ £

}
. (4.76)

Now we solve the system by Gauss-Jordan elimination.

The augmented matrix of the system is of the form

[A|B] =

[
1 + ϵ⊘ ϵ2£ ϵ£ 1/2 +⊘ ⊘

−1 + ϵ⊘ 1 1 + ϵ2£ 1 + ϵ£ −1 +⊘ ⊘

]
.

It is easy to see that the both principle minors of [A|B] are appreciable, also the other conditions are satisfied as
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above. Hence we can apply the Gauss-Jordan elimination to solve this system. One has

[A|B] =

[
1 + ϵ⊘ ϵ2£ ϵ£ 1/2 +⊘ ⊘

−1 + ϵ⊘ 1 1 + ϵ2£ 1 + ϵ£ −1 +⊘ ⊘

]

L2 + L1

−→

1 + ϵ⊘ ϵ2£ ϵ£ 1/2 +⊘ ⊘

ϵ⊘ 1 + ϵ2£ 1 + ϵ£ −1

2
+⊘ ⊘

 .

So we obtain

S =

{(
−1

2
x4 +⊘,−x3 +

1

2
x4 +⊘, x3, x4

) ∣∣∣∣∣x3 ∈ 1

ϵ
⊘, x4 ∈ £

}
,

which corresponds to the Gauss solutions of (4.76).

4.5.6 The flexible system with the strict rank not equal to the number of rows

We now deal with flexible systems of the form (4.59) in which r < m. To study this kind of systems, like
in linear algebra, we first prove that it is equivalent to a system which has exactly r rows, and then applying
Theorem 4.5.18 we find the external set of solutions of the given system.

Theorem 4.5.22. Consider the flexible system (4.59). Assume that the strict rank of the system is r, where

r < min{m,n}. Let ∆ = det(Al) = det


α11 · · · α1r

... . . . ...
αr1 · · · αrr

. We also assume that ∆ is zeroless and not an

absorber of B. Then the system (4.59) is equivalent to the following one
α11x1+ · · · +α1nxn ⊆ b1 +B

... . . . ...
...

αr1x1+ · · · +αrnxn ⊆ br +B.

(4.77)

The theorem follows from the following lemmas.

Lemma 4.5.23. Consider the flexible system (4.59). For 1 ≤ i ≤ m, let

αin+1 = bi +B = ai(n+1) +Ai(n+1)

be the (n + 1)th column in the augmented matrix [A|B]. Assume that the strict rank of the system is r and

∆ = det(Al) = det


α11 · · · α1r

... . . . ...
αr1 · · · αrr

 is zeroless and not an absorber ofB. Taking aij ∈ αij for 1 ≤ i ≤ m
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and 1 ≤ j ≤ n+ 1. For all j ∈ {1, . . . , n+ 1} and k ∈ {r + 1, . . . , n} let

W (j) =


akj ak1 · · · akr

a1j a11 · · · a1r
...

... . . . ...
arj ar1 · · · arr

 ,

and, for all i ∈ {1, . . . , r, k} by removing the first column and the (i+ 1)th row ofW (j), we denote

Wi(j) =



ak1 ak2 · · · akr

a11 a12 · · · a1r
...

... . . . ...
a(i−1)1 a(i−1)2 · · · a(i−1)r

a(i+1)1 a(i+1)2 · · · a(i+1)r
...

... . . . ...
ar1 ar2 · · · arr


.

Let 

dki = (−1)i+2det (Wi(j)) , for i ∈ {1, . . . , r}

d = det


a11 a12 · · · a1r
...

... . . . ...

ar1 ar2 · · · arr

 .
(4.78)

Then

(i) For j ∈ {1, . . . , n+ 1} one has

akj = −1

d
(dk1.a1j + · · ·+ dkr.arj). (4.79)

(ii) Vector
αk +

1

d
(dk1α1 + · · ·+ dkrαr) = (A1, . . . , An, B) (4.80)

is a neutrix vector.

Remark 4.5.24. By changing rows, we can choose dki and d such that |dki| ≤ |d|.

Proof of Lemma 4.5.23. (i) Let αi =
(
αi1, · · · , αi(n+1)

)
∈ En+1 for all i ∈ {1, . . . ,m}. Since sr(A) =

sr[A|B] = r and det(Al) is zeroless, the vector system E = {α1; . . . ;αr;αk} is linearly dependent for all
k ∈ {r + 1, . . . ,m}. By the definition of linear dependence, there exists a set of vectors

V ′ = {a1; · · · ; ar; ak}

which is linearly dependent, where ai = (ai1, . . . , ain+1) ∈ αi, i ∈ {1, . . . , r, k}.
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One has det
(
W (j)

)
= 0, for all j = 1, . . . , n+ 1. Indeed, if 1 ≤ j ≤ r then W (j) has the two equal columns

aj and hence det
(
W (j)

)
= 0. If r + 1 ≤ j ≤ n + 1, because the set of vectors V ′ = {a1; · · · ; ar; ak} is

linearly dependent, then det
(
W (j)

)
= 0.

Expanding the determinant det
(
W (j)

)
along the first column we obtain

det
(
W (j)

)
= dk1.a1j + dk2.a2j + · · ·+ dkr.arj + d.akj = 0 for all 1 ≤ j ≤ n+ 1.

It follows that
dk1.a1 + dk2.a2 + · · ·+ dkr.ar + d.ak = 0.

Moreover, by (4.78) and the definition ofWi(j), one has d ∈ ∆ and d ̸= 0. Hence

ak = −1

d
(dk1.a1 + · · ·+ dkr.ar) , (4.81)

i.e., for all j ∈ {1, . . . , n+ 1},
akj = −1

d
(dk1.a1j + · · ·+ dkr.arj) .

(ii) Let
α′
k = αk +

1

d
(dk1α1 + · · ·+ dkrαr) = (a′k1 +A′

k1, . . . , a
′
k(n+1) +B′). (4.82)

By formula (4.79), one can choose a′kj = 0 for all j = 1, . . . , n+1 and hence α′
k = (A′

k1, . . . , A
′
kn, B

′), where

A′
kj = Aj +

1

d

r∑
i=1

(dki.Aj)

and

B′ = B +
r∑

i=1

(
dki
d
B

)
(4.83)

for all j = 1, . . . , n+ 1. Since |dki| ≤ |d| by Remark 4.5.24, we have∣∣∣∣dkid
∣∣∣∣ ≤ 1. (4.84)

By formulas (4.84), (4.80), (4.83) and r being standard, one has A′
kj = Aj and B′ = B for all k = r +

1, . . . ,m.

Lemma 4.5.25. Consider the flexible system (4.59). Assume that the strict rank of the system is r < min{m,n}

and ∆ = det(Al) = det


α11 · · · α1r

... . . . ...
αr1 · · · αrr

 is zeroless and not an absorber of B. Then the system (4.59) is
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equivalent to 
α11x1+ · · · +α1nxn ⊆ b1 + B

... . . . ...
...

αr1x1+ · · · +αrnxn ⊆ br + B

A1x1+ · · · +Anxn ⊆ B.

(4.85)

Proof. Let x = (x1, . . . , xn)
T is a Gauss-solution of the system (4.59). We will prove that x is also a Gauss-

solution of the system (4.85). To do it we just need to verify that x satisfies the (r + 1)th row of the system
(4.85), because the other rows are automatically satisfied.

Since x = (x1, . . . , xn)
T is a solution of the system (4.59), one has

n∑
j=1

αijxj ⊆ bi + B for all i = 1, . . . ,m.

Also dki ∈ £, and d is not an absorber of B, so for all i ∈ {1, . . . , r},

n∑
j=1

dki
d
αijxj =

dki
d

n∑
j=1

αijxj ⊆
dki
d

(bi +B) ⊆ dki
d
bi +B. (4.86)

Applying formula (4.79) with j = n+ 1, because for all 1 ≤ i ≤ r, ai(n+1) = bi, one obtains that

bk +
r∑

i=1

dki
d
bi = 0. (4.87)

Also by formula (4.80),

Aj = αkj +
r∑

i=1

dki
d
αij . (4.88)

Combining (4.88) and (4.87) with formula (4.86) one obtains

A1.x1 + · · ·+An.xn =
n∑

j=1

(
αkj +

r∑
i=1

dki
d
αij

)
xj

=
n∑

j=1

αkjxj +
n∑

j=1

r∑
i=1

dki
d
αijxj =

n∑
j=1

αkjxj +
r∑

i=1

n∑
j=1

dki
d
αijxj

⊆bi +B +
r∑

i=1

(
dki
d
bi +B

)
=

(
bk +

r∑
i=1

dki
d
bi

)
+ (r + 1)B

=(r + 1)B = B.

So x satisfies the (r + 1)th row, and hence x is a solution of the system (4.85).

Conversely, suppose x = (x1, . . . , xn)
T is a solution of the system (4.85). Then

n∑
j=1

αijxj ⊆ bi +B,

for all 1 ≤ i ≤ r and formula (4.86) is still true.
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For each k > r arbitrary, using formulas (4.79), (4.87) and the fact that
n∑

j=1
aij · xj ∈ bi +B one has

n∑
j=1

αkjxj =
n∑

j=1

(
r∑

i=1

−dki
d
aij

)
xj +

n∑
j=1

Ajxj =
n∑

j=1

Ajxj +
r∑

i=1

−dki
d

 n∑
j=1

aij · xj


⊆B +

r∑
i=1

−dki
d
(bi +B) = B +

r∑
i=1

dki
d
bi +

r∑
i=1

dki
d
B = bk +B.

Hence x is a solution of the system (4.59).

We conclude that the system (4.59) is equivalent to the system (4.85).

For flexible systems which have the same neutrix parts in each column then we can remove the rows whose
coefficients are neutrices.

Lemma 4.5.26. Consider the following system
α11x1 + · · · + α1nxn ⊆ b1 + B

... . . . ...
...

αr1x1 + · · · + αrnxn ⊆ br + B

A1x1 + · · · + Anxn ⊆ B,

(4.89)

where αij = aij + Aj for all i ∈ {1, . . . , r} and j ∈ {1, . . . , n}. Assume that the strict rank of the system is
r < min{m,n}, and

∆ = det(Al) = det


α11 · · · α1r

... . . . ...
αr1 · · · αrr


is zeroless and not an absorber of B. Then the given system is equivalent to

α11x1+ · · · +α1nxn ⊆ b1 +B
... . . . ...

...
αr1x1 + · · · +αrnxn ⊆ br +B.

(4.90)

Proof. It is clear that all solutions of the system (4.89) are solutions of the system (4.90).

Conversely, if x = (x1, . . . , xn)
T is a solution of (4.90) then Aj · xj ⊆ B. It follows

n∑
j=1

Ajxj ⊆ B. Hence x

is a solution of the system (4.89).

Proof of Theorem 4.5.22. The theorem is a direct consequence of the three lemmas aforementioned.

The theorem below gives a formula for the Gauss-solutions of a general system.

Theorem 4.5.27. Suppose that a flexible system of the form (4.59) is solvable.
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Then the set of Gauss-solutions of the system is given by

S =

{
(x1, x2, . . . , xn)

∣∣∣∣∣xj ∈ det(Mj)

∆
, for j ∈ {1, . . . , r} ;xj ∈ Nj , for j ∈ {r + 1, . . . , n}

}
,

where Nj = B : Aj andMj is defined by (4.71).

Proof. By Theorem 4.5.22 the given system is equivalent to the following
α11x1+ · · · +α1nxn ⊆ b1 +B

... . . . ...
...

αr1x1+ · · · +αrnxn ⊆ br +B.

(4.91)

Since the matrix A satisfies all the basic assumptions, applying Theorem 4.5.18 to the system (4.91), one has

S =

{
(x1, x2, . . . ., xn)

∣∣∣∣∣xj ∈ det(Mj)

∆
, for j ∈ {1, . . . , r};xj ∈ Nj , for j ∈ {r + 1, . . . , n}

}
,

where Nj = B : Aj andMj is defined as (4.71).

Remark 4.5.28. Note that interchanging two rows, and multiply each element of a row by a non-zero, appre-
ciable scalar do not change the set of solutions of a flexible system. Combining with Lemma 4.5.8 we see that
the following Gauss operations do not affect the set of solutions of a flexible system of the form (4.59).

(i) Interchange any two rows.

(ii) Multiply a row by a non-zero, appreciable scalar.

(iii) Add to a row a limited scalar multiple of another.

We call these operations the restricted Gauss operations, , the process of using these operations to transform a
given matrix to an upper triangular matrix is called restricted Gauss elimination.

Moreover, we can apply the restricted Gauss elimination not only for reduced systems but also for every systems
satisfying the conditions B = B = B and Aij = Akj = Aj for all 1 ≤ i, k ≤ m, 1 ≤ j ≤ n.

The example below illustrates the restricted Gauss operations. It is also can be seen as an application of Theorem
4.5.27.

Example 4.5.29. Consider the flexible system, with ϵ > 0 infinitesimal,

(1 + ϵ⊘)x1 +

(
1

2
+ ϵ£

)
x2 + ⊘x3 ⊆ 2 + ⊘(

1

2
+ ϵ⊘

)
x1 + (−1

3
+ ϵ£)x2 + (−1

4
+⊘)x3 ⊆ −1 + ⊘(

−1

2
+ ϵ⊘

)
x1 +

(
−5

6
+ ϵ£

)
x2 + (−1

4
+⊘)x3 ⊆ −3 + ⊘.
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Applying the restricted Gauss elimination to [A|B] of the system, ons has

[A|B] =


1 + ϵ⊘ 1

2
+ ϵ£ ⊘ 2 +⊘

1

2
+ ϵ⊘ −1

3
+ ϵ£ −1

4
+⊘ −1 +⊘

−1

2
+ ϵ⊘ −5

6
+ ϵ£ −1

4
+⊘ −3 +⊘


L2 −

1

2
L1

−→

L3 +
1

2
L1


1 + ϵ⊘ 1

2
+ ϵ£ ⊘ 2 +⊘

ϵ⊘ − 7

12
+ ϵ£ −1

4
+⊘ −2 +⊘

ϵ⊘ − 7

12
+ ϵ£ −1

4
+⊘ −2 +⊘


L3 − L2

−→

−12

7
L2


1 + ϵ⊘ 1

2
+ ϵ£ ⊘ 2 +⊘

ϵ⊘ 1 + ϵ£
3

7
+⊘ 24

7
+⊘

ϵ⊘ ϵ£ ⊘ ⊘


L1 −

1

2
L2

−→

L3 +
4

7
L2


1 + ϵ⊘ ϵ£

3

14
+⊘ 2

7
+⊘

ϵ⊘ 1 + ϵ£
3

7
+⊘ 24

7
+⊘

ϵ⊘ ϵ£ ⊘ ⊘

 .

Hence the given system is equivalent to
(1 + ϵ⊘)x1 + ϵ£x2 +

(
3

14
+⊘

)
x3 ⊆ 2

7
+ ⊘

ϵ⊘ x1 + (1 + ϵ£)x2 +

(
3

7
+⊘

)
x3 ⊆ 24

7
+ ⊘.

So the strict rank of the system is 2.

Let

Al =

[
1 + ϵ⊘ ϵ£
ϵ⊘ 1 + ϵ£

]
.

So ∆ ≡ det(Al) = 1 + ϵ£ is zeroless. The matrix Al also satisfies

(i) Al is a reduced matrix,

(ii) Al = ϵ£ ⊆ Ar = ⊘,

(iii) R(A2) = ϵ£ ⊆ P (B) = ⊘,

(iv) B = B = B = ⊘.

Observe that the given system reduces to
(1 + ϵ⊘)x1+ ϵ£.x2 ⊆ − 3

14
.x3 +

2

7
+⊘

ϵ⊘ x1+ (1 + ϵ£)x2 ⊆ −3

7
.x3 +

24

7
+⊘

, x3 ∈ £
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Applying Theorem 4.5.27, the external set of Gauss-solutions of the system is given by

S =

{(
2

7
− 3

14
.x3 +⊘,

24

7
− 3

7
x3 +⊘, x3

) ∣∣∣∣∣x3 ∈ £

}
.

The following example emphasizes the operation of interchange two rows.

Example 4.5.30. Consider the following system, with ϵ > 0 infinitesimal,
(1 + ϵ£)x1 + (2 + ϵ⊘)x2 + (−1 +⊘)x3 ⊆ 1 + ⊘

ϵ£x1 + (−4ϵ+ ϵ⊘)x2 + (ϵ+⊘)x3 ⊆ 3ϵ + ⊘
ϵ£x1 + (−4 + ϵ⊘)x2 + (1 +⊘)x3 ⊆ 3 + ⊘.

Because α22 = −4ϵ+ ϵ⊘ is an absorber of B = ⊘, the restricted Gauss operation of multiplying to the second
row by the scalar

1

a22
is not true.

However, if we change the second row and the third row then we obtain the equivalent system
(1 + ϵ£)x1 + (2 + ϵ⊘)x2 + (−1 +⊘)x3 ⊆ 1 + ⊘

ϵ£x1 + (−4 + ϵ⊘)x2 + (1 +⊘)x3 ⊆ 3 + ⊘
ϵ£x1 + (−4ϵ+ ϵ⊘)x2 + (ϵ+⊘)x3 ⊆ 3ϵ + ⊘.

Using the restricted Gauss elimination to the latter system, one has

[A|B] =

1 + ϵ£ 2 + ϵ⊘ −1 +⊘ 1 +⊘
ϵ£ −4 + ϵ⊘ 1 +⊘ 3 +⊘
ϵ£ −4ϵ+ ϵ⊘ ϵ+⊘ 3ϵ+⊘


−→

L3 − ϵL2

1 + ϵ£ 2 + ϵ⊘ −1 +⊘ 1 +⊘
ϵ£ −4 + ϵ⊘ 1 +⊘ 3 +⊘
ϵ£ ϵ⊘ ⊘ ⊘


−→

L1 +
1

2
L2

1 + ϵ£ ϵ⊘ −1

2
+⊘ 5

2
+⊘

ϵ£ −4 + ϵ⊘ 1 +⊘ 3 +⊘
ϵ£ ϵ⊘ ⊘ ⊘


−1

4
L2

−→


1 + ϵ£ ϵ⊘ −1

2
+⊘ 5

2
+⊘

ϵ£ 1 + ϵ⊘ −1

4
+⊘ −3

4
+⊘

ϵ£ ϵ⊘ ⊘ ⊘

 .

Then the given system is equivalent to
(1 + ϵ£)x1+ ϵ⊘ x2+ (−1

2
+⊘)x3 ⊆ 5

2
+⊘

ϵ£x1+ (1 + ϵ⊘)x2+ (−1

4
+⊘)x3 ⊆ −3

4
+⊘.
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So the set of solutions is given by

S =

{(
5

2
+

1

2
x3 +⊘,−3

4
+

1

4
x3 +⊘, x3

) ∣∣∣∣∣x3 ∈ £

}
.

The restricted Gauss operations are not applicable to the next example.

Example 4.5.31. Consider the following system
(1 + ϵ£)x1 + (1 + ϵ⊘)x2 + (−1 +⊘)x3 ⊆ 1 + ⊘

ϵ£x1 + (ϵ+ ϵ⊘)x2 + (2 +⊘)x3 ⊆ 3ϵ + ⊘
ϵ£x1 + (−2ϵ+ ϵ⊘)x2 + (−4 +⊘)x3 ⊆ −6ϵ + ⊘.

Since a22 = ϵ and a23 = −2ϵ are absorbers of B = ⊘, we can not implement the Gauss operations for this

system. This is because that ∆ = det

[
1 + ϵ£ 1 + ϵ⊘
ϵ£ ϵ+ ϵ⊘

]
is an absorber of B. The same is true for originating

from first two columns.

If we consider Al =

[
1 + ϵ£ −1 +⊘
ϵ£ 2 +⊘

]
then det(Al) is zeroless. However, it does not satisfies the condition

Al ⊆ Ar. Hence we can not apply the theorem above for this system.

4.6 A parameter method to solve flexible systems

In this section we reconsider flexible systems of the form
α11ξ1 + α12ξ2 + · · · + α1nξn ⊆ b1 +B1

...
... . . . ...

...
αm1ξ1 + αm2ξ2 + · · · + αmnξn ⊆ bm +Bm,

(4.92)

where αij , βj ∈ E for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The neutrices in the constant terms may be seen as the sets of parameters. Then we can treat it as a system
of linear equations with parameters. Formulas of solutions depending on parameters are given respectively for
non-singular system, singular system with the strict rank equal to the numbers of equation, and singular system
with the strict rank not equal to the number of equations. These formulas write the neutrix part of the solutions
in terms of n-dimensional neutrices. It is shown in [3] that neutrices in n-dimensional space have always such
a representation.

Notation 4.6.1. Let α be a external number and u = (u1, . . . , un)
T ∈ Mn,1(R) be a column vector for

1 ≤ j ≤ n, here n is standard. We refer to αu as xu = (xu1, . . . , xun)
T with x ∈ α.

We denote Nj = min
1≤i≤m

{Bi : Aij} for 1 ≤ j ≤ n and αT
j = (α1j , . . . , αmj)

T be the j-th column of A, aTj be

a representative of αT
j .
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The the system (4.92) is transformed to a system such that the coefficient matrix of the latter system are a real
matrix.

Theorem 4.6.2. The system (4.92) is equivalent to
a11ξ1 + a12ξ2 + · · · + a1nξn ∈ b1 + B1

...
... . . . ...

...
am1ξ1 + am2ξ2 + · · · + amnξn ∈ bm + Bm,

ξj ∈ Nj , j ∈ {1, . . . , n},

(4.93)

where aij ∈ αij , 1 ≤ i, j ≤ n.

Proof. The vector ξ = (ξ1, . . . , ξn)
T ∈ Rn is a solution of system (4.92) if and only if

(a11 +A11)ξ1 + (a12 +A12)ξ2 + · · · + (a1n +A1n)ξn ⊆ b1 + B1

...
... . . . ...

...
(am1 +Am1)ξ1 + (am2 +Am2)ξ2 + · · · + (amn +Amn)ξn ⊆ bm + Bm,

This is equivalent to 
a11ξ1 + a12ξ2 + · · · + a1nξn ∈ b1 + B1

...
... . . . ...

...
am1ξ1 + am2ξ2 + · · · + amnξn ∈ bm + Bm,

and Aijξj ⊆ Bi for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, the latter is equivalent to ξj ∈ Nj for all 1 ≤ j ≤ n.

Let P =


a11 . . . a1n
... . . . ...

am1 · · · amn

 be a representative of the coefficient matrix such that the rank of P is equal to the

strict rank of the system.

4.6.1 Non-singular systems

Theorem 4.6.3. Assume that System (4.92) is non-singular. Then the set of solutions of the system is given by

S =
(
P−1b+

n∑
i=1

BiP
−1ei

)∩(
⊕n

i=1 Niei

)
(4.94)

where Niei = (0, . . . , 0, Ni, 0, . . . , 0)
T and b = (b1, . . . , bn).

Proof. By Theorem 4.6.2, a vector ξ = (ξ1, . . . , ξn)
T ∈ Rn is a solution of system (4.92) if and only if it is a
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solution of 
a11ξ1 + a12ξ2 + · · · + a1nξn ∈ b1 +B1

...
... . . . ...

...
an1ξ1 + am2ξ2 + · · · + annξn ∈ bn +Bn

(4.95)

and satisfies the condition ξj ∈ Nj , 1 ≤ j ≤ n.

On the other hand, the point ξ is a solution of the system (4.95) if and only if there exists ϵi ∈ Bi for all
i ∈ {1, . . . , n} such that 

a11ξ1 + a12ξ2 + · · · + a1nξn = b1 + ϵ1
...

... . . . ...
...

an1ξ1 + an2ξ2 + · · · + annξn = bn + ϵn.

Using Notation 4.6.1 this implies that

[
ξ
]
=
(
P−1b+

n∑
i=1

ϵiP
−1ei

)
, ϵi ∈ Bi

=
(
P−1b+

n∑
i=1

BiP
−1ei

)
,

where [ξ] = (ξ1, . . . , ξn)
T ∈ Mn,1(R). Because ξi ∈ Ni, that is

[
ξ
]
∈ ⊕n

i=1(Niei), we obtain

[
ξ
]
∈
(
P−1b+

n∑
i=1

BiP
−1ei

)∩(
⊕n

i=1 Niei

)
.

Example 4.6.4. Consider the flexible system{
(1 +⊘)x + (1 + ϵ⊘)y ⊆ ⊘
(1 + ϵ£)x − (1 + ϵ£)y ⊆ ϵ£.

The system is equivalent to {
x + y ∈ ⊘
x − y ∈ ϵ£

(4.96)

with
x ∈ £, y ∈ £. (4.97)

The vector ξ = (x, y) ∈ R2 is a solution of the system (4.96) if and only if{
x + y = ϵ1

x − y = ϵ2,
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where ϵ1 ∈ ⊘, ϵ2 ∈ ϵ£. A short calculation shows that

(
x

y

)
= ⊘

(
1
2
1
2

)
+ ϵ£

(
1
2

−1
2

)
. Combining with (4.97)

we obtain (
x

y

)
=

(
⊘

(
1
2
1
2

)
+ ϵ£

(
1
2

−1
2

))∩(
£

(
1

0

)
+ £

(
0

1

))
= ⊘

(
1
2
1
2

)
+ ϵ£

(
1
2

−1
2

)
.

4.6.2 Singular systems with the strict rank equal to the number of equations

Next we consider the flexible system (4.92) with the strict rank equal to the number of equations. This means
sr(A) = sr[A|B] = m. So a representative

P =


a11 . . . a1n
... . . . ...

am1 · · · amn


of A has strict rankm. We assume without restriction that

det(M) = det


a11 · · · a1m
... . . . ...

am1 · · · amm

 ̸= 0. (4.98)

Theorem 4.6.5. Assume that the system (4.92) satisfies the condition that the strict rank of the system is equal
to the number of equations. Then the set of solutions of the system is given by

S =


(ξ1, . . . , ξn)

∣∣∣



ξ1
...
ξm

ξm+1

...
ξn


=

([
M−1b

0

]
+

m∑
i=1

[
BiM

−1ei

0

]
+

n∑
k=m+1

R

[
−M−1aTk
e
(n−m)
k

])∩(
⊕n

i=1 Niei
)


,

where e(n−m)
k is the k-th unit vector in Rn−m.

Proof. A vector ξ = (ξ1, . . . , ξn) ∈ Rn is a solution of the system (4.93) if and only if there exist ϵi ∈ Bi, 1 ≤
i ≤ m such that it is a solution of the following linear system


a11ξ1 + a12ξ2 + · · · + a1nξn = b1 + ϵ1
...

... . . . ...
...

am1ξ1 + am2ξ2 + · · · + amnξn = bm + ϵm.

(4.99)
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and satisfies the condition ξj ∈ Nj for 1 ≤ j ≤ n. The system (4.99) is equivalent to
a11ξ1 + · · · + a1mξm = b1 + ϵ1 − a1(m+1)ξm+1 − · · · − a1nξn
... . . . ...

...
am1ξ1 + · · · + ammξm = bm + ϵm − am(m+1)ξm+1 − · · · − amnξn.

(4.100)

By seeing ξk,m+ 1 ≤ k ≤ n as parameters, the set of solutions of the system (4.100) is given by
ξ1
...
ξm

 =M−1b+ ϵ1M
−1e1 + · · ·+ ϵmM−1em − ξm+1M

−1aTm+1 − · · · − ξnM
−1aTn

=M−1b+B1M
−1e1 + · · ·+BmM−1em − RM−1aTm+1 − · · · − RM−1aTn

=M−1b+

m∑
i=1

BiM
−1ei −

n∑
k=m+1

RM−1aTk .

Hence we obtain that

ξ1
...
ξm

ξm+1

...
ξn


=

[
M−1b

0

]
+

m∑
i=1

[
BiM

−1ei

0

]
+

n∑
k=m+1

R

[
−M−1aTk
e
(n−m)
k

]
.

Because ξi ∈ Ni, one has


ξ1
...
ξn

 ∈
(
⊕n

i=1 Niei
)
. By Theorem 4.6.2 we conclude that the set of solutions of the

system (4.92) is given by

S =

(ξ1, . . . , ξn)

∣∣∣∣∣

ξ1
...
ξn

 =

([
M−1b

0

]
+

m∑
i=1

[
BiM

−1ei

0

]
+

n∑
k=m+1

R

[
−M−1aTk
e
(n−m)
k

])∩(
⊕n

i=1 Niei

) .

Example 4.6.6. Let ϵ > 0 be an infinitesimal. Consider the flexible system{
(2 + ϵ⊘)x + (1 + ϵ⊘)y + (1 +⊘)z ⊆ 1 + ⊘
(1 + ϵ⊘)x + (1 + ϵ£)y + (3 + ϵ⊘)z ⊆ 2 + ϵ⊘ .
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A short calculation shows that the system has strict rank 2. LetM =

(
2 1

1 1

)
. Then

M−1 =

(
1 −1

−1 2

)
, M−1b =

(
1 −1

−1 2

)(
1

2

)
=

(
−1

3

)
,

M−1aT3 =

(
1 −1

−1 2

)(
1

3

)
=

(
−2

5

)
.

Using Theorem 4.6.5 we find that the solutions ξ = (x, y, z) ∈ R3 of the system are given byx

y

z

 =


−1

3

0

+⊘

 1

−1

0

+ ϵ⊘

−1

2

0

+ R

 2

−5

1


∩

£

1

0

0

+⊘

0

1

0

+ £

0

0

1




=

−1

3

0

+⊘

 1

−1

0

+ ϵ⊘

−1

2

0

+

(
3

5
+⊘

) 2

−5

1

 .

4.6.3 Flexible systems with strict rank less than the number of equations

In case the strict rank of system is less than the number of equations we need some conditions such that a
parameter method can be applied.

Because the strict rank of system is r < min{m,n}, without restriction of generality, we assume that ∆ =

det


α11 · · · α1r

... . . . ...
αr1 · · · αrr

 is zeroless and det(M) = det


a11 · · · a1r
... . . . ...

ar1 · · · arr

 ̸= 0.

Theorem 4.6.7. Assume that the strict rank of system (4.92) is r < min{m,n}, B = B = B and ∆ is not an
absorber of B. Then the set of solutions of the system is given by

S =


(ξ1, . . . , ξn)

∣∣∣∣∣



ξ1
...
ξr

ξr+1

...
ξn


=

([
M−1b

0

]
+

r∑
i=1

[
BM−1ei

0

]
+

n∑
k=r+1

R

[
−M−1aTk
e
(n−r)
k

])∩(
⊕n

i=1 Niei
)


,

where e(n−r)
k is the k-th unit vector in R(n−r).
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Proof. By Theorem 4.5.22 the system is equivalent to
α11ξ1 + α12ξ2 + · · · + α1nξn ⊆ b1 +B

...
... . . . ...

...
αr1ξ1 + αr2ξ2 + · · · + αrnξn ⊆ br +B.

(4.101)

Applying Theorem 4.6.5 to system (4.101), the set of solutions of the given system is

S =


(ξ1, . . . , ξn) :



ξ1
...
ξr

ξr+1

...
ξn


=

([
M−1b

0

]
+

r∑
i=1

[
BM−1ei

0

]
+

n∑
k=r+1

R

[
−M−1aTk
e
(n−r)
k

])∩(
⊕n

i=1 Niei
)


.

Let M (i)
rk =



a11 . . . a1r
... . . . ...

a(i−1)1 · · · a(i−1)r

ak1 · · · akr

a(i+1)1 · · · a(i+1)r
... . . . ...

ar1 · · · arr


be a submatrix of P formed by remaining the first r columns and the r

rows {1, . . . , i− 1, k, i+ 1, . . . , r} of P , with r + 1 ≤ k ≤ m and 1 ≤ i ≤ r.

Theorem 4.6.8. Consider the flexible system (4.92). Assume that the strict rank of system is r < min{m,n}
and that

(i)

det
(
M

(i)
rk

)
det(M)

−1

is not an absorber of Bk for all 1 ≤ i ≤ r, r + 1 ≤ k ≤ m,

(ii) Bi ⊆ Bk for r + 1 ≤ k ≤ m, 1 ≤ i ≤ r.

Then the set of solutions of the system is given by

S =


(ξ1, . . . , ξn)

∣∣∣∣∣



ξ1
...
ξr

ξr+1

...
ξn


=

([
M−1b

0

]
+

r∑
i=1

[
BiM

−1ei

0

]
+

n∑
k=r+1

R

[
−M−1aTk
e
(n−r)
k

])∩(
⊕n

i=1 Niei

)


,
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where e(n−r)
k is the k-th unit vector in R(n−r).

Lemma 4.6.9. Consider the flexible system (4.92). Assume that the strict rank of system is r < min{m,n} and
satisfies assumptions (i) and (ii) in Theorem 4.6.8. Then the system (4.92) is equivalent to

a11ξ1 + a12ξ2 + · · · + a1nξn ∈ b1 +B1

...
... . . . ...

...
ar1ξ1 + ar2ξ2 + · · · + arnξn ∈ br +Br

ξi ∈ Ni, 1 ≤ i ≤ n.

(4.102)

Proof. Obviously, a vector x = (x1, . . . , xn) ∈ Rn is a solution of the system (4.92), then it is a solution of the
system (4.102).

Conversely, assume that ξ = (ξ1, . . . , ξn) ∈ Rn is a solution of system (4.102). We only need to prove that ξ
satisfies equation k of the system (4.92) for r + 1 ≤ k ≤ m. For r + 1 ≤ k ≤ n, let ηk = (ak1, . . . , akn, bk) ∈
Rn+1. Since the matrix [P |b] has the strict rank r, there exist real numbers t1, . . . , tr such that the row k-th of
the matrix [P |b] can be expressed by

ηk = t1η1 + · · ·+ trηr. (4.103)

Also we have |ti| =
det
(
M

(i)
rk

)
det(M)

for 1 ≤ i ≤ r. By assumption (i), the ti is not an exploder of Bk for all

1 ≤ i ≤ r, we have tiBk ⊆ Bk. By assumption (ii) we have

t1B1 + · · · trBr ⊆ t1Bk + · · ·+ trBk ⊆ rBk = Bk. (4.104)

Because ξ = (ξ1, . . . , ξn) is a solution of the system (4.102), we have
a11ξ1 + a12ξ2 + · · · + a1nξn ∈ b1 +B1

...
... . . . ...

...
ar1ξ1 + ar2ξ2 + · · · + arnξn ∈ br +Br

It follows that 
t1a11ξ1 + t1a12ξ2 + · · · + t1a1nξn ∈ t1(b1 +B1)

...
... . . . ...

...
trar1ξ1 + trar2ξ2 + · · · + trarnξn ∈ tr(br +Br)

Consequently,

(
t1a11ξ1 + t1a12ξ2 + · · ·+ t1a1nξn

)
+ · · ·+

(
trar1ξ1 + trar2ξ2 + · · ·+ trarnξn

)
⊆t1(b1 +B1) + · · ·+ tr(br +Br).
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It is equivalent to

(
t1a11 + · · ·+ trar1

)
ξ1 +

(
t1a12 + · · ·+ trar2

)
ξ2 + · · ·+

(
t1a1n + · · ·+ trarn

)
ξn

⊆
(
t1b1 + · · ·+ trbr

)
+
(
t1B1 + · · ·+ trBr

)
.

By formulas (4.103) and (4.104) this implies that ak1ξ1 + · · · aknξn ⊆ bk +
(
t1B1 + · · · + trBr

)
⊆ bk + Bk

for all r + 1 ≤ k ≤ n.

We conclude that two systems (4.102) and (4.92) are equivalent.

Proof of Theorem 4.6.8. By Lemma 4.6.9, the system is equivalent to system (4.102). Applying Theorem 4.6.5
to this system, the set of solutions of the given system is

S =


(ξ1, . . . , ξn) :



ξ1
...
ξr

ξr+1

...
ξn


=

([
M−1b

0

]
+

r∑
i=1

[
BiM

−1ei

0

]
+

n∑
k=r+1

R

[
−M−1aTk
e
(n−r)
k

])∩(
⊕n

i=1 Niei
)


.

Remark 4.6.10. In many cases, we can interchange rows of P such that assumptions (i) and (ii) of Theorem
4.6.8 are satisfied. In particular, we can always interchange rows of a flexible system such that |det(M)| ≥
|det

(
M

(i)
rk

)
|. As a consequence, the assumption (i) of Theorem 4.6.8 is satisfied.

In case ∆ andM (i)
rk are appreciable numbers, the assumptions (i) and (ii) are always satisfied.

Example 4.6.11. Let ϵ > 0 be an infinitesimal. Consider the following system
(1 +⊘)x + (1 + ϵ⊘)y + 3z ⊆ 1 + ⊘
(1 + ϵ£)x − (1 + ϵ⊘)y + 2z ⊆ 2 + ϵ£

(2ϵ+ ϵ⊘)x + ϵ£y + 5ϵz ⊆ 3ϵ + ⊘.

A short calculation shows that the system has strict rank 2. Let P =

 1 1 3 1

1 −1 2 2

2ϵ 0 5ϵ 3ϵ

 andM =

[
1 1

1 −1

]
.

We have ∆ = detM = 2, M (1)
23 = −2ϵ,M

(2)
23 = 2ϵ. So assumption (i) of Theorem 4.6.8 is satisfied. Clearly,

assumption (ii) of Theorem 4.6.8 is also satisfied.

The system is equivalent to {
x + y + 3z ∈ 1 + ⊘
x − y + 2z ∈ 2 + ϵ£

(4.105)

with x ∈ £, y ∈ £, z ∈ R.
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We also have

M−1 =
1

2

(
1 1

1 −1

)
,M−1b =

1

2

(
1 1

1 −1

)(
1

2

)
=

1

2

(
3

−1

)

M−1aT3 =
1

2

(
1 1

1 −1

)(
3

2

)
=

1

2

(
5

1

)
.

Using Theorem 4.6.9, the solutions ξ = (x, y, z) of the system are given by

x

y

z

 =




3
2

−1
2

0

+⊘


1
2
1
2

0

+ ϵ£


1
2

−1
2

0

+ R

−5
2

−1
2

1


∩

£

1

0

0

+ £

0

1

0

+ R

0

0

1




=


3
2

−1
2

0

+⊘


1
2
1
2

0

+ ϵ£


1
2

−1
2

0

+ £

−5
2

−1
2

1

 .



5
Flexible sequences

This chapter is devoted to the study of sequences with uncertainties in terms of external numbers. We will call
this kind of sequences flexible sequences.

The chapter has the following structure.

In Section 5.1 we introduce the notion of a flexible sequence and give some examples.

We will consider two types of convergence for flexible sequences. Firstly, in Section 5.2, we generalize the
notion of convergence of a classical sequence to flexible sequences in terms of approaching external numbers.
Secondly, basing on a well-known result in non standard analysis which says that every standard sequence
converges to a, the n-th term of the sequence belongs to a+⊘ with n unlimited, in Section 5.3 we will define
another notion of convergence for flexible sequences. We call it strongly convergent. The relationship between
two notions of convergences are studied. In fact, if the neutrix of the limit is not zero we prove that the two
notions of convergences are equivalent. Properties of and operations on these kinds of limits are considered. We
also study the relationship between the convergence of subsequences and of a given flexible sequence. Because,
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in general, induction may not apply to external formulas, we can not use it to construct subsequences like in
classical mathematics. To overcome this drawback we use the notion of cofinal set to define the subsequences of
a flexible sequence. Then we will show that every flexible sequence has an internal subsequence which satisfies
all properties of a conventional subsequence. The Cauchy criterion for the convergences of flexible sequences
is also presented.

In the last section we will introduce notions of convergences of vector flexible sequences.

Acknowledgement: The idea to study flexible sequences comes from Bruno Dinis (University of Lisboa) who
also prove some elementary properties of convergence.

5.1 Definition and example

Definition 5.1.1. A mapping u: N −→ E, of the form
∪

st(u)∈U

∩
st(v)∈V

Iuv where U, V are standard sets and

I: U × V ⇒ N × P(R) is an internal set-valued mapping, is called a flexible sequence; we denote such a
flexible sequence usually by {un}.

Example 5.1.2. (a) The sequence u:N −→ E given by un =
1

n
+⊘ for all n ∈ N {un} is a flexible sequence.

Observe that we can write

u =
∩

st(m)∈N

{
{n} ×

{
1

n
+

[
− 1

m
,
1

m

]}
, n ∈ N

}
.

(b) Let ϵ > 0 be infinitesimal. Let u: N −→ E be given by un = n + nϵ⊘ for all n ∈ N and v: N −→ E be
given by

vn =

⊘, if n ∈ £

1 +⊘, if n ̸∈ £.

Then {un}, {vn} are two flexible sequences. Indeed, in the first case we can express

u =
∩

st(m)∈N

{
{n} ×

{
n+ ϵ

[
− n

m
,
n

m

]}
, n ∈ N

}
and

v =

 ∪
st(q)∈N

∩
st(p)∈N

{
{n} ×

{[
−1

p
,
1

p

]}
,−q ≤ n ≤ q

}
∪ ∩

st(q)∈N

∩
st(p)∈N

{
{n} ×

{
1 +

[
−1

p
,
1

p

]}
, n /∈ [−q, q]

} .

Using the Reduction Algorithm v can be expressed by only one union and one intersection, meaning that v
has the form as in the definition.
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5.2 N -convergence

Motivated by the fact that a neutrix may be seen as generalized zero. In this section we will introduce a notion of
N -convergence for flexible sequences, reduces to the classical notion of limit when the neutrixN is zero. Then
we will show that properties on limits still hold for the notion of N -convergence on flexible sequences with
some modifications. The relationship between N -convergence of a subsequence and a given flexible sequence
are investigated. Finally the Cauchy criterion for N -convergence of flexible sequence is studied.

5.2.1 Definition and example

Definition 5.2.1. Let N be a neutrix. A sequence u: N −→ E is said to N -converge to α ∈ E if

∀ϵ ∈ E ϵ > N ∃n0 ∈ N ∀n ∈ N(n ≥ n0 ⇒ |un − α| < ϵ).

Then we also call α a N -limit of {un}.We write un −→
N

α or N -limun = α.

A flexible sequence which is not N -convergent to any element α ∈ E is called N -divergent.

One could replace the condition ϵ ∈ E in the definition above by the condition ϵ ∈ R.

Theorem 5.2.2. Let N be a neutrix and u: N −→ E be a flexible sequence. Then un −→
N

α if and only if

∀ϵ ∈ R ϵ > N ∃n0 ∈ N ∀n ∈ N(n ≥ n0 ⇒ |un − α| < ϵ). (5.1)

Proof. If un −→
N

α, formula (5.1) is satisfied since R ⊂ E.

Conversely, assume that formula (5.1) holds. For every ϵ ∈ E, ϵ > N there exists ν ∈ R, N < ν < ϵ. By
formula (5.1), there is n0 ∈ N such that for all n ≥ n0, one has |un − α| < ν < ϵ. Hence un −→

N
α.

Clearly every sequence is R-convergent. So, in the remainder of this chapter we always assume that N ̸= R.
The other extreme case is N = 0 corresponding to the usual notion of convergence. In this case we adopt the
usual notation and terminology, i.e. we say that {un} converges to α (the real number) and write un → α or
limun = α.

Example 5.2.3. (a) Consider the flexible sequence u: N → E given by un =
n

n+ 1
+

1

n
⊘. Then un−→ 1

and un −→
⊘

1 +⊘.

(b) Let ϵ > 0 be an infinitesimal and u:N → E be a sequence defined by un = (−1)nϵ for all n ∈ N.We know
that the sequence is divergent in the classical sense. However, the terms always belong to⊘, so⊘-limun =

⊘-lim(−1)nϵ = ⊘.

(c) LetN be a fixed neutrix in E and u: N −→ E be a sequence defined by un = sn +N , where {sn} is a real
sequence which converges to a ∈ R. We show that {un} is N -convergent to a +N . For ϵ > N , because
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sn → a, there exists n0 ∈ N such that |sm − a| < ϵ/2 form > n0. So form > n0 we have

|um − α| = |sm +N − α| ≤ |sm − α|+N <
ϵ

2
+N < ϵ.

5.2.2 Some elementary properties

Proposition 5.2.4. Let N be a neutrix and {un} be a sequence that N -converges to some element α = a +

N (α) ∈ E. Let M be a neutrix such that N ≤ M . Then {un} also M -converges to α. Moreover, there exists
the smallest neutrixM0 such that {un} isM0-convergent.

Proof. Firstly, let ϵ > M . Then ϵ > N. Since {un} N -converges to α, there exists n0 ∈ N such that for all
n ≥ n0, |un − α| < ϵ. Hence {un} M -converges to α.

Secondly, without loss of generality, we may assume that un is N -convergent to a neutrix. Let L = {M ∈
N | {un}isM -convergent} andM0 be the infimum of L. By Proposition 2.1.6 the neutrixM0 = p · I , where I
is an idempotent neutrix and p ∈ R is a positive. Upon dividing by pwemay assume thatM0 itself is idempotent.
If M0 = ⊘ then ⊘ ∈ L, so the conclusion is trivial. Otherwise, M0 is not isomorphic to ⊘. Suppose that the
sequence is not M0-convergent. Let ϵ > M0. For all n ∈ N there exists a element m ≥ n such that ϵ ≤ um.
However ϵ⊘ < ϵ, so un is not ϵ⊘-convergent. Also M0 ⊂ ϵ⊘. So ϵ⊘ ̸∈ L. By the first part for every neutrix
M ∈ L we have ϵ⊘ ⊂ M . It follows that ϵ⊘ ⊆ M0, a contradiction. Hence un isM0-convergent.

In practice, obviously, we prefer to work with neutrices which are as small as possible.

Note that for a given flexible sequence its N -limits are not unique. In fact, N -convergence is unable to distin-
guish between elements whose ”distance” is less than or equal to the neutrix N . That is, N -limits are unique
up to modulo N in the sense that if {un} N -converges to two (possibly distinct) elements α, β ∈ E then the
absolute value of their difference must be less than N .

Proposition 5.2.5. Let u: N −→ E be a flexible sequence and let α, β ∈ E. Assume that un −→
N0

α and
un −→

N0

β. Then

(i) N (α) ⊆ N0.

(ii) |α− β| ≤ N0.

(iii) un −→
N0

α+N0.

(iv) un −→
N0

γ for all γ ⊆ α+N0.

Proof. (i) Suppose on the contrary that N0 ⊂ N(α). Let ϵ ∈ R be such that N0 < ϵ ≤ N (α). Then there
exists n0 ∈ such that for n ≥ n0 we have

N (α) ≤ N (|un − α|) ≤ |un − α| < ϵ ≤ N (α) ,
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which is a contradiction.

(ii) Suppose un −→
N0

α and un −→
N0

β with |α− β| > N0. For ϵ0 = |α−β|
2 > N0, there exists n0 ∈ N such that

|un − α| < ϵ0 for n ≥ n0 and there exists n1 ∈ N such that |un − β| < ϵ0 for n ≥ n1. Let k = max {n0, n1}.
Then for n ≥ k,

|α− β| ≤ |α− un + un − β| ≤ |α− un|+ |un − β| < 2ϵ0 = |α− β| ,

a contradiction. Hence |α− β| ≤ N0.

(iii) Let ϵ > N0. Then ϵ/2 > N0/2 = N0. Because un −→
N

α, there exists n0 such that |un − α| < ϵ/2 for all
n ≥ n0. It follows that

|un − α+N0| = |un − α|+N0 < ϵ/2 + ϵ/2 = ϵ

for all n ≥ n0. Hence un −→
N0

α+N0.

(iv) For γ ⊆ α+N0 we have |un − γ| ≤ |un − α+N0| < ϵ for all n ≥ n0, and hence un −→
N0

γ.

In the previous proposition if N0 = 0, it follows from (ii) that α = β. Hence in this case we get the same
conclusion as the classical notion of limit.

Assumeα, β are twoN -limits of a given flexible sequence. From Proposition 5.2.5 we conclude that β ⊆ α+N

and α ⊆ β +N.

Remark 5.2.6. A flexible sequence {un} is N -divergent if and only if for each α = a+A ∈ E, A ⊆ N there
is ϵ0 > N satisfying that for every n ∈ N, there exists n0 ≥ n such that

ϵ0 ≤ |un0 − α|. (5.2)

From Remark 2.2.31 the inequality (5.2) can not be substituted by |un0 − α| ≥ ϵ0.

Convention 5.2.7. Because of Proposition 5.2.5, for the sake of simplicity, from now on we always take N as
the neutrix part of a N -limit of a given flexible sequence. This means that if N - limun = α then N(α) = N.

It is easy to see that a flexible sequence which is eventually a constant to some α ∈ E, the sequence is N (α)-
convergent to that constant.

A flexible sequence N -converges to α if and only if every real part of the sequence N -converges to a real part
of α and the neutrix part of the sequence N -converges to the neutrix part of α.

Proposition 5.2.8. Let u: N −→ E be a sequence such that un = an + An an ∈ R for all n ∈ N. Let
α = a+N ∈ E, a ∈ R. Then un −→

N
α if and only if an −→

N
a and An −→

N
N .

Proof. Assume first that an −→
N

a and An −→
N

N . For ϵ > N , there exist k, l ∈ N such that |an − a| < ϵ/2

for n ≥ k and |An +N | = |An −N | < ϵ/2 for all n ≥ l. Letm = max {k, l}. Then for n ≥ m it holds that

|un − α| = |an +An − a+N | ≤ |an − a|+ |An −N | < ϵ/2 + ϵ/2 = ϵ.
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Hence un −→
N

α.

Assume that un −→
N

α. Let ϵ > N . Then there exists n0 ∈ N such that |un − α| < ϵ/2 for all n ∈ N, n ≥ n0.
It follows that |an − a| ≤ |an +An − a+N | = |un − α| < ϵ for all n ∈ N, n ≥ n0. So an −→

N
a. On the

other hand for all n ≥ n0, n ∈ N we have

|N (un)−N | = |an − an + a− a+An +N | ≤ |un − α|+|an − a| ≤ |un − α|+|un − α| < ϵ/2+ϵ/2 = ϵ.

Hence An −→
N

N .

5.2.3 Boundedness

Definition 5.2.9. A sequence u: N −→ E is said to be

(i) bounded if there exists α ∈ E such that α ̸= R and |un| ≤ α, for all n ∈ N. Otherwise, we call it
unbounded.

(ii) eventually bounded if there exists n0 and α ̸= R such that for all n ≥ n0, |un| ≤ α.

Example 5.2.10. Consider the flexible sequences

(a) un =
1

n
+

1

n
⊘ for all n ∈ N,

(b) vn =

0 if n ∈ £

n if n ̸∈ £,

(c) zn =

R if n ∈ £

1 +⊘ if n ̸∈ £.

Then {un} is bounded since |un| ≤ 2 for all n ∈ N; {vn} is unbounded; and {zn} is eventually bounded, but
not bounded.

Proposition 5.2.11. Every N -convergent sequence is eventually bounded.

Proof. Let N be a neutrix and {un} be a sequence such that un −→
N

α. Let ϵ > N . Then there exists n0 ∈ N
such |un − α| < ϵ that for n ≥ n0. It follows that |un| − |α| ≤ |un − α| < ϵ for all n ≥ n0. This implies that
|un| ≤ ϵ+ |α| for all n ≥ n0. Hence {un} is eventually bounded.

Lemma 5.2.12. Let α ∈ E be an external number such that α ̸= R. Then there exists a neutrix N such that
N ̸= R and α ⊆ N .

Proof. Let N = α£. Then N ̸= R and α ⊆ N.
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We use the previous lemma to show that bounded sequences N -converge to N for some neutrix N .

Proposition 5.2.13. Let {un} be an eventually bounded sequence. Then there exists a neutrix N such that
un −→

N
N .

Proof. Because the sequence {un} is eventually bounded, there exists an element α ∈ E, α ̸= R and n0 ∈ N
such that |un| ≤ α for all n ≥ n0. By Lemma 5.2.12, there exists a neutrix N such that |un| ≤ α ≤ N . Then
for all ϵ > N we have |un| < ϵ for all n ∈ N, n ≥ n0. Hence un −→

N
N .

5.2.4 Monotonicity

Let u: N −→ R and n0 ∈ N. In classical mathematics a real convergent sequence un ≥ 0 (n ≥ n0) has a
non-negative limit. We give an adapted version for N -convergent sequences.

Proposition 5.2.14. LetN be a neutrix and n0 ∈ N. Let u: N −→ E be such thatN ≤ un for n ≥ n0. Assume
that un −→

N
α for some α = a+N ∈ E. Then N ≤ α.

Proof. If α = N, the conclusion is obvious. Assume that α is zeroless. Suppose on contrary that α = a+N <

N.Let ϵ = −a

2
> N.There exists k0 ∈ N, k0 ≥ n0 such that for alln ∈ N, n ≥ k0 it holds that |un−a+N | < ϵ.

So a − ϵ < un + N < a + ϵ for all n ≥ k0. This means
3

2
a < un <

a

2
< N for all n ≥ k0, which is a

contradiction to the assumption. Hence N < α.

Proposition 5.2.15. Let N be a neutrix and u: N −→ E, v: N −→ E be two flexible sequences such that
un −→

N
α, vn −→

N
β, for some α, β ∈ E. Assume that there is n0 ∈ N such that un ≤ vn for all n ≥ n0. Then

α ≤ β.

Proof. Write α = a+N, β = b+N. Suppose that α ̸≤ β. By Corollary 2.2.34 we have β < α. This implies
that ϵ ≡ a−b

2 > N . So there exist n1, n2 ∈ N such that |un − α| < ϵ for n ≥ n1 and |vn − β| < ϵ for n ≥ n2.
Let n3 = max {n0, n1, n2}. Then for n ≥ n3 we have

vn ≤ vn +N < b+ ϵ = b+
a− b

2
= a− a− b

2
= a− ϵ < un +N.

It follows that vn < un for all n ≥ n3, which is a contradiction. Hence α ≤ β.

Remark 5.2.16. With similar arguments the conclusions in two propositions above are also true for the inequal-
ity ≥.

We prove next a version of the squeeze theorem for N -convergence. The squeeze theorem enables one to
calculate the N -limit of a sequence (un) by comparison with two other sequences whose N -limits are equal
and already known or easy to calculate.
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Theorem 5.2.17 (Squeeze theorem). Let M,N be neutrices and u: N −→ E, v: N −→ E, w: N −→ E be
flexible sequences such that un −→

N
α, wn −→

M
α, for some α ∈ E. Assume that there is n0 ∈ N such that for

n ≥ n0, un ≤ vn ≤ wn. Then vn −→
N+M

α. In particular, if N = M then vn −→
N

α.

Proof. Let ϵ ∈ R and ϵ > N +M . Then ϵ > N and ϵ > M . So there exist n1, n2 ∈ N such that |un − α| < ϵ

for n ≥ n1 and |wn − α| < ϵ for n ≥ n2. Let n3 = max {n0, n1, n2}. Then for n ≥ n3, by Proposition 2.2.39
and Proposition 2.2.40

−ϵ < un − α ≤ vn − α ≤ wn − α < ϵ.

By Proposition 2.2.40 it holds that |vn − α| < ϵ for n ≥ n3. Hence, by Theorem 5.2.2, we conclude that
vn −→

N+M
α. In particular, ifM = N , the conclusion follows by the factM +N = N.

5.2.5 Operations on N -limits of sequences

Theorem 5.2.18. Let N,M be two neutrices and u: N −→ E, v: N −→ E be flexible sequences such that
un −→

N
α and vn −→

M
β, for some α, β ∈ E. Then

un + vn −→
N+M

α+ β.

In particular, ifM = N then un + vn −→
N

α+ β.

Proof. Assume that un −→
N

α and vn −→
M

β. Let ϵ > N + M . Then ϵ > M and ϵ > N . So there exists
n0, n1 ∈ N such that |un − α| < ϵ/2 for all n ≥ n0 and |vn − β| < ϵ/2 for all n ≥ n1. Let p = max {n0, n1}.
Then for all n ≥ p, by Lemma 2.2.43, we have

|(un + vn)− (α+ β)| ≤ |un − α|+ |vn − β| < ϵ

2
+

ϵ

2
= ϵ.

Hence un + vn −→
N+M

α+ β. In particular, if N = M then N +M = N . So un + vn −→
N

α+ β.

In an analogous way one has the following result.

Theorem 5.2.19. Let N,M be neutrixs and let u: N −→ E, v: N −→ E be flexible sequences such that
un −→

N
α and vn −→

M
β, for some α, β ∈ E. Then

(un − vn) −→
N+M

α− β.

In particular, if N = M then (un − vn) −→
N

α− β.

In the following proposition we show that if {un} isN -convergent and c is precise then {cun} is cN -convergent.

Proposition 5.2.20. LetN be a neutrix, u:N −→ E be a flexible sequence such that un −→
N

α, for some α ∈ E.
Let c ∈ R. Then cun −→

cN
cα.
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Proof. If c = 0, the conclusion is trivial. Assume c ̸= 0. Let ϵ > cN = |c|N . So ϵ/ |c| > N . Hence there is
n0 ∈ N such that for n ≥ n0 one has |un − α| < ϵ/ |c|. Because c is precise, the distributivity holds. It follows
that

|cun − cα| = |c (un − α)| = |c| |un − α| < |c| ϵ

|c|
= ϵ.

We conclude that cun −→
cN

cα.

Example 5.2.21. Let ω be unlimited and consider the constant sequence un = ω + £. Then un −→
£

ω and

unω −→
ω£

ω2+ω£. However, ωun is not £-convergent to ω2+ω£. Indeed, one has ωun = ω(ω+£) = ω2+ω£.

Suppose that ωun −→
£

ω2 + ω£. Let ϵ ∈ ω£ and ϵ > £. For all n ∈ N one has ϵ ≤ |ωun − ω2| = ω£, which is
a contradiction.

Next we present an adapted version of a classical result stating that the product of a bounded sequence with a
sequence which converges to zero converges to zero.

Proposition 5.2.22. Let u, v: N −→ E be flexible sequences such that un −→
N

0. If there exists α ∈ E such
that α ̸= R and |vn| < α, for all n ∈ N, then (unvn) −→

αN
0.

Proof. Without restriction of generality we assume that the element α satisfying |vn| < α is precise. Let
ϵ > αN . Then there exists n0 ∈ N such that |un| < ϵ/α for all n ≥ n0. Then for all n ≥ n0 we have

|unvn| = |un| |vn| < α
ϵ

α
= ϵ.

Hence (unvn) −→
αN

0.

Now we turn to the problem of evaluating the N -limit of the product of two flexible sequences. This requires
a somewhat delicate approach, as illustrated by the following example.

Example 5.2.23. Let ω be unlimited and {yn} be the constant sequence defined by yn = ω2+ω£ for all n ∈ N.
Then yn −→

ω£
ω2. Then y2n = ω4+2ω3£+ω2£ = ω4+ω3£. Consequently (ynyn) −→

ω3£
ω4. However {ynyn}

is ω£-divergent.

LetM,N be neutrices. Let {un} be aM -convergent sequence and (vn) be aN -convergent sequence. As seen in
Example 5.2.23, in some cases, the product sequence {unvn}may be neitherN -convergent, norM -convergent
and not even (NM)-convergent. However, the sequence {unvn} isK-convergent, for a neutrixK.

Theorem 5.2.24. Let M,N be neutrices and α = a + N, β = b +M . Let u: N −→ E, v: N −→ E be such
that un −→

N
α, vn −→

M
β. LetK = N +M +N2 +M2 + αM + βN . Then unvn −→

K
αβ.

Proof. Put un = an + An and vn = bn + Bn. Let ϵ > K. Then, by Lemma 2.2.43 and subdistributivity, we



128 CHAPTER 5. FLEXIBLE SEQUENCES

have

|unvn − αβ| = |anbn + anBn + bnAn +AnBn − αβ| (5.3)

≤ |anbn − αβ|+ anBn + bnAn +AnBn

≤ |an(bn − β) + βan − αβ|++anBn + bnAn +AnBn

≤ |an(bn − β)|+ |b||an − α|+M |an| −Mα+ anBn + bnAn +AnBn.

We show first that there exists p0 ∈ N such that for n ≥ p0 one has

|an||bn − β| < ϵ/7. (5.4)

We consider two cases, (i) a ∈ N and (ii) a ̸∈ N . In case (i) we can take a = 0. Because ϵ > N2 we have
√
ϵ > N . So there exists n0 ∈ N such that |an| <

√
ϵ for n > n0. Also ϵ > M2 implies

√
ϵ > M and hence

√
ϵ/7 > M . It follows that there exists n1 ≥ n0 such that |bn − β| <

√
ϵ/7 for all n ≥ n1. As a result, for

n ≥ n1 it holds that
|an||bn − β| <

√
ϵ.
√
ϵ/7 = ϵ/7,

as required. In case (ii) we have |a| > N . So there exists n2 such that |an| < 2|a| for all n ≥ n2. On the other
hand ϵ > |a|M = αM implies

ϵ

14|a|
> M. It follows that there exists n3 ≥ n2 such that |bn − β| < ϵ

14|a|
for all n ≥ n3. Consequently, |an||bn − β| < 2|a||bn − β| < ϵ/7 for all n ≥ n3, as required. Formula (5.4)
follows by putting p0 = max{n1, n3}.

Secondly we show that there exists p1 ∈ N such that for n ≥ p1 one has,

|an|M < ϵ/7. (5.5)

As above we distinguish the cases (i) a ∈ N and (ii) a ̸∈ N . In case (i) one has, as above, that for n ≥ n0 it
holds that |an| <

√
ϵ and that

√
ϵ/7 > M . So |an|M <

√
ϵ ·

√
ϵ/7 = ϵ/7. In case (ii), as above, for n ≥ n2 it

holds that |an|M < 2|a|M < ϵ/7. Hence (5.5) holds by putting p1 = max{n0, n2}.

Thirdly we show that there exists p2 ∈ N such that for n ≥ p2,

|b||an − α| < ϵ/7. (5.6)

Note that if b ∈ M then we may assume b = 0 and the result follows. Assume that |b| > M . Because
ϵ > βN = bN , we have

ϵ

7|b|
> N . So there exists p2 ∈ N such that |an − α| < ϵ

7|b|
for all n ≥ p2. Hence

(5.6) holds for n ≥ p2.

Fourthly we prove that there exists p4 ∈ N such that for n ≥ p4,

|bn|An < ϵ/7. (5.7)

Again we consider two cases. (i) b ̸∈ M and (ii) b ∈ M . In case (i) we have |bn| < 2|b| for n ≥ n4. On the
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other hand, by Proposition 5.2.8 we obtain that An −→
N

A. Also ϵ > bN implies N < ϵ/|b|. It follows that

N <
ϵ

14|b|
. So there exists k0 such that |An| <

ϵ

14|b|
for all n ≥ k0. Put p4 = max{n4, k0}. Then for all

n ≥ p4 it holds that |bn|An < 2|b|An < ϵ/7. In case (ii) we may assume that b = 0. Because ϵ > M2, on

has ϵ/7 > M2. Hence
√

ϵ

7
> M . By Proposition 5.2.8 we have bn −→

M
0. So there exists n5 ∈ N such that

|bn| <
√

ϵ

7
for n ≥ n5. On the other hand, because

√
ϵ

7
> N there exists n7 ∈ N such that An ≤

√
ϵ

7
for

n ≥ n7. Put n8 = max{n5, n7}. Then |bn|An < ϵ/7 for all n ≥ n8, as required. Hence (5.7) holds by taking
p4 = max{n5, n8}.

Similarly, there exists p5 such that
anBn < ϵ/7 for all n ≥ p5. (5.8)

As argument above, there exists k1, k2 such that Bn <
√
ϵ for all n ≥ k1 and An <

√
ϵ/7 for all n ≥ k2. Put

p6 = max{k1, k2}. Then for all n ≥ p6,

AnBn < ϵ/7. (5.9)

Clearly,
Mα < ϵ/7. (5.10)

Let k = max{p0, ..., p6}. Then, from (5.3)-(5.10)we conclude that |unvn − αβ| < ϵ for all n ≥ k. Hence
unvn −→

K
αβ.

In practice several neutrices occurring in the neutrix K can be neglected, according to circumstances. In fact,
if N,M ⊆ £ we can neglect the terms N2 +M2. Also, if £ ⊂ M,N we can neglect the terms N +M .

In classical mathematics, if ϵ2 > 0 then ϵ > 0. In the case of a neutrix M , if ϵ2 > M it is not always true that
ϵ > M . For example, let ϵ = ω andM = ω£. Then ϵ2 > M , but ϵ ̸> M.

In the proof above, as long as the terms of product sequences are outside the limit neutrix we can not always
use ϵ-estimates, but sometimes we should resort to ϵ2-estimates. We can illustrate this by considering the two
following sequences u, v: N −→ E given by

un = ω£ for all n ∈ N

and

vn =

n/2 if n ≤ ω4

0 if n > ω4,

where ω ∈ N is unlimited. Then un −→
ω£

ω£ and vn −→ 0. Let ϵ = ω2 > ω£. Then |vn| < ϵ for all

n ∈ N, n ≥ ω2 and |un| < ϵ for all n ∈ N. However, for n = ω3 we have |unvn| < ϵ2 and |un.vn| ̸< ϵ. As
a consequence, if we neglect the terms N2 +M2 in the neutrix K, in general, it does not guarantee that these
terms are less than ϵ for all ϵ > K.

Finally we turn to the quotient of sequences. Let N be a neutrix and {un} be a N -convergent sequence. In
virtue of Theorem 5.2.24 it is enough to study the sequence (1/un).
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Definition 5.2.25. A flexible sequence u: N −→ E is said to be zeroless if un ̸= N(un) for all n ∈ N, i.e. if
0 /∈ un for all n ∈ N.

Lemma 5.2.26. Let N be a neutrix and {an} be a zeroless real sequence such that an −→
N

a, for some a ∈
R, |a| > N . Then there exists n0 ∈ N such that for n ≥ n0, |a|/2 < |an| < 2 |a|.

Proof. Let ϵ = |a| /2. Clearly |a| /2 > N . So there exists n0 ∈ N such that for all n ≥ n0 one has |an − a| <
ϵ = |a|/2. It follows that |a| − |a|/2 < |an| < |a| + |a|/2 = 3|a|/2. Hence for all n ≥ n0, |a|/2 < |an| <
3/2 |a| ≤ 2|a|.

Theorem 5.2.27. Let N be a neutrix and u: N −→ E be a zeroless sequence such that un −→
N

α, for some

zeroless α = a+N ∈ E, where |a| > N . Then the sequence (1/un) is N/a2-convergent to 1/α.

Proof. Write un = an + An for all n ∈ N. Let ϵ > N/a2. Then a2ϵ/b > N for all b ∈ @. Because un is
N -convergent to α, by Proposition 5.2.8 it holds that An N -converges to N and that an N -converges to a. So
there exists n0 such that for all n ≥ n0,

|An −N | < a2ϵ/3 (5.11)

and
|a− an| < a2ϵ/6.

Formula (5.11) implies |An| ≤ a2ϵ/3 for all n ≥ n0. By Lemma 2.2.20(i) and the fact there exists n1 ∈ N such
that |a|/2 < |an| < 2|a| for all n ≥ n1 we obtain that for all n ≥ k = max{n0, n1}∣∣∣∣ 1un − 1

α

∣∣∣∣ = ∣∣∣∣una2n − α

a2

∣∣∣∣ = |a2un − a2nα|
a2na

2
=

|a2an − a2na|
a2na

2
+

a2An + a2nN

a2a2n

≤|a− an|
ana

+
a2An + 4|a|2N

a4/4

≤|a− an|
a2/2

+
An +N

a2
<

a2ϵ/6

a2/2
+

a2ϵ/3 + a2ϵ/3

a2
= ϵ.

Hence (1/un) is N/a2-convergent to 1/α.

Theorem 5.2.28. Let {un}, {vn} be flexible sequences such that {vn} is zeroless and N be a neutrix. Assume
that un −→

N
α and vn −→

M
β. Then the sequence

un
vn

is K-convergent to
α

β
, where K = N +M/β2 +N2 +(

M

β2

)2

+
N

β
+ α

M

β2
.

Proof. It follows from Theorem 5.2.24 and Theorem 5.2.27.

5.2.6 Subsequences

In general, in non-standard analysis induction can not apply induction to an external formula, so we can not
define subsequences of a flexible sequence like in classical mathematics. We will use the notion of cofinal
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set instead of subsequences of a flexible sequence. This is a generalization of classical definition because an
internal cofinal set is a subsequence.

Definition 5.2.29. Let X ⊆ P(N× R) be such that X ̸= ∅. A set J ⊆ X is called cofinal if

∀k ∈ N ∃n ≥ k (n, x) ∈ J.

It is easy to see that the number of elements of a cofinal set can not be finite.

We denote by PN(J) the projection of J on N and {PE(J)} the projection of J on E.

Definition 5.2.30. Let u: N −→ E be a flexible sequence. Each cofinal set J of u = {(n, un) : n ∈ N} is
called a subsequence of {un}. We write {unm}PN(J) ⊆ {un}.

Next proposition gives a characterization ofN -convergence in terms of theN -convergence of its subsequences.

Proposition 5.2.31. Let N be a neutrix, α = a+N ∈ E and {un} be a flexible sequence. Then un −→
N

α if
and only if every subsequence {unm}PN(J) ⊆ {un}, we have unm −→

N
α.

Proof. Assume first that {un} is N -convergent to α. Let J be a cofinal set of {u} and {unm}PN(J) ⊆ {un}.
Let ϵ > N . Then there exists n0 ∈ N such that for all n ≥ n0, |un − α| < ϵ. Also J is a cofinal set, so there
exists k ∈ N such that k ≥ n0. As a consequence, for all nm ∈ PN(J), nm ≥ k ≥ n0 we have |unm − α| < ϵ.
We conclude that unm −→

N
α. The other implication is obvious because {un} is a subsequence of itself.

Example 5.2.32. Consider the flexible sequence u: N → E defined by un = (−1)n+
1

n
⊘, n ∈ N. Then {un}

is a divergent sequence. Indeed, we consider two subsequences u2n = 1+
1

2n
⊘ and u2n+1 = −1+

1

2n+ 1
⊘.

One has u2n → 1 and u2n+1 → −1. Also 1− (−1) = 2 > 0. Applying Proposition 5.2.31 we conclude that
the sequence {un} is divergent.

An external subsequencemay not satisfy all useful properties of conventional subsequences. The theorem below
says that every real sequence has an internal subsequence.

Theorem 5.2.33. Let a: N −→ R be a real sequence. There exists an internal subsequence of {an}.

Proof. If {an} is an internal sequence, the conclusion is trivial. We now suppose that {an} is an external
sequence. Let {a} = {(n, an) : n ∈ N}. The external set {a} can be represent as a =

∪
st(x)∈X

Hx, where

Hx =
∩

st(y)∈Y

Ixy withX,Y standard sets and I:X × Y ⇒ P(N×R) is an internal set-valued mapping for all

x ∈ X, y ∈ Y . There exists x ∈ X such that Hx is cofinal set, otherwise, {a} is included in a finite set, which
is a contradiction. This implies that for all st(y) ∈ Y, Ixy is cofinal. So ∀stfinZ ⊆ Y ∃ J (∀sty ∈ Y (J ⊆ Ixy))

and J is cofinal and internal. Indeed, we can take J =
∩

st(y)∈Z

Ixy. By the Idealization principle, there exists an

internal cofinal set J of {a} such that for all st(y) ∈ Y one has J ⊆ Ixy. Hence J ⊆ Hx. So J is an internal
subsequence of a.
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5.2.7 N -Cauchy sequences

Intuitively, a sequence {un} is a Cauchy sequence if the terms of the sequence become arbitrarily close to each
other as the sequence progresses. In other words the difference between terms of the sequence converges to 0.
In this section we use the notion of N -convergence defined above in order to generalize the notion of Cauchy
sequence to sequences in which the difference between terms of the sequence is arbitrary close to a given neutrix.

Definition 5.2.34. Let N be a neutrix. A flexible sequence u: N −→ E is said to be a N -Cauchy sequence if
for all ϵ > N there exists n0 ∈ N such that for all n,m ∈ N,m, n ≥ n0 one has |un − um| < ϵ.

Remark 5.2.35. Similarly to Theorem 5.2.2, to verify whether a given flexible sequence is N -Cauchy or not,
it is sufficient to do it with all ϵ ∈ R, instead of ϵ ∈ E.

A flexible sequence {un} is a N -Cauchy sequence if and only if for all ϵ > N , there exists p ∈ N such that for
all k ∈ N and n ≥ p one has |un+k − un| < ϵ.

Example 5.2.36. LetN be a fixed neutrix and u: N −→ E be a sequence defined by un = sn+N , where {sn}
is a Cauchy sequence. We will show that {un} is a N -Cauchy sequence. Let ϵ > N arbitrary. Then there is
n0 ∈ N such that form,n > n0, |sm − sn| < δ, for δ < N . This implies that

|um − un| = |sm +N − (sn +N)|

= |sm − sn +N | ≤ |sm − sn|+N ≤ δ +N ≤ N +N < ϵ.

Hence {un} is an N -Cauchy sequence.

Proposition 5.2.37. Let {un} be a flexible sequence with un = an + An ∈ E for all n ∈ N. If the flexible
sequence {un} is N -Cauchy, then {an}, {An} are two N -Cauchy sequences.

Proof. Because {un} is a N -Cauchy sequence, for each ϵ > N there exists n0 such that for all n > n0 and for
all p > 0 one has |up+n − un| < ϵ. That is |an+p + An+p − (an + An)| = |an+p − an|+ An + An+p < ϵ. It
follows that An +An+p < ϵ and |an − an+p| < ϵ. Hence {an}, {An} are both N -Cauchy sequences.

Proposition 5.2.38. Let {An} be a flexible sequence of neutrices. If {An} is N -Cauchy then An −→
N

N.

Proof. Let ϵ > N . Because {An} is N -Cauchy, there exists n0 ∈ N such that for all n ∈ N, n ≥ n0 and for
all p > 0 one has |An+p + An| < ϵ/2. Also An ≤ An + An+p, so An < ϵ/2 for all n ≥ n0. This implies that
|An −N | = An +N < ϵ/2 + ϵ/2 = ϵ; hence An −→

N
N.

Lemma 5.2.39. Let {an} be an internal real sequence. If {an} is N -Cauchy then {an} is N -convergent.

Proof. Because {an} is a real N -Cauchy sequence, it is bounded. Also {an} is internal, so there exists a
subsequence {anm} of {an} which convergent to a for some a ∈ R. Let ϵ > N . Then ϵ/2 > N. So there
exist n1, n2 ∈ N such that |anm − a| < ϵ/2 for all nm ≥ n1 and |am − an| < ϵ/2 for all m,n ≥ n2. Let
n0 = max{n1, n2}. Then for alln ≥ n0 it holds that |an−a| = |an−anm+anm−a| ≤ |an−anm |+|anm−a| <
ϵ.
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Proposition 5.2.40. Let {an} be a real sequence and N be a neutrix. Let {a} = {(n, an) : n ∈ N}. Assume
that {an} is N -Cauchy. If there exists an N -convergent subsequence {anm}PN(J) ⊆ {a}, where J is a cofinal
set of {a}, then {an} is N -convergent.

Proof. Assume that anm −→
N

b for some b ∈ R. Let ϵ > N . Then there exist n1, n2 ∈ N such that |anm − b| ≤
ϵ/2 for all nm ≥ n1 and |am − an| < ϵ/2 for all m,n ≥ n2. Let n0 = max{n1, n2}. Then for all n ≥ n0 it
holds that nm ≥ n ≥ n0. So |an − b| = |an − anm + anm − b| ≤ |anm − an|+ |anm − b| < ϵ for all n ≥ n0.
Hence {an} is N -convergent to b.

Theorem 5.2.41. Let un = an + An for all n ∈ N be a flexible sequence. Then {un} is N -convergent if and
only if {un} is N -Cauchy.

Proof. We assume that un −→
N

α for some α ∈ E. Then there exists n0 ∈ N such that for n > n0 we have
|un − α| < ϵ/2. So form,n > n0 it holds that

|um − un| ≤ |um − un +N | = |um − α− un + α|

≤ |um − α|+ |un − α| < ϵ

2
+

ϵ

2
= ϵ.

Hence {un} is an N -Cauchy sequence.

Conversely, we assume that {un} isN -Cauchy. By Theorem 5.2.33, there is an internal subsequence {anm} ⊆
{an}. Since {an} is N -Cauchy, the sequence {anm} is N -Cauchy. So {anm} is N -convergent by Lemma
5.2.39. It follows that {an} is N -convergent by Proposition 5.2.40. Also, the sequence {An} is N -Cauchy, so
An −→

N
N by Proposition 5.2.38. By Proposition 5.2.8 we conclude that {un} is N -convergent.

Let N be a neutrix. Next proposition states that if a sequence has two N -convergent subsequences whose
N -limits are sufficiently far then it cannot be N -convergent.

Proposition 5.2.42. LetN be a neutrix and {un} be a flexible sequence. Let {u} = {(n, un) : n ∈ N}. Assume
that there exist subsequences {unm}PN(J), {unk

}PN(K) of {un}, where J,K are two cofinal sets of {u}, such
that unm −→

N
α, unk

−→
N

β and N < |α− β|. Then {un} is N -divergent.

Proof. Suppose that {un} is N -convergent. Let ϵ be such that N < ϵ < |α − β|. By Proposition 5.2.41,
there exists n0 ∈ N such that |um − un| < ϵ/3 for all n,m ≥ n0. On the other hand, because umn N−→ α,
there exists n1 ∈ N such that |umn − α| < ϵ/3 for all n ≥ n1. Also ukn −→

N
β, so there exists n2 ∈ N

such that |ukn − β| < ϵ/3 for all n ≥ n2. Let k0 = max{n0, n1, n2}. Then for n > k0 one has |α − β| ≤
|α− umn |+ |umn − ukn |+ |ukn − β| < ϵ/3 + ϵ/3 + ϵ/3 = ϵ < |α− β|, a contradiction. Hence, {un} is not
N -convergent.
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5.3 Strong convergence

A well-known property of a real standard sequence an is that it converges to a if and only if an ∈ a+⊘ for all
n unlimited. Next we generalize this fact to a flexible sequence. We will show that a flexible sequence {un}
N -converges to α ∈ E with N ̸= 0, then there exists an index n0 such that un ⊆ α for all n ≥ n0. We call it
strongly convergent.

In this section we will also present properties and operations of strong limits. We will show that properties
which hold for limits also hold for strong limits. In addition, we introduce the notion of strongly N -Cauchy
sequence and demonstrate that flexible sequences are strong N -completely Cauchy, i.e. every strongly N -
Cauchy sequence is N -convergent and vice versa.

5.3.1 Definition and example

Definition 5.3.1. Let {un} be a flexible sequence and α = a+ A be an external number. The sequence {un}
is said to be strongly convergent to α if there exists n0 ∈ N such that for all n ≥ n0 one has un ⊆ α.We write
Limun = α or un ↪→ α. The external number α is called a strong limit of {un}.

Example 5.3.2. Consider the flexible sequence un =
1

n
+⊘. Then Limun = ⊘.

Obviously, every flexible sequence is strongly convergent to R. From now on, unless otherwise stated, when
we say α is a strong limit we implicitly assume that α ̸= R.

Also, if α ̸= R is a strong limit of {un}, for every neutrixM , N(α) ⊆ M it holds that α+M is a strong limit
of {un}. So in practice we prefer to find neutrices which are as small as possible.

Observe that if un ↪→ α then N(un) ⊆ N(α) for all n ≥ n0. Moreover, it is easy to see that if un ↪→ α

then un −→
N(α)

α. However, in general, the converse is not true. For example, consider the flexible sequence

un =
1

n
+

1

n
⊘. Then un → 0 but un is not strongly convergent to 0.

5.3.2 Operations on strong convergence

The behaviour of the strong limit under operations is as expected, but the proofs are easier than the case of the
ordinary N -limit.

Proposition 5.3.3. Let {un}, {vn} be two flexible sequences and γ ∈ E. Assume that Limun = α and Limvn =

β, where α ̸= R, β ̸= R. Then

(i) Lim(γun) = γLimun = γα.

(ii) Lim(un ± vn) = Limun ± Limvn = α± β.

Proof. The properties follow from the definition of strong convergence.
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Proposition 5.3.4. Let {un}, {vn} be two flexible sequences andN,M be two neutrices. Assume that un ↪→ α

and vn ↪→ β for some α, β ∈ E. Then {unvn} is strongly convergent to αβ.

Proof. By assumptions there exists n0 such that for all n ≥ n0, un ⊆ α and vn ⊆ β. This implies that
unvn ⊆ αβ for all n ≥ n0, and hence unvn ↪→ αβ.

Proposition 5.3.5. Let {un} be a zeroless sequence. Assume that un ↪→ α, where α ∈ E is zeroless. Then
1

un
↪→ 1

α
.

Proof. Because un ↪→ α, there exists n0 ∈ N such that un ⊆ α for all n ≥ n0. It follows that
1

un
⊆ 1

α
for all

n ≥ n0. Hence
1

un
↪→ 1

α
.

Proposition 5.3.6. Let {un} be a flexible sequence. If {un} is strongly convergent to α then |un| is strongly
convergent to |α|.

Proof. Assume that un ↪→ α. Then there exists n0 ∈ N such that un ⊆ α for all n ≥ n0. This means
un −α ⊆ N(α). So ||un| − |α|| ≤ |un −α| ⊆ N(α). It follows that |un| ⊆ |α| for all n ≥ n0. One concludes
that |un| ↪→ |α.|

Next we present a version of squeeze theorem for strong limits.

Proposition 5.3.7. Let {un}, {vn}, {wn} be flexible sequences. Assume that un ≤ wn ≤ vn for all n ∈ N and
un ↪→ α, vn ↪→ α. Then wn ↪→ α.

Proof. For n ∈ N, let un = an + An, vn = bn + Bn, wn = dn + Dn and α = a + A. We may assume that
always an ≤ bn ≤ cn for all n ∈ N. Because un ↪→ α, there exists n1 ∈ N, n1 ≥ n0 such that un ⊆ α for all
n ≥ n1. Similarly, since vn ↪→ α, there exists n2 ≥ n0 such that vn ⊆ α for all n ≥ n2. Let p = max{n1, n2}.
We prove that wn ⊆ α for all n ≥ p. Let n ≥ p. Then we have the following cases:

Case 1: wn ⊆ vn. Then wn ⊆ α.

Case 2: wn < vn and un < wn. Then wn ⊆ [an, bn] ⊆ α.

Case 3: wn < vn and un ⊆ wn. Then an +D+
n ⊆ [an, bn] ⊆ α. In particular, D+

n ⊆ N(α). Because N(α) is
symmetric, one concludes thatDn ⊆ α. So wn ⊆ α.

Hence wn ⊆ α for all n ≥ k and we conclude that wn ↪→ α.

5.3.3 Some properties of strongly convergent flexible sequences

We below obtain similar results on properties of strong limits as in the case of N -limits.
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Proposition 5.3.8. Let {un} be a flexible sequence and α ∈ E. Then {un} is strongly convergent to α if and
only if every subsequence {un}PN(J) of {un}, one has {uPN(J)} is strongly convergent to α.

Proof. Assume that un ↪→ α. So un ⊆ α for all n ≥ n0. For a subsequence {un}PN(J) there exists k ∈
PN(J) ≥ n0. This implies that um ⊆ α for all m ∈ PN(J), m ≥ k ≥ n0. We conclude that {un}PN(J) is
strongly convergent to α.

The converse is trivial because {un} is a subsequence of itself.

Proposition 5.3.9. Let {un} be a flexible sequence and α ∈ E. If {un} is strongly convergent to α, then {un}
is eventually bounded.

Proof. We have un ⊆ α for all n ≥ n0. Because α ̸= R, it holds that {un} is eventually bounded.

Proposition 5.3.10. Let {un} be a flexible sequence, where un = an + An for all n ∈ N. Then un ↪→ α if
and only if an ↪→ α and An ↪→ N(α).

Proof. It follows by the fact that un ⊆ α if and only if an ∈ α and An ⊆ N(α).

5.3.4 The relationship between N -limits and strong limits

Next we investigate the relationship betweenN -convergence and strong convergence. We first consider it for a
real sequence and then for a flexible sequence. We will show that the two notions are equivalent when N ̸= 0.

Proposition 5.3.11. Let {an} ⊂ R be an internal sequence and N ̸= 0 be a neutrix such that an ̸∈ N for all
n. Then {an} is not N -convergent to N .

Proof. Firstly we assume that for all n ∈ N, an > N.We consider two cases.

Case 1: The sequence {an} is convergent to a for some a ∈ R. Then a ̸∈ N . Indeed, suppose that a ∈ N . Let
ϵ ∈ N, ϵ > 0. Then there exists n0 ∈ N such that |an − a| < ϵ for all n ≥ n0. So |an| < |a|+ ϵ for all n ≥ n0.
Because |a|+ϵ ∈ N , it follows that an ∈ N for all n ≥ n0, which is a contradiction to the assumption. Suppose
that a < N . Let η0 = |a|/2 > N . Then there exists n0 ∈ N such that |an − a| < η0 for all n ∈ N, n ≥ n0.
This implies that an < a+ η0 = a/2 < 0 for all n ≥ n0, a contradiction. Hence a > N .

Suppose that an −→
N

N. Let N < ϵ = a/2. Then a/2 = a − ϵ < an < a + ϵ for all n ≥ n0. It follows that
|an−N | = an+N > a/2+N > a/4 > N for all n ≥ n0, which is a contradiction. HenceN is not aN -limit
of (an).

Case 2: The sequence {an} is divergent. Suppose on contrary that an −→
N

N . Then {an} is bounded. So there
exists a subsequence {amn} ⊂ {an} such that {amn} has a limit b ∈ R. By Case 1, the subsequence {amn}
does not N-converge to N , a contradiction to Proposition 5.2.31. Hence N is not a N -limit of {an}.

Secondly, let {an} be an arbitrary sequence. Suppose that an −→
N

N . Then |an| −→
N

N with |an| > N for all
n ∈ N, which is a contradiction. Hence {an} is not N -convergent to N .
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Theorem 5.3.12. Let {an} be a real sequence andN ̸= 0 be a neutrix. Assume that an −→
N

N. Then an ↪→ N.

Proof. Because an −→
N

N , we may assume that {an} is bounded. Suppose that for each n ∈ N there exists
p ∈ N such that p ≥ n and ap ̸∈ N . Let J = {(n, an) : an ̸∈ N}. Then J is cofinal. By Theorem 5.2.33,
there is an internal subsequence K of J . Let bn = an, n ∈ PN(K). Because {an} is N -convergent to N ,
by Proposition 5.2.31 the sequence {bn} is N -convergent to N with bn /∈ N for all n ∈ PN(K), which is a
contradiction to Proposition 5.3.11. Hence there exists n0 ∈ N such that un ∈ N for all n ≥ n0. We conclude
that an ↪→ N.

Corollary 5.3.13. Let {an} be a real sequence and N ̸= 0 be a neutrix. Assume that an −→
N

α for some
α ∈ E. Then an ↪→ α.

Proof. Let α = a + N . Because an −→
N

α, we have an − a −→
N

N. By Proposition above, it follows that
an − a ↪→ N and hence an ↪→ a+N = α.

Lemma 5.3.14. Let A = {(n,An)} ⊆ P(N × R) be a cofinal external set, where An is a non-empty for all
n ∈ PN(A). Then there exists a cofinal internal set J = {(k, ak)} ⊆ N×R such that ak ∈ Ak for all k ∈ P (J).

Proof. We haveA =
∪

st(x)∈X

∩
st(y)∈Y

Ixy, whereX,Y are standard and I:X×Y ⇒ P(N×R) is an internal set-

valued mapping for all x ∈ X, y ∈ Y . LetHx =
∩

st(y)∈Y

Ixy. Because A is cofinal, there exists st(x) ∈ X such

that Hx is cofinal. It follows that for all st(y) ∈ Y , Ixy is cofinal. Hence ∀stfinZ ⊆ Y ∃J ∀sty ∈ Z, J ⊆ Ixy.
In fact, we can take J =

∩
st(y)∈Z

Ixy. By the idealization principle we have

∃J ∀sty ∈ Y J ⊆ Ixy,

where J is internal and cofinal. Because J is internal, applying the axiom of choice we have that for each
k ∈ PN(J) there exists ak : (k, ak) ∈ J, that is, ak ∈ Ak for all k ∈ PN(J).

Proposition 5.3.15. Let {An} be a neutrix sequence andN ̸= 0 be a neutrix. If An −→
N

N , there exist n0 ∈ N
such that for all n ≥ n0 we have An ⊆ N.

Proof. Suppose on contrary that for all n ∈ N there exist pn ≥ n such that N ⊂ Apn . Let

D = {(n,An \N) : N ⊂ An} .

Then D is cofinal. By Lemma 5.3.14, there exists an internal subsequence {bk} such that bk ∈ Ak \N for all
k ∈ P (J). Because An −→

N
N , we have bk −→

N
N , a contradiction to Lemma 5.3.11. Hence there exists n0

such that for all n ≥ n0 we have An ⊆ N.

Lemma 5.3.16. Let {un} with un = an + An be a flexible sequence and N ̸= 0 be a neutrix. If un −→
N

N ,
there exists n0 ∈ N such that for all n ≥ n0 we have un ⊆ N.
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Proof. Because un −→
N

N , by Proposition 5.2.8 we have an −→
N

N and An −→
N

N . By Proposition 5.3.15
and Theorem 5.3.12, there exist n1, n2 ∈ N such that an ∈ N for all n ≥ n1 and An ⊆ N for all n ≥ n2. Let
n0 = max{n1, n2}. Then for all n ≥ n0 we have un ⊆ N .

Theorem 5.3.17. Let un be a flexible sequence and α ∈ E be an external number with N(α) ̸= 0. Then
un −→

N(α)
α if and only if un ↪→ α.

Proof. Assume that un ↪→ α with N(α) ̸= 0. Then there exists n0 ∈ N such that un ⊆ α for all n ≥ n0. It
follows that un −→

N(α)
α.

Conversely, assume that un −→
N(α)

α. Then un −α −→
N(α)

N(α). By Lemma 5.3.16, there exists n0 ∈ N such that

un − α ⊆ N(α) for all n ≥ n0. This implies that un ⊆ α for all n ≥ n0.

5.3.5 Strong Cauchy sequences

Definition 5.3.18. Let N be a neutrix. A flexible sequence {un} is said to be a strongly N -Cauchy sequence
if there exists n0 ∈ N such that un − um ⊆ N for all n,m ≥ n0.

Theorem 5.3.19. Let N be a neutrix. Let {un} be a flexible sequence with un = an +An for all n ∈ N. Then
{un} is a strongly N -Cauchy sequence if and only {an}, {An} are strongly N -Cauchy sequences.

Proof. It follows by the fact that um − un ⊆ N if and only am − an ⊆ N and Am −An ⊆ N.

Lemma 5.3.20. Let {an} be a real internal sequence and N be a neutrix. If {an} is strongly N -Cauchy then
{an} is strongly convergent to α = a+N for some a ∈ R.

Proof. If N = 0 then there exists n0 ∈ N and a constant c such that an = c for all n ≥ n0. So an is strongly
convergent to c+N = c. IfN ̸= 0, because {an} is stronglyN -Cauchy, it is bounded. It follows from Theorem
5.2.33 that there exists an internal subsequence {amn} of {an} such that {amn} is convergent to a for some
a ∈ R. Also,N ̸= 0, there exists n0 ∈ N such that amn ∈ a+N for allmn ≥ n0. Because the sequence {an}
is strongly N -Cauchy, there exists p0 ∈ N such that am − an ∈ N for all m,n ≥ p0. Let k0 = max{n0, p0}.
Then for all n ≥ k0 we have an − a = an − amn + amn − a ∈ N +N = N . It follows that an ∈ a+N for
all n ≥ k0. Hence {an} is strongly convergent to a+N.

Theorem 5.3.21. Let {un} be a flexible sequence with un = an + An for all n ∈ N. Then {un} is strongly
convergent to α if and only if {un} is a strongly N(α)-Cauchy sequence.

Proof. Assume that {un} is strongly convergent to α for some α = a+N(α) ∈ E. Then there exists n0 such
that for all n ≥ n0 we have un ⊆ α. It follows that un − a ⊆ N(α) for all n ≥ n0. So for all n,m ≥ n0 we
have un − um = un − a+ a− um ⊆ N(α) +N(α) = N(α). Hence {un} is strongly N(α)-Cauchy.

Conversely, assume that N is a neutrix and {un} is strongly N -Cauchy. Then there exists n0 such that for all
n ≥ n0 we have un − um ⊆ N . It follows that An ⊆ N for all n ≥ n0. By Theorem 5.2.33, there exists an
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internal subsequence {amn} of {an}. Since {un} is stronglyN -Cauchy, by Theorem 5.3.19 we have that {an}
is stronglyN -Cauchy which implies that {amn} is also stronglyN -Cauchy. Then {amn} is strongly convergent
to a+N for some a ∈ R by Lemma 5.3.20. So there exists p0 such that for all n ≥ p0 it holds that amn−a ∈ N .
Also, because {an} is strongly N -Cauchy, there exists p1 such that for all n,m ≥ p1, we have am − an ∈ N.

Let k0 = max{p0, p1}. Then for all n ≥ k0, it holds that an−a = an−amn +amn −a ∈ N +N = N . Hence
{an} is strongly convergent to a+N . By Proposition 5.3.19 we conclude that {un} is strongly convergent to
a+N .

5.4 Flexible sequences in Ep

In this section we expand results on flexible sequences in E to a vector flexible sequence in Ep in which we
always assume that p ∈ N is standard. Vector flexible sequences are used when we study the convergence
of a flexible function of several variables in the next chapter. We will use the norm ∥α∥ = max

1≤i≤p
|αi| with

α = (α1, . . . , αp) ∈ Ep.

Definition 5.4.1. A mapping u: N −→ Ep is called a flexible sequence in Ep.

Definition 5.4.2. Let N be neutrices and {un} be a flexible sequence in Ep. The sequence {un} is said to be
N -convergent to a vector α = (α1, . . . , αp) if for all ϵ > N there exists n0 ∈ N such that for al n ≥ n0 we
have d(un, α) < ϵ. Then we also say that α is an N -limit of the sequence {un} and we write N -limun = α.

Similar to sequence in E, we assume that N(αi) = N for all 1 ≤ i ≤ p.

Example 5.4.3. Let u: N −→ E2 be given by un =

(
1 +⊘,

1

n
+

1

n
ϵ⊘
)
. Then un −→

⊘
(1 +⊘,⊘).

Theorem 5.4.4. Let {un} be a flexible sequence in Ep with un = (u1n, . . . , upn) for all n ∈ N,N be a neutrix
and α = (α1, . . . , αp) ∈ Ep. Then un −→

N
α if and only if uin −→

N
αi for all 1 ≤ i ≤ p.

Proof. Assume that un −→
N

α. Then for ϵ > N there exists n0 such that for all n ≥ n0 we have d(un, α) < ϵ.

It follows that for all n ≥ n0 we have |uin − αi| ≤ d(un, α) < ϵ, with 1 ≤ i ≤ p. So N -limuin = αi.

Conversely, assume that uin −→
N

αi for all 1 ≤ i ≤ p. For ϵ > N , and 1 ≤ i ≤ p there exists ni0 ∈ N such
that for all n ≥ ni0 we have |uin − αi| < ϵ. Let n0 = max{n10, . . . , np0}. Then for all n ≥ n0 we have
d(un, α) = max

1≤i≤p
|uin − αi| = |ukn − αk| < ϵ. We conclude that un −→

N
α.

Definition 5.4.5. A flexible sequence u: N −→ Ep with un = (u1n, . . . , upn), n ∈ N is said to be strongly
convergent to α = (α1, . . . , αp) ∈ En if the flexible sequence uin is strongly convergent to αi for 1 ≤ i ≤ p.

Then we write un ↪→ α or Limun = α. The vector α = (α1, . . . , αn) is also called a strong limit of {un}.

Example 5.4.6. Let ϵ > 0 be infinitesimal. Consider the flexible sequence u: N −→ E2 given by un =(
n

n+ 1
+ ϵ⊘,

1

n
+

(
1 +

1

n

)n

ϵ£
)
for all n ∈ N. Then un ↪→ (1 + ϵ⊘, ϵ£).





6
Flexible functions

This chapter is devoted to the study of functions with uncertainties. We only consider functions with precise
variables and imprecise values. The imprecisions are modelled by external numbers. A function such that its
values are external numbers is called a flexible function.

The structure of the chapter as follows.

In Section 6.1, we introduce the notion of flexible function and give some examples.

In Section 6.2 we generalize some topological notions. By using neutrices instead of zero, we introduce the
notions ofM -neighbourhood, anM -interior point, anM -ball, whereM is a neutrix

In Section 6.3 the convergence of flexible functions is considered. Like Chapter 5 we will develop an adapted
version of traditional convergence of function for a flexible function in terms of neutrices. Properties and
arithmetic operations of this kind of limit as well. We also present the relationship between the convergence of
a flexible sequence and of a flexible function. The Cauchy criterion for the convergence of a flexible function
is obtained as in conventional analysis.

141
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In Section 6.4We introduce one-sided convergence for flexible functions and study the relationship to both-sided
convergence.

In Section 6.5 we define a notion of continuity for flexible functions. Properties of and arithmetical operations
on continuous flexible functions are investigated.

Recall that a standard function f is uniformly continuous if and only if f(x + ⊘) ⊆ f(x) + ⊘ for all x.
Generalizing this properties we introduce in section 6.6 a notion of inner convergence and of inner continuity.
Some properties and arithmetic operations are considered.

In order to construct the derivative of a flexible function in Section 6.7 we introduce another notion of conver-
gence, which is called outer convergent. Using this notion we define so-calledM ×N -derivatives of first and
higher order of flexible functions. Monotonicity of these functions is studied in Section 6.8.

In Section 6.9 we introduce theM ×N -partial derivative and theM ×N -total derivative for flexible functions
of several variables. The relationship between the two notions is studied. Also, we will provide conditions
such that an implicit function or an inverse function isM ×N -totally differentiable in Sections 6.10 and 6.11.
The study of the various types of differentiation is motivated by Chapter 8 on approximate optimal solutions of
optimization problems with flexible objective functions.

6.1 Definitions and example

Definition 6.1.1. LetX ⊆ Rn, X ̸= ∅. A mapping F :X −→ E, of the form
∪

st(u)∈U

∩
st(v)∈V

Iuv where U, V are

standard sets and I: U × V ⇒ X ×P(R) is an internal set-valued mapping, is said to be a flexible function. A
flexible real function f defined onX such that f(x) ∈ F (x) for all x ∈ X is called a representative of F . The
mapping NF : X −→ E defined by NF (x) = N(F (x)) for x ∈ X is called the neutrix part of F ; observe that
the neutrix-part is also a flexible function. In general, we call a flexible mappingN :X → N a neutrix-function.
Then for each flexible function F defined on X and for all x ∈ X we have F (x) = f(x) +NF (x).

We recall that as a consequence of Nelson’s Reduction Algorithm [14] every external set with internal elements
can be expressed in the form

∪
st(u)∈U

∩
st(v)∈V

Iuv where U, V are standard sets and I: U × V ⇒ X ×P(R) is an

internal set-valued mapping.

Convention 6.1.2. In the whole chapter whenever we mention X ⊆ Rn we implicitly assume that n ∈ N is
standard and X ̸= ∅.

Example 6.1.3. a. A mapping F : R −→ E given by F (x) = sinx+ cosx · ⊘ for x ∈ R is a flexible function.

Indeed, let V = N and for n ∈ N we define I: N ⇒ R× P(R) given by

In =
{
{x} ×

{
sinx+

[
−cos

n
,
cosx
n

]}
, x ∈ R

}
.

Then F =
∩

st(n)∈N
In.
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The function f : R −→ R given by f(x) = sinx for x ∈ R is a representative of F andNF : R −→ N given
by NF (x) = cosx · ⊘, x ∈ R is the neutrix part of F .

b. Let ϵ > 0 be infinitesimal and F : R −→ E be given by

F (x) =

ex + ϵ£ if x ∈ £

ln(x) + exϵ⊘ if x ̸∈ £.

Observe that the function F can be expressed by

F =

 ∪
st(m)∈N

∪
st(n)∈N

{{x} × {ex + [−ϵn, ϵn]} ,−m ≤ x ≤ m}


∪ ∩

st(m)∈N

∩
st(k)∈N

{
{x} ×

{
lnx+ ex

(
− ϵ

k
,
ϵ

k

)}
, x ̸∈ [−m,m]

} .

By the Reduction Algorithm themappingF can be expressed only by one intersection and one union relation.
Hence F is a flexible function.

c. For example, the mapping F : R −→ N given by F (x) = ex · ϵ⊘ for all x ∈ R, is a neutrix-function.

6.2 Some topological notions

Treating a neutrix as a kind of generalized zero we will expand classical notions of topology in which conditions
related to zero are replaced by neutrices, in such a way that if the neutrix is zero we obtain the classical notions.
These notions allow us to study properties of convergence and continuity of a flexible function. Also, it enables
us to measure the order of magnitude of uncertainties of local optimal solutions in Chapter 8.

Recall that in the classical mathematics, x0 is an accumulation point ofX if every ball of radius r > 0, centered
at x0 contains points ofX which are different from x0. In this context, we generalize this notion with a condition
that r > M instead of r > 0.

Let d be a metric on Rn andM be a neutrix.

The open ball centered at x0 of radius r > M

B(x0, r) = {x ∈ Rn|d(x, x0) < r}

is called the openM -ball centered at x0 of radius r .

The closed ball centered x0 of radius r > M

B[x0; r] =
{
x ∈ Rn

∣∣d(x, x0) ≤ r
}

is called the closedM -ball centered at x0 of radius r.



144 CHAPTER 6. FLEXIBLE FUNCTIONS

In caseM = 0 we use usual notations.

Later on we also use the following notion: the outerM -ball centered at x0 of radius r > M by

BM (x0, r) = {x ∈ Rn|M < d(x, x0) < r}.

Definition 6.2.1. Let S ⊆ Rn be not empty and x0 ∈ Rn. LetM be a neutrix. We say that x0 isM -close to S
if there exists x ∈ S such that d(x, x0) ∈ M.

Let S be a non-empty subset of Rn and M be a neutrix. Then every point of S is M -close to S. Another
example, for instance, every infinitesimal is ⊘-close to {0}.

Every appreciable point is not ⊘-close to ⊘.

Definition 6.2.2. Let X ⊆ Rn, X ̸= ∅ and x0 ∈ Rn. We say that x0 is an M -accumulation point of X if for
all δ > M one has B(x0; δ) ∩ (X \ {x0 +M}) ̸= ∅.

In case M = 0 we have the usual notion of accumulation point so, we may use the terminology accumulation
point instead of 0-accumulation point.

Example 6.2.3. a. 0 is a⊘-accumulation point ofX = (−1, 1). In this example, 0 is a point which belongs to
X . However, like the classical definition, anM -accumulation point of a set may not belong to this set. For
example, 0 is a ⊘-accumulation point of X = @ but it does not belong to X .

b. Let ϵ0 > 0 be infinitesimal. Then ϵ0 is an accumulation point of ⊘.

Definition 6.2.4. Let M be a neutrix. Let x0 ∈ Rn and U ⊆ Rn be a non-empty subset. We say that x0
an M -interior point of U if there is r > M such that B(x0; r) ⊆ U. Then the subset U is said to be an
M -neighbourhood of x0. Similarly, ifM = 0, we use the usual terminology.

For example, ⊘ is a neighbourhood of 0, but not a ⊘-neighbourhood of 0 and @ is a ⊘-neighbourhood of all
its members. Let ϵ > 0 be infinitesimal. Then B(0; ϵ) ⊂ R2 is a 0-neighbourhood of x0 = (0, ϵ/2).

Also, we have that 1 is a ⊘-interior point of £ and ω is an £-interior point of ω£, here ω is unlimited.

Definition 6.2.5. Let α ∈ E and U ⊆ R. The set U is said to be a real neighbourhood of α if and only if there
exists an open interval V ≡ (a, b) ⊆ R such that α ⊂ V ⊆ U.

For example, the subset U = £ is a real neighbourhood of 1 +⊘.

6.3 Both-sidedM ×N -limits

In general, the classical notion of convergence can not apply to flexible functions. Using neutrices as a kind of
generalized zero we generalize the notion of convergence of real function in traditional mathematics to flexible
functions. We also investigate properties and operations of these convergences.
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6.3.1 Definition and example

Definition 6.3.1. Let M,N be neutrices, X ⊆ Rn and F : X −→ E be a flexible function. Let x0 be an M-
accumulation point of X and α = a + A be an external number. We say that α is a M × N -limit of F at x0,
written N

M lim
x→x0

F (x) = α, if for all ϵ ∈ E, ϵ > N , there exists δ > M such that for all x ∈ X, 0 < d(x, x0) < δ

we have |F (x)− α| < ϵ.

In this case we also say that F (x) isM ×N -convergent to α when x approaches x0.

If F (x) is notM ×N -convergent to any element in E, we say that it isM ×N -divergent.

In case M = N ̸= 0 we use the notation M - lim
x→x0

F (x), in case M = 0, N ̸= 0 we use the notation
N lim

x→x0

F (x) instead of N
M lim

x→x0

F (x). In particular, if M = N = 0, the notion reduces to conventional
one, so we use the usual notation as the classical one.

Similarly to the definition of N -limit of a flexible sequence, in the definition above we also can replace the
condition ϵ ∈ E by the condition ϵ ∈ R.

Example 6.3.2. Consider the flexible function given by F (x) = x+ x · ⊘ for all x ∈ R. One has

⊘- lim
x→1

(x+ x · ⊘) = 1 +⊘.

Indeed, let ϵ > ⊘, taking δ = ϵ/2 > ⊘. Then for all x ∈ R, |x − 1| < δ one has |F (x) − (1 + ⊘)| =
|x− 1|+⊘ < ϵ/2 + ϵ/2 = ϵ.

Remark 6.3.3. Using the notion of a neighbourhood of an external number we can rewrite the definition of
M ×N - limits at one point. In fact, N

M lim
x→x0

F (x) = α if and only if for each real neighbourhood V of α, there
exists δ > M such that for all x ∈ X, 0 < d(x, x0) < δ one has F (x) ⊆ V.

6.3.2 Properties and operations

The neutrix part of anM ×N -limit must be included in N .

Proposition 6.3.4. Assume that N
M lim

x→x0

F (x) = α. Then N(α) ⊆ N.

Proof. We write α = a+A. Suppose on the contrary thatN ⊂ A. Let ϵ ∈ A be a real number such thatN < ϵ.
Then there exists δ > M such that |F (x)−α| = |f(x)+NF (x)−a+A| < ϵ. It follows that |f(x)−a| < ϵ. So
|f(x)−a| ∈ N(α) = A.As a result, ϵ ≤ |f(x)−a+NF (x)+A| = NF (x)+A < ϵ,which is a contradiction.
We conclude that A ≡ N(α) ⊆ N.

In contrast to a conventional convergence,M ×N -limits of a given flexible function at a point are not unique.
In fact, if α is an M ×N -limit of F at x0, then every element β ⊆ α+N is also an M ×N -limit of F at x0.
We will show that theM ×N -limit is unique up to the neutrix N .
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Proposition 6.3.5. Assume that N
M lim

x→x0

F (x) = α and N
M lim

x→x0

F (x) = β. Then α− β ⊆ N.

Proof. Suppose that α − β ̸⊆ N. This implies that N < |α − β| or N ⊂ α − β. Pick ϵ ∈ R such that
N < ϵ ≤ |α − β|. So there are δ1, δ2 > M such that for all x ∈ X, 0 < d(x, x0) < δ1 it holds that
|F (x)− α| < ϵ/2 and for all x ∈ X, 0 < d(x, x0) < δ2 we have |F (x)− β| < ϵ/2. It follows that

ϵ ≤ |α− β| ≤ |α− F (x) + F (x)− β| ≤ |F (x)− α|+ |F (x)− β| < ϵ/2 + ϵ/2 = ϵ,

which is a contradiction. Hence α− β ⊆ N.

In fact, if α is an M ×N -limit of F at x0, every external number β ⊆ α+N is also an M ×N -limit of F at
x0.

Proposition 6.3.6. Let M,N be neutrices and F : X −→ E be a flexible function. Assume that α ∈ E is an
M ×N -limit of F at x0. Then α +N is also an M ×N -limit of F at x0. In addition, every β ∈ E such that
β − α ⊆ N is anM ×N -limit of F at x0.

Proof. For ϵ > N one has ϵ/2 > N. Because α ∈ E is an M ×N -limit of F at x0, there exists δ > M such
that for all x ∈ X, 0 < d(x, x0) < δ one has |F (x)− α| < ϵ/2. So |F (x)− (α +N)| = |F (x)− α|+N <

ϵ/2 + ϵ/2 = ϵ. Hence α+N is anM ×N -limit of F at x0.

In addition, by Proposition 6.3.4 we haveN(α) ⊆ N . So β−α ⊆ N implies β ⊆ α+N . As above, we obtain
that β is anM ×N -limit of F at x0.

Convention 6.3.7. Because of Proposition 6.3.6, unless stated otherwise, we always assume that if N
M lim

x→x0

F (x) =

α, then N(α) = N .

Proposition 6.3.8. LetM1, N1,M2, N2 be neutrices such thatM2 ⊆ M1 andN1 ⊆ N2. Let F :X −→ E be a
flexible function and x0 ∈ Rn be aM1-accumulation point of X . Assume that N1

M1
lim
x→x0

F (x) = α. Then

N2
M2

lim
x→x0

F (x) = α.

Proof. Let ϵ > N2. Because N1 ⊆ N2, it holds that ϵ > N1. Also, by assumption that N1
M1

lim
x→x0

F (x) = α,
there exists δ > M1 such that

for all x ∈ X with 0 < d(x, x0) < δ we have |F (x)− α| < ϵ. (6.1)

On the other hand,M2 ⊆ M1, it holds that δ > M2. From (6.1) we conclude that N2
M2

lim
x→x0

F (x) = α.

Because of this result, when we considerM ×N -limits we are implicit in working with the largestM and the
smallest N possible.
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Each flexible function is expressed by a sum of two components: a real part and the neutrix part. The result
below indicates that if there existsM×N -limit of a flexible function at one point, there also existM×N -limits
of its components at this point and vice versa.

Theorem 6.3.9. Let M,N be two neutrices and F be a flexible function defined on X ⊆ Rn. Let f be
a representative of F and NF be the neutrix part of F . Let x0 be an M -accumulation point of X . Then
N
M lim

x→x0

F (x) = α ≡ a+N if and only if N
M lim

x→x0

f(x) = a and N
M lim

x→x0

NF (x) = N.

Proof. Assume that N
M lim

x→x0

F (x) = a + N. Let ϵ > N. There exists δ > M such that for all x ∈ X, 0 <

d(x, x0) < δ one has |F (x) − α| = |f(x) − a + NF (x) + N | < ϵ. It follows that |f(x) − a| < ϵ and(
NF (x) +N

)
< ϵ. Hence N

M lim
x→x0

f(x) = a and N
M lim

x→x0

NF (x) = N.

Conversely, we assume that N
M lim

x→x0

f(x) = a and N
M lim

x→x0

NF (x) = N. Let ϵ > N. It holds that ϵ/2 > N and
hence there exists δ1 > N such that for all x ∈ X, 0 < d(x, x0) < δ1 one has |f(x) − a| < ϵ/2 and δ2 > N

such that for all x ∈ X, 0 < d(x, x0) < δ2, it holds that
(
NF (x) +N

)
< ϵ/2. Put δ = min{δ1, δ2}. Then for

all x ∈ X, 0 < d(x, x0) < δ we have |F (x) − α| = |f(x) − a| +
(
NF (x) + N

)
< ϵ/2 + ϵ/2 = ϵ. Hence

N
M lim

x→x0

F (x) = α.

Next propositions state how the limit of a flexible function behaves under algebraic operations, and to what
extent the involved neutrices need to be adjusted.

Theorem 6.3.10. Let M,N1, N2 be neutices and α, β ∈ E. Let F,G be flexible functions defined on X ⊆ Rn

and x0 is anM -accumulation point of X . Assume that N1
M lim

x→x0

F (x) = α and N2
M lim

x→x0

G (x) = β. Then

(i) N
M lim

x→x0

(F +G) (x) = α+ β, where N = N1 +N2.

(ii) N
M lim

x→x0

(F −G) (x) = α− β, where N = N1 +N2..

(iii) Let k ∈ R. Then kN1
M lim

x→x0

(kF ) (x) = kα.

(iv) N1
M lim

x→x0

|F (x) | = |α|.

Proof. (i) Let ϵ > N . Then ϵ > N1 and ϵ > N2. Because N1
M lim

x→x0

F (x) = α, there exists δ1 > M such that

for all x ∈ X, 0 < d(x, x0) < δ1 one has F (x)−α| < ϵ/2. Similarly, because N2
M lim

x→x0

G(x) = β, there exists
δ2 > M such that for all x ∈ X, 0 < d(x, x0) < δ2 one has |G(x) − β| < ϵ/2. Put δ0 = min{δ1, δ2}. Then
δ0 > M and for all x ∈ X, 0 < d(x, x0) < δ0 one has |F (x) +G(x)− α− β| ≤ |F (x)− α|+ |G(x)− β| <
ϵ/2 + ϵ/2 = ϵ.

(ii) The proof is similar to the proof of Part (i).

(iii) If k = 0, the conclusion is trivial. We assume that k ̸= 0. Let ϵ > kN1 = |k|N1. This implies that
ϵ

|k|
> N1. Because N1

M lim
x→x0

F (x) = α, there exists δ0 > M such that for all x ∈ X, 0 < d(x, x0) < δ0 one has



148 CHAPTER 6. FLEXIBLE FUNCTIONS

|F (x)− α| < ϵ/|k|. It follows that |kF (x)− kα| = |k||F (x)− α| < |k| ϵ
|k|

= ϵ. Hence kN1
M lim

x→x0

(kF ) (x) =

kα.

(iv) The result follows from the fact that ||F (x)| − |α|| ≤ |F (x)− α|.

Theorem 6.3.11. LetM,N1, N2 be neutices andα, β, γ ∈ E. LetF,G be flexible functions defined onX ⊆ Rn

and x0 be anM -accumulation point of X . Assume that N1
M lim

x→x0

F (x) = α and N2
M lim

x→x0

G(x) = β. Then

N
M lim

x→x0

(FG)(x) = αβ,

where N = N1 +N2 +N2
1 +N2

2 + αN2 + βN1.

Proof. Write F (x) = f(x) +A(x), G(x) = g(x) +B(x) for all x ∈ X and α = a+N1, β = b+N2. Then

|F (x)G(x)− αβ| =|f(x)G(x)− αβ +A(x)G(x)| ≤ |f(x)G(x)− f(x)β + f(x)β − αβ +A(x)G(x)|

≤|f(x)||G(x)− β|+ |b||f(x)− α|+N2f(x) +N2α+A(x)g(x) +A(x)B(x) (6.2)

Let ϵ > N . We first show that there exists δ1 > M such that for all x ∈ X, 0 < d(x, x0) < δ1 one has

|f(x)||G(x)− β| < ϵ

6
. (6.3)

We consider two cases, (i) a ∈ N1 and (ii) a ̸∈ N1. For the case (i) we can take a = 0. The inequality
ϵ > N2

1 implies
√
ϵ > N1. Hence there exists k1 > N1 such that for all x ∈ X, 0 < d(x, x0) < k1 we have

|f(x)| <
√
ϵ. Similarly, one has

√
ϵ > N2. So

√
ϵ/6 > N2 and hence there exists k2 > M such that for

all x ∈ X, 0 < d(x, x0) < k2 one has |G(x) − β| <
√
ϵ/6. Let δ1 = min{k1, k2} > M. Then that for all

x ∈ X, 0 < d(x, x0) < δ1, we obtain
|f(x)||G(x)− β| < ϵ

6
,

as required. For the case (ii) we have |a| > N1 and hence there exists p1 such that for x ∈ X, 0 < d(x, x0) < p1,
|f(x) − a| < |a|, which implies that |f(x)| < 2|a|. Also ϵ > |a|N2, so

ϵ

12|a|
> N2. There exists p2 > M

such that for x ∈ X, 0 < d(x, x0) < p2 it holds that |G(x)− β| < ϵ

12|a|
. Let δ1 = min{p1, p2}. Then for all

x ∈ X, 0 < d(x, x0) < δ1 we obtain |f(x)||G(x)− β| ≤ 2|a||G(x)− β| < ϵ

6
, as required.

Secondly, we indicate that there exists δ2 > M such that for x ∈ X, 0 < d(x, x0) < δ2 it holds that

|b||f(x)− α| < ϵ/6. (6.4)

Note that if b ∈ N2, we can choose b = 0 and the result follows. Assume that |b| > N2. The inequality
ϵ > βN1 = bN1 implies

ϵ

6|b|
> N1. Then there exists δ2 such that for all x ∈ X, 0 < d(x, x0) < δ2 one has

|f(x)− α| < ϵ

6|b|
. Hence (6.4) holds.
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Thirdly we show that there exists δ3 > 0 such that for x ∈ X, 0 < d(x, x0) < δ3 one has,

|f(x)|N2 < ϵ/6. (6.5)

As above we distinguish the cases (i) a ∈ N and (ii) a ̸∈ N . For the case (i), similarly to the first part, there
exists k1 > M such that for all x ∈ X, 0 < d(x, x0) < k1 one has |f(x)| <

√
ϵ and that

√
ϵ/6 > N2. Let

δ3 = k1. Then for all x ∈ X, 0 < d(x, x0) < δ3 it holds that |f(x)|N2 <
√
ϵ.
√
ϵ/6 = ϵ/6. For the case (ii),

taking δ3 = p1, for all x ∈ X, 0 < d(x, x0) < δ3 it holds that |f(x)|N2 < 2|a|N2 < ϵ/6. Hence (6.5) holds.

Fourthly, we prove that there exists δ4 > M such that for all x ∈ X, 0 < d(x, x0) < δ4 one has

|g(x)|A(x) < ϵ/6. (6.6)

Again we distinguish two cases. (i) b ∈ N2 and (ii) b ̸∈ N2. (i) Again we can choose b = 0. Since ϵ > N2
2

one has ϵ/6 > N2
2 . Hence

√
ϵ

6
> N2. Also N2

M lim
x→x0

g(x) = 0, so there exists p3 > M such that for all

x ∈ X, 0 < d(x, x0) < p3 it holds that |g(x)| <
√

ϵ

6
. Moreover, since

√
ϵ

6
> N1 there exists p4 > M

such that for all x ∈ X, 0 < d(x, x0) < p4 it holds that A(x) ≤
√

ϵ

6
. Let δ4 = min{p3, p4}. Then, for

all x ∈ X, 0 < d(x, x0) < δ4 we have |g(x)|A(x) < ϵ/6, as required (ii) Let ϵ = |b| > N2. Then there
exists p5 > M such that for all x ∈ X, 0 < d(x, x0) < p5 it holds that |g(x) − b| < |b|, which implies that
|g(x)| < 2|b|. Furthermore ϵ > b.N1, so N1 < ϵ/|b|. It follows that N1 <

ϵ

12|b|
. Then there exists p6 > M

such that for all x ∈ X, 0 < d(x, x0) < p6 one has |A(x)| < ϵ

12|b|
. Put δ4 = min{p5, p6}. Then for all

x ∈ X, 0 < d(x, x0) < δ4 one has , |g(x)|A(x) ≤ 2|b|A(x) < ϵ/6. Hence (6.6) holds.

Finally, we saw that for all x ∈ X, 0 < d(x, x0) < p4 it holds that A(x) <
√
ϵ/6. Similarly, there exists

p7 such that for all x ∈ X, 0 < d(x, x0) < p7 one has B(x) <
√
ϵ/6. Put δ5 = min{p4, p7}. Then for all

x ∈ X, 0 < d(x, x0) < δ5 one has
A(x)B(x) < ϵ/6. (6.7)

Clearly,
N2α < ϵ/6. (6.8)

Let δ0 := min{δ1, ..., δ5}. Then, from (6.2)-(6.8), we conclude that, for all x ∈ X, 0 < d(x, x0) < δ0 one has
|(FG)(x)− αβ| < ϵ. Hence N

M lim
x→x0

= αβ.

Remark 6.3.12. Note that in case N1, N2 ⊆ £, we can neglect the term N2
1 +N2

2 . So N ≡ N1 +N2 +N2
1 +

N2
2 + αN2 + βN1 = N1 +N2 + αN2 + βN1. In case α, β are zeroless, N reduces to N = αN2 + βN1.

Example 6.3.13. Let ω be unlimited and F : R −→ E be a flexible function given by F (x) = ex + ω£.

We have ω£
⊘ lim

x→0
(ex + ω£) = ω£. However, F 2 = F · F is not ⊘ × ω£-convergent to ω£. In fact, it is

⊘× ω2£-convergent to ω2£.
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Example 6.3.14. Let ϵ > 0 be infinitesimal F, G: R −→ E be flexible functions given by

F (x) = sinx+ (x2 + 1)ϵ⊘

and
G(x) = ex+

1
ϵ2 + cosx · ϵ£.

Then we have
ϵ⊘ lim

x→0
F (x) = ϵ⊘

and
ϵ£ lim

x→0
G(x) = e

1
ϵ2 + ϵ£.

Also, ϵ⊘+ϵ£ = ϵ£. However, F ·G is not ϵ£-convergent to (ϵ⊘)
(
e

1
ϵ2 + ϵ£

)
because N

(
ϵ⊘ (e

1
ϵ2 + ϵ£)

)
=

e
1
ϵ2 · ϵ⊘ > ϵ£. In fact, we have

(e
1
ϵ2 ·ϵ⊘) lim

x→0
(F ·G)(x) = (ϵ⊘)

(
e

1
ϵ2 + ϵ£

)
= e

1
ϵ2 · ϵ⊘

by Theorem 6.3.11 with N1 = ϵ⊘, β = e
1
ϵ2 + ϵ£ and N = N1β.

Theorem 6.3.15. Let M,N be neutrices. Let F be a flexible function defined on X ⊆ Rn and x0 be an M -
accumulation point of X . Assume that there exists δ > M such that F (x) is zeroless for all x ∈ X, 0 <

d(x, x0) < δ and that N
M lim

x→x0

F (x) = α, where |α| > N . Then

K
M lim

x→x0

1

F (x)
=

1

α

whereK = N/α2.

Proof. Let α = a + N,F (x) = f(x) + A(x) for all x ∈ X . Let ϵ > K. Then ϵ > N/a2. So there exists
M < p1 ≤ δ such that for all x ∈ X, 0 < d(x, x0) < p1 one has |f(x) − a| < a2ϵ/4 and by Theorem 6.3.9,
there also exists M < p2 ≤ δ such that for all x ∈ X, 0 < d(x, x0) < p2 one has (A(x) + N) < a2ϵ/2.

Moreover |a| > N , so there exists M < p3 ≤ δ such that for all x ∈ X, 0 < d(x, x0) < p3 one has
|f(x) − a| ≤ |F (x) − α| < |a|, which implies that |f(x)| < 2|a|. Similarly, there exists M < p4 ≤ δ

such that for all x ∈ X, 0 < d(x, x0) < p4 one has |a|/2 < |f(x)|. Let p5 = min{p3, p4}. Then for
all x ∈ X, 0 < d(x, x0) < p5 one has a2/4 < f2(x) < 4a2. Let p = min{p1, p2, p5}. Then for all
x ∈ X, 0 < d(x, x0) < p one has

∣∣∣ 1

F (x)
− 1

α

∣∣∣ =∣∣∣ F (x)

f2(x)
− α

a2

∣∣∣ = ∣∣∣a2F (x)− f2(x)α

f2(x)a2

∣∣∣ ≤ ∣∣∣a− f(x)

f(x)a

∣∣∣+ a2A(x)− f2(x)N

f2(x)a2

≤
∣∣∣a− f(x)

a2/2

∣∣∣+ a2A(x)− 4a2N

a4/4
≤
∣∣∣a2ϵ/4
a2/2

∣∣∣+ (A(x) +N)

a2
< ϵ/2 + ϵ/2 = ϵ.

Hence K
M lim

x→x0

1

F (x)
=

1

α
.
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Corollary 6.3.16. Let M,N1, N2 be neutices and α, β ∈ E. Let F,G be flexible functions defined on X

and x0 is an M -accumulation point of X . Assume that G(x) is zeroless in an M -neighbourhood of x0 and
N1
M lim

x→x0

F (x) = α and N2
M lim

x→x0

G (x) = β. If |β| > N2 then

N
M lim

x→x0

F (x)

G(x)
=

α

β
,

where N = N1 +N2/β
2 +N2

1 + (N2/β
2)2 + α

(
N2/β

2
)
+ βN1.

Proof. Using Theorem 6.3.15, one has K
M lim

x→x0

1

G(x)
=

1

β
, where K = N2/β

2. The Corollary follows by

applying Theorem 6.3.11 to the flexible functions F (x) and
1

G(x)
, where N2 is replaced byK.

Example 6.3.17. Let ϵ > 0 be infinitesimal, ω > 0 be unlimited. Consider flexible functions F, G, H: R −→
E given by F (x) = ex+ω +⊘x,G(x) = 1 + x+

(
ϵ⊘

)
ex and H(x) = ϵ+ ϵ⊘ x for x ∈ R.

(a) We have ⊘- lim
x→0

F (x) = eω(1 +⊘). So, by Theorem 6.3.15 the function
1

F
is not only ⊘×⊘-convergent

but also ⊘× ⊘
e2ω

-convergent, and
⊘

e2ω

⊘ lim
x→0

1

F (x)
=

1

eω
+

⊘
e2ω

.

(b) Also, ϵ⊘ lim
x→0

G(x) = 1 + ϵ⊘ and by Convention 6.3.7 we have ϵ⊘ lim
x→0

H(x) = ϵ+ ϵ⊘ . Note that
G(x)

H(x)

is not 0 × ϵ⊘-convergent to
1 + ϵ⊘
ϵ+ ϵ⊘

when x approaches 0, because ϵ⊘ ⊂ N

(
1 + ϵ⊘
ϵ+ ϵ⊘

)
= ⊘. However,

by Corollary 6.3.16 the function
G(x)

H(x)
is 0×⊘-convergent to

1 + ϵ⊘
ϵ+ ϵ⊘

=
1

ϵ
+⊘ at x = 0.

In the next result we state one version of the squeeze theorem forM ×N -limits of flexible functions.

Theorem 6.3.18. Let M,N be neutrices and F,G,H be flexible functions defined on X ⊆ Rn. Assume that
F (x) ≤ G(x) ≤ H(x) for all x ∈ V ⊆ X , where V is an M -neighbourhood of x0 and N

M lim
x→x0

F (x) =

N
M lim

x→x0

H(x) = α. Then N
M lim

x→x0

G(x) = α.

Proof. Let ϵ > N . Because N
M lim

x→x0

F (x) = N
M lim

x→x0

H(x) = α, there exists δ > M such that |F (x)− α| < ϵ

and |G(x)−α| < ϵ for all x ∈ V, 0 < d(x, x0) < δ.Moreover, for all x ∈ V one has F (x)−α ≤ G(x)−α ≤
H(x)− α. It follows that |G(x)− α| ≤ max{|H(x)− α|, |F (x)− α|} < ϵ. Hence N

M lim
x→x0

G(x) = α.

We know that in classical analysis, if a function is bounded from above by a constant c, and has a limit, the limit
is less than or equal to this constant. We state below a version forM ×N -limits of flexible functions.

Theorem 6.3.19. Let M,N be neutrices and F be a flexible function defined on X ⊆ Rn such that F (x) ≤
β + N for all x ∈ X . Let x0 be an M -accumulation point of X . Assume that N

M lim
x→x0

F (x) = α. Then
α ≤ β +N .
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Proof. If α ⊆ β + N , the conclusion is trivial. We assume that α ̸⊆ β + N . Because N(α) = N by
Convention 6.3.7, it follows that α ∩ (β + N) = ∅. Suppose that α > β + N . This implies that α − β > N

by Proposition 2.2.38. Let ϵ be a real number such that N < ϵ < α − β. There exists δ > M such that for
all x ∈ X, 0 < d(x, x0) < δ one has |F (x) − α| < ϵ. Consequently, α − ϵ < F (x) + N . It follows that
α− (α− β) ≤ α− ϵ < F (x) +N and hence N + β < F (x) +N. One obtains that F (x) > β +N, which is
a contradiction. We conclude that α ≤ β +N.

Let f be a real function defiend onX . In classical mathematics it is well-known that a function f has the limit
l at a point x0 if and only if for every sequence {xn} ⊆ X converges to x0, the sequence f(xn) converges to
l. We show below that if a flexible function has M × N -limits at x0, for every sequence un M -converges to
x0 +M , the sequence F (un) N -converges to the M × N - limit of F at x0. Also, if M = 0, the converse is
true.

Theorem 6.3.20. Let p ∈ N be standard, F be a flexible function defined on X ⊆ Rp and x0 be an M -
accumulation point of X . The following statements hold:

If N
M lim

x→x0

F (x) = β, one has N - lim
n→∞

F (xn) = β for every sequence {xn} ⊆ X \ {x0} which M-converges
to x0.

Proof. Assume that N
M lim

x→x0

F (x) = β and {xn} ⊂ X\{x0},M - lim
n→∞

xn = x0.Wewill prove thatN - lim
n→∞

F (xn) =

β.

Let ϵ > N . Because N
M lim

x→x0

F (x) = β, there exists δ > M such that for all x ∈ X with 0 < d(x, x0) < δ one
has |F (x)−β| < ϵ. AlsoN - lim

n→∞
xn = x0, so there exists n0 such that for all n ≥ n0 one has 0 < d(xn, x0) <

δ. It implies that |F (xn)− β| < ϵ for all n ≥ n0. Hence N - lim
n→∞

F (xn) = β.

We present below the Cauchy criterion for convergence of flexible functions. In some situations we can not
calculateM ×N -limits of flexible function but we want to know if the function isM ×N -convergent or not.
The Cauchy criterion is a useful tool to do this.

Theorem 6.3.21 (Cauchy criterion). Let F be a flexible function defined on X ⊆ Rn and M,N be neutrices.
Let x0 be anM -accumulation point ofX . Then F isM ×N -convergent at x0 if and only if for all ϵ > N , there
exists δ > M such that for all x, x′ ∈ X, 0 < d(x, x0) < δ, 0 < d(x′, x0) < δ it holds that |F (x)−F (x′)| < ϵ.

Proof. Assume thatF isM×N -convergent at x0. Then there isα ∈ E such that N
M lim

x→x0

F (x) = α.Let ϵ > N .
There exists δ > M such that for all x, x′ ∈ X, 0 < d(x, x0) < δ, 0 < d(x′, x0) < δ we have |F (x)−α| < ϵ/2

and |F (x′)− α| < ϵ/2. It follows that |F (x)− F (x′)| ≤ |F (x)− α|+ |F (x′)− α| < ϵ/2 + ϵ/2 = ϵ.

Conversely, let {xn} ⊂ X such that xn −→
M

x0. By the assumption, the sequence F (xn) is N -Cauchy.
Because of Theorem 5.2.41 it holds that F (xn) −→

N
a +N. Let ϵ > N . There exists δ > M such that for all

x, x′ ∈ X, 0 < d(x, x0) < δ, 0 < d(x′, x0) < δ we have |F (x) − F (x′)| ≤ ϵ/2. Also limxn = x0, so there
is n0 ∈ N such that for all n ≥ n0, 0 < d(xn, x0) < δ. Because F (xn) −→

N
a + N , there exists m0 such

that for all n ≥ n0, |F (xn) − a + N | < ϵ/2. Let y ∈ X, 0 < d(y, x0) < δ and p ≥ max{m0, n0}. Then
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|F (y)−a+N | ≤ |F (y)−F (xp)|+|F (xp)−a+N | ≤ ϵ/2+ϵ/2 = ϵ.We conclude thatF isM×N -convergent
to a+N at x0.

6.4 One-sidedM ×N -limits

In this section we only consider flexible functions of one variable. This means that the domain of function X

is a subset of R.

Sometimes it is not necessary or impossible to consider two-sided convergence. For instance, let F : @ −→ E
be a flexible function defined by F (x) = x+⊘ · x, x ∈ @. Then 0 is a ⊘-accumulation point of X = @. In
this case when we investigate the ⊘-convergence of F at 0, we can only consider argument x > 0 + ⊘. This
means that x ∈ @ can only approach 0 from above.

Also behaviours of some flexible functions are quite different when x approaches x0 from one side to another.
For example, consider the flexible function

F (x) =

x2 +⊘x if x ≥ 0

sinx+⊘ if x < 0.

Then F (0) = 0, while F (x) = ⊘ for x ∈ ⊘, x < 0.

Limits of flexible functions when x approaches a point from one side are called one-sided limits.

Definition 6.4.1. Let M,N be two neutrices and α1, α2 be external numbers. Let F : X ⊆ R −→ E be a
flexible function and x0 be anM -accumulation of X .

(i) The external number α1 is called a leftM ×N - limit of F at x0, written as

N
M lim

x→x−
0

F (x) = α1,

if for all ϵ > N there exists δ > M such that for all x ∈ X, 0 < x0−x < δ it holds that |F (x)−α1| < ϵ.

(ii) The external number α2 is called a rightM ×N -limit of F at x0, written as

N
M lim

x→x+
0

F (x) = α2,

if for all ϵ > N there exists δ > M such that for all x ∈ X, 0 < x−x0 < δ it holds that |F (x)−α2| < ϵ.

Remark 6.4.2. It is easy to verify that the results stated above for both-sided limits also hold for one-sided
limits.

As for relationships between both-sided and one-sided limits, there exists an M × N -limit of F at x0 if and
only if there exist a leftM ×N - limit and a rightM ×N -limit, and both of them are equal.
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Theorem 6.4.3. There exists N
M lim

x→x0

F (x) = α if and only if there exist left and right M × N -limits of F at
x0, and

N
M lim

x→x−
0

F (x) = N
M lim

x→x+
0

F (x) = α.

Proof. Assume thatNM lim
x→x0

= α. Let ϵ > N . Then there exists δ > M such that for all x ∈ X, 0 < |x−x0| < δ

we have |F (x) − α| < ϵ. Hence for all x ∈ X, 0 < x − x0 < δ it holds that 0 < |x − x0| < δ and hence
|F (x)−α| < ϵ. So N

M lim
x→x+

0

F (x) = α. Similarly, for all x ∈ X, 0 < x0−x < δ it holds that 0 < |x−x0| < δ

and hence |F (x)− α| < ϵ. So N
M lim

x→x−
0

F (x) = α.

Conversely, we assume that N
M lim

x→x−
0

F (x) = N
M lim

x→x+
0

F (x) = α. Let ϵ > N . Then there exists δ1, δ2 > M

such that for all x ∈ X , 0 < x0 − x < δ1 one has |F (x) − α| < ϵ and for all x ∈ X, 0 < x − x0 < δ2

one has |F (x) − α| < ϵ. Put δ = min{δ1, δ2} > M . Then for all x ∈ X, 0 < |x − x0| < δ, it follows that
0 < x− x0 < δ ≤ δ2 and 0 < x0 − x < δ ≤ δ1. Hence |F (x)− α| < ϵ.

6.5 Continuity

Using M ×N -limits we develop continuity for flexible functions. For sake of simplicity, we denote by N0 =

NF (x0) the neutrix part of F (x0).

6.5.1 Both-sided continuity

Definition 6.5.1. Let F be a flexible function defined on X ⊆ Rn and M,N be neutrices. Let x0 ∈ X be an
M -accumulation point ofX . The flexible function F is said to beM ×N -continuous at x0 if N

M lim
x→x0

F (x) =

F (x0). In particular, if N = N(F (x0)), the function F is said to be M -continuous at x0. Furthermore, if
M = 0 then F is said to be continuous at x0.

From the definition ofM×N -limit, a flexible functionF isM - continuous at x0 if and only if for every ϵ > N0,
there exists δ > M such that for all x ∈ X, d(x, x0) < δ we have |F (x)− F (x0)| < ϵ.

The proposition below give us one characterization of continuity of flexible functions.

Proposition 6.5.2. A flexible function F isM ×N -continuous at x0 if and only if for every neighbourhood V
of F (x0) +N there exists δ > M , such that for all x ∈ X with d(x, x0) < δ one has F (x) ∈ V.

Proof. Let f be a representative of F . Assume that F is M -continuous at x0. Let V be an arbitrary neigh-
bourhood of F (x0) + N . By the definition of neighbourhood V , there exists a real number ϵ > N such that
F (x0)+N ⊂ (f(x0)−ϵ, f(x0)+ϵ) ⊆ V. Because F isM×N -continuous at x0, there exists δ > M such that
|F (x)− F (x0)| < ϵ. This means that f(x0)− ϵ < F (x) +NF (x0) < f(x0) + ϵ for all x ∈ (x0 − δ, x0 + δ).
Hence F (x) ∈ (f(x0)− ϵ, f(x0) + ϵ) ⊆ V for all x ∈ X, d(x, x0) < δ.
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Conversely, assume that for every V a neighbourhood of F (x0) + N there exists δ > M such that for all
x ∈ X, d(x, x0) < δ, one has F (x) ∈ V. We need to prove that F is M × N -continuous at x0. We take
V = (F (x0)− ϵ, F (x0)+ ϵ) with ϵ > N . Then V is a neighbourhood of F (x0)+N. By the assumption, there
exists δ > M such that for all x ∈ X, d(x, x0) < δ implies F (x) ∈ V = (F (x0) − ϵ, F (x0) + ϵ). That is
F (x0) − ϵ < F (x) < F (x0) + ϵ. Then |F (x) − F (x0)| < ϵ + NF (x0). Also, NF (x0) ≤ N < ϵ it follows
that |F (x)− F (x0)| < ϵ. Hence F isM ×N -continuous at x0.

Example 6.5.3. Let ϵ be infinitesimal. Consider the internal functions defined by

f (x) = arctan(x/ϵ), g (x) =

{
−ϵ, x < 0

ϵ, x ≥ 0,
j (x) =

{
−1, x < 0

1, x ≥ 0.

The first function is a well-known example of a continuous, not S-continuous function, in our terminology, it
is neither ⊘-continuous nor ⊘×⊘-continuous. It is not difficult to see that g is not continuous at x0 = 0 but is
0×⊘-continuous. The function j is clearly neither continuous nor 0×⊘-continuous at x0 = 0. However j is
0× £-continuous at that point.

Example 6.5.4. Let F : R −→ E be given by

F (x) =

⊘ if x ∈ ⊘

0 if x ̸∈ ⊘.

Then F is ⊘-continuous at 0.

Examples (6.5.3) and (6.5.4) show that in our definition of continuity, the continuity of a flexible function
depends on the order of magnitude considered. Due to Proposition 6.3.8 a flexible function F is M × N -
continuous, then it isM ′ ×N ′-continuous withM ′ ≤ M and N ≤ N ′.

Let F :X ⇒ P(R) be a set-valued map. Recall that F is called upper semi-continuous at x0 if for every
neighbourhood U of F (x0), there is a δ > 0 such that for all x ∈ X, 0 < d(x, x0) < δ we have F (x) ⊆ U.

Hence the notion of M -continuity of a flexible function becomes the notion of upper semi-continuity of a set-
valued map. However, consider the function

F (x) =

0 if x = 0

⊘ if x ̸= 0.

If F is seen as a set-valued mapping, it is not upper semi continuous at 0. In fact, it is lower semi-continuous
at 0. In our definition it is 0 × ⊘-continuous at 0. We see that in some cases our definition implies upper
semi-continuity and some other cases it implies lower semi-continuity.

Example 6.5.5. Let F : R −→ E be a flexible function given by F (x) = x2 + ⊘ · x for x ∈ R. Then F is
continuous at x0 = 0, but not ⊘-continuous at x0 = 0.
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6.5.2 One-sided continuity

Definition 6.5.6. LetF be a flexible function defined onX ⊆ R andM,N be neutrices. The flexible functionF
is said to be leftM×N -continuous at x0 if there exists δ > M such that [x0, x0+δ) ⊂ X and N

M lim
x→x−

0

F (x) =

F (x0).

Definition 6.5.7. Let F be a flexible function defined onX ⊆ R andM,N be a neutrices. A flexible function F
is said to be rightM×N -continuous at x0 if there exists δ > M such that (x0−δ, x0] ⊂ X and N

M lim
x→x+

0

F (x) =

F (x0).

As consequence of Theorem 6.4.3, one has:

Theorem 6.5.8. A flexible function F is M × N -continuous at x0 if and only if it is left and right M × N -
continuous at x0.

We next define the continuity of a flexible function on a closed interval.

Definition 6.5.9. Let F be a flexible function defined on [a, b] andM,N be neutrices. Assume that there exist
δ1, δ2 > M such that [a, a + δ1) ⊂ [a, b] and (b − δ2, b] ⊂ [a, b]. The flexible function F (x) is said to be
M × N -continuous on [a, b] if it is M × N -continuous on (a, b) and left M × N -continuous at a and right
M ×N -continuous at b.

6.5.3 Operations on continuous flexible functions

We consider how the continuity of flexible functions behaves under algebra operations. As a result of Theorem
6.3.10 and Theorem 6.3.11 one obtains the following.

Theorem 6.5.10. Let N1, N2,M be neutrices and x0 ∈ Rn. Let F be M ×N1-continuous function and G be
anM ×N2-continuous function at x = x0. Then

(i) The flexible function F +G isM ×K-continuous at x0 withK = N1 +N2.

(ii) The flexible function F −G isM ×K-continuous at x0 withK = N1 +N2.

(iii) Let k ∈ R. Then (kF ) isM ×K-continuous at x0, whereK = k.N1.

(iv) The flexible function F ·G isM ×K-continuous at x0, whereK = N1+N2+N2
1 +N2

2 +F (x0) ·N2+

G(x0) ·N1.

We now turn to continuity of a composition of function between a real function and a flexible function.

Theorem 6.5.11. LetN1, N2 be neutrices and I ⊆ Rm, J ⊆ Rn. Let f : I −→ J be a real function,G: J −→ E
be a flexible function. LetH: I −→ E be the composition of f andG defined byH (x) = G (f (x)) for all x ∈ I .
If f isK ×M -continuous at the point x0 and G isM ×N -continuous at f (x0) thenH isK ×N -continuous
at x0.
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Proof. Let ϵ > N . Because G is M × N -continuous at y0 = f (x0), there exists η > M such that for all
y ∈ J, d

(
y, f (x0)

)
< η it holds that |G (y)−G (f (x0))| < ϵ. Moreover f is K × M -continuous at x0,

there exists δ > K such that for all x ∈ I , d(x, x0) < δ we have d
(
f (x) , f (x0)

)
< η. It follows that for

all x ∈ I, d(x, x0) < δ one has |H (x)−H (x0)| = |G (f (x))−G (f (x0))| < ϵ. We conclude that H is
K ×N -continuous at x0.

6.6 Inner convergence and inner continuity

It is well-known that a standard function f defined on standard X ⊆ R is continuous if and only if f is S-
continuous at every limited real number x ∈ X , meaning that f(x + ⊘) ⊆ f(x) + ⊘. The function f is
uniformly continuous if and only if f(x+⊘) ⊆ f(x) +⊘ for all x ∈ R. Taking this guide we define another
notion of convergence and continuity for flexible functions. We replace the neutrix ⊘ on the left side by an
arbitrary neutrix and the term on the right side by an external number. We call it an inner convergence. Also,
this notion is corresponding to the notion of strong convergence of a flexible sequence.

The word “inner” implies that we only consider real points in x0 +M and also the values of f at these points
are inside the limit.

Definition 6.6.1. Let M = (M1, . . . ,Mn) ̸= 0 be a neutrix vector and α = a + A ∈ E. Let F be a flexible
function defined on X ⊆ Rn and x0 ∈ Rn such that x0 +M ⊆ X.We call α an inner limit of F at x0 +M if
F (x) ⊆ α for all x ∈ x0 +M \ {x0}. Then we write

lim
x→x0+M

F (x) = α.

We also say that F (x) is inner convergent to α when x approaches x0 +M.

Example 6.6.2. Consider the flexible function F given by F (x) =
x

x2 + y2 + 1
+

y

x2 + y2 + 1
+⊘ · (x+ y)

for all x, y ∈ R. Then lim
(x,y)→(0,0)+(⊘,⊘)

F (x) = ⊘.

By this definition of limit it is easy to see that the following operations hold.

Theorem 6.6.3. LetM be a neutrix and F,G be flexible functions defined onX . Assume that lim
x→x0+M

F (x) =

α, lim
x→x0+M

G(x) = β. Then

(i) lim
x→x0+M

(F +G)(x) = α+ β.

(ii) lim
x→x0+M

(F −G)(x) = α− β.

(iii) lim
x→x0+M

kF (x) = kα for k ∈ R.

(iv) lim
x→x0+M

(FG)(x) = α · β.

(v) If G(x) is zeroless for all x ∈ x0 +M \ {x0} and β is zeroless then lim
x→x0+M

F (x)

G(x)
=

α

β
.
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As for strong convergence we also obtain a squeeze theorem.

Theorem 6.6.4. Let F be a flexible function defined onX ⊆ Rn,M = (M1, . . . ,Mn) ̸= 0 be a neutrix vector
and x0 be point such that x0 + M ⊆ X . Assume that F (x) ≤ G(x) ≤ H(x) for all x ∈ x0 + M \ {x0}.
Assume also that lim

x→x0+M
F (x) = lim

x→x0+M
H(x) = α. Then lim

x→x0+M
G(x) = α.

Proof. Let x ∈ x0 + M \ {x0} and u ∈ G(x). Since F (x) ≤ G(x) ≤ H(x), there are v1 ∈ F (x) and
v2 ∈ H(x) such that v1 ≤ u ≤ v2. Also F (x) ⊆ α, H(x) ⊆ α. It follows that u ∈ α. So G(x) ⊆ α for all
x ∈ x0 +M \ {x0}. Hence lim

x→x0+M
G(x) = α.

As for relationship between limits of flexible functions and limits of flexible sequences we obtain the same
result as classical mathematics.

Theorem 6.6.5. Let α ∈ E, M = (M1, . . . ,Mn) ̸= 0 be a neutrix vector and F be a flexible function defined
on X ⊆ Rn. Let x0 ∈ Rn such that x0 + M \ {x0} ⊆ X . Then lim

x→x0+M
F (x) = α if and only if for every

sequence {xn} ⊆ X \ {x0}, xn ↪→ x0 +M , it holds that F (xn) ↪→ α.

Proof. Assume that lim
x→x0+M

F (x) = α, with α = a + A. Let {xn} ⊆ X \ {x0}, xn ↪→ x0 +M. Then there

exists n0 ∈ N such that for all n ≥ n0 one has xn ∈ x0 +M. It follows that F (xn) ⊆ α for all n ≥ n0. This
means that LimF (xn) = α.

Conversely, we assume that F (xn) ↪→ α for every sequence {xn} ⊆ X,xn ↪→ x0 +M . We need to prove that
lim

x→x0+M
F (x) = α. We suppose that it is not true. Then there is x′ ∈ x0 +M \ {x0} such that F (x′) ̸⊆ α. Let

xn = x′ for all n ∈ N. Then xn ↪→ x0 +M. This implies that F (xn) = F (x′) ⊆ α, a contradiction.

Next theorem shows that a flexible function is inner convergent if and only if it satisfies the Cauchy criterion.

Theorem 6.6.6. Let F be a flexible function defined onX ⊆ Rn,M = (M1, . . . ,Mn) ̸= 0 be a neutrix vector
and x0 be point such that x0+M ⊆ X . Then lim

x→x0+M
F (x) = a+N if and only if for all x, x′ ∈ x0+M \{x0}

we have F (x)− F (x′) ⊆ N .

Proof. Assume that lim
x→x0+M

F (x) = a +N. Let x, x′ ∈ x0 +M \ {x0}. One has F (x) − F (x′) ⊆ F (x) −

a+ a− F (x′) ⊆ N +N = N.

Conversely, let xn = x0 +
1

n
↪→ x0 +M. There exists k0 such that for all n ≥ k0 we have xn ∈ x0 +M. Also

F (xn) isN -strongly Cauchy. By Theorem 5.3.21, it follows that LimF (xn) = a+N. So, there exists n0 ∈ N
such that for all n ≥ n0 we have F (xn) ⊆ a+N . This means that F (xn)− a ⊆ N. Let m0 = max{k0, n0}.
Let y ∈ x0+M \{x0} and p ≥ m0. Then xp ∈ x0+M \{x0}. It follows that F (y)−F (xp) ⊆ N.As a result,
F (y)− a+ a− F (xp) ⊆ N. Since a− F (xp) ⊆ N , one has F (y)− a ⊆ N. Hence lim

x→x0+M
F (x) = a+N.
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Corresponding to the notion of inner limit, we define here another notion of continuity of a flexible function.
As argued at the beginning of this section, this notion can be seen as a generalization of the notion of uniform
continuity of a standard function.

Definition 6.6.7. X ⊆ Rn,M = (M1, . . . ,Mn) ̸= 0 be a neutrix vector andN be a neutrix. Let F :X −→ E
be a flexible function and x0 + M ⊆ X . The function F is said to be M × N -inner continuous at x0 if

lim
x→x0+M

F (x) = F (x0) +N. In case N = NF (x0) we say that F isM -inner continuous at x0.

Example 6.6.8. (a) Let F : R2 −→ E be a flexible function defined by F (x, y) = sin(πx) cos y + (x2ϵ ⊘
+y2ϵ£) +⊘ and x0 = (1, 0). LetM = (⊘, ϵ£). Then F isM -inner continuous at x0.

(b) Let F :R −→ E be given by F (x) = ex+⊘ = ex(1+⊘). Then F is⊘-inner continuous at x ∈ £. However,
it is not ⊘-inner continuous at x /∈ £.

As a sequence of Theorem 6.6.3, we obtain the followings.

Theorem 6.6.9. LetM = (M1, . . . ,Mn) ̸= 0 be a neutrix vector andN1, N2 be neutrices. LetN = N1 +N2

and X ⊆ Rn. Let F,G be flexible functions defined on X , with F (x) = f(x) + NF (x) and G(x) = g(x) +

NG(x) for x ∈ X and x0 ∈ Rn such that x0 + M ⊆ X . Assume that F is M × N1-inner continuous, G is
M ×N2-inner continuous at x0. Then

(i) F +G isM ×N -inner continuous at x0.

(ii) F −G isM ×N -inner continuous at x0.

(iii) kF isM × kN1-inner continuous at x0 for all k ∈ R.

(iv) FG isM ×K-inner continuous at x0, whereK = N1G(x0) +N2F (x0) +N1N2.

(v) IfG(x)+N2 is zeroless for all x ∈ x0+M , the function (F/G) isM ×K-inner continuous at x0, where

K =
F (x0) +N1

g(x0)
+

F (x0) +N1

g2(x0)

(
NG(x0) +N2

)
.

6.7 TheM ×N -derivative of a flexible function

When x approaches x0 the neutrix part of the expression
F (x)− F (x0)

x− x0
, in general, approachesR. For example

⊘
x

tends to R when x approaches 0. So we can not use the classical technique to build the notion of derivative
for flexible functions. However, for a neutrix and a point x, which x is not an absorber of N , we have that
N

x
⊆ N . Using this fact we will construct the notion of derivative for a flexible function. To do it we will

introduce another notion of limit, called an outer limit. In chapter 8 we will use the notion of derivative to
construct necessary conditions for the existence of an approximate local optimal solution of optimization with
flexible objective functions.
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6.7.1 Outer limit

Let F be a flexible function and M be a neutrix. In this section we consider behaviour of F (x) when x ap-
proaches x0, but x always stays outside of x0 +M .

Definition 6.7.1. Let X ⊆ Rn, F : X −→ E be a flexible function and α = a + A be an external number.
Assume that x0 is an M -accumulation point of X . We say that α is an M ×N -outer limit of F at x0, if for
all ϵ > N , there exists δ > M such that for all x ∈ X, M < |x− x0| < δ one has |F (x)− α| < ϵ. We write

N - lim
x→x0+M

F (x) = α.

Then we also say that F (x) isM ×N - outer convergent to α when x approaches x0.

The ”outer” here hints that x approaches x0 but always stays the outside of x0 +M .

Remark 6.7.2. Similarly to Proposition 6.3.6 it is true that if α is an M × N -outer limit of F at x0 then
N(α) ⊆ N and α+N is anM ×N -outer limit of F at x0.

WhenM = 0, the notion ofM ×N -outer limit coincides exactly with the notion ofM ×N limit.

Example 6.7.3. One has ⊘- lim
x→0+⊘

(x + x⊘) = ⊘. Indeed, let ϵ > ⊘. Let δ = ϵ/2 > ⊘. Then for all x ∈ R,
⊘ < |x| < δ we have |F (x)− F (0)| = |x+ x⊘ | < ϵ/2 + ϵ/2 = ϵ.

The difference between anM ×N -limit and anM ×N -outer limit is that anM ×N -limit considers values of
a given function at points x ∈ R with |x− x0| ∈ M while an M ×N -outer limit does not. As a consequence
it is easy to see that if α is anM ×N -limit of F at x0, it is anM ×N -outer limit of F at x0. That is

N
M lim

x→x0

F (x) = α =⇒ N - lim
x→x0+M

F (x) = α. (6.9)

Remark 6.7.4. Because of (6.9), the results which hold forM ×N -limits also hold forM ×N -outer limits.

Similarly toM ×N -limits we also have notions of one-sidedM ×N -outer limits.

Definition 6.7.5. Let F : X ⊆ Rn −→ E be a flexible function and x0 ∈ Rn be an M -accumulation point of
X . An external number α is called a left M × N - outer limit of F at x0 if for all ϵ > N there exists δ > M

such that for allM < x0 − x < δ we have |F (x)− F (x0)| < ϵ.We write

N - lim
x→x0+M−

F (x) = α.

An external number β ∈ E is called a right M ×N -outer limit of F at x0 if for all ϵ > N there exists δ > M

such that for all x ∈ X,M < x− x0 < δ we have |F (x)− F (x0)| < ϵ.We write

N - lim
x→x0+M+

F (x) = β.
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Remark 6.7.6. It is easy to see that N - lim
x→x0+M

F (x) = α if and only if

N - lim
x→x0+M+

F (x) = N - lim
x→x0+M−

F (x) = α.

6.7.2 The notion ofM ×N -derivative

Using the notion of outer limit we define theM×N -derivative of a flexible function. It will be used to determine
conditions for the existence of (approximate) optimal solutions in Chapter 8. This notion of derivative is devoted
to a function of one variable.

Definition 6.7.7. Let M,N be neutrices, F : X ⊆ R −→ E be a flexible function and x0 ∈ X be an M -
accumulation point of X . The flexible function F is called M × N -differentiable at x0 if the M × N -outer

limit of the fraction
F (x)− F (x0)

x− x0
exists. Then this M ×N -outer limit is called the M ×N -derivative of F

at x0 and denoted by
dNF

dMx
(x0) or NMDF (x0). So

dNF

dMx
(x0) = N - lim

x→x0+M

F (x)− F (x0)

x− x0
.

In particular, in case N = NF (x0) we call it M -derivative and write
dF

dMx
(x0) = lim

x→x0

F (x)− F (x0)

x− x0
. We

also say that F isM -differentiable at x0.

Convention 6.7.8. Because of Remark 6.7.4, from now on, we always assume that the neutrix part of the
M ×N -derivative of F at x0 is N .

Example 6.7.9. Let F be a flexible function given by F (x) = x2 +⊘ for all x ∈ R. One has

dF

d⊘x
(x0) = lim

x→x0+⊘

x2 +⊘− x20 +⊘
x− x0

= 2x0 +⊘.

Indeed, we haveNF (x) = ⊘ for all x ∈ R. Let ϵ > ⊘. Let δ = ϵ/2 > ⊘. Then for all x ∈ R,⊘ < d(x, x0) < δ

one has∣∣∣F (x)− F (x0)

x− x0
− 2x0 +⊘

∣∣∣ =∣∣∣x2 +⊘− x20 +⊘
x− x0

− 2x0 +⊘
∣∣∣

=
∣∣∣x+ x0 +

⊘
x− x0

− 2x0 +⊘
∣∣∣ < d(x, x0) +⊘ < ϵ/2 + ϵ/2 = ϵ.

Example 6.7.10. Let F be a flexible function given by F (x) = x+ x · ⊘ for all x ∈ R and x0 ∈ R. One has
d⊘F

d⊘x
(x0) = 1 + ⊘. Note that

dF

d⊘x
(0) does not exist. Indeed, we have NF (0) = 0. Let ϵ0 > 0 be a fixed

infinitesimal. Then
F (x)− F (0)

x− 0
= 1 +⊘ > ϵ0 for all x ∈ R which implies that lim

x→0

F (x)− F (0)

x− 0
does not

exist.

Definition 6.7.11. Let M,N be neutrices, F : X −→ E be a flexible function and x0 ∈ X ⊆ R be M -
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accumulation point ofX . The leftM ×N -derivative of F at x0 is defined and written as follows:

dNF−
dMx

(x0) = N - lim
x→x0+M−

F (x)− F (x0)

x− x0
.

The rightM ×N -derivative of F at x0 is defined and written as follows:

dNF+

dMx
(x0) = N - lim

x→x0+M+

F (x)− F (x0)

x− x0
.

Theorem 6.7.12. The M ×N -derivative of F at x0 exists if and only if the left and right M ×N -derivatives
of F at x0 exist and they are equal to each other.

The theorem is a consequence of Remark 6.7.6.

Theorem 6.7.13. LetM,N1, N2 be neutrices. Let F,G be flexible functions defined onX ⊆ R and x0 ∈ X is
anM -accumulation point ofX . Assume that F isM ×N1-differentiable at x0 andG isM ×N2-differentiable
at x0. LetK = (N1 +N2). Then

(i) The flexible function (F ±G) isM ×K-differentiable at x0 and

dN (F ±G)

dMx
(x0) =

dN1F

dMx
(x0)±

dN2G

dMx
(x0).

(ii) For k ∈ R, the flexible function kF isM × kN1-differentiable at x0 and

dkN1F

dMx
(x0) = k · dN1F

dMx
(x0).

The theorem is a consequence of Remark 6.7.4 and Theorem 6.3.10.

6.7.3 Higher order derivatives

Definition 6.7.14. Let F :X −→ E be a flexible function andN :X −→ N be a neutrix-function. LetM be a
neutrix. We say that the flexible function F isM ×N -differentiable onX if F isM ×N(x)-differentiable at
x for all x ∈ X . In case N(x) = NF (x) for all x ∈ X we say that F isM -differentiable on X .

Example 6.7.15. Let F be a flexible function given by F (x) = x2 +⊘. Then F is ⊘-differentiable on R.

Example 6.7.16. The function F (x) = x2 +⊘x is not ⊘-differentiable on R because it is not ⊘-differentiable

at x = ω ≃ ∞. Indeed, we have
F (x)− F (ω)

x− ω
=

x2 + x⊘−ω2 +⊘ω

x− ω
= x + ω +

x⊘+⊘ ω

x− ω
. Since

|x−ω| ∈ @ one has⊘ ⊂ ω⊘ =
x⊘+⊘ ω

x− ω
. Hence⊘- lim

x→ω+⊘

F (x)− F (ω)

x− ω
does not exist. However, by the

above, F is ⊘× ω⊘-differentiable at ω.

Definition 6.7.17. LetN1:X → N be a neutrix-function andF be a flexible function. LetM1,M2 be neutrices.
Assume that F is M × N1-differentiable on X . Then N1(x)

M DF is a flexible function defined on X with the
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neutrix part N(x) and a representative g(x). That is for all x ∈ X , the value of M × N1(x)-derivative of F
has the form

N1(x)
M DF (x) = g(x) +N1(x). (6.10)

If this flexible function is N2-differentiable at x0 ∈ X , we say that the function F is (M1,M2) × (N1, N2)-
differentiable of degree 2 at x0, where N1 = N1(x0), and its derivative is called the second (M1,M2) ×
(N1, N2)-derivative or the (M1,M2)× (N1, N2)-derivative of degree 2, denoted by N2N1

M2M1
D2F (x0). So

N2N1
M2M1

D2F (x0) =
N2
M2

D
(
N1
M1

DF
)
(x0).

By external inductive, for every standard n ∈ N we define the (M1, . . . ,Mn) × (N1, . . . , Nn)-derivative of
degree n by

Nn,...,N1

Mn,...,M1
D(n)F (x0) =

Nn
Mn

D
(
Nn−1,...N1

Mn−1,...,M1
D(n−1)F

)
(x0),

whereMi, Ni are neutrices for 1 ≤ i ≤ n.

6.8 Monotonicity

Many flexible functions are locally constant at each point. For example, consider the flexible function F (x) =

x+⊘ for x ∈ R. Let x0 ∈ R then for all x ∈ x0 +⊘ one has F (x) = F (x0). Because of this fact, we should
consider monotonicity of flexible functions with certain order steps of variables.

Note that α ≤ β is not equivalent to β ≥ α where α, β are external numbers. Then the monotonicity of a
flexible function depends on a relationship considered.

Definition 6.8.1. Let F : X −→ E be a flexible function. The function F is said to be

(i) increasing with order stepM on X if F (x) ≥ F (y) for all x, y ∈ X,x− y > M ,

(ii) strictly increasing with order stepM on X if F (x) > F (y) for all x, y ∈ X,x− y > M ,

(iii) decreasing with order stepM if F (x) ≤ F (y) for all x, y ∈ X,x− y > M ,

(iv) strictly decreasing with order stepM if F (x) < F (y) for all x, y ∈ X,x− y > M.

The function F which is decreasing with order stepM or increasing with order stepM is called monotone with
order stepM .

In caseM = 0 we call it increasing, decreasing, monotone, respectively.

Example 6.8.2. The flexible function F (x) = x + ⊘ is strictly ⊘-increasing on R. Indeed, for all x, y ∈
R, y − x > ⊘, one has F (y)− F (x) = y − x+⊘ > ⊘.

In classical mathematics if f ′(x0) > 0, there is δ > 0 such that f(x) is increasing on (x0 − δ, x0 + δ) and if
f ′(x0) < 0, there is η > 0 such that f(x) is decreasing on (x0 − η, x0 + η). Using neutricesN instead of zero,
we develop a version for flexible functions.
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Proposition 6.8.3. LetM,N be neutrices such that NA ⊆ M and F be a flexible function defined onX ⊆ R.

Assume that F (x) isM ×N -differentiable at x0 ∈ X and
dNF

dMx
(x0) > N . Then there exists δ > M such that

(i) F (x)− F (x0) < N for all x ∈ X,M < x0 − x < δ,

(ii) F (x)− F (x0) > N for all x ∈ X,M < x− x0 < δ.

In particular, if NF (x0) ⊆ N we have

(i’) F (x) < F (x0) for all x ∈ X,M < x0 − x < δ,

(ii’) F (x) > F (x0) for all x ∈ X,M < x− x0 < δ.

Proof. Since
dNF

dMx
(x0) > N , let ϵ ∈

dNF

dMx
(x0)

2
> N be a representative of

dNF

dMx
(x0)

2
. By the definition of the

M ×N -derivative, there exists δ > M such that |F (x)− F (x0)

x− x0
− dNF

dMx
(x0)| < ϵ. It follows by Proposition

2.2.41 that
dNF

dMx
(x0)− ϵ <

F (x)− F (x0)

x− x0
for all x ∈ X,M < |x− x0| < δ. (6.11)

Note that
dNF

dMx
(x0)− ϵ =

dNF

dMx
(x0)

2
> N. On the other hand, NA ⊆ M , so x− x0 /∈ M implies that x− x0

is not an absorber of N . Hence, for all x ∈ X, M < x− x0 < δ, formula (6.11) implies F (x)− F (x0) > N .

In particular, if NF (x0) ⊆ N , this implies F (x) > F (x0).

For all x ∈ X,M < x0 − x < δ, formula (6.11) implies F (x)− F (x0) < N. In particular, if NF (x0) ⊆ N , it
follows that F (x) < F (x0) for all x ∈ X, M < x0 − x < δ.

With similar arguments we obtain the following.

Proposition 6.8.4. LetM,N be neutrices such that NA ⊆ M and F be a flexible function defined onX ⊆ R.

Assume that F isM ×N -differentiable at x0 ∈ X and
dNF

dMx
(x0) < N . Then there exists δ > M such that

(i) F (x)− F (x0) > N for all x ∈ X,M < x0 − x < δ,

(ii) F (x)− F (x0) < N for all x ∈ X,M < x− x0 < δ.

In particular, if NF (x0) ⊆ N , we have

(i’) F (x) > F (x0) for all x ∈ X,M < x0 − x < δ,

(ii’) F (x) < F (x0) for all x ∈ X,M < x− x0 < δ.



6.9. THEM ×N -DIFFERENTIABILITY OF A VECTOR FLEXIBLE FUNCTION 165

6.9 TheM ×N -differentiability of a vector flexible function

6.9.1 TheM ×N -partial derivatives of a flexible function of several variables

This section is devoted to studying differential a flexible function of several variables. We will apply these
results to investigate an optimization problem.

We known that partial derivatives of a function of several variables at a point are defined as the derivative
of a function of one variable by fixing other variables as constants. Analogously, we define M × N -partial
derivatives of flexible functions of several variables.

Definition 6.9.1. Let n ∈ N be standard, X ⊆ Rn andMi, Ni be neutrices for 1 ≤ i ≤ n. Let F : X −→ E is
a flexible function defined onX . Let x0 = (x

(0)
1 , . . . , x

(0)
n ) ∈ Rn be such that{

x = (x
(0)
1 , . . . , x

(0)
i−1, xi, x

(0)
i+1, . . . , x

(0)
n ) ∈ Rn

∣∣Mi < d(x, x0) < δ
}
∩X \ {x0} ̸= ∅.

We say that the flexible function F has anMi ×Ni-partial derivative corresponding to the i-th variable, xi, at
the point x0 if the followingMi ×Ni-outer limit exists:

Ni- lim
x→x

(0)
i +Mi

F (x
(0)
1 , . . . , x

(0)
i−1, xi, x

(0)
i+1, . . . , x

(0)
n )− F (x

(0)
1 , . . . , x

(0)
n )

xi − x
(0)
i

.

TheMi×Ni-partial derivative corresponding to the variable xi at x0 is denoted by
∂NiF

∂Mixi
(x0) or

dNF

dMx xi

(x0).

Hence

∂NiF

∂Mixi
(x0) = Ni- lim

x→x
(0)
i +Mi

F (x
(0)
1 , . . . , x

(0)
i−1, xi, x

(0)
i+1, . . . , x

(0)
n )− F (x

(0)
1 , . . . , x

(0)
n )

xi − x
(0)
i

.

6.9.2 TheM ×N -total derivative of a vector flexible function of several variables

We now define the totalM ×N -derivative of a vector flexible function of several variables.

Definition 6.9.2. Let M,N be neutrices and F : X ⊆ Rn −→ Em be a function with F = (F1, . . . , Fm). We
say that F is M × N -totally differentiable if there exists an m × n matrix A = [αij ]m×n ∈ Mm,n(E) such
that

0 ∈
(
N - lim

∥h∥→0+M

∥F (x0 + h)− F (x0)−Ah∥
∥h∥

)
.

Then the matrix A is called theM ×N -total derivative of F at x0 and we write A = N
MDF (x0).

Similarly to the derivative of a flexible function of one variable, the neutrix parts of all entries of NMDF (x0) are
included in N . So we always take the neutrix parts of all entries of NMDF (x0) are N .
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Theorem 6.9.3. Let F : X ⊆ Rn −→ Em be an M ×N -totally differentiable at a, where a is an M -interior
point of X . Then for each i ∈ {1, . . . ,m} the function Fi: X −→ E isM ×N -totally differentiable at a.

Proof. Let A = N
MDF (a) and Ai be a row vector of A for 1 ≤ i ≤ m. One has

|Fi(a+ h)− Fi(a)− ⟨Ai, h⟩| ≤ max
k∈{1,...,m}

|Fk(a+ h)− Fk(a)− ⟨Ak, h⟩| = ∥F (a+ h)− F (a)−Ah∥ .

Then
0 ≤ |Fi(a+ h)− Fi(a)− ⟨Ai, h⟩|

∥h∥
≤ ∥F (a+ h)− F (a)−Ah∥

∥h∥
−→
N

0

when ∥h∥ → M, ∥h∥ /∈ M. This implies that

0 ∈
(
N - lim

∥h∥→0+M

|Fi(a+ h)− Fi(a)− ⟨Ai, h⟩|
∥h∥

)
.

So Fi isM ×N -totally differentiable at a.

Theorem 6.9.4. LetX ⊆ Rn and F :X −→ E beN -totally differentiable at a, where a is anM -interior point
of X . Then F hasM ×N -partial derivatives with respect to the variable xi for every i ∈ {1, . . . , n} at a.

Proof. Let A = [αi] ∈ M1,n(E) be the M × N -total derivative of F at x0. Since F is M × N -totally
differentiable at a, we have

0 ∈
(
N - lim

∥h∥→0+M

∥F (a+ h)− F (a)−Ah∥
∥h∥

)
.

In particular h = hiei with hi ∈ R, 1 ≤ i ≤ n we obtain

F (a+ h)− F (a)−Ah = F (a1, . . . , ai−1, ai + hi, ai+1, . . . , an)− F (a)− αihi.

It follows that

0 ∈
(
N - lim

|hi|→0+M

|F (a1, . . . , ai−1, ai + hi, ai+1, . . . , an)− F (a)− αihi|
|hi|

)
= N - lim

∥h∥→0+M

∥F (a+ h)− F (a)−Ah∥
∥h∥

.

Hence Ai =
∂NF

∂Mxi
(a), ∀i = 1, . . . , n.

6.9.3 TheM ×N -partial derivatives of a composite function

Recall that in classical mathematics if f is differentiable at x0 and g is differentiable at y0 = f(x0) then h = g◦f
is differentiable at x0.We now investigate conditions to guarantee that h isM ×N -differentiable.

Definition 6.9.5. Let f : Rm −→ E be a flexible function andN,M be neutrices. Let b = (b1, . . . , bm) ∈ Rm.
We say that f is M -outer N -inner continuous at b if there exists r > M such that for all y = (y1, . . . , ym) ∈
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Rm,M < |y − b| < r, for each 0 ≤ k ≤ m, and i1, . . . , ik ∈ {1, . . . ,m} for all u = (u1, . . . , um) with

up =

bp if p ∈ {i1, . . . , ik}

yp if p /∈ {i1, . . . , ik}

one has
f(y)− f(u) ⊆ N.

Example 6.9.6. Consider the flexible function F :R2 −→ E given by F (x, y) = x+y+x2ϵ⊘+ϵ£y. Then F is
ϵ£-outer⊘-inner continuous atw0 = (x0, y0) ∈ £×£. Indeed, let r > ϵ£, r ∈ ⊘. For allw = (x, y) ∈ B(w0, r)

and u = (u1, u2) where u1 = x0 ∨ u1 = x and u2 = y0 ∨ u2 = y, we have

|F (w)− F (u)| = |x+ y + x2ϵ⊘+ϵ£y −
(
u1 + u2 + u21ϵ⊘+u22ϵ£

)
| ≤ |x− x0|+ |y − y0|+⊘ ⊆ ⊘.

Theorem 6.9.7. LetN1, N2,M1,M2 be neutrices. Let f :Rm −→ E be a flexible function, a = (a1, . . . , an) ∈
Rn and φ: Rn −→ Rm be a vector function and b = φ(a1, . . . , an) = (b1, . . . , bm), with bj = φj(a) for all
j ∈ {1, . . . ,m}. Let g = f ◦ φ: Rn −→ E be a flexible function defined by g(x) = f

(
φ1(x), . . . , φm(x)

)
for

every x = (x1, . . . , xn) ∈ Rn. Assume that

(i) φ isM1 ×N1-totally differentiable at a = (a1, . . . , an) ∈ Rn,

(ii) for i ∈ {1, . . . ,m}, let zi = (a1, . . . , ai−1, ai+h, ai+1, an). Then we haveφi(zi)−φi(a) → M2, φi(zi)−
φi(a) /∈ M2 when h → M1, h /∈ M1,

(iii) f isM2-outer N2-inner continuous andM2 ×N2-totally differentiable at b.

Then
∂Kg

∂M1xi
(a) =

m∑
k=1

∂N2f

∂M2yk
(b
)∂N1φk

∂M1xi
(a), (6.12)

whereK =
m∑
q=1

Kq withKq = N1 +N2 +N2
1 +N2

2 +
∂N1φq

∂M1xi
(a) ·N2 +

∂N2f

∂M2yq
(b1, . . . , bm) ·N1.

Proof. Let i ∈ {1, . . . , n} be arbitrary. Put δ = g(z)− g(a) = f(φ(zi))− f(φ(a)); yj = φj(zi), 1 ≤ j ≤ m.

One has

δ

h
=
f(y1, . . . , ym)− f(b1, . . . , bm)

h
⊆

f
(
y1, . . . , ym

)
− f

(
y1, . . . , ym−1, bm

)
h

+
f
(
y1, . . . , ym−1, bm

)
− f

(
y1, . . . , ym−2, bm−1, bm

)
h

+ · · ·+
f
(
y1, b2, . . . , bm

)
− f

(
b1, . . . , bm

)
h

≡ D.

We prove only that the first term is Km-partial differentiable with respect to the variable xi. The other terms
are treated similarly. Then the conclusion follows from the sum rule.
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One has

δm
h

≡
f
(
y1, . . . , ym

)
− f

(
y1, . . . , ym−1, bm

)
h

=
f
(
y1, . . . , ym

)
− f

(
y1, . . . , ym−1, bm

)
ym − bm

· ym − bm
h

By assumption (ii), if h −→ M1, h /∈ M1 we have yj − bj −→ M2, yj − bj /∈ M2 j = 1, . . . ,m. By the
assumption that f isM2-outer N2-inner continuous, it follows

f
(
y1, . . . , ym−1, ym

)
⊆f(b1, . . . , bm−1, ym) +N2

f
(
y1, . . . , ym−1, bm

)
⊆f(b1, . . . , bm−1, bm) +N2,

for all (y1, . . . , ym−1) ∈ BM2

(
(b1, . . . , bm−1), r

)
. Hence

f
(
y1, . . . , ym

)
− f

(
y1(z), . . . , ym−1, bm

)
ym − bm

⊆ f(b1, . . . , bm−1, ym)− f(b1, . . . , bm−1, bm) +N2

ym − bm

−→
N2

∂N2f

∂M2ym
(b1, . . . , bm).

Also,
ym − bm

h
=

φm(zi)− φm(a)

h
−→
N1

∂N1φm

∂M1xi
(a) when h −→ M1, h /∈ M1. Hence, by Theorem 6.3.11, it

holds that
δm
h

−→
Km

∂N2f

∂M2ym
(b1, . . . , bm) · ∂N1φm

∂M1xi
(a),

whereKm = N1 +N2 +N2
1 +N2

2 +
∂N1φm

∂M1xi
(a) ·N2 +

∂N2f

∂M2ym
(b1, . . . , bm) ·N1.

Similarly, for q ∈ {2, . . . ,m} one has

δq
h

=
f
(
y1, . . . , yq, bq+1, . . . , bm

)
− f

(
y1, . . . , yq−1, bq, . . . , bm

)
h

−→
Kq

∂N2f

∂M2yq
(b1, . . . , bm) · ∂N1φq

∂M1xi
(a),

whereKq = N1 +N2 +N2
1 +N2

2 +
∂N1φq

∂M1xi
(a) ·N2 +

∂N2f

∂M2yq
(b1, . . . , bm) ·N1. By Theorem 6.3.10 one has

D −→
K

m∑
k=1

∂N2f

∂M2yk
(b
)
· ∂N1φk

∂M1xi
(a).

This implies that
δ

h
−→
K

m∑
k=1

∂N2f

∂M2yk
(b
)
· ∂N1φk

∂M1xi
(a). One concludes that

∂Kg

∂xi
(a) =

m∑
k=1

∂N2f

∂M2yk
(b
)
· ∂N1φk

∂M1xi
(a).
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6.10 The inverse flexible function theorem

In conventional mathematics the inverse function theorem and the implicit function theorem play a key role
in the Lagrange multiplier method. Below we investigate under which conditions inverse functions or implicit
functions are N -differentiable.

Theorem 6.10.1. LetN,M be neutrices,X ⊆ Rn be an open set and a be anM -interior point ofX . Let Z be
anM -neighbourhood of a, Z ⊆ X and f : X −→ Rn be an internal function satisfying

(a) f isM ×N -differentiable on X ,

(b) f is continuously differentiable on X ,

(c) f ′ isM ×N -continuous and invertible at a, and∥∥∥(f ′(a)
)−1
∥∥∥−1

> N, (6.13)

(d)
∥∥∥(f ′(x)

)−1
∥∥∥ is not an absorber of N for all x ∈ Z,

(e) f ′(x) ∈ N
MDF (x) for all x ∈ Z,

(f) ∥f(x+ h)− f(x)∥ ≤ r∥h∥ for all x, x+ h ∈ Z, and for some r ∈ R, where r−1 is not an absorber ofM ,

(g) f maps an open M -neighbourhood of a to an open M -neighbourhood of b, that is for every open M -
neighbourhood U of a and f(U) = V then V is an openM -neighbourhood of b with b = f(a).

Then

(i) There exists an open M -neighbourhoods U and V of a and b, respectively, such that f is one-to-one
mapping on U and f(U) = V .

(ii) if g is the inverse function of f defined in V by g(f(x)) = x, (x ∈ U) then g isM×N -totally differentiable

at b and N
MDg(y) =

(
f ′(g(y)))−1

+N.

To prove this theorem we recall the following result.

Theorem 6.10.2 ([31, p. 209]). Let Ω be the set of all invertible linear operations on Rn.

(i) If A ∈ Ω, B ∈ L(Rn), and
∥A−B∥ ·

∥∥A−1
∥∥ < 1,

then B ∈ Ω.

(ii) Ω is an open subset of L(Rn), and the mapping A −→ A−1 is continuous.
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Proof of Theorem 6.10.1. (i) Put f ′(a) = A, and put

λ =
1

2∥A−1∥
. (6.14)

Note that λ > N by condition (6.13). Moreover, because f ′ isM ×N -continuous at a, there is an openM -ball
U of radius r > M , centered at a such that for all x ∈ U it holds that

∥f ′(x)−A∥ < λ. (6.15)

We associate to each y ∈ Rn a function φ, defined by

φ(x) = x+A−1(y − f(x)), (∀x ∈ X). (6.16)

Note that f(x) = y if and only if x is a fixed point of φ. Because φ′(x) = I − A−1f ′(x) = A−1(A− f ′(x)),
(6.14) and (6.15) imply that for all x ∈ U ,

∥φ′(x)∥ <
1

2
. (6.17)

Hence
∥φ(x1)− φ(x2)∥ ≤ 1

2
∥x1 − x2∥, (x1, x2 ∈ U) (6.18)

by the mean value theorem in several variables. By the contraction principle [31], it follows that φ has the
unique fixed point x in U , so that f(x) = y for exactly one x ∈ U. Hence f is 1-1 in U .

Next, put V = f(U). By assumption (g), V is an openM -neighbourhood of b = f(a).

(ii) Let y ∈ V, y ∈ V and k ∈ Rn such that y + k ∈ V . Then there exists x ∈ U, x+ h ∈ U such that

y = f(x), y + k = f(x+ h). (6.19)

With φ as in (6.16) we obtain

φ(x+ h)− φ(x) = h+A−1[f(x)− f(x+ h)] = h−A−1k.

By (6.18) it holds that
∥∥h−A−1k

∥∥ ≤ 1
2 ∥h∥ . Hence ∥A

−1k∥ ≥ 1
2 |h|. Also ∥A

−1k∥ ≤ ∥A−1∥ · ∥k∥, so

∥h∥ ≤ 2∥A−1∥ · ∥k∥ = λ−1∥k∥. (6.20)

By (6.14), (6.15) and Theorem 6.10.2, f ′(x) has an inverse, say T . Note that from (6.19) and g = f−1 we have
g(y) = x, g(y + k) = x+ h. Also, from equality k = f(x+ h)− f(x) and T =

(
f(x)

)−1 we obtain

g(y + k)− g(y)− Tk = h− Tk = −T [f(x+ h)− f(x)− f ′(x)h].

Combining with the inequality (6.20) one has∥∥∥∥g(y + k)− g(y)− Tk

k

∥∥∥∥ ≤ ∥T∥
λ

· ∥f(x+ h)− f(x)− f ′(x)h∥
∥h∥
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Because ∥k∥ → M, ∥k∥ /∈ M , formula (6.20) and assumption (f) imply that ∥h∥ → M, ∥h∥ /∈ M . Because of
assumptions (d) and (e), the right side of the last inequalityM ×N -converges to 0. It follows that the left side
isM×N -converges to 0. So g′(y) =

(
f ′(g(y)))−1

∈ N
MDg(y).We conclude that NMDg(y) = g′(y)+N.

6.11 The implicit flexible function theorem

Using the inverse function theorem we proveM ×N -totally differentiability of implicit functions.

In the result below, a point in Rn+m is written as (x, y) ∈ Rn+m with x = (x1, . . . , xn) ∈ Rn and y =

(y1, . . . , ym) ∈ Rm.

Theorem 6.11.1. LetM,N be neutrices such thatM ⊆ N and g:X −→ Rm withX ⊆ Rn+m be an internal
vector function. Let (a, b) with a = (a1, . . . , an) ∈ Rn, b = (b1, . . . , bm) ∈ Rm be an M -interior point of X
such that g(a, b) = 0. Let Z be anM -neighbourhood of (a, b). Suppose that

(a) g isM ×N -differentiable at (a, b),

(b) g is continuously differentiable on X ,

(c) g′ isM ×N -continuous at (a, b), and g′(x, y) ∈ N
MDg(x, y) for all (x, y) ∈ Z,

(d) Let A(x, y) =



1 · · · 0 · · · 0
... . . . ... . . . ...
0 · · · 1 · · · 0

a11 · · · a1n · · · a1n+m

... . . . ... . . . ...
am1 · · · amn · · · amn+m


, where

aij =
∂gi
∂xj

(x, y), i = 1, . . . ,m; j = 1, . . . , n+m.

Assume that A(x, y) is invertible for all (x, y) ∈ Z and
∥∥∥(A(a, b))−1

∥∥∥−1
> N and

∥∥∥(A(x, y))−1
∥∥∥ is not

an absorber of N for (x, y) ∈ Z, where Z is anM -neighbourhood of (a, b),

(e) ∥g(x+ h)− g(x)∥ ≤ r∥h∥ for all x, x+ h ∈ Z and r ∈ R such that r−1 is not an absorber ofM .

Then there exists an open M -neighbourhood U of (a, b) and an open M -neighbourhood W ⊆ Rn of b such
that the following property holds.

For every x ∈ W corresponds a unique y such that

(x, y) ∈ U and g(x, y) = 0. (6.21)

If this y is defined to be h(x) then h is N -differentiable at a and h(a) = b, and for all x ∈ W

g(x, h(x)) = 0. (6.22)
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Proof. We first change variable by putting yj = xn+j for all 1 ≤ j ≤ m. Note that from assumption (d) we
have the Jacobi determinant

|J | ≡

∣∣∣∣∣∣∣∣∣∣

∂g1
∂y1

(a, b)
∂g1
∂y2

(a, b) · · · ∂g1
∂ym

(a, b)

...
... . . . ...

∂gm
∂y1

(a, b)
∂gm
∂y2

(a, b) · · · ∂gm
∂ym

(a, b)

∣∣∣∣∣∣∣∣∣∣
̸= 0.

The existence of h is implied by the implicit theorem [31], so it is sufficient to prove that h is M × N -
differentiable.

Define F by
F (x, y) =

(
x, g(x, y)

)
. (6.23)

Note that F ′(x, y) = A(x, y). So F satisfies all conditions of Theorem 6.10.1. Then F has the inverse function,
say G. By Theorem 6.10.1, the flexible function G is M × N -differentiable. On the other hand

(
x, h(x)

)
=

G(x, 0). Hence h isM ×N -differentiable at a.



7
Linear programming with flexible

objectives and constraints

7.1 Introduction

In optimization problems, input and/or output data are normally not precise. As mentioned before we can model
these imprecise amounts by neutrices. This chapter is devoted to studying linear programming problems with
uncertainties by using neutrices to model imprecise quantities. In this model, coefficients are not real numbers
but external numbers. In fact, we investigate problems of the form

F (x) =
n∑

j=1

αjxj = ⟨α, x⟩ → min(max) (7.1a)

173
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subject to the constraints

D =



n∑
i=1

βijxj ≥ γi, i ∈ M1,

n∑
i=1

βijxj ≤ γi, i ∈ M2

n∑
i=1

βijxj ⊆ γi, i ∈ M3,

(7.1b)

where n ∈ N is standard, M1,M2,M3 are disjointed subsets of Nσ and αj , βij , γi are external numbers for all
j ∈ {1, . . . , n}, i ∈ M withM = M1 ∪M2 ∪M3.

The functions in this model are not linear but nearly linear in sense that f(αx + βy) ≤ αf(x) + βf(y). This
is caused by the fact that the addition operation on external numbers is not distributive but sub-distributive.
We call the problem (7.1a)-(7.1b) a nearly linear programming problem with flexible objective function and
constraints or simply a nearly linear programming problem.

In this chapter we will consider two cases. In the first case we deal with the problem in which the objective
function is flexible and the values of variables are precise. A sufficient condition for the existence of optimal
solutions are given. In the second case we study the problem in which the coefficients of the objective func-
tion, the constraints and the values of variables are external numbers. In this case, the domain is not precise.
Conditions are constructed to guarantee that an optimal solution of a nearly linear programming problem may
be determined through solving an associated ordinary linear programming problem.

We start by introducing some notions regarding solutions of the problem, some remarks about expressions of
the domain, and about the relationship between a maximization problem and a minimization problem.

Definition 7.1.1. A point x0 ∈ E is called a feasible solution of the problem (7.1a)-(7.1b) if x0 satisfies all the
constraints of D.

Definition 7.1.2. A feasible solution x0 ∈ D is called an optimal solution of problem (7.1a)-(7.1b) if for all
x ∈ D, F (x) ≥ F (x0)

(
F (x) ≤ F (x0), respectively

)
and written xopt. In particular, if x0 is an optimal

solution of a minimization problem then we call it a minimizer , if it is an optimal solution of a maximization
problem we call it a maximizer.

Note that F (x) ≤ F (x0) is not equivalent to F (x0) ≥ F (x) (see the definition of order relations in Subsection
2.2.2). Also, from the definition of order relations on external numbers a point x0 is a minimizer of a nearly
linear programming problem if and only if for all x ∈ D, F (x0) < F (x) or F (x) ⊆ F (x0). Similarly, x0 is
a maximizer if and only if for all x ∈ D, F (x) < F (x0) or F (x) ⊆ F (x0). However, it is sufficient to study
minimization problems. Indeed, α ≤ β if and only if −α ≥ −β and hence a point x0 ∈ D is a maximizer of
a nearly linear programming problem with a objective function F if and only if x0 is a minimizer of a nearly
linear programming problem with the objective function G = −F . Moreover, the inequality

n∑
i=1

βijxj ≤ γi

is equivalent to
n∑

i=1
−βijxj ≥ −γi and the constraint

n∑
i=1

βijxj ⊆ γi can be transformed into two inequalities
n∑

i=1
βijxj ≥ γi and

n∑
i=1

βijxj ≤ γi. Consequently, every nearly linear programming problem can be transformed
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to the form

F (x) =

n∑
i=1

αixi = ⟨α, x⟩ → min (7.2a)

subject to the constraints

D =
n∑

i=1

βijxj ≥ γi, i ∈ {1, . . . ,m}. (7.2b)

In the problem (7.2a)-(7.2b), by choosing representatives of the coefficients in the objective function and con-
straints we may form an ordinary linear programming as follows:

F (x) =

n∑
i=1

cixi = ⟨c, x⟩ → min (7.3a)

subject to the constraints

DR =

n∑
i=1

aijxj ≥ bi, i ∈ {1, . . . ,m}, (7.3b)

where aij , bi, cj ∈ R are representatives of βij , γi, αj , respectively.

The problem (7.3a)-(7.3b) is said to be an associated linear programming problem of the nearly linear program-
ming problem (7.2a)-(7.2b).

It is worth to note that, in some cases, finding optimal solutions of an associated linear programming problem of
the nearly linear programming problem (7.2a)-(7.2b) does not give full information on optimal solutions of the
nearly linear programming. As shown in the next example, there are optimal solutions of a linear programming
problem of the form (7.3a)-(7.3b) which are not optimal solutions of the nearly linear programming (7.3a)-
(7.3b).

Example 7.1.3. Let ϵ > 0 be infinitesimal. Consider the nearly linear programming problem

F (x) = (ϵ+⊘)x → min (7.4a)

subject to the constraint

0 ≤ x ≤ 1. (7.4b)

Clearly x0 = 1 is an optimal solution of the problem and F (1) = ⊘. Also x = 0 is not an optimal solution
since F (0) = 0. We now consider the associated linear programming problem

f(x) = ϵx → min (7.5a)

subject to
0 ≤ x ≤ 1. (7.5b)

Obviously x0 = 0 is a minimizer of the problem and f(0) = 0. Also x = 1 is not a minimizer of the problem
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(7.5a)-(7.5b).

7.2 Nearly linear programming with a precise domain

In this section we will study a special form of the nearly linear programming problem (7.2a)-(7.2b) in which
the domain is a subset of Rn. This means that the variables are real numbers. To be more precise, we will
investigate the nearly linear programming of the form

f(x) =

n∑
i=1

αixi = ⟨α, x⟩ → min (7.6a)

subject to constraints

D =
n∑

j=1

aijxj ≥ bi for all i ∈ {1, . . . ,m}, (7.6b)

where αi = ci +Bi ∈ E and aij , bj ∈ R for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. We write

c = (c1, c2, ..., cn), B = (B1, ..., Bn). (7.7)

Recall that in linear programming, if an objective function is bounded from below on the domain D and D

contains no line, the linear programming problem has an optimal solution at some vertices of D. We state
below a similar result.

Theorem 7.2.1. Consider the nearly linear programming problem (7.6a)-(7.6b). Assume that F is bounded
from below on D and the domain D contains no line. Then the nearly linear programming problem (7.6a)-
(7.6b) has optimal solutions. Also, there exists an optimal solution which is an extreme point ofD.

To prove this theorem we recall some definitions and results in the linear programming theory. For more details,
we refer to [29, 2] .

Definition 7.2.2. A face of a convex set C is a convex subset C ′ of C such that every line segment in C with a
relative interior point in C ′ has both endpoints in C ′. That is, for all x, y ∈ C, if there exists z = λx+(1−λ)y

for some 0 < λ < 1 and z ∈ C ′ then x, y ∈ C ′. The zero-dimensional faces of C are called the extreme points
or the vertices ofC. So a point x is an extreme point ofC if from expression x = (1−λ)y+λz, where y, z ∈ C

and 0 < λ < 1 we obtain that x = y = z.

A direction of Rn is an equivalence class of the set of all closed half-lines of Rn under the equivalence relation
of being a translation. The direction of the half-line {x+ λy|λ ≥ 0}, where y ̸= 0, is then by definition the set
of all translates of the half-line, and this set does not depend on x. We will also call this the direction of y. Two
vectors in Rn have the same direction if and only if they are positive scalar multiples of each other. The zero
vector has no direction.

Definition 7.2.3. Let C ′ be a half-line face of a convex set C. We call a direction of C ′ an extreme direction of
C.
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The following result is an adapted version of Theorem 1.1 of [2].

Theorem 7.2.4. Let C be a closed convex set, containing no line. We denote by V (C) the set of all extreme
points of C and U(C) the set of all extreme directions of C. Then

C = coV (C) + coneU(C),

where coV (C) is the convex hull of V (C) and coneU(C) is the convex cone hull of U(C).

Theorem 7.2.5 (Krein-Milman). Every non-empty line-free closed convex set has at least an extreme point.

We next recall some properties of a polyhedral convex set. A polyhedral convex set in Rn is a set which can
be expressed as the intersection of a finite collection of closed half-spaces, i.e. as the set of solutions to a finite
system of inequalities of the form

D =
{
x ∈ Rn

∣∣⟨ai, x⟩ ≥ bi, i = 1, . . . ,m
}
. (7.8)

For polyhedral convex sets of the form (7.8) we can characterize their faces as follows. Denote

Im := {i|1 ≤ i ≤ m} (7.9)

and
I0 := {i ∈ Im| ⟨ai, x⟩ = bi, ∀x ∈ D}. (7.10)

It is clear that I0 may be an empty set. For each set of indices I such that I0 ⊆ I ⊆ Im, we write

FI := {x| ⟨ai, x⟩ = bi, i ∈ I, ⟨ai, x⟩ ≥ bi, i ∈ Im \ I}

and
Mi := {x| ⟨ai, x⟩ = bi, i ∈ I}.

It is easy to see that FI ⊆ MI and D = FI0 .

Proposition 7.2.6. Assume that D is a polyhedral convex set defined by (7.8). Then a set F is a face of D if
and only if it is of the form

F := {x| ⟨aix⟩ = bi, i ∈ I, ⟨ai, x⟩ ≥ bi, i ̸∈ I},

where I0 ⊆ I ⊆ Im.

Proposition 7.2.7. LetD ⊆ Rn is a polyhedral defined by (7.8) and I is a set of indices satisfying I0 ⊆ I ⊆ Im,
where I0, Im is denoted as (7.9) and (7.10). Let

FI := {x| ⟨ai, x⟩ = bi, i ∈ I, ⟨ai, x⟩ ≥ bi, i ∈ Im \ I}

be a face of D. Then
dimFI = n− rank{ai| i ∈ I}.
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Definition 7.2.8. LetD ⊂ Rn be a polyhedral defined by (7.8). A point x0 is said to satisfy the i-th constraint
strictly if ⟨x0, ai⟩ = bi.

Corollary 7.2.9. Assume thatD ⊆ Rn is a polyhedral convex set defined by (7.8). Then x0 is an extreme point
of D if and only if it satisfies strictly at least n independent constraints.

Remark 7.2.10. If the number of constraintsm is standard andD is a non-empty line-free, polyhedral convex
set, the number q of extreme points of D is also standard.

Proof of Theorem 7.2.1. Because D is a closed, convex set containing no line, by Theorem 7.2.4, for each

x ∈ D there exist λi ≥ 0, µj ≥ 0 with
p∑

i=1
λi = 1 such that x =

p∑
i=1

λix
(i) +

k∑
j=1

µju
(j), where x(i) are extreme

points and u(j) are extreme directions. We have

F (x) =

⟨
α,

p∑
i=1

λix
(i) +

k∑
j=1

µju
(j)

⟩

=

⟨
c,

p∑
i=1

λix
(i) +

k∑
j=1

µju
(j)

⟩
+

⟨
B,

p∑
i=1

λix
(i) +

k∑
j=1

µju
(j)

⟩
,

where x(i) = (xi1, . . . , xin) for all i ∈ {1, . . . , p} and u(j) = (uj1, . . . , ujn) for all j ∈ {1, . . . , k}. Then

p∑
i=1

λix
(i) =λ1(x11, . . . , x1n) + · · ·+ λp(xp1, . . . , xpn)

=
(
(λ1x11 + · · ·+ λpxp1), . . . , (λ1x1n + · · ·+ λpxpn)

)
.

Similarly
k∑

j=1

µju
(j) =

(
(µ1u11 + · · ·+ µkuk1), . . . , (µ1u1n + · · ·+ µkukn)

)
.

It follows that

p∑
i=1

λix
(i) +

k∑
j=1

µju
(j) =(

(λ1x11 + · · ·+ λpxp1) + (µ1u11 + · · ·+ µkuk1), . . . , (λ1x1n + · · ·+ λpxpn) + (µ1u1n + · · ·+ µkukn)
)
.

So ⟨
B,

p∑
i=1

λix
(i) +

k∑
j=1

µju
(j)

⟩
=B1

(
(λ1x11 + · · ·+ λpxp1) + (µ1u11 + · · ·+ µkuk1)

)
+ · · ·+

Bn

(
(λ1x1n + · · ·+ λpxpn) + · · ·+ (µ1u1n + · · ·+ µkukn)

)
.

Observe that for each Br ̸= 0, one has u1r = · · · = ukr = 0. Indeed, suppose on contrary that there exists an
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index s such that µsusr ̸= 0, by the definition of extreme direction it holds that

(λ1x1r + · · ·+ λpxpr) + (µ1u1r + · · ·+ µsusr + · · ·+ µpupr) ∈ D

for all µs ≥ 0. Taking µs → ∞, one has

Br

(
(λ1u1r + · · ·+ λpupr) + (λ1x1r + · · ·+ λsusr + · · ·+ λpupr)

)
→ R.

It follows that
⟨
B,

p∑
i=1

λix
(i) +

∑k
j=1 µju

(j)

⟩
−→ R. That is, F (x) −→ R, which is a contradiction to the

lower boundedness of F . This implies that

⟨
B,

k∑
j=1

µju
(j)

⟩
= 0. As a consequence,

⟨
B,

p∑
i=1

λix
(i) +

k∑
j=1

µju
(j)

⟩
=

⟨
B,

p∑
i=1

λix
(i)

⟩
.

Hence

F (x) =

⟨
c,

p∑
i=1

λix
(i) +

k∑
j=1

µju
(j)

⟩
+

⟨
B,

p∑
i=1

λix
(i)

⟩
. (7.11)

We will show that ⟨
c,

k∑
j=1

µju
(j)

⟩
≥ 0. (7.12)

One has

⟨
c,

k∑
j=1

µju
(j)

⟩
=

k∑
j=1

⟨
c, µju

(j)
⟩
. Suppose that

⟨
c,

k∑
j=1

µju
(j)

⟩
< 0. Then there is an index j0 such

that ⟨
c, µj0u

(j0)
⟩
< 0.

Because u(j0) is an extreme direction ofD, we can take µj0 → ∞ and fix other factors. By formula (7.11) one
derives that f(x) → −∞, which is a contradiction to the assumption that f is bounded from below on D. By
formulas (7.11) and (7.12), one has

f(x) ≥

⟨
c,

p∑
i=1

λix
(i)⟩+ ⟨B,

p∑
i=1

λix
(i)

⟩
=

⟨
c+B,

p∑
i=1

λix
(i)

⟩
.

Moreover, by subdistributivity,⟨
c+B,

p∑
i=1

λix
(i)

⟩
⊆

p∑
i=1

λi

⟨
c+B, x(i)

⟩
=

p∑
i=1

λi

(
(c1 +B1)xi1 + · · · (cn +Bn)xin

)
.

Hence ⟨
c+B,

p∑
i=1

λix
(i)

⟩
≥

p∑
i=1

λi

(
(c1 +B1)xi1 + · · · (cn +Bn)xin

)
.



180 CHAPTER 7. LINEAR PROGRAMMING WITH FLEXIBLE OBJECTIVES AND CONSTRAINTS

Let q be the number of extreme points of D. Then q is a standard number by Remark 7.2.10. We choose an
extreme point x0 of D such that

⟨
α, x0

⟩
= min

i∈{1,...,q}

(
(c1 +Bi)xi1 + · · · (cn +Bn)xin

)
.

That is, (
(c1 +Bi)xi1 + · · ·+ (cn +Bn)xin

)
≥
⟨
α, x0

⟩
for all i = 1, . . . , q.

One concludes that x0 is an optimal solution of the nearly linear programming problem (7.6a)-(7.6b).

Remark 7.2.11. In case all Bi ̸= 0, i = 1, . . . , n, the nearly linear programming has a solution (such that the
optimal value differs from R) if and only if the domain D is compact. Indeed, in this case, it is clear from the
proof that u(j) = 0 for all j. Hence D is bounded. This implies that D is compact because D is a polyhedral.

7.3 Nearly linear programming with flexible objective and constraints

In this section we study a nearly linear programming in which coefficients in both the objective function and
the constraints are external numbers. To be more detailed we investigate a problem of the form

f(x) =

n∑
j=1

λjxj → min (7.13a)

subject to the constraints

D =

n∑
j=1

αijxj ≥ βi = bi +B, i ∈ {1, . . . ,m}, (7.13b)

where λj ∈ E and αij , βi ∈ E.

Consider a nearly linear programming of the form (7.13a)- (7.13b). Taking aij ∈ αij , bi ∈ βi and cj ∈ λj for
all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} we form the classical linear programming problem

f(x) =
n∑

j=1

cjxj → min (7.14a)

subject to the constraints DR =
n∑

j=1

aijxj ≥ bi, i ∈ {1, . . . ,m}. (7.14b)

Next, we investigate the relationship between the sets of optimal solutions of these two problems. The next two
examples show that this relationship is not always obvious. The first example shows that the two sets of optimal
solutions are different. The second example shows that a solution of the problem (7.14a)-(7.14b) does not need
to satisfy (7.13b).
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Example 7.3.1. Let ϵ > 0 be infinitesimal. Consider the nearly linear programming problem

F (x) = (ϵ+⊘)x → min (7.15a)

subject to the constraint
0 ≤ x ≤ 1. (7.15b)

Clearly x0 = 1 is an optimal solution of the problem and F (1) = ⊘. Also x = 0 is not an optimal solution
since F (0) = 0. We now consider the associated linear programming problem

f(x) = ϵx → min (7.16a)

subject to
0 ≤ x ≤ 1. (7.16b)

Obviously x0 = 0 is a minimizer of the problem and f(0) = 0. Also x = 1 is not a minimizer of the problem
(7.16a)-(7.16b).

Example 7.3.2. Consider the nearly linear programming problem

f(x, y) = x− y → min (7.17a)

subject to the constraints

D =

(1 + ϵ⊘)x+ (ϵ+ ϵ⊘)y ≤ 1 + ϵ£

x, y ≥ ϵ£,
(7.17b)

and the associated linear programming problem

f(x, y) = x− y → min (7.18a)

subject to the constraints

DR =

x+ ϵy ≤ 1

x, y ≥ 0.
(7.18b)

Geometrically, it is easy to see that the point A
(
0,

1

ϵ

)
is the unique optimal solution of the problem (7.18a)-

(7.18b). However, the point A does not belong to D.

Below we modify some notions in the theory of linear programming in away that we can apply them to nearly
linear programming problems.

Definition 7.3.3. Consider the nearly linear programming problem (7.13a)-(7.13b). Let Im = {1, . . . ,m} and
I0 = {i ∈ I : ⟨αi, x⟩ ⊆ βi,∀x ∈ D}.
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For each set I, I0 ⊆ I ⊆ Im the set

FI =

x ∈ D :
n∑

j=1

αijxj ⊆ βi, i ∈ I


is called a pseudo-face of D.

We say that the Pseudo-faceF has dimensionn−k, denoted by dimF = n−k, if the flexible system
n∑

j=1
αijxj ⊆

βi, i ∈ I determining F has the rank k.

We next present conditions such that an optimal solution of a nearly linear programming problem may be deter-
mined through a solution of an associated linear programming problem. One of the condition is that the neutrix
parts of constant terms of constraints are identical. This is consistent with our conditions to solve a flexible
system of linear equations by the Gauss-Jordan method.

Theorem 7.3.4. Assume that the problem

f(x) =

n∑
j=1

xiλi → min (7.19a)

subject to the constraints

DR =
n∑

j=1

aijxj ≥ bi, i ∈ Im = {i, . . . ,m} (7.19b)

has an optimal solution xopt, where xopt is a vertex of DR, i.e. xopt is a solution of the system

n∑
j=1

aijxj = bi, i ∈ {i1, . . . , in}, (7.20)

and that

(i) The flexible system corresponding to the system (7.20), of the form∑
αijxj ⊆ βi, i ∈ {i1, . . . , in} ≡ P0 (7.21)

satisfies the Cramer conditions.

(ii) xopt ·A ⊆ B and α ·B ⊆ B.

(iii) Every singular flexible system defining the face FI , I0 ⊆ I ⊆ Im is solvable in the sense of Definition
4.5.10.

Then αopt = xopt +B is an optimal solution of problem (7.13a) (7.13b).

Proof. We observe that the system (7.20) satisfies the Cramer conditions, so by Remark 4.3.16, αopt = xopt+B

is a solution of the system (7.21). Also, condition (ii) yields αopt = xopt + B ∈ D. We first assume that
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γ = (d1 +D1, . . . , dn +Dn) is an interior point of D, that is for all i ∈ {1, . . . ,m} we have

n∑
j=1

αijγi > bi +B.

We shall prove that f(γ) ≥ f(αopt). Let z = (z1, . . . , zn) ∈ γ. Then

n∑
j=1

αijzi > bi +B for all i ∈ {1, . . . ,m}.

It follows that
n∑

j=1
aijzi > bi for all i ∈ {1, . . . ,m}. So z is an interior point ofDR. Hence, f(z) ≥ f(xopt) ≥

f(αopt).

Next we we assume that γ ∈ FI which is defined by the system

n∑
j=1

αijxj ⊆ βi, i ∈ I. (7.22)

We will show that f(γ) ≥ f(αopt). Assume that dimFI = n − k. By Theorem 4.5.22 there exists a set of
indicesK = {i1, . . . , ik} ⊆ I ∩ P0 such that the system (7.22) is equivalent to

αi1x1 + · · ·+ αikxk ⊆ bi − aik+1xk+1 − · · · − ainxn +B, i ∈ K. (7.23)

Also, by Theorem 4.5.27 the set of solutions of the system (7.23) is given by

S =

{
(x1 +B, . . . , xk +B, xk+1, . . . , xn)

∣∣∣∣∣xi ∈ Ni ≡ B : Ai, i ∈ {1 . . . , n}

}
,

where (x1, . . . , xn) is a solution of the linear system

ai1x1 + · · ·+ aikxk + aik+1xk+1 + · · ·+ ainxn = bi, i ∈ K. (7.24)

In addition, each point y = (y1, . . . , yn) ∈ γ is a solution of (7.22) since γ ∈ FI . Hence yi ∈ xi + B, i =

1, . . . , k and yi = xi, i = k + 1, . . . , n with x = (x1, . . . , xn) ∈ DR. It follows that f(y) ⊆ f(x1 +

B, . . . , xk + B, xk+1, . . . , xn). Hence f(y) ≥ f(x1 + B, . . . , xk + B, xk+1, . . . , xn). Also, x ∈ DR implies

f(x) ≥ f(xopt). Because
k∑

i=1
λiB ⊆

n∑
i=1

λiB, we have

f(y) ≥ f(x1 +B, . . . , xk +B, xk+1, . . . , xn) = f(x) +
k∑

i=1

λiB ≥ f(xopt) +
n∑

i=1

λiB = f(xopt +B).

This equality is true for all y ∈ γ, we conclude that f(γ) ≥ f(αopt).

Remark 7.3.5. In particular, if the coefficients of the objective function in the nearly linear programming
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problem (7.19a)-(7.19b) are real numbers, the problem reduces to the ordinary linear programming problem
(7.14a)-(7.14b). In order to find an optimal solution of this problem we can use classical methods, for instance
the complex method to find an optimal solution xopt of the problem (7.14a)-(7.14b). Also, if all conditions
(i)-(iii) are satisfied, we conclude that xopt +B is an optimal solution of the original problem.

Corollary 7.3.6. Assume that the flexible function f(x) =
n∑

j=1
λjxj is bounded from below on the domainDR

given by (7.14b) andDR does not contain a line. Let xopt be an optimal solution of the problem (7.19a)-(7.19b)
which is a vertex of DR. Then αopt = xopt +B is an optimal solution of of the problem (7.13a)-(7.13b).

Proof. By Theorem 7.2.1, the problem (7.19a)-(7.19b) has an optimal solution xopt at vertex of DR. Using
Theorem 7.3.4 we conclude that αopt = xopt +B is an optimal solution of of the problem (7.13a)-(7.13b).

Example 7.3.7. Let ϵ > 0 be infinitesimal. Consider the nearly linear programming problem

f(x, y) = −x+ y → min (7.25a)

subject to the constraints

D =

(1 + ϵ⊘)x+ (1 + ϵ£)y ≤ 1 + ϵ£

x, y ≥ ϵ£
(7.25b)

and the associated linear programming problem

f(x, y) = −x+ y → min (7.26a)

subject to the constraints

D =

x+ y ≤ 1

x, y ≥ 0.
(7.26b)

By a geometrical method, we find that the point A(1, 0) is an optimal solution of the problem (7.26). Also A is
a vertex of DR defined by the system {

x + y = 1

y = 0.

We verify that the problem satisfies all conditions in Theorem 7.3.4.

The flexible system corresponding to this system{
(1 + ϵ⊘)x + (1 + ϵ£)y ⊆ 1 + ϵ£

y ⊆ ϵ£

satisfies the Cramer conditions

(i) R(A) ⊆ P (B)

(ii) ∆ = 1 + ϵ⊘ is not an absorber of B = ϵ£ and B = B.
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This flexible system define an point A′ = (1 + ϵ£, ϵ£).

Also xopt = 1, A = ϵ£, B = ϵ£. So the condition xopt ·A ⊆ B is satisfied.

Moreover, subsystems defining pseudo-faces of D are solvable.

Using Theorem 7.3.4 we conclude that the point A′ = (1 + ϵ£, ϵ£) is an optimal solution of the near linear
programming (7.25) and the minimal value is

f(A′) = 1 + ϵ£.

Remark 7.3.8. It is natural to study nearly linear programming problems with different imprecisions of con-
stants terms of constraints. Indeed, on some quantities we may have very precise information while other
quantities may only be roughly known. To do this it seems to be necessary to develop more the theory of exact
solutions of flexible systems of linear equations of Section 4.6.

Below we illustrate this by an example with different imprecisions of the constant terms to see how it works.

Example 7.3.9. Let ϵ > 0 be infinitesimal. Consider the nearly linear programming problem

f(x, y) = −x+ y → min (7.27a)

subject to the constraints

D =


(1 + ϵ⊘)x+ (1 + ϵ£)y ≤ 1 + ϵ£

x ≥ ϵ£

y ≥ ⊘

(7.27b)

and the associated linear programming problem

f(x, y) = −x+ y → min (7.28a)

subject to the constraints

D =

x+ y ≤ 1

x, y ≥ 0.
(7.28b)

By a geometrical method, we find that the point A(1, 0) is an optimal solution of the problem (7.28). Also A is
a vertex of DR defined by the system {

x + y = 1

y = 0.

We verify that the problem satisfies all conditions in Theorem 7.3.4.

The flexible system corresponding to this system{
(1 + ϵ⊘)x + (1 + ϵ£)y ⊆ 1 + ϵ£

y ⊆ ⊘
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has a solution (
x0

y0

)
=

(
1

0

)
+ ϵ£

(
1

0

)
+⊘

(
−1

1

)
. (7.29)

By a geometrical method we see that the vector (x0, y0) given by (7.29) is a minimizer of the problem (7.27).
Substituting this vector in the objective function we find the optimal value is given by

fopt = −1 +⊘.



8
Non-linear optimizations with

flexible objectives

In this chapter we investigate non-linear optimization with flexible objective functions. We only consider the
case in which variables are precise, this means values of variables are real numbers. We will introduce not
only the notion of optimal solution, but also of N -optimal solution, where N is a neutrix. The latter is a kind
of “flexible” optimal solution, in the sense that it is approximate optimal. In some cases we can not find exact
optimal solutions, yet we can find such approximate solutions. Wewill consider both global and local optimality.
Necessary and sufficient conditions for the existence of both optimal and nearly optimal solutions are presented.

Firstly, we will extend the well-known result which says that the derivative of a differentiable function at an
extreme point vanishes. To this end we introduce the notion of N -derivative. We also state a similar result for
an extreme point of a function of several variables by using N -partial derivatives.

Secondly, optimality conditions will be expressed through representatives of an objective function. After study-
ing the general case, we will continue with a special form of objective functions. In fact, we consider the op-

187
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timization problems in which the objective functions have the expansion F (x) = f(x) + g1(x)N1 + · · · +
gn(x)Nn, where f, g1, . . . , gn are real functions andN1, . . . , Nn are given neutrices. An optimal solution of an
optimization problem with objective function F is characterized via an optimal solution for f , where the neutrix
part is determined by the maximal values of |gi| and Ni with 1 ≤ i ≤ n.

Thirdly, we will apply a parameter method to study this kind of optimization problem. In fact, we will treat
external numbers as a collection of parameters. For each value of parameter we obtain a conventional opti-
mization problem. Conditions which enable us to find optimal or approximate optimal solutions of the original
problem through the sets of optimal solutions of problems corresponding to values of parameters are given.

Fourthly, we will use techniques of the theory of set-valued mapping to investigate these problems. Because the
values of an objective function are external sets, some results in set-valued mapping theory do not fit completely
for these functions. So we will modify notions in the theory of set-valued mapping, for instance, the notion of
derivative, so that we can apply them to our problems.

Finally we present a necessary condition for optimality which is similar to the Lagrange multiplier. In fact we
will show that there exist multipliers such thatN -partial derivatives of the Lagrange function of an optimization
problem are not zero but included in a suitable neutrix.

Convention 8.0.1. Through the whole chapter, unless otherwise stated, we always assume that n ∈ N be
standard and N is a neutrix.

8.1 Some notions and elementary properties

We study optimization problems with flexible objective functions which have the form

min
x∈X

F (x) or max
x∈X

F (x) (8.1)

where F (x) is a given flexible function defined onX with X ⊆ Rn, X ̸= ∅.

An optimal solution of an optimization problem with a flexible objective function is defined as follows.

Definition 8.1.1. Let X ⊆ Rn, X ̸= ∅, x0 ∈ X and F be a flexible function defined on X . The point x0 is
called

(i) a minimal solution of the minimization problem min
x∈X

F (x) if F (x) ≥ F (x0) for all x ∈ X. Then we also
call x0 a minimizer and F (x0) the minimal value or the minimum.

(ii) a maximal solution of the maximization problem maxx∈X F (x) if F (x) ≤ F (x0) for all x ∈ X. Then we
also call x0 a maximizer of the problem and F (x0) the maximal value or the maximum.

A minimal or maximal solution is called an optimal solution.

Remark 8.1.2. By the definition of order relationship on the set of external numbers, a point x0 ∈ X is:
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(i) a minimizer of F on X if and only if for each x ∈ X and for all y ∈ F (x) there exists z ∈ F (x0) such
that y ≥ z. Also for all x ∈ X it holds that F (x) > F (x0) or F (x) ⊆ F (x0).

(ii) a maximizer of F on X if and only if for each x ∈ X and for all y ∈ F (x) there exists z ∈ F (x0) such
that y ≤ z. Also for all x ∈ X it holds that F (x) < F (x0) or F (x) ⊆ F (x0).

Let F : X → P(R) be an internal set-valued mapping. Recall that a point x0 ∈ X is said to be a minimizer of
F on X if there exists y0 ∈ F (x0) such that y0 is a minimizer of F (X), that is for all x ∈ X , y ∈ F (x) we
have y ≥ y0 (see [7]). In our approach, values of F are external sets, in general, there does not exist an element
y0 satisfying this definition. However, the definition of minimizer in our model is similar to the classical one in
some sense, as shown in Remark 8.1.2(i).

Example 8.1.3. LetF : [0,+∞) ≡ X −→ E be a flexible function defined byF (x) = x3+(x2+1)⊘+
ϵ£
ex

, x ∈
[0,+∞). Consider the optimization problem min

x∈X
F (x).

For every x ∈ [0,+∞) one has F (x) = x3 + (x2 +1)⊘+
ϵ£
ex

≥ ⊘ = F (0). Then x0 = 0 is a minimizer of F
on [0,+∞). Also every point x0 ∈ ⊘, x0 > 0 is a minimizer of F on [0,+∞).

However we can not find a real number y0 ∈ ImF satisfying the condition y ≥ y0 for all y ∈ ImF .

Assume that x0 is a minimizer ofF onX andF (x0) is the minimal value. Two cases may occur: F (x0) < F (x)

or F (x) ⊆ F (x0). In the second case we have NF (x) ⊆ NF (x0). So, in our context, if we have the same
value with different uncertainties, we will choose a value with a larger uncertainty. A similar argument holds for
maximal solutions. We also note that if the inequality F (x0) ≤ F (x) holds for all x ∈ X , we can not conclude
that x0 is a minimizer. For example, let F : [0, 1] −→ E be given by

F (x) =

x+⊘ if 0 < x ≤ 1

0 if x = 0.

Then F (0) = 0 ≤ F (x) for all x ∈ [0, 1]. However, x = 0 is not a minimizer of F on [0, 1] since it does not
satisfy F (x) ≥ F (0) for all x ∈ [0, 1]. Indeed, one has F (ϵ) = ⊘ ̸≥ 0 = F (0), where ϵ > 0 is an infinitesimal.
Similarly, if F (x0) ≥ F (x) for all x ∈ X , it does not mean that x0 is a maximizer of F on X .

Often an optimization problem with a flexible objective function does not have an optimal solution. We may,
however, find ”nearly” optimal solutions. Recall that a point x0 is a minimizer of an internal function f on
X with X ⊆ Rn if f(x) − f(x0) ≥ 0,∀x ∈ X , and an ϵ-minimizer of f on X if for all x ∈ X one has
f(x0) ≤ f(x)+ϵ or f(x0)−f(x) ≤ ϵ. Substituting 0 or ϵ above by a neutrixN , we can generalize approximate
optimal solutions for optimization with flexible objectives. We call it a N -optimal solution.

Definition 8.1.4. LetX ⊆ Rn, X ̸= ∅ and F :X −→ E be a flexible function. LetN be a neutrix and x0 ∈ X .
The point x0 is called

(i) an N -minimizer or an N -minimal solution of the minimization problem min
x∈X

F (x) if for all x ∈ X one
has F (x)− F (x0) ≥ N. Then F (x0) is called the N -minimal value or the N -minimum.
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(ii) The point x0 is called anN -maximizer or anN -maximal solution of the maximization problem max
x∈X

F (x)

if F (x)− F (x0) ≤ N for all x ∈ X. Then F (x0) is called the N -maximal value or the N -maximum.

The N -minimal or N -maximal value is called the N -optimal value and an N -minimal or N -maximal solution
is called a N -optimal solution or a N -optimal point. It is also called a N -extreme point.

Example 8.1.5. Let F : R −→ E be given by F (x) = x2 +⊘ · x, x ∈ R. Consider the optimization problem
min
x∈R

F (x).

This problem has no solution. Indeed, suppose on contrary that it has an optimal solution x0 ∈ R. Clearly
x = 0 is not a minimizer because of Remark 8.1.2 and the fact that for ϵ ∈ ⊘, ϵ > 0 one has F (0) ⊂ F (ϵ). So
x0 ̸= 0. If x0 ̸∈ ⊘ it holds that x20 + ⊘ · x0 > F (0), which is a contradiction. Consequently, x0 ∈ ⊘, x0 ̸= 0

and hence F (x0) = x0 · ⊘. Let ϵ =
√

|x0| ∈ ⊘. Then x0⊘ ⊂ ϵ⊘. It follows that F (x0) = x20 + ⊘ · x0 =

x0⊘ ⊂ ϵ⊘ = ϵ2 + ϵ · ⊘ = F (ϵ), which is a contradiction since x0 is a minimal solution. So the problem has
no solution.

However, this problem has ⊘-optimal solutions. We will show that every x0 ∈ ⊘ is an ⊘-minimizer of F on
R. For each x ∈ ⊘, F (x) = x2 +⊘ · x ⊆ ⊘ and for x ̸∈ ⊘, F (x) = x2 + x · ⊘ > ⊘. Since x0 ∈ ⊘, it follows
that F (x) − F (x0) > ⊘ for all x ̸∈ ⊘ and F (x) − F (x0) ⊆ ⊘ for all x ∈ ⊘. Hence F (x) − F (x0) ≥ ⊘ for
all x ∈ R. This means that x0 ∈ ⊘ is an ⊘-minimizer of the problem.

The following result shows that an NF (x0)-optimal solution is an optimal solution and vice versa.

Proposition 8.1.6. Consider the optimization with flexible objective of the form (8.1). A point x0 ∈ X is an
NF (x0)-minimizer (maximizer) of F on X if and only if x0 is a minimizer (maximizer) of F on X .

Proof. Wewrite F (x) = f(x)+NF (x) for all x ∈ X . We prove the case of minimization problem, the another
case is done similarly. Since x0 ∈ X is an NF (x0)-minimal solution, one has F (x) − F (x0) ≥ NF (x0) for
all x ∈ X . It follows that F (x) + NF (x0) ≥ f(x0) + NF (x0) = F (x0) for all x ∈ X . On the other hand,
F (x) ⊆ F (x) + NF (x0) for all x ∈ X . So F (x) ≥ F (x) + NF (x0) ≥ F (x0) for all x ∈ X . Hence x0 is a
minimizer of F on X .

Conversely, assume that x0 ∈ X is a minimizer of F on X . Then F (x) ≥ F (x0) for all x ∈ X . This implies
that F (x)− f(x0) ≥ NF (x0) for all x ∈ X . We consider two cases. For the case F (x)− f(x0) ⊆ NF (x0) we
have F (x)−f(x0)+NF (x0) = NF (x0), so F (x)−F (x0) = NF (x0). For the case F (x)−f(x0) > NF (x0)

we have F (x) − f(x0) + N(x0) = F (x) − F (x0) > NF (x0). So F (x) − F (x0) ≥ NF (x0) for all x ∈ X .
We conclude that x0 is an NF (x0)-minimizer of F on X .

For local optimal solutions, in some cases, we would like to have information on the size of the neighbourhood
of a local solution in which an objective function reaches the minimum. For this approach we can classify
different orders of magnitudes of the size of the neighbourhood by using neutrices. We call it an M -local N -
optimal solution, whereM,N are two neutrices.

Definition 8.1.7. Let F : X → E be a flexible function and x0 be a point in X . The point x0 ∈ X is called
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(i) anM -localN -minimizer orM -localN -minimal solution of the problem min
x∈X

F (x) if there exists δ > M

such that (x0 − δ, x0 + δ) ⊆ X and F (x)− F (x0) ≥ N for all x ∈ (x0 − δ, x0 + δ).

(ii) anM -local N -maximizer or aM -local N -maximal solution of the problem max
x∈X

F (x) if there exists δ >

M such that (x0 − δ, x0 + δ) ⊆ X and F (x)− F (x0) ≤ N for all x ∈ (x0 − δ, x0 + δ).

In particular, for minimization problems, if N = NF (x0) we call x0 a M -local minimizer. If M = 0, we call
x0 a local N -minimizer. In addition, if both N andM are zeros, we call x0 a local minimizer.

We have similar definitions for maximization problems.

Example 8.1.8. Let F : R → E be a flexible function defined by F (x) = x3 − 3x + 1 + ⊘x. We will show
that every x ≃ −1 is an ⊘-local maximizer and every x ≃ 1 is an ⊘-local minimizer of F . We first prove that
x = −1 is an ⊘-local maximizer of F and then we do it for x ≃ −1, x ̸= 1. The case x ≃ 1 is done similarly.

Put f(x) = x3 − 3x+ 1 for all x ∈ R. A short calculation shows that x1 = −1 is a local maximizer of f and
x2 = 1 is a local minimizer of f . In fact, for x ∈ (−∞, 1 + ⊘) we have f(x) < f(−1) and x ∈ −1 + ⊘ we
have F (x)− F (−1) ⊆ ⊘. This means that

F (x) ≤ F (−1), ∀x ≃ −1. (8.2)

On the other hand, for each x ∈ (−2, 1 +⊘) \ {−1 +⊘}, it holds that

F (x) ≤ F (−1). (8.3)

Indeed, we consider two cases. For the case in which x is standard, because f(x) is standard and −1 is a local
maximal point of f , we have f(x) − f(−1) = z < ⊘, where z is standard. It follows that F (x) − F (−1) =

f(x)− f(−1)+⊘ = z+⊘ < ⊘. For the case in which x is not standard, let y be the standard part of x. Then
for all x ∈ (2, 1 + ⊘) we have F (x) ⊆ F (y) + ⊘. The first case shows that F (y) − F (−1) < ⊘ and hence
F (x)− F (−1) < ⊘. Thus F (x)− F (−1) ≤ ⊘ for all x ∈ (−2, 1 +⊘) \ {−1 +⊘}. This implies that

F (x) ≤ F (−1) for allx ∈ (−2, 1 +⊘) \ {−1 +⊘}. (8.4)

From (8.2) and (8.4) we conclude that x0 = −1 is an ⊘-local maximizer of F .

Secondly, we will show that points x0 ∈ −1 + ⊘, x0 ̸= −1 are also ⊘-local maximizers of F on R. We note
that F (x0) − F (−1) = ⊘ or F (x0) = F (−1) + ⊘, so F (x) − F (x0) = F (x) − F (−1) + ⊘ ≤ ⊘ for all
x ∈ (−2, 1 +⊘). Hence F (x) ≤ F (−1) for all x ∈ (−2, 1 +⊘). So x0 is an ⊘-local maximizer of F.

Similarly, we conclude that x0 ∈ 1 +⊘ is an ⊘-local minimizer of F .

It is easy to see that x1 = −1 is not an £-local maximizer of F and x2 = 1 is not an £-local minimizer of F .

An M -local optimal solution, as shown by the next proposition, is also an M ′-local optimal solution with
M ′ < M . As a consequence, in practice we tend to determine M -local optimal solutions with the largest
possibleM .
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Proposition 8.1.9. LetF :X ⊆ Rn −→ E be a flexible function andN,M,M ′ be neutrices such thatM ′ < M .
Consider the optimization problem (8.1). Assume that x0 ∈ X is anM -localN -optimal solution of (8.1). Then
x0 is also anM ′-local N -optimal solution of this problem.

Proof. Without loss of generality we assume that x0 is anM -localN -minimal solution of problem (8.1). Then
there exists δ > M such that (x0 − δ, x0 + δ) ⊆ X and F (x)− F (x0) ≥ N for all x ∈ (x0 − δ, x0 + δ). On
the other hand, M ′ ⊆ M and δ > M yield δ > M ′. By Definition 8.1.7 one concludes that x0 is an M ′-local
N -minimal solution of the problem (8.1).

Proposition 8.1.10. Let F : X ⊆ Rn −→ E be a flexible function and N,N ′ be neutrices such that N ≤ N ′.
Consider the optimization problem (8.1). Assume that x0 ∈ X is anN -optimal solution of (8.1). Then x0 is an
N ′-optimal solution of (8.1).

Proof. Wewill prove the proposition forN -minimizers, the case ofN -maximizers is done similarly. Becausex0
is anN -minimizer of F onX , we have F (x)−F (x0) ≥ N for all x ∈ X . This implies that F (x)−F (x0) ⊆ N

or F (x)− F (x0) > N.We will show that F (x)− F (x0) ⊆ N ′ or F (x)− F (x0) > N ′ for all x ∈ X .

IfF (x)−F (x0) ⊆ N thenF (x)−F (x0) ⊆ N ′, sinceN ⊆ N ′. IfF (x)−F (x0) > N thenF (x)−F (x0) > N ′

or F (x)−F (x0) ⊆ N ′. Indeed, otherwise, we have two cases: (i)N ′ ⊂ F (x)−F (x0) or (ii) F (x)−F (x0) <

N ′. If (i) happens then N ⊆ N ′ ⊂ F (x) − F (x0), which is a contradiction. If (ii) happens, we have
F (x)− F (x0) < N , which is a contradiction.

Remark 8.1.11. The conclusion is also true forM -local N -optimal solutions.

Combining these two results we obtain the following.

Proposition 8.1.12. Let F : X ⊆ Rn −→ E be a flexible function and N,N ′,M,M ′ be neutrices such that
M ′ ≤ M and N ≤ N ′. Consider the optimization problem (8.1). Assume that a point x0 is an M -local
N -optimal solution of (8.1). Then x0 is anM ′-local N ′-optimal solution of (8.1).

Proof. Because of Proposition 8.1.9 the point x0 is anM ′-local N-optimal solution of the optimization problem
(8.1). By Proposition 8.1.10 we conclude that x0 is anM ′-localN ′-optimal solution of the optimization problem
(8.1).

We end by proving that a maximum problem can be transformed into a minimum problem and vice versa.

Proposition 8.1.13. Let F be a flexible function defined on X ⊆ Rn. A point x0 ∈ X is a minimizer of F on
X if and only if x0 is a maximizer of −F on X .

Proof. By Lemma 2.2.35, it holds that F (x) ≥ F (x0) if and only if −F (x) ≤ −F (x0) for all x ∈ X . Then
x0 is a maximizer of −F on X if and only if x0 is a minimizer of F on X .

Note that the conclusion above also holds forM -local N-optimal solutions.
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8.2 Nearly optimal points and N -derivatives

The necessary condition of anN -optimal point says that the neutrix part of theN -optimal valuemust be included
in N .

Proposition 8.2.1. Let F :X ⊆ Rn −→ E be a flexible function andN be a neutrix. Consider the optimization
problem (8.1). Assume that x0 ∈ X is anN -optimal solution of the optimization problem (8.1). ThenNF (x0) ⊆
N .

Proof. Suppose on contrary that N ⊂ NF (x0). Because x0 is an N -optimal point, without loss of generality,
we assume that x0 is an N -minimizer of F on X . By the definition, it holds that F (x) − F (x0) ≥ N for all
x ∈ X and x0 ∈ X. For x = x0 ∈ X we obtain that F (x) − F (x0) = NF (x0) ⊃ N . This implies that
F (x)− F (x0) ̸≥ N, which is a contradiction.

Note that the equality F (x)−F (x0) ≥ N for all x ∈ X is not equivalent to F (x) ≥ F (x0)+N for all x ∈ X .
For example, let N = 0 and F (x) = x2 + ⊘. Then F (x) ≥ F (0) +N = F (0) + 0 for all x ∈ R. However,
F (ϵ) − F (0) = ⊘ ̸≥ 0 = N where ϵ0 is infinitesimal. So, from the expression F (x) ≥ F (x0) + N for all
x ∈ X we can not conclude that x0 is an N -optimal solution of F on X . Yet, as a consequence of Proposition
8.2.1, a point x0 ∈ X is

(i) an N -minimizer of F on X if and only ifF (x) ≥ F (x0) +N, ∀x ∈ X,

NF (x0) ⊆ N.

(ii) an N -maximizer of F on X if and only ifF (x) ≤ F (x0) +N, ∀x ∈ X,

NF (x0) ⊆ N.

In contrast to classical continuity of an internal function, even we have anM ×N -inner continuous function it
does not guarantee that this function obtains the maximum and minimum on a closed interval.

For example, consider a function F : [−1, 1] −→ E given by F (x) =

x if − 1 ≤ x ⪉ 0,

−1− x if 0 ⪅ x ≤ 1
. This

function is ⊘ × ⊘-inner continuous, but it does not have the maximal value, even the ⊘-maximal value. Also
observe that F is not ⊘×⊘-continuous at x = 0.

In classical mathematics it is well-known that the derivative of a differentiable function vanishes at an extreme
point. For a function of several variables, the partial derivatives also vanish at an extreme point. Here, by using
the notion of M × N -derivative for a flexible function of one variable and M × N -partial derivatives for a
flexible function of several variables we obtain similar results.
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Theorem 8.2.2. Let N,M be neutrices such that ⊘N ⊆ M and X ⊆ R, X ̸= ∅. Let F be a flexible defined
onX . Assume that x0 is anM -localN -minimizer of F onX and x0 is anM -interior point ofX . Assume also
that F isM ×N -differentiable at x0. Then

dNF

dMx
(x0) = N.

Proof. Assume that
dNF

dMx
(x0) = N - lim

x→x0+M

F (x)− F (x0)

x− x0
= a + N = α. So, for all ϵ > N there exists

δ0 > M such that for all x ∈ X,M < |x− x0| < δ0 one has

|F (x)− F (x0)

x− x0
− a+N | < ϵ. (8.5)

This implies that

a+N − ϵ <
F (x)− F (x0)

x− x0
+N (8.6)

for allM < x0 − x < δ0 and
F (x)− F (x0)

x− x0
+N < ϵ+ a+N (8.7)

for allM < x− x0 < δ0.

On the other hand, the point x0 is anM -local N -minimizer of F on X , so

F (x)− F (x0) ≥ N (8.8)

for all x ∈ X, |x − x0| ≤ δ1. Put δ = min{δ0, δ1}. Note that ⊘N ⊆ M , so for |x| > M it holds that x is not
an absorber of N . As a result, for all x ∈ X,M < x0 − x < δ, we have

F (x)− F (x0)

x− x0
≤ N

x− x0
≤ N.

This implies
F (x)− F (x0)

x− x0
+N ≤ N +N = N (8.9)

for all x ∈ X,M < x0 − x < δ. From (8.6) and (8.9) imply

a+N − ϵ < N (8.10)

Similarly, from (8.8) one has
F (x)− F (x0)

x− x0
≥ N

x− x0
≥ N for all x ∈ X,M < x− x0 < δ. Using (8.7) and

analogous arguments we obtain
a+N + ϵ > N (8.11)

for all ϵ > N and x ∈ X,M < x0 − x < δ.

Formulas (8.10) and (8.11) imply a ∈ N . Indeed, if a < N , we choose ϵ = −a/2 > N then a + ϵ + A =

a/2+A < N , which is a contradiction to (8.11). If a > N , taking ϵ = a/2 > N then a+A−ϵ = a/2+A > N ,
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which is contradictory to (8.10). Thus
dNF

dMx
(x0) = N.

By this result, ifM ×N -derivative of F at a point differs fromN , we conclude that this point is not anM -local
N -extreme point of F .

Example 8.2.3. Let F : R −→ E be a flexible function given by F (x) = x2 + ⊘ for all x ∈ R. We have
d⊘F

d⊘x
(x) = 2x+⊘. So, for all x ̸∈ ⊘,

d⊘F

d⊘x
(x) = 2x+⊘ ̸⊆ ⊘ and hence, they are not ⊘-local ⊘-minimizers

of F .

Next we present a necessary condition for the existence of anN -extreme point of a flexible function of several
variables.

Theorem 8.2.4. Let M,N be neutrices such that ⊘N ⊆ M , F : X ⊆ Rn → E be a flexible function and
x(0) = (x

(0)
1 , . . . , x

(0)
n ) ∈ X is an M -interior point of X . Assume that x(0) is an M -local N -extreme point of

F and that F isM ×N -total differential at x(0). Then
∂NF

∂Mxi
(x(0)) = N.

Proof. For each i ∈ {1, . . . , n}, put G(xi) = F (x
(0)
1 , . . . , x

(0)
i−1, xi, x

(0)
i+1, . . . , x

(0)
n ). Since x(0) is an M -local

N -extreme point of F , it holds that x(0)i is an N -extreme point of G. By Theorem 8.2.2, N
MDG(x

(0)
i ) =

∂NF

∂Mxi
(x(0)) = N.

8.3 Conditions for optimality via representatives of objective functions

In this section we will use representatives of the objective function to construct optimality conditions. An
optimal/ approximate optimal solution of an optimization problem with flexible objective function will be char-
actered through optimal solutions or the optimal value of a conventional optimization problem in which the
objective function is a representative of the original objective function. The latter problem is called an associ-
ated optimization problem of (8.1). This is an ordinary optimization problem, we may use advantage results in
the classical theory of optimization to deal with it. We will start with a general form and then with a special
form of objective function. We will present two kinds of conditions. We first use the relationship between
the external infimum (supremum) of the image of an objective function and the minimal (maximal) value of
a representative to construct conditions. With this approach we will overcome some drawbacks of using the
M × N -derivative, for instance, the optimality condition based on the notion of M × N -derivative does not
work whenM = 0, because the ratio

N

x− x0
tends to R when x− x0 approaches to 0.

8.3.1 General forms

Definition 8.3.1. Let X ⊆ Rn, X ̸= ∅ and F : X −→ E be a flexible function. Consider the optimization
problem

min
x∈X

F (x). (8.12)
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Let f be an internal representative of F . The minimization problem

min
x∈X

f(x) (8.13)

is called a representative problem of (8.12).

The results below give conditions so we can find an optimal solution of an optimization problem with flexible
objective function by solving a representative problem.

Theorem 8.3.2. Let N be a neutrix. Consider the optimization problem (8.12) and the representative problem
(8.13). Assume that x0 is an N -optimal solution of (8.13) and that NF (x) ⊆ N for all x ∈ X . Then x0 is an
N -optimal solution of the optimization problem (8.12).

Proof. We write F (x) = f(x) + NF (x). By the assumptions, we have F (x) = f(x) + NF (x) − f(x0) +

NF (x0) = f(x)− f(x0) +NF (x) +NF (x0) ≥ N +NF (x) +NF (x0) = N for all x ∈ X . We conclude that
x0 is an optimal solution of the optimization problem (8.12).

In particular, we obtain a sufficient condition for the existence of optimal solution as follows.

Theorem 8.3.3. Consider the optimization problem (8.12) and the representative problem (8.13). Assume that
x0 is a optimal solution of (8.13) and that NF (x) ⊆ NF (x0) for all x ∈ X . Then x0 is an optimal solution of
the optimization problem (8.12).

Proof. By assumption we have F (x) = f(x) +NF (x) ≥ f(x0) +NF (x) ≥ f(x0) +NF (x0) for all x ∈ X .
We conclude that x0 is an optimal solution of (8.12).

Similarly, we have a sufficient condition for the existence of local optimal solutions.

Theorem 8.3.4. Let X ⊆ Rn, F : X −→ E be a flexible function, f be a representative of F and NF be the
neutrix part of F . LetM,N be neutrices. Assume that

(i) x0 ∈ X is an M -local optimal point of f on X and that there exists an M -neighbourhood U of x0 such
that NF (x) ⊆ NF (x0) for all x ∈ U . Then x0 is anM -local optimal point of F on X .

(ii) x0 ∈ X is an M -local N -optimal point of f on X and that there exists an M -neighbourhood U of x0
such that NF (x) ⊆ N for all x ∈ U . Then x0 is anM -local N -optimal point of F on X .

Theorem 8.3.5. Let F be a flexible function defined on X ⊆ Rn and f be a representative of F . Assume that
x0 ∈ X is a minimizer of f on X . Let X0 =

{
x ∈ X

∣∣∣F (x) ∩ F (x0) ≠ ∅
}
. If there exists x1 ∈ X0 such that

F (x1) =
∪

x∈X0

F (x) then F (x1) is a minimizer of F on X .

Proof. We will show that for all x ∈ X , F (x) ≥ F (x1). For all x ∈ X0 we have F (x) ⊆ F (x1), in particular,
F (x1) = f(x0) +NF (x1). For x ∈ X \X0 it holds that (i) F (x) ∩ F (x1) ̸= ∅ or (ii) F (x) > F (x1). For the
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case (i), this implies F (x) ⊆ F (x1). Indeed, suppose on contrary that F (x1) ⊂ F (x). Then F (x0) ⊆ F (x1) ⊆
F (x). It follows that x ∈ X0 and hence F (x) ⊆ F (x1), which is a contradiction.

So for all x ∈ X we have F (x) ≥ F (x1). This means x1 is a minimizer of F on X .

With a similar arguments we obtain

Theorem 8.3.6. Let F be a flexible function defined on X ⊆ Rn and f be a representative of F . Assume that
x0 ∈ X is a maximizer of f on X . Let X0 =

{
x ∈ X

∣∣∣F (x) ∩ F (x0) ̸= ∅
}
. If there exists x1 ∈ X0 such that

F (x1) =
∪

x∈X0

F (x) then F (x1) is a maximizer of F on X .

Applying this result, in order to find an optimal solution of an optimization problem with a flexible objective
function we will make the following steps.

We first choose an appropriate representative f of F , for instance, continuous, differentiable, convex, etc. Then
we use classical methods, for instance the Lagrange multiplier method, to solve the optimization problem with
objective function f . Next we calculate the set X0 =

{
x ∈ X

∣∣F (x) ∩ F (x0) ̸= ∅
}
. In the last step we verify

if there exists a point x1 ∈ X0 such that F (x1) =
∪

x∈X0

F (x), we conclude that x1 is an optimal solution of the

given problem.

In the following result we use the notions of external infimum and external supremum to give sufficient condi-
tions for N -optimal solutions.

Notation 8.3.7. Let X ⊆ Rn and F : X −→ E be a flexible function defined on X . We denote µ =

inf
(
ImF

)
, σ = sup

(
ImF

)
and Nµ the neutrix part of µ, Nσ the neutrix part of σ.

Recall that ImF =
∪

x∈X
F (x) ≡ F (X).

Theorem 8.3.8. Let F be a flexible function defined on X ⊆ Rn, X ̸= ∅. Both of the following statements
hold.

(i) If µ ∩ conv(ImF ) ̸= ∅ then F achieves Nµ-minimum on X , i.e. there is x0 ∈ X such that for all x ∈ X

one has F (x)− F (x0) ≥ Nµ. In fact, every x0 ∈ X such that F (x0) ⊆ µ is an Nµ-minimal solution.

(ii) If σ ∩ conv(ImF ) ̸= ∅ then F achieves Nσ-maximum on X , i.e. there exists x′0 ∈ X such that for all
x ∈ X F (x)− F (x′0) ≤ Nσ. In fact, every x′0 ∈ X such that F (x′0) ⊆ σ is an Nσ-maximal solution.

Proof. We will prove the first statement, the second is done similarly. We first show that there exists δ0 ∈ ImF

such that δ0 ∩ µ ̸= ∅. Indeed, suppose on contrary that for all δ ∈ ImF, µ < δ. For all ξ ∈ conv(ImF ),
by Definition 2.12, there exists δ ∈ ImF such that ξ ≥ δ > µ, which is a contradiction to the assumption
µ ∩ conv(ImF ) ̸= ∅.

In particular, from Proposition 2.4.12(ii) we have

F (x0) = δ0 ⊆ µ, for some x0 ∈ X. (8.14)
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On the other hand, for all x ∈ X such thatF (x) ⊆ µ one hasF (x)−F (x0) ⊆ µ−µ = Nµ, i.e. F (x)−F (x0) ≥
Nµ. For x ∈ X and F (x) ̸⊆ µ, the fact F (x) ≥ µ implies F (x) > µ. So F (x) − µ > Nµ. Also, by formula
(8.14) we have µ = F (x0) +Nµ. It follows that F (x)− F (x0) ≥ F (x)− F (x0) +Nµ = F (x)− µ > Nµ.

Hence for all x ∈ X one has F (x)− F (x0) ≥ Nµ.We conclude that x0 is an Nµ-minimizer of F on X .

Example 8.3.9. Let F : X ≡ [0,+∞) be given by F (x) = ex + ϵ£x2 + ⊘x, x ∈ [0,+∞), here ϵ > 0 is
an infinitesimal. Consider the optimization problem min

x∈X
F (x) ≡ min

x∈X
(ex + ϵ£x2 + ⊘x). A short calculation

shows that inf
x∈R

F (x) = 1 + ⊘ and F (0) = 1 ∈ 1 + ⊘. Using Theorem 8.3.8 we conclude that x0 = 0 is an
⊘-minimizer of F on [0,+∞).

Remark 8.3.10. In classical mathematics, the fact that inf (ImF ) ∩ ImF ̸= ∅ implies that inf(ImF ) ∈ ImF .
It does not hold anymore in our context. Indeed, let F : R −→ E be given by F (x) = x2 + x⊘ for all x ∈ R.
Then we have inf

x∈R
(F (x)) = ⊘ and hence inf

(
ImF

)
∩ ImF = ⊘∩ ImF ̸= ∅ because 0 ∈ ⊘∩F (0). However,

⊘ ̸∈ ImF .

Next we provide characterizations through representatives of F such that the conditions µ ∩ conv
(
ImF

)
̸= ∅

and σ ∩ conv
(
ImF

)
̸= ∅ of Theorem 8.3.8 is satisfied.

Proposition 8.3.11. Let F be a flexible function defined on X ⊆ Rn, X ̸= ∅. If there exists a representative f
of F such that f has a minimizer x0 on X ,

inf
(
ImF

)
∩ ImF ̸= ∅.

As a consequence, inf(ImF ) ∩ conv (ImF ) ̸= ∅.

Proof. For each x ̸= x0, there are three cases as follows: F (x) > F (x0), F (x) < F (x0) or F (x)∩F (x0) ̸= ∅.
Note that F (x)∩F (x0) ̸= ∅ if and only if F (x) ⊆ F (x0)∨F (x0) ⊆ F (x). However, the case F (x) < F (x0)

can not happen. Indeed, if F (x) < F (x0), it follows that f(x) < f(x0) +NF (x0) and hence f(x) < f(x0),
which is a contradiction to the fact that f(x0) is the minimal value.

Denote X0 = {x ∈ X|F (x) ∩ F (x0) ̸= ∅}. Since x0 ∈ X0 we have X0 ̸= ∅. Also F (x) = f(x0) + NF (x)

for all x ∈ X0. Because F (x) > F (x0) or F (x) ∩ F (x0) ̸= ∅, one has

inf(ImF ) = inf
{
F (x) : x ∈ X0

}
= inf


∪

x∈X0
F (x0)⊆F (x)

F (x)

 = f(x0) + inf
x∈X1

NF (x),

where X1 = {x ∈ X0, F (x0) ⊆ F (x)}. On the other hand

inf
x∈X1

NF (x) ≡ N0 is a neutrix. (8.15)

Indeed, suppose on contrary that inf
x∈X1

NF (x) = α = a+ A is zeroless. Then α ∩NF (x) = ∅ for all x ∈ X1.

It follows that 2α ∩ NF (x) = ∅ for all x ∈ X1 since 2α is zeroless and NF (x) is a neutrix. In particular
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α < 2α < NF (x) for all x ∈ X1, which is contradiction to Proposition 2.4.12(i). The fact (8.15) implies
NF (x) ⊆ N0 for all x ∈ X1. Consequently, F (x) ⊆ f(x0)+N0 for all x ∈ X1 and hence F (x) ⊆ f(x0)+

N0 for all x ∈ X0 since F (x) ⊆ F (x0) for all x ∈ X0 \X1. So f(x0) ∈ inf
(
ImF

)
∩ F (x0). This means

that inf(ImF ) ∩ ImF ̸= ∅. The conclusion inf(ImF ) ∩ conv (ImF ) ̸= ∅ follows by ImF ⊆ conv(ImF ).

For maximization problems, we have a similar result.

Proposition 8.3.12. Let F be a flexible function defined onX ⊆ Rn, X ̸= ∅ and f be a representative of F . If
f achieves a maximum on X at x0,

sup
(
ImF

)
∩ ImF ̸= ∅.

As a consequence, sup(ImF ) ∈ conv(ImF ).

Proof. We use analogous arguments as in the proof of Proposition 8.3.11.

Next theorem shows that an optimization with flexible objective function has an approximate optimal solution
if a representative has a minimum or a maximum.

Theorem 8.3.13. Let F be a flexible function defined onX ⊆ Rn, X ̸= ∅ and f be a representative of F . Then
following statements are true:

(i) If f achieves a minimum on X , the function F achieves an Nµ-minimum on X .

(ii) If f achieves a maximum on X , the function F achieves an Nσ-maximum on X .

Proof. Theorem follows directly from Proposition 8.3.11, Proposition 8.3.12 and Theorem 8.3.8.

Corollary 8.3.14. LetX ⊆ Rn, X ̸= ∅ be an internal set andF be a flexible function defined onX . Assume that
f is a continuous internal representative of F onX andX is a compact set. Then F achieves anNµ-minimum
and an Nσ-maximum on X .

Proof. Because f is a continuous internal function and X is an internal compact set, it achieves its minimum
and maximum on X . The conclusion follows by Theorem 8.3.13.

We can use results of the ordinary optimal theory to verify whether a representative problem has the minimum
(maximum) and find its optimal solutions. For instance, we can apply the Lagrange multiplier method to find
approximate solutions. To be more specific, we consider the optimization problem with flexible objective

min
x∈Rn

F (x) = min
x∈Rn

(
f(x) +N(x)

)
subject to constraints 

g1(x1, . . . , xn) = 0
...

...
gm(x1, . . . , xn) = 0,
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where f, gi, i ∈ {1, . . . ,m} are internal functions whose partial derivatives are continuous.

In this case we can apply the Lagrange multiplier method to find an minimizer of

min
x∈Rn

f(x)

subject to the constraints 
g1(x1, . . . , xn) = 0

...
...

gm(x1, . . . , xn) = 0.

Assume that x0 is a minimizer of f satisfying the constraints. Then, by Proposition 8.3.11, the given problem
has Nµ-solution and this solution y0 satisfies F (y0) ∩ F (x0) ̸= ∅.

The following theorem gives some characterizations of optimal solutions.

Theorem 8.3.15. Let F : X −→ E be a flexible function defined on X ⊆ Rn, f be an internal representative
of F and NF be the neutrix part of F . Assume that x0 ∈ X is a minimizer of (8.12) and f is continuous at x0.
The followings three statements are true:

(i) If NF (x0) ̸= 0 then there is a real positive number δ such that for all x ∈ B(x0, δ) we have F (x) −
F (x0) = NF (x0). This means that f(x)− f(x0) ∈ N(x0)

NF (x) ⊆ NF (x0)

for all x ∈ B(x0, δ).

(ii) For x ∈ X such thatNF (x0) ⊂ NF (x), it holds that f(x)− f(x0) > NF (x) for all representatives f(x)
of F .

(iii) If NF (x0) = 0, the partial derivative of each totally differentiable representative f(x) of F (x) at x0 is 0.

Proof. (i). Since x0 is a minimizer of (8.12), we have F (x) ≥ F (x0). So

F (x)− F (x0) ≥ NF (x0). (8.16)

On the another hand NF (x0) ̸= 0, so NF (x) + NF (x0) = max{NF (x), NF (x0)} ̸= 0. This implies that
f(x0) + NF (x) + NF (x0) is a neighbourhood of f(x0). By continuity of f at x0, there is a δ > 0 such that
f(x) ∈ f(x0) +NF (x0) +NF (x) for all x ∈ B(x0, δ). Hence

F (x)− F (x0) = NF (x) +NF (x0) for all x ∈ B(x0, δ) (8.17)

Suppose on contrary thatNF (x0) ⊂ NF (x)+NF (x0) = NF (x). Then there exists y ∈ NF (x) = F (x)−F (x0)

such that y < z for all z ∈ NF (x0), which is a contradiction to (8.16). Thus NF (x) +NF (x0) ⊆ NF (x0), i.e.
NF (x) ⊆ NF (x0). By formula (8.17) this implies F (x)− F (x0) ⊆ NF (x0) for all x ∈ B(x0, δ).
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(ii). We suppose that there exists a representative f of F such that NF (x0) ⊂ NF (x) and f(x) − f(x0) ∈
NF (x). Then F (x0) = f(x0)+NF (x0) ≥ f(x0)+NF (x) = f(x)+NF (x) = F (x), which is a contradiction.

(iii). Let f be a totally differentiable representative of F . If
∂f

∂xi
(x0) ̸= 0, the point x0 is not a minimizer

of f . It follows that there exists x1 ∈ X such that f(x1) < f(x0) and NF (x1) ⊇ NF (x0). Consequently,

f(x1) +NF (x1) ̸≥ f(x0) +NF (x0). We conclude that
∂f

∂xi
(x0) = 0.

Remark 8.3.16. By the theorem above, if a point x0 is a minimizer, the neutrix-functionNF (x) achieves local
maximum at x0 or NF (x0) = 0.

8.3.2 Special forms

In this part we will present optimality conditions of an optimization problem with flexible objective function in
which the objective function has the form F (x) = f(x) + g1(x)N1 + · · · + gk(x)Nk, where Ni, 1 ≤ i ≤ k

are neutrices and gi, f are real function, for 1 ≤ i ≤ k. We will show that under some appropriate conditions,
an solution of the optimization problem with the objective function F can be determined via a solution of the
problemwith objective function f andmaximizers of gi on the domain, for 1 ≤ i ≤ k.We start with the function
F of the form F (x) = f(x) + g(x)N and then with F (x) = f(x) + +g1(x)N1 + · · ·+ gk(x)Nk.

Theorem 8.3.17. LetX ⊆ Rn, X ̸= ∅ andF :X −→ E be a flexible function defined byF (x) = f(x)+g(x)·N
for all x ∈ X , where f, g are real functions defined on X and N is a scalar neutrix. Assume that x0 ∈ X is a
minimizer of f on X and x1 ∈ X is a maximizer of |g| on X . If |g(x0)|/|g(x1)| is not an absorber of N then
x0 is a minimizer of F on X . In particular, if x0 = x1 then x0 is optimal solution of (8.12).

Proof. If g(x) = 0 for all x ∈ X or N = 0, the conclusion is trivial. We assume that there is x ∈ X such
that g(x) ̸= 0 and N ̸= 0. It implies that max

X
|g(x)| ̸= 0, i.e. g(x1) ̸= 0. Because x0 is a minimizer of

f(x) on X , we have f(x0) ≤ f(x). On the other hand, |g(x)| ≤ |g(x1)| for all x ∈ X . It follows that
g(x) · N ⊆ g(x1) · N . Also note that, 0 ≤ |g(x0)|/|g(x1)| ≡ λ ≤ 1 is not an absorber of N , it follows that
N/λ = N by Proposition 2.2.26. Consequently, g(x) ·N ⊆ g(x1) ·N = (g(x0)/λ) ·N = g(x0) ·N . Hence,
f(x) + g(x) ·N ≥ f(x0) + g(x0) ·N for all x ∈ X . In particular, when x0 = x1 we have |g(x0)|/g(x1)| = 1

which is not an absorber of N . This implies the last conclusion.

Remark 8.3.18. In this theorem we need the condition that |g(x0)|/|g(x1)| is not an absorber of N . In some
special cases this condition is easy to verify. We list here some these cases.

(i) If g(x0), g(x1) ∈ ±@ then g(x0)|/|g(x1)| ∈ @ are not an absorber of N .

(ii) If g is a standard function on X and x0, x1 are standard points, then the condition is true if g(x0) ̸= 0.

(iii) Assume that g is standard and continuous onX , g(x) ̸= 0 for all x ∈ X , and |g(x1)| ∈ @. If x0 ∈ X ∩ £
then g(x0)/g(x1) is not an absorber of N . Indeed, since g(x) is standard, for all st(x) ∈ X , g(x) is
standard. Also g(x) ̸= 0, it follows that g(x) ∈ @ for st(x) ∈ X . On the other hand, for x0 ∈ X ∩ £,
there exists st(z) such that x0 ≃ z. Since g(x) is continuous so that g(x0) ≃ g(z) ∈ @. It follows by
remark 1 above that g(x0)/g(x1) is not an absorber of N .
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(iv) Assume that the function g is continuous, standard and satisfies the conditions g(x) ∈ ⊘ ⇒ x ∈ ⊘ for all
x ∈ X , |g(x1)| ∈ @. If x0 ∈ ±@∩X then g(x0)/g(x1) is not an absorber ofN . In particular, x0 ̸= 0 is
standard, then the condition is true. Indeed, because g(x) is standard, it follows that g(x) is standard for all
st(x). In particular, |g(x)| ∈ @. Because x1 is standard, |g(x1)| ∈ @. Also x0 ∈ ±@ ∩X so that there
exists st(z) such that x0 ≃ z. On the other hand, g(x) is continuous, it implies that g(x0) ≃ g(z) ∈ @.

By Remark 8.3.18(i), g(x0)/g(x1) is not an absorber of N .

To generalize Theorem 8.3.17, where F (x) = f(x) + g1(x)N1 + · · · + gk(x)Nk, we need first the following
lemma:

Lemma 8.3.19. Put G(x) = g1(x)N1 + · · · + gk(x)Nk = max{g1(x)N1, . . . , gk(x)Nk} where gi(x), 1 ≤
i ≤ k are real functions on X ⊆ Rn, X ̸= ∅ and N1, . . . , Nk are scalar neutrices. Assume that there exists
xi which is a maximizer of |gi(x)| on X , for 1 ≤ i ≤ k. Then there exists xm ∈ {x1, . . . , xk} such that
G(xm) = max{G(x1), . . . , G(xk)} = gm(xm) ·Nm.

Proof. Assume thatG(xm) = max{G(x1), . . . , G(xk)} = gr(xm)Nr. Since xr is a maximizer of gr onX , we
have gr(xm)Nr ⊆ gr(xr)Nr. So

G(xm) = gr(xm)Nr ⊆ gr(xr)Nr ⊆ g1(xr)N1 + · · ·+ gk(xr)Nk = G(xr). (8.18)

On the other hand, it holds thatG(xr) ⊆ G(xm). It follows by (8.18) thatG(xm) = G(xr) = gr(xr) ·Nr.

Applying the Theorem 8.3.17 for G(x) we obtain one more general result as follows:

Theorem 8.3.20. Let X ⊆ Rn, X ̸= ∅ and F : X −→ E be a flexible function given by F (x) = f(x) +

g1(x)N1 + · · · + gk(x)Nk, where f(x), gi(x), 1 ≤ i ≤ k are internal functions and N1, . . . , Nk are scalar
neutrices. Assume that x0 ∈ X is a minimizer of f(x) onX and xi, 1 ≤ i ≤ k are maximizers of |gi(x)| onX ,
respectively. Let xm ∈ {x1, . . . , xk} be a point such that G(xm) = max{G(x1), . . . , G(xk))} = gm(xm)Nm.
If |gm(x0)|/|gm(xm)| is not an absorber of Nm, the point x0 is an optimal solution of optimization problem
(8.12). In particular, if x0 = xm then x0 is an optimal solution of (8.12).

Proof. The theorem follows from Lemma 8.3.19 and Theorem 8.3.17.

Example 8.3.21. Consider the optimization problem

min
x∈R

F (x) = min
x∈R

(
x2 +

⊘
1 + x2

)

The function f(x) = x2 obtains the minimum at x0 = 0 and g(x) =
1

1 + x2
> 0 obtains the maximum at x0.

So NF (x) =
⊘

1 + x2
⊆ NF (0) = ⊘ for all x ∈ X . Hence x = 0 is an optimal solution.

Example 8.3.22. Let F : X ≡ [0, 1] −→ E be given by F (x) = ex + cosx ⊘ + ln(1 + x)ϵ£ with ϵ > 0 an
infinitesimal. Consider the problem min

x∈[0,1]
F (x).
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Let f(x) = ex, g1(x) = cosx, g2(x) = ln(1 + x) and G(x) = cosx ⊘ + ln(1 + x)ϵ£ for all x ∈ [0, 1].
Now x = 0 is a minimizer of f on [0, 1] and x = 0 is also a maximizer of g1 on [0, 1]. In addition, x = 1

is a maximizer of g2 on [0, 1]. As a consequence, max{G(0), G(1)} = G1(0) = ⊘. By Theorem 8.3.20 we
conclude that x = 0 is a minimizer of F on [0, 1].

8.4 Optimality conditions based on parameter methods

In this section we use a parameter method to study an optimization problem with flexible objective function. In
fact, we will consider the optimization problem of the form

min
x∈X

F (x;α1, . . . , αn), (8.19)

where X ⊆ Rn, X ̸= ∅, αi, 1 ≤ i ≤ n are external numbers and

F (x;α1, . . . , αn) =
{
F (x; a1, . . . , an)

∣∣∣ai ∈ αi, (1 ≤ i ≤ n)
}
.

In this case we will treat external numbers as a collection of parameters. The optimization problem

min
x∈X

F (x; a1, . . . , an) (8.20)

is called an associated optimization problem with precise objective of the problem min
x∈X

F (x;α1, . . . , αn), where
(a1, . . . , an) ∈ (α1, . . . , αn).

Next we provide conditions such that an optimal solution or an approximate optimal solution of the problem
(8.19) can be determined through the sets of optimal solutions of problems of the form (8.20).

Theorem 8.4.1. Let X ⊆ Rn, X ̸= ∅ and F (., α1, . . . , αn) be a flexible function defined on X . Consider the
optimization problem

min
x∈X

F (x;α1, . . . , αn). (8.21)

Let S(a1, . . . , . . . , an) be the set of optimal solutions of the problem

min
x∈X

F (x; a1, . . . , an) (8.22)

for each (a1, . . . , an) ∈ (α1, . . . , αn). If
∩

(α1,...,αn)

S(a1, . . . , an) is not empty, every point

x0 ∈
∩

(α1,...,αn)

S(a1, . . . , an)

is an optimal solution of (8.21).

Proof. We will show that F (x;α1, . . . , αn) ≥ F (x0;α1, . . . , αn). Indeed, for each x ∈ X , taking y ∈
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F (x;α1, . . . , αn). Then there exists ai ∈ αi, 1 ≤ i ≤ n such that y = F (x; a1, . . . , an). Since x0 ∈∩
ai∈αi

S(a1, . . . , an), one has x0 ∈ S(a1, . . . , an). It follows that y = F (x; a1, . . . , an) ≥ F (x0; a1, . . . , an)

which belongs to F (x0;α1, . . . , αn). Hence F (x;α1, . . . , αn) ≥ F (x0;α1, . . . , αn).

For each ai ∈ αi, 1 ≤ i ≤ n we have a conventional optimization problem min
x∈X

F (x, a1, . . . , an). So we can
apply results in the classical optimal theory to solve this problem. Then we verify the condition∩

(α1,...,αn)

S(a1, . . . , an) ̸= ∅.

If this set is not empty then we can find optimal solutions. As a consequence we apply this result for convex
functions of one variable.

Theorem 8.4.2. Suppose that for each (a1, . . . , an) ∈ (α1, . . . , αn), the function F (x; a1, . . . , an) is convex
and differentiable on X . Let S(a1, . . . , an) be the set of solutions of the equation

F ′(x; a1, . . . , an) = 0. (8.23)

Assume also that
∩

(α1,...,αn)

S(a1, . . . , an) is not empty. Then every point x0 ∈
∩

(α1,...,αn)

S(a1, . . . , an) is an

optimal solution of the problem (8.21).

Proof. Since the function F (x; a1, . . . , an) is convex on X , S(a1, . . . , an) is the set of optimal solutions of
min
x∈X

F (x; a1, . . . , an). This implies that x0 is an optimal solution of the problem (8.19) by Theorem (8.4.1).

Example 8.4.3. Consider the following problem

min
x∈R

F (x) = (1 +⊘)x2.

For each ϵ ∈ ⊘, one has
F ′(x, ϵ) = (1 + ϵ)2x and F ′′(x, ϵ) = 2(1 + ϵ) > 0.

Consequently, the function F (x, ϵ) is convex and the set of optimal solution of its is Sϵ = 0. Hence the optimal
solution of the given problem is x = 0.

Theorem 8.4.4. Let F :X −→ E be a flexible function of the form 8.19 andN be a neutrix. Let S(a1, . . . , an)
be the set of solutions of problem 8.20 for (a1, . . . , an) ∈ (α1, . . . , αn) and S =

∪
ai∈αi
1≤i≤n

S(a1, . . . , an). Assume

that F (u)− F (v) ⊆ N for all u, v ∈ S and S(a1, . . . , an) ̸= ∅ for all a = (a1, . . . , an) ∈ α = (α1, . . . , αn).
Then every point in S is an N -optimal solution of min

x∈X
F (x).

Proof. Let v ∈ S.Wewill show that F (x)−F (v) ≥ N for all x ∈ X . By assumption we have F (x)−F (v) ≥
N for all x ∈ S. Let x ∈ X\S. Pick y ∈ F (x) and z ∈ F (v). Then there exists ai, a′i ∈ αi, 1 ≤ i ≤ n such that
y = F (x; a1, . . . , an) and z = F (v, a′1, . . . , a

′
n). Let u0 ∈ S(a1, . . . , an).We have y ≥ F (u0; a1, . . . , an). So

y − z = y − F (u0; a1, . . . , an) + F (u0; a1, . . . , an)− z ≥ N. Hence F (x)− F (v) ≥ N .
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Example 8.4.5. Let F : (0,∞) −→ E be given by F (x) = − ln(x)(1 + ϵ£) + x for all x > 0. Consider the
problem min

x>0
F (x). We will show that every point in 1 + ϵ£ is ⊘-minimizer of F on (0,∞).

Let f(x, µ) = − ln(x)(1+µ)+x for x > 0, µ ∈ ϵ£. A short calculation shows that xµ = 1+µ is a minimizer
of f(., µ) on (0,∞). Let S = 1 + ϵ£. Then for u, v ∈ S we have F (u) − F (v) ⊆ ⊘. By Theorem 8.4.4 we
conclude that every point in S is an ⊘-minimizer of F on (0,∞).

Theorem 8.4.6. Let X ⊆ Rn, X ̸= ∅ and

F : X−→ E

x 7−→ F (x;α1, . . . , αn) =
{
F (x; a1, . . . , an)

∣∣∣ai ∈ αi, (1 ≤ i ≤ n)
}
.

be a flexible function. LetM,N be neutrices. Let S(a1, . . . , an) be the set of optimal solutions of

min
x∈X

F (x, a1, . . . , an) (8.24)

for each a = (a1, . . . , an) ∈ α = (α1, . . . , αn) and S =
∩

(α1,...,αn)

S(a1, . . . , an). Assume that F is M × N -

strongly continuous on X and S ̸= ∅. Then every point x0 ∈ X being M -close to S is a minimizer or N -
minimizer of F on X .

Proof. Let x0 ∈ X beM -close to S. Then there exists x′0 ∈ S such that x0 ∈ x′0 +M. Because F isM ×N -
strongly continuous, it holds that

F (x0) ⊆ F (x′0) +N. (8.25)

By Theorem 8.4.2, the point x′0 is an optimal solution of the problem (8.19). If NF (x0) ⊆ N , from formula
(8.25) we conclude that x0 is an N -optimal solution of the problem (8.21). Otherwise we conclude that x0 is
an optimal solution of F on X .

Example 8.4.7. Consider the problem
min
x∈R

F (x) = |x|+⊘.

One has, for each ϵ ∈ ⊘ the problem min
x∈R

F (x, ϵ) takes optimal solution Sϵ = {0} if ϵ ≥ 0 and Sϵ = {±ϵ}
if ϵ < 0. Therefore, the set of optimal solutions of the problem is S = ⊘. We give a sufficient condition for
approximate solutions.

8.5 Optimality conditions based on set-valued mapping

Each external number is an external set of real numbers, so each flexible function can be seen as a set-valued
mapping. However, the values of a flexible function are usually external sets, hence some results of the theory of
set-valued mapping may not apply. Below we use the notion of radical cone to construct a type of derivative of
flexible functions. Then we apply this notion to formulate necessary and sufficient conditions for the existence
of optimal solutions of an optimization problem with flexible objective functions.
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Definition 8.5.1. Let F : X −→ E be a flexible function defined onX ⊆ Rn, X ̸= ∅.

(i) The graph of F , denoted by Gr(F ), is the set of points

Gr(F ) =
{
(x, y)

∣∣x ∈ X, y ∈ F (x)
}
.

(ii) The epigraph of F , denoted by epi(F ),

epi(F ) =
{
(x, y)

∣∣∃z ∈ F (x), z ≤ y
}
.

Definition 8.5.2. Let X ⊆ Rn. A flexible function F : X −→ E is said to be convex if epi(F ) is convex.

For example, the flexible function F : R −→ E be given by F (x) = ex + ⊘ for x ∈ R. Then F is convex on
R. Indeed, we have epi(F ) =

{
(x, y) ∈ R2

∣∣y ≥ ex +⊘
}
. Let (x1, y1), (x2, y2) ∈ epi(F ) and λ ∈ [0, 1]. We

need to show that (x, y) = λ(x1, y1) + (1− λ)(x2, y2) ∈ epi(F ). One has

λy1 + (1− λy2) ≥ λ(ex1 +⊘) + (1− λ)(ex2 +⊘) = λex1(1− λ)ex2 + λ⊘+(1− λ)⊘ .

Because ex is convex on R, it follows that

λex1(1− λ)ex2 ≥ eλx1+(1−λ)x2 . (8.26)

Also, we show that
λ⊘+(1− λ)⊘ = ⊘. (8.27)

For λ ∈ ⊘, λ ≥ 0, it holds that 1− ϵ ∈ @. So formula (8.27) holds. For λ ∈ [0, 1], λ ̸∈ ⊘, formula (8.27) also
holds.

Formulas (8.26) and (8.27) imply that

λy1 + (1− λy2) ≥ eλx1+(1−λ)x2 +⊘.

Hence λ(x1, y1) + (1− λ)(x2, y2) ∈ epi(F ). We recall some notions in the theory of set-valued mapping. For
more details we refer to the article [7] and books [5, 1]. The definitions below are as in [5, Def. 2.54, p. 44].

Let S ⊆ Rn and x ∈ Rn.

(i) The radical cone is defined by

RS(x) = {h ∈ X : ∃t∗ > 0, ∀t ∈ [0, t∗], x+ th ∈ S}. (8.28)

(ii) The contingent (Bouligand) cone is defined by

TS(x) = {h ∈ Rn : ∃tn↓0, d(x+ tnh, S) = o(tn)} . (8.29)
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(iii) The inner tangent cone is defined by

T i
S(x) = {h ∈ Rn : d(x+ th, S) = o(t), t ≥ 0} . (8.30)

(iv) The Clark tangent cone is defined by

T c
S(x) := {h ∈ Rn : ∀tn ↓ 0,∀xn −→S x, ∃hn −→ h such that ∀n, xn + tnhn ∈ S} . (8.31)

In the article [7] the contingent derivative is defined and written as

CF (x0, y0) = TGr(F )(x0, y0)

and derivative of F at (x0, y0) is defined as written as

DF (x0, y0) = T c
Gr(F )(x0, y0).

In other words, y ∈ CF (x0, y0)(x) if and only if (x, y) ∈ TGr(F )(x0, y0) and y ∈ DF (x0, y0)(x) if and only if
(x, y) ∈ T c

S(x0, y0).

Using these notions, in [7] necessary and sufficient conditions for maximality of problems max
x∈X

F (x) are given,
where F : X ⇒ P(R) is an internal set-valued mapping.

The two theorems below are modified versions of results in [7] which are stated for the case F (x) ⊂ R, x ∈ X .

Theorem 8.5.3. Let F : A ⇒ P(R) be a set-valued mapping. If x0 is a maximal point of F at y0, for all x ∈ A

CFA(x0, y0)(x) ≤ 0,

and hence
DFA(x0, y0)(x) ≤ 0.

Theorem 8.5.4. Let F be concave on a convex set A ⊂ Dom(F ). IfDF (x0, y0)(x− x0)∩ [0,+∞) = {0} for
all x ∈ A, then x0 is a maximal point at y0, i.e. y0 ∈ F (x0) and for all y ∈ ImF we have y ≤ y0.

As for F a flexible function, in general, F (A) is an external set. We can not use formulas (8.29)-(8.31) since the
distance from a point to an external set does not exists. Because the notion of radical cone 8.28 does not use the
notion of metric, we will modify this notion and then apply it to construct necessary and sufficient conditions
for optimality problems with flexible objectives.

Definition 8.5.5. Let F : X → E be a flexible function defined on X ⊆ Rn. Let (x0, y0) = Gr(F ). We define
the radical derivative of F at (x0, y0) ∈ Gr(F )

DF (x0, y0) =
{
(x, y) ∈ Rn+1

∣∣(x0, y0) + t(x, y) ∈ epi(F ),∀t ∈ [0, 1]
}
.

We write y ∈ DF (x0, y0)(x) if and only if (x, y) ∈ DF (x0, y0)
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Example 8.5.6. Consider the flexible function F : R −→ E given by F (x) = x2 + ⊘. It is easy to verify that
F is convex on R. We have

DF (0, 0) =
{
(x, y) ∈ R2

∣∣∣y ≥ x2 +⊘
}

and
DF (−1, 1) =

{
(x, y) ∈ R2

∣∣∣y ≥ (x− 1)2 +⊘− 1
}
.

Indeed, let (x, y) ∈ DF (−1, 1). Then (−1, 1) + (x, y) ∈ epi(F ). So y + 1 ≥ (x− 1)2 +⊘.

Generalizing Example (8.5.6), let F : R −→ E be a flexible convex function on R. Then

DF (x0, y0)(x− x0) =
{
y − y0, y ≥ F (x)

}
for all x ∈ R. Indeed, let z ∈ DF (x0, y0)(x − x0). Then (x0, y0) + (x − x0, z) ∈ epi(F ). This implies that
z + y0 ≥ F (x). Put y = z + y0. Then DF (x0, y0)(x− x0) = {y − y0 y ≥ F (x)}.

Theorem 8.5.7. Let F :X ⊆ Rn −→ E be a flexible function andNF be the neutrix part of F . Assume that x0
is a minimizer of F on X . Then

DF (x0, y0)(x) ∩ R− ⊆ NF (x0) for all x ∈ X.

Proof. Let y0 ∈ F (x0). We suppose to contrary that there exists x̂, ŷ such that ŷ ∈ DF (x0, y0)(x̂) ∩ R−, ŷ ̸∈
N(x0). Because ŷ ∈ R−, the fact ŷ ̸∈ N(x0) implies that ŷ < N(x0). Since, ŷ ∈ DF (x0, y0)(x̂), by the
definition, there exists (x, y) ∈ epi(F ) such thatx0 + x̂ = x

y0 + ŷ = y.

One has (x, y) ∈ epi(F ) so that

y ≥ F (x) ≥ F (x0) = y0 +NF (x0). (8.32)

Also ŷ < NF (x0). It follows that
y = y0 + ŷ < y0 +NF (x0),

which is a contradiction to (8.32).

To illustrate this theorem we consider the simple following examples.

Example 8.5.8. Consider the flexible function F : R −→ E given F (x) = x2 +⊘. We knew that x = 0 is an
minimizer of F on R and NF (0) = ⊘. Also

DF (0, 0) =
{
(x, y) ∈ R2

∣∣∣y ≥ x2 +⊘
}
.
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For x /∈ ⊘, we have DF (0, 0)(x) = {y
∣∣y ≥ x2 + ⊘ > ⊘}. It follows that DF (0, 0)(x) ∩ R− = ∅ ⊆ ⊘ =

NF (0). For x ∈ ⊘ we have DF (0, 0)(x) = {y
∣∣y ≥ ⊘}. It follows that DF (0, 0)(x) ∩ R− = ⊘. We see that

the conclusion is true in this case.

Using this theorem we also know that the point x = −1 is not a minimizer of F on R. Indeed, we have
C(−1, 1) ∈ Gr(F ) and DF (−1, 1)(1) = {y ∈ R

∣∣ y ≥ −1 + ⊘}. It follows that DF (−1, 1)(1) ∩ R− ̸⊆
NF (−1) = ⊘. By Theorem 8.5.7 we conclude that C(−1, 1) is not a minimizer of F on R.

Example 8.5.9. Let ϵ > 0 be infinitesimal. Consider the flexible functionF :R −→ E given byF (x) = |x|+ϵ£
for all x ∈ R. Clearly, x = 0 is a minimizer of F on R and NF (0) = ϵ£. We also have that

DF (0, 0) = {(x, y) ∈ Rn
∣∣ y ≥ |x|+ ϵ£}.

Then for x /∈ ϵ£ we have DF (0, 0)(x) ∩ R− = ∅ ⊂ ϵ£ = NF (0), for x ∈ ϵ£ we have DF (0, 0)(x) ∩ R− =

ϵ£ = NF (0). So the conclusion is true in this case.

In addition, using this theorem we can verify that x = 1 is not a minimizer of F on R. Indeed, we have C =

(1, 1) ∈ Gr(F ) andDF (1, 1) = {(x, y) ∈ R2
∣∣ y ≥ (|x+1|+ϵ£−1). It follows that−1 ∈ DF (1, 1)(−1)∩R−

and −1 ̸∈ ϵ£. So DF (1, 1)(−1) ∩ R− ̸⊆ ϵ£ = NF (1).

Theorem 8.5.10. Let F (x) be a convex flexible function on X . If DF (x0, y0)(x − x0) ∩ R− ⊆ NF (x0), the
point x0 is a minimizer of F (x) on X .

Proof. Suppose on contrary that x0 is not a minimizer of F on X . Then there exists x1 ∈ X and y1 ∈ F (x1)

such that y1 < F (x0) = y0 + NF (x0). This implies that y1 − y0 < NF (x0). Moreover, (x0, y0) + (x1 −
x0, y1−y0) = (x1, y1) ∈ Gr(F ) ⊆ epi(F ). Because epi(F ) is convex, one has (x0, y0)+t(x1−x0, y1−y0) =(
x0(1−t)+tx1, y0(1−t)+ty1

)
∈ epi(F ) for all t ∈ [0, 1]. It follows that y1−y0 ∈ DF (x0, y0)(x1−x0)∩R−

and y1 − y0 < NF (x0), which is a contradiction to the assumption. Hence x0 is a minimizer of F on X .

8.6 Lagrange multiplier

In this section we develop a modified version of the Lagrange multiplier method for optimization problem with
flexible objective function. Recall that a conventional optimization problem has a minimizer x0, the Lagrange
multiplier method confirms that there exist multipliers λ = (λ1, . . . , λm) such that

∂f

∂xj
(x0) +

m∑
i=1

λi
∂gi
∂xj

(x0) = 0(j = 1, . . . , n)

gi(x0) = 0

In this context we will show that there are Lagrange multipliers and a neutrixK such that
∂NF

∂Mxj
(x0) +

m∑
i=1

λi
∂gi
∂xj

(x0) ⊆ K(j = 1, . . . , n)

gi(x0) = 0.
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Let F : Rn −→ E be a flexible function. Consider the optimization problem

min
x∈Rn

F (x) (8.33a)

subject to the constraints 
g1(x1, . . . , xn) = 0

...
...

gm(x1, . . . , xn) = 0,

(8.33b)

wherem < n.

Theorem 8.6.1. LetN1, N2,M1,M2 be neutrices such that (N1)A ⊆ M1, (N2)A ⊆ N2. Consider the problem
(8.33a)-(8.33b). Let h = (h1, . . . , hm) be a vector implicit function determined by the constraints (8.33b).
Assume that F isM2×N2- totally differentiable, and gi isM1×N1-totally differentiable for all i = 1, . . . ,m.

LetH(x) =
n∑

i=1
Hi(x) whereHi(x) = N1 +N2 +N2

1 +N2
2 +

∂N1hi
∂M1xi

(x)N2 +
∂N2F

∂M2xi
(x)N1. We assume that

x0 is an H(x0)-minimizer of the problem (8.33a)-(8.33b), and that

(i) The function gi is continuously differentiable on Rn.

(ii) The derivative g′ is M1 × N1-continuous at x0 and g′(x) ∈ N
MDg(x) for all x ∈ Z, here Z is an M1

neighbourhood of x0,

(iii) ∥g(x + h) − g(x)∥ ≤ r∥h∥ for all x, x + h ∈ Z where Z is an M1-neighbourhood of x0 and r−1 is not
an absorber ofM1.

(iv) Let A(x) =



1 · · · 0 · · · 0
... . . . ... . . . ...
0 · · · 1 · · · 0

a11 · · · a1(n−m) · · · a1n
... . . . ... . . . ...

am1 · · · am(n−m) · · · amn


, where aij =

∂gi
∂xj

(x), 1 ≤ i ≤ m; 1 ≤ j ≤ n. Then

∥A−1(x0)∥−1 > N1 and
∥∥∥(A(x)

)−1
∥∥∥ is not an absorber of N1 on anM1-neighbourhood of x0.

(v) The flexible function F isM2-outer N2-inner continuous at x0.

(vi) The flexible function F isM2 ×H(x0)-totally differentiable at x0.

Then there exist a neutrixK and λ(0) = (λ1, . . . , λm) ∈ Rm such that
∂N2F

∂M2xj
(x0) +

m∑
i=1

λi
∂gi
∂xj

(x0) ⊆ K(j = 1, . . . , n)

gi(x0) = 0

where K is determined through N , the partial derivatives of gi(x0) and N -partial derivatives of hi(u0) with
u0 = (x

(0)
1 , . . . , x

(0)
n−m), h(u0) = (x

(0)
n−m+1, . . . , x

(0)
n ), x0 = (u0, h(u0)).
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Proof. Let xn−m+j = yj , 1 ≤ j ≤ m. Because the vector function g = (g1, . . . , gm) satisfies all conditions
in Theorem 6.11.1, the system (8.33b) determines the implicit function h: U ⊆ Rn−m → Rm such that for all
u = (x1, . . . , xn−m) ∈ U, h(u) =

(
h1(u), . . . , hm(u)

)
.

On the other hand, F (x1, . . . , xn−m, h1(xx1 , . . . , xn−m), . . . , hm(x1, . . . , xn−m)) has theH(x0)-minimum at
x0, due to Theorem 8.2.4 it holds that

∂H0F

∂M2xj
(x0) = H(x0) ≡ H0, for all i = 1, . . . , n−m.

By formula (6.12) we have

∂N2F

∂M1xj
(x0)(1 +N2) +

m∑
i=1

∂N2F

∂M2yi
(x0)

∂N1hi
∂M1xj

(u0) = H0, for all j = 1, . . . , n−m.

Hence there exist a neutrix G and representatives
∂N2f

∂M2xj
(x0) of

(
∂N2F

∂M2xj
(x0)

)
for all 1 ≤ j ≤ n −m such

that
∂N2f

∂M2xj
(x0) +

∂N2f

∂M2y1
(x0)

∂N1h1
∂M1xj

(u0) + · · ·+ ∂N2f

∂M2ym
(x0)

∂N1hm
∂M1xj

(u0) = G ⊆ H0. (8.34)

In addition, by assumption (iv) it holds that |J | = det


∂g1
∂y1

(x0) · · · ∂g1
∂ym

(x0)

... . . . ...
∂gm
∂y1

(x0) · · · ∂gm
∂ym

(x0)

 ̸= 0, the system


λ1

∂g1
∂y1

(x0) + · · ·+ λm
∂gm
∂y1

(x0) =
∂Nf

∂x1
(x0)

...

λ1
∂g1
∂ym

(x0) + · · ·+ λm
∂gm
∂ym

(x0) =
∂Nf

∂ym
(x0)

(8.35)

has the unique solution λ(0) corresponding to unknown variables λi, i = 1, . . . ,m.

Furthermore, because gi(x1, . . . , xn) = 0 for all i = 1, . . . ,m, it holds that
∂gi
∂xj

(x) = 0, ∀ i = 1, . . . ,m;∀ j =

1, . . . , n. By the formula of composition derivatives, for each j = 1, . . . , n−m we have

∂g1
∂xj

(x0) +
∂g1
∂y1

(x0)
∂h1
∂xj

(u0) + · · ·+ ∂g1
∂ym

(x0)
∂hm
∂xj

(u0) = 0

...
∂gm
∂xj

(x0) +
∂gm
∂y1

(x0)
∂h1
∂xj

(u0) + · · ·+ ∂gm
∂ym

(x0)
∂hm
∂xj

(u0) = 0.

(8.36)
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Let Ai =
m∑
j=1

∂gi
∂yj

N1. Due to
∂N1hk
∂M1xj

(u0) =
∂hk
∂xj

(u0) +N1, formula 8.36 implies



∂g1
∂xj

(x0) +
∂g1
∂y1

(x0)
∂N1h1
∂M1xj

(u0) + · · ·+ ∂g1
∂ym

(x0)
∂N1hm
∂M1xj

(u0) = A1

...
∂gm
∂xj

(x0) +
∂gm
∂y1

(x0)
∂N1h1
∂M1xj

(u0) + · · ·+ ∂gm
∂ym

(x0)
∂N1hm
∂M1xj

(u0) = Am.

It follows that
λ1

(
∂g1
∂xj

(x0) +
∂g1
∂y1

(x0)
∂N1h1
∂M1xj

(u0) + · · ·+ ∂g1
∂ym

(x0)
∂N1hm
∂M1xj

(u0)

)
= λ1 ·A1

. . .

λm

(
∂gm
∂xj

(x0) +
∂gm
∂y1

(x0)
∂N1h1
∂M1xj

(u0) + · · ·+ ∂gm
∂ym

(x0)
∂N1hm
∂M1xj

(u0)

)
= λm ·Am.

Put λiAi = Li,∀i = 1, . . . ,m. As a result,

m∑
i=1

λi
∂gi
∂xj

(x0) +
m∑
i=1

λi
∂gi
∂y1

(x0)
∂N1h1
∂M1xj

(u0) + · · ·+
m∑
i=1

λi
∂gi
∂y1

(x0)
∂N1hm
∂M1xj

(u0)

=L1 + · · ·+ Lm. (8.37)

Subtracting (8.37) from (8.34) we obtain(
∂N2f

∂M2xj
(x0)−

m∑
i=1

λi
∂gi
∂xj

(x0)

)
+

(
∂N2f

∂M2y1
(x0)

∂N1h1
∂M1xj

(u0)−
m∑
i=1

λi
∂gi
∂y1

(x0)
∂N1h1
∂M1xj

(u0)

)

+ · · ·+

(
∂N2f

∂M2ym
(x0)

∂N1hm
∂M1xj

(u0)−
m∑
i=1

λi
∂gi
∂y1

(x0) ·
∂N1hm
∂M1xj

(u0)

)
= G+ L1 + · · ·+ Lm ≡ K. (8.38)

Because of subdistributivity it follows that(
∂N2f

∂M2xj
(x0)−

m∑
i=1

λi
∂gi
∂xj

(x0)

)
+

(
∂N2f

∂M2x1
(x0)−

m∑
i=1

λi
∂gi
∂x1

(x0)

)
∂N1h1
∂M1xj

(u0)

+ · · ·+

(
∂N2f

∂M2xm
(x0)−

m∑
i=1

λi
∂gi
∂x1

(x0)

)
∂N1hm
∂M1xj

(u0)

⊆

(
∂N2f

∂M2xj
(x0)−

m∑
i=1

λi
∂gi
∂xj

(x0)

)
+

(
∂N2f

∂M2x1
(x0)

∂N1h1
∂M1xj

(u0)−
m∑
i=1

λi
∂gi
∂x1

(x0)
∂N1h1
∂M1xj

(u0)

)

+ · · ·+

(
∂N2f

∂M2xm
(x0)

∂N1hm
∂M1xj

(u0)−
m∑
i=1

λi
∂gi
∂xm

(x0)
∂N1hm
∂M1xj

(u0)

)
⊆ K. (8.39)
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By formula (8.35) we obtain(
∂N2f

∂M2xj
(x0)−

m∑
i=1

λi
∂gi
∂xj

(x0)

)
+

(
∂N2f

∂M2x1
(x0)−

m∑
i=1

λi
∂gi
∂x1

(x0)

)
∂N1h1
∂M1xj

(u0)+

· · ·+

(
∂N2f

∂M2xm
(x0)−

m∑
i=1

λi
∂gi
∂xm

(x0)

)
∂N1hm
∂M1xj

(u0) =
∂N2f

∂M2xj
(x0)−

m∑
i=1

λi
∂gi
∂xj

(x0) (8.40)

By (8.39) and (8.40) one has
∂N2f

∂M2xj
(x0)−

∑m
i=1 λi

∂gi
∂xj

(x0) ∈ K.
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left, 156
right, 156

M ×N -convergent, 145
M ×N -derivative, 161

left, 162
right, 162

M ×N -differentiable, 161, 162
M ×N -divergence, 145
M ×N -limit, 145

right, 153
M ×N -partial derivative, 165
M ×N -total derivative, 165
M ×N -totally differentiable, 165
N -converge, 121

N -divergent, 121
N -inner continuous, 159
N -limit, 121, 123
N -maximal value, 190
N -maximizer, 190
N -maximum, 190
N -minimal value, 189
N -minimizer, 189
N -minimum, 189
N -optimal value, 190

absolute value, 9, 10
absorber, 13

bound
greatest lower, 21, 22
least upper, 21

constant term, 45
continuous, 154
convexification, 21
Cramer

-solution, 51
conditions, 48

decreasing with order stepM , 163
dimension of pseudo-face, 182
direction, 176

extreme, 176
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external, 5
cut, 20
function, 5
number, 8
limited, 14
negative, 9
non-negative, 9
non-positive, 9
positive, 9
zeroless, 8

sequence, 5
external formula, 5
extreme point, 176

face, 176
flexible

system of linear equations, 44
function, 142
convex, 206

sequence, 120
bounded, 124
eventually bounded, 124
unbounded, 124
zeroless, 130

system, 44
associated homogeneous, 92
Gauss-Jordan eliminable, 64, 72
homogeneous, 45
non-homogeneous, 45
non-singular, 45
reduced, 46
singular, 45
solvable, 92
upper homogeneous, 45

Gauss-Jordan procedure, 65

increasing with order stepM , 163
infimum, 20
inner convergent, 157
internal, 5

cut, 20
function, 5

sequence, 5

limit
M ×N -outer, 160
left, 160
right, 160

inner, 157
strong, 134

linearly
dependent, 29
independent, 29

local N -minimizer, 191
local minimizer, 191
lower

boundary, 20
convexification, 21
halfline, 20

M-close, 144
matrix

coefficient, 44
representative
reduced, 27

augmented, 45
coordinate, 32
Gaussian operation, 65
near identity, 26
non-singular, 26
reduced, 26
representative, 27
singular, 26

maximizer, 174, 188
maximum, 188
minimal value, 188
minimizer, 174, 188
minimum, 188
minor-rank, 34
monotone with order stepM , 163

nearly linear programming, 174
nearly linear programming problem with flexible

objective function and constraints, 174
neutricial, 9
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neutrix, 6
idempotent, 8
part, 8, 123, 142

nonstandard
analysis, 5

norm, 23
number

appreciable, 6
infinitely large, 6
infinitesimal, 5
limited, 6
nonstandard, 5
standard, 5
unlimited, 6

outerM -ball, 144

point
M -interior, 144
N -extreme, 190
N -optimal, 190
accumulation, 144

power n of an external number, 11
problem

representative, 196
projection, 20
pseudo-face, 182

radical derivative, 207
real neighbourhood, 144
real part, 8
relative

precision, 48
uncertainty, 13, 47

representative, 8, 142
restricted Gauss elimination, 106
restricted Gauss operations, 106
root, 19
row-rank, 34

second (M1,M2)× (N1, N2)-derivative, 163
sequence

N -Cauchy, 132
strongly N -Cauchy, 138

set
cofinal, 131

solution
M -local N -maximal, 191
M -local N -minimal, 191
N -maximal, 190
N -minimal, 189
N -optimal, 190
admissible, 46
real, 46

exact, 46
feasible, 174
Gauss, 79
maximal, 46, 188
minimal, 188
optimal, 174, 188

strict rank, 35
strictly decreasing with order stepM , 163
strictly increasing with order stepM , 163
strong limit, 139
strongly convergent, 134
subdistributivity, 11
subsequence, 131
supremum, 20
system

Gaussian equivalent, 88
strict rank of, 87

upper
boundary, 20
convexification, 21
halfline, 20

vector
constant term, 45
variable, 45
near unit, 27
neutrix, 29
rank of, 31
representative, 27
upper neutrix, 27

vertex, 176
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