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Abstract: Allometric scaling relations for how branching tubes deliver fluid 
are often based on the assumption of isothermal conditions which are not 
always fulfilled. This work reports on the sizes of branching tubes for fluid 
flow subjected to constant wall heat flux. It explores how the delivery of fluid 
and heat influences the optimal size of a tube and the optimal configuration of 
branching tubes for both laminar and turbulent flow. Besides, it presents an 
analytical basis for evaluation of optimal size of tubes that minimise the power 
loss associated with the pumping power and the heat transfer. The findings 
obtained in this study may have important implications for design of systems 
with minimum thermodynamic losses. 
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1 Introduction 

Branching flow designs are widespread occurrences in nature and engineering (Bejan, 
2000, 2017; Rodríguez-Iturbe and Rinaldo, 1997; McCulloh et al., 2003; Bejan and 
Lorente, 2008, 2013; Miguel and Rocha, 2018). They involve several geometrical 
configurations and flow regimes (Miguel, 2018). Very often the design these natural 
system provides motivation for the structure of manmade systems for cooling (Escher  
et al., 2009; Rocha et al., 2014; Cetkin et al., 2011, 2015), fluid delivery (Kim et al., 
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2006; Lee et al., 2009), energy generation (Senn and Poulikakos, 2004; Vargas et al., 
2004; Damian-Ascencio et al., 2017), energy storage (Ziaei et al., 2015; Bejan et al., 
2016), catalysis (Coppens, 2012), self-healing composite materials (Bejan et al., 2006; 
Lee et al., 2013, 2018), etc. 

While it is generally accepted that the optimum conditions, governing the ratio of 
diameters of the tubes in a branching network, is achieved when the cube of the parent 
tube diameter is equal to the sum of the cubes of the daughter tube diameters [i.e., the 
Hess-Murray law (Hess, 1917; Murray, 1926)], evidence has shown that this relationship 
is not applied universally to all branching flow systems (Miguel and Rocha, 2018). 
Indeed, in studies examining branching tubes of permeable walls, turbulent flows and 
flows of non-Newtonian fluids, distinct allometric scaling relations were found (Bejan  
et al., 2000; Revellin et al., 2009; Miguel, 2015, 2016a, 2016b, 2018; Pepe et al., 2017). 
A comprehensive review of the most important advances that have been made in 
bifurcated flow networks are presented by Miguel and Rocha (2018). Based on the above, 
accumulating evidence indicates that the Hess-Murray rule is valid only on the 
assumption of an isothermal Hagen-Poiseuille flow, of a Newtonian fluid under a steady 
constant pressure gradient, through a straight tube of rigid and non-permeable walls. 

Most processes involve heat generation and heat exchange between systems. In fact, 
many flow systems are not isothermal, since a part of the external energy is converted 
into internal energy or vice-versa. In this paper, we tackle the question how optimal 
configuration of bifurcating tubes is influenced by both fluid flow and the heat transfer 
rate. A general method is developed with emphasis on total expenditure of power 
required. Minimisation of total power subject to a volume constraint leads to an optimal 
rule between the sizes of tubes. 

2 Theoretical background 

2.1 Total expenditure of power for a tube 

To begin with, consider the case of a fluid flow through a tube whose wall is subjected to 
a constant heat flux. Analysing from a thermodynamics point of view, losses can be 
related with both fluid and heat streams. The losses associated with fluid flow can be 
targeted according to the entropy generation rate due to the fluid flow (= Φh/T) where T is 
the temperature, and Φh is the hydraulic power required to pump the fluid through the 
tube defined as 

2
hΦ Z  (1) 

Here Z is the impedance of the tube given by Δp/  (Miguel, 2018) and 

f 2
DW 2

L ρΔp f
D 2A

 (2) 

where p is the pressure, D is the diameter of the tube, L is the length of the tube, A is the 
cross-sectional area of the tube, f is the fluid density, and fDW is the Darcy-Weisbach 
friction factor. According to the Moody chart 
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DW Dn
D

64f n 1 and Re 2100
Re

 (3) 

0317
10 8

DW Dn
D

0.171εf n 0;0.001 ε 0.03 and 10 Re 10
Re

 (4) 

where ReD is the Reynolds number (4 f  / πDμ), ε is the relative roughness, and μ is the 
dynamic viscosity. 

Besides fluid friction, heat transfer through a temperature difference also causes 
irreversibility. Assuming that the difference between the wall temperature and the bulk 
temperature of the fluid, ΔT, is much less than the wall temperature, T, the entropy 
generation rate due to the flow of heat, SQ, is 

Q 2

QΔTS
T

 (5) 

where Q is the heat flux conveniently expressed by the so-called Newton’s law of 
cooling. The Stanton number is a dimensionless heat transfer number applied to flows 
with forced convective heat transfer, and SQ can be written in the form 

2

Q 2
f p

2AQS
πρ c T DL St

 (6) 

Here St is the Stanton number and cp is the heat capacity. From the definition of entropy 
(second law of thermodynamics), the power associated to heat transfer ΦQ is given by 

Q QΦ TS  (7) 

Substituting equation (7) into equation (6) results in 
2

Q
f p

2AQΦ
πρ c TDL St

 (8) 

The principle of superposition states that the power associated to sources of 
thermodynamic losses, acting together, is equal to the sum of the expenditure of power of 
each source acting alone. Therefore, according to equations (1) and (8) the power 
expended is 

2
2

f p

2AQΦ Z
πρ c TDL St

 (9) 

2.2 Total expenditure of power for bifurcating tubes 

Consider a symmetrically branched tube with a svelteness factor (i.e., the ratio of square 
root of the total external area occupied by the system to the cubic root of the total volume 
of the tubes) higher than the square root of 10 (Wechsatol et al., 2006). This is the 
criterion that has been adopted to consider that the hydraulic impedance at junction of 
tubes is much less than the hydraulic impedance of parent and daughter tubes. 

The impedance of daughter tubes is in parallel (the equivalent impedance is the 
reciprocal of the sum of the reciprocals of the individual impedances), and the impedance 
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of parent tube is in series with daughter tubes (Figure 1). The total impedance of the 
system is (Miguel, 2018) 

d
total p 2 n

ZZ Z
2

 (10) 

where the subscripts p and d mean parent and daughters tubes, respectively. Combining 
equations (2) and (10) one obtains 

pf DW d
total 2 5 2 n 5

p d

L16ρ f 1 LZ
π D 2 D

 (11) 

Thus, the total expenditure of power is obtained substituting equation (11) into  
equation (9), which results in 

2 2
p pDW d d

2 5 2 n 5
p p p dd

L D16f 1 L Q DΦ 2
π c T D 2 D 2St L L

 (12) 

with 

f p f p

Φ QΦ and Q
ρ c T ρ c T

 (13) 

where Φ* and Q* are the dimensionless power and heat flux, respectively. 
Under laminar flow conditions fDW is defined by equation (3), and using equation (12) 

we obtain 

2 2
p q p f dd

f q5 5
p p dd

L C D LC DΦ C C
D 2 L 2 D L

 (14) 

with 

f
f p

256μC
πρ c T

 (15) 

2

q
QC
St

 (16) 

For 106 < ReD ≤ 108 (turbulent flow) combining equations (4) and (12) one obtains 

2 2
p q p F dd

F q6 6
p p dd

L C D LC DΦ C C
D 2 L 4 D L

 (17) 

with 

0.317 2

F 2
p

2.74εC
π c T

 (18) 
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Figure 1 Schematic representation of a symmetrical dichotomous flow system of tubes  
(see online version for colours) 

 

3 Optimal structure of a bifurcating system of tubes 

3.1 Single tubes for optimal hydraulic and thermal performances 

According to equations (14) and (17), the expenditure of power in parent and daughter 
single tubes holds with the following equations: 

5
1 f

1 q3

a C L DΦ b C
L D L

 (19) 

6
t F

t q4

a C L DΦ b C
L D L

 (20) 

with al = at =1 and bl = bt =1/2 for parent tubes, al = 1/2, at = 1/4 and bl = bt =1 for 
daughter tubes. Here the subscripts l and t mean laminar and turbulent flow regimes, 
respectively. According to the constructal law (Bejan, 2000; Bejan and Lorente, 2008), 
maximum performance means minimum power destroyed under space constraints 
(volume, area, or length). For these 3D systems, we consider that the volume V occupied 
by the tubes is a constant 

2πV c D L
4

 (21) 

with c = 1 and c = 2 for parent and daughter tubes, respectively. 
The goal is to obtain the size of tubes (D, L) that bears the minimum power 

dissipation. For each tube, the necessary condition for a minimum expenditure of power 
is that the first-order derivative of the objective function Φ is zero, and second-order 
derivative is positive. The chain rule allows the differentiation of composite functions, 
and 

dΦ dΦ dL
dD dL dD

 (22) 

By using equations (19) and (21) and equations (20) and (21), differentiating Φ* with 
respect to D yields 
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1 q 1 f
2 2 7

8b C VdΦ 8a C V 0
dD πcL D πcD

 (23) 

t q t F
2 2 8

8b C VdΦ 8a C V 0
dD πcL D πcD

 (24) 

From these equations (first-order derivatives), it can be seen that the second-order 
derivatives are positives, thus D and L corresponds to the minimum expenditure of 
power. By setting equations (23) and (24) equal to zero and solving for D/L, we obtain 

1/5
1 f

3
1 q

D a C
L b C L

 (25) 

1/6
t F

4
t q

D a C
L b C L

 (26) 

Notice that while optimal D/L depends on fluid flow rate, these equations also indicate 
that the optimal size is proportional St1/5 but inversely proportional to Q*2/5 in laminar 
flow (equation 25), whereas St1/6 and Q*–1/3 typify turbulent flow [equation (26)]. 

3.2 Optimum way to connect parent and daughter tubes together 

Our goal is to maximise both the hydraulic and thermal performances in a system of 
bifurcating tubes (Figure 1). Maximum performance of entire assembly of tubes means 
minimum total expenditure of power under space constraints (Bejan, 2000; Bejan and 
Lorente, 2008). The total volume, Vtotal, occupied by the tubes is constrained 

2 2
total p p dd

π πV constant D L 2 D L
4 4

 (27) 

The conditions for minimum expenditure of power are dΦ*/dD = 0 and d2Φ*/dD2 > 0. As 
equations (14) and (17) depend both on the sizes of parent and daughter tubes, the chain 
rule helps to find the derivative of these composite functions. Differentiation of these 
equations with respect to Dd, using the chain rule, yields 

p

d p d d

dDdΦ dΦ dΦ
dD dD dD dD

 (28) 

According to equation (27) 
1/22

total dd
p

p

4V 2πD L
D

πL
 (29) 

and for ReD ≤ 2,100, substituting derivatives of equations (14) and (29) into (28) results 
in 

f p q qd d f d
5 5

d p p p p d d

8C L C CdΦ L D 2C L
dD D L L D L D

 (30) 
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2
q df d f d

2 6 6 2
p p pd d

C Ld Φ 8C L 10C L
dD D D L D

 (31) 

As Dp and Dd are much lower than 1 m, 2 2
dd Φ / dD  is positive. Then, the minimum 

expenditure of power is obtained by setting equation (30) equal to zero, and solving for 
diameters we obtain 

1/655
q p d

2
f pdd

5
q pp

2
f p

C D1 D
4 8C L DD

C DD 1
8C L

 (32) 

Equation (32) is implicit and it has to be solved using an iterative procedure. It is also 
important to note that once Cq = 0 (isothermal case), the equation becomes explicit and 
reproduces the old result (Dd/Dp = 2–1/3), the so-called Hess-Murray law (Murray, 1926). 

We now turn our attention to flows of Reynolds number ranging from 106 to 108. 
According to equation (4) the Darcy-Weisbach friction factor is independent of Reynolds 
number. Substituting derivatives of equations (17) and (29) into equation (28) yields 

1/766
q p d

2
F pdd

6
q pp

2
f p

C D1 D
8 10C L DD

C DD 1
10C L

 (33) 

Notice that equation (33) is also an implicit equation and needs to be solved iteratively. 
Since Cq = 0, the ratio between the diameters of daughter and parent tubes are given by 
the simple expression Dd/Dp = 2–3/7, that agrees with the results obtained by Uylings 
(1977) and Bejan et al. (2000). 

Maximal efficiency of energy requires equipartition of thermodynamic forces, i.e., 
forces uniformly distributed across system. Therefore, optimal branching leads to the 
same contribution of parent and daughter tubes for the total impedance and total pressure, 
but also for the total volume (see for example, Losa et al., 2002; Miguel, 2015). Thus, it 
is remarkable that despite the complexity of design of a bifurcating system in the 3D 
space, there is a simple representation of the physics properties. Accordingly, following 
equation (27) one obtains 2 2

p p ddD L 2D L .  Substituting equations (32) and (33) into this 
equation results in 

1/325
q pd

2
f p dd

D5
q pp

2
f p

C D L
2

C L LL Re 2100
C DL 1
8C L

 (34) 
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2/727/2 6
q pd1/2

2
F p dd 6 8

D6
q pp

2
F p

2 C D L
2

10C L LL 10 Re 10
C DL 1

10C L

 (35) 

Equations (34) and (35) represents the optimal ratio of successive tube lengths for both 
the hydraulic and thermal performances. It is important to note that, if Cq = 0, then 
equations (34) and (35) reduce to Ld/Lp = 2–1/3 and Ld/Lp = 2–1/7, respectively, and agrees 
with the findings of Bejan et al. (2000). 

4 Final remarks 

Branching flow networks of tubes are widespread occurrences in nature and engineering, 
because are the best path if the purpose is to connect one point (source or sink) with an 
infinity of points (volume, area). A common situation encountered is also heat transfer to 
fluid flowing through tubes. 

The structural characteristics of the bifurcating tubes are important to ensure 
continued proper functioning of the flow system. Here, we have presented a generalised 
approached that leads to analytical expressions for the optimum diameter-length ratio of 
individual tubes, and the optimum daughter-parent sizes ratio of branching tubes, under 
different fluid flow conditions and exposed to different heat fluxes. Our generalised 
expressions for branching tubes are equivalent to Hess-Murray’s law, and Uylings (1977) 
and Bejan et al. (2000) equations in absence of heat fluxes. 

Equations (32) and (33) can be used to derive expressions for the optimum branching 
angles of daughter tubes. The optimum angles are equal to two times the inverse cosine 
function of half of optimal ratio of successive tube diameters. 

In summary, our new relations can be applied to design to endow systems with 
minimum thermodynamic losses. In addition, our model may lead to deeper 
understanding of natural bifurcated networks. Finally, the design rules presented here and 
that provides geometric optimisation can also be viewed as a manifestation of general 
principle of physics, such as the so-called equipartition of thermodynamic forces. 
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