Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems

Peter Surový, Nuno Almeida Ribeiro & Dimitrios Panagiotidis

To cite this article: Peter Surový, Nuno Almeida Ribeiro & Dimitrios Panagiotidis (2018): Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems, International Journal of Remote Sensing, DOI: 10.1080/01431161.2018.1434329

To link to this article: https://doi.org/10.1080/01431161.2018.1434329

Published online: 07 Feb 2018.
Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems

Peter Surový*, Nuno Almeida Ribeirob and Dimitrios Panagiotidisa

aCzech university of Life Sciences Prague, Faculty of Forestry and Wood Science, Prague, Czech Republic; bICAAM - Instituto de Ciencias Agrarias e Ambientais Mediterranas, Departamento de Fitotecnia, Universidade de Evora, Polo da Mitra, Portugal

ABSTRACT
Plantations of typical Mediterranean tree species, such as cork oak (Quercus suber L.), holm oak (Quercus ilex L.), and umbrella pine (Pinus pinea L.), are important for the restoration of forest ecosystems in the region. While traditional forest inventories can provide early problem detection in these plantations, the cost and labour of the required fieldwork may exceed its potential benefits. Unmanned aerial vehicles (UAVs) provide a cheap and practical alternative to traditional inventories and individual tree measurement. We present a method to estimate heights and positions of individual trees, from remotely sensed imagery, obtained using a low-flying UAV with an integrated RGB sensor. In the summer of 2015, a 5 ha stand at the University of Evora was photographed with a low-flying (40 m) hexacopter. A 3D point cloud and orthophoto were created from the images. The point cloud was used to identify local maxima as candidates for tree positions and height estimates. Results showed that the height measured with the UAV was reliable on pines, whereas the reliability for oaks was dependent on the size of the trees: smaller trees were especially problematic as they tended to have an irregular crown shape, resulting in larger errors. However, the error showed a strong trend, and adequate models could be produced to improve the estimates.

ARTICLE HISTORY
Received 31 March 2017
Accepted 16 January 2018

KEYWORDS
Tree height; local maxima; unmanned aerial vehicle; tree positions

1. Introduction
The cork oak (Quercus suber L.) woodlands are highly biodiverse Mediterranean ecosystems; one of the most important silvicultural features of this species is cork extraction, which is removed periodically without felling the trees (every 9–12 years). For countries like Spain and Portugal, cork is an important economic factor, together with holm oak (Quercus ilex L.) and umbrella pine (Pinus pinea L.). Other important species, such as blue gum (Eucalyptus globulus L.), are of great significance, not only from a commercial point of view but also for their high capacity for carbon sequestration and extraction of water and nutrients. Consequently, systematic and accurate management can strongly influence their environmental impacts. These woodlands can be described as ‘complex forest management systems,’ which can be characterized by a limited capacity to respond to