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Summary

1. Binary similarity indices are widely used in ecology, for example for detecting associations between species

occurrence patterns, comparing regional and temporal species assemblages, and assessing beta diversity patterns,

including spatial and temporal species loss and turnover. Such indices have widespread applications in biogeog-

raphy, global change biology and biodiversity conservation.

2. Similarity indices are commonly calculated upon binary presence/absence (or sometimes modelled suitable/

unsuitable) data, which are generally incomplete and more categorical than their underlying natural patterns.

Probable false absences are disregarded, amplifying the effects of data deficiencies and the scale dependence of

the results.

3. Fuzzy occurrence data, with a degree of uncertainty attributed to localities where presence or absence cannot

be safely assigned, could better reflect species distributions, compensating for incomplete knowledge and meth-

odological errors. Similarity indices would therefore also benefit from accommodating such fuzzy data directly.

4. This study proposes fuzzy versions of the binary similarity indices most commonly used in ecology, so that

they can be directly applied to continuous (fuzzy) rather than binary occurrence values, thus producing more

realistic similarity assessments. Fuzzy occurrence can be obtained with several methods, some of which are also

provided. The procedure is robust to data source disparities, gaps or other errors in species occurrence records,

even for restricted species for which slight inaccuracies can affect substantial parts of their range.

5. Themethod is implemented in a free and open-source software package,fuzzySim, which is available for
the R statistical software and under implementation for the QGIS geographic information system. It is provided

with sample data and an illustrated tutorial suitable for non-experienced users.

Key-words: biogeographic regions, biotic regionalization, beta diversity, chorotypes, fuzzy logic,

specific composition, species distributions, vagueness

Introduction

Spatial associations between species distributions provide deep

insights into the processes that drive biodiversity patterns.

Areas with similar species compositions (biogeographic or bio-

tic regions) (M�arquez, Real & Vargas 2001; Holt et al. 2013;

Olivero, M�arquez & Real 2013) or species with similar occur-

rence patterns (chorotypes) (Baroni Urbani, Ruffo & Vigna

Taglianti 1978; M�arquez et al. 1997; Real, Olivero & Vargas

2008; Olivero, Real & M�arquez 2011) serve, for example, as

natural units to maximize efficiency in biodiversity manage-

ment and conservation planning. Beta diversity patterns pro-

vide a link between local biodiversity and the broader regional

species pool, and are at the core of community ecology (Ander-

son et al. 2011). Like chorotypes and biotic regions, they can

be used in tests of hypotheses about the processes driving spe-

cies distribution and diversity (Baselga & Orme 2012) and can

reveal effects of large-scale historic processes on current biodi-

versity (Baselga, G�omez-Rodr�ıguez &Lobo 2012).

Identifying chorotypes, biotic regions and beta diversity pat-

terns requires comparing species occurrence patterns via simi-

larity indices. These indices are typically based on the numbers

of shared localities among species or the numbers of shared

species among localities (Olivero, Real &M�arquez 2011; Base-

lga & Orme 2012; Olivero, M�arquez & Real 2013). Such mea-

sures are not otherwise spatially explicit, that is, they do not

take into account the proximity (whether spatial or environ-

mental) between species occurrence sites. Consequently, the

distributions of species recorded at adjacent (even interspersed)

and/or highly similar sites are considered as different as those

of species occurring at opposite ends of the geographical or

environmental space (Barbosa et al. 2012) (Fig. 1). This ampli-

fies the effects of false absences and small spatial errors in the

georeferencing of species occurrences, and the scale depen-

dence of distributional relationships, precluding the identifica-

tion of species associations except at broad spatial scales.

These problems can particularly affect species with restricted*Correspondence author. E-mail: barbosa@uevora.pt
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distributions, as erroneous or missing distribution records can

involve significant parts of their range (Barbosa et al. 2012).

Species distributions are inherently complex, and survey

methods are always fallible. Species occurrence data therefore

have intrinsic, unavoidable errors (Rocchini et al. 2011). For

example, false absences often arise from insufficient sampling,

while range map filling introduces false presences (Barbosa

et al. 2012). It could therefore bemore appropriate to treat dis-

tribution data as fuzzy, with localities classified with a degree

of uncertainty on whether a species occurs or not, rather than

putative presences and absences (Rocchini 2010; Rocchini

et al. 2011; Duff, Bell &York 2014).

Fuzzy logic has recently been applied to smooth the limits

between chorotypes (Olivero, Real & M�arquez 2011) and bio-

tic regions (Olivero, M�arquez & Real 2013), but these are still

primarily defined based on categorical presence/absence data

on categorical sampling units. Thus, species recorded at adja-

cent but not strictly coincident localities (e.g. distribution atlas

data for Microtus thomasi and M. guentheri, Fig. 1) are con-

sidered to be as dissimilar from each other as from a species

occurring thousands of kilometres away (e.g. M. cabrerae,

Fig. 1). However, localities adjacent to (or scattered among)

recorded presences, particularly if they are within similar envi-

ronments and not separated by physical barriers, are often

false absences resulting from insufficient sampling or other

methodological constraints (e.g., Rocchini et al. 2011), so they

should be attributed a degree of uncertainty about species pres-

ence. Another approach has been to compare species distribu-

tions or assemblages based on modelled habitat suitability

values (Sillero et al. 2009; Albouy et al. 2012). However, com-

parisons are then still based on binary similarity indices after a

binarization of suitability, thus discarding relevant quantita-

tive information and introducing abrupt arbitrary thresholds.

Similarity indices that account for fuzziness of location, such

as the fuzzy numerical comparison (Visser & de Nijs 2006) or

the improved fuzzy kappa (Hagen-Zanker 2009), go beyond

site-by-site comparison by giving partial credit to neighbouring

sites. They thus introduce tolerance for small spatial differences

in species occurrences and have been proposed for improving

future analyses (Barbosa & Real 2012; Barbosa et al. 2012).
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Fig. 1. Left: distributions of three vole (Microtus) species in western Europe according to atlas (Mitchell-Jones et al. 1999) and range map data

(IUCN 2010). Right: pairwise similarities among these distributions using binary (based on presence/absence) and fuzzy (based on distance interpo-

lation of presences) versions of the Jaccard and Baroni similarity indices. Note that, with atlas data, binary similarity is zero in all cases, while fuzzy

similarity detects thatM. guentheri andM. thomasi aremore similar to each other (evenwithout any overlapping presences) than toM. cabrerae.
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However, these indices are computationally intensive and

require the use of complex spatial data structures such as raster

maps, rather than simple occurrence data tables. Raster maps

also imply that the spatial units under analysis are square pix-

els, precluding the use of other, sometimes more appropriate

divisions such as equal-area units, provinces or watersheds

(Carmona et al. 1999; M�arquez, Real & Vargas 2001). Fur-

thermore, considerable development would be necessary

before these indices could be routinely used for such analyses,

namely in optimizing their computation for multiple species

and in determining their levels of significance (Barbosa et al.

2012). Likewise, indices of niche overlap (Warren, Glor & Tur-

elli 2008; Broennimann et al. 2012) might be applicable to

comparing spatial occurrence patterns, but their use is not

established in species distributional and regional clustering,

and their significance thresholds entail computer-intensive ran-

domized simulations.

This study proposes an alternative, simple protocol for anal-

ysing fuzzy similarity between species occurrence patterns and

between regional or temporal species compositions, based on

fuzzy versions of the binary similarity indices commonly used

in ecology, whose significance thresholds and other properties

are therefore already known. The fuzzy indices are directly

applicable to fuzzy (continuous) occurrence values, which can

be obtained, for example, with distribution modelling, kernel

smoothing or spatial interpolation of occurrence localities. To

be used within a fuzzy logic framework, fuzzy occurrence must

be bounded between 0 and 1 and represent the degree of mem-

bership of each locality to the species occurrence area, or of

each species to a regional species pool (Zadeh 1965; Olivero,

Real &M�arquez 2011; Olivero,M�arquez&Real 2013).

Calculating fuzzy similarity

Jaccard’s (1901) index is one of the most widely used simi-

larity indices in ecology, for example for detecting species

distributional associations (Real & Vargas 1996; Sillero

et al. 2009; Barbosa et al. 2012), comparing regional species

compositions (Chao et al. 2004; Anderson, Bolton & Steg-

enga 2009; Engen, Grøtan & Saether 2011), calculating beta

diversity patterns (Anderson et al. 2011) or assessing tem-

poral species turnover in climate change research (Albouy

et al. 2012). Sørensen’s (1948) index is widely used for

assessing compositional similarity between sites or commu-

nities and beta diversity patterns in space or time (Ander-

son et al. 2011; Baselga, G�omez-Rodr�ıguez & Lobo 2012;

Baselga & Orme 2012; Dobrovolski et al. 2012). Simpson’s

(1960) similarity is the proportion, in the smaller of two

samples, of taxa/regions common to both, thereby minimiz-

ing the effect of sample size discrepancies. Baroni-Urbani &

Buser’s (1976) index (hereafter Baroni for short) is broadly

used in species distributional clustering and biotic regionali-

zation (M�arquez et al. 1997; Real, Olivero & Vargas 2008;

Olivero, Real & M�arquez 2011; Moya, Sauc�ede & Manj�on-

Cabeza 2012; Olivero, M�arquez & Real 2013). It accounts

for both shared presences and shared absences, but gives

greater weight to presences.

All these similarity indices vary between zero (no distribu-

tional or compositional overlap) and one (identical distribu-

tions or compositions). Tables of significant values per sample

size are available (e.g. Baroni-Urbani & Buser 1976; Real

1999), so these indices can be used for identifying significant

associations (Olivero, Real &M�arquez 2011; Olivero, M�arquez

& Real 2013). All these indices are calculated on two or more

of the following terms: A and B (the numbers of species/locali-

ties in each sample), C (the number of shared species/localities)

and D (the number of species/localities missing from both sam-

ples). All these terms have direct correspondence with Boolean

logic expressions and can thus be translated into their fuzzy

logical equivalents to assess fuzzy binary similarity (Table 1).

Availability and functionality

This methodology is implemented in a free and open-source

software package, fuzzySim, which works under the R

programming environment (RCore Team 2014). The package,

including some sample data (Fontaneto et al. 2012), is avail-

able on the public platform R-Forge (http://fuzzysim.r-for-

ge.r-project.org), together with a reference manual and a step-

by-step tutorial on its installation and usage. Most functional-

ities offuzzySim (Fig. 2) are also being implemented as a

graphical user interface extension for QGIS (QGIS Develop-

ment Team 2014), which is also free and open-source.

The fuzzySim package allows a variety of methods for

converting (multiple) species presence/absence data into continu-

ous, fuzzy surfaces, including inverse distance to presence raised

to any power (function distPres), trend surface analysis of

any given degree (function multTSA) and generalized linear

models based on presence–absence (function multGLM). The
former two methods can be useful for purposes other than com-

paring species distributions and assemblages, for example for

defining putative geographical ranges (Takahashi et al. 2014) or

for delimiting the geographical background in species distribu-

tion modelling (Acevedo et al. 2012). Besides several methods

for selecting predictor variables (including information criteria

and false discovery rate),multGLM includes an option to con-

vert probability to prevalence-independent favourability values,

which have proven appropriate for use within a fuzzy logic

framework (Real, Barbosa & Vargas 2006; Acevedo & Real

2012). The package also allows using other continuous distribu-

tion data that users can obtain elsewhere, as long as they are

bounded between 0 and 1, directly comparable among species

Table 1. Correspondence between the terms in the formulas of binary

similarity indices for a given pair of species (sp1 and sp2) and their

equivalent expressions in classical and fuzzy set theory (Zadeh 1965)

Term Boolean logic Classical sets Fuzzy sets

A sp1 sp1 sum(sp1)

B sp2 sp2 sum(sp2)

C sp1AND sp2 sp1∩ sp2 sum(minimum(sp1, sp2))

D NOT sp1

ANDNOT sp2

complement

(sp1U sp2)

sum(1–maximum

(sp1, sp2))
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and interpretable as fuzzy membership values (Zadeh 1965;

Real, Barbosa & Vargas 2006; Barbosa & Real 2012).

Species occurrence data, whether binary or fuzzy, can be

transposed (so that regions go in columns and species in rows)

for comparing regional species compositions (Olivero,

M�arquez & Real 2013). Pairwise similarity matrices between

either species distributions or regions’ compositions can be cal-

culated with function simMat based on fuzzy versions of the

Jaccard, Sørensen, Simpson and Baroni indices. These metrics

were chosen for their simplicity, long-time widespread use and

known significance thresholds for meaningful clustering, as well

as their comparability to traditional indices. Nonetheless, addi-

tional similarity indices can be implemented as necessary, such

as fuzzy versions of other measures of agreement between bin-

ary variables (e.g. simple matching coefficient, Cohen’s kappa,

true skill statistic) and of binary correlation indices (Phi, Mat-

thews, Yule), as well as standard correlation coefficients (Pear-

son, Spearman, Kendall) and measures of niche overlap

(Warren, Glor & Turelli 2008; Broennimann et al. 2012).

The fuzzy similarity matrices produced with fuzzy-
Sim can then be plotted, compared, classified, clustered

and converted into dendrograms depicting the fuzzy rela-

tionships between species distributions or between regional

species compositions. R code for all these operations is pro-

vided in the tutorials available from the package homepage

(http://fuzzysim.r-forge.r-project.org). The fuzzy similarity

matrices can also be entered in the RMACOQUI package

(Olivero, Real & M�arquez 2011) for a systematic analysis of

chorotypes or biotic regions. The fuzzy versions of binary

similarity indices can also be integrated within other soft-

ware packages that currently compute these indices, such as

vegan (Oksanen et al. 2013) or betapart (Baselga &

Orme 2012).

Example analyses

To allow direct comparison with traditional methods, I used

previously analysed data (Barbosa et al. 2012) on the occur-

rence of 156 terrestrial mammal species in Western Europe,

based on both a distribution atlas (Mitchell-Jones et al. 1999)

and a set of range maps (IUCN 2010), under a 50 9 50 km

UTM grid containing 2118 cells (Sastre, Roca & Lobo 2009).

These data were previously used for comparing distributional

relationships inferred from distribution atlas versus range

maps, to assess the effects of data type on the results of such

analyses. Although there was a good general agreement

between the relationships obtained from the two data sources,

there were some visible differences, most notably for small-

range species (Barbosa et al. 2012).

The procedure is here illustrated with two fuzzy versions of

species occurrence data: inverse squared distance interpolation

of presences (Shepard 1968; Takahashi et al. 2014) and envi-

ronmental favourability for presence (Real, Barbosa & Vargas

2006) based on information criterion selection of WorldClim

bioclimatic variables (Hijmans et al. 2005). Note that these are

simple examples; fuzzy distribution data should be obtained

based on knowledge on what best reflects the distributions of

the target species. Matrices of fuzzy similarity between species

distributions were then calculated with the fuzzy similarity

indices. For comparison, binary vs. fuzzy similarity was plot-

ted for two similarity indices, one that considers only shared

presences (Jaccard) and another that considers also shared

absences (Baroni).
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As expected, fuzzy similarity was generally higher than bin-

ary similarity (Fig. 3), as similarity among species distributions

is more than the strict coincidence of their recorded localities.

Also, fuzzy similarity matrices obtained from atlas and from

range map data were more similar (Mantel rank correlation

tests, q = 0�98 for Jaccard and 0�97 for Baroni) than with bin-

ary similarity (Barbosa et al. 2012), indicating that fuzzy simi-

larity minimizes the effects of data type on the results of

chorological analyses. More notably, the fuzzy approach

solved the problem posed by small-range species, for which

slight differences between data sets could mean their coinci-

dence or not in substantial parts of their distribution areas.

Chorotypes, biogeographic regions and beta diversity patterns

defined with fuzzy similarity indices are thus more likely to be

robust to disparities, errors or gaps in species occurrence data,

even for narrowly distributed species, which usually face higher

conservation concern and where slight inaccuracies can affect

substantial parts of their recorded range.
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