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Abstract

In the mathematical modelling and simulation of coagulating fluids from real life
applications in various fields such as biology (populations evolution), chemistry
(polymerization) or medicine (blood flows) the effects of viscosity, damping, dif-
fusion or capillarity relative to the transport mechanisms are of the most impor-
tance. We are interested in getting a better understanding of the coagulation and
fragmentation phenomena in fluids. Here we will focus on the balance of ε-dis-
sipative/δ-dispersive effects and we will analyse the well-posedness and the limit
behaviour of some scalar equations of Korteweg-de Vries-Burgers type.

∂tu + div
(
f (x , t, u)− εB(x , t, u,∇u) + δ C(x , t, u,∇u,∇2u)

)
= 0,

u(x , 0) = uε,δ0 (x).

ut + uux = εuxx − δuxxx , [KdV-B equation1]

f (u) = u2/2, B(∇u) = ux , C(∇2u) = uxx .

1See Kurganov-Rosenau[2, 1997]
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As ε, δ << 1, in applications, previous equations are approached by

∂tu + div f (u) = 0,

u(x , 0) = u0(x).

From the point of view of ‘applications’, these equations are simplified by
neglecting “spurious terms” of higher order giving rise to hyperbolic (first order)
conservation laws which have non-unique solution. Still, we know that the
zero-dispersion limit of KdV equation don’t converges to the inviscid Burgers’
equation [Lax-Levermore]. Thus, the classification (failure, reliability and
integrity2) of these equations is a practical problem.

2Correia [1, 2010] and Correia-Sasportes [2, 2009]
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The solutions to the KdV equations

ut + (u2/2)x = −δ uxxx

do not converge as δ ↘ 0 in a strong topology, Lax-Levermore [4, 1983].

The solutions to the Burgers’ equations

ut + (u2/2)x = ε uxx

converge as ε↘ 0 in a strong topology (“vanishing viscosity method”),
Kružkov [3, 1970].

From the point of view of ’applied mathematics’, we ask to study the singular
limits of the approximated solutions of hyperbolic conservation laws given by the
genKdV-B equations, as perturbations (dissipation and dispersion) vanish.
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Conclusion

So, we are concerned with a proof of a “vanishing viscosity-capillarity method”
relying on the well-posedness of the generalized KdV-B equations (by dispersive
techniques) and the convergence of their solutions (by DiPerna’s measure-valued
solution techniques), an applied problem, or with the (applications:) behaviour
and selection of the right models and right solutions.
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Slemrod’s PDEs Seminar, IST, September 16, 2014
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Hilbert’s 6th problem (from Boltzmann to Euler)
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Nonlinear hyperbolic conservation laws

Cauchy Problem (1st order nonlin. pde’s) ⇒ hyperb. (real eigenvalues ≡
finite velocity) ⇒ discontinuities (characteristic lines meet) ⇒ weak sol.
(global in time) ⇒ non uniqueness

Entropy Methods from Gas Dynamics and 2nd Law of Thermodynamics (for
Euler Equations ≡ inviscid and compressible Navier-Stokes Equations)

Equivalence to the Vanishing Viscosity Method selection: “classical” entropy
weak solutions or Kružkov solutions
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Traffic Burgers’ Inviscid Equation or
Arnold’s particle/wave duality

In a straight line particles move freely and u(x , t) is the velocity of the particle
which is in position x at time t.

Let x = x(t; 0, x0) be the position at time t of the particle in x0 at initial time
t0 = 0, which we abbreviate as x = x(t).

By Newton’s law (particles are moving freely) x ′′(t) = 0, then x(t) = x0 + ~vt
where ~v = u(x0, 0).

‘Particle description’: the physical system is described by an infinite set of ODEs,
one for each x0 ∈ R, {

x ′(t) = u(x0, 0), t ≥ 0

x(0) = x0.
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Now, ~v = x ′(t) = u(x(t), t), then

0 = x ′′(t) = ut(x(t), t) + x ′(t)ux(x(t), t) = ut + uux .

‘Wave description’: the physical system is described by a single PDE{
ut + uux = 0, x ∈ R, t ≥ 0

u(x , 0) = u0(x).

Rk. if we reverse that computation, we are solving the PDE by the ’characteristics
method’.
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A convergence result

Correia [2, 2017] “Zero Limit for Multi-D Conservation Laws with Nonlinear
Dissipation and Dispersion”: we have (formal)3 convergence, if r ≥ ρ+ 1 + ϑ and
δ = o(εγ) with γ = ρ+2

r+1−ϑ (≤ 1), when

∂tu + div f (u) = div

(
ε bj
(
u,∇u

)
+ δ g(u)

d∑
k=1

∂xk cjk
(
g(u)∇u

))
1≤j≤d

(A1) for some m > 1, |f ′(u)| = O
(
|u|m−1

)
as |u| → ∞,

(A2) for some µ ≥ 0, r > 2, |b(u, λ)| = O (|u|µ) O (|λ|r )
as |u|, |λ| → ∞,

(A3) for some ϕ ≥ 0, ϑ < r , D > 0, λ · b(u, λ) ≥ D |u|µϕ |λ|r+1−ϑ

∀u ∈ IR, λ ∈ IRd .

(A4) for some ρ > 0, ‖[cjk(λ)]‖ = O(|λ|ρ)
as |λ| → ∞.

3Cf. Bedjaoui-Correia-Mammeri [3, 2015] “Well-Posedness of the Generalized Korteweg-de
Vries-Burgers Equation with Nonlinear Dispersion and Nonlinear Dissipation”.
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Unexpected regime 4

with r = 1 and ρ = 2 (δ = o(ε5/2)), we proved the well-posedness of the initial
value problem

ut + f (u)x = εuxx − δ(u2
xx)x ,

u(x , 0) = uε,δ0 (x),

and as ε, δ ↘ 0 the convergence of the previous solutions to the entropy weak
solution of the initial value problem

ut + f (u)x = 0,

u(x , 0) = u0(x).

4Bedjaoui-Correia-Mammeri [1, 2016] and [4, 2014]: “On a Limit of Perturbed Conservation
Laws with Diffusion and Non-positive Dispersion” and “On vanishing dissipative-dispersive
perturbations of hyperbolic conservation laws”.
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Shocks
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Breaking paradigmas

Truskinovsky [4, 1993]: physical nonclassical solutions (considering dispersive
terms; phase transition problems)

Brenier-Levy [1, 1999]: dissipative KdV-type equations (3rd order equations
without the 2nd order viscosity term; conjecture)

Perthame-Ryzhik [1, 2007]: δ/ε balance in KdV-B equation δ = o(ε1)
(Riemann problem; travelling waves ε, δ-limit)
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In use...

Modelling on continuum physics, chemistry, biology, environment, etc.

Areas as gas dynamics, nonlinear elasticity, shallow water theory, geometric optics,
magneto-fluid dynamics, kinetic theory, combustion theory, cancer medicine,
petroleum engineering, irrigation systems, etc.

Applications as optimal shape design (aeronautics, automobiles), noise reduction
in cavities and vehicles, flexible structures, seismic waves (earthquakes, tsunamis),
laser control in quantum mechanical and molecular systems, chromatography,
chemostasis, oil prospection and recovery, cardiovascular system, traffic flow, the
Thames barrier, etc.
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Thank you very much!
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