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Abstract

In the mathematical modelling and simulation of coagulating fluids from real life
applications in various fields such as biology (populations evolution), chemistry
(polymerization) or medicine (blood flows) the effects of viscosity, damping, dif-
fusion or capillarity relative to the transport mechanisms are of the most impor-
tance. We are interested in getting a better understanding of the coagulation and
fragmentation phenomena in fluids. Here we will focus on the balance of e-dis-
sipative/d-dispersive effects and we will analyse the well-posedness and the limit
behaviour of some scalar equations of Korteweg-de Vries-Burgers type.

Oeu +div (f(x,t,u) — e B(x, t,u,Vu) + 6 C(x, t,u, Vu, Vzu)) =0,
u(x,0) = u5”(x).

Ut + Ully = Elxe — Olxxx, [KdV-B equation’]
f(u)=u?/2, B(Vu)=u,, C(V?U)= ty.

1See Kurganov-Rosenau[2, 1997]
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As €,6 << 1, in applications, previous equations are approached by

Oru+divf(u) =0,
u(x,0) = wp(x).

From the point of view of ‘applications’, these equations are simplified by
neglecting “spurious terms” of higher order giving rise to hyperbolic (first order)
conservation laws which have non-unique solution. Still, we know that the
zero-dispersion limit of KdV equation don't converges to the inviscid Burgers’
equation [Lax-Levermore]. Thus, the classification (failure, reliability and
integrity?) of these equations is a practical problem.

2Correia [1, 2010] and Correia-Sasportes [2, 2009]
TR T



The solutions to the KdV equations
ur + (U2/2)x = —0 Uyex

do not converge as 6 N\, 0 in a strong topology, Lax-Levermore [4, 1983].

The solutions to the Burgers' equations
2
ur + (U7 /2)x = € Uk

converge as € \, 0 in a strong topology (“vanishing viscosity method"),
Kruzkov [3, 1970].

From the point of view of 'applied mathematics’, we ask to study the singular
limits of the approximated solutions of hyperbolic conservation laws given by the
genKdV-B equations, as perturbations (dissipation and dispersion) vanish.
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Conclusion

So, we are concerned with a proof of a “vanishing viscosity-capillarity method”
relying on the well-posedness of the generalized KdV-B equations (by dispersive
techniques) and the convergence of their solutions (by DiPerna’s measure-valued
solution techniques), an applied problem, or with the (applications:) behaviour
and selection of the right models and right solutions.
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Slemrod’s PDEs Seminar, IST, September 16, 2014

PARTIAL DIFFERENTIAL EQUATIONS SEMINAR [5]

16/09/2014, 15:00 -- Room P4.35, Mathematics Building

namely the passage from Boltzmann equation to the classical Euler
equations of mass, momentum, and energy for an ideal gas as a small
parameter (Knudsen number) tends to zero. The main idea is that via

attainable.
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Hilbert's 6th problem (from Boltzmann to Euler)

4. Implications of Gorban and Karlin’s summation for Hilbert’s 6th problem

The implication of the exact summation of C-E by Gorban and Karlin now becomes clear. The whole issue may be seen
in Eq. (11), the energy balance, If we put the Knudsen number scaling into (11), the coefficient « is actually a term egs? and
to recover the classical balance of energy of the Euler equation would require the sequence

2 p 3% 9p° — 0
in the sense of distributions as ¢ — 0. This would require a strong interaction with viscous dissipation. The natural analogy
is given by the use of the KdV-Burgers equation:

Up + Ully = £l — K2ty (12)

where at a more elementary level we see the competition between viscosity and capillarity. The resultin (12)is known but
far from trivial. Specifically in the absence of viscosity we have the KdV equation

Up + Uty = —K & tgex (13)
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and we know from the results of Lax and Levermore [9] that as ¢ — 0 the solution of (13) will not approach the solution of
the conservation law

U +ui, =0 (14)

after the breakdown time of smooth solutions of (14). On the other hand, addition of viscosity which is sufficiently strong,
i.e. K sufficiently small in (12), will allow passage as ¢ — 0 to a solution of (14), This has been proven in the paper of
Schonbek [10]. So, the next question is whether we are in the Lax-Levermore case (13) or the Schonbek case (12) with K
sufficiently small. In my paper [11] | noted the C-E summation of Gorban and Karlin for the Grad 10-moment system leads
to a rather weak viscous dissipation, i.e. Egs. (5.10), (5.11) of [ 11]. At the moment, this is all we have to go on and I can only
conclude that things are not looking too promising for a possible resolution of Hilbert's 6th problem. It appears that in the
competition between viscosity and capillarity (mathematically, dissipation of oscillation versus generation of oscillation),
capillarity has become a very dogged opponent, and the capillarity energy will not vanish in the limit as ¢ — 0. Hilbert's
hope may have been justified in 1900, but as a result of the work of Gorban, Karlin, Lax, Levermore, and Schonbek, [ think
that serious doubts are now apparent.
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Nonlinear hyperbolic conservation laws

@ Cauchy Problem (1st order nonlin. pde’'s) = hyperb. (real eigenvalues =
finite velocity) = discontinuities (characteristic lines meet) = weak sol.
(global in time) = non uniqueness

@ Entropy Methods from Gas Dynamics and 2nd Law of Thermodynamics (for
Euler Equations = inviscid and compressible Navier-Stokes Equations)

@ Equivalence to the Vanishing Viscosity Method selection: “classical” entropy
weak solutions or Kruzkov solutions
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Traffic Burgers' Inviscid Equation or
Arnold's particle/wave duality

In a straight line particles move freely and u(x, t) is the velocity of the particle
which is in position x at time t.

Let x = x(t;0,xp) be the position at time t of the particle in xo at initial time
to = 0, which we abbreviate as x = x(t).

By Newton's law (particles are moving freely) x”(t) = 0, then x(t) = xo + Vt
where V = u(xp,0).

‘Particle description’: the physical system is described by an infinite set of ODEs,
one for each xp € R,

{x’(t) = u(x0,0), t>0
x(0) = xp.

Joaquim Correia Department of Mathematics Seminar Quy Nhon, July 21, 2017 11/23



Now, V = x'(t) = u(x(t), t), then

0= x"(t) = ue(x(t), t) + X' (t)ux(x(t), t) = ur + uuy.

‘Wave description’: the physical system is described by a single PDE

u + uuy, =0, xeR,t>0
u(x,0) = up(x).

Rk. if we reverse that computation, we are solving the PDE by the 'characteristics
method'.
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A convergence result

Correia [2, 2017] “Zero Limit for Multi-D Conservation Laws with Nonlinear

Dissipation and Dispersion™ we have (formal)® convergence, if r > p + 1 + 9 and

0 = o(e”) with v = rﬁ_zﬁ(g 1), when

d
Oru + div f(u) = div (5 bi(u,Vu) + 6 g(u) Z O i (g(u) Vu))
k=1 1<j<d

(A1) forsome m > 1, |f'(u)] = O (Ju]™"t)
as |u| — oo,
(Az) forsome >0, r>2, |b(u,A)]=0(ul") O(A")
as |ul, |\| = oo,
(As) forsome o >0, 9 <r, D>0, - b(u,\)> D |u' |\
YueR, A€ R
(As) for some p >0, [[[cx(N]ll = O(AF)
as [A| — oo.

3Cf. Bedjaoui-Correia-Mammeri [3, 2015] “Well-Posedness of the Generalized Korteweg-de
Vries-Burgers Equation with Nonlinear Dispersion and Nonlinear Dissipation”.
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Unexpected regime *

with r =1 and p = 2 (§ = 0(£%?)), we proved the well-posedness of the initial
value problem

ue + F(u)x = e — 0(uZ ),
u(x,0) = 45’ ()

and as €,0 \, 0 the convergence of the previous solutions to the entropy weak
solution of the initial value problem

us + f(u)X = 03
u(x,0) = wp(x).

“Bedjaoui-Correia-Mammeri [1, 2016] and [4, 2014]: “On a Limit of Perturbed Conservation
Laws with Diffusion and Non-positive Dispersion” and “On vanishing dissipative-dispersive
perturbations of hyperbolic conservation laws".
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Shocks
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Breaking paradigmas

@ Truskinovsky [4, 1993]: physical nonclassical solutions (considering dispersive
terms; phase transition problems)

@ Brenier-Levy [1, 1999]: dissipative KdV-type equations (3rd order equations
without the 2nd order viscosity term; conjecture)

@ Perthame-Ryzhik [1, 2007]: §/e balance in KdV-B equation § = o(e?!)
(Riemann problem; travelling waves ¢, 0-limit)
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In use...

Modelling on continuum physics, chemistry, biology, environment, etc.

Areas as gas dynamics, nonlinear elasticity, shallow water theory, geometric optics,
magneto-fluid dynamics, kinetic theory, combustion theory, cancer medicine,
petroleum engineering, irrigation systems, etc.

Applications as optimal shape design (aeronautics, automobiles), noise reduction
in cavities and vehicles, flexible structures, seismic waves (earthquakes, tsunamis),
laser control in quantum mechanical and molecular systems, chromatography,
chemostasis, oil prospection and recovery, cardiovascular system, traffic flow, the
Thames barrier, etc.
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Robotics: Comp. Sci.-UE [UEvora] (Nonsmooth Analysis)

Financial Math.: Economy-UE (Nonsmooth Analysis);
CSU [Caraga State University] (Stochastic; Dissip-Dispers in Black-Scholes with
Jumps)

Biol./Environm.: LAMFA-UPJV [UPicardie Jules Verne] (Dissip-Dispers; Tsuna-
mis);

UStrathclyde (Modelling & 6th Hilbert Probl.);

Physics-UE, CAMGSD-IST, UStrathclyde (Fog, Porous Media, Aggregation,
Coagulation-Fragmentation)

Biol./Chemistry: LAMFA-UPJV (Lithium-ion Batteries), CAMGSD-IST, IIT
Bhubaneswar (Aggregation, Coagulation-Fragmentation);

CAMGSD-IST, Mongolian Nat. Univ. Edu. (Wavelets, Coagulation-Fragmenta-
tion)

Health Care: UStrathclyde, UPJV, CAMGSD-IST, UE, NUOL, CSU, IIT Bhuba-
neswar (+ Calcuta University!?)
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Thank you very much!
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