Capítulo 8

Evaporação e evapotranspiração

Carlos Miranda Rodrigues

ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciência e Tecnologia Universidade de Évora

1. Definições

Designa-se por evaporação (E) o processo de passagem da água do estado líquido ao estado gasoso a qualquer temperatura inferior ao ponto de ebulição. A passagem do estado sólido ao estado gasoso designa-se por sublimação, no entanto, no balanço hidrológico a sublimação é computada globalmente com a evaporação (Lencastre, 1984). A mudança do estado sólido ou líquido para o estado gasoso dá-se quando a energia cinética das moléculas que constituem a substância aumenta, exigindo por isso, para se fazer com temperatura constante, consumo de uma certa quantidade de energia. Esta quantidade de energia por unidade de massa da substância é o chamado calor de vaporização.

Evaporação que ocorreria se a água não constituísse um fator limitante e a pressão de vapor da superfície evaporante fosse a da saturação, é designada por evaporação potencial (E_p) .

Designa-se por transpiração (T) a evaporação da água absorvida pelas plantas e por elas eliminada nos diferentes processos biológicos (Lencastre, 1992), isto é, a passagem de vapor de água das plantas para a atmosfera. A passagem da água absorvida pelas plantas para a atmosfera dá-se, principalmente, através dos estomas (poros existentes na parte inferior das folhas). Os estomas abrem-se com a luz solar, permitindo a difusão do dióxido de carbono para o interior das folhas, a água contida nas células passa para os espaços intercelulares, onde é vaporizada e, quando os poros estão abertos escapa-se para a atmosfera, sendo a água transpirada substituída pela água que as raízes vão buscar ao solo.

O conjunto destes dois processos constitui a evapotranspiração (Et), que inclui, portanto, a transpiração das plantas e a evaporação do meio circundante (superfície do solo, água retida nas depressões do

terreno, rios, lagos, etc.). A evapotranspiração constitui, assim, toda a "perda de água que ocorreria em condições de solo perfeitamente abastecido de água para uso da vegetação" (Thornthwaite, 1948) ou seja, traduz a "evaporação a partir de uma ampla superfície de cultivo, que cobre o solo na totalidade, exerce uma resistência mínima ao fluxo de água, sendo esta um fator não limitante" (Rosenberg, 1974).

As designações de evaporação e evapotranspiração são usadas para referir quer os processos de transferência de água para a atmosfera, quer as respetivas quantidades, que se exprimem em altura de água sobre a superfície (Quintela, 1996).

Chama-se evapotranspiração potencial ($\rm Et_p$) à quantidade de água que poderá passar para a atmosfera, diretamente e/ou através das plantas, se a humidade existente no solo estiver sempre disponível em quantidade suficiente, isto é, se não houver deficiência de alimentação em água para o referido processo. A evapotranspiração assim definida depende do tipo de cobertura vegetal e do seu grau de desenvolvimento. Para a evapotranspiração potencial se apresentar como uma grandeza climática, tem de ser referida em relação a uma superfície particular. Penman (1963), sugere que a definição original seja modificada para incluir a especificação de que a superfície do solo seja completamente coberta por relva. Nestas condições a evapotranspiração potencial é independente do tipo de cultura e designa-se por evapotranspiração de referência ($\rm Et_o$).

A evapotranspiração referenciada a uma cultura particular diz-se evapotranspiração cultural (Et_c) e resulta de multiplicar Et_o pelo coeficiente cultural, k_c , da cultura.

A evapotranspiração real (Et_r) corresponde à quantidade de água verdadeiramente perdida pelo solo, dependendo, para além das condições atmosféricas, do conteúdo de água no solo e das características da vegetação. Conceitualmente a evapotranspiração real não pode exceder a evapotranspiração potencial.

A evapotranspiração abrange uma grande parte da água retirada duma bacia hidrográfica, pelo que é importante a sua consideração do ponto de vista hidrológico. As estimativas da evapotranspiração são indispensáveis para a previsão das necessidades de água em projetos de rega.

O aumento dos lagos artificiais torna cada vez mais significativa a parcela do balanço hidrológico que resulta da evaporação dos lagos. Assim, antes do estabelecimento de uma nova albufeira, haverá que considerar o aumento da evaporação anual proveniente do acréscimo de

novas superfícies aquáticas. Estimativas das perdas de água por evaporação em albufeiras são necessárias para a definição da sua capacidade e condições de exploração nomeadamente quanto à satisfação dos consumos previstos.

2. Fatores intervenientes

Os fatores que mais condicionam a evaporação são de dois tipos, climáticos e físicos. Os condicionantes da evapotranspiração para além dos climáticos, assumem particular importância os relacionados com as características próprias da vegetação e o tipo de solo presente.

2.1 Fatores climáticos

A evaporação ocorre quando algumas moléculas de líquido aquecidas atingem uma energia cinética suficiente para vencer a tensão superficial e assim se libertarem da superfície do líquido. A energia provém da radiação solar, do calor transportado pela atmosfera ou da chegada de água quente (esgotos urbanos, águas de refrigeração das centrais elétricas ou de processos químicos, etc.). A evaporação é, portanto, condicionada pela radiação solar que depende da latitude, estação do ano, hora do dia e nebulosidade. Por outro lado, as moléculas vaporizadas produzem uma tensão de vapor (pressão exercida pelo vapor em determinado volume de ar). Quando o volume de ar considerado não consegue comportar mais vapor diz-se saturado, e a pressão exercida pelo vapor nestas condições designa-se por tensão de saturação do vapor, tornando-se igual ao valor da pressão atmosférica local no ponto de ebulição. A diferença entre a tensão de saturação do vapor e a tensão vapor real chama-se deficit de saturação. Assim, a evaporação é influenciada pela temperatura do ar e da água, pela pressão atmosférica e humidade.

Na ausência de vento, o vapor de água concentrado numa camada da atmosfera muito próximo da superfície livre, camada que se designa por camada evaporante, atinge o estado de saturação. Para que a evaporação continue, é necessário retirar a camada de ar saturado. Aparece assim um novo elemento condicionante da evaporação, o vento.

Em suma, para haver evaporação é necessário: energia, diferença de tensão de vapor entre a camada vizinha da superfície da água e a atmosfera e vento.

Para além das características referidas, há que ter também em conta as variações do calor armazenado pelas próprias massas de água, ao

longo do ano. No caso de lagos pequenos, sobretudo em regiões semiáridas, o ar muito seco que vai substituindo as camadas humedecidas pela evaporação pode ocasionar sensíveis aumentos de evaporação por efeito de oásis, mas que no caso de grandes lagos é praticamente inexistente.

2.2 Fatores físicos

Os fatores físicos mais condicionantes da evaporação prendem-se com as características geométricas das superfícies evaporantes e das regiões circundantes e com a existência de plantas e substâncias contidas na água. Por outro lado, os processos evaporativos a partir de superfícies de água são distintos daqueles que ocorrem se a superfície for o solo. A intensidade de evaporação de um solo que se encontre completamente saturado pode ser considerada como aproximadamente igual à evaporação a partir de uma superfície de água na sua proximidade à mesma temperatura, ou seja, submetida às mesmas condicionantes climáticas. A evaporação a partir do solo subsiste desde que exista humidade. No entanto, assim que o solo comecar a secar, a intensidade de evaporação sofre uma redução substancial, uma vez que a transferência de energia calorífica se torna menos efetiva à medida que a água no solo fica mais distante da superfície. Por essa razão, a intensidade de evaporação desde a superfície de um solo encontra-se limitada à sua disponibilidade em água. Este comportamento é muito diferente quando consideramos a evaporação a partir de uma superfície livre de água em contacto com a atmosfera.

Em igualdade dos restantes fatores, a evaporação é tanto maior quanto maior for a turbidez da água pois, tais condições, favorecem uma maior absorção da radiação solar.

2.3 Fatores da vegetação

A evapotranspiração depende do albedo da vegetação e é tanto maior quanto menor o seu valor. O albedo varia em função da espécie vegetal, e dentro da mesma espécie, varia com o estado de desenvolvimento vegetativo. Dum modo geral, as culturas têm um albedo a variar entre 0,23 e 0,25, em verde, mas o seu valor tende a baixar à medida que se desenvolvem.

Em geral as florestas transpiram mais do que as culturas arvenses, havendo ainda diferenças entre as várias espécies arbóreas. Devido a diferenças na resistência dos estomas à difusão do vapor de água, há também diferenças importantes nas intensidades de evapotranspiração

entre espécies com o mesmo albedo quando expostas ao mesmo forçamento climático. Por outro lado, na mesma espécie a abertura dos estomas funciona como reguladora da evapotranspiração, reduzindo-se quer em condições de excessiva evapotranspiração, quer em condições de limitação da humidade do solo.

Quando a camada superior do solo está seca, as plantas com raízes pouco profundas reduzem a transpiração, no entanto as plantas com raízes muito profundas continuam a transpirar normalmente. Esta é uma razão pela qual as árvores transpiram mais do que as plantas herbáceas.

A densidade radicular das plantas pode também ser importante neste aspeto, na medida em que está relacionada com a facilidade de procurarem água para manterem a evapotranspiração.

As resinosas ao intercetarem mais água do que as folhosas fazem aumentar a evaporação. Além disso transpiram mais porque apresentam um albedo mais baixo, e as folhas têm duração mais longa.

2.4 Fatores do solo

O solo influencia a evapotranspiração quer pelo seu albedo, quer pela sua capacidade de reter e armazenar água, a qual depende da sua textura.

Solos de características arenosas acabam por limitar a perda de água porque, uma vez secos à superfície, é mais facilmente quebrada a continuidade da água ao nível dos poros e, consequentemente, reduzida a perda de água por evaporação já que a ascensão capilar é eliminada.

A maior quantidade de água armazenada pelos solos argilosos acaba por favorecer o desenvolvimento vegetal e a evapotranspiração, bem como a perda por evaporação direta a partir do solo.

3. Medição da evaporação e da evapotranspiração

A avaliação da evaporação pode ser feita por meio da observação da evaporação em evaporímetros de tina ou de tanque (tinas evaporimétricas ou tanques evaporimétricos) ou em atmómetros (evaporímetro de Piche, Livingstone e o de Balança).

3.1 Evaporímetros de tina ou de tanque

As tinas não são mais do que reservatórios contendo água exposta às condições atmosféricas – Figura 8.1. Podem ser instaladas tanto à superfície do solo, como é comum no caso da tina americana de Classe A, enterradas ou ainda flutuando nas águas das albufeiras ou dos lagos naturais. O Quadro 8.1 apresenta a principais características das tinas de utilização corrente.

Figura 8.1 Tina evaporimétrica de classe A e pormenor do poço amortecedor com respetivo parafuso micrométrico.

A evaporação medida nas tinas deve ser afetada de um coeficiente C, normalmente designado por coeficiente de tina ou tanque. Trata-se de um fator de redução relativamente aos valores medidos na tina já que, dada a pequena altura de água, a tina recebe grandes quantidades de energia por radiação e condução através dos lados e da base, o que faz aumentar a evaporação. Por outro lado, também a área, bastante pequena comparada com a de um lago, conduz a um aumento da evaporação por ser aí mais fácil a remoção, pelo vento, da camada de ar saturado à superfície da água. O próprio bordo da tina exerce influência na velocidade e turbulência do vento propiciando uma mais rápida remoção do ar.

Quadro 8.1 Características das tinas evaporimétricas.

Modelo	Pais	Forma	Superfície (m2)	Profundidade (m)	Comentário	Coeficiente, C E / Etina
Classe A	EUA	Circular	1.167	0.254		0.7
Colorado	EUA	Quadrada	0.836	0.457	Enterrada	0.8
B.P.I.	EUA	Circular	2.627	0.61	Enterrada	0.92
GGI-300	Rússia	Circular	0.3	0.6	Enterrada	0.82
Balsa 20	Rússia	Circular	20	2	Flutuante	1

O coeficiente de tina pode então, ser definido como a relação entre a evaporação no lago, E, e a evaporação observada na tina ou tanque, E_{tina} :

$$C = \frac{E}{E_{ting}} \tag{8.1}$$

A determinação do coeficiente *C* é feita através dos balanços hidrológico e energético. Embora qualquer destes métodos seja de difícil aplicação, possibilitam a determinação de valores regionais do coeficiente de tina. Os valores de C, nalguns países, surgem publicados em cartas de âmbito regional, para utilização no estudo da evaporação em pequenas albufeiras. Em zonas em que os coeficientes de tina não foram ainda determinados, utilizam-se geralmente coeficientes médios idênticos aos apresentados no Quadro 8.1. No caso das tinas de Classe A são de esperar variações mensais de C entre 0,6 e 0,8 em função das estações do ano.

Em Portugal usam-se os seguintes valores médios para as tinas de Classe A: Outubro a Novembro – 0,7; Dezembro a Março – 0,6; Abril e Maio – 0,7 e Junho a Setembro 0,8.

Os valores medidos na tina podem ainda ser falseados pela deficiente quantificação da precipitação e pelo facto de não se evitar que animais, principalmente aves, bebam a água da tina. Por vezes para evitar os animais, são colocadas sobre a tina redes metálicas ou plásticas, vedando o acesso. No entanto, deve-se ter presente que, a colocação de tais artefactos, acaba por condicionar, pela sombra que provocam, a quantidade de radiação e, por conseguinte, a energia disponível para evaporação.

3.2 Atmómetros

Tal como as tinas evaporimétricas, os atmómetros são evaporímetros utilizados para a medição direta da evaporação. Existem vários tipos de atmómetros, dos quais se destacam, o de Piche, o de Livingstone e o de Balança.

O evaporímetro de Piche, é o mais utilizado entre nós e é constituído por um disco de papel poroso alimentado por uma coluna de água. A diminuição do nível da coluna de água permite avaliar a evaporação já que traduz uma medida do poder evaporante do ar.

Na Figura 8.2 esquematizam-se os três tipos de atmómetros referidos.

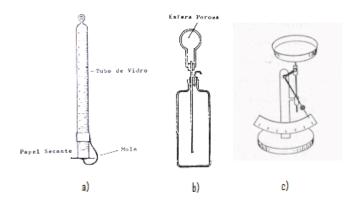


Figura 8.2 Atmómetros: a) Piche; b) Livingstone; c) Balança

Na maioria das situações os valores da evaporação obtida pelos evaporímetros de Piche aparecem subestimados quando comparados com os obtidos a partir da tina – Figura 8.3.

A relação entre as medições da evaporação em tinas e em evaporímetros de Piche, para valores anuais em mm, válida para o sul de Portugal, pode ser traduzida por uma regressão linear (Loureiro, 1982) tal que:

$$E_{tina} = 915.245 + 0.422E_{Piche} \tag{8.2}$$

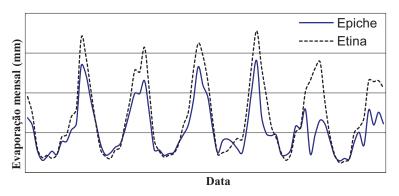


Figura 8.3 Comparação dos valores de E_{tina} vs E_{piche} na estação climatológica Barragem do Divor (21J/03C).

4. Cálculo da evaporação por meio de balanço hidrológico

Para uma melhor quantificação da evaporação numa determinada região, e para se controlarem os resultados obtidos pelas tinas, deve-se, sempre que possível, efetuar o balanço entre todos os volumes de água afluentes e efluentes a um lago ou albufeira existente – Figura 8.4.

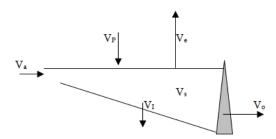


Figura 8.4 Esquematização das variáveis intervenientes no balanço de massa de uma albufeira.

O balanço de massa pode assim, ser expresso por,

$$V_e = (V_a + V_P) - (V_o + V_S + V_I)$$
(8.3)

onde, V_e é o volume evaporado, V_a é o volume de água que aflui à albufeira, V_P é o volume correspondente à precipitação reportada à área do espelho de água, V_o é o volume de água efluente da albufeira, V_s é o volume correspondente à variação do volume armazenado (positiva quando aumentar e negativa quando diminuir) e V_I , o volume infiltrado ou perdido por percolação. Todos estes volumes são facilmente quantificáveis à exceção de V_I , que geralmente é estimado com base na condutividade hidráulica dos solos da albufeira.

O valor de V_e obtido pela equação 8.3, pode ser expresso em altura equivalente de evaporação relativa ao período em análise, desde que se divida aquele volume, pela área média do espelho de água.

5. Medição da evapotranspiração

A evapotranspiração pode ser medida diretamente recorrendo a dispositivos denominados evapotranspirómetros ou lísimetros. Estes aparelhos possibilitam a realização de um balanço de massa ao nível de um bloco de solo isolado, mas no qual se faz a mesma cultura da zona envolvente. A perda de água por evapotranspiração é medida pela diferença entre a quantidade de água que aflui ao solo do lisímetro por meio da precipitação ou rega, e aquela que o abandona, por drenagem

profunda ou por escorrência superficial - lisímetro de drenagem (Figura 8.5).

Os lisímetros são instalações caras e de difícil manutenção pelo que são normalmente usados apenas com caracter experimental para a validação das fórmulas empíricas baseadas em parâmetros hidrometeorológicos de mais fácil determinação e geralmente disponíveis.

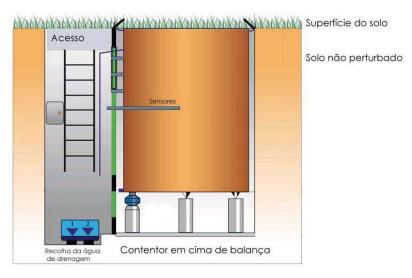


Figura 8.5 Representação esquemática de um lisímetro.

6. Fórmulas para determinação da evapotranspiração

Existem vários métodos para a avaliação da evapotranspiração, das quais aqui se destacam o de Thornthwaite, o de Turc, o de Penman-Modificado, o de Penman-Monteith e o de Hargreaves-Samani.

6.1 Fórmula de Thornthwaite

Este método baseia-se na correlação entre a temperatura média do ar e a evapotranspiração potencial a partir de grande número de medições das mesmas, aplicável para regiões onde a temperatura média mensal é positiva.

A evapotranspiração potencial é calculada com base em dois índices:

o Índice térmico mensal, i

$$i = (0.2 \, \overline{\mathrm{T}})^{1.514}$$
 (8.4)

onde, \overline{T} é a temperatura média mensal (°C);

e o Índice térmico anual, I

$$I = \sum_{i=1}^{12} i \tag{8.5}$$

A evapotranspiração potencial, Et_p em mm, num local do equador (Latitude 0 e 12 horas de luz por dia), durante um mês com trinta dias é dada por:

$$ET_p = 16 \left(10 \frac{\overline{T}}{I} \right)^a \tag{8.6}$$

com

$$a = 675 \times 10^{-9} I^3 - 77.1 \times 10^{-6} I^2 + 17.92 \times 10^{-3} I + 492.39 \times 10^{-3}$$

A evapotranspiração potencial noutro local, obtém-se aplicando um fator corretivo, f, à equação anterior, dependendo esse fator da latitude do local e do número de dias do mês, tal que:

$$ET_p = 16\left(10\frac{\overline{T}}{I}\right)^a \times f \tag{8.7}$$

com,

$$f = \frac{N/12 \times N_d}{30} \tag{8.8}$$

onde, N_{12} traduz a insolação astronómica diária em função da Latitude expressa em unidades de 12h de um mês com 30 dias e N_d é o número de dias do mês.

O Quadro 8.2 apresenta valores de N correspondentes ao 15° dia de cada mês em função da latitude. Normalmente assume-se que o 15° dia representa a média mensal para N.

Quadro 8.2 Valores da insolação astronómica diária em horas para o hemisfério norte.

	INSOLAÇÃO ASTRONÓMICA DIÁRIA EM HORAS (N)												
Latitude	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DEZ	Latitude
N													N
0	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	0
5	11.8	12.0	12.0	12.2	12.3	12.4	12.3	12.2	12.1	12.0	11.9	11.8	5
10	11.6	11.7	12.0	12.4	12.5	12.7	12.5	12.4	12.2	11.8	11.8	11.5	10
15	11.3	11.7	12.0	12.5	12.9	13.0	13.0	12.5	12.2	11.7	11.4	11.3	15
20	11.0	11.6	12.0	12.6	13.1	13.3	13.2	12.9	12.2	11.6	11.2	10.9	20
25	10.8	11.4	12.0	12.7	13.4	13.7	13.6	13.0	12.2	11.5	10.9	10.6	25
26	10.7	11.3	12.0	12.7	13.4	13.8	13.6	13.0	12.2	11.5	10.9	10.6	26
27	10.7	11.3	12.0	12.8	13.5	13.8	13.7	13.1	12.2	11.5	10.8	10.5	27
28	10.6	11.3	12.0	12.8	13.5	13.9	13.7	13.1	12.2	11.4	10.8	10.5	28
29	10.6	11.2	12.0	12.8	13.6	13.9	13.8	13.1	12.4	11.4	10.8	10.3	29
30	10.5	11.2	12.0	13.0	13.7	14.0	13.9	13.2	12.4	11.4	10.7	10.2	30
31	10.5	11.2	12.0	13.0	13.7	14.2	13.9	13.2	12.4	11.4	10.7	10.2	31
32	10.3	11.1	12.0	13.0	13.8	14.3	14.1	13.4	12.4	11.4	10.6	10.1	32
33	10.2	11.1	12.0	13.1	13.8	14.4	14.2	13.4	12.4	11.3	10.6	10.0	33
34	10.2	10.9	12.0	13.1	13.9	14.4	14.2	13.5	12.4	11.3	10.4	10.0	34
35	10.1	10.9	12.0	13.1	14.1	14.5	14.3	13.5	12.4	11.3	10.3	9.9	35
36	10.1	10.9	12.0	13.2	14.1	14.6	14.4	13.5	12.4	11.1	10.3	9.8	36
37	10.0	10.8	12.0	13.2	14.2	14.8	14.5	13.6	12.4	11.3	10.2	9.6	37
38	9.9	10.8	12.0	13.2	14.3	14.9	14.5	13.6	12.5	11.1	10.1	9.6	38
39	9.9	10.8	12.0	13.3	14.3	14.9	14.6	13.7	12.5	11.1	10.1	9.5	39
40	9.8	10.7	12.0	13.3	14.4	15.0	14.7	13.7	12.5	11.1	10.0	9.4	40
41	9.6	10.7	12.0	13.3	14.5	15.1	14.7	13.8	12.5	11.1	9.8	9.3	41
42	9.5	10.7	12.0	13.4	14.6	15.2	14.9	13.8	12.5	11.0	9.8	9.2	42
43	9.4	10.5	11.8	13.4	14.6	15.4	15.0	13.9	12.5	11.0	9.7	8.9	43
44	9.4	10.5	11.8	13.6	14.7	15.5	15.1	13.9	12.5	11.0	9.6	8.8	44
45	9.3	10.4	11.8	13.6	14.9	15.5	15.2	14.1	12.5	10.9	9.5	8.7	45
46	9.2	10.4	11.8	13.6	15.0	15.7	15.3	14.2	12.5	10.9	9.5	8.6	46
47	8.9	10.3	11.8	13.7	15.1	15.8	15.4	14.2	12.5	10.8	9.4	8.5	47
48	8.8	10.3	11.8	13.7	15.2	16.0	15.6	14.3	12.6	10.8	9.2	8.4	48
49	8.7	10.2	11.8	13.7	15.3	16.1	15.7	14.4	12.6	10.8	9.1	8.2	49
50	8.6	10.0	11.8	13.8	15.4	16.3	15.9	14.5	12.7	10.7	9.1	8.1	50

6.2 Fórmula de Turc

É um método onde a radiação solar assume preponderância. Segundo Turc a evapotranspiração potencial mensal, \textit{Et}_p em mm, é dada por,

$$ET_p = 0.40 \frac{\overline{T}}{\overline{T} + 15} (R_c + 50)$$
 (8.9)

onde, \overline{T} , é a temperatura média mensal (°C), R_c , a radiação global média diária durante o mês (cal cm-² dia-¹), valor tabelado em função da latitude do lugar, ou obtido pela equação de Angström:

$$R_c = \left(\alpha + \beta \frac{n}{N}\right) R_a \tag{8.10}$$

com, α,β coeficientes de Angström, n, a insolação diária (h), N, a insolação astronómica diária (h) e R_a a radiação extraterrestre (calcm-²d-¹)

Para o mês de fevereiro o valor 0,40 da equação 8.9 é substituído por 0,37 para ter em conta o menor número de dias desse mês. Nos meses em que a humidade relativa do ar for inferior a 50%, a equação 8.9 deve ser afetada de um fator corretivo, f_t dado por,

$$f_t = 1 + \frac{50 - HR}{70} \tag{8.11}$$

onde, HR representa a humidade relativa do ar (%).

RADIAÇÃO EXTRATERRESTRE , RA (Cal cm N N MAF MAI DEZ Latitud JUI S s

Quadro 8.3 Radiação extraterrestre.

6.3 Método de Penman Modificado

Este método foi sugerido pela FAO em 1977 com particular aplicação para o cálculo das necessidades de rega das culturas, tendo por base a fórmula proposta por Penman em 1948, relativa às perdas de água por evaporação direta a partir de uma superfície livre de água.

A formulação apresentada pela FAO agrega duas componentes, uma energética, onde a radiação solar assume predominância, e outra aerodinâmica, para ter em atenção o efeito do vento na evapotranspiração. Assim temos:

$$Et_o = c [W . R_n + (1-W) . f(u) . (e_s -e_a)]$$
 (8.12)

em que:

Et₀ – evapotranspiração de referência (mm/d);

c – fator de correção entre as condições diurnas e noturnas;

W - fator de ponderação relacionado com a temperatura;

 R_n – radiação líquida expressa em evaporação equivalente (mm/d);

f(u) – função relacionada com o vento;

 $(e_s - e_a)$ – deficit de saturação (mbar).

O fator c corrige os valores de Et_o tendo em conta os valores da humidade relativa máxima, HR_{max} , da radiação solar, R_s , e da relação entre as velocidades do vento durante o dia relativamente aquelas que ocorrem durante a noite.

O deficit de saturação ($e_s - e_a$) traduz a diferença existente entre a tensão de vapor à saturação e tensão real de vapor. O valor de e_s é tabelado em função da temperatura média do ar em °C. O valor de e_a é igual ao produto de e_s pela humidade relativa do ar em %, tal que,

$$e_a = e_s \frac{HR}{100} \tag{8.13}$$

A função que entra em conta com o efeito do vento é expressa por,

$$f(u) = 0.27 \left(1 + \frac{U_2}{100} \right) \tag{8.14}$$

em que U_2 é velocidade total do vento obtida a uma altura de 2 metros, expressa em kmd⁻¹. Nem sempre os anemómetros são posicionados a 2 metros de altura pelo que, sempre que tal não aconteça, é necessário corrigir os valores do vento pelos fatores de correção do Quadro 8.4.

Quadro 8.4 Fatores para correção da velocidade do vento.

Altura da medição (m)	0.5	1	1.5	2	3	4	5	6	10
Factor de correcção	1.35	1.15	1.06	1	0.93	0.88	0.85	0.83	0.77

O fator (1 – W) pondera aos efeitos do vento e da humidade. Os seus valores encontram-se relacionados com a temperatura média e a altitude.

A ponderação dos efeitos da radiação é traduzida pelo fator W. Os seus valores encontram-se relacionados com a temperatura média e a altitude do local.

A radiação líquida, R_n , deriva do balanço de radiação da superfície, esquematizado na Figura 8.6, e corresponde à diferença entre a radiação líquida afluente (curto comprimento de onda) e a radiação líquida efluente (longo comprimento de onda):

$$R_n = R_{ns} - R_{nl} \tag{8.15}$$

com

$$R_{ns} = (1 - \alpha) \left(0.25 + 0.50 \frac{n}{N} \right) R_a \tag{8.16}$$

$$R_{nl} = \sigma \overline{T}^{4} \left(0.34 - 0.044 \sqrt{e_a} \right) \left(0.1 + 0.9 \frac{n}{N} \right)$$
 (8.17)

onde, α corresponde ao albedo da superfície (normalmente α = 0,25), $\frac{n}{N}$, a razão de insolação (-), \overline{T} , é a temperatura média do ar (K), σ , é a

razão de insolação (-), T, é a temperatura média do ar (K), σ , é a constante de Stefan-Boltzmann (5,67 x 10^{-8} W m⁻² K⁻⁴), e_a , a tensão de vapor atual (hPa) e R_a , a radiação extraterrestre (W m⁻² d⁻¹).

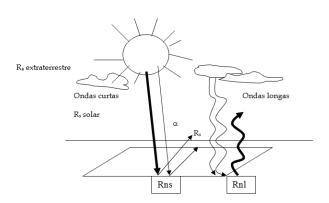


Figura 8.6 Balanço de radiação.

6.4 Método de Penman-Monteith

De acordo com as parametrizações propostas no boletim da FAO-56 (Allen, et al., 1998), a equação original de Penman-Monteith para o cálculo da evapotranspiração de referência, assume a forma seguinte:

$$Et_{o} = \frac{0.408 \,\Delta \left(R_{n} - G\right) + \gamma \frac{900}{\overline{T_{2}} + 273} \,U_{2}\left(e_{s} - e_{a}\right)}{\Delta + \gamma \left(1 + 0.34 \,U_{2}\right)} \tag{8.18}$$

onde, Et_0 , é a evapotranspiração de referência (mm d-1), Δ representa o declive da curva de tensão de vapor (kPa °C-1), R_n , é a radiação líquida (MJ m-2 d-1), G, corresponde ao fluxo de calor do solo (MJ m-2 d-1), , é a constante psicométrica (kPa °C-1), $\overline{T_2}$, a temperatura média diária do ar a 2 m de altura (°C), U_2 , o velocidade média do vento a 2 m do solo (m s-1), e_s , a tensão de saturação do vapor (kPa), e_a , a tensão atual do vapor (kPa).

O declive da curva de tensão de vapor (Δ) em função da temperatura obtém-se, para o ponto correspondente ao valor da temperatura média, por,

$$\Delta = \frac{2504 \exp\left(\frac{17,27 \,\overline{T_2}}{\overline{T_2} + 237,3}\right)}{\left(\overline{T_2} + 237,3\right)^2} \tag{8.19}$$

O valor da constante psicrométrica (γ) é obtido em função da pressão atmosférica, p, do local (kPa), por,

$$\gamma = 0.665 \times 10^{-3} \, \text{p} \tag{8.20}$$

A parametrização para o cálculo do balanço de energia radiante ou do valor da radiação liquida, R_n , é apesentada no quadro 8.5. O coeficiente de reflexão da superfície ou albedo, α , assume o valor de 0,23 para uma superfície de referência relvada (Allen, et al., 1998).

Quadro 8.5 Parametrização do balanço de energia radiante.

Balanço de energia radiante(MJ/m²/d)	$R_n = R_{ns} + R_{nl}$
Radiação de curto comprimento de onda(MJ/m²/d)	$R_{ns} = (1 - \alpha) R_{s}$
Radiação solar global(MJ/m2/d)	$R_s = \left(0.25 + 0.50 \frac{n}{N}\right) R_a$
Radiação de longo comprimento de onda(MJ/m²/d)	$R_{nl} = -2.45 \times 10^{-9} \left(T_{max}^4 + T_{min}^4 \right) \left(0.34 - 0.14 \sqrt{e_a} \right) \left(0.1 + 0.9 \frac{n}{n} \right)$
Radiação solar extraterrestre(MJ/m²/dia)	$R_{a}=37.6~d_{r}~\left(\omega_{s}~{ m sen}~arphi~{ m sen}~\delta+{ m cos}~arphi~{ m cos}~\delta~{ m sen}~\omega_{s} ight)$
Distancia relativa Terra - Sol	$d_{r} = 1 + 0.033\cos(0.0172 J)$
Declinação solar (rad)	$\delta = 0.409 \mathrm{sen} (0.0172 J - 1.39)$
Ângulo da hora do por do sol(rad)	ω_s = arccos $(-tg\phi tg\delta)$
Insolação astronómica(h)	$N = 7,64 \omega_s$
Dia Juliano mensal(d)	J = Inteiro(30,5 M - 14,6)

O fluxo de energia para o solo, *G*, pode ser desprezado para curtos intervalos de tempo (menos de 10 dias), é calculável por,

$$G = 0.14 \left(\overline{T}_i - \overline{T}_{i-1} \right) \tag{8.21}$$

onde, \overline{T}_i , é a temperatura média do mês i (°C).

A velocidade média do vento à altura padrão de 2 m acima do solo, \mathcal{U}_2 , obtém-se por,

$$U_2 = U_Z \frac{4.87}{\ln\left(67.8 \, Z_m - 5.42\right)} \tag{8.22}$$

onde U_Z representa a velocidade média do vento media à altura de Z_m acima do solo.

As tensões de saturação do vapor, e_s , e a tensão atual, são calculáveis por,

$$e_s = 0.611 \exp\left(\frac{17.27 \,\overline{T}}{\overline{T} + 237.3}\right)$$
 (8.23)

$$e_a = e_s \frac{\overline{HR}}{100} \tag{8.24}$$

onde, \overline{T} corresponde à temperatura média do mês i (°C), e \overline{HR} , à humidade relativa média do mês i (%).

6.5 Equação de Hargreaves-Samani

Hargreaves e Samani (1985) desenvolveram uma equação simples de estimativa da evapotranspiração diária, que necessita apenas da temperatura do ar e coeficientes dependentes da latitude do local e época do ano. Esta equação, conhecida como a equação HS pode ser expressa da seguinte forma:

$$ET_o = 0.0023(T + 17.78)(T_{\text{max}} - T_{\text{min}})^{0.5} R_a$$
 (8.25)

onde, T, T_{max} e T_{min} são, respetivamente, a temperatura média, máxima e mínima do ar (°C), e R_a , é a radiação extraterrestre em unidades de evaporação de água (mm/dia), obtida recorrendo a valores tabelados de radiação no topo da atmosfera (Quadro 8.3, com aos valores multiplicados por 0,0171), ou calculada através da parametrização proposta em Allen et al. (1998) e constante do Quadro 8.5. Neste caso os valores de R_a

calculados vêm em MJm⁻²dia⁻¹, pelo que é necessário multiplicar a parcela da direita da equação (8.25) por 0,408.

7. Evapotranspiração cultural

A afetação de Et_o por um coeficiente cultural, k_c , possibilita a consideração dos fatores relacionados com as culturas no sentido de calcular as suas necessidades em água. Na prática, a evapotranspiração cultural Et_c , representa a perda de água, por evapotranspiração, de uma cultura em condições sanitárias ótimas, em franco desenvolvimento e, por isso, capaz de produzir rendimentos máximos, tal que,

$$Et_c = Et_o * k_c \tag{8.26}$$

O valor do k_c é um valor tabelado condicionado, para cada cultura, por aspetos ligados às datas de plantação ou sementeira, aos ritmos de desenvolvimento da cultura e duração do seu período vegetativo, dependente das condições climatéricas e da frequência das precipitações ou das regas.

8. Evapotranspiração real

Foi já referido que a evapotranspiração real, Etr, corresponde à quantidade de água verdadeiramente perdida pelo solo, dependendo do seu teor de humidade, das condições atmosféricas e das características da vegetação.

O método de cálculo da $\rm Et_r$ é o do balanço hídrico. Assim, sempre que a quantidade de precipitação, P, num determinado período de tempo, i, excede a evapotranspiração potencial ou de referência determinada para o mesmo período, o valor de $\rm Et_r$ é igual ao valor de $\rm Et_o$ (ou $\rm Et_p$). Esta situação ocorre nas nossas condições na estação húmida. Temos então:

$$Etr_i = Eto_i se [P_i > Eto_i]$$
 (8.27)

Em período seco (valores da precipitação inferiores à evapotranspiração no período) há que ter em conta a quantidade de água retida no solo em condições utilizáveis pelas culturas. Nestes períodos, o valor da evapotranspiração real deverá ser determinado por,

$$Etr_i = P_i + |\Delta S_i| \text{ se } [P_i < Eto_i]$$
(8.28)

em que ΔS_i corresponde à variação da reserva utilizável do solo no período (mm) obtida por:

$$\Delta S_i = S_i - S_{i-1} \tag{8.29}$$

e, *i*, representa o intervalo de cálculo do balanço (dia, década, mês) e, *S* a reserva utilizável.

9. Exercícios

9.1 No quadro seguinte apresentam-se os valores médios mensais da temperatura (T) e da humidade relativa do ar (HR), e os valores médios diários da velocidade do vento (U) e da insolação (n), registados em Évora no período 1960/61-1990/91.

Évora	Latitud	e (°): 38	.56 N							NC:196	0/61-19	990/91
Evora	Altitud	e (m): 32	21		Altura	do anen	nómetro					
Mês	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
T (°C)	9.5	10.2	11.8	13.4	16.4	20.1	23.0	23.3	21.6	17.3	12.7	9.9
HR (%)	78	71	70	64	60	53	46	46	54	64	75	78
U (km/dia)	362.9	388.8	388.8	380.2	388.8	371.5	380.2	388.8	345.6	354.2	354.2	362.9
n (h)	4.8	5.3	6.5	7.3	9.2	10.0	11.7	11.2	8.4	6.6	5.3	4.6

- a) Determinar a evapotranspiração potencial mensal e anual em Évora pelos métodos de Thornthwaite e de Turc. Considere que os coeficientes de Angström são α = 0,23 e β = 0,50.
- b) Recorrendo ao método de Penman-Monteith estime a evapotranspiração de referência diária na região de Évora.

10. Referências Bibliográficas

- Allen R. G., Pereira L. S., Raes, D. e Smith S. (1998). *Crop evapotranspiration Guidlines for computing cropwater requirements*. FAO Irrigation and Drainage Paper 56, FAO.
- Chow Ven Te; Maidment D. R; Mays L. W. (1988). *Applied Hydrology*, McGraw-Hill, New York.
- Doorenbos J. e Pruitt W. O. *Guidelines for predictingcrop water requirements*. FAO Irrigation and Drainage Paper 24, FAO.
- Lencastre A. e Franco F. M. (1992). *Lições de Hidrologia*, Universidade Nova de Lisboa, Lisboa.
- Loureiro J. M., Macedo M. E. (1982) *Relação entre a evaporação tina e Piche*. Recursos Hídricos, Vol. 3, Lisboa
- Penman H. L. (1948). *Natural evaporation from open water, bare soil and grass*. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193 (1032), 120-145.
- Penman H. L. (1963). Vegetation and hydrology. Technical Communication, No.53. *Commonwealth Bureau of Soils*. Harpenden
- Quintela A. C. (1996). Hidrologia e recursos hídricos, IST.
- Thornthwaite C.W. (1948) An approach toward a rational classification of climate. *Geographical Review*, 38, 55-94.