
REVSTAT – Statistical Journal

Volume 16, Number 1, January 2018, 1–22

STATISTICAL PROPERTIES AND SENSITIVITY

OF A NEW ADAPTIVE SAMPLING METHOD

FOR QUALITY CONTROL

Authors: Manuel do Carmo

– Universidade Europeia, Lisbon

and CIMA-UE, University of Évora, Portugal
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Abstract:

• We present a new adaptive sampling method for statistical quality control. In this
method, called LSI (Laplace sampling intervals), we use the probability distribu-
tion function of the Laplace standard distribution to obtain the sampling instants,
depending on a k parameter that allows control of sampling costs. Several algebraic
expressions concerning the statistical properties of the LSI method are presented.
We compare the LSI method with fixed sampling intervals (FSI) and variable sam-
pling intervals (VSI) methods using a Shewhart X-bar control chart and evaluate the
sensitivity of these sampling methods when the lower sampling interval is truncated.
The results obtained show that the new method is a viable alternative in various
critical contexts and situations.
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1. INTRODUCTION

The success of a statistical quality control method is directly related to the

type of control chart and especially to the sampling method used. The variabil-

ity of the process is due to random causes (inherent to the process) or to the

presence of assignable causes. The former cannot be economically identified and

corrected, whereas the latter should be detected and eliminated. The choice of the

control chart depends upon the characteristic being controlled. The quantitative

characteristics are controlled using variable control charts (X̄-charts, R-charts,

or s-charts, for example) or special control charts (EWMA or CUSUM charts for

continuous random variables, for example). For a long time the control charts

used had fixed parameters (sampling intervals, sample sizes, and control limits).

However, since final of the 1980s, new adaptive control charts have been devel-

oped for improved performance. In terms of their implementation, these charts

can be classified in two broad categories. The first category encompasses control

charts with adaptive parameters (sampling intervals, sample size, and control

limits, depending on the sample information; see, for example, Reynolds et al.

(1988), Daudin (1992), Prabhu et al. (1993), Costa (1994), Prabhu et al. (1994),

Stoumbos & Reynolds (1997), Costa (1999), Rodrigues Dias (1999), Carot et al.

(2002), Mahadik & Shirke (2009)). The second category encompasses control

charts with predetermined parameters (parameters determined before the begin-

ning of the process to be controlled; see for example, Banerjee & Rahim (1988),

Rahim & Banerjee (1993), Lin & Chou (2005) and Rodrigues Dias & Infante

(2008)).

Several measures have been developed to assess the statistical quality con-

trols method’s performance across time regarding to how quickly they detect

assignable causes. The frequency of false alarms and the number of samples

and analysed items are two examples. The ARL (“average run length”) is per-

haps the most widely used statistical measure for assessing the performance

of a statistical control chart. The ARL is defined as the average number of

samples that needs to be drawn before an out-of-control indication is given.

If the control methods have constant and equal sampling intervals, then the time

interval up to the detection of a change is directly proportional to the ARL.

In the case of non-constant sampling intervals, the proportionality above fails

and the ARL is not a measure of the efficiency of the control method. The AATS

(“adjusted average time to signal”), also known in the literature as “steady-state

performance”, is defined as the average interval of time from the instant at which

a failure occurs in the system to the instant at which the control chart detects the

failure. In the case of a Shewhart control chart with variable sampling intervals,

AATS = E(G) + E(D)×(ARL− 1), where E(D) is the average sampling interval

and G represents the time interval between the instant at which the system fails

and the instant at which the first sample, after the failure, is drawn. The AATS
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is a measure that suits most practical situations. Morais (2002), Carmo (2004)

and Rodrigues Dias & Carmo (2009) are important sources on the previously

described approaches. In Morais & Pacheco (2001), stochastic order relations are

established using the RL (“run length”), allowing comparison of different quality

control methods without numerical computation of their performance.

In the following sections, we present a new sampling method called LSI

(“Laplace sampling intervals”), an adaptive and continuous sampling method in

which the sampling intervals are obtained on the basis of the probability density

function of the Laplace standard distribution and depends on a scale parameter, k.

The AATS will be used in section 3 to examine the statistical properties of this

method and to compare its effectiveness with that of the FSI (“fixed sampling

intervals”) and VSI (variable sampling intervals) methods. In section 4, the sen-

sitivity of this new method is compared to the sensitivity of the above mentioned

methods. Finally, in section 5, conclusions are drawn and future work is proposed.

2. NEW SAMPLING METHOD: LSI

(LAPLACE SAMPLING INTERVALS)

2.1. Methodology

Let X be a continuous quality variable so that when the system is in control

state, X is a random variable with expected value µ = µ0 and standard devia-

tion σ = σ0. If x1, x2, ..., xn are identical and independently distributed random

variables with the same distribution of X, where n is the sample size, then X̄ has

the same expected value µ0 and standard deviation σ0/
√

n. As a consequence of

the one assignable cause, corresponding to a failure of the system, the process

state may change and then µ and σ may assume new values µ1 = µ0 ± λσ0, and

σ1 = σ0, with λ > 0. If ti denotes a sampling instant of order i and xi is the

sample mean value of order i, according to the LSI method, the next sampling

at the instant of order i + 1 is given by

(2.1) ti+1 = ti + k .l(ui) , i = 0, 1, 2, ... ,

where ui = xi−µ0

σ0

√
n, t0 = 0, x0 = µ0, l(ui) =

1

2
e−|ui|, n is the sample size, k is a

convenient scale constant and l(·) is the density function of the standard Laplace

variable. Therefore, according to (2.1), this sampling method considers consecu-

tive sampling intervals δi = ti− ti−1 = k .l(ui−1) = k×0.5×e−|ui−1|, i = 1, 2, 3, ....

These are values from independently and identically distributed continuous ran-

dom variables Di, i = 1, 2, 3, ..., with the same distribution of a generic variable D.

When we obtain the value of k we have only sampling intervals, Di, under control



New Adaptive Sampling Method for Quality Control 5

(E(D|λ = 0) = 1); when we obtain the values of the AATS we have only sampling

intervals out-of-control, subject to different shifts of the sample mean. Thus,

D is a function of X̄ and, consequently, of U , given by

(2.2) D =
k .e

−
��� X̄−µ

σ

√
n
���

2
= k .l(U) .

The constant k depends on several factors and, especially, on the costs associated

with the production process (not imposing, so far, any limits on the control chart

for means) and U =
(

X̄ − µ
)√

n/σ . Using this adaptive and continuous method,

the sampling frequency decreases (the sampling instants are spaced further apart

in time) when the sample mean is marked close to the mean of the distribution.

When the sample mean is marked close to control limits, the probability of a

shift in the mean increases, and the sampling frequency increases (the sampling

instants are less distant in time). Like the VSI sampling method, the LSI method

is an adaptive method in which the time interval to the next sample depends on

the information in the current sample. The disadvantage is that the sampling

intervals function of the LSI chart is a continuous function of the chart statistic

(and this implies an infinite number of possible sampling intervals). However,

the sampling interval function is a very simple function of the chart statistic.

It can be easy to implement in practice, particularly, in automatic monitoring.

The NSI (normal sampling intervals) method, presented by Rodrigues Dias (1999)

and studied in Infante (2004), showed limitations in practical applications.

In this method the sampling instants are obtained using the density function

of the standard Normal distribution; the smallest sampling interval is very small,

which reduces the application of this sampling method. The idea emerged to

study one analogous method in which the smallest sampling interval would be

greater than in the NSI method which, therefore, allowed practical applications.

Regarding the skewness and shape, the Laplace density function is similar to the

Normal density function, as in the Cauchy density function, but having heavier

tails. This fact addresses some of the difficulties seen in the practical application

of the NSI method. In our preliminary work we simulated sampling intervals for

three probability density functions (pdf (x, µ, σ)): those of the Normal, Cauchy,

and Laplace distributions. Considering “3-sigma” control limits and a time unit

average sampling interval, in control, the following results were obtained:

a) Normal distribution: pdf (0, 0, 1) = 0.399, k = 3.535, smallest sampling

interval = 0.016, largest sampling interval = 1.410.

b) Cauchy distribution: pdf (0, not defined, not defined) = 0.318, k = 4.778,

smallest sampling interval = 0.152, largest sampling interval = 1.521.

c) Laplace distribution: pdf (0, 0, 1) = 0.500, k = 3.813, smallest sampling

interval = 0.095, largest sampling interval = 1.907.

Based on these results, we selected the Laplace distribution’s probability den-

sity function. All the parameters are defined such that the sampling frequency
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decreases close to the central region and the smallest sampling interval is more

likely to apply in practice. In addition, the smallest and largest sampling intervals

are approximately equal to the sampling pair most frequently used in the VSI

method ((d1, d2) = (0.1, 1.9)). We are considering general sampling interval func-

tions that are continuous functions of the chart statistic. Stoumbos et al. (2001)

study what function would be the optimal function in some sense.

2.2. Statistical Properties

In the remainder of this paper we assume that X follows a normal dis-

tribution with expected value µ = µ0 and standard deviation σ = σ0. We will

consider a Shewhart chart with LCL and UCL, respectively, lower and upper

control limits, given by:

(2.3) LCL = µ0 − L
σ0√
n

, UCL = µ0 + L
σ0√
n

,

where L is the coefficient of the control limits (in practice, typically around three

units of standard deviation). As mentioned above, after shift, µ takes on the

new value µ1 = µ0 ± λσ0, where λ > 0 is the magnitude of the mean shift (in

the present work, only mean shifts are considered). Therefore, if ui denotes the

standard sample mean, for values to |ui| > L the process is considered to be

out-of-control, although this might be a false alarm.

Considering the assumptions in (2.2) and (2.3), and that f∗(x) is the cor-

responding conditional density function of x, given by

(2.4) f∗(x) =

√
n

βσ
√

2π
e−

n(x−µ)2

2σ2 , x ∈ ]LCL,UCL [ ,

then f∗(x) dx is the elementary probability of x ∈ ]x, x + dx[ and the average

sampling interval is given by

E (D|λ, n, L) =

∫ UCL

LCL
k .l(x) .f∗(x) dx

(2.5)
=

∫ UCL

LCL

k .
√

n

2βσ0

√
2π

e
−

[
∣

∣

∣

x−µ0

σ0

√
n

∣

∣

∣
+ n(x−µ0−λσ0)2

2σ2
0

]

dx ,

where β is the probability of the sample mean lies between the control limits, and

is given by

(2.6) β = Φ
(

L − λ
√

n
)

− Φ
(

−L − λ
√

n
)

.

Considering Φ(u) as the distribution function of the standard normal random

variable, the following expression for the average sampling interval arises

(2.7) E (D|λ, n, L) =
k
√

e

2β

[

eλ
√

n.A(L, λ, n) + e−λ
√

n.B(L, λ, n)
]

,
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where

A(L, λ, n) = Φ
(

−1 − λ
√

n
)

− Φ
(

−L − 1 − λ
√

n
)

,
(2.8)

B(L, λ, n) = Φ
(

L + 1 − λ
√

n
)

− Φ
(

1 − λ
√

n
)

.

The expression (2.7) depends on the sample size, n, the coefficient of the control

limits, L, the mean shifts, λ, and β (the probability of a Type II error if the

sample mean is out of the control limits). Assuming that the values of n, L and λ

are known, then E(D) is a linear function of k. When the process is in control,

λ = 0, the average sampling interval is given by

(2.9) E (D|L) =
k
√

e

β

[

Φ(L + 1) − Φ(1)
]

,

where β = 2Φ(L) − 1 and does not depend on the sample size, n. Therefore, if

the average sampling interval is equal to a time unit (without loss of generality,

the sampling period used in the FSI method), the constant k is given by

(2.10) k =
β√

e
[

Φ(L + 1) − Φ(1)
] ,

which is equal to 3.8134, based on the usual “3-sigma” limits. This result was

obtained by numerical integration using the R software.

The variance of the sampling intervals can be obtained by the equality

Var(D) = E(D2) − [E(D)]2. The expression for E(D2) is obtained using the

same reasoning applied to derive (2.5), leading to

E
(

D2|λ, nL
)

=

∫ UCL

LCL

[

k .l(x)
]2

.f∗(x) dx

=
e2k2

4β

[

e2λ
√

n
[

Φ
(

−2 − λ
√

n
)

− Φ
(

−L − 2 − λ
√

n
)

]

(2.11)

+ e−2λ
√

n
[

Φ
(

L + 2 − λ
√

n
)

− Φ
(

2 − λ
√

n
)

]

]

,

which allows us to obtain the desired variance.

As mentioned above, there are different measures that are commonly used

to assess the effectiveness of control charts. In this study we use the AATS to

compare the effectiveness of the LSI method with the effectiveness of the FSI and

VSI methods. Let RL (run length) be a random variable denoting the number of

samples to be drawn before a false alarm or a failure occurrence, regardless of the

sampling method used. RL follows a geometric distribution with the parameter

1 − β, that is, with a mean and the variance, respectively, given by

(2.12) ARL(λ) =
1

1 − β
,
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and

(2.13) Var[RL(λ)] =
β

(1 − β)2
.

In general, a process starts in control. Therefore, the time interval between

occurrence of a failure and its detection is of particular importance. For example,

in a production process in which the malfunction costs are high, the average total

cost of a production cycle may increase. As the failure may occur in the interval

between two samples, it is necessary to adjust the ATS (average time to signal

— which is defined as the average interval of time between the beginning of

the process and an out-of-control sign, eventually a false alarm, being given by

the control chart). Thus, we consider G to be the time interval between the

occurrence of a failure and the moment when the first sample is drawn after the

mean shift. The AATS (adjusted average time to signal) is given by

(2.14) AATS = E(G) + (ARL − 1) .E(D) ,

where the expected value of G has to be determined. In the FSI method,

the expected value of G is, approximately, half of the inspection period used.

However, in this adaptive case, we do not have a constant sampling interval.

The distribution of the variable G depends on when the shift of the mean occurs.

Let us assume that the time when a shift occurs is uniformly distributed in each

sampling interval. If a failure occurs in a sampling interval of length d, the average

time until the next sample is drawn is 0.5× d. Although the number of sampling

intervals is infinite, we can assume that the probability of the shift occurring in

a sampling interval of length d is proportional to the product of the length of

the interval and the probability of selecting this interval, as long as the process

is in control, as Reynolds et al. (1988) and Runger & Pignatiello (1991) assumed

for the VSI method. Taking into account that the variable G is continuous, the

expression for its expected value can be obtained using the same reasoning that

Reynolds et al. (1988) used in the VSI case. Based on the assumptions stated

above, we obtain the following expression for the expected value of G

(2.15) E (G|L) =
E

(

D2|λ = 0
)

2E (D|λ = 0)
=

k .e3/2

4

Φ(L + 2) − Φ(2)

Φ(L + 1) − Φ(1)
,

which can be written as

(2.16) E(G) = k .e3/2 × C(L) ,

with

(2.17) C(L) =
Φ(L + 2) − Φ(2)

4 ×
[

Φ(L + 1) − Φ(1)
] .

Expression (2.17) depends only on the control limits and may be simplified to

(2.18) E(G) = 0.036 × ke3/2 .
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This simplified expression will be useful in future algebraic treatments. This

simplified version is originated by the data in Table 1, containing approximations

for C(L) for several values of L. It is clear that 0.036 is an excellent approximation

of C(L), particularly for values of L ≥ 2. This approximation is not as good as

one might expect for L < 2. However, this situation can be considered irrelevant

in many applications, as it results in a high number of false alarms.

Table 1: Values of C(L) for different multiples L of the standard deviation.

L 1 1.5 2 2.5 3 3.5 4 4.5 5

C(L) 0.0394 0.0369 0.0361 0.0359 0.0359 0.0358 0.0358 0.0358 0.0358

The values of the AATS can be obtained as

(2.19) AATSLSI = 0.036 × k × e3/2 +

(

β

1 − β

)

×E(D) .

In this case, the distribution of the sampling interval Di is the conditional dis-

tribution of the sample mean given that the process is out-of-control. D1, D2, ...

are independent of RL, and the variance of TS (time to signal) can be written as

(2.20) Var(TS ) = Var(G) + E(RL − 1)Var(D) + Var(RL − 1)[E(D)]2 ,

for which we need the value of Var(G). To get Var(G), we begin by determining

E(G2). According to Reynolds et al. (1988), for the VSI method, and Infante

(2004), for the NSI method, the algebraic expression is given by

(2.21) E(G2) =
E(D3|λ = 0)

3E(D|λ = 0)
=

k2e4

12

Φ(L + 3) − Φ(3)

Φ(L + 1) − Φ(1)
,

which depends only on L. Therefore, the variance of the variable G is given by

Var(G) = E(G2) − [E(G)]2

(2.22)

=
k2e4

12

Φ(L + 3) − Φ(3)

Φ(L + 1) − Φ(1)
− k2e3

16

[

Φ(L + 2) − Φ(2)

Φ(L + 1) − Φ(1)

]2

.

From (2.7), (2.11), (2.21) and (2.22) we obtain (2.20).

3. COMPARISONS BETWEEN THE LSI METHOD AND THE

FSI AND VSI METHODS

As mentioned in the previous section, comparisons of the effectiveness of the

LSI sampling method with the FSI and VSI methods is made using the AATS .
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Thus, the two sampling methods in comparison are considered to be both in

control, or in other words, the average sampling intervals are equal to one time

unity (d = 1) and the control limits are“3-sigma”(L = 3). Comparisons are made

for mean shifts, only. Because it is assumed that the characteristic X follows a

normal distribution, the direction of the shift is of no importance at all. Under

these assumptions the value of the parameter k in the LSI method is 3.8134.

3.1. Comparison between the LSI and FSI sampling methods

Assuming a fixed value for the sampling interval, d, the expected value of

G (the random variable previously defined for the FSI sampling method) can be

defined as half of the sampling interval, d. Infante & Rodrigues Dias (2002) and

Carmo (2004), in independent studies, analysed this approximation for different

lifetimes, and both concluded this approximation to be acceptable. Therefore,

the AATS of the fixed sampling method is given by

(3.1) AATSFSI = E(G) + (ARL − 1) × d ∼= d

1 − β
− d

2
.

To compare the effectiveness of the two sampling methods, LSI and FSI, we

assume that, in control, the average sampling interval of the LSI method is equal

to the sampling interval of the FSI method (without loss of the generality, d = 1),

obtaining a value of k = 3.8134 for the LSI method. Considering (2.19) and (3.1)

the ratio

(3.2) QLSI/FSI =
AATSFSI − AATSLSI

AATSFSI
× 100%

represents a measure of the relative variation, in %, of the AATS value when

AATSFSI is the reference. The results obtained for mean shifts with different

sample sizes are illustrated in Figure 1.

Figure 1: QLSI/FSI(%), as a function of λ and different values of n.
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From Figure 1, the following conclusions arise:

i) The control chart for means with the LSI method detects small and

moderate mean shifts more quickly than the control chart for means

with the FSI method. This means that the LSI method is more sensi-

tive to changes whose probability of detection is low. The reductions

in the AATS using the LSI method can be very large.

ii) For shifts in which the probability of the detection is high, the FSI

method performs better than the LSI method. This is not surprising,

because this is true for most known adaptive methods. In the situ-

ations described above, the average number of samples taken before

detection of a failure is very small. Therefore, the value of E(G) is

of great importance. It is approximately equal to the time of sys-

tem malfunction because only a single sample is required to detect

the shift. For an average sampling interval, in control, equal to unity,

E(G) ∼= 0.50 in the FSI method and E(G) ∼= 0.61 in the LSI method.

However, the reduction obtained with FSI method, in terms of the

AATS , is limited to a maximum of 22.5% (for n = 5), whereas the

reduction obtained with LSI method has a maximum of 50.3%.

iii) For the different sample sizes considered, the QLSI/FSI values begin

with an average rate of positive variation, reaching an absolute value

maximum, and then reaching an average rate of negative variation.

The average rate of positive variation increases more quickly as a

function of λ when the sample size increases. The average rate of

negative variation increases more quickly as a function of λ when the

sample size decreases.

iv) In general, when the sample size increases, the values that maximize

(λ) and the reductions obtained with the LSI method decrease. This

makes sense because the probability of detection of the shift increases

with the sample size.

3.2. Comparison between the LSI and VSI sampling methods

Looking for improvements in the performance of classical control charts,

Reynolds et al. (1988) divided the region of continuation, C = ]−L, L[, into two

sub-regions, C1 = ] − L,−w] ∪ [w, L[ and C2 = ] − w, w[, and used two sampling

intervals, d1 and d2 , with d1 < d < d2. The VSI method allows us to anticipate

the next sample (we use d1 if the sample mean belongs to the C1 region) or

to delay it (using d2 if the sample mean belongs to the C2 region). Reynolds

& Arnold (1989), Reynolds (1989), Runger & Pignatiello (1991), and Reynolds

(1995), in different contexts, gave theoretical justifications for the use of two
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sampling intervals. For two intervals the average sampling interval in the VSI

method is given by:

(3.3) E (D|λ, n) =
d1×p11 + d2×p12

β
,

where β is given by (2.6), and

p11 = Φ
(

L − λ
√

n
)

− Φ
(

w − λ
√

n
)

+ Φ
(

−w − λ
√

n
)

− Φ
(

−L − λ
√

n
)

,
(3.4)

p12 = Φ
(

w − λ
√

n
)

− Φ
(

−w − λ
√

n
)

,

are the probabilities of a sample mean occurring in regions C1 and C2, respec-

tively, when a mean shift occurs. W is given by

(3.5) W = Φ−1

[

2Φ(L)×(d − d1) + d2 − d

2(d2 − d1)

]

,

according to the expression presented by Runger & Pignatiello (1991), when the

average sampling interval in the VSI method, in control, is equal to the sampling

period, d, in the FSI method. According to Reynolds et al. (1988), the average

time interval between the instant when a failure occurs and the instant when the

first sample is drawn after the shift occurs is given by

(3.6) E(G) =
d2

1p01 + d2
2p02

2(d1p01 + d2p02)
.

The adjusted average time to signal, AATS , is given by

(3.7) AATSVSI =
d2

1p01 + d2
2p02

2(d1p01 + d2p02)
+

d1p11 + d2p12

1 − β
,

where

(3.8) p01 = 2
[

Φ(L) − Φ(w)
]

and p02 = 2Φ(w) − 1

are the probabilities of a sample mean belonging to the regions C1 and C2, respec-

tively, when the process is in control.

To compare the effectiveness of the LSI and VSI methods, we assume that

the average sampling intervals in both sampling methods are equal to the fixed

sampling interval (d = 1 and k = 3.8134) in the expressions (2.19) and (3.7). Once

again, the ratio

(3.9) QLSI/VSI =
AATSVSI − AATSLSI

AATSVSI
× 100% ,

represents a measure in % of the relative variation of the AATS value, with

respect to the AATSVSI reference. The results obtained for mean shifts with

different sample sizes are presented in Table 2. The following conclusions are

immediate:
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Table 2: QLSI/VSI(%), as a function of λ, for different values of n
and different sampling pairs in VSI.

n (d1, d2)
λ

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00

2

(0.1, 1.9) 0.1 −1.4 −5.9 −13.2 −21.6 −26.0 −19.8 −4.5 10.5 20.7 26.4 31.0
(0.1, 1.5) 0.0 −0.9 −3.7 −8.6 −14.9 −20.5 −20.9 −14.0 −4.0 4.4 9.7 14.2

AATSLSI 370.01 216.71 79.98 29.08 11.31 4.86 2.40 1.41 0.98 0.79 0.70 0.63

3

(0.1, 1.9) 0.1 −2.2 −8.9 −19.0 −25.9 −18.2 1.1 17.0 25.5 29.5 31.2 32.2
(0.1, 1.5) 0.0 −1.4 −5.7 −12.8 −20.1 −20.5 −10.6 1.2 8.8 12.7 14.4 15.4

AATSLSI 370.01 175.53 50.46 15.24 5.27 2.23 1.22 0.86 0.71 0.66 0.63 0.61

5

(0.1, 1.9) 0.1 −3.7 −14.6 −25.7 −15.4 9.3 23.9 29.6 31.5 32.1 32.3 32.3
(0.1, 1.5) 0.0 −2.3 −9.5 −19.4 −19.4 −4.9 7.3 12.8 14.7 15.3 15.4 15.5

AATSLSI 370.01 122.99 24.81 5.97 1.98 1.01 0.74 0.65 0.63 0.62 0.61 0.61

i) In sample sizes more widely used in the literature, n ≥ 3, the LSI

method is quicker than the VSI method in detecting shifts of magni-

tude λ > 1.5, i.e., in situations whose probability of detection is high.

ii) The effectiveness of the LSI method increases when the sample size

increases for moderate and large shifts in the mean. For small shifts in

the mean, the effectiveness of the LSI method decreases as the sample

size increases.

iii) If we consider (d1, d2) = (0.1, 1.9) in VSI, the maximum reductions

obtained with the LSI method are considerable (approximately 32%);

in general, the performance of the LSI improves significantly when the

sample size is larger; if the probability of occurrence of a shift is equal

for all λ, using the LSI method could be a competitive advantage.

iv) If we consider (d1, d2) = (0.1, 1.5) in VSI, the maximum reductions

obtained with the LSI method are significantly smaller (approximately

16%) than those obtained with the other sampling pair in the VSI

method; in general, the performance of the LSI improves as the sample

size gets larger.

An example of application

In sections 3.1 and 3.2 we compared, in a critical way, the performances

of the FSI and VSI methods with the performance of the LSI method in terms

of the AATS . For a better perception in absolute terms of the LSI method, we

present an example of application that allows checking the effectiveness in the

detection of the shift.

Thereby, if there is a mean shift of magnitude λ = 1.0, and considering how

unit of the time one hour, for the quality characteristic being monitored:
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i) If we use the FSI sampling method, the first sample after the mean

shift is drawn, on average, after 30 minutes, and we need 240 minutes,

on average, to detect the shift.

ii) If we use the VSI sampling method:

a) with the sampling pair (d1, d2) = (0.1, 1.9), the first sample after

the mean shift is drawn, on average, after 54 minutes, and we

need 103 minutes, on average, to detect the shift;

b) with the sampling pair (d1, d2) = (0.1, 1.5), the first sample after

the mean shift is drawn, on average, after 44 minutes, and we

need 100 minutes, on average, to detect the shift.

iii) If we use the LSI sampling method: the first sample after the mean

shift is drawn, on average, after 37 minutes, and we need 119 minutes,

on average, to detect the shift.

In this case we can conclude that the use of the LSI method allows us to re-

duce the out-of-control period by 121 minutes, on average, compared to the

FSI method, and increase the out-of-control by either 16 minutes or 19 min-

utes, compared to the VSI method, depending on whether we use the sampling

pair (d1, d2) = (0.1, 1.9) or the sampling pair (d1, d2) = (0.1, 1.5).

On the other hand, if a shift of magnitude is of λ = 1.5, for the quality charac-

teristic being monitored:

i) If we use the FSI sampling method, the first sample after the mean

shift is drawn, on average, after 30 minutes, and we need 64 minutes,

on average, to detect the shift.

ii) If we use the VSI sampling method:

a) with the sampling pair (d1, d2) = (0.1, 1.9), the first sample after

the mean shift is drawn, on average, after 54 minutes, and we

need 58 minutes, on average, to detect the shift;

b) with the sampling pair (d1, d2) = (0.1, 1.5), the first sample after

the mean shift is drawn, on average, after 44 minutes, and we

need 48 minutes, on average, to detect the shift.

iii) If we use the LSI sampling method: the first sample after the mean

shift is drawn, on average, after 37 minutes, and we need 44 minutes,

on average, to detect the shift.

We can conclude that the use of the LSI method allows us to reduce the out-

of-control period by 20 minutes, on average, compared to the FSI method, and

by either 14 minutes or 4 minutes, compared to the VSI method, depending

on whether we use the sampling pair (d1, d2) = (0.1, 1.9) or the sampling pair

(d1, d2) = (0.1, 1.5).

Thus, for this situation and others in which λ > 1.5, the use of the LSI method

makes it possible to reduce the malfunction costs and makes the product more

competitive by reducing its final price.
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The influence of the sampling interval distribution on the standard devia-

tion must be analysed as well. The values of the coefficient of variation of the TS

for the different sampling methods (for the conditions previously described) are

presented in Table 3. The results shown there allow us to conclude that for all

methods and small mean shifts, the coefficients of variation are very close to 1.

Table 3: Values of the coefficient of variation of TS

for the FSI, VSI and LSI methods.

CV
λ

0.00 0.50 1.00 1.50 1.75 2.00 2.50 3.00

FSI d = 1 1.0000 1.0000 0.9998 0.9996 0.9989 0.9977 0.9798 0.9633

VSI
(0.1, 1.9) 1.0000 0.9968 0.8022 0.6143 0.6211 0.6261 0.6221 0.6112
(0.1, 1.5) 1.0000 0.9981 0.8609 0.6071 0.6031 0.6087 0.6130 0.6133

LSI 0.9986 0.9818 0.7915 0.6357 0.6715 0.6943 0.7060 0.7067

For moderate mean shifts, the coefficient of variation for the LSI method is

the smallest, although it is similar to the one of the VSI method when d2 = 1.9.

For λ ≥ 1.5, the LSI method has a slightly larger coefficient of variation than the

VSI method for all sampling pairs (due to greater dispersion in the sampling in-

tervals underlying the Laplace distribution), but a smaller coefficient of variation

than the FSI method.

4. SENSITIVITY ANALYSIS

To evaluate the consistency of the LSI method, a sensitivity analysis was

performed. In this section the lower sampling interval is truncated, as it results in

a situation similar to the VSI method. On the other hand, the concern in practical

applications in certain industrial contexts in which one may be physically or

administratively unable to take and analyse samples at very short time intervals

justifies this type of study.

D is the random variable that represents the time interval between consec-

utive inspections, and d1 is the smallest sampling interval possible. Hence, we

have:

(4.1) D ≤ d1 ⇐⇒ k

2
.e−|u| ≤ d1 ⇐⇒ u ≥− ln

(

2×d1

k

)

∨ u ≤ ln

(

2×d1

k

)

,

where L∗ =− ln
(

2×d1

k

)

is a multiple of the standard deviation that can be inter-

preted as W in the VSI method. Let us consider D∗ as the time interval between
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consecutive samples when the sample mean is between µ0 ±L∗σ0 n−0,5. The dis-

tribution of D∗ is the conditional distribution of the mean, given that D∗ falls

between the control limits for the given mean shifts. The probability density

function of D∗ is given by

(4.2) f∗∗(x̄) =

√
n

β∗σ0

√
2π

e
−n(x̄−µ0−λσ0)2

2σ2
0 ,

with

(4.3) β∗ = Φ
(

L∗ − λ
√

n
)

− Φ
(

−L∗ − λ
√

n
)

.

Through reasoning similar to that which has been applied in the statistical

properties of the LSI method, we have

(4.4) E
(

D∗|L∗, λ, n
)

=

√
e k∗

2β∗

[

eλ
√

n×A(L∗, λ, n) + e−λ
√

n×B(L∗, λ, n)
]

,

where

A(L∗, λ, n) = Φ
(

−1 − λ
√

n
)

− Φ
(

−L∗ − 1 − λ
√

n
)

,
(4.5)

B(L∗, λ, n) = Φ
(

L∗ + 1 − λ
√

n
)

− Φ
(

1 − λ
√

n
)

,

and k∗ depends on the value of L∗. Thus, the probability of using the sampling

interval d1 is given by

p1 = P
(

D = d1|λ
)

= 1 − P

(

µ0 − L∗ σ0√
n
≤ X̄ ≤ µ0 + L∗ σ0√

n

∣

∣

∣

∣

LCL ≤ X̄ ≤ UCL

)

(4.6)

= 1 − β∗

β
.

Based on the assumptions stated, the average sampling interval is given by

(4.7) E(D) =
β∗

β
×E(D∗) + d1×

(

1 − β∗

β

)

.

Considering (4.7), “3-sigma” control limits and a unit average sampling interval,

in control, the values of k∗ and L∗, obtained by simulation are presented in Table 4

for the considered values of d1.
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Table 4: Values of k∗ and L∗ obtained by simulation
for different values of d1.

d1 k
∗

L
∗

0.1 3.8134 2.9480
0.2 3.8099 2.2539
0.3 3.7942 1.8443
0.4 3.7591 1.5473
0.5 3.6976 1.3077

Examining the results in Table 4, we conclude that the value of k∗ gets

smaller as the value of d1 increases, reducing the multiples of the standard devia-

tion. This feature shows how the LSI method can be equated to the VSI method

because when we increase the smaller sampling interval in the VSI method, the

W value decreases.

To assess the impact of truncation of the lower sampling interval in terms

of the AATS values, we rewrite expression (2.14), adapted to the new conditions,

as

(4.8) AATS = E(G) + (ARL − 1)E(D) = E(G) +
E(D∗)β∗ + d1 (β − β∗)

1 − β
,

where E(G) value is obtained by simulation and is used in comparisons between

the LSI method and the remaining methods. Intuitively, an increase in the value

of d1 leads to an increase in its probability of use. To prove that this intuition is

correct, we perform a sensitivity study of the LSI method. We compare the AATS

values obtained using the LSI method in its original form with those obtained

using the LSI method with truncation of the lower sampling interval.

The results are presented in Figure 2, using a measure of relative variation

(sensitive to the lower sampling interval change) and the values of k∗ and L∗,
expressed in terms of % of the AATS value (being AATSLSI the reference)

(4.9) QLSI∗/LSI =
AATSLSI∗ − AATSLSI

AATSLSI
× 100% .

Analysing this figure, one concludes that the differences in the AATS values in-

crease as the probability of detecting mean shifts increases, reaching its maximum

for shifts of magnitudes of λ = 1.25. From this point onward, the effectiveness

of the methods tends to converge, becoming identical for large magnitudes of

mean shifts. However, for d1 = 0.4 and d1 = 0.5, there are strong increases in the

AATS for some mean shifts. Even when d1 is three times greater than the initial

value, the maximum relative reduction in the AATS using the non-truncated LSI

method is only 12.7%.
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Figure 2: QLSI∗/LSI(%), as a function of λ for different values of d1,
with n = 5.

Comparison between the LSI∗ and FSI∗ sampling methods

For the conditions mentioned in the previous section, the AATS values for

the truncated LSI method and the FSI method for a sample size of five were

compared. The assessment measures the effect that the change in the lower

sampling interval can have on the performance of the LSI method, compared to

what occurs in the FSI method. Thus, one considers the measure of performance

presented in (3.2), taking into consideration the new values of the AATS in LSI

(AATSLSI∗). From the results of QLSI∗/FSI, only for mean shifts, we can conclude

the following: when the lower sampling interval is truncated, the LSI∗ method

is more effective than the FSI∗ method for the same mean shifts; the increase in

the sampling interval is not proportional to the reduction in effectiveness of the

method; the FSI∗ method detects large mean shifts more quickly than does the

LSI∗ method, maintaining the effectiveness presented previously.

Comparison between the LSI∗ and VSI∗ sampling methods

Using a similar methodology, the LSI∗ and VSI∗ methods were compared

for the same and for new conditions. Considering a sample size of 5 units and

the same number of false alarms, we truncate the lower sampling interval in both

methods to the same values. To compare the effectiveness of the two methods, the

performance measure defined in (3.9) is used, replacing AATSLSI with AATSLSI∗

and AATSVSI with AATSVSI∗ . From the results presented in Table 5, for mean

shifts, we can draw the following conclusions:

i) In general, the performance of the LSI∗ method improves when the

lower sampling interval gets larger for small shifts. In particular, when

λ = 1 and d1 ≥ 0.3, LSI∗ is more effective than VSI∗.

ii) For moderate to large shifts, the performance of LSI∗ is better than

VSI∗, except when the lower sampling interval increases.



New Adaptive Sampling Method for Quality Control 19

iii) When we use the VSI∗ method, the increases obtained are significantly

greater than the reductions for the different sampling pairs.

Table 5: QLSI∗/VSI∗ (%), as a function of λ, for different values of d1

equal to the smaller sampling interval in VSI.

d1 (d1, d2)
λ

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 3.00

0.1
(0.1, 1.9) 0.1 −3.7 −14.6 −25.7 −15.4 9.3 23.9 29.6 31.5 32.1 32.2 32.3
(0.1, 1.5) 0.0 −2.3 −9.5 −19.4 −19.4 −4.9 7.3 12.8 14.7 15.3 15.4 15.5

0.2
(0.2, 1.9) 0.1 −2.7 −9.7 −14.5 −4.9 12.0 22.3 26.5 28.0 28.4 28.6 28.6
(0.2, 1.5) 0.0 −1.5 −5.9 −10.5 −8.3 0.7 7.6 10.8 11.8 12.2 12.3 12.3

0.3
(0.3, 1.9) 0.1 −1.8 −6.3 −8.0 −0.6 11.0 18.6 22.2 23.6 24.1 24.3 24.3
(0.3, 1.5) 0.0 −1.0 −3.5 −5.6 −3.6 1.6 5.6 7.5 8.3 8.6 8.6 8.6

0.4
(0.4, 1.9) 0.0 −1.3 −4.0 −4.4 0.8 8.5 14.2 17.3 18.7 19.3 19.4 19.5
(0.4, 1.5) 0.0 −0.6 −2.1 −3.0 −1.8 0.8 2.8 3.9 4.4 4.6 4.6 4.6

0.5
(0.5, 1.9) 0.0 −0.8 −2.5 −2.5 0.9 5.7 9.7 12.1 13.3 13.9 14.0 14.1
(0.5, 1.5) 0.0 −0.4 −1.2 −1.8 −1.4 −0.6 0.0 0.2 0.3 0.3 0.3 0.3

For the purpose of illustration, consider the case of the lower sampling

interval for the LSI∗ method being truncated to d1 = 0.2. For the example given

at the end of section 3.2 and for a mean shift of magnitude λ = 1.5, we conclude

that the use of the LSI∗ method allows us to reduce the malfunction period by

18 minutes, on average, compared to the FSI∗ method, and by either 13 minutes

or 4 minutes, compared to the VSI∗ method, depending on whether we use the

sampling pair (d1, d2) = (0.2, 1.9) or the sampling pair (d1, d2) = (0.2, 1.5). These

results demonstrate the good performance and sensitivity of the LSI∗ method.

Results concerning the robustness of the method have been obtained by

Carmo et al. (2013) for a case in which the distribution of quality has a t-Student

distribution and another case in which the distribution of quality is a mixture of

two normal distributions with different standard deviations. In both cases the

performance of the LSI method is better than the performance of FSI and VSI

methods, and there are situations in which the LSI method detects mean shifts

more quickly than the VSI method.
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5. CONCLUSIONS

The LSI method detects small and moderate mean shifts in quality more

quickly than the FSI method. For large mean shifts, FSI is more efficient. How-

ever, the gains achieved with the use of LSI are greater. In a production system

in which the sampling costs are very significant (for example, in the production

of a touchscreen display for the iPhone 5; 44 U.S. dollars per unit), and in which

the quality changes are small or moderate, the use of LSI offers a competitive

advantage in reducing sampling and malfunction costs.

When we use the sample pair (d1, d2) = (0.1, 1.9) in VSI, the adaptive meth-

ods are subject to the same conditions. In other words, the smallest and largest

sampling intervals in the LSI method are approximately the same. In LSI, the

smallest interval is 0.095 and the largest interval is 1.907. For the sampling pairs

considered, LSI detects moderate and large mean shifts more quickly.

We consider the LSI method to be not very sensitive because it has a

similar performance to that of the non-truncated method for several mean shifts,

particularly when the smallest sample interval is smaller than three times the

original smallest interval.

For the reasons explained, and for simplicity, the use of the LSI method

can offer a competitive advantage in automating tasks and using nano-scale mea-

surement instruments.

Future research will involve a different approach to the calculation of E(G),

using different distributions for the lifetime of the system and assessing its impact.

We will extend the study of the statistical properties and performance to the use

of joint control charts (X̄-chart and S-chart or X̄-chart and R-chart) and special

control charts (CUSUM and EWMA charts) to compare the LSI method with

other adaptive methods (for example, VSS, VSSI, and VP).

Finally, it is our intention to conduct a study to determine the k value that

minimizes a cost function by production cycle.
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de Desempenho de Esquemas de Controlo de Qualidade. In “A Estat́ıstica em
Movimento” (M.M. Neves, J. Cadima, M.J. Martins and F. Rosado, Eds.), SPE,
Lisboa, 247–260.

[14] Prabhu, S.S.; Montgomery, D.C. and Runger, G.C. (1994). A combined
adaptive sample size and sampling interval X̄ control scheme, Journal of Quality

Technology, 26(3), 164–176.

[15] Prabhu, S.S.; Runger, G.C. and Keats, J.B. (1993). An adaptive sample
size X̄ chart, International Journal of Production Research, 31(2), 2895–2909.

[16] Rahim, M.A. and Banerjee, P.K. (1993). A generalized model for the eco-
nomic design of X̄ control charts for production systems with increasing failure
rate and early replacement, Naval Research Logistics, 40(6), 787–809.



22 M. do Carmo, P. Infante and J.M. Mendes

[17] Reynolds, M.R. (1989). Optimal variable sampling interval control chart,
Sequential Analysis, 8(4), 361–379.

[18] Reynolds, M.R. (1995). Evaluation properties of variable sampling interval
control charts, Sequential Analysis, 14(1), 59–97.

[19] Reynolds, M.R.; Amin, R.W.; Arnold, J.C. and Nachlas, J.A. (1988).
X̄ charts with variables sampling intervals, Technometrics, 30(2), 181–192.

[20] Reynolds, M.R. and Arnold, J.C. (1989). Optimal one-sided Shewhart con-
trol charts with variable sampling intervals, Sequential Analysis, 8(1), 51–77.

[21] Rodrigues Dias, J. (1999). A new method to obtain different sampling intervals

in statistical quality control, Universidade de Évora, Évora.
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