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light gray line, SOM 3%. Numbers in italics
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fragments, spores, and disrupted ERM (open
markers). The application of phosphorus in excess
of 20 mg kg21 to disturbed soil without an intact
ERM was not beneficial to growth but plants
colonized from intact ERM showed a significant
response up to 40 mg kg21. (B) At podfill there
was no effect of inoculum type on colonization,
except for the concentration of vesicles within the
roots, where the effect of the presence of an
intact ERM was significant at P, 0.001. Red
markers, ERM intact; blue markers, ERM
disrupted. Negative effects on colonization of
applying phosphorus were small. (C) The negative
impact of phosphorus on colonization was greater
in soybeans that were genetically incapable of
establishing a viable symbiosis with Rhizobia and
could not form nodules (blue markers) than in the
nodulating isoline (red markers). The benefit to
colonization from an inoculum containing intact
ERM (closed markers) was also less consistent in
the nonnodulating isoline. (D) Both colonization
by Rhizobia, as indicated by nodule weight
(dashed lines), and biological nitrogen fixation
(solid lines) were enhanced by the presence of
intact ERM (closed markers) when soybeans were
planted compared with those colonized from
spores, root fragments and disrupted ERM (open
markers).

Figure 5.3 Effect of keeping the extraradical mycelium intact
rather than disrupted prior to

sowing soybeans on the effectiveness of nodules
colonized by free-living wild type rhizobium and
the added benefit from inoculation with
the more effective strain 532C.
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soil was sieved after the growth of the previous
plants (Ornithopus compressus L.) and the roots
were cut into sections and mixed back into the soil
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sparse formation of nodules. Right, prolific growth
of T. subterraneum in undisturbed soil, colonized by
indigenous AMF from intact ERM and spores. More
large nodules were formed on the main axis (arrow
points to nodule on enlargement of main axis).

Figure 5.5 Effects of developer ERM, presence and integrity,
on colonization rate by indigenous AMF (based
on arbuscule formation) and dry weight of shoots
and root nodules of Trifolium subterraneum L. 21
days after sowing. Mycorrhizae were initially
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Mediterranean weed species (Ornithopus
compressus L. or Lolium rigidum), both being
mycotrophic (Mic1). A third plant, Rumex
bucephalophorus is considered not to form
mycorrhiza (Mic-) and hence provided a control
for soil disturbance and the contribution of
disrupted ERM. ERM intact2 ERM1 , ERM
disrupted2 ERM2 .
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W, Triticum aestivum (mycotrophic plant). In x
axis labels first letter corresponds to the first plant
and second letter to the second plant in the
succession (e.g., OR, is Rumex bucephalophorus
preceded by Ornithopus compressus).

Figure 6.2 Shoot dry weight (µg plant21) of the second plant
in a succession, grown in undisturbed soil with
ERM as the main source of AMF propagule. S,
Silene galica (nonmycotrophic plant); R, Rumex
bucephalophorus (scarcely mycotrophic pant); O,
Ornithopus compressus (mycothrophic plant); and
W, Triticum aestivum (mycotrophic plant). In x
axis first letter corresponds to the first plant and
second letter to the second plant in the
succession (e.g., OR, is Rumex bucephalophorus
preceded by Ornithopus compressus).
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days after planting. Colonization by indigenous
AMF was initiated by different propagules: A,
Spores only; B, Spores, fragmented mycelium,
and colonized root fragments of Lolium rigidum
or Ornithopus compressus; C, Spores and intact
extraradical mycelium (ERM) associated with the
roots of L. rigidum; and D, spores and intact ERM
associated with the roots of O. compressus. The
soil contained 22.6 mg Mn kg-1.

Figure 8.4 Relationship between shoot dry weight, 21 days
after planting and Mn concentration in the shoots
of wheat (solid line and markers) or roots of
subterranean clover (hatched line, open markers).
The soil contained 22.6 mg Mn kg-1.
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Figure 8.8 Representation of the similarities between the
community structures of AMF present in roots of
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compressus or Lolium rigidum plants with or
without soil disturbance, evaluated by 454-
pyrosequencing technique. CLD, subterranean
clover after L. rigidum, Disturbed soil; CLU,
subterranean clover after L. rigidum, Undisturbed
soil; CNU, subterranean clover, only spores as
AMF propagules; COD, subterranean clover after
O. compressus, Disturbed soil; COU,
subterranean clover after O. compressus,
Undisturbed soil; OW, O. compressus, only
spores as AMF propagules; LW, L. rigidum, only
spores as AMF propagules (after Brı́gido et al.,
2017).
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(ERM) with ERM disrupted on, shoot dry weight
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wheat. Results show the average for 21 days after
planting (After Brito et al., 2013b).
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Figure 8.11 Effect of the presence of an intact or disrupted
ERM at the time maize planting on AMF
arbuscular colonization (AC %) and colonized
root density (CRD cm of colonized root cm-3 of
soil), under four P levels applied to the soil (P1,
P2, P3, and P4 stands for 0, 6, 12, and 18 mg P
kg-1 of dry soil, respectively). ERM was previously
developed in the soil by O. compressus and
indigenous AMF. For each parameter the same
letter indicates values are not significantly
different at P=.05.
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planting on the shoot dry weight and P content,
under four P levels applied to the soil (P1, P2, P3,
and P4 stands for 0, 6, 12, and 18 mg P kg-1 of
dry soil, respectively). U (Undisturbed soil) and D
(Disturbed soil) corresponds to ERM being intact
or disrupted, respectively. ERM was previously
developed in the soil by Ornithopus compressus
and indigenous AMF. For each parameter the
same letter indicates values are not significantly
different at P=.05.
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Lolium rigidum and indigenous AMF. For each
parameter, the same letter indicates values are
not significantly difference at P=.05.

Figure 8.16 Diagram of the field experiment with tomato. The
dark gray color corresponded to the area (6 ha)
where significant yield loss (20 tonne-1) occurred
in the 2013 season due to infection by Fusarium
oxysporum. The light gray shows the area where
no visible symptoms of the disease were
identified and yield of the crop was considered
normal for the region (100 tonnes ha-1).
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Figure 8.17 Field experiment to evaluate the benefits of a
cover crop (barley) in the yield of tomato in a
field with the presence of Fusarium oxysporum.
The Cover crop treatment with minimum soil
disturbance before the planting of tomato aimed
to keep intact the ERM developed in association
with barley roots; Traditional treatment relates to
the traditional production system with no cover
crop, deep, and intensive tillage, including
secondary disk arrowing before planting the
tomato. For each parameter the letter indicates
values significantly difference at P=.05.
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Preface

The current world population of 7.5 billion is expected to be 20% greater by

2050 and so we have little over 33 years to ensure the means of producing

sufficient food to meet the expected demand. One of the options that previ-

ously were available to us for expanding world production of cereals, vegeta-

bles, fruits, and meat, namely bringing more land into production, is no

longer possible and consequently we must everywhere increase the produc-

tivity of the land. But this time we must not attempt it without making every

effort to safeguard the environment. Put in a slightly different way, we have

to grow more but conserve the soil and its biodiversity, be more efficient in

terms of water use, improve nutrient-use efficiency so that fewer applied

nutrients end up contaminating our freshwater and eutrophying our lakes and

shallow seas or adversely affecting the quality of our air and contributing to

the atmospheric loading of greenhouse gases. If we add in a desire to reduce

the application of pesticides, especially those targeting root pathogens, it

would seem to represent an extremely challenging task. Perhaps it will be a

surprise to some that the answer to many of these challenges might well be

one result of the development of techniques that allow us to determine the

make-up of microorganisms, which has had huge impacts on soil science and

its application in agronomy.

Beginning with the ability to differentiate the fatty acid and phospholipid

profiles of microbial communities in soil and reaching the current status,

where the whole genetic code of an organism can be determined, the previ-

ously rather opaque world of soil microbiology is being clarified at an

unprecedented rate. From around the time that the word mycorrhiza was

coined by Frank in 1885, mycorrhizal fungi have been of interest because of

their special relationship with the vast majority of land plants. For agrono-

mists the most important are the endomycorrhizal fungi that produce tree-

shaped branched structures called arbuscules inside the cortex of most crop

plants. Evidence steadily accrued that established their importance in supply-

ing the essential element phosphorus to plants but the availability of mineral

fertilizers, such as superphosphate, caused many to assume that the contribu-

tion from mycorrhiza was unnecessary and even in fertile soils the organisms

were more like parasites than partners of their hosts. But eventually there

came the realization that arbuscular mycorrhiza provided far more services

than supplying phosphorus. The recent appreciation of the biological

xxiii
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diversity of mycorrhizal fungi and the functional consequences for mycor-

rhiza with different abilities to protect their host from the impacts of toxic

metals, to counter the invasion of root diseases and to enhance the formation

and stabilization of soil aggregates, renewed interest in the ecological signifi-

cance of mycorrhiza.

The challenge for agronomists and those interested in availing their crops

of the potential benefits from arbuscular mycorrhiza is how to manage them.

One obvious approach is to develop a source of inoculum that can be applied

to a field prior to or as part of seeding a crop that could benefit from the for-

mation of a mycorrhizal symbiosis. However, not only is that a relatively

expensive activity it is also fraught with uncertainty over its efficacy.

Another approach is to encourage the adoption of farming practices that sup-

port a wide variety of indigenous arbuscular mycorrhizal fungi (AMF) that

will provide specific benefits sought for the crop. But in many respects this

is not enough. It is a long way from providing the supportive environment

for a specific fungus or consortium of fungi to dominate the mycorrhiza that

form on most crop plants in a field. That goal requires the development of

new farming strategies.

The approach we take in this book is to expand on the current challenges

to meeting the requirements for feeding a much larger world population and

suggest how arbuscular mycorrhiza can contribute to the solution under

many agricultural climatic zones. We consider the farming practices that can

be deleterious to maintaining a diverse population of mycorrhizal fungi and

the systems and practices that can encourage their survival and effectiveness.

We discuss the interactions between the fungi and other soil organisms,

some of which are now known to improve the functioning of arbuscular

mycorrhiza, and how the symbiosis influences many of the basic plant pro-

cesses. The possibilities for obtaining specific information on individual

fungi offered by the new generation of molecular methods are also presented.

Finally we present a view as to how indigenous AMF might be managed in a

practical setting.

The opportunity to put our combined thoughts and ideas into a book

owes a lot to the discussions we had with Marisa LaFleur, commissioning

editor with Elsevier, and subsequently with commissioning editor Nancy

Maragioglio. Both have been wonderfully supportive and we can’t thank

them enough. We are equally indebted to Billie Jean Fernandez, who has

been of enormous help in pulling us over the finish line. Lisa Jones, the

Production Editor, has been superb in converting our ideas on presentation

into reality; she has worked tirelessly to ensure we would be proud of the

finished product. We sought the help of two experts to ensure that the chap-

ters on new generation molecular methods and diversity among the AMF

would be as up-to-date as possible. It is difficult to express just how grateful

we are to Diederik van Tuinen, a very good friend and colleague, for his

contribution on modern molecular methods in relation to the elaboration of

xxiv Preface

Goss-1611461 978-0-12-804244-1 00014

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business
use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online
or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication.



functional diversity. The contribution of Clarisse Brı́gido in developing the

chapter discussing the complexity of functional diversity in AMF was also

critical and she too has been of incalculable help and support. We are

extremely grateful to Sabaruddin Kadir and Luis Alho, who generously pro-

vided material used in Chapter 5, Impacts on Host Plants of Interactions

Between AMF and Other Soil Organisms in the Rhizosphere, as well as pro-

vided important feedback on the contents.

Michael Goss, Mário Carvalho, and Isabel Brito

March 2017
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Taxonomy of Arbuscular
Mycorrhizal Fungi Referred to in
this Book

There have been some major changes in the taxonomy associated with arbus-

cular mycorrhizal fungi (AMF). In consequence, some have undergone more

than one name change in the last 30 years. To avoid as much confusion as

AU:1

possible, the names used in the text are those reported by the authors of the

papers referenced. We have used Schüßler and Walker (2010) and Redecker

et al. (2013) to provide a list of the current names of these species.

Former Name Genera Specific

Epithet

Acalulospora leavis Acalulospora leavis
Acaulospora morrowiae Acaulospora morrowiae
Entrophospora schenckii Archaeospora schenckii
Gigaspora albida Gigaspora albida
Gigaspora gigantea Gigaspora gigantea
Gigaspora margarita Gigaspora margarita
Gigaspora rosea Gigaspora rosea
Glomus caledonium (Nicol. & Gerd.) Trappe and
Gerdemann

Funneliformis caledonium

Glomus claroideum Claroideoglomus claroideum
Glomus clarum Rhizophagus clarus
Glomus constrictum5 Funneliformis constrictum Septoglomus constrictum
Glomus coronatum Funneliformis coronatus
Glomus diaphanum Rhizophagus diaphanus
Glomus etunicatum Claroideoglomus etunicatum
Glomus fasciculatum Rhizophagus fasciculatus
Glomus fasciculatum Gerd. And Trap Rhizophagus fasciculatus
Glomus fasciculatum (Thaxter sensu Gerd) Rhizophagus fasciculatus
Glomus geosporum Funneliformis geosporum

(Continued )
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(Continued)

Former Name Genera Specific

Epithet

Glomus intraradicesa Rhizophagus sp.
Glomus intraradices Rhizophagus irregularis
Glomus intraradices Rhizophagus intraradices
Glomus macrocarpum Glomus macrocarpum
Glomus mosseae Funneliformis mosseae
Glomus tenue Glomus tenue
Rhizophagus intraradices Rhizophagus intraradices
Scutellospora calospora Scutellospora calospora
Scutellospora fulgida Racocetra fulgida

aIdentifying the current name for Glomus intraradices is problematic. The isolate DAOM197198 was
renamed from Glomus intraradices to Glomus irregularis and then to Rhizophagus irregularis. As not all
isolates have been reanalyzed, we now have some which are Rhizophagus sp., some R. irregularis, and
some still R. intraradices.
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