Note: These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been planned. The color figures will appear in color in all electronic versions of this book.

AUTHOR QUERY FORM

ELSEVIER	Book: Goss-1611461 Chapter: PRELIMS	Please e-mail your responses and any corrections to: E-mail: LI.Jones@Elsevier.com
----------	--	--

Dear Author,

Any queries or remarks that have arisen during the processing of your manuscript are listed below and are highlighted by flags in the proof. (AU indicates author queries; ED indicates editor queries; and TS/TY indicates typesetter queries.) Please check your proof carefully and answer all AU queries. Mark all corrections and query answers at the appropriate place in the proof using onscreen annotation in the PDF file. For a written tutorial on how to annotate PDFs, click http:// www.elsevier.com/__data/assets/pdf_file/0007/98953/Annotating-PDFs-Adobe-Reader-9-X-or-XI.pdf. A video tutorial is also available at http://www.screencast.com/t/9OIDFhihgE9a. Alternatively, you may compile them in a separate list and tick off below to indicate that you have answered the query.

Please return your input as instructed by the project manager.

Uncited references: References that occur in the reference list but are not cited in the text. Please position each reference in the text or delete it from the reference list.			
Missing references: References listed below were noted in the text but are missing from the reference list. Please make the reference list complete or remove the references from the text.			
Location in Article	Query / remark		
AU:1, Page 1	As per Elsevier style, address and postal codes are not allowed in author affilitions. Hence we ignored and fixed affilition as per style. Please check and confirm.		

Functional Diversity of Mycorrhiza and Sustainable Agriculture

Functional Diversity of Mycorrhiza and Sustainable Agriculture

Management to Overcome Biotic and Abiotic Stresses

Michael J. Goss

School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada

AU:1

Mário Carvalho

Institute of Mediterranean Agriculture and Environmental Sciences, University of Évora, Évora, Portugal

Isabel Brito

Institute of Mediterranean Agriculture and Environmental Sciences, University of Évora, Évora, Portugal

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1800, San Diego, CA 92101-4495, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2017 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

ISBN: 978-0-12-804244-1

For Information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

www.elsevier.com • www.bookaid.org

Publisher: Nikki Levy Acquisition Editor: Nancy Maragioglio Editorial Project Manager: Billie Jean Fernandez Production Project Manager: Lisa Jones Cover Designer: Mark Rogers

Typeset by MPS Limited, Chennai, India

Contents

List o List o List o Prefac Taxor	f Figu f Tab f Plate ce nomy	rres les es of Arbuscular Mycorrhizal Fungi Referred to in this Book x	ix xix xxi xxii xxiii xvii
1.	Cha	Illenges to Agriculture Systems	
	1.1 1.2 1.3	Current and Future Challenges to Agriculture Systems The Approach to Meeting the Challenges to World Agriculture Conclusions	1 5 14
2.	Agr and Abı	onomic Opportunities to Modify Cropping Systems Soil Conditions Considered Supportive of an Indant, Diverse AMF Population	
	2.1 2.2	 Components of Cropping Systems 2.1.1 Land Preparation 2.1.2 Cropping 2.1.3 Application and Use of Mineral Fertilizers, Organic, and Inorganic Amendments in Crop Production 2.1.4 The Application of Pesticides Key Aspects of Agricultural Systems on Diversity of Mycorrhiza 	16 16 25 28 34 35 28
3.	The Cor	Roles of Arbuscular Mycorrhiza and Current Instraints to Their Intentional Use in Agriculture	20
	3.1	 Benefits of Arbuscular Mycorrhiza 3.1.1 Acquisition of Mineral Nutrients 3.1.2 Defense Against Abiotic Stresses 3.1.3 Defense Against Biotic Stresses 3.1.4 Water Relations in Arbuscular Mycorrhizal Plants 	39 41 49 50 52

	0	
	3.1.4 Water Relations in Arbuscular Mycorrhizal Plants	52
3.2	Constraints to Intentional Use of AMF in Agriculture	54
3.3	Conclusions	58

vi Contents

5.

6.

4. Diversity in Arbuscular Mycorrilzar Fulls	4.	Diversity in	n Arbuscular	Mycorrhizal	Fungi*
--	----	--------------	--------------	--------------------	--------

With Clarisse Brígido

4.1	Ecological Roles of Arbuscular Mycorrhizal Fungi	61
4.2	Basis of Functional Diversity in Arbuscular Mycorrhizal Fungi	62
	4.2.1 Taxonomy of Arbuscular Mycorrhizal Fungi	62
	4.2.2 Diversity of Arbuscular Mycorrhizal Fungi Related to	
	Growth Habit	64
	4.2.3 Interaction Between the Genotypes of Fungi and Host	
	Plants and the Diversity of Arbuscular Mycorrhiza	65
4.3	Functional Diversity Associated With Host-Plant Benefits	66
	4.3.1 Acquisition of Mineral Nutrients	67
	4.3.2 Protection Against Abiotic Stresses	69
	4.3.3 Protection Against Biotic Stresses	73
	4.3.4 Improvement in Soil Structure	74
4.4	AMF Diversity Associated With the Management of Different	
	Ecosystems	75
4.5	Conclusions	78
Im	pacts on Host Plants of Interactions Retwoon AME	
and	Other Soil Organisms in the Rhizosphere*	
Wit	h Luís Alho and Sabaruddin Kadir	
5.1	Interactions Between AMF and Other Soil Microbes	82
	5.1.1 The Tripartite Interaction Between AMF, Rhizobia, and	
	Legumes	85
	5.1.2 Other Interactions With Bacteria	103
5.2	Interactions Between AMF and Other Fungi	107
5.3	Interactions Between AMF and Soil Fauna	107
	5.3.1 Interactions With Arthropods	107
	5.3.2 Interactions With Earthworms	108
5.4	Conclusions	109
The and My	e Significance of an Intact Extraradical Mycelium I Early Root Colonization in Managing Arbuscular corrhizal Fungi	
6.1	Importance of Early Arbuscular Mycorrhizal Fungi	
	Colonization	112
6.2	Arbuscular Mycorrhizal Fungi Inoculum Sources	114
	6.2.1 Spores	114
	6.2.2 Colonized Root Fragments	116
	6.2.3 Extraradical Mycelium	116
6.3	ERM as an Effective Arbuscular Mycorrhiza Inoculum	
	Source for Field Crops	119
	C. 2. 1. Development of large attices. Extreme direct Managines in Call	110

6.3.1Persistence of Infective Extraradical Mycelium in Soil1196.3.2AMF Taxonomic Cluster Colonizing Strategies120

Contents vii

		6.3.3 The Presence of Adequate Host Plants and the ERM Integrity: Crop Rotations and Tillage Regime	123
	6.4	Multiple Roles of ERM and Common Mycorrhizal Networks	126
		6.4.1 Transfer of Nutrients Between Plants	126
		6.4.2 Communication Between Plants	128
		6.4.3 Development of Soil Structure	128
	6.5	Conclusions	129
7.	Ne	w Tools to Investigate Biological Diversity and	
	Fur	ictional Consequences*	
	Witl	h Diederik van Tuinen	
	7.1	Genetic Markers	132
		7.1.1 Small Ribosomal Subunit	132
		7.1.2 Large Ribosomal Subunit	133
		7.1.3 Delineation of Operational Taxonomic Units	134
		7.1.4 Mitochondrial Large Ribosomal Subunit	135
		7.1.5 RNA Polymerase II	136
	7.2	Functional Diversity	136
	7.3	Conclusions	140
8.	Ma in A Svs	nagement of Biological and Functional Diversity Arbuscular Mycorrhizal Fungi Within Cropping tems	
	8.1	Managing Indigenous AME in Agroecosystems	146
	0.1	8.1.1 Managing Indigenous AME to Overcome Abiotic Stresses	146
		8.1.2 Managing Indigenous AMF to Overcome Biotic Stresses	161
		8.1.3 Discussion of the Results from the Case Studies	166
	8.2	Opportunities to Develop ERM From Indigenous AMF	
		Within the Cropping System	168
		8.2.1 Criteria to Select Developer Plants	171
	8.3	Some Final Comments	173
Refe	rences	5	175

Index

223

HTUI List of Figures

Figure 1.1	The rapid increase in world population since 1960 and the associated reduction in the average area of arable land per person. Note that the average area of arable land area per person is less than half that in 1960 and is now smaller than	2
	0.2 ha.	
Figure 1.2	The urbanization of the world population since 1961.	3
Figure B1.2.1	Increment in the use of fertilizers (million tonnes of nutrients; adapted from Bumb, B.L., Baanante, C.A., 1996. World trends in fertilizer use and projections to 2020. International Food Policy Research Institute, 2020 Brief 38, 4 pp), pesticides (million US\$, adapted from Zhang, W. J., Jiang, F.B., Ou, J.F., 2011. Global pesticide consumption and pollution: with China as a focus. Proc. Int. Acad. Ecol. Environ. Sci. 1, 125–144) and production (million tonnes of 20 most valuable commodities, source: http:// faostat3.fao.org/) in the world between 1960 and 1990	7
Figure B1.2.2	Effect of soil organic matter (SOM) on the use efficiency of inputs to wheat production in the South of Portugal. <i>Conv.</i> , conventional agriculture system based on inversion tillage and bailing of the cereal straw; <i>CA</i> , conservation agriculture based on no-till and maintenance of crop residues on soil surface. The same crop rotation was used for the two systems	8
Figure B2.1.1	Effect of soil organic matter on wheat response to nitrogen fertilizer application according to the fit model: <i>Y</i> =631+35.4 N-0.07 N2+2718 ln(SOM)-8.6 N SOM (<i>y</i> , wheat grain yield; <i>N</i> , nitrogen applied; <i>SOM</i> , soil organic matter (% 0–30 cm)). Black line, SOM 1%; dark gray line, SOM 2%;	22

ix

x List of Figures

	light gray line, SOM 3%. Numbers in italics represents the economic optimum for applied nitrogen (<i>x</i> axis) and the expected grain yield (<i>y</i> axis) according to the model.	
Figure 2.1	Rhizosphere and mycorrhizosphere interactions under cover crops and crop rotations that encourage the presence and diversity of AMF and the benefits of these and other beneficial microbes in plant productivity.	27
Figure 4.1	The proportion of root colonized by arbuscular mycorrhizal fungi (AMF) relative to that of the same plant dependant mainly on spores for colonization. Results for maize based on Kabir and Koide (2000). Results for wheat based on Brito et al. (2013).	77
Figure 5.1	Effects of adding phosphorus in the form of hydroxyapatite on the formation of nodules on bean roots by <i>R. phaseoli</i> in the absence (Control) and presence of arbuscular mycorrhiza. The effects of P on the growth of the inter- and extraradical mycelium is also shown. Without addition of P to the soil, the mycorrhiza supported a significant development of nodules, whereas there was almost no development in the Control treatment. With applications of 100 mg hydroxyapatite or more, there was no significant increase in nodule formation in either treatment but the mycorrhizal plants formed a little more than half of those present in Controls. The intraradical mycelium increased threefold with the addition of P, whereas the increase in extraradical mycelium (ERM) was almost fivefold. Root dry weight in the mycorrhizal plants increased by 26%, whereas in the Control	93
Figure 5.2	treatment the increase was 45% (data not shown). The effects of applying phosphate fertilizer on the development and effectiveness of the tripartite symbiosis between soybean, indigenous AMF, and <i>Bradyrhizobium japonicum</i> . (A) Variation in shoot dry weight (red markers) and total leaf area (blue markers) at podfill in plants colonized using inoculum with extraradical mycelium (ERM) kept intact (solid markers) or made up mainly of root	99

List of Figures xi

fragments, spores, and disrupted ERM (open markers). The application of phosphorus in excess of 20 mg kg⁻¹ to disturbed soil without an intact ERM was not beneficial to growth but plants colonized from intact ERM showed a significant response up to 40 mg kg⁻¹. (B) At podfill there was no effect of inoculum type on colonization, except for the concentration of vesicles within the roots, where the effect of the presence of an intact ERM was significant at P < 0.001. Red markers, ERM intact; blue markers, ERM disrupted. Negative effects on colonization of applying phosphorus were small. (C) The negative impact of phosphorus on colonization was greater in soybeans that were genetically incapable of establishing a viable symbiosis with Rhizobia and could not form nodules (blue markers) than in the nodulating isoline (red markers). The benefit to colonization from an inoculum containing intact ERM (closed markers) was also less consistent in the nonnodulating isoline. (D) Both colonization by Rhizobia, as indicated by nodule weight (dashed lines), and biological nitrogen fixation (solid lines) were enhanced by the presence of intact ERM (closed markers) when soybeans were planted compared with those colonized from spores, root fragments and disrupted ERM (open markers). Figure 5.3 Effect of keeping the extraradical mycelium intact 100 (--) rather than disrupted (---) prior to sowing soybeans on the effectiveness of nodules colonized by free-living wild type rhizobium and the more effective strain 532C. Pots of Trifolium subterraneum L. 6 weeks after 101 Figure 5.4 planting in soil containing 22.6 mg Mn kg⁻¹. Left, soil was sieved after the growth of the previous plants (Ornithopus compressus L.) and the roots were cut into sections and mixed back into the soil before subterraneum clover was sown. Roots were colonized by indigenous AMF from spores, colonized root fragments, and short pieces of disrupted extraradical mycelium (ERM). Note the

xii List of Figures

Figure 5.5	sparse formation of nodules. Right, prolific growth of <i>T. subterraneum</i> in undisturbed soil, colonized by indigenous AMF from intact ERM and spores. More large nodules were formed on the main axis (arrow points to nodule on enlargement of main axis). Effects of developer ERM, presence and integrity,	102
0	on colonization rate by indigenous AMF (based on arbuscule formation) and dry weight of shoots and root nodules of <i>Trifolium subterraneum</i> L. 21 days after sowing. Mycorrhizae were initially formed in association with roots of two common Mediterranean weed species (<i>Ornithopus</i> <i>compressus</i> L. or <i>Lolium rigidum</i>), both being mycotrophic (Mic +). A third plant, <i>Rumex</i> <i>bucephalophorus</i> is considered not to form mycorrhiza (Mic-) and hence provided a control for soil disturbance and the contribution of disrupted ERM. ERM intact – ERM + , ERM disrupted – ERM –	
Figure 5.6	Relationship between colonization rate, based on arbuscule formation 21 days after sowing, and shoot dry weight (), and Mn concentration in the roots () of <i>Trifolium subterraneum</i> L. 42 days after sowing.	102
Figure 5.7	Relationship between Mn concentration in the roots, shoot N content (- -) and Nodule dry weight () in <i>Trifolium subterraneum</i> L. 42 days after sowing.	103
Figure 5.8	Main bacterial groups considered to participate in activities in the mycorrhizosphere (based on Bonfante and Anca, 2009). Although alphaproteobacteria include the rhizobia that form the tripartite symbiosis with legumes, some members of the betaproteobacteria can also fix nitrogen from the atmosphere and have been identified as endobiotrophs (Cage, 2004; Leveau and Preston 2008)	104
Figure 6.1	Arbuscular colonization (%) of the second plant in a succession, grown in undisturbed soil with ERM as the main source of AMF propagule. S, <i>Silene galica</i> (nonmycotrophic plant); R, <i>Rumex</i> <i>bucephalophorus</i> (scarcely mycotrophic plant); O, <i>Ornithopus compressus</i> (mycotrophic plant); and	118

List of Figures xiii

Figure 6.2	W, <i>Triticum aestivum</i> (mycotrophic plant). In <i>x</i> axis labels first letter corresponds to the first plant and second letter to the second plant in the succession (e.g., OR, is <i>Rumex bucephalophorus</i> preceded by <i>Ornithopus compressus</i>). Shoot dry weight (μ g plant ⁻¹) of the second plant in a succession, grown in undisturbed soil with ERM as the main source of AMF propagule. S, <i>Silene galica</i> (nonmycotrophic plant); R, <i>Rumex bucephalophorus</i> (scarcely mycotrophic plant); O, <i>Ornithopus compressus</i> (mycothrophic plant); and W. T. W.	118
Figure 8.1	W, <i>Inticum aestivum</i> (mycotrophic plant). In <i>x</i> axis first letter corresponds to the first plant and second letter to the second plant in the succession (e.g., OR, is <i>Rumex bucephalophorus</i> preceded by <i>Ornithopus compressus</i>). Arbuscular colonization (AC) of wheat by indigenous AMF 10 days (W 10 DAP), 21 days (W 21 DAP), and subterranean clover 21 days after planting, (C 21 DAP). Colonization was initiated by different propagules. A, Spores only; B, Spores, fragmented mycelium and colonized root fragments of Lolium rigidum or Ornithopus	148
Figure 0.2	<i>compressus;</i> C, Spores and intact extraradical mycelium (ERM) associated with the roots of <i>L. rigidum;</i> and D, Spores and intact ERM associated with the roots of <i>O. compressus.</i> The soil contained 22.6 mg Mn kg ⁻¹ .	140
Figure 8.2	Shoot dry weight of wheat (diamond) and subterranean clover (square) shoots 21 days after planting. Colonization by indigenous AMF was initiated by different propagules. A, Spores only; B, Spores, fragmented mycelium, and colonized root fragments of <i>Lolium rigidum</i> or <i>Ornithopus</i> <i>compressus</i> ; C, Spores and intact extraradical mycelium (ERM) associated with the roots of <i>L.</i> <i>rigidum</i> ; and D, Spores and intact ERM associated with the roots of <i>O. compressus</i> . The soil contained 22.6 mg Mn kg ⁻¹ .	149
Figure 8.3	Effect of the native AMF propagule type in the soil at the time of planting on wheat shoots (Ws Mn) and subterranean clover shoots (Cs Mn) and roots (Cr Mn) manganese concentration at 21	150

xiv List of Figures

	days after planting. Colonization by indigenous AMF was initiated by different propagules: A,	
	Spores only; B, Spores, fragmented mycelium,	
	or Ornithopus compressus: C Spores and intact	
	extraradical mycelium (ERM) associated with the	
	roots of <i>L. rigidum</i> ; and D, spores and intact ERM	
	associated with the roots of <i>O. compressus</i> . The soil contained 22.6 mg Mn kg ⁻¹ .	
Figure 8.4	Relationship between shoot dry weight, 21 days	151
C	after planting and Mn concentration in the shoots	
	of wheat (solid line and markers) or roots of	
	subterranean clover (hatched line, open markers).	
F: 0 F	The soil contained 22.6 mg Mn kg ⁻¹ .	150
Figure 8.5	Effect of the indigenous arbuscular mycorrhiza	152
	(AM) on (1) house dry weight, (2) shoot in	
	clover 6 weeks after planting. Colonization by	
	indigenous AME was initiated by different	
	propagules: A, Spores only; B, Spores, fragmented	
	mycelium and colonized root fragments of Lolium	
	rigidum or Ornithopus compressus; C, Spores and	
	intact extraradical mycelium (ERM) associated	
	with the roots of <i>L. rigidum</i> ; D, Spores and intact	
	ERM associated with the roots of <i>O. compressus</i> .	
F ' 0.6	The soil contained 22.6 mg Mn kg ⁻¹ .	4 = 0
Figure 8.6	Relationship between mycorrhizal colonization	153
	wheat at 21 days after planting. The soil	
	contained 22.6 mg Mn ka^{-1}	
Figure 8.7	Representation of the similarities between the	153
inguie o.,	community structures of AMF present in <i>wheat</i>	155
	roots in succession to <i>Ornithopus compressus</i> or	
	Lolium rigidum plants with or without soil	
	disturbance, evaluated by 454-pyrosequencing	
	technique. OW, O. compressus, only spores as	
	AMF propagules; LW, L. rigidum, only spores as	
	AMF propagules; WLD, wheat after <i>L. rigidum</i> ,	
	Disturbed soil; WLU, wheat after <i>L. rigidum</i> ,	
	Undisturbed soil; VVNU, wheat, only spores as AMF	
	Disturbed soil: WOD, wheat after O. compressus,	
	Undisturbed soil (after $Brigido et al. 2017)$	
Figure 8.7	wheat at 21 days after planting. The soil contained 22.6 mg Mn kg ⁻¹ . Representation of the similarities between the community structures of AMF present in <i>wheat</i> roots in succession to <i>Ornithopus compressus</i> or <i>Lolium rigidum</i> plants with or without soil disturbance, evaluated by 454-pyrosequencing technique. OW, <i>O. compressus</i> , only spores as AMF propagules; LW, <i>L. rigidum</i> , only spores as AMF propagules; WLD, wheat after <i>L. rigidum</i> , Disturbed soil; WLU, wheat after <i>L. rigidum</i> , Undisturbed soil; WNU, wheat, only spores as AMF propagules; WOD, wheat after <i>O. compressus</i> , Disturbed soil; WOU, wheat after <i>O. compressus</i> , Undisturbed soil (after Brígido et al., 2017).	153

List of Figures xv

Figure 8.8	Representation of the similarities between the community structures of AMF present in roots of subterranean clover in succession to <i>Ornithopus</i> <i>compressus</i> or <i>Lolium rigidum</i> plants with or without soil disturbance, evaluated by 454- pyrosequencing technique. CLD, subterranean clover after <i>L. rigidum</i> , Disturbed soil; CLU, subterranean clover after <i>L. rigidum</i> , Undisturbed soil; CNU, subterranean clover, only spores as AMF propagules; COD, subterranean clover after <i>O. compressus</i> , Disturbed soil; COU, subterranean clover after <i>O. compressus</i> , Undisturbed soil; OW, <i>O. compressus</i> , only spores as AMF propagules; LW, <i>L. rigidum</i> , only spores as AMF propagules (after Brígido et al., 2017)	154
Figure 8.9	Comparison of an intact extraradical mycelium (ERM) with ERM disrupted on, shoot dry weight (black bars), P content (dark gray barks), and arbuscular colonization rate (light gray bars), in wheat. Results show the average for 21 days after planting (After Brito et al., 2013b).	157
Figure 8.10	Comparison of the presence of an intact with a disrupted ERM at planting on the content of alkaline elements and S in wheat. Results show the average for 21 and 31 days after planting. The condition of the ERM was created by previously growing mycotrophic Developer plants (<i>Ornithopus compressus</i> L. or <i>Lolium rigidum</i> G.) and applying differential soil disturbance treatments (Undisturbed soil, ERM kept intact; Disturbed soil, ERM disrupted) (After Brito et al., 2014). The soil contained 22.6 mg Mp kg ⁻¹	158
Figure 8.11	Effect of the presence of an intact or disrupted ERM at the time maize planting on AMF arbuscular colonization (AC %) and colonized root density (CRD cm of colonized root cm ⁻³ of soil), under four P levels applied to the soil (P1, P2, P3, and P4 stands for 0, 6, 12, and 18 mg P kg ⁻¹ of dry soil, respectively). ERM was previously developed in the soil by <i>O. compressus</i> and indigenous AMF. For each parameter the same letter indicates values are not significantly different at P =.05.	158

xvi List of Figures

Figure 8.12	Effect of the presence of intact or disrupted extraradical mycelium (ERM) of arbuscular mycorrhizal fungi (AMF) at the time of maize planting on the shoot dry weight and P content, under four P levels applied to the soil (P1, P2, P3, and P4 stands for 0, 6, 12, and 18 mg P kg ⁻¹ of dry soil, respectively). U (Undisturbed soil) and D (Disturbed soil) corresponds to ERM being intact or disrupted, respectively. ERM was previously developed in the soil by <i>Ornithopus compressus</i> and indigenous AMF. For each parameter the	159
	different at <i>P</i> =.05.	
Figure 8.13	Effect of the presence of an intact or disrupted extraradical mycelium (ERM) at the time of maize planting on the shoot N and K content, under four P levels applied to the soil (P1, P2, P3, and P4 stands for 0, 6, 12, and 18 mg P kg ⁻¹ of dry soil, respectively). ERM was previously developed in the soil by <i>Ornithopus compressus</i> and indigenous arbuscular mycorrhizal fungi (AMF).	160
	values are not significantly different at $P=05$	
Figure 8.14	Effect of the presence of intact or disrupted extraradical mycelium (ERM) at the time of maize planting on the shoot Ca and S content, under four P levels applied to the soil (P1, P2, P3, and P4 stands for 0, 6, 12, and 18 mg P kg ⁻¹ of dry soil, respectively). ERM was previously developed in the soil by <i>Ornithopus compressus</i> and indigenous arbuscular mycorrhizal fungi (AMF). For each parameter the same letter indicates values are not significantly different at P =.05.	160
Figure 8.15	Effect of the presence of an intact or disrupted extraradical mycelium (ERM) of arbuscular mycorrhizal fungi (AMF) at the time of tomato planting on the shoot dry weight (bars), DI (square marker) and arbuscular colonization (AC) (triangles) under inoculation of tomato plants with <i>Fusarium oxysporum</i> f.sp. <i>radicis-lycopersici</i> (C1, C2, C3, and C4 stands for inoculation with 0, 10 ³ , 10 ⁶ , and 10 ⁹ conidia plant ⁻¹ at planting). ERM was previously developed in the soil by	163

List of Figures xvii

	Lolium rigidum and indigenous AMF. For each parameter, the same letter indicates values are	
	not significantly difference at $P=.05$.	
Figure 8.16	Diagram of the field experiment with tomato. The	164
	dark gray color corresponded to the area (6 ha)	
	where significant yield loss (20 tonne ⁻¹) occurred	
	in the 2013 season due to infection by Fusarium	
	oxysporum. The light gray shows the area where	
	no visible symptoms of the disease were	
	identified and yield of the crop was considered	
	normal for the region (100 tonnes ha ⁻¹).	
Figure 8.17	Field experiment to evaluate the benefits of a	166
-	cover crop (barley) in the yield of tomato in a	
	field with the presence of Fusarium oxysporum.	
	The Cover crop treatment with minimum soil	
	disturbance before the planting of tomato aimed	
	to keep intact the ERM developed in association	
	with barley roots; Traditional treatment relates to	
	the traditional production system with no cover	
	crop, deep, and intensive tillage, including	
	secondary disk arrowing before planting the	
	tomato. For each parameter the letter indicates	
	values significantly difference at $P=.05$.	

List of Tables

Table 1.1	Estimation of Relative Contributions to Improved	2
	Crop Production of Increases in Harvested Land	
	Area, Crop Yield ^a and Cropping Intensity of	
	Agriculture Over the Period from 1961 to 2005	
	(Bruinsma, 2011)	
Table 2.1	The Characteristics, Aims, and Some Essential	17
	Effects of Common Tillage Systems and Potential	
	Impacts on Arbuscular Mycorrhiza (AM)	
Table 2.2	Effects of Tillage Application of N Fertilizer Use of	23
Tuble 2.2	Cover Crops and Effects of Crop Rotation on the	25
	Changes in Soil Organic Carbon in the top 0.3 m	
	Soil During a 15-year Experiment in Central Italy	
	In the First 5 years (A) Maize Was Grown in Each	
	Year: in the Following 10 years Crops Were Grown	
	in Rotation (B) (Based on Mazzoncini et al. (2011))	
Table B2 2 1	Effect of P Applied to the Soil (mg P kg ⁻¹ of Soil):	31
	on the Arbuscular Colonization (AC % of root	51
	colonized by arbuscules) on the Root Density (RD	
	cm of root cm^{-3} of soil) and on Colonized Boot	
	Density (CRD, cm of root colonized with	
	$rac{1}{2}$ $rac{$	
	by the same letter are not significantly different at	
	P = 50.05 Adopted from Brito et al. (2013a)	
Tabla 5-1	The Concentration of Main Croups of Microflora	83
Table 5.1	and Eauna in Soil	05
Tabla 6 1	Arbuscular Colonization (AC) of Host Plants Llood	124
Table 0.1	to Dovelop Extraradical Mucalium (ERM) and AC	124
	of Wheat and Clover Crown for 21 days after the	
	first plants in undisturbed soil (EDA4 intest) and	
	disturbed coil (EBM discurbed SOII (EKM Intact) and	
Table 7 1	Characteristics of the Musclium of the Members of	127
Table 7.1	Three Femilies of Arbuseuler Museurhizel Fungi	157
	(AAAE) including around of colonization	
	(AMF), including speed of colonization	
	(Source: Data from Hart and Keader, 2002a)	

xx List of Tables

Table 8.1	Design of Cropping Systems to Enhance	145
	Arbuscular Mycorrhizal Fungi (AMF) Diversity and	
	Deliver Functional Benefits to Crops and	
	Ecosystem Services	
Table 8.2	Summary of the Proposed Strategy; Mechanisms	169
	and Benefits for the Constructive Management of	
	Arbuscular Mycorrhizal Fungi (AMF) Within	
	Agricultural Systems	

HTU3 List of Plates

Plate B1.3.1	Arbuscule (400 \times).	11
Plate B1.3.2	Hyphal Coils $(200 \times)$.	11
Plate B1.3.3	Vesicle $(200 \times)$.	12
Plate 3.1	AMF colonized root (200X). Root hair (RH) and	40
	extraradical mycelium (ERM). ERM is longer and	
	thinner than a RH and is branched.	
Plate 6.1	(A) Hyphopodium (200X); (B) Hyphal intercellular	115
	growth and arbuscules (200X); (C) arbuscule (400X).	
Plate 6.2	Vesicle (400X).	116
Plate 6.3	Wheat roots colonized with "fine endophytes"	121
	(200X).	
Plate 8.1	Growth of wheat in soil containing excessive levels	149
	of Mn following colonization initiated by different	
	propagules. A, B, and D are the propagule	
	treatments indicated in Fig. 8.1 (A, Only spores; B,	
	Spores, fragmented mycelium, and colonized root	
	tragments of <i>Ornithopus compressus</i> ; and D,	
	Spores and intact ERM of the native AMF	
	associated with <i>O. compressus</i>). The protection of	
	wheat plants by arbuscular mycorrhizal fungi	
	(AMF) was only conferred when an intact	
	extraradical mycellum (ERM) was present in the	
	soll at the time of planting.	150
Plate 8.2	Growth of wheat in soil containing excessive levels	150
	of Min following colonization initiated by different	
	propagule sources of indigenous arbuscular	
	mycorrnizai fungi (AMF). C and D are the	
	propagule treatments shown in Figs. 8.1, 8.4 (C,	
	spores and infact extraradical mycellum (ERM) of	
	D Spores and intact EPM of the native AME	
	associated with Ornithonus compressus). The	
	functional consequences of the different AME	
	associated with the two Developer plants are	
	associated with the two Developer plants die	

xxii List of Plates

Plate 8.3	Effect of the presence of an intact extraradical mycelium (ERM) of native arbuscular mycorrhizal fungi (AMF) developed in association with <i>Ornithopus compressus</i> on the growth of the roots of maize (related to data presented in Fig. 8.11). (U P1, Undisturbed soil treatment ERM intact and no P applied to the soil; D P1, Disturbed soil treatment ERM disrupted and no P applied to the soil).	161
Plate 8.4	Grade for evaluation of disease incidence (DI) at the stem base of tomato.	162
Plate 8.5	Tomato plants inoculated with a suspension of 10 ⁻⁹ conidia of <i>Fusarium oxysporum</i> f.sp. <i>radicis-lycopersici</i> (inoculum level C4). Und and Dist are Undisturbed and Disturbed soil treatments described in Fig. 8.15. For Dist the soil was disturbed after the growth of <i>Lolium rigidum</i> G. (ERM disrupted) and in Und the soil remained undisturbed at the plantine of the soil was for the soil was a set the plantine of the soil was a set the solution.	164
Plate 8.6	 undisturbed at the planting of tomato (ERM intact). Field experiment with tomato. (A) Winter seeding of the barley cover crop after land preparation; (B) Barley cover crop in February; (C) Barley killed by systemic herbicide; (D) Traditional land preparation in spring before the planting of tomato. 	165

Preface

The current world population of 7.5 billion is expected to be 20% greater by 2050 and so we have little over 33 years to ensure the means of producing sufficient food to meet the expected demand. One of the options that previously were available to us for expanding world production of cereals, vegetables, fruits, and meat, namely bringing more land into production, is no longer possible and consequently we must everywhere increase the productivity of the land. But this time we must not attempt it without making every effort to safeguard the environment. Put in a slightly different way, we have to grow more but conserve the soil and its biodiversity, be more efficient in terms of water use, improve nutrient-use efficiency so that fewer applied nutrients end up contaminating our freshwater and eutrophying our lakes and shallow seas or adversely affecting the quality of our air and contributing to the atmospheric loading of greenhouse gases. If we add in a desire to reduce the application of pesticides, especially those targeting root pathogens, it would seem to represent an extremely challenging task. Perhaps it will be a surprise to some that the answer to many of these challenges might well be one result of the development of techniques that allow us to determine the make-up of microorganisms, which has had huge impacts on soil science and its application in agronomy.

Beginning with the ability to differentiate the fatty acid and phospholipid profiles of microbial communities in soil and reaching the current status, where the whole genetic code of an organism can be determined, the previously rather opaque world of soil microbiology is being clarified at an unprecedented rate. From around the time that the word mycorrhiza was coined by Frank in 1885, mycorrhizal fungi have been of interest because of their special relationship with the vast majority of land plants. For agronomists the most important are the endomycorrhizal fungi that produce treeshaped branched structures called arbuscules inside the cortex of most crop plants. Evidence steadily accrued that established their importance in supplying the essential element phosphorus to plants but the availability of mineral fertilizers, such as superphosphate, caused many to assume that the contribution from mycorrhiza was unnecessary and even in fertile soils the organisms were more like parasites than partners of their hosts. But eventually there came the realization that arbuscular mycorrhiza provided far more services than supplying phosphorus. The recent appreciation of the biological

xxiv Preface

diversity of mycorrhizal fungi and the functional consequences for mycorrhiza with different abilities to protect their host from the impacts of toxic metals, to counter the invasion of root diseases and to enhance the formation and stabilization of soil aggregates, renewed interest in the ecological significance of mycorrhiza.

The challenge for agronomists and those interested in availing their crops of the potential benefits from arbuscular mycorrhiza is how to manage them. One obvious approach is to develop a source of inoculum that can be applied to a field prior to or as part of seeding a crop that could benefit from the formation of a mycorrhizal symbiosis. However, not only is that a relatively expensive activity it is also fraught with uncertainty over its efficacy. Another approach is to encourage the adoption of farming practices that support a wide variety of indigenous arbuscular mycorrhizal fungi (AMF) that will provide specific benefits sought for the crop. But in many respects this is not enough. It is a long way from providing the supportive environment for a specific fungus or consortium of fungi to dominate the mycorrhiza that form on most crop plants in a field. That goal requires the development of new farming strategies.

The approach we take in this book is to expand on the current challenges to meeting the requirements for feeding a much larger world population and suggest how arbuscular mycorrhiza can contribute to the solution under many agricultural climatic zones. We consider the farming practices that can be deleterious to maintaining a diverse population of mycorrhizal fungi and the systems and practices that can encourage their survival and effectiveness. We discuss the interactions between the fungi and other soil organisms, some of which are now known to improve the functioning of arbuscular mycorrhiza, and how the symbiosis influences many of the basic plant processes. The possibilities for obtaining specific information on individual fungi offered by the new generation of molecular methods are also presented. Finally we present a view as to how indigenous AMF might be managed in a practical setting.

The opportunity to put our combined thoughts and ideas into a book owes a lot to the discussions we had with Marisa LaFleur, commissioning editor with Elsevier, and subsequently with commissioning editor Nancy Maragioglio. Both have been wonderfully supportive and we can't thank them enough. We are equally indebted to Billie Jean Fernandez, who has been of enormous help in pulling us over the finish line. Lisa Jones, the Production Editor, has been superb in converting our ideas on presentation into reality; she has worked tirelessly to ensure we would be proud of the finished product. We sought the help of two experts to ensure that the chapters on new generation molecular methods and diversity among the AMF would be as up-to-date as possible. It is difficult to express just how grateful we are to Diederik van Tuinen, a very good friend and colleague, for his contribution on modern molecular methods in relation to the elaboration of

Preface xxv

functional diversity. The contribution of Clarisse Brígido in developing the chapter discussing the complexity of functional diversity in AMF was also critical and she too has been of incalculable help and support. We are extremely grateful to Sabaruddin Kadir and Luis Alho, who generously provided material used in Chapter 5, Impacts on Host Plants of Interactions Between AMF and Other Soil Organisms in the Rhizosphere, as well as provided important feedback on the contents.

Michael Goss, Mário Carvalho, and Isabel Brito March 2017

Note: These proofs may contain color figures. Those figures may print black and white in the final printed book if a color print product has not been planned. The color figures will appear in color in all electronic versions of this book.

AUTHOR QUERY FORM

ELSEVIER	Book: Goss-1611461 Chapter: HTU4	Please e-mail your responses and any corrections to: E-mail: LI.Jones@Elsevier.com
----------	-------------------------------------	--

Dear Author,

Any queries or remarks that have arisen during the processing of your manuscript are listed below and are highlighted by flags in the proof. (AU indicates author queries; ED indicates editor queries; and TS/TY indicates typesetter queries.) Please check your proof carefully and answer all AU queries. Mark all corrections and query answers at the appropriate place in the proof using onscreen annotation in the PDF file. For a written tutorial on how to annotate PDFs, click http:// www.elsevier.com/__data/assets/pdf_file/0007/98953/Annotating-PDFs-Adobe-Reader-9-X-or-XI.pdf. A video tutorial is also available at http://www.screencast.com/t/9OIDFhihgE9a. Alternatively, you may compile them in a separate list and tick off below to indicate that you have answered the query.

Please return your input as instructed by the project manager.

Uncited references: References that occur in the reference list but are not cited in the text. Please position each reference in the text or delete it from the reference list.			
Missing references: References listed below were noted in the text but are missing from the reference list. Please make the reference list complete or remove the references from the text.			
Location in Article	Query / remark		
AU:1, Page 27	Please confirm the title "Taxonomy of Arbuscular Mycorrhizal Fungi referred to in this Book" for correctness.		

Taxonomy of Arbuscular Mycorrhizal Fungi Referred to in AU:1 this Book

There have been some major changes in the taxonomy associated with arbuscular mycorrhizal fungi (AMF). In consequence, some have undergone more than one name change in the last 30 years. To avoid as much confusion as possible, the names used in the text are those reported by the authors of the papers referenced. We have used Schüßler and Walker (2010) and Redecker et al. (2013) to provide a list of the current names of these species.

Former Name	Genera	Specific Epithet
Acalulospora leavis	Acalulospora	leavis
Acaulospora morrowiae	Acaulospora	morrowiae
Entrophospora schenckii	Archaeospora	schenckii
Gigaspora albida	Gigaspora	albida
Gigaspora gigantea	Gigaspora	gigantea
Gigaspora margarita	Gigaspora	margarita
Gigaspora rosea	Gigaspora	rosea
Glomus caledonium (Nicol. & Gerd.) Trappe and	Funneliformis	caledonium
Gerdemann		
Glomus claroideum	Claroideoglomus	claroideum
Glomus clarum	Rhizophagus	clarus
Glomus constrictum = Funneliformis constrictum	Septoglomus	constrictum
Glomus coronatum	Funneliformis	coronatus
Glomus diaphanum	Rhizophagus	diaphanus
Glomus etunicatum	Claroideoglomus	etunicatum
Glomus fasciculatum	Rhizophagus	fasciculatus
Glomus fasciculatum Gerd. And Trap	Rhizophagus	fasciculatus
Glomus fasciculatum (Thaxter sensu Gerd)	Rhizophagus	fasciculatus
Glomus geosporum	Funneliformis	geosporum

(Continued)

xxviii Taxonomy of Arbuscular Mycorrhizal Fungi Referred to in this Book

(Continued)

Former Name	Genera	Specific Epithet
Glomus intraradices ^a	Rhizophagus	sp.
Glomus intraradices	Rhizophagus	irregularis
Glomus intraradices	Rhizophagus	intraradices
Glomus macrocarpum	Glomus	macrocarpum
Glomus mosseae	Funneliformis	mosseae
Glomus tenue	Glomus	tenue
Rhizophagus intraradices	Rhizophagus	intraradices
Scutellospora calospora	Scutellospora	calospora
Scutellospora fulgida	Racocetra	fulgida

^aIdentifying the current name for *Glomus intraradices* is problematic. The isolate DAOM197198 was renamed from *Glomus intraradices* to *Glomus irregularis* and then to *Rhizophagus irregularis*. As not all isolates have been reanalyzed, we now have some which are *Rhizophagus* sp., some *R. irregularis*, and some still *R. intraradices*.