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Synergistic effects of climate change and habitat fragmentation on 

species range shifts and metapopulation persistence 

Abstract 

The effects of climate and landscape change on biodiversity have been widely 

acknowledged. However, there is still limited understanding on how the interaction 

among these processes affects species persistence over large spatial scales. This thesis 

aims to study the synergistic effects of climate and landscape change on species 

persistence and range shift dynamics. Using the Cabrera vole as model species, and 

combining ecological niche modeling (ENM), non-invasive genetic analysis and field 

sampling at predicted range margins, it is shown that forecasting range shifts of 

metapopulations under climate change, should require detailed sampling at the 

extremes of the ecological niche and that combining these three techniques allows an 

effective assessment of the niche. Analysis of metapopulation persistence and range 

expansion under landscape and climate change involved the development of an R 

package, ‘MetaLandSim’. This package offers a set of simulation tools integrating 

concepts from metapopulation and graph theories, providing an opportunity for 

testing ecological theories and evaluating species responses to environmental change. 

A first example of the package use is demonstrated by combining ENM projections 

with dispersal models (DM) considering three different connectivity scenarios. It is 

clearly demonstrated that combining range shift with lower connectivity will result in 

narrower range sizes for the Cabrera vole, highlighting the relevance of both, climate 

change and landscape connectivity in range dynamics evaluation. Finally, 

‘MetaLandSim’ was used to test the hypothesis that intermediate levels of landscape 

disturbance may increase species persistence under certain species and landscape 

traits. Using a set of 54 virtual species differing in their ecological traits, it is shown that 

species with mid to higher dispersal and early successional preferences were more 

likely to benefit from intermediate disturbance. Overall, this study provides important 

insights for improving predictions on metapopulation persistence and range dynamics 

under various scenarios of landscape and climate change. 
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Efeitos sinergéticos das alterações climáticas e fragmentação de habitat 

na distribuição das espécies e persistência metapopulacional 

Resumo 

Os efeitos das alterações de paisagem e climáticas são reconhecidos na literatura 

científica. Esta tese tem por objetivo contribuir para a clarificação e compreensão dos 

efeitos sinergéticos das alterações climáticas e de paisagem na persistência das 

metapopulações e na alteração das áreas de distribuição das espécies. Usando o rato-

de-Cabrera como modelo, e combinando a modelação de nicho ecológico (ENM) com 

técnicas de genética não-invasiva e amostragens de campo nas margens da área de 

distribuição, demonstra-se a combinação das três técnicas e a inclusão de amostras  

nos extremos do nicho ecológico tornam mais eficaz que a previsão das novas áreas de 

distribuição num contexto de alterações climáticas. A análise da persistência 

metapopulacional e da expansão da área de distribuição em condições de alterações 

ambientais envolveu o desenvolvimento do package de R ‘MetaLandSim’. Este oferece 

um conjunto de ferramentas de simulação combinando as teorias dos grafos e 

metapopulações, o que permite testar teorias ecológicas e avaliar respostas das 

espécies às alterações ambientais. Usa-se este package para gerar modelos de 

dispersão (DM) que consideram simultaneamente a conectividade da paisagem e 

capacidade de dispersão. Estes DM, com três cenários de conectividade, foram 

projetados para o futuro e combinados com as projeções dos ENM. Demonstra-se que 

a perda de conectividade, associada à movimentação da janela climática, terá reduzirá 

a área de distribuição do rato-de-Cabrera. Finalmente, o ‘MetaLandSim’ é usado para 

testar a hipótese de que níveis intermédios de perturbação da paisagem podem 

beneficiar algumas espécies. Foram usadas 54 espécies virtuais com diferentes 

características ecológicas demonstrando que espécies com dispersões médias a 



 

elevadas e preferência por manchas nos primeiros estados da sucessão beneficiam de 

níveis intermédios de dinamismo. Este estudo fornece informação relevante para 

melhorar previsões da persistência das metapopulações e das dinâmicas das áreas de 

distribuição sob diversos cenários de alterações ambientais. 

 

Palavras-chave 

Persistência metapopulacional, modelação de nicho ecológico, alterações de paisagem, 

alterações climáticas, alteração da área de distribuição. 
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Chapter 1 

General Introduction 

Although the effects of landscape and climate change alone have been relatively well 

studied and modelled, few studies have attempted to test how these processes 

interact to affect biodiversity. However it has been suggested that synergies emerge 

from their combined effects, which should be much more severe than the sum of their 

individual consequences (Hof et al. 2011; Opdam and Wascher, 2004; Travis, 2003). 

Consequently, it is critical to study the effects of each of these drivers and of their 

interaction on biodiversity in order to properly forecast conservation constrains and 

find adequate responses for them. 

1. Scientific Background 

1.1. Climate change 

Climate change is a hot topic in many scientific research areas. It is defined as “… a 

change in the state of the climate that can be identified (e.g. by using statistical tests) 

by changes in the mean and/or the variability of its properties and that persists for an 

extended period, typically decades or longer.” (IPCC, 2014). It refers not only to trends 

in the mean values of the climatic variables, but also to an increase of frequency of 

extreme climate events. Regarding recent climatic tendencies (IPCC, 2014), it is 

estimated that the combined land and ocean surface temperature have warmed by 

about 0.85ºC from 1880 to 2012. Besides the increasing average temperature, an 

increasing variability is also observed. In what concerns the ocean, in the last decades 

there were changes in i) acidification (decreasing pH by 0.1, since the beginning of the 

industrial age), ii) mean sea level (increase 1.7 mm/year between 1901 and 2010 and 

3.2 mm/year between 1993/2010), and iii) gradual ocean warming (the upper 75 m 

warmed at a rate of 0.11°C/decade between 1971 and 2010). There has been 

considerable debate as to whether the causes of climate change are natural or 
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anthropogenic, or even about the occurrence of a change at all. However, this is 

currently supported by abundant scientific evidence, showing that, besides external 

natural drivers such as the solar cycle and volcanic activity, anthropogenic alterations 

of atmosphere composition and land use are the main driving forces responsible for 

climate change (Cook et al. 2013; IPCC, 2014). 

Climate change has been shown to have relevant impacts on the ecosystems and 

species (Parmesan, 2006; Parmesan and Yohe, 2003; Walther et al. 2002), including i) 

shifts in species ranges (an average of 6.1km/decade towards the poles); ii) range 

contractions, particularly in polar and mountain species; iii) advancement in 

phenological spring events (ca. 2.3 days/decade for birds, plants, amphibians and 

insects); iv) evolutionary adaptations (adaptation to higher temperatures in the core of 

species ranges, broader resource use and the evolution of dispersal propensity at 

expanding range margins); v) disruption of species interactions (e.g. predator-prey and 

plant-insect); vi) changes in community composition, and vii) alteration of the 

structure and dynamics of ecological systems.  

Species range shifts and contractions are thought to result mostly from changes in the 

geographical distribution of bioclimatic niches. In particular, range shifts can be of two 

main types: in altitude or in the direction of the poles (Walther et al. 2002). A study 

encompassing all the European Continent and including 120 species of native non-

volant mammals Levinsky et al. (2007), predicted that, by considering two climate 

change scenarios, 1-9% of mammal species are in risk of extinction, while 32-78% will 

lose more than 30% of their current distribution area. Given the current range shift 

tendencies (in altitude and poleward), it is expected that the Mediterranean basin will 

show a greater loss in species richness and diversity, while the northeast and higher 

altitude regions will show the opposite trends (Levinsky et al. 2007). Other studies (e.g. 

Maiorano et al. 2013) have agreed that the Mediterranean Europe, which is currently 

considered a biodiversity hotspot, should suffer a considerable loss in terrestrial 

vertebrate species, including mammals, birds, reptiles and fishes. In the particular case 

of amphibians and reptiles, increasing temperature per se should not be the main 

cause for concern; rather, these species are affected by a reduction in water 

availability (particularly the amphibians) and dispersal limitations (Araújo et al. 2006). 
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As for plant species, a recent study including 1350 species at the European level has 

shown that range shifts should occur mostly in altitude (the species’ ranges would 

occupy areas in increasingly higher altitudes than its current distribution), with the 

consequence that species from mountainous regions (which are already limited by the 

altitude at their current ranges) are more sensitive to climate change (Thuiller et al. 

2005).   

Throughout the years several strategies have been proposed to minimize the impact of 

climate change on ecosystems (Heller and Zavaleta, 2009; Mawdsley et al. 2009). 

These include: i) increasing the protected area network, as well as creating buffer 

areas around these areas; ii) promoting large reserves connected by smaller stepping 

stones (improving connectivity, representation and replication of each habitat); iii) 

improving management and restoration of current protected areas (boosting 

resilience); iv) focusing management actions on ecosystem function rather than its 

components (e.g. species); v) protecting important landscape features promoting 

range shifts (stepping stones, corridors and refugia); vi) increasing landscape 

connectivity by improving matrix permeability (particularly among protected areas); vii) 

prioritizing conservation efforts on species prone to extinction; viii) identifying 

indicator species; ix) translocating populations to facilitate range expansion and avoid 

range contraction; x)  promoting the establishment of captive populations of most 

sensitive species; xi) reducing other pressures on species (such as the impact of 

landscape change or invasive species); xii) improving monitoring plans; xiii) 

incorporating predicted climate change impacts into species conservation plans; xiv) 

implementing whole landscape conservation plans; and xv) improving the 

communication amongst public agencies and interdisciplinary collaboration.  

There is evidence that existing reserve networks, particularly those first established 

(such as the national and natural parks networks), are largely ineffective in protecting 

current biodiversity (e.g. Araújo et al. 2007; Rodrigues et al. 2004). This is probably 

because, historically, reserve networks were designed with a focus on landscape 

aesthetic value, competition with other land uses, and ownership structure (Pressey, 

1994; Scott et al. 2001). These criteria privileged mountainous regions and larger, 

flagship species, often disregarding humanized ecosystems, or other areas of highest 
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conservation value (Rodrigues et al. 2004, Scott et al. 2001). Designing reserve 

networks should balance several important principles, such as: i) irreplaceability (a 

measure of how rare and/or irreplaceable are the features of a given site); ii) 

representativeness (characteristic of a site that specifies how many species and/or 

habitats are represented); and iii) complementarity (complementary sites have 

different characteristics, focusing on different natural features) (Cabeza and Moilanen, 

2001). Although it is still widely accepted that reserves are the best strategy to cope 

with future climate changes (Lawler and Hepinstall-Cymerman, 2010), many recent 

studies have shown that existing reserves do not completely fulfil their function (e.g. 

Araújo et al. 2004; Araújo et al. 2011a; Hannah et al. 2007), thus suggesting that 

protecting biodiversity should probably require a reconsideration of the reserve 

network design. For instance, in a study conducted over three regions (Mexico, South 

Africa and Western Europe) it was concluded that in none of the areas the reserve 

networks fulfil their conservation targets, and that there is a need for the 

establishment of more reserves (Hannah et al. 2007). Another study focusing in 

protected areas and the Natura 2000 network in Europe, concluded that by 2080 

about 58% of the species would evidence a retraction of their distribution on 

protected areas (Araújo et al. 2011a). This study demonstrated the ineffectiveness of 

the Natura 2000 network, the largest in the world, in offsetting climate change effects 

on species distributions. Furthermore, even current reserve selection methods are 

inadequate to design reserve networks that allow biodiversity conservation under 

climate change (Araújo et al. 2004). An alternative has been proposed which consists 

in the implementation of dynamic reserve networks, discarding underperforming 

protected areas, and considering dispersal ability and dispersal corridors (Alagador et 

al. 2014).  

In summary climate change has important effects on ecosystems, particularly species 

distribution, phenology and evolution. Reserve networks, a primary tool in species and 

ecosystem conservation, often do not completely preserve current biodiversity. Given 

the ongoing trends of climate change, current reserve networks are also inadequate. 

New reserve design strategies are thus required, in order to cover a greater diversity of 

ecosystems, and to include dispersal corridors for biodiversity. An accurate knowledge 
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of the species potential future distribution is needed in order to inform landscape 

planners of which regions would better serve the connectivity of the landscape and 

facilitate range shifts. 

 

1.2. Landscape change 

Landscape modification by humans is by far the most important cause of landscape 

change, leading to habitat loss and fragmentation, thus reducing biodiversity 

worldwide (Fahrig, 2003; Fischer and Lindenmayer, 2007; Haddad et al. 2015; 

Lindenmayer and Fischer, 2006). Although habitat loss and fragmentation are widely 

recognised as major factors contributing to the decline of many species, the relative 

importance of each process is seldom evaluated (Fahrig, 2003). This is probably 

because habitat loss and fragmentation are often undistinguished concepts in the 

literature Fahrig (2003). Only recently, was suggested that the term fragmentation 

should be applied to the separation of habitat, independently of habitat loss (i.e. a 

landscape might have more, smaller habitat patches, but an equal amount of total 

habitat than other landscape). Thus, although these are often interconnected 

processes, it is important to distinguish their separate effects (Fahrig, 2003). 

Particularly, habitat loss might have a more determinant role in the extinction of 

species (Fahrig, 2003, 1997).  

Several processes describe the way humans can alter landscapes (e.g. Bogaert et al. 

2004) including: i) dissection (division of an area of continuous habitat by equal-width 

lines, e.g. roads); ii) shift (patch relocation); iii) perforation (creation of holes in an area 

of continuous habitat, e.g. mining sites or other localized disturbance), iv) 

fragmentation (breaking of an area in smaller, more isolated, areas); v) shrinkage 

(decrease in patch size) or enlargement (increased patch size). Also, and besides these 

structural landscape changes, another important process is habitat degradation (e.g. 

decline in food or shelter) which, in extreme occasions, might lead to habitat loss 

(Lindenmayer and Fischer, 2006). 

Landscape change impacts on biodiversity might be very diverse, given the different 

typologies of processes that may be involved, and the multiple ways they can be 
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combined. One of the frequent consequences of landscape change is the so called 

edge effect. This refers to the increase in the length of the boundary between habitat 

and surrounding matrix (Lindenmayer and Fischer, 2006). Increased edge effects 

magnifies species exposure to other factors that might have negative influence on 

persistence, either biotic (e.g. increased vulnerability to predators or disease) or 

abiotic (such as particular microclimatic conditions) (Lindenmayer and Fischer, 2006). 

Habitat fragmentation also has an effect on extinction threshold (Fahrig, 2002), such 

that, in more fragmented landscapes the species requires more habitat, effectively 

affecting the extinction threshold. Besides affecting species persistence and movement 

among suitable habitat patches, landscape change has also effects at the community 

level, altering species richness, and mostly, species composition (e.g. Burel and Baudry, 

2002; Parody et al. 2001), and often triggering extinction cascades (Fischer and 

Lindenmayer, 2007). According to the species-area relationship, the number of species 

increases with habitat area. This is generally mediated by two effects: on one hand, a 

greater area implies more habitat diversity, thus allowing the occurrence of more 

species; on the other hand it also minimizes extinction since populations are assumed 

to be larger (Kallimanis et al. 2008; Rybicki and Hanski, 2013). It is worth noting 

however, that the effect of habitat diversity on species richness in itself might be 

stronger than the species-area relationship (Báldi, 2008).  

As for habitat degradation, it may reduce abundance or prevent reproduction 

(Lindenmayer and Fischer, 2006). It can occur gradually (land abandonment or gradual 

intensification of agricultural practices) or abruptly (replacement of natural habitats or 

sustainable agricultural practices by urbanized territory, a rapid intensification of 

agriculture or other infrastructures such as dams).  

Several management strategies have been proposed to mitigate the effects of 

landscape change (Fischer and Lindenmayer, 2007): i) preserve or promote areas of 

adequate habitat and permeable landscape matrix; ii) protect buffer areas around 

habitats; iii) promote corridors or stepping stones among habitat core areas; and iv) 

protect landscape gradients and heterogeneity. Other, more species-centered, 

management strategies that have been proposed are (Fischer and Lindenmayer, 2007): 

i) maintain species interactions and functional diversity; ii) focus conservation efforts 
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on more susceptible species; iii) control invasive or over-abundant species; and iv) 

minimize other threatening processes.  

In summary landscape change may encompass a broad variety of processes that may 

have important impacts at both the species and the community levels, being 

recognized as one of the most important threats to biodiversity. In this respect, 

reserve network design assumes a very important role in landscape management 

strategies aiming to maintain or increase biodiversity. Since this is a multi-scale process 

it is important to evaluate its effects on species persistence at different scales. 

 

1.3. Synergies between climate and landscape change 

In a study concerning a particular type of landscape change, habitat loss, Travis (2003) 

concluded that landscape and climate change are interconnected: besides a habitat 

threshold, under which the species goes extinct, there is a similar threshold for the 

rate of climate change a species can withstand before extinguishing. Importantly, the 

position of this threshold is influenced by the amount of habitat and, thus, by habitat 

loss. Both these effects are particularly damaging for habitat specialist species with 

poor colonization and dispersal abilities, which are likely less capable of coping with 

changes. However, there is one major difference in the importance of the colonization 

and extinction rates of a species facing climate change and habitat loss: in habitat loss, 

both, colonization (c) and extinction rates (e) are equally important (since patch 

occupancy is determined by the ratio c/e); for climate change colonization is more 

relevant, since the species has to be able to follow its climatic niche through the 

landscape. 

Opdam and Wascher (2004) studied the combined effect of climate change and 

fragmentation. Two thresholds were identified: one where the level of fragmentation 

still allows persistence and the range expansion is allowed at a slower rate and another 

one above which, a given level of habitat fragmentation, the expansion of the range is 

inhibited, thus not allowing species persistence. 
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A few research priorities have been identified, regarding the study of the combined 

effects of climate and landscape change on biodiversity. These include: i) assessing 

whether clumped habitat increase the likelihood of a species to shift its range (Travis, 

2003); ii) investigating the underlying effects of landscape patterns on metapopulation 

dynamics (Opdam  and Wascher, 2004); and iii) considering the effect of large scale 

disturbance on metapopulation persistence (Opdam  and Wascher, 2004). 

These research priorities highlight the need to consider the interconnection between 

scales, based on the idea that processes or traits that are relevant at the landscape 

scale might have an influence at the regional and biogeographical scales. On the other 

hand, large-scale changes can have an impact at the landscape scale, affecting 

landscape and metapopulation dynamics.  

 

1.4. Predicting future potential niche distribution  

The idea that a species distribution is defined by the values of a given set of 

environmental variables, or its ecological niche, was first mentioned by Grinnel (1917). 

Such an apparently simple idea has raised much debate (e.g. McInerny and Etienne, 

2012a, 2012b and 2012c) and generated several subsidiary concepts, such as 

fundamental, realized or potential niches (Hutchinson, 1957; Jackson and Overpeck, 

2000). Having had such a long history, many definitions of ecological niche have been 

presented through the years. In this thesis, the implicit definition of niche, or more 

specifically (bio)climatic niche, is aligned with the definition of the realized niche of 

Hutchinson (1957). This niche is defined by a set of composed bioclimatic variables 

(Hijmans et al. 2005) expressing the environmental suitability, defining a n-dimensional 

space where the species is able to persist, and excluding those areas where the species 

is absent due to other factors, e.g. competitor species. Ecological niche models (ENM) 

are a privileged tool in evaluating the relations between the species and the 

environmental variables (Peterson et al. 2011). Much debate has been produced as to 

whether the ENM’s, output is the geographical expression of a niche (e.g. McInerny 

and Etienne, 2012a) or which concept of niche is represented in its output (e.g. Sillero, 

2011). However, the real niche might never be found since i) it is difficult to evaluate if 
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the variables considered are the most relevant or are proxies of niche variables; and ii) 

some important variables might be missed. Nevertheless this does not affect the 

assumption that, by doing an ENM, the researcher is trying to approach the niche of 

the species, even if it is incompletely defined. 

Furthermore it is important to make a distinction, between environmental and 

geographical spaces (Peterson et al. 2011). The first is the ecological niche, sensu 

Hutchinson (1957), the second is its geographical expression, i.e. the regions where the 

environmental conditions have the adequate values for species persistence. Ideally 

(from the modelling point of view) there would be a direct relation between both. 

However, some regions with ideal conditions do not have species occurrences (due 

fundamentally to dispersal constraints, geographical barriers or interspecific 

interactions) and others without conditions have occurrences (due to source-sink 

dynamics) (Franklin, 2010a; Peterson et al. 2011; Pulliam, 1988 and 2000).  

There is also some debate concerning the designation of these modelling approaches, 

mainly between “Species Distribution Modelling” (SDM) and “Ecological Niche 

Modelling”, which is not only a semantic difference (Franklin, 2010a; McInerny and 

Etienne, 2013; Peterson and Soberón, 2012). As argued by Soberón (2014) and 

Peterson and Soberón (2012), when the focus is on conditions (rather than species) 

and when the modelling procedure aims at transferring in time or space the causal 

factors underlying the species distribution, the designation “Ecological Niche Modelling” 

should be used. In this case it is assumed that the realized scenopoetic niche is being 

modelled, i.e. the realized niche, since it considers the portion of the fundamental 

niche where the species is allowed to persist, given the presence of other limiting 

factors (e.g. competing species) and scenopoetic since only abiotic and non-interactive 

variables are considered (e.g. climate) (Hutchinson, 1957, 1978; Soberón, 2014).  

Projecting the ecological niche into future climatic scenarios, allows the estimation of 

the geographic space, where the focal species will have conditions to persist. However, 

“having conditions” does not mean that the species has the ability to occupy a given 

area. On the other hand, by implicitly assuming the species will be present in all the 

areas projected as adequate, it is assumed that the focal species has infinite dispersal 
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ability, i.e. the individuals will occupy all favourable regions, whatever the distance 

between them and current occurrences and whatever the available time span (e.g. 

Bateman et al. 2013). This is not a realistic approach, if the objective is to know where 

the species will be present. Several alternatives are currently used to account for 

dispersal in these projections, besides the full dispersal (Bateman et al. 2013): i) No 

dispersal – assuming that the species will only occupy the areas where the projected 

niche overlaps current distribution. This is applied generally in conjunction with the full 

dispersal approach with the argument that these are the two extreme scenarios and 

that the reality would be somewhere in between. It is, in itself, also a highly unrealistic 

scenario; ii) Partial dispersal with a buffer – this approach is implemented through the 

application of a buffer, restraining the full dispersal scenario (assuming that the 

species would disperse a given distance per time interval); iii) Partial dispersal including 

other more complex approaches using, for instance, demographic, dispersal or habitat 

selection features for generating predictions on species range expansion.  

By incorporating the accessible regions, through any of these approaches (particularly 

the more complex), and combining this in a GIS with the output of an Ecological Niche 

Model, a Species Distribution Model is produced (Peterson and Soberón, 2012). This is 

because the projected distribution, rather than representing the adequate conditions 

for the species to persist (its realized ecological niche), represents now the potential 

species distribution.    

 

1.5. Landscape-level effects on metapopulation dynamics 

The effects of fragmentation in the landscape are frequently addressed resorting to 

the metapopulation concept (e.g. Ovaskainen and Hanski, 2004; Sawchik et al. 2002; 

Schnell et al. 2013; Wilson et al. 2010), which was firstly theorized by Levins (1969, 

1970). By using the metapopulation approach, it is assumed that “…local populations, 

which the metapopulations consist of, are discrete (or relatively discrete) entities in 

space and that these local populations interact via migration and gene flow“(Hanski 

and Gaggiotti, 2004). Levin’s approach is the first to develop a model to study 

metapopulation persistence in a stochastic equilibrium between extinction and 
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colonization in habitat patches (Hanski, 1999). This simple model considers an infinitely 

large habitat network, in which all occupied patches have equal extinction probability, 

the colonization is proportional to the fraction of occupied patches (sources of 

colonizers) and the fraction of unoccupied patches (targets for colonization), and all 

patches are equally connected. It is a spatially implicit model, meaning that the spatial 

arrangement of habitat patches is either ignored or assumed to be irrelevant (Hanski, 

1991; Levins, 1969, 1970).  

The commonest approach to the study of metapopulation dynamics, is the incidence 

function model (IFM), developed by Hanski, (1994). It belongs to another type of 

models: the spatially realistic models, since it accounts for patch location. It is a 

discrete time stochastic model, an extension of the first order linear Markov chain 

model (Hanski, 1999). Using IFM, the extinction is considered to vary with patch area, 

or quality (where patch area is a proxy of population size) so, smaller patches have 

greater extinction probability. Colonization depends on the species dispersal ability 

and patch connectivity to occupied patches (Hanski, 1999). The species is characterized 

by a set of parameters describing its spatial dynamics. These parameters can be 

derived using one (ideally more) snapshot of species occupancy in the habitat network, 

and there are a multitude of methods to parametrize the function (see Etienne et al. 

2004 for details). Once parametrized, the IFM can be used to simulate metapopulation 

dynamics (Hanski, 1999).  

Although the metapopulation concept and the IFM have provided important insights 

on how species may persist in fragmented landscape, there have been few attempts to 

model and predict metapopulation responses to land use change, and particularly to 

landscape dynamics (i.e. the rate of both, patch creation and destruction). Unlike 

habitat loss (which implies a decrease in the total area of habitat) or habitat 

fragmentation (which refers only to the division of habitat patches on more, smaller 

patches, not implying habitat loss; Fahrig, 2003), landscape (or habitat) dynamism 

refers to the relocation of habitat patches. It does not directly suggest habitat loss or 

fragmentation. Habitat loss and fragmentation have been thoroughly addressed 

previously and, frequently, the problem posed to the species occupation of a habitat 

network is not one of fragmentation or loss of habitat, but rather dynamic changes in 
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patch configuration. Only a few effects of landscape dynamism on metapopulation 

persistence have been studied (see Van Teeffelen et al. 2012 for a review). Those 

included the effects of the correlation in disturbance (e.g. Johst and Drechsler, 2003; 

Vuilleumier et al. 2007), of management options (e.g. Ross et al. 2008; Johst et al. 

2011), of patch configuration (Vuilleumier et al. 2007), and of the role of species-

specific traits, such as dispersal ability (e.g. Johst et al. 2002). Several conclusions 

emerged from these works: i) species with greater dispersal ability can sustain higher 

rate of dynamism (Johst et al. 2002); ii) generally, higher spatial correlation in the 

disturbance reduces species persistence (Johst and Drechsler 2003; Van Teeffelen et al. 

2012; Vuilleumier et al. 2007); iii) more compact habitat networks (with a 

proportionally lower number of edge patches) have a lower extinction probability 

(Vuilleumier et al. 2007); iv) higher levels of dynamism, whether in the intensity or 

frequency, are more detrimental for species persistence and v) higher network area or 

quality and network connectivity facilitates species persistence (Van Teeffelen et al. 

2012).  

Regarding the management options of a dynamic landscape, research has shown that 

patch protection, rather than patch creation, might be a better option (Ross et al. 

2009), particularly in highly dynamic landscapes or for species with higher propensity 

to dispersal, or more sensitive to high environmental stochasticity (Johst et al. 2002, 

2011). However, recent research shows that habitat improvement (by means of 

enhancement in quality, size or stability of habitat patches) might have the unexpected 

effect of reducing metapopulation persistence. This occurs because, by improving 

habitat, the species evolves in the direction of less dispersal propensity, with the 

consequent long term reductions in patch colonization ability and overall network 

occupation (Poethke et al. 2011). Patch destruction can be compensated by improving 

other characteristics, such as number of patches or patch connectivity, but these 

relations are non-linear and the efficiency of such compensatory measures are 

dependent upon the values of connectivity and number of patches in the landscape. 

Furthermore, in highly dynamic landscapes such measures are ineffective (Johst et al. 

2011).  Accordingly, increasing the rate of patch creation, to balance patch destruction, 

may also fail in very dynamic landscapes (Johst et al. 2011). This happens because, 
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since these trade-offs are non-linear, the effectiveness of conservations measures is 

affected by the landscape attributes at the time. 

A stimulating, though largely understudied hypothesis, regarding the effects of 

landscape dynamism on metapopulation dynamics concerns the intermediate 

disturbance hypothesis (IDH). The IDH has been first proposed by Grime (1973), but it 

is frequently attributed to Connell (1978). It states that, ecosystems with an 

intermediate degree of disturbance, can sustain higher species richness. The causes for 

this effect are: i) intermediate levels of disturbance, allow the coexistence of species 

that favor early and late successional stages; ii) with lower disturbance, more effective 

competitors use the resources disproportionally, excluding others (e.g. good 

dispersers), while at higher disturbance levels only the most resistant species survive 

(poor competitors which are good dispersers) (Connell, 1978; Roxburgh et al. 2004). 

Despite this hypothesis being firstly proposed to relate intermediate disturbance with 

species richness, a few studies have raised the question that intermediate disturbance 

might also maximize other ecological parameters (see Kun et al. 2009 for references).  

Several authors have suggested (although with some nuances) that, since intermediate 

disturbance maximizes species richness, it might also maximize the persistence of a 

species in the landscape (Govindan et al. 2015; Govindan and Swihart, 2012; Kun et al. 

2009; Stelter et al. 1997; Van Teeffelen et al. 2012; Zeigler and Fagan, 2014).  

The reasons for this effect, in the context of species persistence in a landscape are 

essentially two: i) the species selects early-successional habitat patches (Stelter et al. 

1997), with higher dynamism (although producing many new, more adequate, patches) 

causing the extinction of more subpopulations and lower dynamism not producing 

enough new, early-successional, patches; ii) the intermediate dynamism favors the 

establishment of stepping-stone patches, which connect that landscape temporarily. 

Lower dynamism is insufficient for these to be relevant for the species and higher 

dynamism promotes species extinction due to patch destruction (Govindan et al. 2015; 

Van Teeffelen et al. 2012; Zeigler and Fagan, 2014). Furthermore higher migration 

rates, derived from more connected landscapes, might give rise to the anti-rescue 

effect, by which the enhancement in migration has negative impacts for persistence, 
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for example by assisting the spread of a disease or parasite (Harding and McNamara, 

2002).    

The main conclusion of previous works is that, particularly if the species prefers early 

successional habitats, a maximum habitat network occupation at intermediate 

disturbances is observed.  

 2. Thesis main goals 

The general objective of this thesis is to study the synergistic impacts of landscape and 

climate change on species distributions, linking metapopulation dynamics at the 

landscape scale and species range shifts at regional and geographical scales.  

The thesis seeks to build on the general, though largely understudied, idea that 

studying processes at both scales should contemplate the reciprocal effects of each 

scale imposed by landscape and climate change (Opdam and Wascher, 2004).   

By focusing on ways to improve either the sampling techniques or the modelling 

approaches to predict species responses to both climate and landscape change, this 

thesis aims to provide a contribution to improve conservation prescriptions based on a 

suite of more realistic scenarios and assumptions. This includes: i) improving the 

realism  of species future potential distributions (which might be important to 

promote reserves and improve connectivity between reserve networks); ii) evaluating 

the impact of landscape configuration in the species dispersal (which might be relevant 

to establish landscape management guidelines promoting corridors or stepping stones 

or to evaluate dispersal scenarios); and iii) providing tools to improve knowledge of the 

effect of disturbance on species persistence in the landscape. 

3. Model species 

Empirical data used in this thesis regard 

the Cabrera vole (Microtus cabrerae, 

Thomas, 1906) (Fig. 1), which is a “near 

threatened” rodent (NT) by the IUCN 

Figure 1 - Cabrera vole (Microtus cabrerae, 
Thomas, 1906). (F.M.) 
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criteria (Fernandes et al. 2008). It is endemic to the Iberian Peninsula (Fig. 2), and 

restricted to wet herbaceous habitat patches that remain green throughout the year 

(Garrido-García et al. 2013; Luque-Larena and López, 2007; Pita et al. 2006 and 2011; 

Santos et al. 2005 and 2006). At the regional/geographic scale, the species occurrence 

is sensitive to rainfall and humidity, being promoted in areas characterized by 

moderate values of these climatic traits (Mira et al, 2008). 

 

Figure 2 - Cabrera vole distribution. Dark blue - previously known distribution; Red - 
Data collected during the current thesis. 

The species has been referred to be highly influenced by landscape configuration, 

being susceptible to disturbance. In fact, recent studies have shown that the structural 

characteristics of the landscape are key to the species persistence (Pita et al. 2007). It 

is frequently found in highly fragmented agricultural ecosystems (Pita et al. 2007), but 

also in other more neglected habitats, such as road verges and field margins (Pita et al. 

2006; Santos et al. 2007) where it is subjected to lower disturbance (e.g. cattle grazing). 

Cabrera voles typically occur at very low densities (Fernández-Salvador et al. 2005), 

persisting as metapopulations in highly fragmented agricultural and pastoral 

landscapes, a phenomenon common to other species subjected to habitat disturbance 
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(Ross et al. 2008; Sjögren-Gulve and Hanski, 2000). It has been suggested that the 

Cabrera vole is a climate-sensitive species, responding to climate change with a change 

in its distribution (Araújo et al. 2011b and 2012; Laplana and Sevilla, 2013). 

Habitat specialists, particularly those with lower colonization and dispersal ability, such 

as Cabrera voles, are particularly exposed to the synergistic effects of climate and 

landscape change (Travis, 2003), making this a good model species. Ecological traits 

that make the species less resilient to climate change are similar to those that make it 

less resilient to landscape change. In particular, the degree of specialization relative to 

climate variables (homologous of the degree of habitat specialization); and the rate of 

climate change it can sustain (homologous of the degree of landscape change 

sustained) are fundamental characteristics explaining species responses (Travis, 2003). 

4. Study area 

Since the model species used in the empirically based sections of this thesis is an 

Iberian endemism occurring in different regions of the peninsula, the study area 

consists on the whole Iberian Peninsula (Fig. 3), which is the westernmost portion of 

Continental Europe connected to the Eurasian continent by an isthmus dominated by 

the Pyrenees. This region is strongly influenced by the Mediterranean and the Atlantic, 

with a climatic gradient from costal to inland (Rivas-Martinez and Rivas-Saenz, 2015). 

Average monthly temperature ranges from <0.0 ºC (during December to February in 
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 detailed  analysis  based  on  simulation  modeling.  Specifically,  54  virtual  species 

were considered based on different combinations of metapopulation parameters 

used in the Stochastic Patch Occupancy Model (SPOM), characterizing different 

metapopulational dynamics. The creation of virtual species is not new to ecological

 works (e.g. Hirzel et al. 2001) and the value of this approach to forecast conservation 

measures has been previously acknowledged (Peck, 2004; Zurell et al. 2009). A 

traditional experimental approach implies repeatability, different treatments and 

comparative evaluation of outputs. In landscape ecology, given the temporal and

 spatial scale of the phenomena and study objects, and the complexity of the systems, 

simulation is a particularly adequate approach (Ims, 2005). 



 

high altitude regions) to 

>27 ºC (during July and 

August in some areas of the 

Spanish provinces of Caceres, 

Badajoz, Toledo, Seville, 

Cordoba and Jaen). Average 

annual maximum 

temperature ranges 

between <10.0ºC (in areas of 

high altitude) and >22.0ºC 

(in inland southern Portugal 

and the Spanish provinces of Caceres, Badajoz, Huelva, Seville, Cadiz, Cordoba, Jaen, 

Almeria, Murcia and Alicante). Average annual minimum temperature ranges between 

<0.0ºC (in regions of high altitude in Spain) and >15.0ºC (in the region of Algarve, 

Portugal, and in the coastal Spain between the provinces of Cadiz and Alicante). 

Lowest monthly average minimum temperature ranges between values <2.5 ºC 

(between December and February in high altitudes) and >17.0ºC (between July and 

August on Algarve, southern Portugal, on the majority of the coastline of Extremadura, 

Andalusia, western Castile-La Mancha, southern Madrid and the Balearic Islands) 

(AEMET and IM, 2011) (Fig. 4). 

Figure 3 – The Iberian Peninsula. 
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Figure 4 - Mean temperature (oC) (Ninyerola et al. 2005). 

As for precipitation, the Iberian Peninsula is marked by a strong seasonality, 

particularly in the southern portion of the territory, which is less intense in north-

eastern Spain. December is the month with higher precipitation (>300 mm), 

particularly in northeast Portugal and southwest Galicia. Lower rainfall (10-20 mm) 

occurs in southeast Spain (provinces of Almeria, Murcia and Alicante) and areas of 

Teruel. July is the month with lower precipitation; during this month the lower values 

(<5 mm) occur in southern Baixo Alentejo, Algarve (Portugal) and in Andalusia, 

southern Extremadura, Murcia and southern Valencia (Spain). The highest values for 

average monthly rainfall (>150 mm) are in the north of Catalonia, north of Navarra and 

scattered areas of the Basque Country (Spain); (AEMET and IM, 2011) (Fig. 5).  
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Figure 5 - Mean Precipitation (mm) (Ninyerola et al. 2005). 

The major Iberian rivers are the Guadalquivir, Ebro, Douro, Tagus and Guadiana. These 

rivers have an eastern/western orientation (with the exception of the Ebro, which runs 

northwest to southeast). In what concerns orography the Iberian Peninsula is very 

diverse. The central region is dominated by the Iberian Central Plateau, the Toledo 

Mountains (separating the Tagus and Guadiana Basins), the Iberian Mountain Range 

(isolating the Tagus, Douro and Ebro basins) and the Sierra de Gredos and Guadarrama. 

To the north, the Cantabrian Range borders the coastline of the Cantabric Sea. In the 

southern portion the Iberian Peninsula the most relevant mountain systems are the 

Sierra Morena, between the Guadiana and Guadalquivir basins, and the Baetic System 

along the southern coastline. In the west are prominent the Catalan Coastal Range and 

the Pyrenees (connecting the peninsula to the rest of Europe). The southwestern 

portion of the Peninsula (the Portuguese regions of Alentejo and Algarve and parts of 

the Spanish regions of Andalusia and Extremadura) presents smoother topographies 

(Fig. 6).  
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Figure 6 - Geography of the Iberian Peninsula. 

Concerning soil type, and according with the World Reference Base (IUSS Working 

Group WRB, 2014), the Iberian Peninsula presents a few particularities, such as some 

soil types which are uncommon throughout Europe, as solonchak and gypsisols. 

Cambisols (present in a diversity of climates, altitudes and vegetation types) are the 

commonest soil type in the region, followed by regosols (present in very diverse areas, 

but mostly in arid regions and mountain ranges). Luvisols, with high nutrient content, 

are present in the western portion of the peninsula (particularly southern Portugal). 

This type of soil is typical of flat landscapes in cool temperate to warm Mediterranean 

climates, in regions with well-defined dry-wet seasons. The Ebro region and parts of 

south-eastern Spain have areas of calcisols, typical of flat to undulating landscapes of 

arid and semi-arid regions dominated by xerophytic shrubs/trees and herbs or 

ephemeral grasses, with patches of leptosols (typical of mountains regions) in 

mountainous regions of eastern and northern Spain. (Fig. 7). 
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Figure 7 - Soil type (Panagos et al. 2012). 

According to the Corine Land Cover 2006, the land use in the Iberian Peninsula is 

dominated by scrub and herbaceous associations, arable lands, forests and 

heterogeneous agricultural areas. In the central, south-western regions of Portugal 

there is some dominance of forests and arable land. In the north-eastern Portugal and 

Algarve Mountains scrub and herbaceous associations are prevalent. In Spain, in the 

Central Plateau and in the Guadalquivir basin, arable land is dominant. Spanish 

mountainous regions are dominated by both, scrub and herbaceous associations and 

forests (EEA, 2014) (Fig. 8). 
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Figure 8 - Corine Land Cover 2006 (EEA, 2014). 

 

4.1. Climate change and its impacts on the Iberian Peninsula  

Predicted climate change scenarios in the Iberian Peninsula indicate a decreasing 

precipitation (Rodríguez-Puebla and Nieto, 2010), which will lead to an increasing 

frequency of average and longer dry spells, with a north-south growing gradient 

intensifying the current latitudinal dissimilarities. As such, hydrological stresses, which 

are already important in some areas of the Iberian Peninsula, will tend to be 

intensified (Sánchez et al. 2011). In particular, in Portugal, an increase of mean 

temperature, predominantly in the summer and autumn, as well as an increase in the 

frequency of daily extremes, chiefly in the maximum temperatures in the summer, is 

expected to occur (Andrade et al. 2014). 

The impact of such changes has been assessed in previous studies for vertebrates and 

vascular plants, in Spain. For the vertebrate species there will be no taxonomically-

based differences, i.e. the different taxonomic groups do not show discernible 

differences amongst them in what concerns range shifts and contractions. Overall, for 
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these species, a range contraction is observable (southwest/northeast and 

south/north) which is consistent with an increase in aridity in the south/southwest 

Iberian Peninsula (decreased rainfall and increased temperature) (Araújo et al. 2011b). 

The tendency for an increase in aridity in Mediterranean Europe will have a particular 

impact on mammal species richness (Levinsky et al. 2007). Iberia, together with the 

Italian Peninsula, shows the highest values of vertebrate species richness (Maiorano et 

al. 2013). Regarding the vascular plants the main tendency shown in continental Spain 

is the loss of species in mountainous regions, mainly in the center and northern Spain 

(Felicísimo et al. 2011) in line with studies made for Europe (Benito Garzón et al. 2008; 

Thuiller et al. 2005). In fact, these studies mention that central/northern Spain should 

show the highest rates of species loss, more than 80% (Thuiller et al. 2005) and that 

Mediterranean tree species appear prone to migrate north and upward and persist in 

climate change scenarios (Benito-Garzón et al. 2008).  

Given that about 80% of the Iberian vertebrate species, tend to retract in protected 

areas in Spain (Araújo et al. 2011b), addressing climate change, and its ecological 

consequences is essential to preserve biodiversity. 

  

4.2 Landscape change and its impacts on the Iberian Peninsula  

As in other regions across Europe, current landscape changes in the Iberian Peninsula 

are largely related to the development of the road networks and land cover 

modification. These trends in landscape change are driven by changes in agricultural 

practices which are a consequence of the European Union agricultural policy and its 

constant evolution (Selva et al. 2011; Stoate et al. 2001, 2009). The intensification of 

agricultural practices in Iberia (often with irrigation) has created a more uniform 

landscape (Stoate et al. 2001, 2009). Traditional land uses like the montado ecosystem 

(similar to the Spanish dehesa), which is very characteristic of the southern Iberian 

Peninsula, are generally associated with high biodiversity levels (Pinto-Correia and 

Mascarenhas, 1999), but these traditional systems are currently suffering contrasting 

modifications: extensification (leading to a more forest-like landscape) or 
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intensification (leading to a more intense agriculture/forestry) (Pinto-Correia and 

Mascarenhas, 1999; Stoate et al. 2001, 2009).  

In the case of the empirical model species used in this thesis (the Cabrera vole), the 

more prevalent and potentially damaging landscape changes are those related with 

the reconversion of traditional agriculture to other, more lucrative, crop plants, the 

effect of cattle grazing intensification and the road-derived dissection of habitats 

(Fernández-Salvador, 2007; Pita et al. 2007). These might cause habitat loss 

(decreasing the mean area or the number of patches available by, shrinkage or 

attrition, respectively) and fragmentation (dissection of otherwise continuous habitat) 

and a reduction in matrix permeability which decreases landscape connectivity.  

5. Specific objectives and thesis structure 

In order to address the general purpose of this thesis, i.e. evaluate the synergistic 

effects of landscape and climate change on species persistence and distribution range, 

three main specific objectives were outlined: 

1. Optimizing the modelling procedure by improving the apprehension of the 

ecological niche combining ecological niche modelling, sampling at the range 

margins and genetic analysis, improving range shift projections. 

2. Producing a tool to enable the inclusion of landscape effects on range 

expansion, providing an ideal way to relate both scales, biogeographical and 

landscape. This tool would allow considering landscape effects in range 

expansion modelling in a species with a metapopulational distribution in the 

landscape. 

3. Evaluating the Intermediate Disturbance Hypothesis in the context of species 

persistence in a dynamic landscape. 

Each of these objectives was divided by the chapters of the thesis.  

Firstly, the thesis aimed to show how forecasting species future range shifts under 

different climate change scenarios may be affected by inaccurate estimates of the 

species ecological niche, due for instance to incomplete occurrence data on locations 

where species are at low densities. Using the Cabrera vole as model species, and non-
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invasive genetic sampling along the species range margins, it was aimed to i) generate 

more accurate projections of future ecological niche; and ii) optimize the modelling 

procedure and data collection. This was done by calibrating an ENM with the known 

occurrence of Cabrera vole and current climatic conditions. The output of the ENM 

was used to define areas for field sampling, at the range margins determined by the 

model. One important feature of this chapter is the link between geographical space 

and ecological space, since the sampling at the species distribution margins was also 

intended to capture the conditions of the ecological margin. The data collected in the 

field sampling were joined to the previous data and a second model was calibrated. 

Both these models were then projected into future climatic conditions. The main goal 

was to evaluate the differences between the two models, assessing the impact of the 

new data on the ecological niche projections. This first study is presented in Chapter 2.  

A further objective was to develop a new modeling tool to predict metapopulation 

persistence in dynamic landscapes that simultaneously allows the scaling-up to 

regional and biogeographical scales. By simulating metapopulation dynamics in 

landscape units that are sequentially occupied, a dispersal kernel is produced, 

generating the probability of occupation of areas at a given distance to the closest 

current species occurrence. This kernel is applied to a raster map of current 

distribution, generating a Dispersal Model, which can be later combined with an 

Ecological Niche Model using any GIS software. The main idea was to connect both the 

landscape and biogeographical scales, providing the necessary link between 

metapopulation and range dynamics, as claimed by Opdam and Wascher (2004). This 

study is presented in Chapter 3. 

Then, aiming to answer the main research question of this thesis regarding the 

synergies between climate and landscape change, the information from the projection 

of Ecological Niche Models (ENM) into the future was combined with that generated 

by Dispersal Models (DM) in several landscape fragmentation scenarios. This chapter 

profits from the outputs of preceding chapters, namely, the ENM (chapter 2) and the 

tool developed to produce the DM (chapter 3). By analyzing the several climate-based 

and landscape-based scenarios as well as the combination of both it is possible to 

evaluate the effects of climate and landscape change on the future distribution of 
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Microtus cabrerae. This study, recently submitted for publication, is presented in 

Chapter 4. 

Finally it aimed to assess the support of the Intermediate Disturbance Hypothesis (IDH) 

in explaining metapopulation persistence in dynamic landscapes.  Specifically, the IDH 

was tested for 81 virtual species with different spatial and ecological traits, in order to 

assess whether there are any species benefiting from an intermediate level of 

disturbance in the landscape. Here, besides the different spatial dynamics, different 

species preferences regarding succession stage of the patches (early, mid and late-

successional species) were considered, a factor which has been studied previously 

(Stelter et al. 1997; Wahlberg et al. 2002). It builds on previous works using particular 

species (Govindan and Swihart, 2012; Govindan et al. 2015; Stelter et al. 1997), and 

achieves generalizations regarding the relations between IDH and metapopulation 

persistence. The approach described here aims to identify species characteristics that 

are prone to behave accordingly with the IDH. This objective is addressed in Chapter 5 

(manuscript in preparation to be submitted). 

The sixth chapter summarizes the main findings and contributions of the study, 

framing these in the current research agenda and providing guidelines for further 

development. 
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Combining distribution modelling and non-

invasive genetics to improve range shift 

forecasting 
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Abstract 
Forecasting species range shifts under climate change is critical to adapt conservation 

strategies to future environmental conditions. Ecological niche models (ENM) are often 

used to achieve this goal, but their accuracy is limited when species niches are 

inadequately sampled. This problem may be tackled by combining ENM with field 

validation to fine-tune current species distribution, though the traditional methods are 

often time-consuming and the species ID inaccurate. Here we combine ENM with 

novel field validation methods based in non-invasive genetic sampling to forecast 

range shifts in the threatened Cabrera vole (Microtus cabrerae). Using occurrence 

records mapped at 10x10km resolution, we built a first ENM (ENM1) to estimate the 

current species distribution. We then selected 40 grids with no previous data along the 

predicted range margins, and surveyed suitable habitats through presence-sign 

searches. Fecal samples visually assigned to the species were collected for genetic 

identification based on the mitochondrial cytochrome-b gene, which resulted in 19 

new grids with confirmed presence records. A second model (ENM2) was built by 

adding the new data, and species distribution maps predicted by each model under 

current and future climate change scenarios were compared. Both models had high 

predictive ability, with strong influence of temperature and precipitation. Although 

current distribution ranges predicted by each model were quite similar, the range 

shifts predicted under climate change differed greatly when using additional field data. 

In particular, ENM1 overlooked areas identified as important by ENM2 for species 

conservation in the future. Overall, results suggest that combining ENM with non-

invasive genetics may provide a cost-effective approach in studies regarding species 

conservation under environmental change.  

 

Keywords 
Climate change, ecological niche, Microtus cabrerae, range margins, range shift, 

conservation genetics. 
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1. Introduction 

There is growing evidence that many species will change their current ranges in 

response to climate change. These range shifts, may have multiple conservation 

implications on, for instance, the design of reserve networks (Hannah, 2008; Hannah et 

al. 2002), assisted colonization approaches (Hoegh-Guldberg et al. 2008), and habitat 

restoration priorities (Mawdsley et al. 2009). Species range shifts are caused by the 

expansion or contraction of favourable climatic conditions, and typically emerge from 

extinction/colonization processes mostly driven by the species physiological 

tolerances, dispersal abilities, and habitat availability along their distribution limits 

(Anderson et al. 2009; Thomas, 2010; Walther et al. 2002). Generally, species tend to 

occupy newly available patches at their expanding margins, being more likely to 

become locally extinct at the retracting margin (Anderson et al. 2009). Support for 

such climate-induced range dynamics in many plants and animals has led to the 

recognition that effective conservation planning should move from a static to a 

dynamic approach. Accurate projections on potential species distribution ranges, 

should allow the conservation of both present-day and future biodiversity (Fuller et al. 

2011; Hannah et al. 2002; Peterson et al. 2011). 

Ecological Niche Models (ENM) are commonly used to assess the relation between the 

species and the environment (Guisan and Zimmermann, 2000), evaluating the existing 

fundamental niche of the species (Peterson et al. 2011). While these models provide a 

valuable tool for designing policies to lessen the effects of climate change on 

biodiversity (e.g. Peterson et al. 2011), they are not impervious to some potential 

biases and uncertainties (Beale and Lennon, 2012; Hanspach et al. 2011; Rocchini et al. 

2011).  A primary source of uncertainty underlying ENM is related to the quality and 

quantity of species occurrence data. Small sample sizes or inadequate spatial coverage 

decreases the statistical confidence of correlations underlying niche models (Wiens et 

al. 2009, and references therein). Uncertainties in occurrence information may be 

particularly common along range margins, where the species might occur at lower 

densities (Hengeveld and Haeck, 1982), increasing the risk of erroneous results and 

predictions (Hanspach et al. 2011). Thus, these uncertainties may have important 

implications for the evaluation of the ecological niche, and for the computation of 
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accurate projections of current and future distributions, particularly in rare or elusive 

species which are difficult to sample.  

Although interactive modelling and ground validation sampling can provide a useful 

method to fine-tune current species distribution ranges, its implications in forecasting 

species range shifts are still largely unexplored, often because field surveys are 

logistically difficult, costly, inaccurate and time-consuming. In this context, novel 

genetic techniques (non-invasive genetic sampling) may provide a fast and effective 

solution to assess the impact of combining ENM and post-modelling sampling on 

species range shift forecasting. The combination of non-invasive genetic sampling with 

DNA-based tests for species identification, highly improved the efficiency in using field 

signs (faeces, hair, feathers, etc.) for determining species presence and distribution 

(see e.g. Beja-Pereira et al. 2009; Waits, 2004). In what concerns small mammals, for 

instance, reliable occurrence data typically require relatively demanding field sampling 

efforts, often involving intensive capture campaigns, or owl pellet dissection (e.g. 

Landete-Castillejos, 2000; Mira et al. 2008; Pita et al. 2006, 2007 and 2011). Recently, 

it has been shown that non-invasive genetic sampling of small mammals (e.g. using 

faecal samples) may provide a promising alternative to monitor populations, by 

allowing the indirect identification of species (Alasaad et al. 2011; Barbosa et al. 2013). 

However, to the best of our knowledge, no study has yet combined ENM and non-

invasive genetics to refine range shifts estimates, and so the potential value of this 

approach remains untested. 

Here, we evaluate the impact of combining ENMs with non-invasive genetic sampling 

at the range margins in forecasting range shifts of a threatened species, for which 

range margins are incompletely surveyed or poorly defined. Specifically, we focus on a 

threatened rodent endemic to the Iberian Peninsula, the Cabrera vole Microtus 

cabrerae, which is restricted to wet herbaceous habitats (Luque-Larena and López, 

2007; Pita et al. 2006 and 2011; Santos et al. 2005 and 2006). This species typically 

occurs at very low densities (Fernández-Salvador et al. 2005), and often persists as 

metapopulations in highly fragmented agricultural and pastoral landscapes, where 

patch-level extinction-colonization events are relatively common (Pita et al. 2007). 

Recent studies suggested that the Cabrera vole is a climate-sensitive species (Araújo et 
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al. 2011b and 2012; Laplana and Sevilla, 2013), implying that its conservation should 

consider the dynamic and uncertain effects of climate change. Identification of 

effective conservation actions for the Cabrera vole is, however, hindered by the 

difficulty to survey the species using traditional sampling approaches such as live-

trapping (e.g. Fernández-Salvador et al. 2005; Pita et al. 2007). Although presence 

signs (e.g. runways on grasses, faeces) have been successfully used to survey this vole 

(e.g. Garrido-García et al. 2009; Pita et al. 2006 and 2007), the approach may be 

limited in situations of sympatry with other vole species producing similar signs (e.g. 

M. agrestis in Northern Iberia). Here we combine ecological niche modelling and 

recent DNA-based tests for species ID using faecal samples to forecast range shifts of 

rare and illusive species. In particular we aimed to i) fine-tune the distribution limits of 

a threatened and endemic rodent (Cabrera vole) in Iberia, using non-invasive genetic 

sampling at the range margins; ii) predict the species range shifts under future climate 

conditions, and evaluate the effect of the new occurrence records on such forecasts; 

iii) assess the impacts of climate change on the conservation of the Cabrera vole, in the 

light of the new distribution model predictions. Results of the study are then used to 

discuss the potential of non-invasive genetics to improve the value of ENM in guiding 

conservation action. 

 

2. Material and Methods 

2.1. Study design  

We followed an approach similar to Guisan et al. (2006), which consisted in modelling 

the ecological niche using all previously known location records of Cabrera voles 

(henceforth ENM1), and then using the model output to select a set of sites at the 

predicted range margins for surveying the species (Figure 1). Considering that 

previously known occurrences of the species in Portugal were obtained mostly by owl 

pellet analysis (Mira et al. 2008), contrasting with the higher sampling effort applied in 

Spain (e.g. Fernández-Salvador, 2007; Garrido-Garcia et al. 2013) and that Portugal 

encompasses a significant proportion of the global species range, surveys were 

conducted on the range margins in Portugal, where the species may be undersampled.  
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By concentrating surveys at the range margins we aimed to maximize the ecological 

niche apprehension, while refining the knowledge about the species distribution. 

Surveys were based on the detection of the characteristic faeces of the species, which 

were collected and identified unequivocally using molecular techniques (see below). 

Afterwards, the model was re-run, including the new occurrences (henceforth ENM2), 

and predictions from ENM1 and ENM2 were projected and compared under current 

and future climatic scenarios.  

2.2. Data sources 

Presence data of Cabrera vole across its entire current range (the Iberian Peninsula) 

were  obtained from all available literature sources documenting the occurrence of the 

species between 1970 and 2011 (Figure 1a; Table A1 in Supplementary information) 

and recorded in 10 km2 UTM grids.  Variables of current climatic conditions obtained 

from the Worldclim website (http://www.worldclim.org/ and Hijmans et al. 2005) 

consisted of interpolations of observed data, for the time period between 1950 and 

2000. Variables of future climatic conditions were derived from the Hadley Centre 

Coupled Model, version 3 (HadCM3), which is a coupled atmosphere-ocean general 

circulation model, available at the CCAFS GCM Data Portal (http://www.ccafs-

climate.org and Ramirez and Jarvis, 2008). Bioclimatic variables were averaged for the 

10 km2 UTM grids encompassing the Iberian Peninsula. Future niche projections of 

both ENM1 and ENM2 were carried out for the A1b and B2 scenarios. The A1b 

storyline describes a world with fast economic growth with balanced used of 

fossil/non-fossil energy resources, while the B2 storyline describes a world of local 

environmental sustainability (see IPCC, 2000 for details). 

2.3. Field surveys and genetic analysis 

A total of 40 UTM 10 km2 grid cells, located along the Portuguese range margins 

predicted by ENM1, were randomly selected for field sampling. From these, 20 were 

located in the northern margin and another 20 were located in the southern margin. In 

each case, 10 cells were located up to 30 km into the core of the predicted 

distribution, and the other 10 were located up to 30 km outwards of the predicted 

distribution (see Figure A1 in Supplementary information).  
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Surveys were conducted in December 2012 by a team of one or two experienced 

researchers, and involved a two-step hierarchical procedure. First, we identified 10 

sites with potential habitat conditions for the Cabrera vole, based on vegetation 

characteristics and a searching image developed from previous studies (Pita et al. 2006 

and 2007). Sites were spread as much as possible throughout each cell, using a 

combination of 1:25 000 cartographic maps, aerial photograph interpretation, and 

field checking. Second, at each site a thorough survey was undertaken to detect the 

characteristic signs of the species, including faeces, grass clippings and runways (e.g. 

Garrido-García et al. 2009; Pita et al. 2006 and 2007). A particular effort was made to 

detect fresh faeces that could be visually assigned to the species, since these were the 

only signs amenable for genetic analysis.  

Faecal samples were collected using sterilized tweezers to avoid contamination, and 

stored in 95% ethanol until analysis. In each cell, a maximum of 13 samples from 

different sites were selected for DNA extraction (Table A2 in Supplementary 

information). DNA extraction was performed with three to five faecal pellets per 

sample according to the procedures described in Barbosa et al. (2013). Species 

identification was performed by amplification and sequencing of one fragment of the 

cytochrome b mitochondrial gene (Barbosa et al. 2013). This gene fragment was 

selected because it allows the successful identification of all Iberian rodent species, 

although it is unable to separate the pine voles Microtus lusitanicus from M. 

duodecimcostatus. Genetic analysis of the samples collected in each cell was 

performed until Cabrera vole presence was identified or until species identification 

was obtained for up to 10 faecal samples. Cabrera vole was considered to be absent 

from the cell if no presence signs were detected in the 10 sampling sites or if none of 

the faecal samples analysed was genetically identified as belonging to the species.  

2.4. Modelling procedures  

Pre-selection of bioclimatic variables for modelling purposes was conducted using a 

two-step process. We first fitted logistic regression models relating presence/absence 

of the Cabrera vole and each individual variable, and retained only those predictors 

that were significant at p < 0.05. Then, we computed the pairwise Spearman 

correlation coefficients (rs) among variables (see Table A3 in Supplementary 
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information), and for each pair of highly correlated variables (|rs| > 0.7) we retained 

the one with higher biological meaning (Tabachnik and Fidell, 1996). 

The current and future distributions of the Cabrera vole were modelled through the 

ensemble forecasting approach (Araújo and New, 2007), using the BIOMOD package 

(Thuiller et al. 2009b; Thuiller and Lafourcade, 2010) implemented in R, version 3.0.2 

(R Core Team, 2013). Ensemble forecasting was used, because it is recognized to 

provide more robust predictions than single models (Araújo and New, 2007). Eight of 

the nine algorithms available in the package were run in order to build the ensemble 

(generalized linear model, generalised boosting model, generalised additive model, 

classification tree analysis, artificial neural network, flexible discriminant analysis, 

multivariate adaptive regression spline, and random forest). In order to evaluate the 

models, each dataset was randomly split in calibration and evaluation subsets (70-

30%) in a multiple cross validation procedure, replicating the data splitting procedure 

five times. Overall, this procedure produced 96 models, of which only those with a 

good fit were selected and weighted by accuracy to generate an ensemble model.  

Selection of the best models and posterior weighting was made using the True Skill 

Statistics (TSS), as recommended by Allouche et al. (2006). The relative weight of the 

contribution of each model was calculated using a decay of 1.6, the BIOMOD default 

weighting value (Thuiller et al. 2009a). TSS ranges from -1 to +1, where +1 indicates 

perfect agreement, while TSS ≤ 0 are indicative of a performance no better than 

random. Only the models with TSS > 0.5 were kept in the final ensemble. The 

contribution of each variable to the final ensemble was evaluated through the variable 

importance metric (Thuiller et al. 2009a), which is independent of the modelling 

technique used, and it is given as one minus the correlation score between the 

prediction of each model and the prediction using a permuted variable. The final value 

ranges between zero (no importance) to one (high importance) (Thuiller et al. 2009a). 

This was computed using five permutations to each variable. 

BIOMOD classifies each grid cell between 0 and 1000, according to its suitability. In 

order to convert this continuous value in a potential presence/absence value, the 

Minimal Predicted Area (MPA, Engler et al. 2004) was used. This approach predicts the 
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smaller possible area while keeping 90% (in this case) of the presences correctly 

classified (thus keeping sensitivity equal to 0.9 and fixing the omission error). The 

method is particularly adequate to choose the threshold when the available data are 

presence-only, as threshold methods that consider commission error (proportion of 

absences predicted as presences) should not be used when there are no true absences 

available (Peterson et al. 2011). The PresenceAbsence package (Freeman and Moisen, 

2008) was used to compute the threshold.  

The Area Under the receiver operator Curve (AUC) was designed to be used with 

binary presence/absence data, equally weighting omission and commission errors. 

However, considering that absences are rarely available, the use of pseudo-absence 

and background data is common practice.  In such cases, commission errors are 

expected to be overestimated, as predicted presences on pseudo-absences will be 

considered an error (Peterson et al. 2011) and the AUC must be interpreted in a 

different manner, since the question is not the ability to distinguish between presence 

and absence but to distinguish between presence and randomness (Phillips et al. 

2006). Furthermore, the maximum AUC possible in such conditions is <1, because it 

depends on the predicted area (being “a” the proportion of predicted presence by the 

model AUCmax = 1-a/2) (Phillips et al. 2006; Wiley et al. 2003).  

2.5. Range map comparisons 

Pairwise comparisons between potential range maps produced by ENM1 and ENM2 at 

each time step (current, 2020, 2050 and 2080, under both scenarios considered) were 

made using the improved fuzzy Kappa algorithm for categorical maps, implemented in 

the Map Comparison Kit, version 3.2.3 (Visser and Nijs, 2006). Two geographic extents 

were considered, the Iberian Peninsula and Portugal, totalling 14 range map 

comparisons. In each case, the outputs of BIOMOD were first reclassified from 0 to 4, 

with all square grids with predicted absence classified as zero, and all above the 

presence threshold classified from 1 to 4, according to the quantile. Similarly to the 

traditional Kappa statistics, the improved fuzzy Kappa algorithm expresses the mean 

agreement between two maps, relative to the expected agreement from random 

relocation of all cells in both maps, ranging between 0 (different maps) and 1 (identical 

maps). However, contrary to the Kappa, it does not account for cell-by-cell agreement; 
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instead it considers the fuzziness of the location, for near cell-by-cell agreement, while 

also accounting for autocorrelation in the changes amongst maps (Hagen‐Zanker, 

2009; Visser and Nijs, 2006). All geographic information was stored and managed using 

QGIS, version 2.0.1 Dufour (QGIS Development Team, 2013). 

3. Results 

Following the pre-selection procedure of the most influential, uncorrelated variables, 

five bioclimatic variables were retained for subsequent analysis: Mean Diurnal Range 

(MDR), Minimum Temperature of Coldest Month (MTCM), Mean Temperature of 

Wettest Quarter (MTWQ), Precipitation of Wettest Month (PWM) and Precipitation of 

Warmest Quarter (PWQ). Importance scores derived from models developed using the 

original dataset (ENM1) suggested that PWQ was by far the most influential variable, 

while the PWM was the least important. The importance of the remaining variables 

was relatively low and similar to each other (Table 1).  

Table 1 - BIOMOD variable ranking of predicted ecological niche of the Cabrera vole, 

according to ENM1 and ENM2.  

Variable Code 
Variable Importance 

ENM1 ENM2 

Mean Diurnal Range (ºC) MDR 0.176 0.200 

Minimum Temperature of Coldest Month (ºC) MTCM 0.177 0.168 

Mean Temperature of Wettest Quarter (ºC) MTWQ 0.216 0.184 

Precipitation of Wettest Month (mm) PWM 0.128 0.100 

Precipitation of Warmest Quarter (mm) PWQ 0.441 0.496 

 

In general, ENM1 pointed out that the ecological niche of the Cabrera vole was 

associated to intermediate levels of PWQ and PWM, moderate MTWQ, relatively high 

MDR and MTCM (Table2). The model AUCs suggested that ENM1 showed a good 

predictive ability of the potential distribution of the Cabrera vole ecological niche, with 

mean (AUCmean) and maximum (AUCmax) values amongst all models in the ensemble of 

0.881 and 0.911, respectively.  
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From the 40 grid cells selected along the range margins defined by ENM1, a total of 

351 fresh faecal samples potentially belonging to Cabrera voles were collected in 110 

sites located in 30 grid cells (Figure 1c; Table A3). In the remaining 10 squares, we 

either did not find suitable potential habitat patches, or there were no faeces or other 

indirect signs that could be identified as belonging to Cabrera vole or in the patches 

surveyed. In total, DNA extraction was performed on 115 faecal samples from 69 sites, 

and a 90% amplification success rate was obtained. From 104 faecal samples amplified, 

37 were identified as Cabrera vole, confirming its presence in 19 new grid cells (47.5% 

of the total sampled). From these, 14 were located in the 30 km within the core of the 

predicted range, and 5 were located up to 30 km outwards (Table A3). Other small 

mammals were identified in 14 grid cells, namely, the European field vole (Microtus 

agrestis), the western Mediterranean mouse (Mus spretus), the southern water vole 

(Arvicola sapidus), the wood mouse (Apodemus sylvaticus) and the 

Lusitanian/Mediterranean pine vole (Microtus lusitanicus/duodecimcostatus). The non-

invasive sampling approach resulted in an increase of the known occurrences of the 

Cabrera vole of about 4.84% squares (15.97% for the distribution in Portugal) (Figure 

1d).  

 

Figure 1 - a) Map of Cabrera vole occurrence records at a 10 km2 cell grid resolution, 

which were used to build the initial Ecological Niche Model (ENM1) (records extracted 

37



 

from literature published between 1970 and 2011, see Table A1 in Supplementary 

information); b) Potential range map predicted by ENM1; c) cells selected for field 

survey (black – confirmed presence; grey – collected samples, presence not confirmed; 

white – no samples collected); d) Refined map of Cabrera vole distribution (new field 

data in black) used to build the improved Ecological Niche Model (ENM2); e) Potential 

range map predicted by ENM2. 

 

The model produced using the improved dataset (ENM2) showed a ranking of variables 

importance very similar to that obtained using ENM1, though there was a larger 

difference in the scores of the most and the least important variables. The ecological 

niche of the Cabrera vole defined by both models was also very similar, though ENM2 

produced slightly wider amplitudes of adequate values for the species (Table 2). The 

predictive ability of ENM2 (AUC= 0.885 and AUCmax = 0.908) was similar to that of 

ENM1.  

Table 2 - Minimum and maximum values of each variable, for all the square grids in the 

study area (study area), and for the square grids with confirmed occurrences (Occ. 

data) before and after non-invasive sampling at range margins, and for the models 

ENM1 and ENM2. See Table 1 for variable codes.  

 

The modelling projections of ENM1 and ENM2 for 2020, 2050 and 2080 revealed 

considerable reduction in the potential distribution of the Cabrera vole under both 

climate change scenarios considered, although according to expectations, the B2 

scenario had less dramatic effects than the A1b scenario (Figures 2 and A2). Pairwise 

comparisons between predicted range maps generated by ENM1 and ENM2 from the 

Variable 
Study area Occ. Data(initial) ENM1 Occ. Data (final) ENM2 

Min Max Min Max Min Max Min Max Min Max 

MDR 5.312 12.869 8.265 12.410 8.406 12.410 8.265 12.410 8.122 12.410 

MTCM -8.796 9.032 -4.714 8.304 -4.777 8.304 -4.144 8.304 -4.777 8.409 

MTWQ 0.272 19.974 1.256 15.360 1.256 12.900 1.256 15.360 1.256 14.303 

PWM 31.750 246.070 41.540 178.753 41.540 132.480 41.539 178.753 41.540 145.090 

PWQ 15.000 314.010 19.395 180.110 18.310 180.110 19.395 180.108 17.910 163.200 
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present up to 2080 indicated that there was a general tendency for a decrease in map 

similarity, showing that the further in the future the projection is made more dissimilar 

outputs are produced (Table 3, and Figure 2). Differences between maps were largest 

in Portugal, where the supplementary field data were collected. In general, the 

predictions of ENM1 for future conditions failed to identify potentially suitable areas 

that were identified using ENM2. For instance, under scenario B2 the ENM2 predicts 

that the Cabrera vole will maintain a considerable range in south-western Portugal, 

while this area is deemed largely unsuitable by ENM1. 

Table - 3 Results of range map comparison of models ENM1 and ENM2 using fuzzy 

Kappa index, implemented with the Map Comparison Kit, at the scale of both the 

Iberian Peninsula and Portugal. Current: model projected to the current climatic 

conditions; A1 and B2: IPCC climatic storyline with the respective years.  

Climate Scenario/Time step Portugal Iberian Peninsula 

Current 0.579 0.635 

A1b-2020 0.553 0.559 

A1b-2050 0.291 0.449 

A1b-2080 0.149 0.337 

B2-2020 0.433 0.509 

B2-2050 0.464 0.500 

B2-2080 0.260 0.326 
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Figure 2 - Model comparisons for the studied time steps and climate scenarios. Current 

– top; Scenario A1b (left column): from 2020 (top) to 2080 (bottom); Scenario B2 (right 

column): from 2020 (top) to 2080 (bottom). Light grey – only ENM1 predicts presence; 

Dark grey - only ENM2 predicts presence; Black – both models predict presence. 
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4. Discussion 

Our empirical example focusing on the Cabrera vole supports the view that a 

combination of ENM modelling and field surveys based on non-invasive genetic 

sampling provides a relatively simple, accurate and effective approach to refine 

estimates of species ranges in poorly surveyed areas, thus contributing to improve 

predictions of current and future species ranges. This is in line with research pointing 

out the value of non-invasive genetics to describe species distribution patterns (e.g. 

Waits, 2004) but, to our knowledge, this method had not been used before in 

combination with ENM to improve the forecast of range shifts under climate change. 

This approach may be particularly useful for rare, elusive, and patchily distributed 

habitat specialist species, such as the Cabrera vole in the Iberian Peninsula, which are 

difficult to sample using traditional methods (e.g. direct counts, camera or live 

trapping, etc.). Our study also suggested that the combination of ENM and non-

invasive genetic sampling in poorly surveyed areas may be particularly useful to clarify 

range edges, where species often occur at low density and are difficult to detect. Field 

surveys at range edges may provide a major contribution to improve estimates of 

species niche breadth, which may then have major consequences for predictions based 

on ENMs (Gaston, 2003; Hanspach et al. 2011).  

Although field surveys carried out in this study to refine range margins covered only a 

part of the species distribution where it is presumably under sampled, this is unlikely 

to have affected our key results in a significant way. In particular, this constraint is 

unlikely to undermine the contention that even relatively modest refinements in 

current range margin delimitation, may generate highly divergent predictions of 

species range shift. We recognise, however, that concentrating new surveys in a part 

of the species’ range likely resulted in an incomplete coverage of the species ecological 

niche, which might have translated in an ecological bias (Peterson et al. 2011). This 

probably explains why differences between ENM1 and ENM2 predictions were much 

larger in Portugal than in Spain, as the new surveys were only carried out in the 

former. Results thus suggest that future studies refining the range margins of the 

Cabrera vole in Spain could strongly improve predictions regarding range shifts under 
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climate change. Another potential problem was that field surveys were focused 

exclusively on range margins, and so likely false negatives within the core range were 

not corrected. However, this is somewhat less problematic, since the environmental 

conditions within the core distribution are already sufficiently represented by the high 

number of occurrence records registered in this area. 

The modelling results obtained with either ENM1 or ENM2 highlighted the small 

current range of the Cabrera vole within the Iberian Peninsula and confirmed the 

predicted northward range shift in response to future climate change (Araújo et al. 

2011b). This suggests distinct population dynamics, and thus distinct conservation 

needs, between potentially expanding and contracting edges, with higher extinction 

rates in the southern rear edge, and higher colonization rates in the northern front 

range. In addition, results also suggest that the overall balance between predicted 

extinctions and colonisations up to the year of 2080, should in general favour 

extinction events, as evidenced by the strong decrease in the overall potential range 

size of the species for both climate change scenarios considered. Projections of the 

ecological niche of the Cabrera voles further highlighted the importance of the central 

region of Portugal for the species, particularly after considering the new localities 

identified by combining ENM and non-invasive genetic sampling along the range 

margins in Portugal. Thus, because this region is likely to retain the climatic conditions 

necessary for the long term persistence of the Cabrera vole, it may be particularly 

important in terms of conservation planning. 

Differences between ENM1 and ENM2 in current and future range predictions were 

significant, mostly in Portugal, despite the relatively modest increase in the number of 

new occurrences obtained through non-invasive genetic sampling. In general, 

environmental characteristics at the range margins of a species are different from 

those in the core range (Sexton et al. 2009). Local populations at range margins are 

often restricted to sub-optimal habitats (Gaston, 2003) which, although representing a 

minor part of the species’ environmental ranges, should be essential to assess fine-

scale distributional details and to produce more realistic predictions regarding species 

responses to climate change (Sexton et al. 2009). Our study thus supports the view 
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that undetected presences along species range margins may have particular impact on 

the predicted range shifts of patchily distributed species (Hanspach et al. 2011). Fine-

scale evaluation of species distribution in the range margins should thus be critical to 

properly assess species ecological niche, project species range shifts, and define 

specific conservation measures for different parts of the species range. In this context, 

non-invasive genetic sampling along the areas where species are poorly sampled and 

where most suitable environmental conditions become scarcer (e.g. range margins, 

distributional gaps), seems to provide a very useful approach to detect species at low 

densities. In particular, for species difficult to survey using standard sampling 

approaches, model-guided non-invasive genetic sampling provides a reliable and 

readily usable approach to detect marginal populations that otherwise would remain 

unknown, and hence, to identifying highly suitable regions for habitat restoration, 

preservation, or species translocations (Peterson et al. 2011).  

Overall, the additional data provided by the non-invasive genetic sampling at range 

margins produced important differences in the predicted distribution of the species 

under both future climate change scenarios considered. In each case, the 

central/southwestern portion of Portugal assumed an increased importance for the 

Cabrera vole when predictions were based on ENM2, particularly under the scenario 

B2 for 2080. These differences in predicted range shifts between models may have 

important consequences for scheduling conservation actions, particularly for 

identifying and selecting priority areas where local- and landscape-level management 

prescriptions are to be implemented. Proper allocation of conservation efforts aiming 

the long-term conservation of the species should be particularly critical, given the 

considerable reduction of the distribution range of the species, consistently predicted 

across climate change scenarios and models considered. Thus, our results strengthen 

the idea that predicting species range shifts for conservation proposes should require 

an accurate assessment of the species’ niche, which in many cases may be incorrectly 

estimated when species range margins are poorly defined. 

 

Obtaining accurate and reliable predictions of current and future species ranges based 

on ENM should be best supported when the actual known geographical distribution of 
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the species cover their full ecological niche (e.g. Araújo and Guisan, 2006). Undetected 

presences in areas where species are actually present may have a strong impact on 

ENM results, particularly when local environmental conditions include possible 

extremes of species ecological niches (Comte and Grenouillet, 2013; Hanspach et al. 

2011). In this context, non-invasive genetic sampling has shown to provide a reliable 

and often readily usable approach for detecting species in poorly surveyed areas and 

hence improve estimates of species distribution ranges. In particular, model-guided 

genetic sampling along species range margins should allow effective identification of 

new occurrences in areas where most suitable environmental conditions usually found 

in core ranges become scarcer (Oliver et al. 2009), and in turn may have great 

implications in the estimated ecological niche and thus in the predicted distributional 

ranges. Combining species distribution modelling with non-invasive genetic sampling 

along species range margins should thus be highly recommended to improve range 

shift forecasting and required conservation planning, based on incomplete datasets of 

species occurrences.  
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Supplementary Material #1 

Table A1 – Data sources for the Cabrera vole occurrences across Iberian Peninsula. 

Some square grids have the occurrence of the species confirmed by more than one 

reference. Therefore the sum of occurrences is not the same as the total number of 

occurrences (this dataset includes occurrences gathered from 1970 until 2011). 

Source 
Geographical 

range 
covered 

Nr. 
grids 

Published 

Inventario Nacional de Biodiversidad. Vertebrados. url: 
http://www.marm.es/es/biodiversidad/temas/inventarios-nacionales/inventario-nacional-
debiodiversidad/mamiferos_m.aspx. 

Continental 
Spain  

276 

Conservation Biology Unit Database (Universidade de Évora, Portugal) Continental 
Portugal 

51 

Mira, A.; Marques, C.C.; Santos, S.; Rosário, I.T.; & Mathias, M.L. (2008). Environmental 
determinants of the distribution of the Cabrera vole (Microtus cabrerae) in Portugal: 
Implications for conservation. Mammalian Biology - Zeitschrift für Säugetierkunde, 73(2), pp.: 
102-110. 

Continental 
Portugal  

35 

Santos, S. M., Mathias, M., Mira, A., & Simões, M. P. (2007). Vegetation structure and 
composition of road verge and meadow sites colonized by Cabrera vole (Microtus cabrerae 
Thomas). Polish Journal of Ecology, 55(3), 481.  
Santos, S. M., Simões, M. P., Mathias, M. D. L., & Mira, A. (2006). Vegetation analysis in 
colonies of an endangered rodent. Ecological Research, 21(2): 197-207. 

Central Portugal  25 

Rosário, I. T., Cardoso, P. E., & Mathias, M. D. L. (2008). Is habitat selection by the Cabrera vole 
(Microtus cabrerae) related to food preferences? Mammalian Biology-Zeitschrift für 
Säugetierkunde, 73(6), 423-429. 
Rosário. I.T. Towards a conservation strategy for na endangered rodent, the Cabrera vole 
(Microtus cabrerae Thomas) insights from ecological data. PhD Thesis. Faculdade de Ciências, 
Departamento de Biologia Animal, Universidade de Lisboa. Lisboa, Portugal. 

Southern 
Portugal 

15 

Pita, R. (2010). Persistence and coexistence of spatially structured populations in 
heterogeneous environments: The case of Cabrera and water voles in Mediterranean farmland. 
PhD Thesis, Universidade de Évora. Évora, Portugal. 

Southern 
Portugal 

10 

Mira, A.; Ascensão, F. & Alcobia, S. (2003). Distribuição das espécies de roedores e insectívoros 
- Relatório final, Unidade de Biologia da Conservação, Universidade de Évora. 

Southern 
Portugal 

6 

Gonçalves P., Alcobia S. & Santos-Reis M., Eds. (2013). Atlas dos Mamíferos na Charneca do 
Infantado. Companhia das Lezírias S.A. / Centro de Biologia Ambiental (FCUL), Benavente e 
Lisboa, 92 pp. 

Central Portugal  3 

Ortuño, A. (2009). Nuevos datos sobre la distribución del Topillo de Cabrera Microtus cabrerae 
Thomas, 1906 en Murcia. Galemys, 21(2): 71-72. 

South-eastern 
Spain 

3 

Profico Ambiente (2009). RECAPE do Aproveitamento Hidroeléctrico de Foz Tua; Anexo Y - 
Estudo Complementar Sobre o Rato-de-Cabrera; Relatório de Conformidade Ambiental do 
Projecto de Execução do Aproveitamento Hidroeléctrico de Foz Tua. 

North-eastern 
Portugal 

2 

Mathias, M.L.; Mira, A.; Pereira, M.; Pereira, P.; Nunes, A.C.; Marques, C.C.; Figueiredo, C.; 
Carvalho, F.N.; Sousa, I.; Perestrello, M.; Santos, M.J.; Santos, S. & Oliveira, V. (2004). 
Programa de monitorização do património natural (Área do regolfo de Alqueva e Pedrógão) - 
Projecto Pmo 6.2 - Monitorização de roedores - Relatório Final, Centro de Biologia Ambiental 
(Faculdade de Ciências da Universidade de Lisboa) e Centro de Ecologia Aplicada 
(Universidade de Évora). 

Southern 
Portugal 

1 

Anonym (2008).Estudo de Impacte Ambiental do Estudo Prévio da Ocupação Turística da 
UNOP 4 DE Tróia, Resumo Não Técnico. 

Southern 
Portugal 

1 

Unpublished 

Frederico Mestre (own data). Southern 
Portugal 

3 

Célia Gomes unpublished data. North-eastern 
Portugal 

3 
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Table A2 - Summary results of non-invasive genetic analysis; Grid location: RE – Rear 

edge, out of the predicted potential niche; RI - Rear edge, inside the predicted 

potential niche; FE – Front edge, out of the predicted potential niche; FI - Front edge, 

inside the predicted potential niche. 

UTM 
code 

Sample 
group 

Sample collection Genetic analysis Cabrera vole Other species Genetic 
ID failed Sites Samples Sites Samples Sites Samples Sites Samples 

29SNB11 RE 0 0 - - - - - - - 

29SNB46 RI 1 1 1 1 1 1 0 0 0 

29SNB62 RI 1 2 1 1 1 1 0 0 0 

29SNB65 RE 0 0 - - - - - - - 

29SNB78 RE 0 0 - - - - - - - 

29SNB81 RE 0 0 - - - - - - - 

29SNB90 RI 0 0 - - - - - - - 

29SNC55 RI 1 1 1 1 0 0 0 0 1 

29SNC75 RE 1 1 1 1 0 0 1 1 0 

29SNC76 RI 1 1 1 1 0 0 0 0 1 

29SNC80 RE 0 0 - - - - - - - 

29SNC93 RE 1 1 1 1 0 0 1 1 0 

29SND01 FE 2 6 2 6 0 0 2 6 0 

29SND24 FE 5 12 5 10 0 0 5 10 0 

29SND44 FI 2 10 2 6 1 3 1 2 1 

29SND79 FE 9 27 6 8 3 3 4 5 0 

29SND84 FI 1 2 1 2 1 2 0 0 0 

29SPC08 RI 1 1 1 1 1 1 0 0 0 

29SPC27 RE 0 0 - - - - - - - 

29SPC29 RI 1 2 1 2 1 2 0 0 0 

29SPC46 RE 0 0 - - - - - - - 

29SPD00 RI 1 2 1 2 1 2 0 0 0 

29SPD05 FI 1 3 1 2 1 2 0 0 0 

29SPD23 RI 0 0 - - - - - - - 

29SPD24 FI 1 3 1 3 0 0 1 3 0 

29SPD29 FE 8 22 2 2 2 2 0 0 0 

29SPD32 RI 0 0 - - - - - - - 

29SPD36 FE 2 5 1 2 1 2 0 0 0 

29SPD40 RE 1 1 1 1 0 0 1 1 0 

29SPE42 FI 2 11 1 3 1 3 0 0 0 

29SPE50 FI 4 12 1 2 1 2 0 0 0 

29TPE24 FE 6 18 5 8 2 2 3 5 1 

29TPE58 FE 10 46 10 12 0 0 9 10 2 

29TPF33 FE 9 44 2 3 1 1 1 1 1 

29TPF61 FI 5 20 1 3 1 3 0 0 0 

29TPF65 FI 3 12 1 2 1 2 0 0 0 

29TPF77 FI 7 13 2 2 2 2 0 0 0 

29TPG43 FE 8 33 7 12 0 0 7 11 1 

29TPG70 FI 7 20 1 2 1 1 1 1 0 

29TPG71 FE 8 19 7 13 0 0 6 10 3 
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Table A3 – Summary results of correlation analysis (in grey - Spearman |r|> 0.7).  
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Figure A1 – Sampled 10x10 km UTM grids. Inside the potential niche, as given by ENM1 

(black) and outside the potential niche, as given by ENM1 (white). 
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Figure A2 – Maps of predicted distribution of the Cabrera vole in 2020, 2050, and 2080 

(IPCC Scenarios B2 and A1b), based on the projection of models developed considering 

the original dataset (ENM1) and the dataset including additional field data (ENM2). 
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Abstract 

The metapopulation paradigm is central in ecology and conservation biology to 

understand the dynamics of spatially-structured populations in fragmented 

landscapes. Metapopulations are often studied using simulation modelling, and there 

is an increasing demand of user-friendly software tools to simulate metapopulation 

responses to environmental change. Here we describe the MetaLandSim R package, 

which integrates ideas from metapopulation and graph theories to simulate the 

dynamics of real and virtual metapopulations. The package offers tools to (i) estimate 

metapopulation parameters from empirical data, (ii) to predict variation in patch 

occupancy over time in static and dynamic landscapes, either real or virtual, and (iii) to 

quantify the patterns and speed of metapopulation expansion into empty landscapes. 

MetaLandSim thus provides detailed information on metapopulation processes, which 

can be easily combined with land use and climate change scenarios to predict 

metapopulation dynamics and range expansion for a variety of taxa and ecological 

systems. 

Keywords 

Occupancy-extinction dynamics, landscape dynamics, incidence function model, 

climate change, range shift. 

Software availability 

Name of software: MetaLandSim 

Developers: Mestre, F.; Cánovas, F.; Pita, R; Mira, A. and Beja, P. 

Contact address: CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos 

Genéticos, Pólo de Évora, Universidade de Évora, Núcleo da Mitra, Apartado 94, 7002-

554, Évora, PORTUGAL. +351 282338232 

E-mail: mestre.frederico@gmail.com 

Availability: https://cran.r-project.org/web/packages/MetaLandSim/index.html 
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Installation: Select the repositories CRAN and Bioconductor (BioC software), then type: 

install.packages (”MetaLandSim“, dependencies = TRUE). 

1. Introduction 

The populations of many species are spatially-structured, with subpopulations 

occupying local habitat patches and interacting via dispersal (Hanski, 1999). Much 

effort has been devoted to understand and predict the dynamics of such populations, 

leading to the development of a metapopulation paradigm whereby local 

subpopulations are subject to chance extinction and the proportion of patches 

occupied depends on extinction and colonization rates (Armstrong, 2005). Building on 

this paradigm, a wealth of theoretical and empirical studies have explored how 

metapopulation dynamics (i.e., temporal variation in patch occupancy) is affected by, 

for instance, species-specific dispersal and colonization abilities, and landscape-level 

properties such as the size, number and spatial distribution of patches, as well as 

matrix permeability (Etienne et al., 2004; Hanski, 1999; MacPherson and Bright, 2011). 

More recently, studies have addressed the consequences of landscape dynamism (i.e., 

temporal variation in landscape features), resulting from the destruction and recovery 

of patches due for instance to land use changes and vegetation succession (Wahlberg 

et al., 2002; Verheyen et al., 2004; DeWoody et al., 2005). Also, a few studies upscaled 

metapopulation processes to regional and biogeographical scales, thus providing a 

basis to forecast range shifts in relation to large scale drivers such as climate change 

(Anderson et al., 2009; Schippers et al., 2011). Overall, this research has greatly 

increased our understanding of metapopulation ecology, though progress has been 

slowed by considerable difficulties in collecting empirical data at appropriate spatial 

(patches to continents) and time (years to decades) scales needed to test theoretical 

predictions and to develop realistic management and conservation prescriptions (Ims, 

2005). 

Simulation modelling provides an opportunity to offset the paucity of empirical data, 

making it possible to explore metapopulation responses to environmental change 

under fully controlled and replicated conditions (eg. Wahlberg et al., 2002; Blanquart, 

2014). Because of this, a large number of simulation models have been developed over 
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the years, encompassing different levels of realism and complexity, some of which 

including detailed demographic models of each subpopulation (e.g., Hernández-Matías 

et al., 2013) or even tracking each individual in space and time (Schippers et al., 2011). 

However, the most popular class of metapopulation models are probably the 

stochastic patch occupancy models (SPOMs), which achieve a favourable balance 

between empirical data requirements and the capacity of generalization across a large 

number of taxa and ecological contexts (e.g. Grimm et al., 2004, Hanski, 1999; 

MacPherson and Bright, 2011). Starting from a landscape with n habitat-patches that 

can be either occupied or unoccupied (i.e. 2n potential occupancy patterns), SPOMs 

simulate patch occupancy at any time in the future, based on Markov chains, and using 

a relatively sparse set of parameters affecting the functional forms of local extinction 

and colonization (e.g. Moilanen, 1999; Etienne et al., 2004; see Supplementary 

Material #1, Table SM1). SPOM parameters are easily estimated from empirical patch 

occupancy data (Hanksi, 1994; Hanski, 1999). These parameters may then be used to 

simulate occupancy under any landscape scenario (e.g. Hanski, 1999), and sensitivity 

analyses can be performed to evaluate the susceptibility of simulation outputs to 

variations in model parameters (Moilanen, 2000). 

Despite their value, existing software packages to implement SPOMs are limited to 

fully explore the effects of environmental change on metapopulation dynamics 

(Supplementary Material #1, Table SM2A). A key limitation is the lack of efficient tools 

to deal with landscape dynamics, though this has been increasingly recognized to 

significantly affect metapopulations (e.g. Verheyen et al., 2004). Specifically, no 

package currently available offers the possibility to simultaneously: i) generate random 

landscapes; ii) simulate landscape change over time; iii) implement patch occupancy 

models on varying scenarios of landscape change; and iv) compute connectivity 

metrics at each time step. Another important limitation is that extant packages assume 

a constant size and geographical position of the landscape occupied by the 

metapopulation, thereby hindering the possibility of modelling metapopulation 

expansion to neighbouring landscapes where habitat becomes available due for 

instance to land use or climate changes. This is an important drawback, because 

modelling the pattern and speed of expansion would be essential to combine 
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processes occurring at the landscape and regional scales, and thus using the 

metapopulation paradigm to forecast species range shifts (Wilson et al., 2010; 

Schippers et al., 2011). For instance, information on expansion speed might be used to 

evaluate whether metapopulations can track moving windows of climatic favourability 

through different fragmented landscapes (Schippers et al., 2011), or it might be used 

to quantify dispersal limitations when predicting species range shifts under future 

climatic conditions (Barbet-Massin et al., 2012; Lawler et al., 2010; Travis and Dytham, 

2012). Although software is available to simulate species range shifts while accounting 

for dispersal limitations, the packages rarely consider metapopulation processes and 

often require data that is unavailable for most species (Supplementary Material #1, 

Table SM2B). Here we describe the new MetaLandSim R software package, which 

provides a set of user-friendly tools to simulate metapopulation dynamics and range 

expansion, integrating and enhancing considerably the functionalities available in 

other software (Supplementary Material #1, Table SM2). MetaLandSim represents 

virtual and real landscapes as graphs, and it uses SPOMs to simulate metapopulation 

dynamics. Graph-based techniques were used because they effectively summarize 

spatial relationships between patches, facilitate multi-scale analysis, and avoid 

technical restrictions due to computational constraints (Bergerot et al., 2013; Fortin et 

al., 2012; Galpern et al., 2011). Simulations can be carried out either in dynamic or 

static landscapes, with the level of dynamism specified by the user. Finally, 

MetaLandSim simulates metapopulation expansion into empty landscapes, and uses 

these simulations to compute dispersal models whereby the probability of landscape 

occupancy during a given time window in the future is specified as a function of 

geographical distance to currently occupied landscapes. The dispersal model can be 

combined with ecological niche models to estimate future species ranges under the 

constraint of dispersal limitations (e.g. Barbet-Massin et al. 2012), thus providing a 

mechanism to upscale metapopulation processes from the landscape to the regional 

and biogeographical scales. Hereinafter we summarise the main components, 

functions, and technical features of MetaLandSim (Figure 1). See Supplementary 

material #1 for a detailed description.  
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Figure 1 - General workflow of MetaLandSim package. Main functionalities are shown 
in the grey boxes and functions in italics. 

 

2. Landscapes and metapopulations 

Simulation in MetaLandSim requires specification of the initial landscape features and 

patch occupancy patterns, and the metapopulation parameters (Figure 1). 

MetaLandSim creates random landscapes (function “rland.graph”), or loads real ones 

from a data frame (“convert.graph”) or a polygon shapefile (“import.shape”) (Figure 

2A). Landscapes are represented as graphs, where nodes correspond to habitat 

patches surrounded by an inhospitable matrix, which may be scored according to 

patch size (Hanski, 1994; Moilanen and Hanski, 1998). Landscape dynamism may be 

specified through temporal variations in the number, sizes and spatial distribution of 

patches (“iterate.graph”). MetaLandSim produces maps of the graph-like landscapes, 

with node sizes and colour corresponding for instance to patch size and occupancy 

status, respectively (Fig 2A). Each pair of nodes is linked by an edge, with the 

probability of dispersal specified as a decreasing function of inter-node distance (e.g. 

Saura and Pascual-Hortal, 2007). For graphical purposes MetaLandSim only represents 
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edges when internode distances are shorter than the species mean dispersal ability 

(Fig 2A). MetaLandSim computes 15 landscape connectivity metrics (“metrics_graph”), 

mostly derived from graph theory or assuming a graph representation of the landscape 

(Table SM4 in Supplementary Material #1). 

The metapopulation parameters used in simulations may be specified by the user to 

describe a virtual species, or they may be estimated from empirical data. Because 

simulations are based in SPOMs, the parameters required are: “ a”, the reciprocal of 

the species mean dispersal ability ( a = 1/dispersal ability); “x”, describing the strength 

of the relation between extinction risk and patch area, with lower values 

corresponding to higher extinction risk due to increased environmental stochasticity; 

“y”, which affects colonization efficiency; and “e”, the extinction probability in a patch 

of unit area (Hanski, 1999; Etienne et al., 2004). MetaLandSim estimates these 

parameters from snapshot surveys of patch occupancy (“parameter.estimate”), which 

assume that metapopulations are in equilibrium (Hanski, 1994; Ter Braak et al., 1998; 

Moilanen, 2000). Alternatively, MetaLandSim generates input files for external 

software applications, which estimate metapopulation parameters from occupancy 

turnover observed in consecutive surveys (Moilanen, 2000), using Monte Carlo 

simulation (Moilanen,1999) or Bayesian MCMC (Ter Braak and Etienne, 2003). 
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Figure 2 - (A) Empty (left) and occupied (right) graph-like landscapes represented by 

MetaLandSim, with nodes corresponding to either occupied (green) or unoccupied 

(red) patches. In the left panel, the edges (links) correspond to interpatch distances 

shorter than the mean dispersal ability of the focal species. (B) Simplified scheme of 

MetaLandSim simulations of metapopulation dynamics (SPOM) during “j” time steps, 

and with “i” iterations. 
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3. Metapopulation dynamics  

MetaLandSim uses Markov chain-based SPOMs (“spom”) to simulate metapopulation 

dynamics multiple times (“iterate.graph”) in static or dynamic landscapes, either real 

or virtual. After input of the parameters for a real or virtual species, the user can 

specify two alternative kernel functions describing distance dependent dispersal, two 

connectivity functions describing the probability of dispersal between any two 

patches, and three functions each for the colonization and extinction rates (Table SM1 

in Supplementary Material #1). Irrespective of the options chosen, simulations start 

with an occupied landscape at time t, and then estimate the occupancy status of each 

patch at each of n successive time steps (t + 1, t + 2, …, t + n)(Figure 2B). At each step, 

MetaLandSim computes a number of parameters describing landscape (e.g., mean 

patch area, number of patches, mean nearest-neighbour distance between patches) 

and metapopulation (e.g., percentage of patches occupied, occupancy turnover) 

characteristics. Results can be viewed in HTML format, using an interface with Google 

Chart Tools API through googleVis package (Gesmann and Castillo, 2011). See 

Supplementary Material #2, for a worked example. 

 

4. Range expansion  

To simulate metapopulation expansion into empty landscapes (“range_expansion”), 

MetaLandSim starts with an occupied landscape with a given set of patch  

characteristics, where metapopulation dynamics is simulated using SPOMs as 

described in section 3 (Figure 3). A spurious node is set at each of the cardinal margins 

(i.e., north, south, east, and west) of the landscape, which is used to detect when the 

metapopulation reaches that margin. When a spurious node is occupied, the algorithm 

assumes the transition to an empty landscape in the corresponding cardinal direction. 

This new landscape is generated randomly, with characteristics similar to that of the 

initial occupied landscape. Metapopulation dynamics is then simulated in this new 

landscape starting from the newly occupied margin. The process is repeated across 

landscapes that become progressively available to the metapopulation until it hits the 
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time steps defined, producing a map of the total area and number of landscapes 

occupied at the end of simulation. Future versions of MetaLandSim will allow direct 

dispersal in diagonal directions, which at present are mimicked through rook-like 

movements in a chessboard. Also, they will include the possibility of metapopulation 

and landscape characteristics varying spatially, thereby accounting for instance for 

geographic changes in land uses or habitat fragmentation patterns. See Supplementary 

Material #2, for further discussion on MetaLandSim limitations.  After “m” iterations of 

the metapopulation expansion simulation (defined by the argument “iter”), 

MetaLandSim computes the proportion of times each new landscape was occupied 

(i.e., probability of landscape occupancy; Figure 3). These data are then used for 

estimating a dispersal model for a given species and simulation conditions, which 

involves fitting a sigmoid curve relating the probability of landscape occupancy during 

the simulation period to the nearest distance to landscapes occupied at the beginning 

of the simulation (Figure 3). Different dispersal scenarios may be obtained by 

specifying metapopulation expansion into landscapes with different characteristics 

(“manage_expansion_sim”), thereby estimating how the speed and spatial pattern of 

expansion may be affected, for instance, by habitat fragmentation and dynamism. 

Dispersal models may also be combined with maps of current species distributions 

(“range_raster”), generating maps of occupancy probabilities resulting exclusively from 

metapopulation expansion into empty landscapes during a given time frame. 

Externally to MetaLandSim, these maps can be combined with projections from 

Ecological Niche Models to estimate species distributions accounting for both future 

environmental conditions, and species and landscape-specific dispersal limitations. See 

Supplementary Material #2 for a worked example. 
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Figure 3 - Simplified scheme of MetaLandSim simulation of metapopulation range 

expansion and the estimation of a dispersal model. (A) Sequential colonization of 

empty landscapes, based on simulations of metapopulation dynamics (SPOM) during 

“j” time steps, and with “i” repetitions. (B) Number of occupied landscapes in all 

positions during the simulations. (C) Sigmoid curve (dispersal model) specifying the 

probability of patch occupancy in relation to the nearest distance to occupied 

landscapes at time step j = 0. 
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d
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sa
l k

er
n
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 b
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b
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d
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e 
lo

n
g 
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n

ce
 d

is
p

er
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ar
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e 
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 c
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n
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d
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d
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s 
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t 
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in
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u
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 m
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h
t 

p
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d
u
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ec
t 
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su
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s)
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 
M

IG
C

LI
M
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u
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at
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n
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n
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ro
p
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u
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d

u
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n
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M
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C

LI
M
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h
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n
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f 
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n
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d

er
in

g 
b
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e
r 
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o

w
ev
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r 
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m
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n
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M
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w
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e 
b

u
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g 
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f 
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e 

d
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sa
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d
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u
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n
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h
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u
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p
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 p
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e 
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h
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n
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n
d
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h

e 
ev

al
u

at
io

n
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f 
d
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p
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al
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M

LS
 d

o
es
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o

t 
re

q
u

ir
e 

d
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o
gr

ap
h

ic
 d

at
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En
gl

er
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t 
al
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(2

0
1

2
) 

B
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M
o
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 
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m
i-

q
u

an
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o
m

p
et

it
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e 
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p
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it
y 

at
 d
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fe
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n

t 
lif

e-
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er
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l a

b
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y 
ra

te
 

- 
R

eg
en
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d
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s 
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 m
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y 
- 

A
ge

 a
t 

m
at

u
ri

ty
 

- 
D

is
tu
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 d
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 d
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m
u
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f 

p
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n
t 
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o
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 c
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 d
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u
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 d
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B
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 d
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B
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M
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 c
o
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d
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p
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te
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m

p
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n
d

 

d
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u
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u
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 d
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h
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u
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n
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ap
h
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, d

is
tu

rb
an

ce
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M
id

gl
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 e
t 
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0

1
0
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 d
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p
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n
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n
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n
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d
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p

ac
ka
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d
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 m
o
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c 
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 b
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b
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 b
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 c
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th

e 
d
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M

LS
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u
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u

m
p
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o

n
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s 
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p

lic
at
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n
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u
n

d
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st
an

d
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n
d

 t
h
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 p
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o
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B
o
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4
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ra
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n
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 b
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 d
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n
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X
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SI
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A

P
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o
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at
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X
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n
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d
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o
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d
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n
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h
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M

o
d
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R
A

M
A
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La

n
d
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e
 

H
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M
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C
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M
 

M
o

d
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at
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X

 
 

B
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M
o

ve
 

H
ig
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X
 

 

R
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r 
H
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X
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X

 
 

(a
) 

Si
m

u
la

te
s 

sp
ec

ie
s 

sp
at
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l d
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ic
s 

an
d

 la
n

d
sc

ap
e 

o
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u
p
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n
 (

n
o

t 
m

et
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o
p

u
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o

n
 d
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n

d
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, p
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d

in
g 
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e 
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o
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n
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n
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ra
d
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n
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n
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o

u
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 d
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o
n
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h
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u
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h
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p
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n
d
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 d
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n
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n
m
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n
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 d

o
e
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n

o
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d
u
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p
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 d
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o
d
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t 
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b
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h
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p
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ta
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 b
e 

fu
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h
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 d
ev
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o

p
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1. Metapopulation simulations in dynamic landscapes 

1.1. Simulation conditions 

The commented examples presented here were run using the traditional command 

line of R, though MetaLandSim may also be used with a graphical user interface 

(function “MetaLandSim.GUI”). The simulation process started by specifying a virtual 

landscape of 100-hectares (1000 m x 1000 m; mapsize), comprising 200 patches 

(Npatch) with a mean size of 0.1 ha (areaM) and a standard deviation of 0.057 

(areaSD). The size of patches was randomly selected considering the mean and 

standard deviation of patches, and they were located randomly in the virtual 

landscape subject to the constraint of maintaining a mean nearest distance of 30m 

between patch centroids (dist_m). To exemplify landscape dynamism, we specified an 

external disturbance (par1) producing a loss of 4% (par2) of the patches at each time 

step. However, MetaLandSim allows the specification of a wide range of landscape 

dynamic conditions, including destruction and creation of patches at different rates, 

variations in patch size, and spatial correlation of patch dynamics (see details in the 

user manual). 

As for the initial condition of the metapopulation, we assumed a random occupancy of 

50% (parm) of the patches in the initial landscape. We also assumed a virtual species, 

with parameters given by the data frame in the param_df argument: α = 0.001; x = 0.5; 

y = 2; and e = 0.047. We specified one of the alternative functions available in 

MetaLandSim for the dispersal kernel (kern), connectivity (conn), and extinction (ext) 

and colonization (colnz) rates, selecting in each case the first option (“op1”). The 

simulation period was 100 time steps (span), and the number of iterations was 100 

(iter). Finally, we asked for a graphical output (graph), which returned graphs showing 

the results averaged across iterations. The complete command was thus: 

it1 <- iterate.graph(iter = 100, mapsize = 1000, dist_m = 30, 

areaM = 0.1, areaSD= 0.057, Npatch = 200, disp = 800, span = 

100, par1 = “hab”, par2 = 4, method = “percentage”, parm = 50, 

nsew = “none”, param_df = param1, kern = “op1”, conn = “op1”, 

colnz = “op1”, ext = “op1”, b = 1, graph  = TRUE) 
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The evolution of the simulation was depicted graphically in HTML format, using the 

interface with Google Chart Tools API through googleVis package (Gesmann and 

Castillo 2011). 

 

1.2. Results 

The detailed output of the simulation was a list of data frames with values describing 

landscape structure at each time step. From the graphical output (Fig. S1) it was 

apparent that the number of patches decayed rapidly during the simulation, at the 

same time that there were smaller declines in mean patch size and increases in the 

mean nearest-neighbour distance between patches. The patch occupancy increased 

rapidly from 50% to almost 100% in the first three time steps, but it declined 

thereafter following approximately a sigmoid curve. The occupancy turnover peaked at 

the beginning of the simulation, corresponding to the rapid occupation of all patches. 

There was a second peak in turnover at about 50 times steps, albeit smaller than the 

first, when there was approximately an occupation of 50% of patches. 

 

Figure SM1. Example of a HTML Graphic output produced by iterate.graph, showing mean 

values across iterations of landscape (mean patch area, mean distance to the nearest patch, 
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and number of patches) and metapopulation (patch occupancy and occupancy turnover) 

attributes over time. 

 

2. Simulations of metapopulation range expansion 

2.1. Simulation conditions 

To simulate metapopulation expansion, we used function “rland.graph” to set an initial 

occupied landscape with 10,000 m2 (mapsize), 250 patches (Npatch), mean patch area 

of 0.1 hectares (areaM), and standard deviation of patch area of 0.05 (areaSD). We 

asked for a graphical output of the landscape (plotG), and we set the dispersal 

parameter at 800 (disp) to represent the edges corresponding to interpatch distances 

that are half the dispersal ability of the species modelled. The complete command to 

define the basic landscape topology was: 

rl1 <- rland.graph(mapsize = 10000, dist_m = 10, areaM = 0.1, 

areaSD = 0.05, Npatch = 250, disp = 800, plotG = TRUE) 

To simulate metapopulation expansion into adjacent empty landscape we resorted to 

the function “range_expansion”, using the landscape with rl1 parameters (rl) and 

specifying an initial occupancy of 50% of patches (percl).  The parameters of the 

metapopulation simulated were specified as the data frame “param1” (param), 

corresponding to those used in section 1 of this Supplementary Material. The 

simulation period was 100 time steps (span), and the number of iterations was 100 

(iter). The complete command to compute the expansion simulation was: 

rg_exp1 <- range_expansion(rl = rl1, percI = 50, param = param1, 

b = 1, tsteps = 100, iter = 100) 

This function returns a list, of class “expansion”, of four data frames with the 

proportion of occupations at several distances from the closest occupied landscape 

mosaic (see details in the user manual). These four data frames correspond to the 

proportion of occupation to the north, south, east and west. This computation is time-

intensive, taking from a few hours to several days to run, depending on computer 

power and number of iterations. Therefore, we provide the results of the simulations 
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for users wanting to test subsequent related functions. The command to call the 

existing dataset is:  

data(rg_exp) 

 

2.2. Simulating large scale range expansion 

The output (rg_exp1) of the range_expansion function provided the basis for upscaling 

the metapopulation processes occurring at the landscape scale, to estimate potential 

range expansion dynamics at regional or even biogeographical scales. The use of this 

function required the function “initGRASS” from the package rgrass7 (Bivand 2015) for 

specifying the GRASS folder and the mapset location. The commands required were: 

#Loading rgrass7 – a package which makes the connection between 

R and GRASS 7  

library(rgrass7) 

#Starting GRASS7 from R 

initGRASS(gisBase = “grass folder”, home = tempdir(), gisDbase = 

“mapset”, override = TRUE) 

After this, the procedure involved importing a raster file with the current range of the 

species and a mask defining the area available for expansion (i.e., a map with the focal 

region where potential expansion is evaluated). In this example we used the 

distribution of a virtual species and a mask corresponding roughly to the Iberian 

Peninsula. The commands to load the species occurrences and the mask were:  

presences<-system.file("examples/presences.asc", 

package="MetaLandSim") 

mask<-system.file("examples/landmask.asc", 

package="MetaLandSim") 
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After this step, we called the function “range_raster”, which produces a raster map 

with the probability of landscape occupancy within the entire study area (i.e., the 

mask). This function uses the metapopulation expansion patterns estimated in each 

cardinal direction with the range_expansion function, fitting in each case a sigmoid 

curve describing the probability of landscape occupancy in relation to the distance to 

the nearest landscape occupied at the beginning of the simulation (i.e., the dispersal 

models). These sigmoid curves are then applied to each pixel in the ‘mask’ map, 

estimating its probability of occupancy in relation to the range border of the species 

specified by the ‘presences’ map. In our example, we asked for the production of 

graphics for the expansion model functions and raster maps with expansion 

probabilities in all four cardinal directions (plot.directions). The command used to 

produce the map of probability of occupancy was: 

range.expansion <- range_raster (presences.map=presences, 

re.out=rg_exp1, mask.map=mask, plot.directions =TRUE) 

If using the MetaLandSim sample dataset (“rg_exp”) instead of computing the example 

provided in this supplementary material (“rg_exp1”), users may view the results 

graphically with the command: 

plot(range.expansion) 

A graphical summary of the results of the procedure is presented in Fig. SM2. These 

results suggest that under the conditions simulated, our virtually species expand 

rapidly in the Iberian Peninsula, occupying nearly the entire area available during the 

100 time steps.  However, the probability of occupancy would be lower in the eastern 

side of the Peninsula, where the probability of reaching the Pyrenees would be 

relatively low <50%.  
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Figure SM2. Example of range expansion simulation. a) Graphical output of the dispersal 

model for each cardinal direction estimated using “range_raster”; b) Raster map with current 

range of the virtual species; c) Map of the probabilities of landscape occupancy resulting from 

metapopulation expansion into empty landscapes. 

The raster map of probabilities of landscape occupancy generated by MetaLandSim 

can be used to refine range shift forecasts under future climatic conditions, obtained 

for instance by Ecological Niche Models (Peterson et al. 2011). This can be done by 

exporting the raster map to GIS software, where it can be combined through simple 

operations with maps of future climatic suitability. For instance, a future range may be 

predicted by cutting the areas of high climatic suitability (say, >50% of probability of 

occurrence) with the areas of high probability of range expansion (say, > 50% of 

landscape occupancy), thereby highlighting areas that are both climatically suitable 

and can effectively be reached by the species during a given time frame. Other 

alternative may simply be to multiply the probabilities generated by the MetaLandSim 

dispersal model and the Ecological Niche Model, thereby generating a continuous map 

of probabilities considering both climate and dispersal. A detailed discussion of 

integrating dispersal models with ecological niche models is provided by Bateman et 

al. (2013). 
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2.3. Simulating expansion under different landscape scenarios 

MetaLandSim allows the user to evaluate how the dispersal models are affected by 

variation in landscape characteristics, in terms of the number, sizes, spatial distribution 

and dynamism of patches. In this example we use the function 

“manage_expansion_sim” to evaluate how range expansion is affected by varying 

patch sizes from 0.01 ha (var_min) and 0.6 ha (var_max) by 0.1 ha increments (by), 

using the same metapopulation parameters as in section 2.1 (“param1”). We specified 

an initial landscape unit with 100 hectares (1000x1000 m; mapsize), with 300 habitat 

patches (Npatch), which are distributed randomly with no constraints regarding the 

minimum distance between centroids (dist=0), and with a metapopulation occupancy 

of 50% of patches. The simulation was run for 100 time steps (tsteps) with 100 

repetitions each (iter). The command for running the simulations was: 

sim_range <- manage_expansion_sim(mapsize = 1000, dist_m = 0, 

areaM, areaSD = 0.001, Npatch = 300, percI = 50, param = param1, 

b = 1, tsteps = 100,  iter=100, variable = "area", var_min = 

0.01, var_max = 0.6, by = 0.1) 

As an output of this function, the user obtains a list with eight data frames with the 

following information:  

 NORTH, SOUTH, EAST and WEST - landscape characteristics that were evaluated 

(mean patch area in the preceding example), maximum dispersal distance (km) and 

dispersal speed (km/time step).  

 simN, simS, simE and simW – detailed information on the simulation. Each data 

frame has a column for distance (in km) and one for each simulation with the time 

step at which each distance was colonized. 

Additionally a graphical output is produced depicting the evolution of the simulation in 

HTML format, using the interface with Google Chart Tools API through googleVis 

package (Gesmann and Castillo 2011). 

In this example, we found that the maximum distance of dispersal increases rapidly 

when patch size increase from 0.01ha to 0.1ha, levelling off at 100km. This is the 
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maximum expansion possible in this simulation, because the initial landscape had 

1km2, and simulations were run during 100 time steps. The pattern is equal in all 

cardinal directions, because the random landscapes generated have the same 

characteristics irrespective of geographic direction.  

 

Figure SM3. Graphic output of “manage_expansion_sim”, showing variation in the 

estimated maximum distance (km) reached by an expanding metapopulation (Y axis), 

in relation to the mean patch area of the simulated landscapes (X axis).  

 

2.4. Limitations  

The users should note that the approach provided in MetaLandSim to simulate range 

expansion has some limitations, which will be addressed in future versions of 

MetaLandSim: 

i. Expansion is simulated explicitly only along the four cardinal directions, while 

diagonal dispersal is accounted for indirectly through rook-like movements in a 

chessboard pattern. This implies that dispersal is necessarily slower along the 
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diagonals, though the effect should decline rapidly with increasing number of 

time steps.  

ii. The landscape characteristics simulated are the same along the four cardinal 

directions, and thus the expansion process tends to be homogeneous 

irrespective of direction. This reduces the flexibility of the simulation 

conditions, though this may probably be taken as a reasonable assumption 

when there is no prior information on spatial heterogeneities in landscape 

characteristics.  

iii. The procedure assumes that landscape characteristics throughout the 

dispersion surface remain constant, and similar to those of the initial 

landscape. Although these landscapes are not exactly equal to each other, they 

are always randomly generated using the same parameters, and so the average 

dispersal through space should be constant. This reduces the realism of 

simulations, because it is likely that a metapopulation expanding at the regional 

scale will cross landscapes with different characteristics due for instance to 

variation in land uses and fragmentation patterns. To partly solved this 

problem, we have implemented the function “manage_expansion_sim” (see 

Section 2.3 of this Supplementary Material), which allows the user to explore 

the consequences of changes in landscape parameters to the speed and 

pattern of metapopulation expansion. This tool can be used to evaluate the 

sensitivity of the results to changes in landscape characteristics, providing a 

basis, for instance, to evaluate how large scale range expansion will be affected 

by different levels of landscape fragmentation.  

iv. Related with the previous limitation, we assumed that the key metapopulation 

parameters remain constant throughout the area of expansion, though it is 

conceivable that changes may occur due for instance to variation in 

environmental conditions or even local adaptations. As indicated before, this 

can be partly addressed by assessing the sensitivity of results to changes in 

metapopulation parameters.  
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v. The application of MetaLandSim to model the expansion of real species is 

conditional on the quantity and quality of information available for the species, 

including data on its typical metapopulation parameters and the features of the 

landscape that it inhabits. As these features are likely to vary in time and space, 

users of MetaLandSim should be aware that predictions represent 

approximations of the potential expansion patterns of the species. This 

important limitation is generally applicable to any modelling approach designed 

to forecast future species distributions, irrespective of being based on 

ecological niche models, dispersal models, or both. 

vi. Related to the previous point, the user should be aware that errors and 

uncertainties in SPOM simulations accumulate with increasing number of steps 

(e.g., Moilanen 2002). Therefore, particular care should be taken when carrying 

out and interpreting simulations involving long term projections into the future 

and/or spatial predictions that are far beyond the initial occupied landscape.  

 

3. Computation time 

To evaluate the computation efficiency of MetaLandSim, we provide below the time 

needed to implement the key simulation steps described in sections 1 and 2 of this 

Supplementary Material, using an Intel(R) Core(TM)2 Duo CPU, with 2.53 GHz and 4.00 

GB of RAM, 64 bits laptop (all simulations involve 100 time steps and 100 iterations): 

 Simulation of metapopulation dynamics using iterate.graph:  0.25 hours. 

 Simulation of metapopulation expansion under a single landscape scenario 

using range_expansion:  1.6 hours. 

 Simulations of metapopulation expansion under different landscape scenarios 

using manage_expansion_sim:  11.5 hours. 
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Package ‘MetaLandSim’
October 3, 2016

Type Package

Title Landscape and Range Expansion Simulation

Version 0.5.4

Date 2016-09-29

Depends R (>= 2.10), tcltk

Imports Biobase, e1071, fgui, grDevices, graphics, googleVis,
maptools, rgeos, rgrass7, raster, spatstat, stats, sp,
minpack.lm

Suggests rasterVis

Author Frederico Mestre, Fernando Canovas, Ricardo Pita, Antonio Mira, Pedro
Beja.

Maintainer Frederico Mestre <mestre.frederico@gmail.com>

Description Tools to generate random landscape graphs, evaluate species
occurrence in dynamic landscapes, simulate future landscape occupation and
evaluate range expansion when new empty patches are available (e.g. as a
result of climate change).

License GPL (>= 2)

R topics documented:
MetaLandSim-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
addpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
cabrera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
cluster.graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
cluster.id . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
components.graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
convert.graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
create.parameter.df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
edge.graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
extract.graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
import.shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
iterate.graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
landscape_change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
list.stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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manage_expansion_sim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
manage_landscape_sim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
matrix.graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
mc_df . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
MetaLandSim-internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
MetaLandSim.GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
metapopulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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MetaLandSim-package Landscape And Range Expansion Simulation

Description

The package MetaLandSim is a simulation environment, allowing the generation of random land-
scapes, represented as graphs, the simulation of landscape dynamics, metapopulation dynamics and
range expansion.
The package was developed as part of the Ph.D. thesis of Frederico Mestre (SFRH/BD/73768/2010),
funded by European Social Funds and the Portuguese Foundation for Science and Technology, and
included in the project NETPERSIST (PTDC/AAG-MAA/3227/2012), funded by European Re-
gional Development Fund (ERDF) through COMPETE programme and Portuguese national funds
through the Portuguese Foundation for Science and Technology.
MetaLandSim is intended to provide a virtual environment, enabling the experimentation and sim-
ulation of processes at two scales: landscape and range. The simulation approach, taken by Meta-
LandSim, presents several advantages, like allowing the test of several alternatives and the knowl-
edge of the full system (Peck, 2004; Zurell et al. 2009). The role of simulation in landscape ecology
is fundamental due to the spatial and temporal scale of the studied phenomena, which frequently
hinders experimentation (Ims, 2005).

MetaLandSim-package
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Here, graph and metapopulation theories are combined, which is a broadly accepted strategy to pro-
vide a modelling framework for metapopulation dynamics (Cantwell & Forman, 1993; Bunn et al.
2000; Ricotta et al. 2000; Minor & Urban, 2008; Galpern et al. 2011). Also, several graph-based
connectivity metrics can be computed from the landscape graphs. This set of metrics have been
proven useful elsewhere (Urban & Keitt, 2001; Calabrese & Fagan, 2004). The graph representa-
tion of landscape has one major advantage: it effectively summarizes spatial relationships between
elements and facilitates a multi-scale analysis integrating patch and landscape level analysis (Cal-
abrese & Fagan, 2004).
MLS operates at two scales, providing researchers with the possibility of:

• Landscape scale - Simulation of metapopulation occupation on a dynamic landscape, compu-
tation of connectivity metrics.

• Range scale - Computes dispersal model and range expansion scenario simulation.

The landscape unit, an object of class landscape, is the basic simulation unit at both these scales.
At the landscape scale, the persistence of the metapopulation in a dynamic landscape is evaluated
through the simulation of landscape dynamics using the function iterate.graph or manage_landscape_sim.
At the range scale the metapopulation is allowed to expand to other, empty, landscape units using
range_expansion, producing an object of class expansion. The function range_raster allows
the conversion of the dispersal model obtained with the previous function into a raster. Finally,
also at the range scale, the user can analyse the outcome of several alternative landscapes in range
expansion speed and maximum dispersal distance, using the function manage_expansion_sim.

Reference paper: Mestre, F.; Canovas, F.; Pita, R.; Mira, A.; Beja. P. (2016). An R package
for simulating metapopulation dynamics and range expansion under environmental change. Envi-
ronmental Moldelling and Software, 81: 40-44.

Details

Package: MetaLandSim
Type: Package
Version: 0.5.4
Date: 2016-09-29
License: GPL (>=2)

Author(s)

Frederico Mestre, Fernando Canovas, Ricardo Pita, Antonio Mira and Pedro Beja.

Maintainer: Frederico Mestre <mestre.frederico@gmail.com>

References

Bunn, A. G., Urban, D. L. and Keitt, T. H. (2000). Landscape connectivity: a conservation applica-
tion of graph theory. Journal of Environmental Management, 59(4), 265-278.

Calabrese, J. M. and Fagan, W. F. (2004). A comparison-shopper’s guide to connectivity metrics.
Frontiers in Ecology and the Environment, 2(10), 529-536.

Cantwell, M. D. and Forman, R. T. (1993). Landscape graphs: ecological modelling with graph
theory to detect configurations common to diverse landscapes. Landscape Ecology, 8(4), 239-255.
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Galpern, P., Manseau, M. and Fall, A. (2011). Patch-based graphs of landscape connectivity: a
guide to construction, analysis and application for conservation. Biological Conservation, 144(1),
44-55.

Ims, R.A. (2005). The role of experiments in landscape ecology. In: Wiens, J.A., and Moss, M.R.
(eds.). Issues and Perspectives in Landscape Ecology. Cambridge University Press. pp. 70-78.

Minor, E. S. and Urban, D. L. (2008). A Graph Theory Framework for Evaluating Landscape
Connectivity and Conservation Planning. Conservation Biology, 22(2), 297-307.

Peck, S. L. (2004). Simulation as experiment: a philosophical reassessment for biological mod-
elling. Trends in Ecology & Evolution, 19(10), 530-534.

Ricotta, C., Stanisci, A., Avena, G. C., and Blasi, C. (2000). Quantifying the network connectivity
of landscape mosaics: a graph-theoretical approach. Community Ecology, 1(1), 89-94.

Urban, D. and Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. Ecology,
82(5), 1205-1218.

Zurell, D., Berger, U., Cabral, J.S., Jeltsch, F., Meynard, C.N., Munkemuller, T., Nehrbass, N.,
Pagel, J., Reineking, B., Schroder, B. and Grimm, V. (2009). The virtual ecologist approach: simu-
lating data and observers. Oikos, 119(4), 622-635.

addpoints Add a given number of patches to a landscape

Description

Adds a given number of patches to the landscape.

Usage

addpoints(rl, nr)

Arguments

rl Object of class ’landscape’.

nr Number of patches to be added (see ’note’).

Value

Returns an object of class ’landscape’.

Note

The number of patches to be added might be impaired by the minimum distance between points.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, removepoints

addpoints
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Examples

data(rland)

#Checking the number of patches in the starting landscape:

rland$number.patches

#60

#Adding 10 patches to a landscape:

rl1 <- addpoints(rl=rland, nr=10)

#Checking the number of patches in the output landscape:

rl1$number.patches

#70

cabrera Modified patch occupancy data of Cabrera vole

Description

One season patch occupancy dataset for Microtus cabrerae in SW Portugal. This dataset is in
the format produced by species.graph, convert.graph or import.shape (class ’metapopulation’), and
it was created by converting a data frame using the function convert.graph. The data frame had
the information of one snapshot of patch occupancy data of Cabrera vole (Microtus cabrera) in
southwestern Portugal.

Usage

data(cabrera)

Format

A list with the following elements:

• mapsize - 8200 (landscape mosaic side length, in meters).

• minimum.distance - 10.04 (minimum distance between patches centroids).

• mean.area - 0.46 (mean area, in hectares).

• SD.area - 1.05 (SD of the area).

• number.patches - 793 (number of patches).

• dispersal - 800 (mean dispersal ability of the species).

• distance.to.neighbours - data frame with pairwise distance between patches.

• nodes.characteristics - data frame with the characteristics of each patch.

cabrera
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Details

To create this sample dataset the occupancy status of patches was scrambled, however the proportion
of occupied patches was kept.

Source

Original field data was obtained during project PERSIST (PTDC/BIA-BEC/105110/2008).

Examples

data(cabrera)

cluster.graph Delivers the number of patches per cluster

Description

Returns a data frame with the number of nodes (habitat patches) in each component of the landscape
graph (in this case a component is a group of patches connected by the species dispersal distance).

Usage

cluster.graph(rl)

Arguments

rl Object of class ’landscape’.

Details

The components are defined based on the species mean dispersal ability. This implies that the con-
nectivity model between patches is binary (connected/not connected) as opposed to probabilistic.

Value

This function returns a data frame with the number of patches of each component (group of patches).
The returned data frame has two fields: cluster (Id of the component) and number of nodes (the
number of nodes of the respective component).

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph

cluster.graph
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Examples

data(rland)

cluster.graph(rl=rland)

#Output:

# cluster number of nodes
#1 1 11
#2 2 1
#3 3 13
#4 4 1
#5 5 1
#6 6 15
#7 7 2
#8 8 1
#9 9 3
#10 10 1
#11 11 1
#12 12 2
#13 13 4
#14 14 1
#15 15 1
#16 16 1
#17 17 1

cluster.id Classify patches in clusters

Description

reclassify clusters of a landscape according to a given mean dispersal distance.

Usage

cluster.id(rl)

Arguments

rl Object of class ’landscape’.

Details

After changing the landscape some components (groups of connected patches) might suffer changes
(e.g. the removal of patches might split components). This function re-attributes a code to each
patch, identifying the groups of connected patches (components), after this type of disturbance to
the habitat network.Mainly to be used internally.

Value

Returns the same landscape object, with the clusters reclassified.

cluster.id
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Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph

Examples

data(rland)

#After removing 30 (50%) of the patches of a landscape:

rland2 <- removepoints(rl=rland, nr=35)

#A reclassification might be needed to identify components:

rland2 <- cluster.id(rl=rland2)

#After removing 35 patches, there's a different number of components:

components.graph(rl=rland)

#21

components.graph(rl=rland2)

#16

components.graph Number of components of a landscape

Description

Returns the number of components in the landscape graph (in this case a component is a group of
patches connected by the species dispersal distance).

Usage

components.graph(rl)

Arguments

rl Object of class ’landscape’.

Value

Returns the number of components (groups of connected patches) of a landscape.

Author(s)

Frederico Mestre and Fernando Canovas

components.graph
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See Also

rland.graph

Examples

data(rland)

components.graph(rl=rland)

#21

convert.graph Convert data frame to landscape

Description

Converts a given data frame in a list which can be used in the following functions, an object of class
’metapopulation’.

Usage

convert.graph(dframe, mapsize, dispersal)

Arguments

dframe data frame with the original data and the following columns, in this order:

• ID - patch Id.
• X - Coordinate.
• Y - Coordinate.
• Area - Patch area, in hectares.
• Occupation - Species presence status (0/1).

mapsize Landscape mosaic side length, in meters.

dispersal Species mean dispersal ability, in meters.

Value

Delivers an object of class ’metapopulation’.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

species.graph

convert.graph
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Examples

data(mc_df)

#Checking the columns of the data frame:

head(mc_df)

# ID x y area mc
#1 1 1248.254 0.000 0.079 0
#2 2 1420.857 46.725 0.781 1
#3 3 1278.912 52.629 1.053 1
#4 4 6370.625 62.637 0.788 0
#5 5 1151.337 97.140 0.079 0
#6 6 1295.796 104.839 0.137 1

#In order to import the data frame mc_df:

sp1 <- convert.graph(dframe=mc_df, mapsize=8300, dispersal=800)

#verify class

class(sp1)

# [1] "metapopulation"

create.parameter.df Create parameter data frame

Description

This function creates a parameter data frame, using parameter values computed with the application
available in the papers of Moilanen (1999) and ter Braak and Etienne (2003).

Usage

create.parameter.df(alpha, x, y, e)

Arguments

alpha Alpha parameter

x x parameter

y y parameter

e e parameter

Details

It is highly recommended that the user reads both papers, as well as the help files.

create.parameter.df
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Value

Returns a data frame, with the same format as the one returned by parameter.estimate for the
methods ’Rsnap_1’ and ’Rsnap_x’.

Author(s)

Frederico Mestre and Fernando Canovas

References

Moilanen, A. (1999). Patch occupancy models of metapopulation dynamics: efficient parameter
estimation using implicit statistical inference. Ecology, 80(3): 1031-1043.

ter Braak, C. J., & Etienne, R. S. (2003). Improved Bayesian analysis of metapopulation data with
an application to a tree frog metapopulation. Ecology, 84(1): 231-241.

See Also

parameter.estimate

Examples

param2 <- create.parameter.df(alpha=0.5, x=0.1, y=5, e=0.1)

param2

# par_output
#alpha 0.5
#x 0.1
#y 5.0
#e 0.1

edge.graph Produce an edge (links) data frame

Description

Returns a data frame with the information on the connections between patches (assuming binary
connections).

Usage

edge.graph(rl)

Arguments

rl Object of class ’landscape’.

edge.graph
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Value

Produces a data frame with the information on the edges (links): the IDs of both patches, the area,
the coordinates and the Euclidean distance.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph

Examples

data(rland)

edge_df <- edge.graph(rl=rland)

expansion Class ’expansion’

Description

Class representing an expansion object, as produced by range_expansion.

Slots

A list of four data frames with the proportion of occupation at several distances from the closest
occupied landscape mosaic. These four data frames correspond to the proportion of occupation to
the north, south, east and west. Each data frame has the following columns:

• DISTANCE - Distance (mapsize x number of landscapes).

• OCCUPATION - How many times did the landscape at this distance got occupied by the
species (from a total of ’iter’ repetitions).

• PROPORTION - Proportion of occupation for the landscape at this distance (OCCUPATION/iter).

Author(s)

Frederico Mestre and Fernando Canovas

expansion
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extract.graph Extract landscape from span.graph generated list

Description

Extracts a landscape from an object delivered by span.graph. The output is an object of class
’landscape’.

Usage

extract.graph(rl, rlist, nr)

Arguments

rl Object of class ’landscape’ used to generate the list, with span.graph.

rlist Object delivered by span.graph.

nr Position of the landscape in the list (rlist).

Value

Delivers an object of class ’landscape’.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

span.graph, rland.graph

Examples

data(rland)
data(landscape_change)

#Extracting the landscape of the 50th time step:

rl1 <- extract.graph(rl=rland, rlist=landscape_change, nr=50)

extract.graph
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import.shape Import a shapefile

Description

Imports a shapefile, converting it to an object of class ’metapopulation’.

Usage

import.shape(filename, path, species.col, ID.col, area.col, dispersal)

Arguments

filename Character vector with the shapefile name.

path Character vector with the path to the file.

species.col Character vector with the name of the column (in the shapefile) with the species
occupancy data.

ID.col Character vector with the name of the column (in the shapefile) with the patch
Id.

area.col Character vector with the name of the column (in the shapefile) with the patch
area, in hectares.

dispersal Species mean dispersal ability, in meters.

Value

Delivers an object of class ’metapopulation’.

Note

The shapefile must be in project coordinates (units=meters and hectares).

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, convert.graph

Examples

## Not run:

rl1 <- import.shape(filename = "yourshapefile.shp"
,path = "C:/yourpath..."
,species.col= "column with species"
,ID.col="column with patch Id"
,area.col="Column with area"
,dispersal=800#Mean dispersal ability of the species
#(used to generate patch clusters, or components)

import.shape
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)

## End(Not run)

iterate.graph Simulate landscape series occupation

Description

Repeats the process of simulation by simulate_graph as many times as required (argument ’iter’).

Usage

iterate.graph(iter, mapsize, dist_m, areaM, areaSD, Npatch, disp,
span, par1 = "none", par2 = NULL, par3 = NULL, par4 = NULL,
par5 = NULL, method = "percentage", parm, nsew = "none",
succ="none", param_df, kern, conn, colnz, ext, beta1,
b = 1, c1 = NULL, c2 = NULL, z = NULL, R = NULL, graph)

Arguments

iter Number of repetitions of the simulation.

mapsize Landscape mosaic side length, in meters. To be internally passed to rland.graph.

dist_m Minimum distance between patches (centroid). To be internally passed to rland.graph.

areaM Mean area (in hectares). To be internally passed to rland.graph.

areaSD SD of the area of patches, in order to give variability to the patches area. To be
internally passed to rland.graph.

Npatch Number of patches (might be impaired by the dist_m, see the "Note" section).
To be internally passed to rland.graph.

disp Species mean dispersal ability, in meters. To be internally passed to rland.graph.

span Number of time steps (e.g. years) to simulate. To be internally passed to
span.graph.

par1 One of the following (default ’none’):

• ’hab’ percentage of the number of patches to eliminate.
• ’dincr’ minimal distance (between centroids of patches) increase over the

simulation (in meters).
• ’darea’ percentage of increase/decrease of the mean area of patches, without

changing SD.
• ’stoc’ simultaneous creation and destruction of patches.
• ’ncsd’ simultaneous creation and destruction of patches to the north and

south of the landscape.
• ’aggr’ correlated habitat destruction.
• ’none’ no change.

To be internally passed to span.graph.

iterate.graph
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par2 Parameter specifying details for the options in par1: percentage of patches do
delete (if par1 = ’hab’); distance, in meters (if par1 = ’dincr’); percentage of
increase/decrease of the mean area of patches (if par1 = ’area’); percentage of
new patches (if par1 = ’stoc’); ’northerndness’ of created patches (if par1 =
’ncsd’); percentage of destroyed patches (if par1 = ’aggr’). To be internally
passed to span.graph. Default NULL.

par3 Additional parameter specifying details for the options in par1: percentage of
destroyed patches (if par1 = ’stoc’); ’southerndness’ of destroyed patches (if
par1 = ’ncsd’); aggregation of destruction (if par1 = ’aggr’). Minimum area
for patch deletion, in hectares (if par1=’darea’). To be internally passed to
span.graph. Default NULL.

par4 Percentage of created patches (if par1 = ’ncsd’). To be internally passed to
span.graph. Default NULL.

par5 Percentage of destroyed patches (if par1 = ’ncsd’). To be internally passed to
span.graph. Default NULL.

method One of the following (default ’percentage’): click - individually select the patches
with occurrence of the species by clicking on the map. Use only for individ-
ual landscape simulations. However, this option should not be used with iter-
ate.graph. percentage - percentage of the patches to by occupied by the species.
number - number of patches to be occupied by the species. To be internally
passed to species.graph.

parm parameter to specify the species occurrence - either percentage of occupied
patches or number of occupied patches, depending on the method chosen. To be
internally passed to species.graph.

nsew ’N’, ’S’, ’E’, ’W’ or none - point of entry of the species in the landscape. By
default set to "none". To be internally passed to species.graph.

succ Set the preference of the species for patch successional stage: ’none’, ’early’,
’mid’ and ’late’.

param_df Parameter data frame delivered by parameter.estimate, including:

• alpha - Parameter relating extinction with distance.
• y - Parameter y in the colonization probability.
• e - Parameter defining the extinction probability in a patch of unit area.
• x - Parameter scaling extinction risk with patch area.

To be internally passed to simulate_graph.

kern ’op1’ or ’op2’. Dispersal kernel. See details in the spom function. To be inter-
nally passed to spom.

conn ’op1’ or ’op2’. Connectivity function. See details in the spom function. To be
internally passed to spom.

colnz ’op1’, ’op2’ or ’op3’. Colonization function. See details in the spom function.
To be internally passed to spom.

ext ’op1’, ’op2’ or ’op3’. Extinction function. See details in the spom function. To
be internally passed to spom.

beta1 Parameter affecting long distance dispersal probability (if the Kern=’op2’). To
be internally passed to spom.

b Parameter scaling emigration with patch area (if conn=’op1’ or ’op2’). To be
internally passed to spom. By default set to 1.
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98



c1 Parameter scaling immigration with the focal patch area (if conn=’op2’). To be
internally passed to spom.

c2 Parameter c in the option 3 of the colonization probability (if colnz=’op3’). To
be internally passed to spom.

z Parameter giving the strength of the Allee effect (if colnz=’op3’). To be inter-
nally passed to spom.

R Parameter giving the strength of the Rescue effect (if ext=’op3’). To be inter-
nally passed to spom.

graph TRUE/FALSE, to show graphic output.

Value

Returns a list of five data frames with information regarding the values of mean area, mean inter-
patch distance, number of patches occupancy and patch occupancy turnover in each of the iterations,
as well as the mean values and SD.

Author(s)

Frederico Mestre and Fernando Canovas

References

References in the spom function.

See Also

rland.graph, span.graph, species.graph, simulate_graph, spom

Examples

## Not run:
data(param1)

#Example with 2 iterations (ideally >100):

it1 <- iterate.graph(iter = 2, mapsize =10000, dist_m = 10, areaM = 0.05,
areaSD = 0.02, Npatch = 250, disp = 800, span = 100,
par1 = "hab", par2 = 2, par3 = NULL, par4 = NULL,
par5 = NULL, method = "percentage", parm = 50,
nsew = "none", succ="none", param_df = param1,kern = "op1",
conn = "op1", colnz = "op1", ext = "op1",
beta1 = NULL, b = 1, c1 = NULL, c2 = NULL, z = NULL,
R = NULL, graph =TRUE)

## End(Not run)

iterate.graph
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landscape Class ’landscape’

Description

Class representing a landscape graph, as produced by rland.graph, convert.graph and import.shape.

Slots

• mapsize - Side of the landscape in meters.

• minimum.distance - Minimum distance between patches centroids, in meters.

• mean.area - Mean patch area in hectares.

• SD.area - Standard deviation of patches area.

• number.patches - Total number of patches.

• dispersal - Species mean dispersal ability, in meters.

• nodes.characteristics - Data frame with patch (node) information (coordinates, area, radius,
cluster, distance to nearest neighbor and ID).

Author(s)

Frederico Mestre and Fernando Canovas

landscape_change Landscape loosing 5% of patches per time step

Description

This dataset is a list of 100 landscapes with a loss of 5% of each patch’s area at each time step. The
first landscape is the sample empty landscape.

Format

List of 100 data frames, that represent the evolution of the landscape during 100 time steps.

Examples

data(landscape_change)

landscape_change
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list.stats Returning information on a dynamic landscape list

Description

This function allows the computation of some statistics of the sequence of landscapes obtained from
simulate.graph. Namely: mean area of the patches, standard deviation of the area, mean pairwise
Euclidean distance, total number of patches, species occupation and turnover and mean distance to
nearest habitat patch. It allows the graphical representation of the evolution of these statistics.

Usage

list.stats(sim_list, stat, plotG)

Arguments

sim_list list from function simulate_graph.

stat ’mean_area’, ’sd_area’, ’mean_distance’, ’n_patches’, ’occupation’, ’turnover’
and ’mean_nneigh’.

plotG TRUE/FALSE, plot output.

Value

Returns a vector with the evolution of the specified statistics throughout the list of landscapes repre-
senting the changes in a dynamic landscape and its occupation. A graphical output is also possible.It
is possible to visualize the evolution of mean patch area, standard deviation of the patch area, mean
distance between all pairs of patches, number of patches, species percentage of occupation, patch
turnover (change in occupational state) and mean distance to nearest habitat patch.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

span.graph

Examples

data(rland)
data(landscape_change)
data(param1)

#First, using simulate graph, simulate the occupation on a dynamic landscape
#(output of span.graph):

sim1 <- simulate_graph( rl=rland, rlist=landscape_change, simulate.start=TRUE,
method="percentage", parm=50, nsew="none", succ = "none",
param_df=param1, kern="op1", conn="op1", colnz="op1",
ext="op1", beta1=NULL, b=1, c1=NULL, c2=NULL, z=NULL, R=NULL)

list.stats
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#Then evaluate species occupancy through the changes suffered by the landscape:

occ <- list.stats(sim_list=sim1, stat="occupation", plotG=TRUE)

#Checking the percentage of occupation in the 40 first landscapes:

head(occ,40)

#Output:

#[1] 50.000000 65.000000 90.000000 96.666667 93.333333 91.666667
#[7] 91.666667 90.000000 93.333333 90.000000 85.000000 83.333333
#[13] 85.000000 88.333333 83.333333 86.666667 81.666667 68.333333
#[19] 70.000000 75.000000 80.000000 73.333333 63.333333 56.666667
#[25] 55.000000 51.666667 46.666667 41.666667 38.333333 21.666667
#[31] 13.333333 13.333333 10.000000 6.666667 5.000000 3.389831
#[37] 1.694915 1.694915 0.000000 0.000000

manage_expansion_sim Simulate range expansion simulation

Description

This function produces dispersal scenarios, considering different habitat networks properties, eval-
uating the variation in dispersal speed and dispersal maximum distance (of range expansion).

Usage

manage_expansion_sim(mapsize, dist_m, areaM, areaSD, Npatch,percI,
param, b=1, tsteps, iter, variable,var_min,var_max,by)

Arguments

mapsize Landscape mosaic side length, in meters. To be internally passed to rland.graph

dist_m Minimum distance between patches (centroid).To be internally passed to rland.graph

areaM Mean area (in hectares). To be internally passed to rland.graph

areaSD SD of the area of patches, in order to give variability to the patches area. To be
internally passed to rland.graph

Npatch Number of patches. To be internally passed to rland.graph

percI Percentage of patch occupancy in the starting landscape. To be internally passed
to range_expansion

param Parameter data frame delivered by parameter.estimate. To be internally passed
to range_expansion It includes:

• alpha - Parameter relating extinction with distance.
• y - Parameter y in the colonization probability.
• e - Parameter defining the extinction probability in a patch of unit area.
• x - Parameter scaling extinction risk with patch area.

manage_expansion_sim
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b Parameter scaling emigration with patch area (if conn=’op1’ or ’op2’) in spom.
By default, equal to 1.To be internally passed to range_expansion

tsteps Number of time steps to simulate (e.g. years).

iter Number of iterations of the simulation procedure.

variable Landscape graph characteristic to be varied. One of the following:

• area - Mean patch area (in hectares).
• dist - Minimum distance between patches (centroid).
• npatch - Number of patches.
• sizevar - SD of the area of patches.

var_min Minimum value the changing variable can assume (beware of units used in each
case).

var_max Maximum value the changing variable can assume (beware of units used in each
case).

by Rate of variation of the changing variable.

Details

For details regarding the arguments that are to be internally passed to other functions, see the re-
spective functions. Any of the arguments dist_m, areaM, areaSD, Npatch would be unnecessary if
the respective variable is the one to be evaluated (it depends on the parameter variable).

Value

Returns a list of eight data frames. For the first four data frames (NORTH, SOUTH, EAST and
WEST) each data frame’s first column is the name of the variable to be changed. The other two
columns are:

MEAN EXPANSION SPEED

Expansion speed in each simulated scenario. Speed given in km/time step
MAXIMUM EXPANSION DISTANCE

Maximum distance of the expanded range, from an occupied site. Given in km.

The other four data frames have detailed information on the simulations for each of the values of
parameter "variable". The first column has the distance (in km), and each of the following columns
has the time step at which each distance was colonized for each of the simulations.

Warning

This function might be time consuming, and the code is experimental and should be improved in
future versions of MetaLandSim.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, range_expansion, expansion

manage_expansion_sim
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Examples

## Not run:

data(param1)

sim_range <- manage_expansion_sim(mapsize=1000, dist_m=0, areaM, areaSD=0.001,
patch=300,percI=50, param=param1, b=1,
tsteps=100, iter=100,variable="area",var_min=0.01,
var_max=0.6,by=0.1)

## End(Not run)

manage_landscape_sim Batch landscape simulation

Description

Runs a series of simulations, using iterate.graph, allows changing the simulations parameters in
several sequential simulations.

Usage

manage_landscape_sim(par_df, parameters_spom)

Arguments

par_df Arguments data frame to be used by iterate.graph (each row of this data frame
is a set of Arguments). The data frame has to have the following columns in this
order (the name of the column is not relevant):

• MDST - Minimum inter-patch distance (in meters).
• NPATCH - Number of patches in the landscape.
• AREA_M - Mean area of the patches (in hectares).
• AREA_SD - SD of the patches’ area.
• MAPSIZE - Landscape mosaic side length (in meters).
• SPAN - Number of time steps in the simulation.
• ITER - Number of iterations of the simulation.
• PAR1_SPAN - parm1 for the span.graph function.
• PAR2_SPAN - parm2 for the span.graph function.
• PAR3_SPAN - parm3 for the span.graph function.
• PAR4_SPAN - parm4 for the span.graph function.
• PAR5_SPAN - parm5 for the span.graph function.
• NSEW_SPECIES - Argument nsew for the species.graph function.
• PARM_SPECIES - Argument parm for the species.graph function.
• METHOD_SPECIES - Argument method for the species.graph function.
• KERN - Argument kern for the spom function.
• CONN - Argument conn for the spom function.
• COLNZ - Argument colnz for the spom function.
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• EXT - Argument ext for the spom function.
• BETA1 - Argument beta1 for the spom function.
• B - Argument b for the spom function.
• C1 - Argument c1 for the spom function.
• C2 - Argument c2 for the spom function.
• Z - Argument z for the spom function.
• R2 - Argument R for the spom function.
• DISPERSAL - Species mean dispersal ability (in meters).

parameters_spom

Parameters data frame, as given by parameter.estimate.

Details

For details regarding the arguments see the respective functions.

Value

Returns a data frame with the parameters used for the simulations and the results (mean occupation,
mean number of patches, mean turnover, mean distance and mean area).

Note

Depending on computing capacity, this function can take from several hours to several days to run.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, span.graph, species.graph, spom

Examples

#Setup the parameters for each simulation:
PAR1_SPAN2 <- rep("ncsd",820)#parameter 1 for the span function
PAR2_SPAN2 <- rep(seq(from=0,to=80,by=2), each=20)#parameter 2 for the span function
PAR3_SPAN2 <- rep(seq(from=0,to=80,by=2),20)#parameter 3 for the span function
PAR4_SPAN2 <- rep(2,820)#parameter 4 for the span function
PAR5_SPAN2 <- rep(2,820)#parameter 5 for the span function
NSEW_SPECIES2 <- rep("none",820)#where to start populating the landscape
PARM_SPECIES2 <- rep(5,820)#parameter for the species function
METHOD_SPECIES2 <- rep("percentage",820)#method for populating the landscape
MAPSIZE2 <- rep(10000,820)#dimension of the landscape
SPAN2 <- rep(100,820)#number of time steps of each simulation
ITER2 <- rep(5,820)#number of iterations of each simulation
NPATCH2 <- rep(800,820)#number of patches
AREA_M2 <- rep(0.45,820)#mean area
AREA_SD2 <- rep(0.2,820)#area sd
MDST2 <- rep(0,820)#minimum distance between
KERN <- rep("op1",820)#kernel
CONN <- rep("op1",820)#connectivity function
COLNZ <- rep("op1",820)#colonization function
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EXT <- rep("op1",820)#extinction function
BETA1 <- rep("NULL",820)
B <- rep(1,820)
C1 <- rep("NULL",820)
C2 <- rep("NULL",820)
Z <- rep("NULL",820)
R2 <- rep("NULL",820)
DISPERSAL2 <- rep(800,820)#mean dispersal ability of the species

#Build parameter data frame (keep the order of the parameters):
simulation <- data.frame(MDST2,NPATCH2,AREA_M2,AREA_SD2,
MAPSIZE2,SPAN2,ITER2,PAR1_SPAN2,PAR2_SPAN2,PAR3_SPAN2,PAR4_SPAN2,PAR5_SPAN2,
NSEW_SPECIES2,PARM_SPECIES2,METHOD_SPECIES2,KERN,CONN,COLNZ,EXT,BETA1,B,C1,C2,Z,R2,
DISPERSAL2)

#Delete vectors used for data frame creation:
rm('PAR1_SPAN2','PAR2_SPAN2','PAR3_SPAN2','PAR4_SPAN2','PAR5_SPAN2',
'NSEW_SPECIES2','PARM_SPECIES2','METHOD_SPECIES2','MAPSIZE2','SPAN2','ITER2',
'NPATCH2','AREA_M2','AREA_SD2','MDST2','KERN','CONN','COLNZ','EXT',
'BETA1','B','C1','C2','Z','R2','DISPERSAL2')

## Not run:
data(param1)

ms2 <- manage_landscape_sim(par_df=simulation,parameters_spom=param1)

## End(Not run)

matrix.graph Returning a matrix with information on connections between patches

Description

Based on a landscape graph, this function allows the creation of a matrix of Euclidean distances
(straight-line pairwise distance between the margins of all the patches), matrix of topological dis-
tances (minimum number of connections between any two patches) and adjacency matrix (this a
matrix of 0 and 1, showing the adjacency between any two patches, where 0 means that the patches
are not connected and 1 means that the patches are connected).

Usage

matrix.graph(rl, mat)

Arguments

rl Object of class ’landscape’.

mat mat - one of the following:

• ’euc_distance’ - euclidian distance between patches (edge-to-edge).
• ’centr_distance’ - euclidian distance between patches (centroid-to-centroid).
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• ’adjacency’ - adjacency matrix, with values d_ij, taking value 0 if patches i
and j are not connected and value 1 if those patches are connected.

• ’top_matrix’ - topological distance, with values d_ij, where the value d is
the minimum number of connections between the patches i and j. Topolog-
ical distance is defined as the minimum number of links between patches i
and j.

Value

This function returns a matrix (each one of the specified matrices: Euclidean distance, topological
distance and adjacency matrix).

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph

Examples

data(rland)

#Computing matrix of topological distances:

matrix.graph(rl=rland, mat="top_matrix")

mc_df Modified patch occupancy data of Cabrera vole as a data frame

Description

One season patch occupancy dataset for Microtus cabrerae in SW Portugal (modified). This dataset
is in a format directly used by convert.graph and converted to an object class ’metapopulation’.

Usage

data(mc_df)

Format

A data frame with 685 observations on the following 5 variables.

ID Patch Id.

x X coordinate.

y Y coordinate.

area Patch area, in hectares.

mc Occupancy state (0/1).
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Details

To create this sample dataset the occupancy status of patches was scrambled, however the proportion
of occupied patches was kept.

Source

Original field data was obtained during project PERSIST (PTDC/BIA-BEC/105110/2008).

Examples

##To be converted in a object of class "metapopulation":
#mc1 <- convert.graph(dframe=mc_df,mapsize=8200,dispersal=800)

data(mc_df)

#Check the columns:

head(mc_df)

# ID x y area mc
#1 1 1248.254 0.000 0.079 0
#2 2 1420.857 46.725 0.781 1
#3 3 1278.912 52.629 1.053 1
#4 4 6370.625 62.637 0.788 0
#5 5 1151.337 97.140 0.079 0
#6 6 1295.796 104.839 0.137 1

MetaLandSim-internal Internal functions for the MetaLandSim package.

Description

Internal functions for the MetaLandSim package

Details

These are not to be called by the user.

Source

Coded by Tal Galili. URL: http://www.r-statistics.com/2012/01/merging-two-data-frame-objects-
while-preserving-the-rows-order/
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MetaLandSim.GUI Graphic User Interface

Description

User-friendly graphic user interface that allows running the main functions of the package.

Usage

MetaLandSim.GUI()

Value

Displays the graphic user interface.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, species.graph, simulate_graph, iterate.graph, range_expansion,
range_raster

Examples

## Not run:
#In order to display the GUI:

MetaLandSim.GUI()

## End(Not run)

metapopulation Class ’metapopulation’

Description

Class representing a landscape graph with species’ patch occupancy data, as produced by species.graph,
convert.graph and import.shape.

Slots

• mapsize - Landscape mosaic side length, in meters.

• minimum.distance - Minimum distance between patches centroids, in meters.

• mean.area - Mean patch area in hectares.

• SD.area - Standard deviation of patches area.

• number.patches - Total number of patches.
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• dispersal - Species mean dispersal ability, in meters.

• distance.to.neighbours - Data frame with pairwise distance between patches, in meters.

• nodes.characteristics - Data frame with patch (node) information (coordinates, area, radius,
cluster, distance to nearest neighbor, ID and species).

Author(s)

Frederico Mestre and Fernando Canovas

metrics.graph Computes landscape connectivity metrics

Description

Computes several landscape metrics, mostly derived from graph theory or assuming a graph repre-
sentation of the landscape.

Usage

metrics.graph(rl, metric)

Arguments

rl Object of class ’landscape’.

metric one of the following connectivity metrics:

• ’NC’ - Number of components.
• ’LNK’ - Number of links connecting the patches.
• ’SLC’ - Area (in hectares) of the largest group of patches.
• ’MSC’- Mean area (in hectares) of a group of patches.
• ’HI’ - Harary Index.
• ’NH’ - Normalization of the Harary Index.
• ’ORD’ - Landscape (graph) order.
• ’GD’ - Landscape (graph) diameter.
• ’CCP’ - Class coincidence probability.
• ’LCP’ - Landscape coincidence probability.
• ’ECS’ - Expected cluster size.
• ’AWF’ - Area-weighted Flux.
• ’PC’ - Probability of connectivity.

Details

These metrics assume different types of links between nodes (patches). Some assume probabilistic
connections between nodes (e.g. PC) while others assume binary connections (e.g. NC, SLC,
LNK, IIC). Also, these metrics have several degrees of complexity, from the simpler ones (such as
NC and LNK) to the more complex (such as IIC and PC). Some are purely structural; the same
landscape has the same index whatever the species, while others are measures of functional, where
the connectivity of a given landscape is dependent on the species (dispersal ability). Precaution
must be taken when looking at the outputs produced by some of these metrics (particularly the
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simpler, structural ones). Regardless of being simpler to compute, the outputs might be misleading.
This metrics can however be used as exploratory tools.

Detail about each of the metrics:

• ’NC’ - Number of components,groups of connected patches, in the landscape graph (Urban
and Keitt, 2001). Patches in the same component are accessible, while patches in different
components are not connected. More connected landscapes have less components. Threshold
dependent (dispersal distance).

• ’LNK’ - Number of links connecting the patches (considering that the maximum distance is
the species dispersal distance and that these graphs are are binary, which means that nodes
are either connected or unconnected) (Pascual-Hortal and Saura, 2006). Higher LNK implies
higher connectivity. Threshold dependent (dispersal distance).

• ’SLC’ - Area (in hectares) of the largest group of patches, or component (Pascual-Hortal and
Saura, 2006). Threshold dependent (dispersal distance).

• ’MSC’- Mean area (in hectares) of a group of patches, or component (Pascual-Hortal and
Saura, 2006). Threshold dependent (dispersal distance).

• ’HI’ - Harary Index. Originally developed to characterize molecular graphs by Plavsic et al.
(1993) it was later transposed to the landscape context by Ricotta et al. (2000). This index
was considered by Ricotta et al. (2000) to be more effective from a statistical and ecological
perspective. Higher HI implies higher connectivity. Threshold dependent (dispersal distance).

• ’NH’ - Normalization of the Harary Index, facilitates analysis because this normalization
will set the values between 0 and 1 and allow direct comparison of different habitat net-
works(Ricotta et al. 2000). Threshold dependent (dispersal distance).

• ’ORD’ - Order. Index originated in the graph theory and later translated into the landscape
context by Urban and Keitt (2001) provides a simple structural evaluation of the graph: it is
the number of patches of the component (group of patches) with more patches. Threshold
dependent (dispersal distance).

• ’GD’ - Graph diameter. Another index directly derived from graph theory, providing a simple
quantification of the graph structure. The graph diameter is the maximum of all the shortest
paths between the patches of an habitat network. It is computed in meters (euclidean distance),
instead of number of links (such as HI, NH and IIC)(Bunn et al. 2000, Urban and Keith,
2001). Shorter diameter implies faster movement in the habitat network (Minor and Urban,
2008). Threshold dependent (dispersal distance).

• ’CCP’ - Class coincidence probability. It is defined as the probability that two randomly
chosen points within the habitat belong to the same component. Ranges between 0 and 1
(Pascual-Hortal and Saura 2006). Higher CCP implies higher connectivity. Threshold depen-
dent (dispersal distance).

• ’LCP’ - Landscape coincidence probability. It is defined as the probability that two randomly
chosen points in the landscape (whether in an habitat patch or not) belong to the same habitat
component. Ranges between 0 and 1 (Pascual-Hortal and Saura 2006). Threshold dependent
(dispersal distance).

• ’CPL’ - Characteristic path length. Mean of all the shortest paths between the network nodes
(patches) (Minor and Urban, 2008). The shorter the CPL value the more connected the patches
are. Threshold dependent (dispersal distance).

• ’ECS’ - Expected cluster size. Mean cluster size of the clusters weighed by area. (O’ Brien et
al.,2006 and Fall et al, 2007). This represents the size of the component in which a randomly
located point in an habitat patch would reside. Although it is informative regarding the area
of the component, it does not provide any ecologically meaningful information regarding the
total area of habitat, as an example: ECS increases with less isolated small components or
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patches, although the total habitat decreases(Laita et al. 2011). Threshold dependent (dispersal
distance).

• ’AWF’ - Area-weighted Flux. Evaluates the flow, weighted by area, between all pairs of
patches (Bunn et al. 2000 and Urban and Keitt 2001). The probability of dispersal between
two patches (pij), required by the AWF formula, was computed using pij=exp(-1/dispersal*dij),
where dispersal value is given by the ’dispersal’ field in the ’landscape’ object. The user might
change the code in order to set up different ways of deriving pij (as the one suggested by Minor
and Urban, 2007). Does not depend on any distance threshold (probabilistic).

• ’IIC’ - Integral index of connectivity. Index developed specifically for landscapes by Pascual-
Hortal and Saura (2006). It is based on habitat availability and on a binary connection model
(as opposed to a probabilistic). It ranges from 0 to 1 (higher values indicating more connec-
tivity). Threshold dependent (dispersal distance).

• ’PC’ - Probability of connectivity. Probability that two points randomly placed in the land-
scape are in habitat patches that are connected, given the number of habitat patches and the
connection probabilities (pij). Similar to IIC, although assuming probabilistic connections
between patches (Saura and Pascual-Hortal 2007). Probability of inter-patch dispersal is com-
puted in the same way as for AWF. Does not depend on any distance threshold (probabilistic).

Value

Returns the numeric value(s), corresponding to the chosen connectivity metric(s) for a given land-
scape.

Author(s)

Frederico Mestre and Fernando Canovas

References

Bunn, A. G., Urban, D. L., and Keitt, T. H. (2000). Landscape connectivity: a conservation appli-
cation of graph theory. Journal of Environmental Management, 59(4): 265-278.

Fall, A., Fortin, M. J., Manseau, M., and O’ Brien, D. (2007). Spatial graphs: principles and
applications for habitat connectivity. Ecosystems, 10(3): 448-461.

Ivanciuc, O., Balaban, T. S., and Balaban, A. T. (1993). Design of topological indices. Part 4.
Reciprocal distance matrix, related local vertex invariants and topological indices. Journal of Math-
ematical Chemistry, 12(1): 309-318.

Laita, A., Kotiaho, J.S., Monkkonen, M. (2011). Graph-theoretic connectivity measures: what do
they tell us about connectivity? Landscape Ecology, 26: 951-967.

Minor, E. S., and Urban, D. L. (2007). Graph theory as a proxy for spatially explicit population
models in conservation planning. Ecological Applications, 17(6): 1771-1782.

Minor, E. S., and Urban, D. L. (2008). A Graph-Theory Framework for Evaluating Landscape
Connectivity and Conservation Planning. Conservation Biology, 22(2): 297-307.
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configuration of winter habitat for woodland caribou: an application of graph theory. Biological
Conservation, 130(1): 70-83.
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tion. Landscape Ecology, 21(7): 959-967.
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Ricotta, C., Stanisci, A., Avena, G. C., and Blasi, C. (2000). Quantifying the network connectivity
of landscape mosaics: a graph-theoretical approach. Community Ecology, 1(1): 89-94.

Saura, S., and Pascual-Hortal, L. (2007). A new habitat availability index to integrate connectivity
in landscape conservation planning: comparison with existing indices and application to a case
study. Landscape and Urban Planning, 83(2): 91-103.

Urban, D., and Keitt, T. (2001). Landscape connectivity: a graph-theoretic perspective. Ecology,
82(5): 1205-1218.

See Also

rland.graph

Examples

data(rland)

#Compute the Integral index of connectivity of a landscape:

metrics.graph (rl=rland, metric="AWF")

min_distance Computes topological distance

Description

Function to compute topological distance between patches. Topological distance is defined as the
minimum number of links between any two patches.

Usage

min_distance(rl)

Arguments

rl Object of class ’landscape’.

Value

Returns a matrix with the topological distance between the nodes.

Author(s)

Frederico Mestre and Fernando Canovas.

See Also

rland.graph
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Examples

data(rland)

min_distance(rl=rland)

occ.landscape Sample landscape with one simulated occupancy snapshot

Description

Sample random landscape graph, with species occupancy data (occupancy rate - 50%). Simulated
data.

Usage

data(occ.landscape)

Format

A list with the following elements:

• mapsize - landscape mosaic side length, in meters.

• minimum.distance - minimum distance between patches centroids.

• mean.area - mean area, in hectares.

• SD.area - standard deviation of the area.

• number.patches - number of patches.

• dispersal - mean dispersal ability of the species.

• distance.to.neighbours - data frame with pairwise distance between patches.

• nodes.characteristics - data frame with the characteristics of each patch.

Examples

data(occ.landscape)
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occ.landscape2 Sample landscape with 10 simulated occupancy snapshots

Description

Sample species occupancy in a network during 10 time steps. Simulated data.

Usage

data(occ.landscape2)

Format

A list with the following elements:

• mapsize - landscape mosaic side length, in meters.

• minimum.distance - minimum distance between patches centroids.

• mean.area - mean area, in hectares.

• SD.area - standard deviation of the area.

• number.patches - number of patches.

• dispersal - mean dispersal ability of the species.

• distance.to.neighbours - data frame with pairwise distance between patches.

• nodes.characteristics - data frame with the characteristics of each patch, (species 1 to 10 -
occupancy snapshots).

Examples

data(occ.landscape2)

param1 Sample parameter data frame number 1

Description

Sample data frame, as produced by parameter.estimate. These parameters are to be passed to
spom. These are made up parameters, not related to any species.

Usage

data(param1)

Format

A data frame with 4 rows displaying the four parameters (alpha, x, y, e) to be passed to spom:

• alpha - Parameter relating extinction with distance.

• y - Parameter y in the colonization probability.

• e - Parameter defining the extinction probability in a patch of unit area.

• x - Parameter scaling extinction risk with patch area.
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Details

The four parameters are to be passed to spom.

Examples

data(param1)

param1

# par_output
#alpha 0.00100000
#x 0.50000000
#y 2.00000000
#e 0.04662827

param2 Sample parameter data frame number 2

Description

Sample data frame, as produced by parameter.estimate. These parameters are to be passed to
spom. These are made up parameters, not related to any species.

Usage

data(param1)

Format

A data frame with 4 rows displaying the four parameters (alpha, x, y, e) to be passed to spom:

• alpha - Parameter relating extinction with distance.

• y - Parameter y in the colonization probability.

• e - Parameter defining the extinction probability in a patch of unit area.

• x - Parameter scaling extinction risk with patch area.

Details

The four parameters are to be passed to spom.

Examples

data(param1)

param1

# par_output
#alpha 0.00250000
#x 0.50000000
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#y 2.00000000
#e 0.04662827

parameter.estimate Estimate parameters

Description

Estimates the parameters of the Stochastic Patch Occupancy Model with the following approaches:
regression of snapshot data (Hanski, 1994); Monte Carlo simulation (Moilanen, 1999) and Bayesian
MCMC on the full dataset (ter Braak and Etienne, 2003).

Usage

parameter.estimate(sp, method, alpha = NULL, nsnap)

Arguments

sp Object of class ’metapopulation’ with real patch occupancy data of the focal
species.

method Method to be used in parameter estimation. Available methods:

• Rsnap_1 - Regression of snapshot data, using one snapshot (code based on
Oksanen, 2004).

• Rsnap_x - Regression of snapshot data, using more than one snapshot (code
based on Oksanen, 2004).

• MCsim - Monte Carlo simulation.
• norescue - Bayesian MCMC, not considering Rescue effect.
• rescue - Bayesian MCMC, considering Rescue effect.

alpha Bolean (TRUE/FALSE). Estimate the alpha parameter.

nsnap Number of snapshots considered.

Details

Parameter alpha describes the effect of distance to dispersal (inverse of the average dispersal dis-
tance). Parameter x describes de dependence of the extinction risk on patch size, and consequently
on population dimension. Parameter y scales colonization with connectivity. Parameter e is the
intrinsic extinction rate of local populations, which is the extinction rate not considering immigra-
tion. In the current version the methods ’MCsim’, ’rescue’ and ’norescue’ only create the files to
be used in the applications already available. Future versions should allow the direct estimation of
parameters without the need for the applications of Moilanen (1999) and Ter Braak and Etienne
(2003).
Future versions should include the estimation of other parameters, using the virtual migration model
(Hanski et al. 2000).
Regarding the method ’MCsim’ the settings file produced (.set) by default has the method Nlr (non-
linear regression) chosen. The user should read the file readme.txt, available with the application,
where a three step estimation process is described. The objective is to produce the priors for the
Monte Carlo simulation to run.
It is highly recommended that the user reads both papers that provide the applications to compute
the methods ’MCsim’, ’rescue’ and ’norescue’. Several editions to the settings and parameters files
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of both applications might be needed in order to customize the estimation process. This function
only generates the input files with the basic needed structure.
Parameter estimation is not the main purpose of this package. As such, the user can estimate the
parameters using other available software tools and then apply the estimated parameters in the simu-
lations. The function create.parameter.df can be used to create the data frame of the basic spom
parameters. Other required parameters can be directly given as arguments to the iterate.graph,
spom or range_expansion functions.
The application of the Moilanen paper considers the kernel ’op1’, connectivity ’op1’, colonization
’op1’ and extinction ’op1’. This SPOM (Stochastic Patch Occupancy Model) is known as Inci-
dence Function Model (Hanski,1994 and 1999). In the original version of the mode b=1.However
this might be an useful parameter as it scales emigration with patch area. This parameter can be
estimated with field data. Moilanen (1998) obtained the value for this parameter by regressing the
patch area with known population size.

Value

With the methods ’Rsnap_1’ and ’Rsnap_x’ eturns a data frame with 4 rows displaying the four
parameters (alpha, x, y, e) to be passed to spom:

• alpha - Parameter relating extinction with distance.

• y - Parameter y in the colonization probability.

• e - Parameter defining the extinction probability in a patch of unit area.

• x - Parameter scaling extinction risk with patch area.

Regarding the methods ’MCsim’, ’rescue’ and ’norescue’ it returns the files to be used as input in
the applications. The files will be saved in the working directory. After running the applications, a
data frame can be created in R using the function create.parameter.df. This will return a data
frame with the same structure as the first two methods.

Note

A vignette is available with detailed information about the computation of the parameters using
each method. The method ’MCsim’ creates the files (data and settings files) to be used with the ap-
plication available with the paper by Moilanen (1999). The methods ’rescue’ and ’norescue’ create
the files (data, parameters and distance files)to be used with the application available with the paper
by ter Braak and Etienne (2003).
The application by Moilanen is available in http://www.esapubs.org/archive/ecol/E080/003/.
The application by ter Braak and Etienne is available in http://www.esapubs.org/archive/
ecol/E084/005/suppl-1.htm.

Author(s)

Frederico Mestre and Fernando Canovas

References

Hanski, I. (1994). A practical model of metapopulation dynamics. Journal of Animal Ecology, 63:
151-162.

Hanski, I. (1999). Metapopulation Ecology. Oxford University Press. 313 pp.

Hanski, I., Alho, J. and Moilanen, A. (2000) Estimating the parameters of survival and migration
of individuals in metapopulations. Ecology, 81, 239-251.
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Moilanen, A. (1998). Long-term dynamics in a metapopulation of the American Pika. The Ameri-
can Naturalist, 152(4), 530-542.

Moilanen, A. (1999). Patch occupancy models of metapopulation dynamics: efficient parameter
estimation using implicit statistical inference. Ecology, 80(3): 1031-1043.

Oksanen, J. (2004). Incidence Function Model in R. url.:. http://cc.oulu.fi/~jarioksa/opetus/openmeta/metafit.pdf.

ter Braak, C. J., & Etienne, R. S. (2003). Improved Bayesian analysis of metapopulation data with
an application to a tree frog metapopulation. Ecology, 84(1): 231-241.

See Also

create.parameter.df, iterate.graph, range_expansion and spom

Examples

data(occ.landscape)

#Using the Regression of snapshot data:

param1 <- parameter.estimate (sp=occ.landscape, method="Rsnap_1")

plotL.graph Plot one landscape of the list created by span.graph

Description

Plots a given landscape of a landscape sequence from span.graph.

Usage

plotL.graph(rl, rlist, nr, species, links, ...)

Arguments

rl Object of class ’landscape’.

rlist List returned by span.graph.

nr index of the landscape to display graphically.

species TRUE/FALSE, TRUE if ’rl’ is of class ’metapopulation’ or ’FALSE’ if rl is of
class ’landscape’.

links TRUE/FALSE, show links between connected patches.

... Other arguments.

Value

Graphical display of the landscape.

Author(s)

Frederico Mestre and Fernando Canovas
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See Also

plot_graph, span.graph, rland.graph

Examples

data(rland)
data(landscape_change)

plotL.graph(rl=rland, rlist=landscape_change, nr=50, species=FALSE, links=FALSE)

plot_expansion Graphical display of the expansion

Description

Plots the expansion object.

Usage

plot_expansion(exp)

Arguments

exp Object of class ’expansion’.

Value

Graphical display of the ’expansion’ class.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

expansion

Examples

data(rg_exp)

plot_expansion(exp=rg_exp)

plot_expansion
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plot_graph Graphical display of the landscape

Description

Plots the landscape graph, with or without the species occupation (respectively lists returned by
species.graph or rland.graph) and with or without the links between patches.

Usage

plot_graph(rl, species, links)

Arguments

rl Object of class ’landscape’ (species=FALSE) or ’metapopulation’ (species=TRUE).

species TRUE/FALSE, TRUE if ’x’ is of class ’metapopulation’ or ’FALSE’ if x is of
class ’landscape’.

links TRUE/FALSE, show links between connected patches.

Value

Graphical display of the landscape.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, species.graph

Examples

data(rland)
data(occ.landscape)

#Without the species occupancy:
plot_graph(rl=rland, species=FALSE, links=FALSE)

#With the species occupancy:
plot_graph(rl=occ.landscape, species=TRUE, links=FALSE)
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range_expansion Produce a range expansion model

Description

This function returns the expansion probability, from a landscape with a given set of parameters,
into the four cardinal directions. This can subsequently be converted in a dispersal model by the
function range_raster. The dispersal model can be combined with an ecological niche model.

Usage

range_expansion(rl, percI, param, b, tsteps, iter)

Arguments

rl Object of class ’landscape’. Starting landscape for the expansion procedure.

percI Pecentage of patch occupancy in the starting landscape.

param Parameter data frame delivered by parameter.estimate, including:

• alpha - Parameter relating extinction with distance.
• y - Parameter y in the colonization probability.
• e - Parameter defining the extinction probability in a patch of unit area.
• x - Parameter scaling extinction risk with patch area.

b Parameter scaling emigration with patch area (if conn=’op1’ or ’op2’) in spom.
By default, equal to 1.

tsteps Number of time steps to simulate (e.g. years).

iter Number of iterations of the simulation procedure.

Details

The expansion algorithm has been improved, since the paper Mestre et al. (2016) describing the
package was published. Now, instead of the transition between adjacent landscape units being dic-
tated by the occupation of a spurious node (representing the margin through which the expansion
takes place) a somewhat more realistic approach is followed. If, during the metapopulational dy-
namics simulation, any patch located between the landscape unit (LU) margin and a parallel line
placed at a distance equivalent to half of the mean dispersal ability of the species is occupied, than
the algorithm assumes that the species will have the ability to go across to the next LU. In this new
empty LU initial occupation is defined as follows: a new line is placed, with a spacing equivalent
to half the dispersal ability of the species. In the area defined by the margins of the LU and this line
the species will occupy in the same proportion as in the preceding LU.
An example, with the expansion eastward (the process is repeated 4 times, one in each cardinal
direction): One LU with 200 patches, occupation of 50%, mapsize (length of the LU side) 1000
species mean dispersal ability of 200. Metapopulational dynamics are simulated until one patch is
occupied in a area defined by the north, south, east margins of the LU and a vertical line placed at
x=800 (1000-200). Then, if any of this patches is occupied, a new LU (a random realization of the
same parameter set) is created and initial occupation is defined at an area defined between the west,
north and south margins and a line placed at x=200. This occupation level has the same percentage
as the previous landscape.
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Value

This function returns a list, of class ’expansion’, of four data frames with the proportion of occu-
pations at several distances from the closest occupied landscape mosaic. These four data frames
correspond to the proportion of occupation to the north, south, east and west. Each data frame has
the following columns:

• DISTANCE - Distance (mapsize x number of landscapes).

• OCCUPATION - How many times did the landscape at this distance got occupied by the
species (from a total of ’iter’ repetitions).

• PROPORTION - Proportion of occupation for the landscape at this distance (OCCUPATION/iter).

• TIME STEP - The average time steps at which a given distance is occupied.

Note

Depending on computing power and number of iterations (parameter ’iter’) this function can take
from a few hours to several days to run.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

range_raster

Examples

## Not run:
#Produce a model of range expansion:
#Note: this function should be run with >100 iterations (parameter "iter").

data(rland)
data(param2)

rg_exp1 <- range_expansion(rl=rland, percI=50, param=param2, b=1, tsteps=100, iter=100)

## End(Not run)

range_raster Probability of occupancy, dispersal model

Description

This function intends to create a raster map, estimating probability of occupancy, at a given time
step, based on species dispersal and landscape configuration. range_raster uses the output from
range_expansion and a raster map with the species current occupancy.

Usage

range_raster(presences.map, re.out, mask.map=NULL, plot.directions=TRUE)

range_raster
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Arguments

presences.map string of the raster file name with species occurrence.

re.out object of class list expansion. Output from range_expansion.

mask.map default NULL. String of the raster file name with the mask. Usually, 1 over the
area where the analyses should be done.

plot.directions

default TRUE. Whether It will (TRUE) or will not (FALSE) return a graphics for
the expansion model functions and raster maps with expansion probabilities in
all four cardinal points.

Details

The function automatically reads the raster input files (presences.map and mask.map, if present).
Usually, 0 for absence and 1 for presence in every square cell over a given resolution. Supported
file types are those that can be read via rgdal (see gdal. Note that the projection for the raster layer
should be one of those supporting metric units (i.e., linear scale is equal in all directions around any
point such as Transverse Mercator; see http://spatialreference.org/).

Then, it computes and fits single sigmoidal functions for every direction on the expansion move-
ments (building four sub-models, one to each main cardinal direction), as previously computed
by range_expansion. Four different raster maps are generated (the sub-models), each estimating
the probability of expansion for north, south, east and west directions. The four maps are finally
summarized into a single range expansion map, which is returned to the user as an object of class
RasterLayer and saved in the working directory. These four maps do not directly express the prob-
abilities in the output of range_expansion. Rather, the outputs are weighted by directionality, so
that e.g. the north model favours the dispersal towards the north while penalizing dispersal in every
other direction. As such, the resulting dispersal model is not a direct spatial transcription of the four
data frames provided by range_expansion but an interpretation weighted by the spatial context
given by directionality.

Additionally, a raster file is computed, showing the time steps at which each distance is reached.
This output depicts the adjustment of a linear model to the output of the four sub-models together,
considering the four equally. This output should not be used as guideline to mask the model if
running to several time periods. For example if projections to 2050 and 2080 are to be made than
the dispersal model should be run twice, adjusting the time steps to the desired date.

This function internally uses a connection to GRASS GIS software through the package rgrass7-package,
in order to increase the performance for geographical calculations.

Finally, the user might have to manually adjust the starting values of the function fit.sigmoid,
(defined internally in this function) if it has difficulty adjusting to the output of range_expansion.

Value

Produces the spatial realization of the dispersal model, composed by a stack of two objects of
the class RasterLayer (see Raster-class package for further description), with the probability
of occupancy and the time step a given distance is occupied. This version of MetaLandSim uses
GRASS, version 7 through the package rgrass7. Additionally these rasters are saved in the working
directory (files ’PROB’ and ’TSTEP’) defined by the user and can be directly imported to any GIS
software.

range_raster
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Note

This function depends on rgrass7.

Author(s)

Frederico Mestre and Fernando Canovas

References

The same as range_expansion.

See Also

range_expansion, Raster-class, rgrass7, initGRASS

Examples

## Not run:

data(rg_exp)

presences <- system.file("examples/presences.asc", package="MetaLandSim")
mask <- system.file("examples/landmask.asc", package="MetaLandSim")

require(rgrass7)

#Initializing a GRASS session in a temporal directory:
#### Under Linux systems:
initGRASS("/usr/bin/grass", home=tempdir())
#### Under Windows systems:
initGRASS("C:/GRASS", home=tempdir())

range_raster(presences.map=presences, re.out=rg_exp, mask.map=mask) -> range.map

plot(range.map)

require(rasterVis)

levelplot(range.map, contour=TRUE)

## End(Not run)

remove.species Remove the species occupancy from the landscape

Description

This function converts an object of class ’metapopulation’ (with the species occupancy) in a object
of class ’landscape’ (without the species occupancy).

Usage

remove.species(sp)

remove.species
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Arguments

sp Object of class ’metapopulation’.

Value

Delivers an object of class ’landscape’.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, species.graph

Examples

data(occ.landscape)

rl1 <- remove.species(sp=occ.landscape)

removepoints Remove a given number of patches from the landscape

Description

Randomly removes a given number of patches from the landscape.

Usage

removepoints(rl, nr)

Arguments

rl Object of class ’landscape’.

nr Number of patches to remove.

Value

Returns an object of class ’landscape’.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, addpoints

removepoints

126



Examples

data(rland)

#Checking the number of patches in the starting landscape:

rland$number.patches

#60

#Removing 10 patches from the landscape:

rl1 <- removepoints(rl=rland, nr=10)

#Checking the number of patches in the output landscape:

rl1$number.patches

#50

rg_exp List with range.expansion output

Description

Output of range_expansion. Object of class ’expansion’.

Usage

data(rg_exp)

Format

List of four data frames (’NORTH’, ’SOUTH’, ’EAST’ and ’WEST’) with the probability of oc-
cupations at several distances from the closest occupied landscape mosaic. These four data frames
correspond to the probability of occupation to the north, south, east and west. Each data frame has
the following columns:

• DISTANCE - Distance (mapsize x number of landscapes).

• OCCUPATION - How many times did the landscape at this distance got occupied by the
species (from a total of ’iter’ repetitions).

• PROPORTION - Proportion of occupation for the landscape at this distance (OCCUPATION/iter).

• TIME STEP - The average time step during which a given distance is reached.

Examples

data(rg_exp)

rg_exp
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rland Random landscape

Description

Sample random landscape graph, object of class ’landscape’. It has 60 patches and the landscape
mosaic has 1000 meters of side.

Usage

data(rland)

Format

A list with the following elements:

• mapsize - landscape mosaic side length, in meters.

• minimum.distance - minimum distance between patches centroids).

• mean.area - mean area, in hectares.

• SD.area - standard deviation of the area.

• number.patches - number of patches.

• dispersal - mean dispersal ability of the species.

• nodes.characteristics - data frame with the characteristics of each patch.

Examples

data(rland)

rland.graph Creates random landscape graph

Description

One of the key functions of the package, which allows the creation of random landscapes (repre-
sented as graphs) with two categories: habitat patch and non-habitat matrix. The landscapes can be
different depending on the parameters chosen.

Usage

rland.graph(mapsize, dist_m, areaM, areaSD, Npatch, disp, plotG)

rland.graph
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Arguments

mapsize Landscape mosaic side length, in meters.

dist_m Minimum distance between patches (centroid).

areaM Mean area (in hectares).

areaSD SD of the area of patches, in order to give variability to the patches area.

Npatch Number of patches (might be impaired by the dist_m, see the "Note" section).

disp Species mean dispersal ability, in meters.

plotG TRUE/FALSE, to show graphic output.

Details

The dispersal distance, as given by the parameter ’disp’, is used for the computation of some of the
connectivity metrics (function metrics.graph) and for the graphic representation of the landscapes
(in both cases defining the groups of patches, or components). For the simulation of the metapop-
ulational dynamics, the dispersal distance is given through the ’alpha’ parameter (the inverse of
the mean dispersal ability) in the parameter data frame created by create.parameter.df. This
has an important consequence: no thresholding (considering the dispersal ability) is assumed when
simulating the metapopulational dynamics.

Value

Returns a list, with the following elements:

• mapsizeSide of the landscape in meters.

• minimum.distanceMinimum distance between patches centroids, in meters.

• mean.areaMean patch area in hectares.

• SD.areaStandard deviation of patches area.

• number.patchesTotal number of patches.

• dispersalSpecies mean dispersal ability, in meters.

• nodes.characteristicsData frame with patch (node) information (coordinates, area, radius, clus-
ter, distance to nearest neighbour and ID).
An additional field, colour, has only graphical purposes.

Note

If the mean distance between patches centroid and the number of patches are both too high then the
number of patches is lower than the defined by the user.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

span.graph, species.graph

rland.graph
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Examples

#Example to create a random landscape graph with 60 patches with a mean area
#of 0.05 hectares.
#The landscape mosaic is a square with 1000 meters side.
#The species mean dispersal ability is 120 meters (in order to connect the patches).
#A plot with the landscape graph is displayed graphically.

rl1 <- rland.graph(mapsize=1000, dist_m=80, areaM=0.05, areaSD=0.02, Npatch=60,
disp=120, plotG=TRUE)

simulate_graph Simulate species occupancy in one dynamic landscape

Description

Simulates the species’ occupation on a landscape sequence, resorting to the spom function.

Usage

simulate_graph(rl, rlist, simulate.start, method, parm, nsew="none", succ="none",
param_df, kern, conn, colnz, ext, beta1, b, c1, c2, z, R)

Arguments

rl Object of class ’landscape’ or ’metapopulation’.

rlist List delivered by span.graph.

simulate.start TRUE (rl is of class ’landscape’) or FALSE (rl is of class ’metapopulation’)

method One of the following: click - individually select the patches with occurrence of
the species by clicking on the map. Use only for individual landscape sim-
ulations. However, this option should not be used with iterate.graph. per-
centage - percentage of the patches to by occupied by the species. number
- number of patches to be occupied by the species. To be internally passed to
species.graph.

parm Parameter to specify the species occurrence - either percentage of occupied
patches or number of occupied patches, depending on the method chosen. To be
internally passed to species.graph.

nsew ’N’, ’S’, ’E’, ’W’ or none - point of entry of the species in the landscape. By
default set to "none". To be internally passed to species.graph.

succ Set the preference of the species for patch successional stage: ’none’, ’early’,
’mid’ and ’late’.

param_df Parameter data frame delivered by parameter.estimate, including:

• alpha - Parameter relating extinction with distance.
• y - Parameter y in the colonization probability.
• e - Parameter defining the extinction probability in a patch of unit area.
• x - Parameter scaling extinction risk with patch area.

To be internally passed to simulate_graph.

simulate_graph
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kern ’op1’ or ’op2’. Dispersal kernel. See details in the spom function. To be inter-
nally passed to spom.

conn ’op1’ or ’op2’. Connectivity function. See details in the spom function. To be
internally passed to spom.

colnz ’op1’, ’op2’ or ’op3’. Colonization function. See details in the spom function.
To be internally passed to spom.

ext ’op1’, ’op2’ or ’op3’. Extinction function. See details in the spom function. To
be internally passed to spom.

beta1 Parameter afecting long distance dispersal probability (if the Kern=’op2’). To
be internally passed to spom.

b Parameter scaling emigration with patch area (if conn=’op1’ or ’op2’). To be
internally passed to spom.

c1 Parameter scaling immigration with the focal patch area (if conn=’op2’). To be
internally passed to spom.

c2 Parameter c in the option 3 of the colonization probability (if colnz=’op3’). To
be internally passed to spom.

z Parameter giving the strength of the Allee effect (if colnz=’op3’). To be inter-
nally passed to spom.

R Parameter giving the strength of the Rescue effect (if ext=’op3’). To be inter-
nally passed to spom.

Value

Returns a list of occupied landscapes, representing the same occupied landscape at different time
steps.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

spom, span.graph, rland.graph, iterate.graph

Examples

data(rland)
data(landscape_change)
data(param1)

sim1 <- simulate_graph(rl=rland,
rlist=landscape_change,
simulate.start=TRUE,
method="percentage",
parm=50,
nsew="none",
succ = "none",
param_df=param1,
kern="op1",
conn="op1",
colnz="op1",
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ext="op1",
beta1=NULL,
b=1,
c1=NULL,
c2=NULL,
z=NULL,
R=NULL
)

span.graph Simulate landscape dynamics over a number of time steps

Description

This function gets an initial landscape graph and gradually applies changes. For a good review and
classification of such changes see Bogaert et al. (2004) (not all described changes have been applied
here). Future versions of the package should include other methods to change the landscape.

Usage

span.graph(rl, span = 100, par1 = 'none', par2 = NULL,
par3 = NULL, par4 = NULL, par5 = NULL)

Arguments

rl Object of class ’landscape’.
span Number of time steps (e.g. years) to simulate.
par1 One of the following (default ’none’):

• ’hab’ percentage of the number of patches to eliminate.
• ’dincr’ minimal distance (between centroids of patches) increase over the

simulation (in meters).
• ’darea’ percentage of increase/decrease of the mean area of patches, without

changing SD. Patches with area <1 square meter are deleted.
• ’stoc’ simultaneous creation and destruction of patches (with variation in

the number of created and destroyed patches).
• ’stoc2’ simultaneous creation and destruction of patches (same percentage

of created and destroyed patches derived from the number of patches of the
landscape in the preceeding time step).

• ’ncsd’ simultaneous creation and destruction of patches to the north and
south of the landscape.

• ’aggr’ correlated habitat destruction.
• ’none’ no change. The percentage of patches to be generated or destroyed at

each time step is not fixed (except for ’stoc2’ in which case the percentage
of created and destroyed patches is the same and directly computed from the
number of patches in the preceeding time step, allowing to have landscape
dynamism without change in the number of patches). For example if the
landscape at the time step t-1 has 200 patches and the user wishes to set up
a destruction rate of 5%, than the number of destroyed patches is given by
a random number obtained from a Poisson distribution with mean 10 (5%
of 200).

span.graph
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par2 Parameter specifying details for the options in par1: percentage of patches do
delete (if par1=’hab’); distance, in meters (if par1=’dincr’); percentage of in-
crease/decrease (increase with negative sign) of the mean area of patches (if
par1=’darea’); percentage of created/destroyed patches (if par1=’stoc’); percent-
age of created patches (if par1=’stoc2’); ’northerndness’ of created patches (if
par1=’ncsd’); percentage of destroyed patches (if par1=’aggr’).

par3 Additional parameter specifying details for the options in par1: percentage of
destroyed patches (if par1=’stoc2’); ’southerndness’ of destroyed patches (if
par1=’ncsd’); aggregation of destruction (if par1=’aggr’). Minimum area for
patch deletion, in hectares (if par1=’darea’).

par4 Percentage of created patches (if par1=’ncsd’).

par5 Percentage of destroyed patches (if par1=’ncsd’).

Value

Returns a list of data frames with the nodes characteristics of a given number of landscapes that
suffer a specified change. The fields of these data frames are the same as those from the nodes
characteristics resulting from rland.graph.

Author(s)

Frederico Mestre and Fernando Canovas

References

Bogaert, J., Ceulemans, R., & Salvador-Van Eysenrode, D. (2004). Decision tree algorithm for
detection of spatial processes in landscape transformation. Environmental Management, 33(1): 62-
73.

See Also

rland.graph, simulate_graph, iterate.graph

Examples

data(rland)

#Simulating a decrease of 5% in the number of patches through 100 time steps:

span1 <- span.graph(rl=rland, span=100, par1="hab", par2=5, par3=NULL, par4=NULL, par5=NULL)

species.graph Simulate landscape occupation

Description

Given a set of parameters, this function allows to simulate the occupation of an empty landscape,
class "metapopulation".

species.graph
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Usage

species.graph(rl, method = 'percentage', parm, nsew = 'none', plotG = TRUE)

Arguments

rl Object of class "landscape".

method One of the following (default ’percentage’): click - individually select the patches
with occurrence of the species by clicking on the map. Use only for individual
landscape simulations. percentage - percentage of the patches to be occupied
by the species. number - number of patches to be occupied by the species.

parm Parameter to specify the species occurrence - either percentage of occupied
patches or number of occupied patches, depending on the method chosen.

nsew ’N’, ’S’, ’E’, ’W’ or none - point of entry of the species in the landscape. By
default set to "none".

plotG TRUE/FALSE, to show graphic output.

Value

Returns a list, with the following elements:

• mapsize - Landscape mosaic side length, in meters.

• minimum.distance - Minimum distance between patches centroids, in meters.

• mean.area - Mean patch area in hectares.

• SD.area - Standard deviation of patches area.

• number.patches - Total number of patches.

• dispersal - Species mean dispersal ability, in meters.

• distance.to.neighbours - Data frame with pairwise distance between patches, in meters.

• nodes.characteristics - Data frame with patch (node) information (coordinates, area, radius,
cluster, distance to nearest neighbour, ID and species).

An additional field, colour, has only graphical purposes.

Author(s)

Frederico Mestre and Fernando Canovas

See Also

rland.graph, simulate_graph, remove.species

Examples

data(rland)

##Creating a 50% occupation in an empty landscape (using the "landscape" dataset):

sp1 <- species.graph(rl=rland, method="percentage", parm=50, nsew="none", plotG=TRUE)

species.graph
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spom Stochastic Patch Occupancy Model

Description

This function predicts the occupancy status of each patch in a landscape in the time step t+1, based
on the occupancy information on time step t.

Usage

spom(sp, kern, conn, colnz, ext, param_df,
beta1 = NULL, b = 1, c1 = NULL, c2 = NULL,
z = NULL, R = NULL, succ="none", max_age=1)

Arguments

sp Landscape with species occupancy, object of class ’metapopulation’.

kern ’op1’ or ’op2’. Dispersal kernel. See details.

conn ’op1’ or ’op2’. Connectivity function. See details.

colnz ’op1’, ’op2’ or ’op3’. Colonization function. See details.

ext ’op1’, ’op2’ or ’op3’. Extinction function. See details.

param_df Parameter data frame delivered by parameter.estimate, including:

• alpha - Parameter relating extinction with distance.
• y - Parameter y in the colonization probability.
• e - Parameter defining the extinction probability in a patch of unit area.
• x - Parameter scaling extinction risk with patch area.

beta1 Parameter affecting long distance dispersal probability (if the Kern=’op2’).

b Parameter scaling emigration with patch area (if conn=’op1’ or ’op2’). By de-
fault set to 1.

c1 Parameter scaling immigration with the focal patch area (if conn=’op2’).

c2 Parameter c in the option 3 of the colonization probability (if colnz=’op3’).

z Parameter giving the strength of the Allee effect (if colnz=’op3’).

R Parameter giving the strength of the Rescue effect (if ext=’op3’).

succ Set the preference of the species for patch successional stage: ’none’, ’early’,
’mid’ and ’late’.

max_age Default value set to 1. This argument should not be changed by the user. It is
used only when the function runs inside others.

Details

In order to visualize which parameter combination is valid for each option, please refer to the
following table (alpha, x, y and e are delivered by parameter.estimate, as a data frame):

parameter kern_1 kern_2 conn_1 conn_2 colnz_1 colnz_2 colnz_3 ext_1 ext_2 ext_3
alpha x x

x x x x
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y x x
e x x x

beta1 x
b x x
c1 x
c2 x
z x
R x

A Stochastic Patch Occupancy Model (SPOM) is a type of model which models the occupancy
status of the species on habitat patches as a Markov chain (Moilanen, 2004). These models are a
good compromise between capturing sufficient biological detail and being easy to parametrize with
occupancy data. With SPOMs it is possible to predict the probability of extinction or colonization
of every patch in a landscape, given the current occupancy state of all the patches (Etienne et al.
2004).

Dispersal Kernel

Option 1 (Hanski, 1994 and 1999)

D(Dij , α) = exp(−α.dij)

Option 2 (Shaw, 1995)

D(Dij , α, β) =
1

1 + α.dβij

where dij is the distance between patches i and j.

• Option 1 - Negative exponential. Earlier studies (until the end of the 1990) frequently used
this type of thin-tailed kernels (Nathan et al. 2012).

• Option 2 - Fat-tailed kernel. The shape of the dispersal kernel is highly significant only when
the metapopulation consists of several moderately small patch clusters, which are relatively
far from each other. In this kind of a system, a patch cluster may go extinct, and long-distance
dispersal will be important in determining the recolonization probability of the empty cluster
(Shaw, 1995 and Moilanen, 2004). This type of fat-tailed kernels has become more frequent
in recent works (Nathan et al. 2012). For

β = 2

this is the Cauchy distribution.

Connectivity

Option 1 (Moilanen, 2004)
Si =

∑
pj.D(dij , α).A

b
j

Option 2 (Moilanen and Nieminen, 2002)

Si = Aci
∑

pj .D(dij , α).A
b
j

where Ai and Aj are the areas of patches i(focal patch) and j(other patches), respectively; dij is the
distance between patches i and j and pj is the occupation status (0/1) of patch j
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• Option 1 - In the version of Hanski (1994), de kernel is the negative exponential (option 1)
and b is set to 1. In this more flexible version, the parameter b scales emigration with patch
area (Moilanen, 2004).

• Option 2 - In Moilanen & Nieminen (2002) the kernel is the negative exponential (option 1).
This metric considers the value of the focal patch’s area, which was found to provide better
results by Moilanen & Nieminen (2002), being less sensitive to errors in the estimation of a.
Parameters b and c scale, respectively emigration and immigration, as a function of patch area
(focal patch in the case of c). See ’note’.

Colonization function

Option 1 (Hanski, 1994, 1999)

Ci =
S2
i

S2
i + y2

Option 2 (Moilanen, 2004)
Ci = 1− exp(−y.Si)

Option 3 (Ovaskainen, 2002)

Ci =
Szi

Szi +
1
c

where Si is connectivity.

• Option 1 - It’s the first version of the colonization probability, it includes Allee effect (however
the strength of this effect cannot be modified) Hanski (1994). Colonization probability is
defined as a sigmoid function of the connectivity of patch i.

• Option 2 - This option assumes that immigrating individuals originate colonization events
independently, therefore, with no Allee effect. Adequate for species (plants) with passive
dispersal (Moilanen, 2004).

• Option 3 - Here, as in option 1, the colonization probability is defined as a sigmoid function of
the connectivity of patch i, and the user can change the strength of the Allee effect, by changing
the parameter z, with values >1 reflecting the presence of this effect (Ovaskainen, 2002). In
the original version of the IFM (option 1) Hanski (1994) assumed a relatively strong Allee
effect (z=2). Parameter c describes the species ability to colonize (Ovaskainen & Hanski,
2001 and Ovaskainen ,2002).

Extinction function

Option 1 (Hanski, 1994, 1999)
Ei = min(1,

e

Axi
)

Option 2 (Hanski and Ovaskainen, 2000 and Ovaskainen and Hanski, 2002)

Ei = 1− (
−e
Axi

)

Option 3 (Ovaskainen, 2002)
Ei = min[1,

e

Axi
.(1− Ci)

R]

where Ai is the area of the focal patch and Ci is the colonization probability of the focal patch.

• Option 1 - Original version developed by Hanski (1994).

spom
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• Option 2 - Used e.g. in the spatially realistic Levins model (Hanski & Ovaskainen, 2000 and
Ovaskainen & Hanski, 2002). Parameter x scales extinction probability with patch area.

• Option 3 - Same as option 1, but considering the Rescue effect (with the strength of this
effect being given by R). If R=0 there is no Rescue effect, however, if R>0, the Rescue effect
grows exponentially with the probability of not being colonized. In the original version of this
function Hanski (1994) assumed R=1.

Here, parameter x defines de degree to which the extinction rate is sensitive to the patch area. If
x>1, with the increase of Ai the extinction rate rapidly approximates zero. The populations in the
larger patches becomes almost impossible to extinguish. However, if x is small the extinction rate
decreases slower with increasing Ai.

Value

Delivers a list similar to the class ’metapopulation’ but with two additional columns in the data
frame nodes.characteristics: ’species2’(which is the occupation in the next time step) and turn
(turnover between occupancies).

Note

Future versions of the package should include the virtual migration model (Hanski et al. 2000),
which allows the estimation of migration related parameters (relevant to the option 2 of connectiv-
ity).

Author(s)

Frederico Mestre and Fernando Canovas
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See Also

species.graph, simulate_graph, iterate.graph

Examples

data(occ.landscape)
data(param1)

#Simulating the occupation in the next time step:

landscape2 <- spom(sp=occ.landscape,
kern="op1",
conn="op1",
colnz="op1",
ext="op1",
param_df=param1,
beta1=NULL,
b=1,
c1=NULL,
c2=NULL,
z=NULL,
R=NULL,
succ="none"
)

#The output has two new columns in the data frame nodes.characteristics: species2
#(occupation in the next time step) and turn (turnover - change of occupation status,
#1 if changed and 0 if not).:

head(landscape2)

# x y areas radius cluster colour nneighbour
#1 718.5011 228.47190 0.05741039 13.518245 1 #FF0000FF 91.80452
#2 494.3624 73.29165 0.08755563 16.694257 1 #FF0000FF 98.98432
#3 809.2326 245.90046 0.09384384 17.283351 1 #FF0000FF 166.68205
#4 638.8057 149.35122 0.08858989 16.792569 1 #FF0000FF 82.60306
#5 874.2010 19.78104 0.03621793 10.737097 1 #FF0000FF 92.26625
#6 605.3937 70.34944 0.03066018 9.878987 1 #FF0000FF 131.22261
# ID species species2 turn
#1 1 1 1 0
#2 2 0 1 1
#3 3 1 1 0
#4 4 0 0 0
#5 5 0 1 1
#6 6 1 1 0
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summary_landscape Summarize ’landscape’ class objects

Description

This function summarizes a landscape class object.

Usage

summary_landscape(object)

Arguments

object Object of class landscape

Details

This function can be used to retrieve basic information on the objects of class ’landscape’.

Value

Returns a data frame with the following information on a landscape class object:

landscape area (hectares)

Landscape mosaic area, in hectares
number of patches

Number of patches in the landscape
mean patch area (hectares)

Mean patch area, in hectares

SD patch area SD of the patch area
mean distance amongst patches (meters)

Mean inter-patch distance, in meters
minimum distance amongst patches (meters)

Minimum inter-patch distance, in meters

Note

The minimum distance between patches is different from that given in the object of class ’land-
scape’, in the slot ’minimum.distance’. This is because this output is computed from the landscape
structure and the one in the ’landscape’ object was the parameter used to built the landscape. The
minimum inter-patch distance given as a parameter in the function rland.graph will consider dis-
tance between patch centroids. The minimum inter-patch distance returned here considers the edge-
to-edge distance, so this might be smaller that the parameter of rland.graph. In order to see the
difference between centroid-to-centroid and edge-to-edge inter-patch distance compute both using
the matrix.graph function (methods are ’centr_distance’ and ’euc_distance’, respectively).

Author(s)

Frederico Mestre and Fernando Canovas

summary_landscape
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See Also

rland.graph, landscape, matrix.graph

Examples

data(rland)

summary_landscape(object=rland)

# Value
#landscape area (hectares) 100.000
#number of patches 60.000
#mean patch area (hectares) 0.061
#SD patch area 0.041
#mean distance amongst patches (meters) 528.345
#minimum distance amongst patches (meters) 51.780

summary_metapopulation

Summarize ’metapopulation’ class objects

Description

This function summarizes a metapopulation class object.

Usage

summary_metapopulation(object)

Arguments

object Object of class metapopulation

Details

This function can be used to retrieve basic information on the objects of class ’metapopulation’.

Value

Returns a data frame with the following information on a metapopulation class object:

landscape area (hectares)

Landscape mosaic area, in hectares
number of patches

Number of patches in the landscape
mean patch area (hectares)

Mean patch area, in hectares

SD patch area SD of the patch area
mean distance amongst patches (meters)

Mean inter-patch distance, in meters

summary_metapopulation
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minimum distance amongst patches (meters)

Minimum inter-patch distance, in meters
species occurrence - snapshot

Occupation data of the focal species, numbered from 1 to the number of snap-
shots

Note

The minimum distance between patches is different from that given in the object of class ’land-
scape’, in the slot ’minimum.distance’. This is because this output is computed from the landscape
structure and the one in the ’landscape’ object was the parameter used to built the landscape. The
minimum inter-patch distance given as a parameter in the function rland.graph will consider dis-
tance between patch centroids. The minimum inter-patch distance returned here considers the edge-
to-edge distance, so this might be smaller that the parameter of rland.graph. In order to see the
difference between centroid-to-centroid and edge-to-edge inter-patch distance compute both using
the matrix.graph function (methods are ’centr_distance’ and ’euc_distance’, respectively).

Author(s)

Frederico Mestre and Fernando Canovas

See Also

species.graph, metapopulation, matrix.graph

Examples

data(occ.landscape)
data(occ.landscape2)

summary_metapopulation(object=occ.landscape)

# Value
#landscape area (hectares) 100.000
#number of patches 60.000
#mean patch area (hectares) 0.061
#SD patch area 0.041
#mean distance amongst patches (meters) 528.345
#minimum distance amongst patches (meters) 51.780
#species occurrence - snapshot 1 50.000

summary_metapopulation(object=occ.landscape2)

# Value
#landscape area (hectares) 100.000
#number of patches 60.000
#mean patch area (hectares) 0.069
#SD patch area 0.039
#mean distance amongst patches (meters) 521.717
#minimum distance amongst patches (meters) 45.905
#species occurrence - snapshot 1 50.000
#species occurrence - snapshot 2 58.333
#species occurrence - snapshot 3 61.667
#species occurrence - snapshot 4 61.667

summary_metapopulation
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#species occurrence - snapshot 5 58.333
#species occurrence - snapshot 6 60.000
#species occurrence - snapshot 7 70.000
#species occurrence - snapshot 8 68.333
#species occurrence - snapshot 9 68.333
#species occurrence - snapshot 10 56.667

summary_metapopulation
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Index

∗Topic datasets
cabrera, 5
landscape_change, 18
mc_df, 25
occ.landscape, 32
occ.landscape2, 33
param1, 33
param2, 34
rg_exp, 45
rland, 46

addpoints, 4, 44

cabrera, 5
cluster.graph, 6
cluster.id, 7
components.graph, 8
convert.graph, 5, 9, 14, 18, 25, 27
create.parameter.df, 10, 36, 37, 47

edge.graph, 11
expansion, 3, 12, 21, 38
extract.graph, 13

import.shape, 5, 14, 18, 27
initGRASS, 43
iterate.graph, 3, 15, 22, 27, 36, 37, 49, 51,

57

landscape, 3, 18, 58, 59
landscape_change, 18
list.stats, 19

manage_expansion_sim, 3, 20
manage_landscape_sim, 3, 22
matrix.graph, 24, 58–60
mc_df, 25
merge_order (MetaLandSim-internal), 26
MetaLandSim (MetaLandSim-package), 2
MetaLandSim-internal, 26
MetaLandSim-package, 2
MetaLandSim.GUI, 27
metapopulation, 27, 59, 60
metrics.graph, 28, 47
min_distance, 31

occ.landscape, 32
occ.landscape2, 33

param1, 33
param2, 34
parameter.estimate, 11, 16, 20, 23, 33, 34,

35, 40, 48, 53
plot_expansion, 38
plot_graph, 38, 39
plotL.graph, 37

range_expansion, 3, 12, 20, 21, 27, 36, 37,
40, 41–43, 45

range_raster, 3, 27, 40, 41, 41
remove.species, 43, 52
removepoints, 4, 44
rg_exp, 45
rland, 46
rland.graph, 4, 6, 8, 9, 12–15, 17, 18, 20, 21,

23, 25, 27, 31, 38, 39, 44, 46, 49, 51,
52, 58–60

simulate_graph, 15–17, 19, 27, 48, 48, 51,
52, 57

span.graph, 13, 15–17, 19, 23, 37, 38, 47–49,
50

species.graph, 5, 9, 16, 17, 23, 27, 39, 44,
47, 48, 51, 57, 60

spom, 16, 17, 21, 23, 33, 34, 36, 37, 40, 48, 49,
53

summary_landscape, 58
summary_metapopulation, 59
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Model Parameter Estimation

F. Mestre, F. Canovas, R. Pita, A. Mira, P. Beja

September 29, 2016

1 Introduction

The correct SPOM parametrization is one of the most crucial steps of every
simulation procedure allowed by the package. The parameters are the numeric
translation of the relation of the species with the landscape. Although this is
not the main focus of this package, MetaLandSim offers some basic tools that
will help to estimate the parameters to run the simulations. However, the user
can have the parameters values available from other sources (whether published
papers or estimated with other software tools) in each case the simulations can
be run using those parameters. For a good overview of the several methods
to parametrize the SPOM see Etienne et al. (2004). Most of the methods de-
scribed can be implemented with MetaLandSim. Also, it is recommended that
the user reads the book by Hanski (1999) in order to acquire the basic knowl-
edge about metapopulation ecology and the first estimation procedures. The
function parameter.estimate is the package tool to parametrize the spom func-
tion. This vignette clarifies the options available and gives a step-by-step guide
of the function usage. The current version of the package does not executes all
computations. Rather, some of the methods ((’MCsim’,’rescue’and ’norescue’)
create the files needed as input to two applications provided by Moilanen (1999)
(MCsim) and ter Braak and Etienne (2003) ((’rescue’ and ’norescue’). Future
versions of the package should incorporate these procedures in the R code. The
objective of this vignette is to describe the parametrization procedures, allowing
the user to produce robust estimates of the parameters in order to proceed with
the landscape simulation process or with the range expansion simulation. Third
vignette is run with made up data based upon real information.

2 Which method to choose

Currently, the following methods are available:

� Rsnap 1 - Regression of snapshot data, using one snapshot (based on
Oksanen, 2004).
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� Rsnap x - Regression of snapshot data, using more than one snapshot
(based on Oksanen, 2004).

� MCsim - Monte Carlo simulation (Moilanen, 1999).

� norescue - Bayesian MCMC, not considering Rescue effect (ter Braak and
Etienne, 2003).

� rescue - Bayesian MCMC, considering Rescue effect (ter Braak and Eti-
enne, 2003).

Amongst the five methods allowed by MetaLandSim, the choice is facilitated
by a careful consideration of the characteristics of each method and the dataset
(such as number of snapshots). An examination of each method’s advantages
and drawbacks is available in Etienne et al. (2004). The methods ’rescue’
and ’norescue’ are computed using the application provided by ter Braak, and
Etienne (2003) and the method ’MCsim’ is computed using the application pro-
vided with Moilanen (1999). ’Rsnap 1’ and ’Rsnap x’ are computed using the
R code based on Oksanen (2004). Using the function parameter.estimate, the
first three methods only create the needed files to run the applications. Next the
user can use the function create.parameter.df to create a data frame with the
estimated parameters. The application of Moilanen (1999) allows the estimation
of the following parameters: x, y, e, A0, e’ and alpha. The application by ter
Braak and Etienne (2003) allow the estimation of the following parameters: e,
x, y, z, alpha and b. Future versions of the package should include the virtual
migration model (Hanski et al. 2000), allowing the estimation of b (which scales
patch areas to population size and emigration rates) and c (here c1, which scales
immigration with patch area).

3 Work-flow

3.1 Regression on Snapshot Data - method Rsnap 1 or
Rsnap x

This is the simplest approach; it runs faster but provides the least reliable
estimates of the parameters. It does not use turnover, only spatial structure
and occupancy status.

> library(MetaLandSim)

> data(occ.landscape)

> data(occ.landscape2)

> #Using data with only one snapshot of the occupancy status

> param1 <- parameter.estimate (occ.landscape, method='Rsnap_1')

> param1

par_output

alpha 0.008333333
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x 0.256707865

y 0.016724074

e 0.211572786

> #Using data with more than one snapshot of the occupancy status

> param2 <- parameter.estimate (occ.landscape2, method='Rsnap_x', nsnap=10)

> param2

par_output

alpha 0.008333333

x -0.172333542

y 0.021030749

e 0.742599240

3.2 Monte Carlo Simulation - method MCsim

This approach is more time-consuming (depending on computing power). This
option calls for the functions on the paper by Moilanen (1999). Here, cre-
ate.parameter.df only creates the files to be used as input to the application.
The user should read the paper thoughtfully, as well as the available help files.
A file with the settings (inputMCsim.set) and a file with the data (inputMC-
sim.dat) will be created into the working directory. Editions to the settings file
will be needed in order to run the application using the three step procedure
described in the readme.txt file. First run the application using Nlr, then using
Bnlr and finally using mc (between each step the setting file should be edited
to change the method). After running Nlr and Bnlr replace, in the settings file,
’edit x’, ’edit y’ and ’edit e’ with those values (these are the priors to the sim-
ulation). The application and help files can be downloaded from the Ecological
Archives, available (here).

> library(MetaLandSim)

> data(occ.landscape2)

> #First, generate the files to be the input of the application

> parameter.estimate (occ.landscape2, method='MCsim')

> #run the application mcm.exe from Moilanen (1999).

> #Previously read the readme.txt file #available with the

> #application.

> #Consider particularly the three step procedure for estimation,

> #using nonlinear regression (Hanski, 1994) to produce priors

> #for the Monte Carlo simulation). In the command line (first put

> #the application and the files in a folder with no spaces in the name.

> #e.g.: 'C:/moilanen/'):

>

> #mce.exe inputMCsim.dat inputMCsim

>

> #Or, from R:

>
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> system('mce.exe inputMCsim.dat inputMCsim')

> #After, create a data frame, with create.parameter.df,

> #using the estimated parameters:

> param3 <- create.parameter.df(alpha, x, y, e)

>

3.3 Bayesian MCMC - methods ’rescue’ and ’norescue’

This is the approach developed in the paper by ter Braak et al. (2003). The
parameter.estimate function only produces the files needed to be used as in-
put in this application. It produces a dataset file (input rescue.dat or in-
put norescue.dat), a parameter file (input rescue.par or input norescue.par) and
a distance file (input rescue.dis or input norescue.dis). Then, by using cre-
ate.parameter.df, a data frame can be created with the parameters computed
with the application. To understand what the created files contain, and to un-
derstand the method the user should read the paper by ter Braak et al. (2003)
as well as the help files available with the application. Editions to the param-
eters file will be needed in order to run the application. It is recommended to
run one of the simplest methods to provide priors to the Bayesian MCMC sim-
ulation. Then, in the parameter file, replace ’edit x’, ’edit y’ and ’edit e’ with
those values. Be attentive to the fact that the output is given log-transformed.
Before using the parameters in the simulation procedure they need to be back-
transformed, using an exponential. This application, the source code, help files
and sample data can be downloaded from the Ecological Archives, available
(here).

> library(MetaLandSim)

> data(occ.landscape2)

> #Method 'rescue'

> parameter.estimate (occ.landscape2, method='rescue')

> #run the application file fmetapop_rescue.exe from

> #the command line (first put the application and the

> #files in a folder with no spaces in the name.

> #e.g.: 'C:/terbraak/'):

>

> #fmetapop_rescue input_rescue

>

> #Or, from R:

>

> system('fmetapop_rescue input_rescue')

> #After, create a data frame, with create.parameter.df,

> #using the estimated parameters:

> #param4 <- create.parameter.df(alpha, x, y, e)

>

> #Method 'norescue'

> parameter.estimate (occ.landscape2, method='norescue')
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> #run the application file fmetapop_norescue.exe from

> #the command line (first put the application and the

> #files in a folder with no spaces in the name.

> #e.g.: 'C:/terbraak/'):

>

> #fmetapop_norescue input_norescue

>

> #Or, from R:

>

> system('fmetapop_norescue input_norescue')

> #After, create a data frame, with create.parameter.df,

> #using the estimated parameters:

>

> param5 <- create.parameter.df(alpha, x, y, e)

>
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F. Mestre, F. Canovas, R. Pita, A. Mira, P. Beja

September 29, 2016

1 Introduction

This vignette explains the process of landscape and metapopulation simulation,
using the package MetaLandSim. Previously, a crucial step has to be carried out,
the parametrization of the SPOM model, using the function parameter.estimate.
A vignette is available, detailing the process.

2 Landscape Simulation

Landscape simulation and dynamics are carried out respectively by the functions
rland.graph and span.graph. Both these functions allow a different set of random
landscapes (represented as graphs) to be created and to suffer dynamic changes,
such as patch loss and habitat loss. In MetaLandSim, a landscape is represented
as:

> library(MetaLandSim)

> rl <- rland.graph(mapsize = 1000, dist_m = 60,

+ areaM = 0.5, areaSD = 0.2, Npatch =70,

+ disp = 100, plotG = TRUE)

Occupation Simulation in DynamicLandscapes
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3 Occupation Simulation

The transition from an occupied landscape in time step t to time step t+1
can be achieved using the spom function, as described by Hanski (1999). This
function runs within simulate.graph which sequentially simulates the occupation
in a landscape throughout several time steps. The occupation and transition
between time steps is carried out, respectively, by the functions ’species.graph’
and ’spom’, as follows:

> library(MetaLandSim)

> #The occupation of a landscape is simulated by:

> sp_t0 <- species.graph(rl=rl, method="percentage", parm=50,

+ nsew="none", plotG=TRUE)

> names(sp_t0)

[1] "mapsize" "minimum.distance" "mean.area"

[4] "SD.area" "number.patches" "dispersal"

[7] "distance.to.neighbours" "nodes.characteristics"

151



0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

X

Y

●

●●

●

●

●
● ●

●

●●●

●

●
●

●
●

● ●
●

● ●

●

●
●

●

●

●

●

●

After loading the species parameters (param1), the transition is made by:

> data(param1)

> sp_t1 <- spom(

+ sp_t0,

+ kern="op1",

+ conn="op1",

+ colnz="op1",

+ ext="op1",

+ param_df=param1,

+ beta1=NULL,

+ b=1,

+ c1=NULL,

+ c2=NULL,

+ z=NULL,

+ R=NULL

+ )

> #Which has the following elements:

> names(sp_t1)

[1] "mapsize" "minimum.distance" "mean.area"

[4] "SD.area" "number.patches" "dispersal"

[7] "distance.to.neighbours" "nodes.characteristics" "turnover"
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4 Sample Work-flow

Although this procedure can be carried out using the functions mentioned above,
it is easier to complete the full simulation using only one function that runs all
the others internally, while allowing for a repetition of the process, the function
is ’iterate.graph’.

Here the simulation process will run only with 2 iterations, for demonstra-
tion:

> #Loading species parameters

>

> data(param1)

> #Simulating occupation in dynamic landscape

>

> it1 <- iterate.graph(

+ iter = 2,

+ mapsize = 1000,

+ dist_m = 30,

+ areaM = 0.5,

+ areaSD= 0.1,

+ Npatch = 200,

+ disp = 800,

+ span = 100,

+ par1 = "stoc",

+ par2 = 2,

+ par3 = 2,

+ method = "percentage",

+ parm = 50,

+ nsew = "none",

+ succ = "none",

+ param_df = param1,

+ kern = "op1",

+ conn = "op1",

+ colnz = "op1",

+ ext = "op1",

+ b = 1,

+ graph = FALSE

+ )

Completed iteration 1 of 2

Completed iteration 2 of 2

> #This file is composed by the following elements:

>

> names(it1)

[1] "mean_area" "mean_distance" "number_patches" "occupancy"

[5] "turnover"
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However, when running this function the argument ’graph’ must be set to
TRUE in order to produce graphs with the evolution of the simulations.

This simulation produces the following graphic output (which opens in an
html page):

As a result the user will have a large number of simulations which represent
the occupation of a species with a given set of characteristics (as defined by
the parameters) in a dynamic landscape. The advantage of this approach is
that it requires less parameters which can be estimated from real occupancy or
turnover data. It does not require demographic data, the parameters can be
derived using only patch occupancy data of one snapshot or sampling session
(ideally more).

Here the simulation procedure is repeated only twice (parameter ’iter’),
although more simulations have to be run in order to obtain robust results.
However, depending on computing power, this simulation can be highly time-
consuming (from hours to several days).

After version 0.5 of MetaLandSim an aditional option was made available to
the users: the argument ’succ’. This allows to chose different options regarding
the species preference relating the successional stage of habitat patches, with the
following options: ’none’ - No discrimination regarding patch successional stage;
’early’ - The species prefers patches in an earlier successional stage; ’mid’ - The
species prefers patches in the mid of the succession; ’late’ - The species prefers
patches in an later successional stage. This new option includes an additional
factor to the extinction probability, changing it with patch age, as follows:
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In the above figure it is visible that, when succ=’early’, the extinction con-
cerning successional stage is lower for younger patches (left); when succ=’mid’,
the extinction concerning successional stage is lower for habitat patches with in-
termediate ages; when succ=’late’, the extinction concerning successional stage
is lower for older patches. This extinction factor is combined with the one de-
rived from the application of the SPOM model considered (generally depending
on patch area).

5 References

1. Hanski I. (1999). Metapopulation Ecology. Oxford University Press. 312
pp.

155



Range Expansion Simulation

F. Mestre, F. Canovas, R. Pita, A. Mira, P. Beja

September 29, 2016

1 Introduction

Modelling approaches for estimating species ability to track environmental change
over large scales may rely on different assumptions regarding the role of disper-
sal (Barbet-Massin et al. 2012; Engler et al. 2012; Bateman et al. 2013;
Zhou and Kot, 2013): i) The species cannot disperse, thus considering null dis-
persal ability (which would, in most cases, underestimate the potential future
area); ii) Infinite dispersal ability, which means that the species will be able to
cope with the shifts of its ecological niche by fully occupying all newly avail-
able areas (in most cases, maybe with the exception of highly mobile species,
this is an unrealistic assumption which will produce optimistic results); iii) A
mean dispersal distance per decade (p.ex.) is defined, considering the ability
of the species to disperse (this approach can be a bit arbitrary, if not care-
fully considered); iv) a dispersal kernel is developed based on a set of species
traits (this is a more realistic approach which represents a good compromise
between the full dispersal and no-dispersal approaches). It is known however
that the species ability to disperse depends not only on its own traits but also
on the landscape configuration and composition (Nathan et al. 2012). This
package allows a simplified approach to derive a dispersal model from the simu-
lation of range expansion in landscapes with different characteristics, using the
function ’range.expansion’. Similar approaches require parameters about the
demographic rates of the species, or other data that, in most cases, are difficult
to obtain. This approach might be considered simpler, once it requires data
that can be obtained from capture-recapture, telemetry or bibliography (such
as dispersal ability) and the information on basic landscape structure, which
can be obtained using GIS. Furthermore, the function ’range raster’ allows the
projection of the produced dispersal model into the geographical space.

2 Work-flow

2.1 Parametrization

This is crucial, and can be achieved using the function parameter.estimate. A
vignette is available, detailing the process, which must be carefully implemented,
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as this is the process that allows the characterization of the study species and
its relation with the landscape.

2.2 Simulation of range expansion

This is done using the function range.expansion, which will simulate the range
expansion into new, empty, landscape mosaics a given (user defined) number of
times (defined by parameter ’iter’). This simulation will be carried out for a
given time period (defined by the parameter ’tsteps’). The output of this func-
tion is a list of four data frames with the result of the occupation of sequences
of landscapes in the four cardinal directions.

> library(MetaLandSim)

> #Load starting landscape (the simulation will assume that

> #all subsequent landscapes are built with the same parameter combination).

>

> data(rland)

> #Create range expansion model. Here run only with two repetitions (iter=2).

> #Ideally it should be run with more repetitions to provide more robust results.

>

> data(param1)

> rg_exp1 <- range_expansion(rl=rland, percI=50, param=param1,b=1, tsteps=100,

+ iter=2)

The previous range expansion simulation produces a graphic output similar
to the following (which opens in a html page):

This represents the probability of occupation (in the four cardinal directions)
of the landscape at a given distance from the closer current species occurrence.
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It is the dispersal model (DM) produced by MetaLandSim. Also, as an out-
put of this simulation, the time steps at which each distance is reached is also
estimated.

2.3 Conversion of the output to a spatial model

The dispersal simulation generated for each time step in the previous section
should be converted into a model of species occurrence based only in the dis-
persal. This is done using the function range.to.raster. The output will be a
raster file with the dispersal-only occupancy model after a given time period.
This dispersal model can be, subsequently, combined with the output of an
ecological niche model. This will allow the projection of potential occupancy
considering three important factors: the species ecological niche, the species
dispersal ability and the landscape characteristics. After MetaLandSim version
0.5.2, a new raster is produced representing the temporal factor. This raster
depicts the average time step in which each distance is reached by the simulated
range expansion. Furthermore, both these raster maps are saved in the working
directory.

> data(rg_exp)

> presences <- paste(system.file(package="MetaLandSim"),

+ "/examples/presences.asc", sep="")

> landmask <- paste(system.file(package="MetaLandSim"),

+ "/examples/landmask.asc", sep="")

> library(rgrass7)

> #First, start GRASS from R:

> initGRASS(gisBase = "grass folder", home = tempdir(),

+ gisDbase = "mapset location",override = TRUE)

> #Create raster, using the sample dataset

> #rg_exp (generated with 100 repetitions)

>

> data("rg_exp")

> range_raster(presences.map = presences, re.out=rg_exp,

+ mask.map=landmask, plot.directions=FALSE)

By combining the expansion model with the current species occurrences (B)
provides a future occurrence model based only on dispersal ability and landscape
configuration, such as:
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The four sub-models (A), considering each of the cardinal directions, are
combined in a final dispersal model (C). The user should run several scenarios
to evaluate the species expansion with a diversity of landscapes (or even species,
depending on research question). This DM can then be combined with the
output of an Ecological Niche Model projected into the future using any common
GIS software or R GIS-related packages.

3 Note

The output of these functions is dependent upon species dispersal ability and
current distribution. The mask should be chosen carefully, considering biological
realism.
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Abstract 

Forecasting future species distributions under climate change scenarios using  

Ecological Niche Models (ENM) is common practice. Typically, these projections do not 

account for landscape connectivity and species dispersal abilities. When they do 

account for these factors, they are based on either rather simplistic or overly complex 

and data-hungry approaches. Here we apply a new approach for predicting species 

range shifts under different climate change and landscape connectivity scenarios that  

balances data requirements and output quality. The approach builds on the 

metapopulation concept to produce a dispersal model based on repeated simulations 

of stochastic extinction-colonization dynamics across multiple landscapes of variable 

connectivity. The model is then combined with an ENM to produce more realistic 

predictions of species range shifts under environmental change. Using the near-

threatened Cabrera vole (Microtus cabrerae) as a model species and considering two 

contrasting climate change scenarios (B2 and A1b) and three scenarios of increasing 

landscape connectivity, we confirmed that model predictions basely solely on ENM 

overestimated future range sizes (2050 and 2080) in relation to predictions 

incorporating both future climates and landscape connectivity. This supports the idea 

that landscape change critically affects species range shifts in addition to climate 

change and that models disregarding landscape connectivity tend to produce overly 

optimistic predictions, particularly for species with low dispersal abilities. We suggest 

that our empirically-based simulation modelling approach provides a useful framework 

to improve range shift predictions for a broad range of species, which is essential for 

the conservation planning of metapopulations under climate and landscape change.   

 

Keywords 

dispersal, metapopulation, climate change, landscape change, ecological niche 

modelling. 
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1. Introduction 

Ecological niche models (ENMs) based on climate envelopes are widely used in 

ecological studies to predict species’ current geographical ranges and their potential 

shifts in response to climate change. These models provide useful information for 

assessing the overall conservation status of a species and for supporting conservation 

decision making (Peterson et al. 2011). However, a range of uncertainties related to 

the choice of the statistical model, variable selection, model range and emissions 

scenarios may influence the results of ENMs (Araújo and Guisan, 2006; Heikkinen et al. 

2006; Pearson et al. 2006; Beaumont et al. 2008; Synes and Osborne, 2011). While 

increased emphasis has been given to the validation of statistical models and the 

development of ensemble approaches to account for such uncertainties (Araújo and 

New, 2007), ENM forecasts are still criticized for the assumptions made about 

dispersal, which range from unlimited to no dispersal (Heikkinen et al. 2006; Sinclair et 

al. 2010; Travis and Dytham, 2012). A further limitation of most ENM-based 

projections is that they generally ignore how landscape connectivity within climatically 

suitable areas may affect the way species modify their distribution ranges (Opdam and 

Wascher, 2004). It is thus likely that ENMs incorporating both dispersal limitation and 

landscape connectivity should provide more accurate and realistic predictions of 

species range shifts under both climate and landscape change. However, illustrative 

examples integrating these two factors are still largely lacking in the literature (e.g. 

Wilson et al, 2010; Bennie et al, 2013), probably because there is still no solid 

conceptual framework for linking processes operating at the landscape scale with 

distribution patterns over large (geographical) spatial scales.    

Dispersal is a critical process determining species’ spatial dynamics, and it is predicted 

to restrict (at least to some extent) species ranges by preventing individuals from 

colonizing suitable climate spaces, particularly in the case of species with 

metapopulation dynamics in landscapes with low connectivity (Opdam and Wascher, 

2004; Anderson et al. 2009). However, evaluating how species track changes in climatic 

suitability is challenging because of species traits and landscape complexity and 

variability (Synes et al. 2016). There are a number of approaches of variable complexity 

and specific data requirements to account for limited dispersal in ENMs. The simplest 
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and most straightforward approaches assume a fixed migration rate for the focal 

species, often based on expert opinion and literature (e.g. Williams et al. 2005). 

Although these approaches are easy to implement, they are generally built with little 

or no attention to the spatial processes that drive real biogeographic patterns. To solve 

this problem, alternative approximations involve species-specific dispersal kernels, 

which imply more intensive experimental and/or field work (Barbet-Massin et al. 

2011). However, most illustrative examples combining ENMs with dispersal models still 

ignore landscape connectivity, despite the fact that dispersal also depends on 

landscape configuration and composition (Travis and Dytham, 2012). More complex 

models incorporating connectivity metrics together with local demography in an 

individual-based framework have also been proposed (e.g. Engler et al. 2012; Bocedi et 

al. 2014), though these approaches typically require a large amount of data that are 

not available for most species. There is therefore a need for practical solutions that 

efficiently combine spatially explicit dispersal models (SEDMs) integrating information 

on landscape connectivity with ENM-based predictions of species ranges under future 

climate change (Franklin 2010b; Naujokaitis‐Lewis et al. 2013).         

Here we introduce a novel approach to achieve this goal, which is based on simulation 

of metapopulation dynamics and does not require detailed demographic data. The 

metapopulation concept provides a useful framework for testing how the effects of 

local extinction-colonization dynamics along species’ range margins may propagate on 

the rates of species range expansion into suitable climate spaces over large spatial 

scales (Anderson et al., 2009; Wilson et al. 2010). Although the assumption of 

stochastic quasi-equilibrium dynamics may not hold in the range margins of a 

metapopulation, metapopulation models can also have great predictive power in non-

equilibrium systems and may be particularly useful in understanding species responses 

to climate and landscape change (Thomas and Hanski, 2004). Even species that do not 

form recognizable metapopulations may show metapopulation-like features along 

range margins, and consequently the metapopulation framework  can be used to 

assess how quickly species track their changing environment, and thus be used to scale 

landscape-level dynamics to geographic distributions and range dynamics (Thomas and 

Hanski, 2004; Anderson et al., 2009). In particular, stochastic patch occupancy models 
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(SPOMs), such as the Incidence Function Model (IFM), provide an excellent 

opportunity for generating SEDMs from observed patterns of occupancy, which may 

then be coupled with correlative models of climate suitability (Wilson et al. 2010).  

Based on these ideas, our approach involves a three-step procedure: i) build an ENM 

based on climate variables and ensemble forecasting; ii) develop an SEDM derived 

from IFM simulations of metapopulation dynamics under plausible scenarios of 

landscape connectivity; and iii) combine these two models to forecast species 

distribution ranges that account for the effects of both climate and landscape variation 

(see Mestre et al. 2016).  

We highlight the innovative nature and outputs of our framework by modelling range 

shifts of the near-threatened Cabrera vole (Microtus cabrerae), a species confined at 

present to four geographical regions in the Iberian Peninsula (Garrido-Garcia et al. 

2013). The Cabrera vole is a suitable model species to illustrate our approach because 

its populations are distributed in habitat patches consisting of tall wet herbaceous 

vegetation with evidence of metapopulation-like structure and dynamics (Pita et al., 

2007). In addition, previous research on the phylogeography of the species has shown 

that it has suffered profound range changes in response to climatic variations (Barbosa 

et al. under review), while the results of preliminary niche modelling indicate that 

Cabrera voles will likely be highly vulnerable to future climate change (Mestre et al., 

2015).    

 

2. Methods 

2.1. Ecological niche model  

To assess the current and future suitable climate space of the Cabrera vole, we 

followed the methodology described in Mestre et al. (2015). Briefly, we used 

consensus methods or ensemble forecasting (Araújo and New, 2007) implemented in 

the BIOMOD package, version 1.1.7.4 (Thuiller et al. 2009b; Thuiller and Lafourcade, 

2010), based on variables of current climatic conditions (1950-2000) obtained from the 

WorldClim website (http://www.worldclim.org/; Hijman et al., 2005). The model used 

presence data of the Cabrera vole across its entire distribution range, which was 
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obtained from all available literature documenting the occurrence of the species 

between 1970 and 2011 (see Supplementary Material SM1). This mismatch between 

species presence and climate data was assumed to be negligible given the large 

overlap between the two time periods (Mestre et al., 2015). The ensemble was built 

from eight alternative algorithms (generalized linear models, generalized boosting 

models, generalized additive models, classification trees, artificial neural networks, 

flexible discriminant analysis, multivariate adaptive regression splines, and random 

forests). For techniques requiring the use of presence-absence data, we generated 

pseudo absences at random locations over the entire Iberian Peninsula, where the 

number of locations equalled two times the sample size of the presence data. Model 

evaluation and selection criteria were based on the area under the receiver operator 

curve (AUC) and the true skill statistics (TSS), as recommended by Allouche al. (2006). 

Only the models with TSS > 0.5 were kept in the final ensemble (Mestre et al., 2015). 

The contribution of each variable to the final ensemble was evaluated through the 

variable importance metric (Thuiller et al. 2009b). The final model was projected to the 

current climate conditions and future (2050 and 2080) climate change scenarios (B2 

and A1b), which describe two different alternative futures: A1b describes a world 

based upon fast economic growth with balanced use of fossil/non-fossil energy 

resources, and B2 describes a world focused on local environmental sustainability 

(IPCC, 2000).  

 

2.2. Metapopulation model 

The metapopulation dynamics of the Cabrera vole were specified using the Incidence 

Function Model (IFM; Hanski, 1994). The IFM describes the processes of occupancy of 

a patch as a first-order Markov chain with two possible states (occupied or empty), 

producing changes in local populations at discrete time intervals as the result of 

colonization and extinction events (Hanski 1999). The probability of a patch being 

occupied is given by  iiii ECCJ  , where iC is the constant colonization 

probability per unit time when patch i is empty, and iE  is the constant extinction 
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probability per unit time when patch i is occupied (Hanski, 1994).  In our study these 

probabilities were respectively given as (Hanski, 1994, 1999): 
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where iS is the connectivity, defined as b

jijji AdpS )exp(   (Hanski, 1994, 1999), 

with ijd  representing the distance between patches i and j. The constants e, x, y, α, 

and b represent the IFM parameters affecting the extinction risk and colonization 

probabilities in each patch (Hanski, 1999). Parameter y represents the colonization 

efficiency of empty patches; e corresponds to the extinction probability per year in a 

patch of unitary area; Ai is the area of the ith focal patch; x is the strength of the 

relation between extinction risk and patch area; α represents the survival rate of 

migrants over the distance dij; and pj and Aj are the occupancy and area, respectively, 

of the jth source patch. When Ai equals the critical patch area (the value of e1/x ), the 

local population goes extinct. Finally, the exponent b is a parameter defining the 

relationship between the expected population size and patch area (Molainen 2000).  

Because IFM parameters for Cabrera voles were virtually unknown, we parameterized 

the SPOM using the empirical data reported in Pita et al (2007), which describe the 

seasonal (summer, autumn, winter, spring) occupancy dynamics of the species in a 

fragmented farmland landscape over three years (totalling twelve sampling occasions).  

Surveys consisted of searching for signs of presence for at least 30 min/patch. It is 

likely that the surveys largely minimized imperfect detection given the high detection 

probabilities (80-100%) estimated for a similar species (water voles) in a studies with 

less sampling effort (Fernández et al. 2016; Peralta et al. 2016 and Pita et al. 2016). 

Additionally, Cabrera voles breed continuously, and thus transitions in occupancy 

between sampling occasions were assumed to be due to either extinction or 

colonization events.  Hence, we estimated the IFM parameters for the Cabrera voles 

using the “IFM naive” Bayesian formulation described in Risk et al. (2011), which 
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assumes no false absences and omits sites for particular seasons in which data were 

missing due to changes in habitat suitability not captured by the IFM; see 

Supplementary Material SM2 for additional details. The posterior distribution of IFM 

parameters (α, b, y, e, and x) was sampled using the Metropolis-Hastings algorithm 

(details in Supplementary Material SM2).  

 

2.3. Spatially explicit dispersal models 

Range expansion was predicted using the spatially explicit dispersal model (SEDM) 

from Mestre et al. (2016) with some improvements designed to make it more realistic, 

namely regarding the transition between landscape units. In short, the procedure is 

similar to an agent-based modelling approach, in which the IFM is simulated from 

currently occupied landscape units while allowing the transition into neighbouring 

empty landscapes. For example, consider dispersal northwards: a landscape strip is 

defined between the northern margin of the landscape unit and a parallel line is placed 

to the south at a distance equal to half of the dispersal ability of the focal species. If 

any patch in that area is occupied, then the species is assumed to be able to disperse 

into the next landscape (to the north). In that new landscape unit, a new habitat strip 

is defined between the southern margin and a line parallel to the north at a distance 

equivalent to half of the dispersal distance. In that area, patches are considered 

occupied in the same proportion as the landscape to the south. SPOMs are simulated 

for that landscape, and the process is repeated across landscapes that become 

progressively available to the metapopulations for the specified number of time units, 

thereby producing a map of the total number of landscapes occupied at the end of the 

simulation (Mestre et al. 2016).  

In our example with Cabrera voles, this up-scaling of metapopulation dynamics into 

range expansion patterns across successive landscape units was repeated 1000 times 

for the same time steps considered in the ENM building (i.e. 2050 and 2080), and the 

outputs of these simulations were then used to build the SEDMs. We considered 

landscape units of 10x10 km2 and three realistic scenarios of increasing landscape 

connectivity (low, medium, and high) based on empirical observations (Pita et al. 2007, 
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2014). Changes in connectivity were specified by varying the number of patches per 

landscape (Table 1), which in turn affected the mean distance and thus the probability 

of dispersal between patches. We have not explored alternative ways of specifying 

connectivity such as varying resistance to movement without changing the number of 

patches, but this could potentially be accommodated in our modelling framework by 

redefining distance with an effective distance. Also, for simplicity we assumed 

landscape parameters were constant through the current and future species ranges, 

but future work could adapt the model to account for spatially and/or temporally 

varying landscape conditions. 

Table 1 - Landscape unit parameters for simulation of range expansion under three 

connectivity scenarios: low, medium and high. Parameters were set with reference to 

the study system in SW Portugal described in Pita et al (2007), where suitable habitats 

for voles covered about 0.44% of the study area (1600 ha), with a mean patch area of 

0.12 ha and a mean inter-patch distance of about 330 m.  

Connectivit
y Scenario 

Habitat 
percentage 

(%) 

Mapsize 
(length 
of side, 

m) 

Minimum 
distance 

(m) 

Mean 
patch area 

(ha) 

Patch area 
SD 

Number 
of patches 

LOW 0.3 10.000 400 0.1 0.02 300 

MEDIUM 0.4 10.000 300 0.1 0.02 400 

HIGH 0.5 10.000 200 0.1 0.02 500 

 

All simulations were made using the MetaLandSim R package, version 0.5.4 (Mestre et 

al. 2016), assuming an initial occupancy rate within currently occupied landscapes of 

0.5 (a similar to occupation as in the metapopulations in Pita et al. 2007). Modelling 

procedures were run in R, version 3.3.1 (R Core Team, 2016). Parallel computing 

required the use of the packages “parallel” (R Core Team, 2016), “foreach” (Revolution 

Analytics and Weston, 2015a) and “doParallel” (Revolution Analytics and Weston, 

2015b). The simulations were run in a processor cluster with the following technical 

characteristics: processor - 12x Intel(R) Core(TM) i7-3960X CPU,  3.30GHz; memory  - 

32 GB and operating System - Ubuntu 14.04.3 LTS. Parallel computing with 5 

processors was used. 

169



 

  

2.4. Combining niche and dispersal projections 

The probabilities of occupancy given the environmental (ENM) and spatial (SEDM) 

factors were considered to be independent and had were combined as: 

𝑃(𝐸𝑁𝑀, 𝑆𝐸𝐷𝑀) = 𝑃(𝐸𝑁𝑀) × 𝑃(𝑆𝐸𝐷𝑀) 

As such, probability maps of the predicted distribution of Cabrera voles in 2050 and 

2080 estimated from the ENM under each scenario of climate change and by the 

SEDMs considering alternative scenarios of landscape connectivity were combined 

through raster multiplication on a cell-by-cell basis. This resulted in 12 final projections 

(2 climate change scenarios x 3 landscape connectivity scenarios x 2 time steps) 

depicting the grid cells with a higher probability of occurrence under alternative 

scenarios of environmental (climate, landscape) change. Because the ENM map 

produced in the BIOMOD was projected on a 0-1000 scale, and the SEDMs maps 

produced in MetaLandSim were projected in 0-100 scales, we re-scaled the ENM to 0 

to 1 before multiplying it by the SEDMs. All map algebra operations were conducted 

within a GIS environment using QGIS, version 2.16.0 (QGIS Development Team, 2016). 

 

3. Results 

3.1. Ecological niche model projections 

Variable importance (VI) scores resulting from the final ensemble model suggested 

that the Precipitation of the Warmest Quarter (PWQ in mm) had the strongest effect 

on Cabrera vole distribution (VI=0.496). The importance of the remaining variables was 

relatively low: Mean Diurnal Range (MDR) with VI= 0.200; Mean Temperature of 

Wettest Quarter (MTWQ, VI=0.184); Minimum Temperature of Coldest Month (MTCQ, 

VI=0.168); and Precipitation of Wettest Month (PWM, VI=0.100) (see Mestre et al. 

2015). Overall, the model suggested that the ecological niche of the Cabrera vole was 

associated with intermediate levels of PWQ and PWM, moderate MTWQ, and 

relatively high MDR and MTCM. The predictive ability of the final ENM was high (AUC = 
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0.885 and AUCmax= 0.908). When projecting the ENM at 30 seconds resolution 

(approximately 1 Km) for the present (Figure 1) and for the future (2050 and 2080, 

Figure 2), a gradual loss of climatically suitable regions is apparent, with a tendency to 

become more fragmented and to shift northwards. As expected, this loss of suitability 

is more evident in the more intense climate change scenario (A1b) (Figure 2). 

Figure 1 – Ecological Niche Model projection, depicting climatic suitability, generated 

by the R package BIOMOD for the current ecological niche distribution of Microtus 

cabrerae. 
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Figure 2 – Projections of Cabrera vole ranges in 2050 (left column) and 2080 (right column) in 

the Iberian peninsula estimated from Ecological Niche Models and considering two climate 

change scenarios: scenario A1b (top row) and B2 (bottom row). 

 

3.2. Spatially explicit dispersal models 

Cabrera vole’s IFM parameterization using empirical data and the “IFM naive” 

Bayesian model resulted in the following maximum a posteriori parameter estimates 

(with the respective credible intervals): x=0.44014 (0.04012-1.22815); y=18.15405 

(1.92319-19.59133); e=0.00482 (0.00174-0.04374); α=0.00047, considering that 1/ α is 

dispersal, median is 2134.129 meters (1147.137- 4837.024); and b=0.73724 (0.23273-

2.05192). Note that parameter estimates were sensitive to the choice of prior, and in 

particular, an informative prior was used for y (see Supplementary Material SM2). 
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When applying these IFM parameters to the algorithm used to predict range expansion 

of Cabrera voles based solely on SEDMs, the dispersal success increases under higher 

landscape connectivity, as shown by the increase in the occupancy probability as 

connectivity is higher (Figure 3). In particular, under low connectivity (3 patches per 

km2) the species seems to have limited ability to expand its distribution much beyond 

its current distribution, while under the scenario of higher connectivity (5 patches per 

km2), the species appears to have the ability to expand into the entire Iberian 

Peninsula by 2050 (Figure 3).      
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Figure 3 – Projections of Cabrera vole ranges in 2050 (left column) and 2080 (right column) in 

the Iberian peninsula estimated from Spatially Explicit Dispersal Models, and considering three 

landscape connectivity scenarios: low (upper row), medium (middle row) and high (lower row). 
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3.3. Combining niche and dispersal projections  

The combination of the maps representing the potential future distribution of the 

Cabrera vole based on the ENM and on the SEDMs showed in general much reduced 

ranges than those predicted by the ENM alone (Figure 4). In general, larger ranges are 

predicted under the B2 scenario, particularly under higher landscape connectivity 

(Figure 4). Conversely, the combined projections representing the A1b scenario and 

lower connectivity resulted in more restricted predicted ranges (Figure 4). 
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Figure 4 - Projections of Cabrera vole ranges in 2050 in the Iberian peninsula estimated from 

the combination of Ecological Niche Models and Spatially Explicit Dispersal Models, 

considering two climate change scenarios (A1b and B2) and three landscape connectivity 

scenarios (low, medium and high). 
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Figure 5 - Projections of Cabrera vole ranges in 2080 in the Iberian peninsula estimated from 

the combination of Ecological Niche Models and Spatially Explicit Dispersal Models, 

considering two climate change scenarios (A1b and B2) and three landscape connectivity 

scenarios (low, medium and high). 

 

4. Discussion 

Ecological niche models are a widespread method to assess species responses to 

future climate change (Peterson, 2011), and a broad range of predictions have already 
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been carried out to forecast the potential future distribution of many species. 

However, a limitation of the basic implementation of ENMs is that it does not account 

for population or metapopulation dynamics, dispersal limitation and landscape 

connectivity (Travis and Dytham, 2012). While some attempts have been made to 

couple these ecological attributes with ENMs (Anderson et al., 2009; Wilson et al. 

2010; Barbet-Massin et al. 2011), there is still no general understanding on the best 

methodological practices for integrating them into the final projections (Travis and 

Dytham, 2012). In particular, despite the broad recognition of the increasing rates of 

habitat loss and fragmentation worldwide and their negative effects on the persistence 

and expansion abilities of species with metapopulation structure and dynamics 

(Opdam and Wascher, 2004; Hof et al. 2011), most studies still largely ignore the role 

of landscape connectivity for predicting potential future range shifts of such species 

(e.g. Mestre et al. 2015). In this context, the approach presented here represents an 

advance over earlier efforts, providing a straightforward mechanistic link between 

landscape-level processes and species distribution at regional and geographical scales, 

which likely result in more accurate predictions on how species respond to climate 

change and landscape scenarios. By generating dispersal models based on 

metapopulation dynamics under spatially explicit landscape settings, our approach 

allows the identification of the constraints arising from spatial, environmental, and 

species intrinsic factors limiting successful dispersal (Mestre et al., 2016). This, in turn, 

may aid reserve design, habitat restoration, reintroduction programs and conservation 

in the face of climate change (Guisan and Thuiller, 2005; Rodríguez et al. 2007).  

Our application of this novel approach to the Iberian endemic Cabrera’s vole highlights 

the pivotal role of landscape connectivity in the species’ capacity to track its 

climatically suitable areas. Specifically, results indicated that the species should spread 

much farther into suitable climate space under higher landscape connectivity. While 

this result is intuitively obvious, we believe that the approach presented here provides 

more realistic predictions than those that would be obtained for instance from fixed 

dispersal rates that do not account for the dynamics of extinction-colonization events 

under particular landscape scenarios. The vulnerability of the Cabrera vole to both 

climate change and landscape connectivity is probably related to its high habitat 
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specialization (e.g. Pita et al., 2006, 2011; Santos et al., 2006; Luque-Larena and López, 

2007) and dispersal limitation (e.g. Pita et al., 2007; Rosário and Mathias, 2007), which 

may preclude the species colonizing potential favourable environments. In particular, 

the species is mostly restricted to habitat patches of wet and tall herbaceous 

vegetation, which are typically scattered through a highly variable, inhospitable matrix 

(e.g. agricultural lands, forests, urban areas, or open dry lands). Consequently, 

Cabrera’s voles may have to disperse through highly unsuitable habitats in order to 

expand into newly suitable climate spaces (e.g. Dale, 1997; Devictor et al. 2008; Foden 

et al. 2013).  

It should be mentioned, however, that some important issues have been ignored in 

our approach, which may limit to some extent the accuracy of the predictions. In 

particular, IFM parameters were estimated using occupancy turnover data from a 

particular system, thus entailing the assumption that the spatial dynamics of the 

species is similar across its entire range. Although this assumption may be somewhat 

unrealistic, we believe that such a simplification still provides a practical solution for 

developing useful models linking metapopulation dynamics and dispersal with ENM. A 

further limitation is that within each simulation set, it is assumed that the species will 

encounter landscapes with identical connectivity levels. However, the effects of this 

limitation are lessened by considering different scenarios of landscape connectivity (as 

we did in our example), in the same way that different climate change scenarios are 

routinely considered and reported in traditional studies that project ENM into the 

future. Additionally, future research could collect data on the percentage of suitable 

habitat for landscapes across the range of the Cabrera vole and then parameterize 

landscape connectivity according to the nearest empirically observed connectivity. 

Also, our approach did not take into account other potential obstacles to successful 

migration, such as natural barriers to dispersal (e.g., large rivers, mountain chains) or 

the presence of natural enemies (e.g. competitors and predators) that may also hinder 

colonization success (Araújo and Luoto, 2007; Peterson et al. 2011), possibly leading to 

overoptimistic predictions, at least in some particular regions. Additionally, eventual 

adaptations at range margins were also disregarded in our approach, for example, 

individuals inhabiting such areas may be better dispersers than populations at the core 
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of the range (e.g., Simmons and Thomas, 2004). Finally, while the dispersal model 

alone does not account for range retraction at trailing range margins, this should be 

adequately captured by the loss of ecological suitability captured by the ENM.  

While we acknowledge that these limitations need to be overcome in future research, 

we believe that our approach provides great advantages over those relying in overly 

simplistic dispersal models or requiring detailed demographic information. In 

particular, because the dynamics of local populations in metapopulation models are 

replaced by transitions between two states (presence-absence), our approach offers a 

good compromise between data requirements, computational time, and output 

accuracy. Since patch occupancy data are relatively easy to obtain (e.g. in existing 

monitoring schemes) and can be used to estimate dispersal ability (through the α 

dispersal-related parameter), we believe that our approach may be applied to a broad 

range of species and ecological systems. Future research should also evaluate the 

differences between the dispersal ability of populations in the core of the range and 

those at the expanding margin (e.g. Simmons and Thomas, 2004) and the eventual 

behavioural differences between populations in the core and expanding range margins 

(Duckworth, 2008). 

 

5. Conclusions 

Niche models based on climate envelope methods have been widely used to define 

the boundaries of a species niche, which are used to predict the potential limits of 

species distribution (Peterson et al. 2011). Similarly, it is possible to identify the limits 

to successful dispersal and define the boundaries of regions based on dispersal 

models, which can then be combined with ENM to produce more reliable forecasts of 

species’ potential distributions. Here we provide a framework that couples the climate 

envelope method with a dispersal model that integrates metapopulation dynamics, 

dispersal limitation and landscape context. Although we acknowledge much is still to 

be done to improve such predictions (e.g. inclusion of natural barriers to dispersal, 

changes in connectivity within a simulation set, etc.), we believe that our approach 

illustrates how incorporating dispersal models based on metapopulation dynamics 
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under variable scenarios of landscape connectivity may impact the predictions of 

future distributions based on ENMs. Also, our approach provides an opportunity to 

identify regions that are not limited by dispersal, but are limited by environmental 

effects on mortality that can result in dispersal traps, such as the lower suitability 

regions in the southwestern tip of the Iberian Peninsula that are located to the east of 

the higher suitability area in the ENM, namely the southern interior of Portugal (Figure 

1). We thus stress that coupling ENMs with metapopulation and dispersal models 

generated from spatially explicit landscape contexts should best reflect our 

understanding of ecological systems, thereby providing an important step forward for 

obtaining more realistic predictions of the response of biodiversity to environmental 

change.    
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Supplementary Material #1 
 

SM1 

 

Current distribution of the Cabrera vole 

 

 

Figure SM1 – Current distribution (1970-2011) of the Cabrera vole (Microtus cabrerae) 

as updated in Mestre et al. (2015) and Garrido-García (2013). 
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SM2 

 

Estimating the SPOM parameters for the Cabrera vole 

 

The SPOM for the Cabrera vole was parameterized using empirical data on species 

patch-occupancy turnovers recorded over 12 seasonal surveys conducted at 

approximately 3-month intervals (summer, autumn, winter, spring) over three years in 

a fragmented landscape from SW Portugal (see Pita et al., 2007). In some instances, 

severe summer droughts, overgrazing, clear cutting, or ploughing for agricultural uses 

rendered habitat patches unsuitable. When estimating the IFM parameters, we were 

faced with the decision of including these instances as zeros or restricting the analysis 

to only consider dynamics between suitable patches. (More sophisticated 

modifications to the IFM model to include habitat quality were beyond the scope of 

this study.) Including the patches as zeros would result in violations of the assumption 

that extinction probability is completely determined by site area, since we would be 

omitting habitat quality. Thus, the transitions from unsuitable to suitable habitat were 

not included in the model likelihood. In other words, we only included successive 

seasons when the habitat was suitable in both seasons. Additionally, we assumed 

perfect detection as described in the main text. Thus, we used the “IFM naive” 

Bayesian formulation described in Risk et al. (2011), which excludes missing data, 

which here corresponds to the aforementioned transitions between habitat suitability, 

and assumes perfect detection. Posterior distributions of IFM parameters (α, b, y, e, 

and x) were sampled using the Metropolis-Hastings algorithm. To improve mixing of α 

near zero, distances were scaled to tens of kilometers (meters divided by ten 

thousand). The following uniform priors were used for IFM parameters: [1,30], [0,5], 

[0,20], [0,1], and [0,5] for α, b (beta in Risk et al 2011), y (gamma), e (mu), and x (chi). 

We initially tried using a more diffuse prior for y, but found that large values of b were 

negatively correlated with y, and the MH algorithm performed very poorly, as also 

observed in Risk et al (2011). It appears to be a challenge with using Hanski's 

formulation of the IFM, where the colonization probabilities vary little over negatively 

correlated pairs of b and y. We used symmetric proposal distributions from normal 
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distributions in which proposals that fell outside of the support of the prior were 

"reflected" to lie within the prior, as described in Risk et al (2011). The standard 

deviations of the proposal distributions were chosen to result in acceptance rates 

between 0.2 and 0.4 (Gelman et al. 2004), but for y, this was not possible and the 

acceptance rate was 0.7. We estimated two chains with 100,000 iterations each with 

initial values chosen randomly from parameter priors, and the first 1,000 iterations 

were discarded. Convergence was assessed using Gelman and Welch's potential scale 

reduction factors (all parameters less than 1.01), and visually (since some posteriors 

were not approximately normal) (see Figure SM1). 
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Figure SM2 – Trace and posterior density plots for each IFM parameter estimated with 

the Bayesian “IFM naïve” model: a) parameter x; b) parameter α; c) parameter b; d) 

parameter y (note a burn-in period of 1,000 iterations is included in these figures but 

excluded from the final analysis).  
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Abstract 
 
Creation and destruction of patches (i.e. patch turnover) in dynamic landscapes is 

generally expected to reduce metapopulation persistence. However, patch turnover 

may help maintaining a mosaic of patches in different successional stages, benefiting 

species with early- and mid-successional habitat affinities. Consequently, it is likely 

that metapopulation persistence for these species should be enhanced by 

intermediate levels of landscape disturbance. We used simulations to test the 

“intermediate disturbance hypothesis” for metapopulations, assessing whether some 

species are favoured by patch turnover and successional dynamics, and generally 

characterising such species. We used stochastic patch occupancy models to estimate 

equilibrium metapopulation densities for virtual species exhibiting different 

metapopulation parameters (dispersal ability, colonization efficiency, and extinction 

rate in colonized patches) and habitat preferences (early, mid and late successional), in 

landscapes with different habitat amounts and patch turnover rates. We found 

positive effects of intermediate disturbance only in early-successional species, 

particularly those with mid dispersal abilities in landscapes with relatively large 

amounts of suitable habitat, and those with high dispersal ability in landscapes with 

relatively low habitat amount. Increasing patch turnover always resulted in reduced 

metapopulation density for mid and late successional species. We confirmed that 

intermediate disturbances may be positive for some metapopulations, contributing to 

understand why some species thrive in highly-fragmented and dynamic landscapes. 

We suggest that early-successional species with mid to high dispersal ability may be 

the most likely to persist in such landscapes, but even these tend to decline when 

patch turnover rates are too high. 

 

Keywords 

Intermediate Disturbance Hypothesis, Incidence Function Model, ecological 

simulation, landscape fragmentation, virtual species.  
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1. Introduction 
 
The metapopulation concept provides a unifying modelling framework for predicting 

species persistence ability under different landscape scenarios, and for identifying 

critical habitat thresholds for species occurrence (Ovaskainen and Hanski 2003), but 

metapopulation modelling often disregards how persistence is affected by landscape 

dynamics (e.g. Van Teeffelen et al. 2012).  Landscape dynamics may involve, for 

instance, different rates of habitat destruction and creation, leading to temporal 

changes in habitat network structure (Stelter et al. 1997; Wahlberg et al. 2002). 

Furthermore, ecological succession after patch creation imply that habitats may 

become progressively more (or less) suitable over time, which further complicates 

temporal variation in patch networks. Although virtually every landscape should be 

subject to some level of dynamism (Turner 2010), metapopulation responses to 

landscape change over time have been addressed in only a relatively small number of 

studies (see Van Teeffelen et al. 2012).  

Most studies addressing dynamic landscapes have found that patch turnover or 

disturbance intensity tend to reduce metapopulation persistence. However, it is also 

clear that the magnitude of responses depends on the biological features intrinsic to 

each species, such as habitat specialization and dispersal ability under variable matrix 

characteristics (Johst et al. 2002). Moreover, the range of responses to landscape 

dynamics may include positive relationships with habitat disturbance, such as may be 

the case of some early successional species (e.g. Stelter et al. 1997; Keymer et al. 2000; 

Wahlberg et al. 2002; DeWoody et al. 2005), for which occupancy may increase after 

disturbance, decreasing only in late successional habitats. This provides support for the 

idea that intermediate levels of landscape dynamics may benefit some species (Stelter 

et al. 1997; Kun et al. 2009; Govindan and Swihart 2012; Van Teeffelen et al. 2012; 

Zeigler and Fagan 2014; Govindan et al. 2015), thereby extending the “intermediate 

disturbance hypothesis” (IDH) originally proposed to explain species diversity in a 

community (Grime 1973), to single-species metapopulation dynamics in fragmented, 

dynamic habitat networks. To date, however, no study has yet evaluated thoroughly 

how biological traits and metapopulation parameters may affect the emergence of 
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IDH-like effects in dynamic landscapes affected by patch turnover and ecological 

succession. 

In this study, we used SPOM simulations to test for IDH in metapopulations, evaluating 

what determines whether a species responds positively to intermediate levels of 

landscape dynamics. Specifically, we built on the recently developed simulation 

package MetaLandSim (Mestre et al. 2016), and assessed the equilibrium 

metapopulation density (i.e. fraction of occupied patches; e.g. Kun et al. 2009) of 

virtual species with different metapopulation parameters (dispersal ability, 

colonization efficiency, and extinction rate in colonized patches), in dynamic 

landscapes with different amounts of habitat and patch turnover rates. Also, we 

assumed that new patches undergo successional dynamics over time, and thus we 

have also considered species with affinities towards either early-, mid- or late-

successional habitats. Globally, we predict that landscape dynamics should result in 

higher metapopulation densities for species with higher dispersal abilities and 

colonization efficiencies, and lower extinction probabilities (Johst et al. 2002; Kun et al. 

2009). We also predict that, in general, early successional species should show higher 

metapopulation densities than late successional species in dynamic landscapes. Finally 

we predict that IDH effects should mostly occur for early successional species, 

particularly for those showing high dispersal abilities and occurring in landscape with 

relatively large amounts of suitable habitat (Stelter et al. 1997; Wahlberg et al. 2002; 

Govindan et al. 2015). 

 

2. Methods 

2.1. SPOM description 
 
The study was based on SPOM simulations in dynamic habitat patch networks, as 

implemented in the package MetaLandSim (Mestre et al. 2016). The approach is based 

on the Incidence Function Model (IFM), defined by a linear, first-order Markov chain 

with two states, the presence-absence of the species in a patch (Hanski 1994). This is a 

spatially explicit minimalistic approach to the metapopulation dynamics, requiring a 

reduced number of parameters, while providing reliable results when compared with 

other more data hungry approaches (Sjögren-Gulve and Hanski 2000; Hokit et al. 
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2001). In the IFM, the stationary probability of occupying a given patch i at time t is 

given by  iiii ECCJ  , where iC is the constant colonization probability per unit 

time when patch i is empty, and iE  is the constant extinction probability per unit time 

when the patch i is occupied (Hanski 1994).  In our study these probabilities were 

respectively given as (Hanski 1994, 1999): 


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where iS is the connectivity, defined as b

jijj

c

ii AdpAS )exp(    (Moilanen and 

Nieminen 2002), with 
ijd  representing the distance between patches i and j. The 

constants e, x, y, and α represent the IFM parameters affecting the extinction risk and 

colonization probabilities in each patch (Hanski 1999). Parameter e gives the 

probability of extinction in a patch of unit area, which can be given by 𝐴𝑜
𝑥, where A0 is 

the critical area below which the species cannot persist (Etienne et al. 2004). 

Parameter x describes the strength of the relation between extinction risk and patch 

area (and consequently local population size, which is assumed to be directly 

proportional to the area). This parameter may be considered as a proxy of 

environmental stochasticity, with a lower x corresponding to higher stochasticity: x>1 - 

there is a critical area beyond which extinction probability is very low; x<1 - the 

extinction risk of even large populations (which are in larger patches) is high (Hanski 

1994). Parameter y in the connectivity function defines how fast the colonization 

probability approaches one with increasing connectivity, giving the colonization 

efficiency of empty patches (Hanski 1994). Finally, parameter α is related with the 

dispersal ability (α=1/species dispersal ability) and it is a proxy for the survival rate of 

the individuals in the distance 
ijd  while moving between the patches i and crossing an 

inhospitable matrix (Hanski 1994). In our simulations, possible rescue or Allee effects 

were not considered, though the effect of the area of the focal patch (Ai) was 

accounted for, by setting the parameter c=1. This approach considers that larger 

patches attract more migrants, thus providing a better destination for emigrants 

(Moilanen and Nieminen 2002). 
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2.2. Generation of virtual species  
 
Because estimating the impact of landscape dynamics under different scenarios of 

habitat availability is hard to approach experimentally, we generated a set of virtual 

species, each covering a particular IFM parameter space, and exhibiting one of three 

possible habitat successional preferences (early, mid, and late successional). The use of 

virtual species is widespread in ecological studies (e.g. Hirzel et al. 2001) and the value 

of simulation as an experimental environment has been widely acknowledged (Peck 

2004; Zurell et al. 2009), particularly in complex ecological systems, and in studies 

involving large spatial and temporal scales (Ims 2005). 

A total of 54 virtual species were defined, by considering 18 combinations of IFM 

parameters for each of three categories of successional habitat preferences. 

Parameter α was set at three levels defining high (0.001), mid (0.004), or low dispersal 

ability (0.02). ii) The species critical area, A0, (which is used in conjunction with x to 

compute e) was derived based on the mean patch area (MPA), with two levels: 0.05 

(10% of MPA) and 0.1 (20% of MPA). Parameter y was varied in order to allow for three 

colonization probabilities considering patch connectivity: 5 (highest colonization 

efficiency), 10 and 20 (lowest colonization efficiency). Finally, the parameter x was 

kept at 1 in all virtual species, as our main focus is on the species ability to colonize the 

landscape and on landscape structure and dynamics (Table 1).  
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Table 1 – IFM parameter values used to generate the virtual species included in the 

study.  

Parameter Parameter value 

α (inverse of mean dispersal ability - related with 

the minimum interpatch distance, MID) 

0.02 (Lower dispersal ability) 

0.004 

0.001 (Higher dispersal ability) 

y (colonization efficiency) 5 (higher colonization efficiency) 

10 

20 (lower colonization efficiency) 

x (Lower values correspond to higher 

environmental stochasticity) 

1 (fixed value) 

A0 (Critical area – area bellow which the 

populations are extinguished) 

0.05 (10% of MPA) 

0.1 (20% of MPA) 

e (Local extinction – computed from all 

combinations of A0 and x, using A0
x
) 

0.05 

0.1 

 

 

Habitat preferences (early-, mid- or late-successional patches) were specified by 

integrating patch age (i.e., time since patch creation) into the extinction probability 

formula ( isE ), such that the ability of a patch to sustain a given species could be 

influenced by an additional temporal factor ( itE ), described graphically in fig. 1.  
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Figure 1 – Graphical representation of variation in extinction probability in relation to 

patch age (i.e., time since creation) for virtual species with different successional 

habitat affinities: a) early-successional (left): 𝐄𝐢𝐭 =
𝟏

𝟏+𝐞𝐱𝐩⁡(−𝟎.𝟎𝟗×𝐩𝐚𝐭𝐜𝐡⁡𝐚𝐠𝐞)
; b) mid-

successional (center): for 𝐩𝐚𝐭𝐜𝐡⁡𝐚𝐠𝐞 < 𝟓𝟎, 𝐄𝐢𝐭 = 𝐞𝐱𝐩(𝟎. 𝟎𝟖 × (−𝐩𝐚𝐭𝐜𝐡⁡𝐚𝐠𝐞)) and for 

𝐩𝐚𝐭𝐜𝐡⁡𝐚𝐠𝐞 ≥ 𝟓𝟎, 𝐄𝐢𝐭 = 𝐞𝐱𝐩⁡(𝟎. 𝟎𝟖 × (𝐩𝐚𝐭𝐜𝐡⁡𝐚𝐠𝐞)) ; c) late-successional (right): 

𝐄𝐢𝐭 =
𝟏

𝟏+𝐞𝐱𝐩⁡(𝟎.𝟎𝟗×𝐩𝐚𝐭𝐜𝐡⁡𝐚𝐠𝐞)
. 

 

For species preferring early stages of habitat succession (i.e. “young” patches), the 

extinction probability was taken to change according to a negative sigmoid function 

(Fig. 1a), while for species preferring mid successional habitats a parabola was used 

(Fig. 1b). For species preferring late successional habitats (i.e. (“old” patches), the 

extinction probability was determined by a positive sigmoid function (Fig. 1c). These 

curves are representative, for instance, of different groups of plant, butterfly and bird 

species using Mediterranean forests during a long term successional vegetation 

recovery after undergrowth clearing (Porto et al. 2011; Santana et al. 2011, 2012; 

Verdasca et al. 2012).  

 

2.3. Landscape simulation scenarios  
 

Landscapes in our virtual ecological model consisted in 3163 x 3163 m2 areas (ca. 1000 

ha), which were represented as graphs considering two habitat classes: suitable 

habitat and matrix. We first set three scenarios of habitat availability by defining 

landscapes with 5%, 10%, and 20% habitat cover, and considering a mean (±sd) patch 

area of 0.5±0.2 ha, and a minimum inter-patch distance of 10 m. This resulted in 
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landscapes with 100, 200, and 400 initial habitat patches for the landscapes with 5%, 

10% and 20% habitat cover, respectively. It should be noted that these areal measures 

are arbitrary, and so units expressed in meters could as well be expressed in 

kilometres, for instance, if were interested in modelling species with larger range sizes 

and higher dispersal abilities. 

Landscape dynamics was described as the number of patches being destroyed and 

created in each time step of the Markov process. This was defined by selecting the 

percentage of patches to be created and destroyed from a Poisson distribution. In each 

scenario of habitat availability, SPOM simulations considered landscape dynamics of 

0%, 5%, 10% and 20%, totalling 12 scenarios of habitat availability and dynamics. 

Succession at each patch was accounted for by considering the time units since patch 

creation, which then interacted with the extinction probability as a function of patch 

age to determine species habitat preferences along the succession.  

  

2.4. Computational implementation of SPOMs 
 

Simulations were run using the “MetaLandSim” package, version 0.5.2 (Mestre et al. 

2016), which provides a convenient virtual environment for studying metapopulation 

persistence in dynamic landscapes. The package was run in R, version 3.3.1 (R Core 

Team 2016), using a computer with a 12x Intel(R) Core(TM) i7-3960X CPU,  3.30GHz 

processor;  32 GB memory and an Ubuntu 14.04.3 LTS operating System. Parallel 

computing with 6 processors was used, requiring the packages “paralell” (R Core Team 

2016), “foreach” (Revolution Analytics and Weston 2015a) and “doParallel” 

(Revolution Analytics and Weston 2015b). 

SPOM simulations for each of the 54 species in each of the three scenarios of habitat 

availability and four landscape dynamisms considered (= 648 simulations) were run 

with 500 iterations, along 100 time steps, and considering an initial occupation of 50% 

of patches selected randomly.  The metapopulation density was estimated as the 

faction of occupied patches after 100 time steps, and averaged across iterations for 

each combination of parameters and habitat preferences. Preliminary analysis showed 

that the number of iterations was sufficient for obtaining stable results (Fig. A1 in the 

Supplementary Material #1). Simulations were grouped in three blocks defined 
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according to the species habitat successional preferences, totalling 216 simulations per 

simulation block. Each of the three simulation blocks took approximately five days to 

run. 

 

3. Results 
 
Simulations indicated that, in general, metapopulation density increases with 

increasing species dispersal abilities (i.e. higher α values) and, to a much lesser extent, 

colonization efficiencies (lower y values) (fig. 2). In particular, the simulations regarding 

metapopulation dynamics along 100 time steps for species with the lowest dispersal 

abilities (α=0.02), reached quasi-extinction (i.e., very low metapopulation densities) in 

all simulated scenarios of habitat amount and landscape dynamics, independently of 

habitat preferences. However, species showing preference for early-successional 

habitats tended to show higher metapopulation densities in dynamic landscapes than 

species associated with mid- and late-successional habitats (figures A2 to A4 in the 

Supplementary Material #1).  
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Figure 2 – General tendencies of variation in metapopulation density (i.e. fraction of 

occupied patches after 100 time steps) in relation to species dispersal ability (A) and 

colonization efficiency (B). Lines represent the averages observed for early- (full line), 

mid- (dashed line) and late-successional species (dotted line). The insets are examples 

of simulation results observed for virtual species. 

 

Results further evidenced clear IDH effects in some of early-successional species, as 

indicated by the ∩-shaped responses to landscape dynamics in about 16.7% of species 

and habitat availability scenarios (Figure A2 in the Supplementary Material #1). In 

particular, metapopulation densities by species with mid to high dispersal abilities 

(α=0.004 and α=0.001) seemed to increase towards intermediate levels of patch 

turnover (5-10%) depending on the proportion of total habitat available (fig. 3). 

Colonization efficiency also appears to play a role in the IDH effect, though much less 

clear than dispersal distance. Species with mid dispersal abilities (α=0.004) and mid to 
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high colonization efficiencies (y=5 and y=10) showed positive responses to 

intermediate landscape dynamics mostly at high habitat availability, with five cases 

with 20% habitat cover (species 2, 5, 8, 11 and 14; fig.3 and figure A2 in the 

Supplementary Material #1). The exception was species 8, which has low colonization 

efficiency but compensates by having low local extinction: e=0.005.  

 

 

Figure 3 – Examples of variation in metapopulation density (i.e. fraction of occupied 

patches after 100 time steps) in relation to landscape dynamism, for early successional 

species with mid and high-dispersal ability, and landscapes with three levels of 

available cover. Positive responses to intermediate disturbances (i.e., IDH-like 

responses) are evident for species 2 (left column: α=0.004; x=1; y=5; e=0.05) and 6 

(right column: α=0.001; x=1; y=10; e=0.05).  

 

Species with high dispersal abilities (α=0.001), and mid to low colonization efficiencies 

(y=10 and y=20 – with the exception of species 3), tended to exhibit positive responses 

to intermediate levels of landscape dynamics mostly at low amounts of available 
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habitat, with four cases with 5% habitat cover (figure A2 in the Supplementary 

Material #1, species 6, 9, 15 and 18), and 1 case with 10% habitat cover (figure A2 in 

the Supplementary Material #1, species 9). 

No IDH effects were detected for species preferring mid- to late-successional habitats, 

for which increased levels of landscape dynamics consistently resulted in the decline of 

metapopulation densities rates, a tendency that was much amplified for species with 

reduced dispersal abilities (Figures A3 and A4 in the Supplementary Material #1). In 

particular, high metapopulation densities were only retained in dynamic landscapes for 

species showing high dispersal abilities (α=0.001), and for mid-successional species 

with high colonization efficiencies (y=5) in landscapes with larger amounts of suitable 

habitat (20% cover) and subjected to low (0-5%) dynamism (Figure A3 in the 

Supplementary Material #1, species 20 and 29). However, late-successional species 

with high dispersal abilities (α=0.001) may also become extinct relatively fast in 

landscapes with reduced habitat availability, if they also show reduced colonization 

efficiencies (y=20) (Figure A4 in the Supplementary Material #1, species 54).    

 

4. Discussion 
 

Our study based on simulated experimental trials on virtual species presenting 

different successional habitat preferences and metapopulation dynamics, largely 

confirmed the general idea that in most cases landscape dynamics should decrease 

metapopulation persistence, as local extinction probabilities will increase due to direct 

mortality resulting from patch destruction (e.g. Akçakaya et al. 2004; Snäll et al. 2005). 

However, it also confirmed the “intermediate disturbance hypothesis”, showing that, 

in some instances, metapopulations may respond positively to intermediate levels of 

landscape dynamics (e.g. Stelter et al. 1997; Wahlberg et al. 2002; Matlack and Monde 

2005; Kun et al. 2009; Govindan et al. 2015). Additionally, it contributed to understand 

the combination of species traits and landscape characteristics that determine such 

responses (e.g. Van Teeffelen et al. 2012). Specifically, we found that intermediate 

landscape dynamics benefited some early successional species, which are well adapted 

to habitat disturbance and recovery (such as those in Stelter et al. 1997; Wahlberg et 

al. 2002; Govindan et al. 2015), but only under particular levels of patch turnover and 
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habitat amount, and depending on species dispersal and colonization efficiencies. 

Although these inferences were based on simulations rather than on empirical 

observations, we believe that they should apply over a wide range of real 

metapopulations, as our simulations encompassed a large variety of realistic 

metapopulation parameters and landscape scenarios. Overall, our simulation-based 

approach contributed to the identification of key population and ecological attributes 

that determine how species respond to landscape dynamics, which may help 

ecologists to predict general patterns of metapopulation responses to environmental 

disturbance over a range of taxa and ecological systems.  

 

4.1. Limitations and potential shortcomings 
 

The simulation conditions used in our study were necessarily limited, representing a 

compromise between computation time and the need to incorporate a range of 

variation as large as possible. Regarding the parameter space, we have tried to 

encompass the variability often observed in real metapopulations and landscapes, 

though we recognise that considering larger variation would allow exploring the 

dynamic behaviour of more metapopulation typologies. For instance, we restricted 

variation in habitat amount to between 5% and 20% of the landscape, though some 

metapopulations may occur in landscapes with more (or less) habitat. However, we 

placed a cap at 20% because species with high dispersal ability living in fragmented 

landscapes with larger habitat amounts may behave like a single population rather 

than as a true metapopulation (Hanski and Gilpin 1991; Harrison and Taylor 1997). 

Likewise, metapopulations inhabiting landscapes with very low habitat amounts (<5%) 

may go inevitably extinct or become completely isolated irrespective of landscape 

dynamics (Harrison and Taylor 1997). We suggest, however, that it may be worth 

exploring the dynamic behaviour of metapopulations using parameters beyond the 

range used in our study, particularly where these parameters are based on empirical 

observations from real populations. 

In our study we have also restricted simulations to the case where the 

creation/destruction of patch follows a Poisson process with a given mean probability. 

This was considered reasonable as a first approximation to explore the consequences 
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of patch turnover and successional dynamics, though more complex situations may 

occur in real landscapes. For instance, patch creation/destruction may be spatially 

correlated due for instance to the effects of fire, flooding or human activities, which 

may have consequences to metapopulation dynamics (Johst and Drechsler 2003). 

Likewise, disturbance probability may not be evenly distributed across patch ages, as 

some ages may be far more vulnerable than others (Van Teeffelen et al. 2012). For 

instance, forest fuels accumulate with time since disturbance, and so the occurrence of 

high-intensity fires are most likely in late- and mid-successional habitat patches (Porto 

et al. 2013). Exploring such complexities should be the subject of further research, 

aiming to understand how they affect metapopulation persistence of species with 

different habitat affinities. 

 

4.2. Metapopulation persistence in dynamic landscapes  
 

Our results supported the prediction that metapopulation persistence is generally 

negatively affected by landscape dynamics (Keymer et al. 2000). However, such effects 

were much weaker for early successional species, supporting the prediction that patch 

turnover should be much less detrimental for species that are well adapted to 

disturbances, such as fire, flooding, clear-cutting, or forest clearing (e.g. Stelter et al. 

1997). This is probably because static landscapes will cause the patches to evolve to 

late successional stages, thus rendering theses patches inadequate. In contrast, 

dynamic landscapes will continuously produce new habitats, which if successfully 

colonized will slow down the metapopulation extinction rates over time (e.g. Stelter et 

al. 1997; Wimberly 2006). Moreover, among the early successional species, some 

metapopulations showed positive responses to intermediate levels of landscape 

dynamics, suggesting that habitat turnover may increase metapopulation persistence 

over time until some critical rate, above which it will quickly decline (e.g. Stelter et al. 

1997; Keymer et al. 2000; Wahlberg et al. 2002). This suggests that, for such species, 

an intermediate level of landscape dynamics will promote the creation of a sufficient 

number of new patches without the effect of extinction being overwhelming, thus 

improving species occupancy and persistence.   
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According to our results the most important factor affecting the emergence of IDH 

effects on metapopulation persistence should be the species’ habitat successional 

preference, since all the species that exhibited such an effect were early successional. 

However, the interaction between species dispersal abilities and habitat proportion 

seems to be also critical for the emergence of IDH effects on metapopulations of early 

successional species. In particular, those exhibiting relatively high dispersal abilities 

and colonization efficiencies (though the effect of dispersal is much more clear) in 

landscapes with lower amounts of suitable habitat. Also species with mid dispersal 

abilities and lower colonization efficiencies in landscapes with larger amounts of 

suitable habitat, frequently responded positively to intermediate levels of habitat 

dynamics. This seems contrary to the results of Kun et al. (2009), which suggest IDH 

effects on species with limited dispersal abilities. However, these authors considered 

overall habitat percentage covering between 40 and 60% of the landscape, which 

corroborates the idea that IDH effects should in part result from the interplay between 

habitat availability and species dispersal, appearing in species with long dispersal 

distances when habitat amount is small, and for species with small dispersal distances 

when habitat amount is large.  It is worth mentioning that, in the context of true 

metapopulations, the availability of suitable habitat in the landscape should be 

generally much lower than 40-60%, since true metapopulations imply that species 

should have some interpatch dispersal, but not enough to be considered a patchy 

population, which has unrestrained interpatch movement (Harrison and Taylor 1997). 

This suggests that IDH effects should be more frequent in early successional species 

with mid to high dispersal abilities.  

Although the affinity for early-successional habitats was the main mechanism invoked 

in our study to explain the positive effect of intermediate disturbances, there may be 

other advantages arising from landscape dynamics. Loehle et al. (2007) and Zeigler and 

Fagan (2014) suggested that the creation and destruction of habitat patches would 

provide intermediate windows of connectivity, thus improving metapopulation 

persistence. This argument is also presented by Kun et al. (2009), highlighting the 

trade-off between the positive effect of these temporary stepping stones, and the 

negative effect of increasing the disturbance. In our case this effect might act in 

conjunction with the early successional preference and be much more reduced in mid 

201



 

 

or late successional species, since extinction is higher in early successional patches for 

these species, thus reducing its potential as stepping stones. 

 

4.3. Conservation implications 
 

Although our study did not apply to any real species in particular, it provides some 

heuristic guidance towards metapopulation conservation. First and foremost, our 

study adds to the results of a relatively few other studies emphasising the importance 

of considering the rates of patch destruction and creation in dynamic landscapes (e.g. 

Loehle et al. 2007; Van Teeffelen et al. 2012; Zeigler and Fagan 2014). This is critical, 

because the persistence of most species clearly declines with increasing patch 

turnover rates, while others are benefited by such dynamism. Therefore, the optimal 

patch turnover to be maintained in a landscape should depend on the particular 

species or groups of species that are targeted for conservation. 

Second, changes in habitat quality linked to successional dynamics also need to be 

considered in metapopulation modelling, because they strongly affect variation in 

metapopulation responses to patch turnover in relation to species habitat preferences. 

Specifically, it needs to be explicitly considered that a new patch may take several time 

units (e.g., years) to become progressively favourable for a late-successional species, 

or otherwise to become progressively unfavourable for an early-successional species. 

This was observed, for instance, during the process of vegetation succession after 

undergrowth removal in Mediterranean cork oak Quercus suber forests, where the 

abundance of some annual herb and butterfly species generally peaked just a few 

years after disturbance and then declined, whereas several birds and long-lived shrubs 

and trees took many decades to recover (Porto et al. 2011; Santana et al. 2011, 2012; 

Verdasca et al. 2012). Integrating patch turnover and successional habitat preferences 

may thus allow addressing the landscape persistence of these types of species in a 

metapopulation context. 

Finally, we suggest that our approach based on the package MetLandSim (Mestre et al. 

2016) should provide a relatively simple but powerful framework to address 

metapopulation conservation in real landscapes. This would require parameterising 

202



 

 

the model with values estimated in the field from real metapopulations, which could 

then be used to simulate how persistence and patch occupancy is expected to vary as 

a function of different realistic scenarios of landscape dynamism. Although at present 

the package only allows for variation in patch turnover and total habitat amount, it 

should be relatively easy to incorporate other complexities such as variation in patch 

configuration (Vuilleumier et al. 2007), and in the spatial arrangement and intensity of 

disturbances (Johst and Drechsler 2003; Vuilleumier et al. 2007).  
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Supplementary Material #1 

 

Evolution of the simulation stability with the number of iterations 

In order to evaluate the stability of the output with the number of iterations used, 

simulations were first ran with 1000 iterations for 10 randomly selected species at the 

higher (20%) landscape dynamism, which is the scenario presumably yielding higher 

perturbations. The final landscape occupation by each species was then assessed using 

a cumulative higher number of iterations. This process was repeated 10 times per 

species, and suggested that 500 interactions are sufficient to produce stable results 

(Fig. A1). 
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R Script for the virtual scenarios simulation 

###################################################################### 

#                 R SCRIPT FOR RUNNING THE SIMULATIONS               #            

###################################################################### 

 

#Loading MetaLandSim 

library(MetaLandSim) 

 

 

#################################################### 

##                 Used Packages                  ## 

#################################################### 

 

#Loading packages 

library(parallel) 

library(foreach) 

library(doParallel)  

 

#Citation details 

citation (package = "parallel") 

citation (package = "foreach") 

citation (package = "doParallel") 

citation(package = "base", lib.loc = NULL) 

 

 

#################################################### 

##       Creating parameter data frame            ## 

#################################################### 

 

#Control columm 

clock <- rep(c(1:18),each=12)#Each scenario 

 

#Species parameters 

par_a <- rep(rep(c(0.02, 0.004, 0.001),6),12)  

par_y <- rep(rep(c(5,10, 20),each=3,2),12)  

A_MIN_SPECIES1 <- rep(rep(c(0.05, 0.1),each=9),12)  

par_x <- rep(rep(1,18),12)  

par_e <- A_MIN_SPECIES1^par_x  

 

#Landscape and simulation parameter columns 

PAR1_SPAN1 <- rep("stoc", 216) 

 

PAR2_SPAN1 <- rep(rep(c(0, 5, 10, 20),3),each=18)  

PAR3_SPAN1 <- rep(rep(c(0, 5, 10, 20),3),each=18)  

NPATCH1 <- rep(rep(c(100, 200, 400),each=4),each=18)#number of patches  

 

PAR4_SPAN1 <- rep("NULL",216)#parameter 4 for the span function  

PAR5_SPAN1 <- rep("NULL",216)#parameter 5 for the span function  

METHOD_SPECIES1 <- rep("percentage",216)#method for populating the 

landscape 

PARM_SPECIES1 <- rep(50,216)#parameter for the species function  

NSEW_SPECIES1 <- rep("none",216)#where to start populating the 

landscape 

AREA_M1 <- rep(0.5, 216)#mean area 

MAPSIZE1 <- rep(3163,216)#dimension of the landscape  

SPAN1 <- rep(100,216)#number of time steps of each simulation  

ITER1 <- rep(500,216)#number of iterations of each simulation  

AREA_SD1 <- rep(0.2,216)#area sd  

MDST1 <- rep(10, 216)#minimum distance between  

KERN <- rep("op1",216)#kernel function  
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CONN <- rep("op2",216)#connectivity function  

COLNZ <- rep("op1",216)#colonization function  

EXT <- rep("op1",216)#extinction function  

BETA1 <- rep("NULL",216)  

B <- rep(1,216)  

C1 <- rep(1,216)  

C2 <- rep("NULL",216)  

Z <- rep("NULL",216)  

R2 <- rep("NULL",216)  

dispersal <- 1/par_a  

succ <- rep("early",216) #successional preference (run all the code 

three times: to “early”, “mid” and “late” successional preference) 

 

#Creating the data frame 

simulation1 <- data.frame(clock, par_a, par_y, par_x, par_e, MDST1, 

NPATCH1, AREA_M1, AREA_SD1, MAPSIZE1, SPAN1, ITER1, PAR1_SPAN1, 

PAR2_SPAN1, PAR3_SPAN1, PAR4_SPAN1, PAR5_SPAN1, NSEW_SPECIES1, 

PARM_SPECIES1, METHOD_SPECIES1, KERN,CONN, COLNZ, EXT, BETA1, B,C1, 

C2, Z, R2, dispersal, succ) 

 

 

#Delete the individual data frame columns 

rm("clock", "PAR1_SPAN1", "PAR2_SPAN1", "PAR3_SPAN1", "PAR4_SPAN1", 

"PAR5_SPAN1", "A_MIN_SPECIES1", "NSEW_SPECIES1", "PARM_SPECIES1", 

"METHOD_SPECIES1", "MAPSIZE1", "SPAN1", "ITER1", "NPATCH1", "AREA_M1", 

"AREA_SD1", "MDST1", "KERN", "CONN", "COLNZ", "EXT", "BETA1", "B", 

"C1", "C2", "Z", "R2", "dispersal", "par_x", "par_e", "par_y", 

"par_a", "succ") 

 

 

#################################################### 

##      Parallel computing related code           ## 

#################################################### 

 

#### Function used to clean memory after disconnecting the cluster  

unregister <- function() { 

  env <- foreach:::.foreachGlobals 

  rm(list=ls(name=env), pos=env) 

} 

 

#### Number of processors 

N_cpu <- 5 

 

#### Creating and registering a cluster with a given number of 

clusters 

cl <- makeCluster(N_cpu) 

registerDoParallel(cl, cores = N_cpu) 

 

 

#################################################### 

##       Preparing data for simulation loop       ## 

#################################################### 

 

#Species 

par2_2 <- list() 

 

for(i in 1:18){ 

   

  df1 <- create.parameter.df(alpha=as.numeric(simulation1[i,2]), 

x=as.numeric(simulation1[i,4]), 
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                             y=as.numeric(simulation1[i,3]), 

e=as.numeric(simulation1[i,5])) 

   

  par2_2[[i]] <- df1 

   

} 

 

#Landscape and simulation 

par3_2 <- list() 

 

for(i in 1:18){ 

   

  pa1 <- par2_2[[i]] 

   

  simulation2 <- simulation1[simulation1$par_a==pa1[1,1] & 

simulation1$par_x==pa1[2,1]&  

                               simulation1$par_y==pa1[3,1]& 

simulation1$par_e==pa1[4,1], ] 

   

   

  df2 <- 

data.frame(simulation2[,6],simulation2[,7],simulation2[,8],simulation2

[,9],simulation2[,10],simulation2[,11], 

                    

simulation2[,12],simulation2[,13],simulation2[,14],simulation2[,15],si

mulation2[,16],simulation2[,17],simulation2[,18],simulation2[,19], 

                    

simulation2[,20],simulation2[,21],simulation2[,22],simulation2[,23],si

mulation2[,24],simulation2[,25],simulation2[,26],simulation2[,27], 

                    

simulation2[,28],simulation2[,29],simulation2[,30],simulation2[,31],si

mulation2[,32]) 

   

  name_2 <- 

names(simulation1[c(6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,

24,25,26,27, 

                                28,29,30,31,32)]) 

  names(df2) <- name_2 

   

  par3_2[[i]] <- df2 

   

} 

 

 

#clean environment 

rm(df1) 

rm(pa1) 

rm(simulation2) 

rm(df2) 

rm(name_2) 

rm(i) 

 

#################################################### 

##            Running the simulation              ## 

#################################################### 

 

cluster_6 <- system.time( 

  result1 <- foreach(i = 1:length(par2_2), .packages = 

c("MetaLandSim"))  

  %dopar% {  

    try({ 
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      df3 <- par2_2[[i]] 

      df4 <- par3_2[[i]] 

       

      ms1_2 <- manage_landscape_sim(par_df = df4, parameters_spom = 

df3) 

       

      save(ms1_2, file = paste('result','_', i ,'.RData',sep='')) 

       

      return(ms1_2)  

       

    }) 

  } 

) 

 

 

#################################################### 

##         Saving global loop output              ## 

#################################################### 

 

save(result1, file = "total_sim_output.RData") 

 

 

#################################################### 

##              Disconnect cluster                ## 

#################################################### 

 

stopCluster(cl) # stoping cluster 

unregister() # clean memory 

registerDoSEQ() # Return to sequential computing 
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Chapter 6 

Conclusion 

 

 

It is widely acknowledged that climate change is currently affecting biodiversity 

(Parmesan, 2006; Parmesan and Yohe, 2003; Walther et al. 2002). The response of a 

species to climate change is extinction, adaptation or range shift (Parmesan, 2006). 

Range shifts, which are the main research focus of this thesis, raise a lot of questions 

regarding landscape and biodiversity management. The species range moves, allowing 

it to follow the climatic envelope with the ideal conditions for its persistence (Walther 

et al. 2002; Parmesan and Yohe, 2003; Parmesan, 2006). Frequently the species range 

shifts poleward (e.g. northward in the northern hemisphere) (e.g. Parmesan, 2006), 

but this raises an important question: will the landscape allow such a shift? This 

question brings us to the second point relevant to this thesis: landscape connectivity 

and its impact on species range expansion (Saura et al. 2014).    

The combination of both landscape and climate change poses major threats to the 

persistence of species (Hof et al. 2011; Opdam and Wascher 2004; Travis 2003), raising 

questions about the best conservation policies to slow down the ongoing biodiversity 

crisis. 

 

The aim of this work, which uses the Cabrera’s vole (Microtus cabrerae, Thomas, 1906) 

as model species, was to offer new approaches to improve Ecological Niche Models 

(ENM) and to consider simultaneously landscape and climate changes in projections of 

future species distribution, linking metapopulation dynamics at the landscape scale 

and species range shifts at regional and geographical scales. 
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1. Summary of the main findings 

1.1. Potential future changes in the Cabrera’s vole range  

Previous knowledge about the Cabrera’s vole distribution in Portugal and its 

environmental drivers (Mira et al. 2008) showed that the species prefers regions of 

intermediate annual rainfall, low to medium humidity and slightly acidic soils. Here, a 

much larger dataset was used, which resulted from i) updated data in Portugal after 

the paper by Mira et al. (2008), ii) inclusion of data from Spain, allowing a complete 

cover of all the species range (the Iberian Peninsula) and iii) additional data obtained 

during the field work, resulting in new locations of the species in 19 10x10 km square 

grids. The new models showed that the more suitable areas for the species have a 

precipitation around 50 mm during the warmest quarter of the year and in the wettest 

month, a mean diurnal temperature ranging between 10 and 12ºC, a mean 

temperature of wettest quarter bellow 15ºC, and a minimum temperature of the 

coldest month between -5ºC and 0ºC. This suggests that the Cabrera’s vole is strongly 

influenced by precipitation and temperature (avoiding areas with excessive rain or 

high temperatures). 

Araújo et al. (2011b), in a work about the impacts of climate change on Iberian 

vertebrates, revealed that the distribution range of the Cabrera’s vole would probably 

suffer a northward shift, as generally expected for species in this hemisphere 

(Parmesan and Yohe, 2003). Here, as shown in the second chapter, a slight northward 

shift is also apparent, although the prevalent pattern is the fragmentation of the 

regions with climatic suitability. Additionally, chapter four considered three 

connectivity scenarios in the projection of the species future potential range. In this 

chapter the combined effects of landscape and climate changes on species persistence 

were evaluated. The projection of the ENM into the future, using two climatic 

scenarios developed in chapter two, showed the impact of climate change on species 

persistence, by depicting the geographical areas with ecological suitability for the 

species (Mestre et al. 2015). However, the species might not have the ability to 

colonize all the areas with higher suitability, due to the low species dispersal ability, 

landscape permeability and the existence of barriers to dispersal (Peterson et al. 

2011). The spatially explicit dispersal model (SEDM), produced by MetaLandSim 

(Mestre et al. 2016), showed the probabilities of species future occurrence considering 
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its dispersal ability in three realistic scenarios of landscape connectivity (high, medium 

and low). Overall, results suggested that the species future distribution will be 

reduced, particularly under the low connectivity scenario. This decreases even more 

the suitable regions for Cabrera’s voles, by considering the accessibility to every 

portion of the Iberian Peninsula. Chapter four thus allowed responding to the main 

research question raised by the thesis, regarding the combined effects of climate and 

landscape change on the future distribution of Cabrera’s voles. By moving from a 

model solely based upon ecological variables (Chapter two) to one considering also 

reachability (Chapter four) we are shifting from “Ecological Niche Model” to “Species 

Distribution Model”. 

 

Generally, it can be concluded that Cabrera’s vole will be very much affected by 

climatic variables (Mestre et al. 2015), since it depends upon habitats that occur in 

moisty soils (Santos et al. 2006). Currently, the species avoids the regions of the Iberia 

Peninsula that are dryer or that have higher levels of precipitation (Mira et al. 2008; 

Mestre et al. 2015). Furthermore, the fourth chapter also showed that landscape 

configuration and the species dispersal limitations might reduce even more the 

potential future distribution of the species (Mestre et al. submitted). This is particularly 

evident if we consider the low connectivity scenario which should greatly limit the 

species ability to expand its range. 

 

1.2. Landscape dynamics and metapopulation density  

The fifth chapter (fourth paper, submitted) builds on the second, by using 

MetaLandSim to simulate metapopulation dynamics on changing landscapes. It focuses 

on landscape-level changes and its effects on species persistence. In this chapter, a set 

of 54 virtual species, encompassing a variety of different metapopulation parameters 

and three successional preferences (early, mid, and late successional species), was 

used to evaluate the effects of habitat amount and patch turnover on population 

persistence. The main objective of this paper was to characterize the species and 

landscapes types that promote occupancy peaks at intermediate levels of landscape 

dynamics. It was expected to uncover species traits that would maximize occupancy of 

the landscape at intermediate levels of dynamism in a way consistent with the 
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“Intermediate Disturbance Hypothesis” (IDH) developed by Grime (1973). The virtual 

landscapes upon which the simulations were made encompassed several levels of 

proportion of suitable habitat (5, 10 and 20%) and landscape dynamics (0, 5, 10, and 

20%).  

Globally, a decreasing metapopulation density with higher landscape dynamics was 

found, as predicted. However, species preferring early successional stages were shown 

to be more resilient then species with medium and high successional preferences. 

Furthermore, our result also demonstrated that species with higher dispersal ability 

have higher metapopulation density at the end of the simulations. 

The more relevant result, however, was the identification of the virtual species 

typology that exhibits an occupation pattern consistent with IDH-like responses to 

landscape dynamics. Generally, species with early successional habitat preference and 

under particular levels of patch turnover (5%) showed this type response. Regarding 

habitat amount and species dispersal, which were also highly relevant, those with mid 

to high dispersal abilities in landscapes with a proportion of at least 20% of suitable 

habitat and those with high dispersal ability with lower habitat cover (5%) showed IDH-

like responses to landscape dynamics. So, it appears that there is some interaction 

between dispersal ability and habitat proportion in determining the maximum 

metapopulation density at intermediate levels of landscape dynamics.  

The results of Kun et al. (2009) suggest IDH effects on species with limited dispersal 

abilities. However, the habitat available in these simulations was 40 and 60% of the 

landscape. This supports the idea that IDH effects should in part result from the 

interplay between habitat availability and species dispersal, being evident in species 

with long dispersal distances when habitat amount is small, and for species with low 

dispersal distances when habitat amount is high. 

These species, which benefit from some degree of spatial dynamics, will not be 

negatively affected by landscape change, if it is kept below a given threshold.  All the 

virtual species that showed IDH-like responses peaked metapopulation density at 

around 5% of landscape dynamics. Above this threshold the metapopulations tended 

to have a gradually lower density. Thus, when considering expansion of the range, the 

species with medium to high dispersal ability, that thrive in landscapes with dynamics 

around 5% might be considered pioneers that will expand easily into new available 
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habitats. However, if the landscape dynamics is over this threshold, then expansion 

into new regions will be impaired, making it difficult to follow the suitable climatic 

envelope. 

 

1.3. Methodological insights  

This thesis provides some innovative approaches. First of all is the approach taken to 

answer the research question in chapter two. In this chapter a step-by-step method 

was implemented in order to combine ecological niche modelling, field work and non-

invasive genetics. Rather than only projecting the species potential future distribution, 

the objective was to do so effectively, gathering the best information provided by 

ecological niche modelling, field work and non-invasive genetics. A first ecological 

niche model (ENM1) was calibrated using all the occurrence data in Iberian Peninsula 

previously known for the species. Then, at the range margins defined by ENM1, field 

work was conducted in order to evaluate the species presence in 40 10x10 km square 

grids (20 inside the predicted range and 20 outside of it). Non-invasive genetics was 

used to confirm the species occurrence, since several species have similar presence 

signs (particularly Microtus agrestis, and to some extent Arvicola sapidus juveniles). 

Finally, with the new occurrences (19) and the previous dataset (391) a new ecological 

niche model (ENM2) was calibrated. Both ENM1 and ENM2 were projected into the 

future to three periods (2020, 2050 and 2080) and two IPCC climate scenarios (A1b 

and B2).  

Although this is not an entirely new approach, since it draws from Guisan et al. (2006), 

it focuses more on sampling the range margins given by the first ENM. This option, to 

carry out the field work near the species projected range margins which were expected 

to represent also the ecological margins, is very relevant, since it aims to capture the 

extreme values of the species ecological niche, clarifying its boundaries. The second 

chapter confirms that the Microtus cabrerae range (geographical space) is a balanced 

representation of the environmental space (or ecological niche) of the species, since 

the additional field work at the range margins only slightly changed the species 

responses to extreme values of some ecological variables, suggesting that the species 

geographical distribution is limited by ecological, not geographical, factors. It succeeds 

in demonstrating that sampling areas close to the geographic limits of the range (but, 
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more importantly, which are in the limits of the species ecological distribution) enables 

the prediction of the species presence at areas with extreme values of its bioclimatic 

niche. It is important to mention here that the limits of the geographic range might not 

coincide with regions were the species is at its ecological extremes. This is due to the 

fact that there is not a direct translation between the geographic and ecological space 

due to effects of dispersal barriers, source-sink dynamics and/or species poor dispersal 

ability (Peterson et al. 2011). This improved modeling approach enables the 

refinement of the knowledge about a species’ ecological niche, improving current and 

future model projections. Thus, by combining modelling, field sampling and non-

invasive genetics, one can obtain a more reliable image of the future potential 

distribution, contributing to more informed conservation policies. 

The MetaLandSim R package (Mestre et al. 2016), which provided tools for the 

following chapters, was a major output of this thesis. This package can be thought of 

as a virtual environment and a scenario-producing tool. It can be used at two scales: 

landscape (habitat network level) and biogeographic (species range level).  

It is considered that landscape scale is the one where metapopulational dynamics take 

place, and MetaLandSim simulates these dynamics in changing landscapes, based upon 

Stochastic Patch Occupancy Models (SPOM) (e.g. Hanski, 1994, 1999). This is an 

innovative approach, since existing software packages simulate metapopulational 

dynamics in static landscapes (see supplementary material for comparison). Given the 

degree of human intervention, but also natural processes, landscapes are not generally 

static. Chapter five provides a good demonstration of the package usability at the 

landscape scale.  

The biogeographic scale encompasses the full range of the focal species. At this scale 

the species distribution is determined by climatic variables, large scale barriers (e.g. 

mountain chains, rivers) and the species ability to expand its range (Peterson et al. 

2011). MetaLandSim uses a simple upscaling approach to simulate such a range 

expansion. The algorithm implemented is based on the expansion of the species 

through several contiguous landscape units (square areas with landscape graphs), until 

the time steps considered for simulation are over. Within each landscape unit 

metapopulational dynamics are simulated resorting to SPOMs to emulate the natural 

processes. The transition rule between landscape units has been improved since the 
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publication of the paper. The transition from one landscape unit to the next is allowed 

when (and if) one patch located in an area strip delimited by the landscape unit 

adjacent margin and half of the mean dispersal ability for the species is occupied. If 

this occupation takes place, than the species will expand to the next landscape unit, 

where it occupies all patches in an area strip delimited between the adjacent margin 

and half the mean dispersal ability of the species in a proportion identical to the 

previous landscape. The repetition of such simulations allows the conception of a 

dispersal kernel which, in turn, is used to produce the dispersal model (DM), resulting 

from the evaluation of the species capacity to expand through successive landscape 

units. This DM can be coupled with an ecological niche model (ENM) in order to 

capture both the species ability to disperse and the climatic suitability. The first of 

these factors is influenced by the intrinsic dispersal ability of the species and by the 

landscape configuration. MetaLandSim allows a variety of connectivity, dispersal 

kernels, colonization, and extinction functions.  

Chapter four is a good example of the applicability of MetaLandSim at the 

biogeographical scale. It demonstrated how joining the ENM and the SEDM produced 

by MetaLandSim, promotes the creation of a more accurate projection of species 

potential future distribution. This followed a scenario-building strategy by creating 

projections for 2050 and 2080 in two climatic scenarios (A1b and B2) and three 

landscape connectivity scenarios (high, medium, low). It provided a clear 

demonstration of the package use in producing SEDMs to limit the potential future 

species distribution considering reachability. Furthermore, MetaLandSim provides the 

critical link between landscape-level processes, such as landscape change, and 

biogeographical-level processes, such as the effect of climate on species range.  

MetaLandSim is, in effect, a virtual environment, encompassing landscapes and species 

and allowing the implementation of virtual ecological experimentation in landscape 

ecology, a field that due to the spatial and temporal scales frequently considered is 

difficult to approach using traditional experimental techniques (Ims, 2005; Zurell et al. 

2009). 
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2. Follow-up research 

These modelling-based approaches are interesting in itself but, most importantly, they 

should have relevance for designing species conservation policies. The modelling 

outputs offer a valuable tool in informing conservation practitioners concerned with 

landscape and climate change impacts on biodiversity. Future research has to be 

concerned with continuously improving the estimates of future distribution and the 

integration of scales. This relates with several practical aspects of the design of 

conservation areas and connectivity corridors. Modelling is fundamental in answering 

questions related with, for instance, the size and number of areas and the location of 

connectivity corridors. It also relates with the question of which are the more 

adequate conservation policies considering the knowledge we have on the species 

biology and ecology (Alagador et al. 2014 and 2016; Ovaskainen, 2002b). It is 

fundamental to know the species spatial strategy to decide which is the adequate size 

of a reserve, the number of reserves and the maximum distance amongst them. This is 

where tools such as MetaLandSim might be very useful. Then, having the outputs of 

these modelling approaches, conservation practitioners should decide which are the 

optimal conservation strategies to the species, considering its spatial strategy and 

environmental preferences. 

Furthermore, it might be relevant to evaluate if the current distribution of Cabrera’s 

vole is affected by interactions with competing species and to what extent these could 

affect model projections (Araújo and Luoto, 2007; Wisz et al. 2013).  Additionally, in 

what way can these interactions be evaluated and incorporated into the ENM 

procedure? This is also part of a much needed continuous effort to improve the 

modelling procedures, which should produce accurate results without making the 

whole process too complex. Modelling should be understood by the user and it should 

not be seen as a black box process.  

Regarding the more theoretical questions addressed here, particularly in the fifth 

chapter, where virtual species are used to evaluate the Intermediate Disturbance 

Hypothesis how can we move to more realistic models, including, for instance, patch 

configuration (Vuilleumier et al. 2007), and/or the spatial arrangement and intensity of 

disturbances (Johst and Drechsler, 2003; Vuilleumier et al. 2007)? 
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Also, several additional improvements might be made to MetaLandSim. Amongst the 

most relevant are the consideration of spatial variation in the suitability of the 

landscape matrix and the development of more robust parameter estimation methods 

for the SPOM (e.g. adapting the functions of Risk et al. 2011).  

Here the matrix was considered homogeneous, which is far from reality, but is a 

needed simplification. Models are a simplified representation of real world that should 

allow the user to understand which variable is causing an effect. For the purposes of 

the fifth chapter the matrix was not highly relevant, as the focal question concerned 

habitat patch dynamics. Introducing matrix heterogeneity would cause unnecessary 

noise, which would make the output more difficult to understand. However, several 

other research questions, related specifically with matrix permeability and 

heterogeneity, might be posed (e.g. Revilla et al. 2004 and Ricketts, 2001). 

In what concerns the parameters estimation, MetaLandSim has a very simple 

approach, which is not ideal. However the focus of the package has been to act as a 

virtual environment were several competing scenarios might be simulated. The user 

has other available tools which make it possible to estimate the species SPOM 

parameters outside of MetaLandSim (e.g. Moilanen, 1999 and Ter Braak and Etienne, 

2003). However, in an effort to make the package more complete, the parameter 

estimation utilities should be improved. This would not take an enormous amount of 

effort, since robust R functions are already available in the supplementary material of 

the package by Risk et al. (2011). These functions should be adapted to the package 

objects structure, and incorporated into MetaLandSim. 

Other smaller improvements might also be made to the package, such as for example 

the consideration of real landscapes with the actual patch shape. Currently 

MetaLandSim considers landscapes to be graphs, e.g. nodes (habitat patches) which 

are interconnected. Differently from the traditional graph approach, however, these 

nodes only have a binary relation (connected/not connected) for graphical 

representation; the simulations procedure considers inter-node distance as a proxy for 

connectivity. But, since the habitat patches are circles in this graph-like landscape, the 

inter-node distance is dictated by the radius and Euclidian distance. To better 

approach real landscapes, MetaLandSim should account for patch shape. This has two 

practical consequences: i) the inter-node distance has to account for patches shape 
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and ii) the graphical representation has to depict the true patch shape. This might be 

useful if, rather than simulating on virtual landscapes, the user wants to simulate 

metapopulational dynamics on real landscapes, or if the user needs to derive 

connectivity metrics for a real landscape. Some users of MetaLandSim have expressed 

their interest in such an improvement.  

   

In conclusion, this thesis was able to answer the proposed research questions 

regarding Cabrera’s vole future potential distribution and to develop some new 

approaches to incorporate dispersal and landscape connectivity into the projections. 

Additionally it lays out future paths for research, which will certainly contribute to the 

improvement of modelling and simulation procedures, and to provide more accurate 

results for informed conservation policies. 
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