


To my parents and my brother





A C K N O W L E D G E M E N T S

First I want to thank the energy and affection received from my
parents and my brother. They were always there and they gave me
the necessary strength to get here.

To Professor Feliz Minhós that was more than a mentor. He gave
birth to these pages and made them grow. I appreciate all the sup-
port, tolerance, suggestions, rigor and discipline transmitted.

I can not forget all my friends for their enthusiasm and motiva-
tion. They were the lower and upper solutions that bound all my
problems.

vii





C O N T E N T S

Introduction 1

i Sturm-Liouville boundary value
problems on the half-line 7

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Third order boundary value problems 11
1.1 Definitions and auxiliary results . . . . . . . . . . . . . . . 12

1.2 Existence and localization result . . . . . . . . . . . . . . . 17

1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 General n th -order problems 25
2.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Existence and localization result . . . . . . . . . . . . . . . 28

2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ii Homoclinic solutions and Lidstone
problems on the whole real line 31

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Homoclinic solutions for second order problems 35
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Existence and localization of homoclinics . . . . . . . . . 40

3.3 Example of a discontinuous BVP . . . . . . . . . . . . . . 46

3.4 Duffing equation . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Forced cantilever beam equation with damping . . . . . . 48

4 Homoclinic solutions to fourth order problems 50
4.1 Definitions and auxiliary results . . . . . . . . . . . . . . . 52

4.2 Existence results . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Bernoulli-Euler-v. Karman problem . . . . . . . . . . . . . 60

4.5 Extended Fisher-Kolmogorov and Swift-Hohenberg
problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Lidstone boundary value problems 63
5.1 Auxiliary definitions and Green’s functions . . . . . . . . 65

ix



contents

5.2 Existence result . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 An infinite beam resting on granular foundations . . . . 71

iii Functional boundary value problems 75
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Second order problems 80
6.1 Definitions and auxiliary results . . . . . . . . . . . . . . . 81

6.2 Existence and localization results . . . . . . . . . . . . . . 84

6.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Emden-Fowler equation . . . . . . . . . . . . . . . . . . . 91

7 Third order functional problems 93
7.1 Definitions and a priori bounds . . . . . . . . . . . . . . . 94

7.2 Existence and localization results . . . . . . . . . . . . . . 99

7.3 Falkner–Skan equation . . . . . . . . . . . . . . . . . . . . 109

8 Phi-Laplacian equations with functional
boundary conditions 112
8.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . 114

8.2 Existence and localization result . . . . . . . . . . . . . . . 123

8.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

x



L I S T O F F I G U R E S

1 Homoclinic trajectory, heteroclinic connection and
heteroclinic cycle . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Admissible region for solution u . . . . . . . . . . . . . . . . 46

3 Admissible regions for both solutions u and −u, respectively 48

4 Interaction between a cantilever beam, two magnets and
an excitation force . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Phase portrait of the homoclinic solution u of (4.3.1) . . . . 59

6 Graph of the homoclinic solution u of (4.3.1) . . . . . . . . . 60

7 Infinite nonlinear beam resting on nonuniform elastic
foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Phase portrait of the homoclinic solution of (4.5.2), (4.0.2) . 62

9 Graph of the homoclinic solution of (4.5.2), (4.0.2) . . . . . . 62

10 Railway resting on reinforced granular fill-poor soil system 71

xi





A C R O N Y M S A N D N O TAT I O N S

BVP Boundary Value Problem

BVPs Boundary Value Problems

ODE Ordinary Differential Equation

ODEs Ordinary Differential Equations

FDE Functional Differential Equation

FDEs Functional Differential Equations

R+
0 := [0,+∞[

R+ := ]0,+∞[

AC(R+
0 ) : Space of absolutely continuous functions u : R+

0 → R

Wm,p(I) := {u ∈ Lp(I) : u(i) ∈ Lp(I), i = 1, ..., m}

xiii





A B S T R A C T

The relative scarcity of results that guarantee the existence of so-
lutions for BVP on unbounded domains, contrasts with the high ap-
plicability on real problems of differential equations defined on the
half-line or on the whole real line. It is this gap the main reason that
led to this work.

The differential equations studied vary from second order to higher
orders and they can be discontinuous on time. Different types of
boundary conditions will be discussed herein, for example, Sturm-
Liouville, homoclinic, Lidstone and functional conditions.

The non-compactness of the time interval and the possibility of
study unbounded functions will require the redefinition of the ad-
missible Banach spaces. In fact the space considered and the func-
tional framework assumed define the set of admissible solutions
for each problem under a main goal: the functions must remain
bounded for the space and the norm in consideration. This is achieved
by defining some weight functions (polynomial or exponential) in
the space or assuming some asymptotic behavior.

In addition to the existence, solutions will be localized in a strip.
The lower and upper solutions method will play an important role,
and combined with other tools like the one-sided Nagumo growth
conditions, Green’s functions or Schauder’s fixed point theorem, pro-
vide the existence and location results for differential equations with
various boundary conditions.

Different applications to real phenomena will be presented, most
of them translated into classical equations as Duffing, Bernoulli-Euler-
v.Karman, Fisher-Kolmogorov, Swift-Hohenberg, Emden-Fowler or
Falkner-Skan-type equations.

All these applications have a common denominator: they are de-
fined in unbounded intervals and the existing results in the literature
are scarce or proven only numerically in discrete problems.

Keywords: Unbounded intervals, Lower and upper solutions, Na-
gumo condition, Green’s function, Fixed point theory.
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R E S U M O

Problemas de valor na fronteira de ordem superior em
intervalos não limitados

A relativa escassez de resultados que garantam a existência de
soluções para problemas de valor na fronteira, em domínios ilimi-
tados, contrasta com a alta aplicabilidade em problemas reais de
equações diferenciais definidas na semi reta ou em toda a reta real.
É esta lacuna o principal motivo que conduziu a este trabalho. As
equações diferenciais estudadas variam da segunda ordem a ordens
superiores e podem ser descontínuas no tempo. As condições de
fronteira aqui analisadas são de diferentes tipos, nomeadamente,
Sturm - Liouville, homoclínicas, Lidstone e condições funcionais.

A não compacidade do intervalo de tempo e a possibilidade de
estudar funções ilimitadas, exigirá a redefinição dos espaços de Ba-
nach admissíveis. Na verdade, o espaço considerado e o quadro fun-
cional assumido define o conjunto de soluções admissíveis para cada
problema sob um objetivo principal: as funções devem permanecer
limitadas para o espaço e norma considerados. Isto é conseguido
através da definição de algumas "funções de peso" (polinomiais ou
exponenciais) no espaço considerado ou assumindo um comporta-
mento assintótico. Além da existência, as soluções serão localizadas
numa faixa. O método da sub e sobre-soluções irá desempenhar aqui
um papel importante e, combinado com outras ferramentas como a
condição unilateral de Nagumo, as funções de Green ou o teorema
de ponto fixo de Schauder, fornecem a existência e localização de
soluções para equações diferenciais com diversas condições de fron-
teira.

Apresentam-se também diferentes aplicações a fenómenos reais, a
maioria deles traduzidos para equações clássicas como as equações
de Duffing, Bernoulli-Euler-v.Karman, Fisher-Kolmogorov, Swift -
Hohenberg, Emden-Fowler ou ainda Falkner-Skan. Todas estas apli-
cações têm um denominador comum: são definidas em intervalos
ilimitados e os resultados existentes na literatura são raros ou estão
provados apenas numericamente em problemas discretos.

Palavras-chave: Intervalos ilimitados, Sub e sobre-soluções, Condição
de Nagumo, Funções de Green, Teoria do ponto fixo.
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I N T R O D U C T I O N

The leitmotiv of this work is related with higher order boundary
value problems (BVPs) defined on unbounded domains, more pre-
cisely on the half-line or on the whole real line.

Roughly speaking, we can say that BVPs are rather different of
initial (or final) value problems as they have not a continuous depen-
dence of the boundary data. In fact, small perturbations on boun-
dary values may cause vital changes on the qualitative properties of
the corresponding solutions, and even on existence, non-existence or
multiplicity of solutions. The following example will illustrate this
fact:

Consider the second order homogeneous differential equation

y′′ + y = 0. (0.0.1)

The initial value problem, known as Cauchy problem, composed
by (0.0.1) and the initial values

y(0) = k1, y′(0) = k2

has a unique solution given by y(x) = k1 cos x + k2 sin x, for every
real k1, k2.

However the BVP with (0.0.1) and the Dirichlet boundary condi-
tions

y(0) = 0, y(π) = ε( 6= 0)

has no solution, but the Dirichlet BVP with (0.0.1) and

y(0) = 0, y(β) = ε, with 0 < β < π,

has a unique solution, y(x) = ε sin x
sin β , and the BVP composed by (0.0.1)

together with the boundary conditions

y(0) = 0, y(π) = 0,

1



introduction

has infinite solutions, of the type y(x) = c sin x, with arbitrary c ∈ R.

Last decades the study of BVPs defined on compact intervals has
been considered by many authors with application of a huge variety
of methods and techniques. However BVPs defined on unbounded
intervals are scarce, as they require other type of techniques to over-
come the lack of compactness.

Historically, these problems began at the end of 19th century with
A. Kneser. This pioneer work described monotone solutions of se-
cond order ordinary differential equations. Others followed his re-
sults and different techniques have been studied, namely the lower
and upper solutions method (see [12] and the references therein).

Several real problems were modeled by these BVPs defined on in-
finite intervals. As examples, we refer the study of unsteady flow of
a gas through a semi-infinite porous medium, the discussion of elec-
trostatic probe measurements in solid-propellant rocket exhausts, the
analysis of the mass transfer on a rotating disk in a non-Newtonian
fluid, the heat transfer in the radial flow between parallel circular
disks, the investigation of the temperature distribution in the pro-
blem of phase change of solids with temperature dependent thermal
conductivity, as well as numerous problems arising in the study of
draining flows, circular membranes, plasma physics, radially sym-
metric solutions of semilinear elliptic equations, nonlinear mecha-
nics, and non - Newtonian fluid flows, the bending of infinite beams
and its applications in the railways and highways. More details and
examples can be seen in [5] and the references therein.

This work is divided in three parts, each one related to some type
of BVPs on unbounded intervals.

The first part, Sturm-Liouville boundary value problems on the half-line,
is dedicated to higher order BVPs with the so called Sturm-Liouville
boundary conditions defined on the half-line, and it is composed by
two chapters:

� Chapter 1 - Third order boundary value problems. Third order dif-
ferential equations on infinite intervals can describe the evolu-
tion of physical phenomena like draining or coating fluid flow
problems. The non-compactness of the time interval and the
possibility of studying unbounded functions require the redefi-

2



introduction

nition of the admissible Banach space and its weighted norms.
In this chapter it will be proved an existence and localization of,
at least, one solution for a BVP with Sturm-Liouville boundary
conditions. The tools involved will be the one-sided Nagumo-
type growth condition, Green’s functions, lower and upper so-
lution method and Schauder’s fixed point theorem. An exam-
ple will finish the chapter.

� Chapter 2 - General nth-order problems. This chapter arises in the
attempt to generalize the previous one to order n. In a particu-
lar case, fourth order differential equations can model the ben-
ding of an elastic beam. An example is shown to demonstrate
the importance of the one-sided Nagumo-type growth condi-
tion.

The second part, Homoclinic solutions and Lidstone problems on the
whole real line, considers BVPs on the whole real line, looking for
sufficient conditions on the nonlinearity to guarantee the existence
of homoclinic solutions, and its relation to solutions for Lidstone-
type problems. It contains three chapters:

� Chapter 3 - Homoclinic solutions for second order problems. In this
chapter it will be used the lower and upper solutions method
with unordered functions. An existence and localization result
will be settled. Specific applications to Duffing-type equations
and beam equations with damping will finish the chapter.

� Chapter 4 - Homoclinic solutions to fourth order problems. Dif-
ferent problems involving Bernoulli-Euler-v. Karman, Fisher -
Kolmogorov or Swift-Hohenberg equations are strongly linked
with fourth order differential equations. This chapter will es-
tablish existence results and examples for each particular case.

� Chapter 5 - Lidstone boundary value problems. The Lidstone the-
ory, initially applied to interpolation problems, is considered,
in this chapter, in the whole real line with a strong connection
to the homoclinic solutions. In this final chapter of this part it
will be studied a problem of an infinite beam resting on granu-
lar foundations with moving loads.

3
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In the last part, Functional boundary value problems, we study BVPs
with functional boundary conditions, that is, with boundary data
that can depend globally on the correspondent variables. In this way
it contains and generalize many types of boundary conditions such
as multipoint, advanced or delayed, nonlocal, integro-differential,
with maximum or minimum arguments, among others. Part 3 is
divided in three chapters, each one with different type of problems:

� Chapter 6 - Second order problems. BVPs involving functional
boundary conditions can model thermal conduction, semicon-
ductor and hydrodynamic problems. An application to a pro-
blem composed by an Emden-Fowler-type equation and a infi-
nite multipoint condition will be formulated and solved.

� Chapter 7 - Third order functional problems. Falkner-Skan equa-
tions are obtained from partial differential equations. They can
model the behavior of a viscous flow over a plate. Until now,
only numerical techniques could deal with this type of pro-
blems, however, in this chapter it will be proved an existence
and localization result by topological methods.

� Chapter 8 - Phi-Laplacian equations with functional boundary condi-
tions. This final chapter will deal with weighted norms, namely
the Bielecki norm. This will be a fundamental tool to manage
unbounded solutions. An important fact is that the homeomor-
phism φ does not need to be surjective.

Throughout this work, the usual Lemma of Arzèla-Ascoli can not
be used due to the lack of compactness, and this issue is overcome
with some methods, techniques and specific tools. We point out
some of them:

• Weighted spaces and the corresponding weighted norms;

• Carathéodory functions admissible for the nonlinearities;

• Green’s functions on unbounded domains;

• Equiconvergence at ∞.

4
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The space considered and the functional framework assumed de-
fine the set of admissible solutions for each problem under a main
goal: the functions must remain bounded for the space and the norm
in consideration. This is achieved by defining some weight functions
(polynomial or exponential) in the space or assuming some asymp-
totic behavior. Therefore, for each problem it is presented the specific
space and norm to be used.

The type of nonlinearities in the different problems has a common
feature: roughly, they must be measurable in the time variable, con-
tinuous almost everywhere, on the space variables, having a growth
controlled by a L1 function on [0,+∞[ or R. A function with such
properties is called in the literature, as a L1−Carathéodory function.
To avoid boring repetitions, we define them for a general unbounded
interval I (see Definition 1.1.1), which will be the half-line, or the
whole real line, according to each problem.

The Green’s functions and their properties play a key role in some
problems, for what we do more detailed considerations.

Basically these functions are solutions of a linear BVP, homoge-
neous or not, and they will guarantee the existence of at least one
solution, and, moreover, they can provide the explicit expression of
the solution for the studied BVP. In a broader sense, they can be
seen as a particular case of the so called kernel functions, as they are
related with the kernel of linear operators.

When dealing with linear and homogeneous ordinary differential
equations on the form

Lu(t) = 0 (0.0.2)

it is clear that any homogeneous solution is a linear combination of
some independent functions (in the same number as the degree of
the ODE). However, when the differential equation is non homoge-
neous

Lu(t) = e(t) (0.0.3)

it is fundamental to find a particular solution for each function e and
then add it to the linear combination referred.

5
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The Green’s functions method is due to George Green (1793-1841),
the first mathematician to use such kind of kernels to solve BVPs.

If equation (0.0.3) coupled with homogeneous boundary condi-
tions, has only the trivial solution for e(t) = 0, then the associated
linear operator is invertible and its inverse operator, L−1e, is charac-
terized with an integral kernel, G(t, s), called the Green’s function.
The solution of this problem is then given by

u(t) = L−1e(t) :=
∫ b

a
G(t, s)e(s)ds, ∀t ∈ [a, b]. (0.0.4)

A remarkable characteristics of the explicit expression of the Green’s
functions is the fact that they are independent on the function e. Af-
ter that, one needs to calculate the integral expression and then is
possible to obtain some additional qualitative information about so-
lutions: sign, oscillation properties, a priori bounds or their stability.
All these issues transform the theory of Green’s functions in a fun-
damental tool in the analysis of differential equations. It has been
widely studied in the literature and reveals to be very important
in order to use monotone iterative techniques, lower and upper so-
lutions, fixed point theorems or variational methods (see [30] and
references therein).

The equiconvergence at ∞, sometimes called as the stability at ∞,
is a crucial argument to recover the compacity of the operator on
unbounded domains. Indeed, with such concept , we can formu-
late a criterion that plays the role of the Arzèla-Ascoli theorem for
bounded domains. More precisely, if, in some subset M of the space,
the functions are uniformly bounded, equicontinuous on some subin-
tervals of [0, ∞) or R, and equiconvergent at ∞, or ±∞, then M is
relatively compact.

As it can easily be seen, the above notion depends on the space
considered, the weights defined, and on the order of the derivatives
involved. Therefore, for the reader’s convenience, we specify in each
problem the detailed criterion referred.

Finally, we point out that in all chapters there are examples to
illustrated each theorem or, even, concrete applications to real phe-
nomena.
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part i: sturm-liouville bvps on the half-line

introduction

Sturm-Liouville theory was initiated by Jacques Charles François
Sturm (1803-1855) and Joseph Liouville (1809-1882), to study second
order linear differential equations of the form,

d
dt

(
p(t)

dy
dt

)
+ (λw(t)− q(t)) y = 0,

where p, q are positive functions, λ is a constant and w is a known
function called either the density or weighting function.

The common approach to this equations deals with bounded inter-
vals, that is, t ∈ [a, b], a, b ∈ R, a < b, and with boundary conditions
of the form

c1y(a) + c2y′(a) = 0, c3y(b) + c4y′(b) = 0, c1, c2, c3, c4 ∈ R.

This kind of boundary conditions will, in this first part, be genera-
lized to third and nth-order BVPs, defined on unbounded intervals.
Thus, in what follows, BVPs with Sturm-Liouville boundary condi-
tions may also be called simply as Sturm-Liouville problems.

The great novelty of this part is to assume an one sided Nagumo
condition. In fact, the usual bilateral Nagumo condition used in the
literature requires a subquadratic growth for the nonlinearities. As
far as we know, it is the first time where the unilateral Nagumo
conditions are adapted to unbounded domains. In this way, the
nonlinearities may have an asymmetric growth, being, for example,
asymptotically unbounded for one side, remaining the subquadratic
growth in the other side.

This first part is separated into two chapters, both dealing with
Sturm-Liouville boundary conditions on the half-line.

In the first chapter it will be proved the existence of at least one
solution for a BVP involving a third order differential equation and
it is based on [86]. Other properties will be proved for such solutions
like localization and asymptotic properties.

Chapter 2 is assigned to a generic nth-order problem, where the
main result is an existence and localization result, meaning that, it
provides not only the existence, but also the localization of the un-

9



part i: sturm-liouville bvps on the half-line

known function and its derivatives, via lower and upper solutions
method.

Lower and upper solutions method is an useful technique to deal
with BVPs as, from their localization part, it can be obtained some
qualitative data about solution variation and behavior (see [24, 49, 73,
82, 83]). Another important tool is the Nagumo condition, useful to
obtain a priori estimates on some derivative of the solution, generali-
zing subquadratic growth assumptions on the nonlinear part of the
differential equation.

As it can be seen in the references above, the usual growth con-
dition of the Nagumo type is a bilateral one. However the same
estimation holds with a similar one-sided assumption, allowing that
the BVPs can include unbounded nonlinearities. In this way it gene-
ralizes the two-sided condition, as it is proved in [43, 53].

Finally is worth mentioning that, in both chapters, the nonlinea-
rities are L1-Carathéodory functions and, therefore, they may have
discontinuities in time.

10
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T h i r d o r d e r b o u n d a r y v a l u e p r o b l e m s

Third order differential equations arise in many areas, such as
the deflection of an elastic beam having a constant or varying cross-
section, three layer beam, electromagnetic waves or gravity-driven
flows (see [51] and the references therein).

In infinite intervals, third order BVPs can describe the evolution
of physical phenomena, for example some draining or coating fluid-
flow problems, (see [102]).

Due to the non-compactness of the interval, the discussion about
sufficient conditions for the solvability of BVPs is more delicate. In
the literature, existence results to such problems are, mainly, due to
extension of continuous solutions on the corresponding finite inter-
vals, under a diagonalization process and fixed point theorems, in
special Banach spaces (see [4, 16, 72, 108] and the references therein).

The present chapter will study a general Sturm-Liouville type BVP,
composed by a third order differential equation defined on the half
line

u ′ ′ ′ ( t ) = f ( t , u ( t ) , u ′ ( t ) , u ′ ′ ( t ) ) , a . e . t≥ 0 (1.0.1)

together with boundary conditions

u ( 0 ) = A , a u ′ ( 0 ) + b u ′ ′ ( 0 ) = B , u ′ ′ ( +∞ ) =C , (1.0.2)

with f : R+
0 × R 3→R a L 1 - Carathéodory function (eventually dis-

continuous on time), where u ′ ′ ( +∞ ) := l i m
t→+∞

u ′ ′ ( t ) , a , b , A ,

B , C ∈ R and a > 0 , b < 0.

11



third order boundary value problems

The setback of dealing with unbounded intervals and the possi-
bility of studying unbounded functions can be overcome with new
definitions of weighted spaces and norms.

1.1 definitions and auxiliary results

As solutions can be unbounded, the functional framework must be
defined with some weight functions and the corresponding weighted
norms.

Consider the space

X1 =

{
x ∈ C2(R+

0 ) : lim
t→+∞

x(i)(t)
ωi(t)

∈ R, i = 0, 1, 2

}

with ωi(t) = 1 + t2−i, i = 0, 1, 2 and the norm

‖x‖X1 = max
{
‖x‖0, ‖x′‖1, ‖x′′‖2

}
,

where
‖y‖i = sup

t≥0

∣∣∣∣ y(t)
ωi(t)

∣∣∣∣ , for i = 0, 1, 2.

By standard arguments it can be proved that (X1, ‖.‖X1) is a Ba-
nach space.

Let us precise the concept of L1−Carathéodory functions to be
used forward.

Definition 1.1.1. Let E be a normed space and I an unbounded interval
(I = R+

0 or I = R).
A function f : I ×Rn → R is L1− Carathéodory if it verifies

i) for each ξ ∈ Rn, t 7→ f (t, ξ) is measurable on I;

ii) for almost every t ∈ I, ξ 7→ f (t, ξ) is continuous in Rn;

iii) for each ρ > 0, there exists a positive function ϕρ ∈ L1(I) such that,
for ‖ξ‖E < ρ,

| f (t, ξ)| ≤ ϕρ(t), a.e. t ∈ I.

For each particular structure of the space E, and the corresponding
norm, condition iii) assume different forms of inequalities.

12



1.1 definitions and auxiliary results

Let γi, Γi ∈ C(R+
0 ), such that γi(t) ≤ Γi(t), ∀t ≥ 0, i = 0, 1 and

E1 =
{
(t, x0, x1, x2) ∈ R+

0 ×R3 : γi(t) ≤ xi ≤ Γi(t), i = 0, 1
}

.

The following one-sided Nagumo condition generalizes the usual
bilateral one.

Definition 1.1.2. A function f : E1 → R is said to satisfy an one-sided
Nagumo–type growth condition in E1 if, for some positive and continuous
functions ψ, h and some ν > 1, such that

∫ +∞

0
ψ(s)ds < +∞, sup

t≥0
ψ(t)(1 + t)ν < +∞,

∫ +∞

0

s
h(s)

ds = +∞,

(1.1.1)
it verifies either

f (t, x, y, z) ≤ ψ(t)h(‖z‖2), ∀(t, x, y, z) ∈ E1, (1.1.2)

or
f (t, x, y, z) ≥ −ψ(t)h(‖z‖2), ∀(t, x, y, z) ∈ E1. (1.1.3)

An important goal of this condition is to give an a priori bound on
the second derivative of all existent solutions.

Lemma 1.1.3. Let f : R+
0 ×R3 → R be a L1− Carathéodory function

satisfying (1.1.1) and, either (1.1.2), or (1.1.3), in E1. Then there exists
R > 0 (not depending on u) such that every solution u of (1.0.1), (1.0.2)
satisfying

γ(t) ≤ u(t) ≤ Γ(t), γ′(t) ≤ u′(t) ≤ Γ′(t), ∀t ≥ 0, (1.1.4)

verifies ‖u′′‖2 < R.

Proof.

Let u be a solution of (1.0.1), (1.0.2) verifying (1.1.4). Consider
r > 0 such that

r > max
{∣∣∣∣B− aΓ′(0)

b

∣∣∣∣ ,
∣∣∣∣B− aγ′(0)

b

∣∣∣∣ , |C|
}

. (1.1.5)

13



third order boundary value problems

By the previous inequality it’s impossible that |u′′(t)| > r, ∀t ≥ 0,
because

|u′′(0)| =
∣∣∣∣B− au′(0)

b

∣∣∣∣ ≤ max
{∣∣∣∣B− aΓ′(0)

b

∣∣∣∣ ,
∣∣∣∣B− aγ′(0)

b

∣∣∣∣} < r.

If |u′′(t)| ≤ r, ∀t ≥ 0, taking R > r
2 the proof is complete as

‖u′′‖2 = sup
t≥0

∣∣∣∣u′′(t)2

∣∣∣∣ ≤ r
2
< R.

In the following, it will be proved that even when there exists
t > 0 such that |u′′(t)| > r, the norm ‖u′′‖2 remains bounded, in all
possible cases, either f verifies (1.1.2) or (1.1.3).

Suppose there exists t > 0 such that |u′′(t)| > r, that is u′′(t) > r
or u′′(t) < −r. In the first case, by (1.1.1), one can take R > r such
that

∫ R

r

s
h(s)

ds > M max

{
M1 + sup

t≥0

Γ′(t)
1 + t

ν

ν− 1
, M1 − inf

t≥0

γ′(t)
1 + t

ν

ν− 1

}

with M := sup
t≥0

ψ(t)(1 + t)ν and M1 := sup
t≥0

Γ′(t)
(1 + t)ν

− inf
t≥0

γ′(t)
(1 + t)ν

.

If condition (1.1.2) holds, then, by (1.1.5), there are t∗, t+ ∈ R+

such that t∗ < t+, u′′(t∗) = r and u′′(t) > r, ∀t ∈ (t∗, t+]. Therefore

∫ u′′(t+)

u′′(t∗)

s
h(s)

ds =
∫ t+

t∗

u′′(s)
h(u′′(s))

u′′′(s)ds ≤
∫ t+

t∗
ψ(s)u′′(s)ds

≤ M
∫ t+

t∗

u′′(s)
(1 + s)ν

ds

= M
∫ t+

t∗

[(
u′(s)

(1 + s)ν

)′
+

νu′(s)
(1 + s)1+ν

]
ds

≤ M

(
M1 + sup

t≥0

Γ′(t)
1 + t

∫ +∞

0

ν

(1 + s)ν
ds

)
<
∫ R

r

s
h(s)

ds.

Consequently u′′(t+) < R and as t∗ and t+ are arbitrary in R+, then
u′′(t) < R, ∀t > 0. Similarly, it can be proved the case where there
are t−, t∗ ∈ R+ such that t− < t∗ and u′′(t∗) = −r, u′′(t) < −r, ∀t ∈
(t−, t∗).

Therefore ‖u′′‖2 < R
2 < R, ∀t ≥ 0.

14



1.1 definitions and auxiliary results

Now consider that f verifies (1.1.3). By (1.1.5), consider that there
are t−, t∗ ∈ R+ such that t− < t∗ and u′′(t∗) = r, u′′(t) > r, ∀t ∈
(t−, t∗). Therefore, following similar steps as before

∫ u′′(t−)

u′′(t∗)

s
h(s)

ds =
∫ t−

t∗

u′′(s)
h(u′′(s))

u′′′(s)ds ≤
∫ t∗

t−
ψ(s)u′′(s)ds

≤
∫ t∗

t−
ψ(s)u′′(s)ds ≤ M

∫ t∗

t−

u′′(s)
(1 + s)ν

ds (1.1.6)

= M

(
M1 + sup

t≥0

Γ′(t)
1 + t

ν

ν− 1

)
<
∫ R

r

s
h(s)

ds.

So u′′(t−) < R and by the arbitrariness of t− and t∗ in R+, then
u′′(t) < R, ∀t > 0. The case where there are t∗, t+ ∈ R+, with
t∗ < t+, such that u′′(t∗) = −r, u′′(t) < −r, ∀t ∈ (t∗, t+] is proved in
the same way.

The exact solution for the associated linear problem can be ob-
tained by Green’s functions method.

Lemma 1.1.4. If e ∈ L1(R+
0 ), then the BVPu′′′(t) + e(t) = 0, t ≥ 0,

u(0) = A, au′(0) + bu′′(0) = B, u′′(+∞) = C
(1.1.7)

has a unique solution in X1. Moreover, this solution can be expressed as

u(t) = g(t) +
∫ +∞

0
G(t, s)e(s)ds (1.1.8)

where

g(t) =
Ct2

2
+

B− bC
a

t+ A, G(t, s) =


− b

a t + st− s2

2 , 0 ≤ s ≤ t

1
2 t2 − b

a t, 0 ≤ t ≤ s < +∞.

Moreover, u′(t) = g′(t) +
∫ +∞

0
G1(t, s)e(s)ds with

G1(t, s) =


− b

a + s, 0 ≤ s ≤ t

− b
a + t, 0 ≤ t ≤ s < +∞.

(1.1.9)
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third order boundary value problems

The lack of compactness is overcome by the following lemma which
gives a general criterium for relative compactness, (see [4]).

Lemma 1.1.5. A set M ⊂ X1 is relatively compact if the following condi-
tions hold:

i) all functions from M are uniformly bounded;

ii) all functions from M are equicontinuous on any compact interval of R+
0 ;

iii) all functions from M are equiconvergent at infinity, that is, for any given
ε > 0, there exists a tε > 0 such that∣∣∣∣∣u(i)(t)

ωi(t)
− u(i)(+∞)

ωi(+∞)

∣∣∣∣∣ < ε,

for all t > tε, u ∈ M and i = 0, 1, 2.

The well known Schauder’s fixed point theorem will be the exis-
tence tool:

Theorem 1.1.6 ([112]). Let Y be a nonempty, closed, bounded and convex
subset of a Banach space X, and suppose that P : Y → Y is a compact
operator. Then P as at least one fixed point in Y.

An important tool to bound the solution and its derivatives is the
Lower and Upper Solution Method. Let us define the usual lower
and upper functions:

Definition 1.1.7. Given a > 0, b < 0, and A, B, C ∈ R, a function
α ∈ C3(R+

0 ) ∩ X1 is a lower solution of problem (1.0.1), (1.0.2) if{
α′′′(t) ≥ f (t, α(t), α′(t), α′′(t)), t ≥ 0,

α(0) ≤ A, aα′(0) + bα′′(0) ≤ B, α′′(+∞) < C.

A function β ∈ C3(R+
0 ) ∩ X1 is an upper solution if it satisfies the

reversed inequalities.

16



1.2 existence and localization result

1.2 existence and localization result

The main result of this chapter will be given by next theorem.

Theorem 1.2.1. Let f : R+
0 ×R3 → R be a L1− Carathéodory function.

Suppose there are α, β ∈ C3(R+
0 ) ∩ X1 lower and upper solutions of the

problem (1.0.1), (1.0.2), respectively, such that

α′(t) ≤ β′(t), ∀t ≥ 0. (1.2.1)

If f verifies the one-sided Nagumo condition (1.1.2), or (1.1.3), in the set

E∗ =
{
(t, x, y, z) ∈ R+

0 ×R3, α(t) ≤ x ≤ β(t), α′(t) ≤ y ≤ β′(t)
}

,

and
f (t, α(t), y, z) ≥ f (t, x, y, z) ≥ f (t, β(t), y, z), (1.2.2)

for (t, y, z) fixed and α(t) ≤ x ≤ β(t), then the problem (1.0.1), (1.0.2)
has at least one solution u ∈ C3(R+

0 ) ∩ X1 and there exists R > 0 such
that

α(t) ≤ u(t) ≤ β(t), α′(t) ≤ u′(t) ≤ β′(t), ‖u′′‖2 < R, ∀t ≥ 0.

Remark 1.2.2. By 1.2.1 and Definition 1.1.7 next inequality is valid

α(t) ≤ β(t), ∀t ≥ 0

and, therefore, E∗ is well defined and inequalities 1.2.2 make sense.

Proof.

Let α, β ∈ C3(R+
0 )∩X1 be, respectively, lower and upper solutions

of (1.0.1), (1.0.2) verifying (1.2.1).

Consider the truncated and perturbed equation

u′′′(t) = f
(
t, δ0(t), δ1(t), u′′(t)

)
+

1
1 + t2

u′(t)− δ1(t)
1 + |u′(t)− δ1(t)|

, t ≥ 0

(1.2.3)
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third order boundary value problems

where functions δj : R+
0 ×R→ R, j = 0, 1, are given by

δj(t) := δj(t, u(t)) =


β(j)(t) , u(j)(t) > β(j)(t)

u(j)(t) , α(j)(t) ≤ u(j)(t) ≤ β(j)(t)

α(j)(t) , u(j)(t) < α(j)(t).

(1.2.4)

Notice that the relation α(t) ≤ β(t) is obtained by integration from
(1.2.1), by the boundary conditions (1.0.2) and by Definition 1.1.7.

The proof will include three steps:

Step 1: If u is a solution of problem (1.2.3), (1.0.2), then

α(t) ≤ u(t) ≤ β(t), α′(t) ≤ u′(t) ≤ β′(t), ∀t ≥ 0.

Suppose, by contradiction, that there exists t ∈ R+
0 with α′(t) > u′(t)

and define

inf
t≥0

(u′(t)− α′(t)) = u′(t∗)− α′(t∗) < 0.

• If t∗ ∈ R+ then u′′(t∗) = α′′(t∗) and u′′′(t∗) − α′′′(t∗) ≥ 0.
Therefore, by (1.2.2) and Definition 1.1.7, the following contra-
diction holds

0 ≤ u′′′(t∗)− α′′′(t∗)

= f (t∗, δ0(t∗), δ1(t∗), u′′(t∗)) +
1

1 + t2
∗

u′(t∗)− α′(t∗)
1 + |u′(t∗)− α′(t∗)|

− α′′′(t∗)

≤ f (t∗, α(t∗), α′(t∗), α′′(t∗)) +
1

1 + t2
∗

u′(t∗)− α′(t∗)
1 + |u′(t∗)− α′(t∗)|

− α′′′(t∗)

≤ 1
1 + t2

∗

u′(t∗)− α′(t∗)
1 + |u′(t∗)− α′(t∗)|

< 0.

• If t∗ = 0,

min
t≥0

(u′(t)− α′(t)) := u′(0)− α′(0) < 0

and
u′′(0)− α′′(0) ≥ 0.
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1.2 existence and localization result

By Definition 1.1.7 and since a > 0, b < 0, it yields the contra-
diction

0 ≥ bu′′(0)− bα′′(0) ≥ B− au′(0)− B + aα′(0)

= a(α′(0)− u′(0)) > 0.

• If t∗ = +∞

inf
t≥0

(u′(t)− α′(t)) := u′(+∞)− α′(+∞) < 0,

u′′(+∞)− α′′(+∞) ≤ 0,

and the following contradiction holds

0 ≥ u′′(+∞)− α′′(+∞) > C− C = 0.

So α′(t) ≤ u′(t), ∀t ≥ 0. In a similar way it can be proved that
β′(t) ≥ u′(t), ∀t ≥ 0.

Integrating α′(t) ≤ u′(t) ≤ β′(t) on [0, t] for t ≥ 0, by (1.0.2) and
Definition 1.1.7 it can be proved that α(t) ≤ u(t) ≤ β(t), ∀t ≥ 0.

Step 2: If u is a solution of the modified problem (1.2.3), (1.0.2) then there
exists R > 0, not depending on u , such that

∥∥u′′
∥∥

2 < R. (1.2.5)

By the previous step, all solutions of equation (1.2.3) are solutions
of (1.0.1), and as f verifies the one-sided Nagumo condition (1.1.2),
or (1.1.3), this claim is a direct application of Lemma 1.1.3.

Step 3: Problem (1.2.3), (1.0.2) has at least one solution.

Take ρ > max {‖α‖0 , ‖β‖0 , ‖α′‖1 , ‖β′‖1 , R}, with R given by (1.2.5).

Define the operator T : X1 → X1, given by

Tu(t) = g(t) +
∫ +∞

0
G(t, s)F(u(s))ds,

with
g(t) :=

C
2

t2 +
B− bC

a
t + A
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third order boundary value problems

and

F(u(s)) := f (s, δ0(s), δ1(s), u′′(s)) +
1

1 + s2
u′(s)− δ1(s)

1 + |u′(s)− δ1(s)|
.

As f is a L1-Carathéodory function, for any u ∈ X1 with ‖u‖X1 < ρ,
then F ∈ L1 because∫ +∞

0
|F(u(s))| ds ≤

∫ +∞

0
ϕρ(s) +

1
1 + s2

|u′(s)− δ1(s)|
1 + |u′(s)− δ1(s)|

ds

≤
∫ +∞

0
ϕρ(s) +

1
1 + s2 ds < +∞. (1.2.6)

By Lemma 1.1.4, the fixed points of T are solutions of problem (1.2.3),
(1.0.2). So it is enough to prove that T has a fixed point.

Claim 1: T : X1 → X1 is well defined.
By Lebesgue dominated theorem and Lemma 1.1.4,

lim
t→+∞

(Tu)(t)
1 + t2 ≤

C
2
+

1
2

∫ +∞

0
F(u(s))ds < +∞.

Analogously, by (1.1.9),

lim
t→+∞

(Tu)′(t)
1 + t

= lim
t→+∞

g′(t)
1 + t

+
∫ +∞

0
lim

t→+∞

G1(t, s)
1 + t

F(u(s))ds

≤ C +
∫ +∞

0
F(u(s))ds < +∞,

and

lim
t→+∞

(Tu)′′(t)
2

≤ C
2
+

1
2

lim
t→+∞

∫ +∞

t
F(u(s))ds =

C
2
< +∞.

Therefore Tu ∈ X1.

Claim 2: T is continuous.
Consider a convergent sequence un → u in X1. Then there exists

r1 > 0 such that ‖un‖X1 < r1 and

‖Tun − Tu‖X1 ≤
∫ +∞

0
max


sup
t≥0

∣∣∣G(t,s)
1+t2

∣∣∣ ,

sup
t≥0

∣∣∣G1(t,s)
1+t

∣∣∣ , 1
2

 |F(un(s))− F(u(s))| ds

≤
∫ +∞

0
|F(un(s))− F(u(s))| ds −→ 0 , (1.2.7)
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1.2 existence and localization result

as n→ +∞.

Claim 3: T is compact.

Let

M(s) := max

{
sup
t≥0

|G(t, s)|
1 + t2 , sup

t≥0

|G1(t, s)|
1 + t

}
.

Consider a bounded set B ⊂ X1 defined by B :=
{

u ∈ X1 : ‖u‖X1 < r1
}

,
for some r1 > 0 such that

r1 > max
{

ρ,
|C|
2

+
∫ +∞

0
M(s)

(
ϕρ(s) +

1
1 + s2

)
ds
}

,

with ρ given by (1.2.6).

Claim 3.1: TB is uniformly bounded.

For any u ∈ B, as ‖α‖0 ≤ ‖δ0‖0 ≤ ‖β‖0 , ‖α′‖1 ≤ ‖δ1‖1 ≤ ‖β′‖1 ,
by (1.1.2) one has

‖Tu‖0 = sup
t≥0

|Tu(t)|
1 + t2 ≤ sup

t≥0

|g(t)|
1 + t2 +

∫ +∞

0
sup
t≥0

|G(t, s)|
1 + t2 |F(u(s))| ds

≤ |C|
2

+
∫ +∞

0
M(s)

(
ϕρ(s) +

1
1 + s2

)
ds < r1,

‖Tu‖1 = sup
t≥0

|(Tu)′(t)|
1 + t

≤ sup
t≥0

|g′(t)|
1 + t

+
∫ +∞

0
sup
t≥0

|G1(t, s)|
1 + t

|F(u(s))| ds

≤ |C|+
∫ +∞

0
M(s)

(
ϕρ(s) +

1
1 + s2

)
ds < r1,

and
‖Tu‖2 = sup

t≥0

|(Tu)′′(t)|
2

≤ |C|
2

< r1.

Thus ‖Tu‖X1 < r1, TB is uniformly bounded, and, moreover, TB ⊂ B.

Claim 3.2: TB is equicontinuous.

For T > 0 and t1, t2 ∈ [0, T],
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third order boundary value problems

∣∣∣∣∣Tu(t1)

1 + t2
1
− Tu(t2)

1 + t2
2

∣∣∣∣∣ ≤
∣∣∣∣∣ g(t1)

1 + t2
1
− g(t2)

1 + t2
2

∣∣∣∣∣
+
∫ +∞

0

∣∣∣∣∣G(t1, s)
1 + t2

1
− G(t2, s)

1 + t2
2

∣∣∣∣∣ |F(u(s))| ds −→ 0, as t1 → t2.

Analogously

∣∣∣∣ (Tu)′(t1)

1 + t1
− (Tu)′(t2)

1 + t2

∣∣∣∣ = ∣∣∣∣ g′(t1)

1 + t1
− g′(t2)

1 + t2

∣∣∣∣
+
∫ +∞

0

∣∣∣∣G1(t1, s)
1 + t1

− G1(t2, s)
1 + t2

∣∣∣∣ |F(u(s))| ds −→ 0, as t1 → t2

and ∣∣∣∣ (Tu)′′(t1)

2
− (Tu)′′(t2)

2

∣∣∣∣ = ∣∣∣∣∫ t2

t1

F(s)ds
∣∣∣∣

≤
∫ t2

t1

(
ϕρ(s) +

1
1 + s2

)
ds −→ 0, as t1 → t2.

Claim 3.3: TB is equiconvergent at infinity.

Indeed,∣∣∣∣ Tu(t)
1 + t2 − lim

t→+∞

Tu(t)
1 + t2

∣∣∣∣ ≤ ∣∣∣∣ g(t)
1 + t2 −

C
2

∣∣∣∣
+
∫ +∞

0

∣∣∣∣G(t, s)
1 + t2 − lim

t→+∞

G(t, s)
1 + t2

∣∣∣∣ |F(u(s))| ds −→ 0, as t→ +∞,

∣∣∣∣ (Tu)′(t)
1 + t

− lim
t→+∞

(Tu)′(t)
1 + t

∣∣∣∣ ≤ ∣∣∣∣ g′(t)1 + t
− C

∣∣∣∣
+
∫ +∞

0

∣∣∣∣G1(t, s)
1 + t

− lim
t→+∞

G1(t, s)
1 + t

∣∣∣∣ |F(u(s))|ds −→ 0, as t→ +∞,

and
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1.3 example

∣∣∣∣ (Tu)′′(t)
2

− lim
t→+∞

(Tu)′′(t)
∣∣∣∣ = ∣∣∣∣∫ +∞

t
F(u(s))ds

∣∣∣∣
≤
∫ +∞

t

(
ϕρ(s) +

1
1 + s2

)
ds −→ 0, as t→ +∞.

So, by Lemma 1.1.5, TB is relatively compact.

As T is completely continuous then by Schauder Fixed Point The-
orem 1.1.6, T has at least one fixed point u ∈ X1.

1.3 example

Consider the next third order BVPu′′′(t) = 1
(t+1)2

(
− arctan (u(t))− 10|u′′(t)|eu′′(t)

)
, t ≥ 0,

u(0) = A, au′(0) + bu′′(0) = B, u′′(+∞) = C,
(1.3.1)

with A ∈ (−1, 0], a > 0, b < 0 such that −2(a + b) ≤ B ≤ 0 and
C ∈ (−2, 0).

Define

Eex1 =
{
(t, x, y, z) ∈ R+

0 ×R3 : −(t + 1)2 ≤ x ≤ 0,−2t− 2 ≤ y ≤ 0
}

.

Function f : R+
0 ×R3 → R defined by

f (t, x, y, z) :=
1

(t + 1)2 (− arctan x− 10|z|ez) ,

verifies on Eex1 the inequality | f (t, x, y, z)| ≤ Kρ

(t+1)2 := ϕρ(t), for
some Kρ > 0 and ρ such that max {2, ‖z‖2} < ρ. Therefore f is
L1-Carathéodory.

Functions α(t) = −(t + 1)2 and β(t) ≡ 0 are, respectively, lower
and upper solutions of problem (1.3.1) with α(t) ≤ β(t) and α′(t) ≤
β′(t), ∀t ≥ 0, verifying (1.2.2).

As
f (t, x, y, z) ≤ 1

(t + 1)2
π

2
,
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third order boundary value problems

the one-sided Nagumo-type growth condition (1.1.2) holds in Eex1

with
ψ(t) :=

1
(t + 1)2 , ν ∈ (1, 2), and h(|z|) :=

π

2
.

Therefore, by Theorem 1.2.1, there is at least a solution u of (1.3.1)
with

−(t + 1)2 ≤ u(t) ≤ 0, −2t− 2 ≤ u′(t) ≤ 0, ‖u′′‖2 < R, ∀t ≥ 0.

Moreover, from the localization part of the theorem, one can pre-
cise some qualitative properties of this solution: it is nonpositive,
nonincreasing and, as C 6= 0, this solution is unbounded.

Notice that f does not satisfy the usual two-sided Nagumo-type
condition. In fact, if there exist ψ1, h1 ∈ C(R+

0 , R+) satisfying

| f (t, x, y, z)| ≤ ψ1(t) h1(|z|), ∀(t, x, y, z) ∈ Eex1,

with
∫ +∞

0

s
h1(s)

ds = +∞, then, in particular,

− f (t, x, y, z) ≤ ψ1(t) h1(|z|), ∀(t, x, y, z) ∈ Eex1.

So, for x = 0, y, z ∈ R, one has

− f (t, 0, y, z) =
10

(t + 1)2 |z|e
z ≤ ψ1(t) h1(|z|).

Considering ψ1(t) := 1
(t+1)2 , the following contradiction holds:

+∞ >
∫ +∞

0

s
10ses ds ≥

∫ +∞

0

s
h1(s)

ds = +∞.

24



2

G e n e r a l n t h - o r d e r p r o b l e m s

Like on the previous chapter, n t h -order BVPs on infinite intervals
occur in different areas. For example fourth order differential equa-
tions can model the bending of an elastic beam and, in this sense,
they are called beam equations. Other higher order problems are
related with the study of radially symmetric solutions of nonlinear
elliptic equations, fluid dynamics, boundary layer theory, semicon-
ductor circuits and soil mechanics, either on bounded domains (see
[11, 31, 43, 83]), either on the real line ([3, 36, 62, 63, 74]).

The study of BVPs on bounded domains is vast but on infinite in-
tervals is scarce. Different methods like fixed point theorems, shoo-
ting methods, upper and lower technique, are used to prove the exis-
tence of solutions. However, these solutions are usually bounded.

Lower and upper solutions method, coupled with the Nagumo-
type condition, guarantee the existence of at least one solution lying
on the strip defined by lower and upper solutions (see [74]) but, to
the best of our knowledge, there are no results when the nonlinearity
satisfies only the one-sided Nagumo-type condition, on unbounded
intervals.

This chapter concerns the study of a general Sturm-Liouville type
BVP composed by a n t h -order differential fully equation defined on
the half line (n ≥ 2 )

u ( n ) ( t ) = f ( t , u ( t ) , u ′ ( t ) , . . . , u ( n− 1 ) ( t ) ) , a . e . t≥ 0 (2.0.1)

and 
u ( i ) ( 0 ) = A i ,

u ( n− 2 ) ( 0 ) + a u ( n− 1 ) ( 0 ) = B ,

u ( n− 1 ) ( +∞ ) =C ,

(2.0.2)
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general n th -order problems

with f : R+
0 × R n→R a L 1 - Carathéodory function, a< 0 , A i , B ,

C ∈ R for i= 0 , 1 , . . . , n−3 , and u ( n− 1 )( +∞ ) := l i m
t→+∞

u ( n− 1 )( t ).

The functional setting will be adapted to the nth-order case, namely
the weight space, the corresponding norms and the notion of L1-
Carathéodory.

As an application of this result, we include a particular case of a
fourth order problem with a beam equation, referred in [34].

2.1 preliminary results

A new admissible space will be needed:
For polynomial functions ωi(t) = 1 + tn−1−i, i = 0, 1, ..., n − 1 let

us define the space

X2 =

{
x ∈ Cn−1(R+

0 ) : lim
t→+∞

x(i)(t)
ωi(t)

∈ R, i = 0, 1, ..., n− 1

}

with the norm ‖x‖X2 = max
{
‖x‖0, ‖x′‖1, ..., ‖x(n−1)‖n−1

}
, where

‖y‖i = sup
t≥0

∣∣∣∣ y(t)
ωi(t)

∣∣∣∣ , for i = 0, 1, ..., n− 1.

It is clear that (X2, ‖.‖X2) is a Banach space.

Let γi, Γi ∈ C(R+
0 ), γi(t) ≤ Γi(t), ∀t ≥ 0, i = 0, 1, ..., n − 2 and

define

E2 =
{
(t, x0, ..., xn−1) ∈ R+

0 ×Rn : γi(t) ≤ xi ≤ Γi(t), i = 0, 1, ..., n− 2
}

.

Now the one-sided growth condition can be formulated in the fol-
lowing way:

Definition 2.1.1. A function f : E2 → R is said to satisfy an one-sided
Nagumo-type growth condition in E2 if, for some positive and continuous
functions ψ, h and some ν > 1, such that

∫ +∞

0
ψ(s)ds < +∞, sup

t≥0
ψ(t)(1 + t)ν < +∞,

∫ +∞

0

s
h(s)

ds = +∞,

(2.1.1)
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2.1 preliminary results

it verifies either

f (t, x0, ..., xn−1) ≤ ψ(t)h(‖xn−1‖n−1), ∀(t, x0, ..., xn−1) ∈ E2, (2.1.2)

or

f (t, x0, ..., xn−1) ≥ −ψ(t)h(‖xn−1‖n−1), ∀(t, x0, ..., xn−1) ∈ E2. (2.1.3)

Now the a priori estimation is obtained on u(n−1), given by the fol-
lowing lemma, which proof follows the same technique as in Lemma
1.1.3 and, for this reason, is omitted.

Lemma 2.1.2. Let f : R+
0 ×Rn → R be a L1− Carathéodory function

satisfying (2.1.1) and (2.1.2), or (2.1.3), in E2. Then there exists R > 0
(not depending on u) such that every u solution of (2.0.1), (2.0.2) satisfying

γi(t) ≤ u(i)(t) ≤ Γi(t), ∀t ≥ 0, i = 0, 1, ..., n− 2, (2.1.4)

verifies
∥∥∥u(n−1)

∥∥∥
n−1

< R.

The exact solution for the associated linear problem can be ob-
tained by a Green function.

Lemma 2.1.3. If e ∈ L1(R+
0 ), then the BVP

u(n)(t) + e(t) = 0, a.e. t ≥ 0,

u(i)(0) = Ai, i = 0, 1, ..., n− 3,

u(n−2)(0) + au(n−1)(0) = B,

u(n−1)(+∞) = C

(2.1.5)

has a unique solution in X2. Moreover, this solution can be expressed as

u(t) = p(t) +
∫ +∞

0
G(t, s)e(s)ds (2.1.6)

where

p(t) =
n−3

∑
k=0

Ak
k!

tk +
B− aC
(n− 2)!

tn−2 +
C

(n− 1)!
tn−1
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and

G(t, s) =


n−2

∑
k=0

(−1)k

(k + 1)!(n− 2− k)!
sk+1tn−2−k − atn−2

(n− 2)!
, 0 ≤ s ≤ t < +∞

1
(n−1)! t

n−1 − a
(n−2)! t

n−2, 0 ≤ t ≤ s < +∞.

General nth-order definitions of lower and upper functions are pre-
sented next.

Definition 2.1.4. Given a < 0 and Ai, B, C ∈ R, i = 0, 1, ..., n − 3, a
function α ∈ Cn(R+

0 ) ∩ X2 is a lower solution of problem (2.0.1), (2.0.2) if

α(n)(t) ≥ f (t, α(t), α′(t), ..., α(n−1)(t)), t ≥ 0,

α(i)(0) ≤ Ai,

α(n−2)(0) + aα(n−1)(0) ≤ B,

α(n−1)(+∞) < C.

A function β ∈ Cn(R+
0 ) ∩ X2 is an upper solution if it satisfies the

reversed inequalities.

2.2 existence and localization result

The existence theorem to the nth-order case follows similar argu-
ments of Theorem 1.2.1, and the proof is omitted.

Theorem 2.2.1. Let f : R+
0 ×Rn → R be a L1−Carathéodory function.

Suppose there are α, β ∈ Cn(R+
0 ) ∩ X2 lower and upper solutions of the

problem (2.0.1), (2.0.2), respectively, such that

α(n−2)(t) ≤ β(n−2)(t), ∀t ≥ 0. (2.2.1)

If f verifies the one-sided Nagumo condition (2.1.2), or (2.1.3), in the set

E∗ =
{
(t, x0, ..., xn−1) ∈ R+

0 ×Rn : α(i)(t) ≤ xi ≤ β(i)(t), i = 0, ..., n− 2
}

,
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and

f (t, α(t), ..., α(i)(t), ..., un−2, un−1)≥ f (t, u0, ..., ui, ..., un−2, un−1) (2.2.2)

≥ f (t, β(t), ..., β(i)(t), ..., un−2, un−1),

for (t, un−2, un−1) fixed when α(i)(t) ≤ ui ≤ β(i)(t), i = 0, ...n− 3, then
problem (2.0.1), (2.0.2) has at least one solution u ∈ Cn(R+

0 ) ∩ X2 and
there exists R > 0 such that

α(i)(t) ≤ u(i)(t) ≤ β(i)(t), i = 0, 1, ...n− 2 and
∥∥∥u(n−1)

∥∥∥
n−1

< R, ∀t ≥ 0.

Remark 2.2.2. Notice that by integration on [0, t] of (2.2.1) and Definition
2.1.4, lower and upper solutions and their derivatives (until order n − 3)
are well ordered, that is,

α(i)(t) ≤ β(i)(t), i = 0, 1, ..., n− 3, ∀t ≥ 0

and E∗ is well defined.

2.3 example

Consider the next fourth order BVPu(iv)(t) = −u(t)|u′′′(t)−6|eu′′′(t)−e−t(6t+2−u′′(t))
1+t2 , t ≥ 0,

u(0)=A, u′(0)=0, u′′(0) + au′′′(0)=0, u′′′(+∞) = C,
(2.3.1)

with A ≥ 0, −1
3 ≤ a < 0 and 0 < C < 6.

This BVP is a particular case of (2.0.1), (2.0.2) with A0 = A, A1 =

0, B = 0 and

f (t, x, y, z, w) =
−x|w− 6|ew − e−t(6t + 2− z)

1 + t2 . (2.3.2)

Moreover, functions α(t) ≡ A and β(t) = t3 + t2 + A are, respec-
tively, lower and upper solutions for (2.3.1), and Nagumo condition
with (2.1.2) is verified with

ψ(t) =
1

1 + t2 , 1 < ν < 2, h(|w|) ≡ 1,
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general n th -order problems

on

Eex2 =

(t, x, y, z, w) ∈ R+
0 ×R4 :

A ≤ x ≤ t3 + t2 + A,
0 ≤ y ≤ 3t2 + 2t,

0 ≤ z ≤ 6t + 2

 .

Also f verifies (2.2.2) and all assumptions of Theorem 2.2.1 are
fulfilled, therefore, there is at least a non trivial solution u of (2.3.1)
such that

A ≤ u(t) ≤ t3 + t2 + A,

0 ≤ u′(t) ≤ 3t2 + 2t,

0 ≤ u′′(t) ≤ 6t + 2,

‖u′′′‖3 ≤ R, ∀t ≥ 0.

Remark that, this solution is unbounded and, from the location
part, it is nondecreasing and convex.

It is important to stress that the nonlinearity (2.3.2) does not satisfy
the usual two-sided Nagumo-type condition. Therefore the existent
results in the literature can not be applied to problem (2.3.1).

In fact, if there exist ψ2, h2 ∈ C(R+
0 , R+) satisfying

| f (t, x, y, z, w)| ≤ ψ2(t)h2(|w|), ∀(t, x, y, z, w) ∈ Eex2,

with
∫ +∞

0

s
h2(s)

ds = +∞ then, in particular,

− f (t, x, y, z, w) ≤ ψ2(t)h2(|w|),

and, for t ≥ 0, x = 1, 0 ≤ y ≤ 3t2 + 2t, z = 6t + 2, and w ∈ R,

− f (t, 1, y, 6t + 2, w) =
|w− 6|ew

1 + t2 ≤ ψ2(t)h2(|w|),

For ψ2(t) = 1
1+t2 one has |w − 6|ew ≤ h2(|w|) and the following

contradiction holds

+∞ >
∫ +∞

0

s
(s− 6)es ds ≥

∫ +∞

0

s
h2(s)

ds = +∞.

30



Part II

H O M O C L I N I C S O L U T I O N S A N D

L I D S T O N E P R O B L E M S O N T H E W H O L E

R E A L L I N E





part ii: homoclinic solutions and lidstone problems on R

introduction

Qualitative analysis of differential equations has had an increa-
singly important role, specially the analytic study of their asymptotic
behavior and stability.

A homoclinic orbit is a trajectory of a flow of a dynamical system
which joins a saddle equilibrium point to itself. If a path in the phase
space of a dynamical system joins two different equilibrium points,
receives the name of a heteroclinic orbit.

Figure 1: Homoclinic trajectory, heteroclinic connection and hetero-
clinic cycle

The interest in these trajectories goes far beyond mathematics it-
self, as homoclinic and heteroclinic solutions appear in a variety of
mathematical models born in Mechanics, Chemistry or Biology.

The history of these homoclinic and heteroclinic solutions is al-
ready long. In addition to the phase portrait analysis, whose appli-
cability is restricted to autonomous differential equations of second
order, the study of these solutions started by a geometric approach.
Poincaré, Melnikov and Smale were some of the first names to cover
this topic in the 19th century. At the end of the last century a more
functional and analytical approach gave new tools like variational
methods and the theory of critical points. It is worth highlight-
ing Ambrosetti, Ekeland and Rabinowitz (see [32] and references
therein).

This part is separated into three chapters, and each one provides
the existence of homoclinic solutions for higher order nonlinear BVPs,
not necessarily autonomous.

The first chapter will be addressed to problems with second order
equations. Three different applications will be presented to illustrate
the main results of the chapter: a problem with discontinuity in time;
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part ii: homoclinic solutions and lidstone problems on R

an application to a Duffing equation; and another over a forced can-
tilever beam equation with damping.

The second chapter will ensure the existence of homoclinic solu-
tions to fourth order BVPs. A generic example will be given and
an application to a Bernoulli-Euler-v.Karman BVP will complete the
chapter.

Finally, last chapter will center the attention on Lidstone’s BVPs,
putting a link between the solutions of Lidstone BVPs in the whole
real line and homoclinic solutions. The results of this last chapter
of this part will be applied to an infinite beam resting on granular
foundations with moving loads.
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H o m o c l i n i c s o l u t i o n s f o r s e c o n d o r d e r p r o b l e m s

The existence of homoclinic solutions for autonomous and nonau-
tonomous differential equations and Hamiltonian systems is an im-
portant subject in qualitative theory. It can be considered as a special
case of the so-called convergent solutions, i.e., solutions defined in the
half-line (or the real line), and having a finite limit to +∞ (respecti-
vely ±∞), see [14].

In this chapter it is considered the second order discontinuous
equation in the real line,

u ′ ′ ( t ) − k u ( t ) = f
(

t , u ( t ) , u ′ ( t )
)

, a . e . t∈R , (3.0.1)

with k > 0 and f : R 3 → R a L 1− Carathéodory function. The
final purpose is looking for homoclinic orbits to 0, that is, nontrivial
solutions of (3.0.1) such that

u (±∞ ) := l i m
t→±∞

u ( t ) = 0 , u ′ (±∞ ) := l i m
t→±∞

u ′ ( t ) = 0 . (3.0.2)

Several works prove the existence of homoclinic and heteroclinic
solutions for small perturbations (see [35, 116]), or deal with some
superquadratic or subquadratic conditions at infinity (see [98, 103])
or asymptotically quadratic ([39]). Another point of view is to obtain
an homoclinic orbit as a limit of 2 k T -periodic solutions of a certain
sequence of periodic boundary value problems (see [9, 52, 61]). The
main arguments used in this method apply variational methods, up-
per and lower solutions and fixed point theory ([15, 20, 101, 108]).

Equation (3.0.1) arises in several real phenomena, for instance, as
the study of traveling wave fronts for parabolic reaction-diffusion
equations with a local reaction term, and generalizes several classical
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equations such as Duffing-type equations ([54, 94]) or Liénard-like
systems ([114]).

In this chapter we combine the method of lower and upper solu-
tions, not necessarily ordered, as suggested in [53, 82]. Moreover,
our result improves the literature, as the existence and localization
of homoclinic solutions is proved without extra assumptions on the
growth, sign or asymptotic behavior of the nonlinear part.

The chapter is based on the work [87], and is organized as it fol-
lows: first section contains some definitions and auxiliary results to
be used forward and the tools used to deal with the lack of compact-
ness. The existence and localization results for homoclinic solutions
are presented, some of them are obtained in presence of non-ordered
lower and upper solutions, since they are defined as an adequate
pair of functions. Last sections include an example of a discontinu-
ous problem and applications to a Duffing-type equation that models
the forced vibrations of a cantilever beam in a nonuniform field of
two permanent magnets.

3.1 preliminaries

Define the space

XH2 =

{
x ∈ C1(R) : lim

|t|→+∞
x(t) ∈ R

}
with the norm ‖x‖XH2=max

{
‖x‖∞, ‖x′‖∞

}
, where ‖y‖∞ :=sup

t∈R

|y(t)|.

In this way (XH2, ‖.‖XH2) is a Banach space (see [110, 113]).

An important property of functions on space XH2 is shown in next
lemma.

Lemma 3.1.1. Let x ∈ Cn(R), n ∈ N, n ≥ 1. If x(+∞) = l ∈ R then
x(n)(+∞) = 0, for n ≥ 1.

Proof.

In the case where x(+∞) = l, for any δ0 > 0 there is T0 > 0 such
that for t > T0 one has |x(t)− l| < δ0.
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3.1 preliminaries

For n = 1, take h > 0, δ0 = h δ1
2 and t > T1, for some T1 > 0.

Therefore, for t > max {T0, T1}, one has

|x′(t)| = lim
h→0

|x(t + h)− x(t)|
h

= lim
h→0

|x(t + h)− l + l − x(t)|
h

≤ lim
h→0

|x(t + h)− l|+ |x(t)− l|
h

≤ lim
h→0

h δ1
2 + h δ1

2
h

= δ1,

for any δ1 > 0, that is x′(+∞) = 0.

For n > 1 the proof follows by mathematical induction.

The case x(−∞) = l can be proved by the same technique.

The following result will play an important role in the proof of the
main result, giving a solution of some linear second order problem
via Green’s functions:

Lemma 3.1.2 ([3]). If h ∈ L1(R), then problemu′′(t)− ku(t) = h(t), a.e. t ∈ R

u(±∞) = u′(±∞) = 0.
(3.1.1)

has a unique solution in XH2. Moreover, this solution can be expressed as

u(t) =
∫ +∞

−∞
G(t, s)h(s)ds (3.1.2)

where
G(t, s) = − 1

2
√

k
e−
√

k|s−t|. (3.1.3)

Proof.

The homogeneous solution of the linear equation is given by

u(t) = c1e
√

kt + c2e−
√

kt, for c1, c2 ∈ R

As the null function is the only solution of the homogeneous pro-
blem associated to (3.1.1), its solution is given by

u(t) = − 1

2
√

k

∫ +∞

−∞
e−
√

k|s−t|h(s)ds.
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For G(t, s) := −1
2 e−
√

k|s−t| one has

u(t) =
∫ +∞

−∞
G(t, s)h(s)ds.

Some trivial properties can easily be proved for Green’s functions.

Remark 3.1.3. The above Green’s functions verify the following properties:

• G(t, s) and
∂G(t, s)

∂t
are continuous,

• lim
|t|→+∞

G(t, s) = 0,

• lim
|t|→+∞

∂G(t, s)
∂t

= 0.

To deal with the lack of compactness of set XH2, next compactness
criterion plays a key role, following arguments suggested in [37, 93,
110].

Theorem 3.1.4. A set M ⊂ XH2 is compact if the following conditions
hold:

i) both {t→ x(t) : x ∈ M} and {t→ x′(t) : x ∈ M} are uniformly
bounded;

ii) both {t→ x(t) : x ∈ M} and {t→ x′(t) : x ∈ M} are equicontin-
uous in any compact interval of R;

iii) both {t→ x(t) : x ∈ M} and {t→ x′(t) : x ∈ M} are equiconver-
gent at ±∞, that is, given ε > 0, there exists T(ε) > 0 such that
| f (t)− f (±∞)| < ε and | f ′(t)− f ′(±∞)| < ε, for all |t| > T(ε)
and f ∈ M.

Proof.
In order to prove that the subset M is relatively compact in XH2,

as we are in a Banach space, we only need to show that M is totally
compact, or, bounded in XH2, that is, for ε > 0, M has a finite ε-net.

For any given ε > 0, by (i)-(iii), there exist constants A > 0, δ > 0,
and an integer N > 0, such that
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• |x(t1) − x(t2)| ≤ ε
3 , |x′(t1) − x′(t2)| ≤ ε

3 with t1, t2 < −N or
t1, t2 > N and x ∈ M, ‖x‖XH2

≤ A;

• |x(t1) − x(t2)| ≤ ε
3 , |x′(t1) − x′(t2)| ≤ ε

3 with t1, t2 ∈ [−N, N]

and
|t1 − t2| < δ, x ∈ XH2.

Define X[−N,N] =
{

x|[−N,N] : x ∈ XH2

}
. For x ∈ X[−N,N] define

‖x‖N = max

{
sup

t∈[−N,N]

|x(t)| , sup
t∈[−N,N]

∣∣x′(t)∣∣}

It can be proved that X[−N,N] is a Banach space with the norm
‖.‖N.

Let M[−N,N] = {t→ x(t), t ∈ [−N, N] : x ∈ M}. Then M[−N,N] is
a subset of X[−N,N]. By Arzèla-Ascoli theorem, M[−N,N] is relatively
compact in X[−N,N]. Thus, there exist x1, x2, ..., xk ∈ M such that
‖x− xi‖N ≤ ε

3 , for any x ∈ M and i = 1, 2, ..., k.

Therefore, for x ∈ M, we find that for j = 0, 1,

∥∥∥x(j) − x(j)
i

∥∥∥
X
= max

{
sup
t∈R

∣∣∣x(j)(t)− x(j)
i (t)

∣∣∣}

= max



sup
t≤−N

∣∣∣x(j)(t)− x(j)
i (t)

∣∣∣ ,

sup
|t|≤N

∣∣∣x(j)(t)− x(j)
i (t)

∣∣∣ ,

sup
t≥N

∣∣∣x(j)(t)− x(j)
i (t)

∣∣∣


≤ max

{
sup

t≤−N

∣∣∣x(j)(t)− x(j)
i (t)

∣∣∣ ,
ε

3
, sup

t≥N

∣∣∣x(j)(t)− x(j)
i (t)

∣∣∣} .

Moreover

sup
t≤−N

|x(t)− xi(t)| ≤ sup
t≤−N

|x(t)− x(−N)|+ |x(−N)− xi(−N)|

+ sup
t≤−N

|xi(−N)− xi(t)| ≤
ε

3
+

ε

3
+

ε

3
= ε.

Similarly we can prove that all sup
|t|>N

∣∣∣x(j)(t)− x(j)
i (t)

∣∣∣ ≤ ε.
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So, for any ε > 0, M has a finite ε-net {Ux1 , Ux2 , ..., Uxk}, that is, M
is totally bounded in XH2. Hence M is relatively compact in XH2.

To provide the localization part of the main result it is used lower
and upper solutions technique, based on the following definition:

Definition 3.1.5. A function α ∈ XH2 is said to be lower solution of
problem (3.0.1), (3.0.2) if

α′′(t)− k α(t) ≥ f
(
t, α(t), α′(t)

)
, a.e. t ∈ R, and α(±∞) ≤ 0.

A function β ∈ XH2 is an upper solution if the reversed inequalities hold.

Usually, in the literature, these functions have some order relation:
well ordered or reversed ordered. However, next definition can be
applied to α(t) and β(t) with no definite order.

Definition 3.1.6. Functions α, β ∈ XH2 are a pair of lower and upper
solutions of problem (3.0.1), (3.0.2), respectively, if

α′′(t)− k α(t) ≥ f (t, α(t), α′(t)) , t ∈ R,
β′′(t)− k β(t) ≤ f (t, β(t), β′(t)) , t ∈ R

α(±∞) ≤ 0, β(±∞) ≥ 0,

where α(t) = α(t)− sup
t∈R

|α(t)− β(t)| .

3.2 existence and localization of homoclinics

First result requires that lower and upper solutions are well or-
dered to guarantee the existence of homoclinic solutions of problem
(3.0.1), (3.0.2).

Theorem 3.2.1. Let f : R3 → R be a L1− Carathéodory function not
identical to zero and α, β ∈ XH2 be lower and upper solutions of problem
(3.0.1), (3.0.2), respectively, with

α(t) ≤ β(t), ∀t ∈ R. (3.2.1)

40



3.2 existence and localization of homoclinics

If f (t, x, y) is monotone in y (nonincreasing or nondecreasing) for (t, x) ∈
R2 fixed, then problem (3.0.1), (3.0.2) has a homoclinic solution u ∈ XH2

such that α(t) ≤ u(t) ≤ β(t), ∀t ∈ R.

Proof.

Consider the modified equation

u′′(t)− ku(t) = f
(
t, δ(t, u(t)), u′(t)

)
, a.e. t ∈ R, (3.2.2)

where function δ : R2 → R is given by

δ(t, u(t)) =


β(t) , u(t) > β(t)

u(t) , α(t) ≤ u(t) ≤ β(t)

α(t) , u(t) < α(t).

Step 1: The modified problem (3.2.2), (3.0.2) has a solution.

Define the operator T : XH2 → XH2 by

Tu(t) =
∫ +∞

−∞
G(t, s)Fu(s)ds.

where
Fu(t) = f

(
t, δ(t, u(t)), u′(t)

)
and G(t, s) is the Green Function given by Lemma 3.1.2. So it is
enough to prove that T has a fixed point, which is done in the fol-
lowing claims:

Claim 1.1: T : XH2 → XH2 is well defined.

Let u ∈ XH2. As f is a L1-Carathéodory function then Tu is conti-
nuous. For r0 > 0 such that

r0 > max {‖α‖∞, ‖β‖∞} , (3.2.3)
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homoclinic solutions for second order problems

there exists ϕr0 with | f (t, x, y)| ≤ ϕr0
(t), for sup

t∈R

{|x(t)|, |y(t)|} < r0

and a.e. t ∈ R. As Tu and (Tu)′ are continuous, passing to the limit,
by the Lebesgue dominated theorem and Remark 3.1.3,

lim
|t|→∞

(Tu)(t) =
∫ +∞

−∞
lim
|t|→∞

G(t, s)Fu(s)ds = 0,

lim
|t|→∞

(Tu)′(t) =
∫ +∞

−∞
lim
|t|→∞

∂G(t, s)
∂t

Fu(s)ds = 0,

and, therefore, Tu ∈ XH2.

Claim 1.2: T is compact.

Let

M(s) := max

{
sup
t∈R

|G(t, s)|, sup
t∈R

∣∣∣∣∂G(t, s)
∂t

∣∣∣∣
}

.

Consider a bounded set B ⊂ XH2 defined by

B := {u ∈ XH2 : ‖u‖XH2 < r1} ,

for some r1 > 0 such that r1 > max
{

r0,
∫ +∞

−∞
M(s)ϕr0(s)ds

}
, with

r0 given by (3.2.3). Then, for t ∈ R,

|Tu(t)| ≤
∫ +∞

−∞
M(s)|Fu(s)|ds ≤

∫ +∞

−∞
M(s)ϕr(s)ds < r1,

and, analogously |(Tu)′(t)|< r1. Therefore TB is bounded and TB⊂B.

For a > 0 and t1, t2 ∈ [−a, a], because of the continuity of the
Green’s functions and its derivative, one has

lim
t1→t2
|Tu(t1)− Tu(t2)| ≤

∫ +∞

−∞
lim

t1→t2
|G(t1, s)− G(t2, s)||Fu(s)|ds = 0,

lim
t1→t2

∣∣(Tu)′(t1)− (Tu)′(t2)
∣∣≤∫ +∞

−∞
lim

t1→t2

∣∣∣∣∂G
∂t

(t1, s)− ∂G
∂t

(t2, s)
∣∣∣∣|Fu(s)|ds=0.

So, TB is equicontinuous.
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3.2 existence and localization of homoclinics

To prove that TB is equiconvergent at ±∞ note that∣∣∣∣Tu(t)− lim
t→±∞

(Tu(t))
∣∣∣∣ ≤ ∫ +∞

−∞
|G(t, s)||Fu(s)|ds

≤
∫ +∞

−∞
|G(t, s)|ϕr(s)ds −→ 0, t→ ±∞∣∣∣∣(Tu)′(t)− lim

t→±∞
(Tu)′(t)

∣∣∣∣ ≤ ∫ +∞

−∞

∣∣∣∣∂G
∂t

(t, s)
∣∣∣∣ |Fu(s)|ds

≤
∫ +∞

−∞

∣∣∣∣∂G
∂t

(t, s)
∣∣∣∣ ϕr(s)ds −→ 0, t→ ±∞.

Therefore, by Theorem 3.1.4, T is compact and, by Theorem 1.1.6, T
has at least one fixed point u ∈ XH2.

Step 2: Every solution of the modified problem (3.2.2), (3.0.2) is a solution
of the initial problem (3.0.1), (3.0.2).

Let u be a solution of problem (3.2.2), (3.0.2). In order to obtain
this step it is sufficient to prove that

α(t) ≤ u(t) ≤ β(t), ∀t ∈ R.

Suppose, by contradiction, that there exists t ∈ R such that α(t) >
u(t) and define

inf
t∈R

(u(t)− α(t)) < 0.

This infimum can not be attained at ±∞. Otherwise, by (3.0.2) and
Definition 3.1.5 this contradiction holds:

0 > u(±∞)− α(±∞) ≥ 0.

So, there is t∗ ∈ R such that

min
t∈R

(u(t)− α(t)) = u(t∗)− α(t∗) < 0.

Then there exists an interval [t−, t+] such that t∗ ∈ [t−, t+] and u(t)−
α(t) < 0, u′′(t)− α′′(t) ≥ 0 a.e. t ∈ [t−, t+]. Also u′(t)− α′(t) ≤ 0, for
t ∈ [t−, t∗] and u′(t)− α′(t) ≥ 0, for t ∈ [t∗, t+].
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homoclinic solutions for second order problems

If f (t, x, y) is nonincreasing in y, for t ∈ [t∗, t+] this contradiction is
achieved

0 ≤
∫ t

t∗
u′′(s)− α′′(s)ds =

∫ t

t∗

[
f (s, δ (s, u(s)) , u′(s)) + ku(s)− α′′(s)

]
ds

≤
∫ t

t∗

[
f (s, α(s), α′(s)) + ku(s)− α′′(s)

]
ds

≤ k
∫ t

t∗
u(s)− α(s)ds < 0.

By the previous arguments, a similar contradiction holds if f is
nondecreasing, but with an integration on [t−, t∗] ⊂ [t−, t+].

So α(t) ≤ u(t), ∀t ∈ R. In a similar way it can be proved that
β(t) ≥ u(t), ∀t ∈ R.

If the nonlinearity f verifies an anti-symmetric-type property, there
is also homoclinic solutions for the symmetric equation

−u′′(t) + ku(t) = f
(
t, u(t), u′(t)

)
, t ∈ R. (3.2.4)

Theorem 3.2.2. Let α, β ∈ XH2 be lower and upper solutions of pro-
blem (3.0.1), (3.0.2), respectively, verifying (3.2.1). If f : R3 → R is a
L1−Carathéodory function, with f (t, x, y) monotone in y, for (t, x) ∈ R2

fixed, and satisfying

f (t,−x,−y) = − f (t, x, y) , ∀(t, x, y) ∈ R3, (3.2.5)

then there is a pair of homoclinic solutions (u,−u) ∈ X2
H2 such that u

is a solution of problem (3.0.1), (3.0.2) and −u solution of (3.2.4), (3.0.2),
verifying

α(t) ≤ u(t) ≤ β(t),

−β(t) ≤ −u(t) ≤ −α(t), ∀t ∈ R.

Proof.
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3.2 existence and localization of homoclinics

Let α ∈ XH2 be a lower and upper solutions of problem (3.0.1),
(3.0.2). Then, by (3.2.5),

−α′′(t) + k α(t) = −
[
α′′(t)− k α(t)

]
≤ − f

(
t, α(t), α′(t)

)
= f

(
t,−α(t),−α′(t)

)
, for t ∈ R.

That is −α(t) is an upper solution of problem (3.2.4), (3.0.2).

Analogously it can be proved that −β(t) is a lower solution of
problem (3.2.4), (3.0.2).

So, by Theorem 3.2.1, there is a solution −u of problem (3.2.4),
(3.0.2), such that

−β(t) ≤ −u(t) ≤ −α(t), ∀t ∈ R.

The well-ordered relation (3.2.1) can be removed if lower and up-
per functions are defined as a pair of functions, applying a transla-
tion technique suggested in [44].

In this case, the main theorem can be formulated in the following
way:

Theorem 3.2.3. Let f : R3 → R be a L1-Carathéodory function and
α, β ∈ XH2 a pair of lower and upper solutions of problem (3.0.1), (3.0.2),
respectively, according to Definition 3.1.6.

If f (t, x, y) is monotone in y (nonincreasing or nondecreasing) for (t, x) ∈
R2 fixed, then problem (3.0.1), (3.0.2) has a homoclinic solution u ∈ XH2

such that α(t) ≤ u(t) ≤ β(t).

The proof is similar to Theorem 3.2.1 replacing the truncature func-
tion δ by δ : R2 → R given as

δ(t, u(t)) =


β(t) , u(t) > β(t)

u(t) , α(t) ≤ u(t) ≤ β(t)

α(t) , u(t) < α(t).

Notice that α and β do not need to be well ordered or even ordered
at all.
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homoclinic solutions for second order problems

3.3 example of a discontinuous bvp

Consider the second order, nonlinear and discontinuous BVPu′′(t)− u(t) = sgn(t)u3(t)+0.1−100u′(t)
1+t2 , t ∈ R

u(±∞) = u′(±∞) = 0.
(3.3.1)

where sgn(t) =

1 , t ≥ 0

−1 , t < 0.
.

The nonlinear and discontinuous function f : R3 → R defined by

f (t, x, y) :=
sgn(t) x3 + 0.1− 100y

1 + t2

is monotone in y for (t, x) ∈ R2 fixed and for |x| , |y| < ρ, and a L1−
Carathéodory function with ϕρ(t) =

ρ3+0.1+100ρ
1+t2 .

Functions α(t) = arctan(t) and β(t) ≡ 0 are, respectively, a pair of
lower and upper solutions of problem (3.3.1) according to Definition
3.1.6, with α(t) = arctan(t)− π/2.

Therefore, by Theorem 3.2.3, there is at least a non-positive solu-
tion u of (3.3.1) with arctan(t)− π/2 ≤ u(t) ≤ 0, ∀t ∈ R.

Figure 2: Admissible region for solution u

Notice that the null function is not a solution for the problem and
f is discontinuous on t.
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3.4 duffing equation

3.4 duffing equation

In [8] the authors consider equation

−u′′(t) + u(t) = a(t) |u(t)|p−1 u(t), t ∈ R (3.4.1)

with p > 1, which models the forced vibrations of a cantilever beam
in the nonuniform field of two permanent magnets.

The structure and behavior of function a :R→ R is a key point for
the existence of homoclinic solutions. Applying the main result it can
be proved that there exists at least one nontrivial solution in cases not
covered, as far as we know, by results in the existent literature.

For example, if a(t) = − 1
1+t2 , p = 3, k = 0.1, let us seek a nontrivial

and homoclinic solution for

u′′(t)− 0.1 u(t) = |u(t)|2u(t)
1+t2 , t ∈ R,

u(±∞) = u′(±∞) = 0.
(3.4.2)

The nonlinear function f : R2 → R defined by

f (t, x) =
|x|2 x
1 + t2

is a L1 Carathéodory function with |x| < ρ and ϕρ(t) =
ρ3

1+t2 . Func-
tions α(t) = 1

3+t2 − 0.3 and β(t) ≡ 0.3 are lower and upper solutions,
respectively, of problem (3.4.2).

Therefore, by Theorem 3.2.2, there are at least two homoclinic so-
lutions: u of (3.4.2) and −u of problem−u′′(t) + 0.1 u(t) = |u(t)|2u(t)

1+t2 , t ∈ R,

u(±∞) = u′(±∞) = 0.
(3.4.3)

with 1
3+t2 − 0.3 ≤ u(t) ≤ 0.3, and −0.3 ≤ −u(t) ≤ − 1

3+t2 + 0.3, for
t ∈ R.

Note that the null function is not a solution, and therefore, u and
−u are nontrivial solutions.
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homoclinic solutions for second order problems

Figure 3: Admissible regions for both solutions u and −u,
respectively

3.5 forced cantilever beam equation with damping

The second order differential equation

x′′(t) + bx′(t)− x + x3 = F cos(ωt). (3.5.1)

can model the forced vibrations of a cantilever beam in a nonuniform
field of two magnets.

As it is illustrated in the Figure 4, a slender steel beam is clamped

Figure 4: Interaction between a cantilever beam, two magnets and an
excitation force

in a rigid framework which supports the magnets. Their attractive
forces overcome the elastic ones, which would otherwise keep the
beam straight. In the absence of some external force, the beam settles
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3.5 forced cantilever beam equation with damping

with its tip close to one or the other of the magnets. The variable x
represents a measure of the beam’s position, say its tip displacement.

As example, lets consider the following equation

u′′(t) + b(t)u′(t) + c(t)g(t, u) = 0, (3.5.2)

with b(t) = − 0.01
1+t2 , c(t) = 1, g(t, u) = −u− 100u4

1+t2 .
This class of ODE arises in diffusion phenomena in biomathema-

tics. For more details see [13, 67].
Note that in this case the BVPu′′(t)− u(t) = 0.01u′(t)+100u4(t)

1+t2 , t ∈ R,

u(±∞) = u′(±∞) = 0,
(3.5.3)

is not covered by any kind of existence results, to the best of our
knowledge.

The nonlinear function f : R3 → R defined by

f (t, x, y) =
0.01y + 100x4

1 + t2

is monotone in y for (t, x) ∈ R2 fixed, and for |x| , |y| < ρ, is a L1-
Carathéodory function with ϕρ(t) =

0.01ρ+ρ4

1+t2 .
Functions α(t) = 1

1+t2 and β(t) ≡ 0.5 are, respectively, lower and
upper solutions of problem (3.5.3), according to Definition 3.1.6, with
α(t) = 1

1+t2 − 0.5.
Therefore, by Theorem 3.2.3, there is at least an homoclinic solu-

tion u of (3.5.3) such that

1
1 + t2 − 0.5 ≤ u(t) ≤ 0.5, ∀t ∈ R.
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4

H o m o c l i n i c s o l u t i o n s t o f o u r t h o r d e r p r o b l e m s

This chapter provides sufficient conditions for the existence of ho-
moclinic solutions of fourth order nonlinear ODEs. Different ap-
plications are presented to illustrate new results, as the nonlinear
Bernoulli-Euler-v. Karman problem, Extended Fisher-Kolmogorov
problem or the Swift-Hohenberg problem. The method will use
Green’s functions to formulate a new modified integral equation
which is equivalent to the original nonlinear one. Moreover, in an
adequate function space, the corresponding nonlinear integral opera-
tor is compact, and it can be applied an existence result by Schauder’s
fixed point theorem.

It is study the existence of homoclinic solutions to the fourth order,
nonlinear and not necessarily periodic, differential equation

u ( i v )(t)+k u (t)= f ( t , u ( t ) , u ′( t ) , u ′ ′( t ) , u ′ ′ ′( t )) , t∈R , (4.0.1)

with k > 0 and f : R 5 → R a continuous function verifying an
adequate asymptotic condition.

Note that no further condition will be necessary on the nonlinea-
rity f ( t , x , y , z , w ) , to obtain the existence of homoclinic orbits to
0, that is, nontrivial solutions of (4.0.1) such that

u (±∞ ) := l i m
t→±∞

u ( t ) = 0 , u ′ (±∞ ) := l i m
t→±∞

u ′ ( t ) = 0 . (4.0.2)

In the last decades, the study of autonomous and non-autonomous
fourth order differential equations attracted many researchers. To be
more precise, equations of the type

u ( i v ) ( t ) + k u ′ ′ ( t ) + g ( u ( t ) ) = 0 , t∈R , (4.0.3)
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homoclinic solutions to fourth order problems

with k ∈ R , and g a locally Lipschitz function, arises in several
theoretical cases and real phenomena such as:

• if k < 0, it is known as the Extended Fisher-Kolmogorov equa-
tion and if k > 0, it is referred to as Swift-Hohenberg equation
(see [92]);

• if g(u) = u− u2, it is applied in the dynamic phase-space ana-
logy of a nonlinearly supported elastic strut (see [60]);

• if g(u) = u3 − u, it models the pattern formation in many phy-
sical, chemical or biological systems (see [19]);

• if g(u) = u5 − u3 + u, it is used to study the localization and
spreading of deformation of a strut confined by an elastic foun-
dation (see [10, 91]);

• if g(u) = (u + 1)+ − 1, where (u + 1)+ = max {u + 1, 0}, equa-
tion (4.0.3) arises in the search of traveling waves solutions,
([95]), in the study of deflection in railway tracks, ([1]), and
undersea pipelines, ([18]).

The existence of homoclinic solutions were proved by several me-
thods and techniques. Some examples, without pretending to be
exhaustive, are shown in [97], where it is considered the above non-
linearities by variational arguments and the Palais-Smale condition.

For equation

u(iv)(t) + ku′′(t) + a(t)u(t)− b(t)u2(t)− c(t)u3(t)=0,

in [101], it is proved the existence of one nontrivial homoclinic solu-
tion with a(t) and c(t) positive bounded and continuous functions,
and b(t) a bounded continuous function, applying Mountain Pass
Theorem, and, in [70], the existence of nontrivial homoclinic solu-
tions in the nonperiodic case. In [65], the authors show the existence
of two homoclinic solutions for some nonperiodic fourth order equa-
tions with a perturbation.

This chapter put the emphasis in a perturbation with an unknown
function where the nonlinearity is given by a generic continuous
function, with dependence on u and all derivatives till order three.
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As far as we know it is the first time where it is considered such
perturbation associated to generic nonlinearity, which has to verify
only an asymptotic condition (see assumption (4.2.1)).

The arguments are based in the explicit form of the Green’s func-
tions associated to the linear perturbation of (4.0.1), in a compactness
criterion and fixed point theory.

The chapter is organized as it follows: first it is defined an ade-
quate space, the explicit expressions of the associated Green’s func-
tions and other main tools, such as the criterion used to deal with
the lack of compactness and the fixed-point theorem. Existence re-
sults for homoclinic solutions are presented next, together with the
relation of asymptotic properties of the nonlinearity on some quali-
tative data of homoclinic solutions. Finally an example and some
applications will be shown to illustrate the applicability of the main
theorem.

4.1 definitions and auxiliary results

Let us define the space

XH4 =

{
x ∈ C3(R) : lim

|t|→+∞
x(t) = 0

}
with the norm ‖x‖XH4 = max {‖x‖∞, ‖x′‖∞, ‖x′′‖∞, ‖x′′′‖∞}, where
‖ω‖∞ = sup

t∈R

|ω(t)|.

In this way (XH4, ‖.‖XH4) is a Banach space.

The following result will play an important role in the proof of the
main result, giving a solution of some linear fourth order problem
via Green’s functions:

Lemma 4.1.1. If h ∈ L1(R), then, for some k > 0, the problemu(iv)(t) + ku(t) = h(t), t ∈ R,

u(±∞) = u′(±∞) = 0,
(4.1.1)
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has a unique solution in XH4. Moreover, this solution can be expressed as

u(t) =
∫ +∞

−∞
G(t, s)h(s)ds (4.1.2)

where

G(t, s) =
4
√

k
2k

e
− 4√k|s−t|√

2 sin

(
4
√

k|s− t|√
2

+
π

4

)
. (4.1.3)

Proof.

The homogeneous solution of the linear equation is given by

u(t) = eAt (c1 cos(At) + c2 sin(At)) + e−At (c3 cos(At) + c4 sin(At))

with A = 4
√

k
4 and c1, c2, c3, c4 ∈ R.

As the null function is the only solution of the homogeneous pro-
blem, Green’s functions can be defined and the general solution of
(4.1.1) is given by

u(t) =
4
√

k
2k

∫ +∞

−∞
e−

4
√

k
4 |s−t| sin

(
4

√
k
4
|s− t|+ π

4

)
h(s)ds.

For G(t, s) :=
4√k
2k e−A|s−t| sin

(
A|s− t|+ π

4

)
one can write

u(t) =
∫ +∞

−∞
G(t, s)h(s)ds.

The following properties of the Green function can easily be proved.

Remark 4.1.2. For i = 0, 1, 2, 3, defining

G−i (t, s) :=
4
√

k
i+1

2k
e
− 4√k(s−t)√

2 sin

(
4
√

k(s− t)√
2

+
π(3i + 1)

4

)

G+
i (t, s) :=

4
√

k
i+1

2k
e
− 4√k(t−s)√

2 sin

(
4
√

k(t− s)√
2

+
π(3i + 1)

4

)
,

then, for j = 0, 1, 2, 3,
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u(j)(t) =
∫ t

−∞
G−j (t, s)h(s)ds+(−1)j

∫ +∞

t
G+

j (t, s)h(s)ds; (4.1.4)

lim
|t|→∞

∂jG(t, s)
∂tj = 0; (4.1.5)

∣∣∣∣∂jG(t, s)
∂tj

∣∣∣∣ ≤
(

4
√

k
)j+1

2k
. (4.1.6)

The following theorem is a key argument to deal with the lack of
compactness of the set XH4:

Theorem 4.1.3 ([37]). Let M ⊂ (Cl, R) with

Cl :=
{

x ∈ C[0,+∞) : ∃ lim
t→+∞

x(t)
}

.

Then M is compact if the following conditions hold:

i) M is bounded in Cl;

ii) functions f ∈ M are equicontinuous on any compact interval of
[0,+∞);

iii) functions from M are equiconvergent, that is, given ε > 0, there
exists T(ε) > 0 such that | f (t)− f (+∞)| < ε, for all t > T(ε) and
f ∈ M.

The proof of this result can easily be applied of compact intervals
of the form [−T, T], for some T > 0, as it is suggested in [93], to
obtain a similar result to the set XH4.

Theorem 4.1.4. A set M ⊂ XH4 is relatively compact if the following
conditions hold:

i) M is bounded in XH4;

ii) the functions belonging to M are equicontinuous on any compact
interval of R;

iii) the functions from M are equiconvergent at ±∞, that is, given ε > 0,
there exists T(ε) > 0 such that | f (i)(t) − f (i)(±∞)| < ε, for all
|t| > T(ε), i = 0, 1, 2, 3 and f ∈ M.
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4.2 existence results

This section contains an existence result for homoclinic solutions
of problem (4.0.1), (4.0.2) without monotone, periodic or extra as-
sumptions on the nonlinear part.

Theorem 4.2.1. Let f : R5 → R be a continuous function not identical
to zero. If for each r > 0 with max{‖x‖∞, ‖y‖∞, ‖z‖∞, ‖w‖∞} < r there
exists a positive function φr ∈ L1(R) such that

| f (t, x, y, z, w)| < φr(t), (4.2.1)

then problem (4.0.1), (4.0.2) has a homoclinic solution u ∈ XH4.

Proof.

Define
Fu(t) := f (t, u(t), u′(t), u′′(t), u′′′(t))

and consider the operator T : XH4 → XH4 given by

Tu(t) =
∫ +∞

−∞
G(t, s)Fu(s)ds,

with G(t, s) defined by (4.1.3).

As f is a continuous function verifying (4.2.1) and u ∈ XH4, it is
obvious that Fu ∈ L1(R), and, by Lemma 4.1.1, the fixed points of T
are solutions of problem (4.0.1), (4.0.2). So, it is enough to prove that
T has a fixed point.

Clearly Tu ∈ C3(R) and by (4.1.5) and Lebesgue’s Dominated Con-
vergence Theorem,

lim
|t|→∞

(Tu)(t) =
∫ +∞

−∞
lim
|t|→∞

G(t, s)Fu(s)ds = 0

and, for i = 1, 2, 3,

lim
|t|→∞

(Tu)(i)(t) =
∫ +∞

−∞
lim
|t|→∞

∂(i)G(t, s)
∂ti Fu(s)ds = 0,

Therefore Tu ∈ XH4, and T : XH4 → XH4 is well defined.
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homoclinic solutions to fourth order problems

Now for any bounded subset B ⊂ XH4 and any u ∈ B with
‖u‖XH4 ≤ r1, by (4.1.6) and (4.2.1) one has

|Tu(t)| ≤
∫ +∞

−∞
|G(t, s)||Fu(s)|ds ≤

4
√

k
2k

∫ +∞

−∞
φr1 < +∞, ∀t ∈ R,

and, therefore, {Tu(t) : Tu ∈ B} is relatively compact in R.

For a > 0 and t1, t2 ∈ [−a, a], one has, as t1 → t2,

|Tu(t1)− Tu(t2)| =
∫ +∞

−∞
|G(t1, s)− G(t2, s)||Fu(s)|ds −→ 0,

and
|(Tu)(i)(t1)− (Tu)(i)(t2)| =

=
∫ +∞

−∞

∣∣∣∣∣∂(i)G∂ti (t1, s)− ∂(i)G
∂ti (t2, s)

∣∣∣∣∣ |Fu(s)|ds −→ 0, for i = 0, 1, 2, 3.

So the set {u : [a,−a]→ R} ⊂ B is equicontinuous.

By the continuity of f for any ε > 0 there exists t+ > 0 and δ > 0
such that when |u(t)− v(t)| ≤ ε, for t > t+, then

|Fu(t+)− Fv(t+)| ≤ δ.

So, for i = 1, 2, 3, and by (4.1.6)

∣∣∣(Tu)(i)(t)− (Tv)(i)(t)
∣∣∣ = ∫ +∞

−∞

∣∣∣∣∣∂(i)G∂ti (t, s)

∣∣∣∣∣ |Fu(s)− Fv(s)|ds −→ 0,

as t→ +∞.

Analogously, when |u(t)− v(t)| ≤ ε, for t < −t+, then

|Fu(−t+)− Fv(−t+)| ≤ δ.

So, T is equiconvergent at ±∞, and by Theorem 4.1.4, TB is relatively
compact.

Consider now a subset D ⊂ XH4 defined as

D :=
{

u ∈ XH4 : ‖u‖XH4 < r2
}

,
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4.2 existence results

with
r2 > max

{
r,
∫ +∞

−∞
M φr(s)ds

}
,

where r > 0 is given by (4.2.1) and

M := max
{

1,
1

2 4
√

k3
,

1

2
√

k
,

1

2 4
√

k

}
,

with G−3 (t, s) and G+
3 (t, s) given by Remark (4.1.2).

For t ∈ R, by (4.1.6) and (4.2.1),

‖Tu‖ = sup
t∈R

∣∣∣∣∫ +∞

−∞
G(t, s)Fu(s)ds

∣∣∣∣
≤

∫ +∞

−∞

1

2 4
√

k3
| f (s, u(s), u′(s), u′′(s), u′′′(s))|ds

≤
∫ +∞

−∞

1

2 4
√

k3
φr(s)ds < r2,

‖(Tu)(i)‖ = sup
t∈R

∣∣∣∣∣
∫ +∞

−∞

∂(i)G
∂ti (t, s)Fu(s)ds

∣∣∣∣∣
≤

∫ +∞

−∞

(
4
√

k
)i+1

2k
φr(s)ds < r2, for i = 1, 2,

and

‖(Tu)′′′‖ = sup
t∈R

∣∣∣∣∫ t

−∞
G−3 (t, s)Fu(s)ds−

∫ +∞

t
G+

3 (t, s)Fu(s)ds
∣∣∣∣

≤
∫ +∞

−∞
sup
t∈R

(
|G−3 (t, s)|+ |G−3 (t, s)|

)
φr(s)ds

≤
∫ +∞

−∞
φr(s)ds < r2. (4.2.2)

Therefore, TD ⊂ D and, by Theorem 1.1.6, T has at least a fixed
point u ∈ XH4.

With more information on the asymptotic behavior of the nonline-
arity it is possible to derive more data on solutions of (4.0.1):
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homoclinic solutions to fourth order problems

Lemma 4.2.2. Let k > 0, u be a solution of (4.0.1), (4.0.2) and f a conti-
nuous function verifying

lim
|t|→+∞

(x,y)→(0,0)

f (t, x, y, z, w) = 0, (4.2.3)

Then u(i)(±∞) = 0, i = 0, 1, 2, 3, 4.

Proof.

Let us rewrite equation (4.0.1) as

d
dt
(
et(u′′′(t)− u′′(t) + u′(t)− u(t))

)
= δ1(t)et (4.2.4)

with δ1(t) = f (t, u(t), u′(t), u′′(t), u′′′(t))− (k + 1)u(t).

By (4.2.3), for any ε > 0 there is σ > 0 such that |δ1(t)| < ε, for
every t > σ, |u(t)| < σ, and |u′(t)| < σ.

Fix ε > 0 and integrate (4.2.4) over ]σ, t[, for any t > σ, to obtain

et (u′′′(t)− u′′(t) + u′(t)− u(t)
)
= C +

∫ t

σ
δ1(s)esds,

for some C ∈ R, and, subsequently,

∣∣u′′′(t)− u′′(t) + u′(t)− u(t)
∣∣ ≤ |C|e−t + εe−t

∫ t

σ
esds

≤ |C|e−t + ε
(
1− eσ−t) ,

for t > σ.

By letting t→ +∞ and by the arbitrariness of ε, it can be defined

δ2(t) := u′′′(t)− u′′(t) + u′(t)− u(t), (4.2.5)

for some continuous function δ2 vanishing as t → +∞. Rewriting
again equation (4.2.4)

d
dt
(
et (u′′(t)− 2u′(t) + 3u(t)

))
:= δ3(t)et (4.2.6)

with δ3(t) = δ2(t) + 4u(t). Arguing as for (4.2.4), it may be defined

δ4(t) := u′′(t)− 2u′(t) + 3u(t), (4.2.7)
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for some continuous function δ4(t) vanishing as t→ +∞.

Since both u(t), u′(t) → 0 this implies that u′′(t) → 0. Similarly,
from (4.2.5) it can be demonstrated that u′′′(t) → 0, whereas from
(4.0.1), u(iv)(t)→ 0.

4.3 example

Consider the fourth order BVPu(iv)(t) + u(t) = u(t)(u′′(t)−(u(t))2)+(u′(t))2
(u′′′(t))3+1

1+t2 , t ∈ R,

u(±∞) = u′(±∞) = 0.
(4.3.1)

Function f (t, x, y, z, w) = x(z−x2)+y2w3+1
1+t2 is continuous and verifies

(4.2.1) for max{‖x‖∞ , ‖y‖∞ , ‖z‖∞ , ‖w‖∞} < r1, (r1 > 0), with

φr1(t) :=
r2

1 + r3
1 + r5

1 + 1
1 + t2 .

Therefore, by Theorem 4.2.1 there exists a non-negative homoclinic
solution of problem (4.3.1) with the phase portrait and its graphic
given by next figures.

Figure 5: Phase portrait of the homoclinic solution u of (4.3.1)
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homoclinic solutions to fourth order problems

Figure 6: Graph of the homoclinic solution u of (4.3.1)

4.4 bernoulli-euler-v. karman problem

In [63] it is considered the nonlinear Bernoulli-Euler-v. Karman
BVPEIu(iv)(t) + ku(t) = 3

2 EA(u′(t))2u′′(t) + ω(t), t ∈ R,

u(±∞) = u′(±∞) = 0,
(4.4.1)

Figure 7: Infinite nonlinear beam resting on nonuniform elastic
foundations

which is related to the analysis of moderately large deflections of in-
finite nonlinear beams resting on elastic foundations under localized
external loads. More precisely, E is the Young’s modulus, I the mass
moment of inertia, k u(t) the spring force upward, in which k is a
spring constant (for simplicity the weight of the beam is neglected),
A the cross-sectional area of the beam and ω(t) the applied loading
downward (see figure 7).
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4.5 extended fisher-kolmogorov and swift-hohenberg

problems

An example of this family of problems is given byu(iv)(t) + 3u(t) = 3.4+u3(t)−u′′(t)(u′(t))2

1+t4 , t ∈ R,

u(±∞) = u′(±∞) = 0.
(4.4.2)

Here the loading force ω(t) = 3.4
1+t4 and the nonlinear function

g : R4 → R is defined by

g(t, x, y, z) :=
x3 − zy2

1 + t4 .

The function f (t, x, y, z) := g(t, x, y, z) + ω(t) is continuous and veri-
fies (4.2.1) for max{‖x‖∞ , ‖y‖∞ , ‖z‖∞} < r2, (r2 > 0), with

φr2(t) :=
3.4 + 2r3

2
1 + t4 .

By Theorem 4.2.1 there is a nontrivial homoclinic solution u∗. More-
over, as f verifies (4.2.3), by Corollary 4.2.2, this homoclinic solution
u∗ of (4.4.2) verifies (u∗)(i) (±∞) = 0, for i = 0, 1, 2, 3, 4.

4.5 extended fisher-kolmogorov and swift-hohenberg

problems

In [65], the authors consider a fourth order differential equation
which can be written as

u(iv)(t) + u(t) = 2u(t)− au′′(t)− u3(t), t ∈ R. (4.5.1)

In the literature, when a < 0, this equation corresponds to the
well-known Extended Fisher-Kolmogorov (EFK) equation, proposed
in [38], to study phase transitions. If a > 0, (4.5.1) is related to Swift-
Hohenberg (SH) equation, which is a general model for pattern-
forming process, to describe random thermal fluctuations in the Bous-
sinesq equation (see [100]) and in the propagation of lasers (see [69]).

In this sense, equation

u(iv)(t) + u(t) =
(1 + u(t))

(
1 + u′′(t)− u2(t)

)
1 + t4 , t ∈ R, (4.5.2)
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homoclinic solutions to fourth order problems

can be seen as a generalized (EFK), or (SH), where the coefficient
of u′′(t) depends on the unknown function and it has not a definite
signal. In both cases of the coefficient sign the nonlinear function
f : R3 → R defined by

f (t, x, z) :=
(1 + x)(1 + z− x2)

1 + t4

is continuous and for max{‖x‖∞ , ‖z‖∞} < r3, (r3 > 0), f verifies
(4.2.1) with

φr3(t) :=
(1 + r3)(1 + r3 + r2

3)

1 + t4 .

Therefore, by Theorem 4.2.1, there is a homoclinic solution u∗ of
problem (4.5.2), (4.0.2). As it is illustrated in the next two figures,
this homoclinic is a sign-changing function.

Figure 8: Phase portrait of the homoclinic solution of (4.5.2), (4.0.2)

Figure 9: Graph of the homoclinic solution of (4.5.2), (4.0.2)
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5

L i d s t o n e b o u n d a r y v a l u e p r o b l e m s

George James Lidstone (1870-1952) was an English mathematician
who worked, among other things, in the study of polynomial inter-
polation. In 1929 he introduced a generalization of Taylor’s series,
where the innovation part was an approximation of a given function
in the neighborhood of two points instead of one.

Essentially this interpolating polynomial is a solution of a BVP
given by an elementary even order differential equation and boun-
dary conditions defined on a bounded interval u ( 2 m ) ( t ) = 0 , t ∈ [ a , b ]

u ( j ) ( a ) = A j , u ( j ) ( b ) = B j , j = 0 , 1 , . . . , m − 1 .

In the field of approximation theory the Lidstone interpolating
polynomial of degree ( 2 m − 1 ) matches u ( t ) and its (m − 1 )
even derivatives at both ends of the compact interval.

The homogeneous differential equation can be generalized and,
coupled with boundary conditions, generates the next BVP u ( 2 m ) ( t ) = f ( t , u ( t ) , u ′ ( t ) , . . . , u ( 2 m− 1 ) ( t ) ) , t ∈ [ 0 , 1 ]

u ( j ) ( 0 ) = A j , u ( j ) ( 1 ) = B j , j = 0 , 1 , . . . , m − 1 .

This kind of BVP are known as Lidstone boundary value pro-
blems.

The particular case m = 2 frequently occurs in engineering and
other branches of physical sciences. For instance, the deflection of
a uniformly loaded rectangular plate, supported over the entire sur-
face by an elastic foundation and rigidly supported along the edges,
leads to this type of problem, or to model the deformations of an
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lidstone boundary value problems

elastic beam where the type of boundary conditions considered de-
pends on how the beam is supported at the two endpoints (see [55]
and the references therein).

In this specific case, Lidstone boundary conditions,

u(a) = u′′(a) = u(b) = u′′(b) = 0,

means that both endpoints of the beam are simply supported.

Recently, it was introduced the so-called complementary Lidstone
boundary value problems (see [6, 7, 106]) with differential equa-
tions of odd order together with odd boundary derivatives condi-
tions only, that is of the typeu(2m−1)(t) = f (t, u(t), u′(t), ..., u(2m−2)(t)), t ∈ [a, b]

u(a) = A0, u(2j−1)(a) = Aj, u(2j−1)(b) = Bj, j = 1, ..., m.

These types of problems with full nonlinearities, that is, with de-
pendence on even and odd derivatives, are very scarce (see [43, 45,
81]). However, as far as we know, Lidstone or complementary Lid-
stone problems were never applied to the whole real line.

This chapter is concerned with the study of a fully nonlinear diffe-
rential equation on the real line

u(iv)(t) + k4u(t) = f (t, u(t), u′(t), u′′(t), u′′′(t)), t ∈ R, (5.0.1)

where k ∈ R, f : R5 → R is a continuous function and two Lidstone-
type boundary conditions: the classical ones, with even derivatives,

u(±∞) = u′′(±∞) = 0; (5.0.2)

with u(i)(±∞) := lim
t→±∞

u(i)(t), i = 0, 2 and the so-called complemen-

tary Lidstone boundary conditions

u(±∞) = u′(±∞) = 0. (5.0.3)

Notice that solutions of problem (5.0.1), (5.0.3) are homoclinic so-
lutions and in this way the results of this chapter complement and
generalize the ones achieved in the previous one.
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5.1 auxiliary definitions and green’s functions

The main arguments are based on the explicit form of Green’s func-
tions associated to problem (5.0.1), (5.0.2), in a compactness criterion
and fixed point theory.

The problem (5.0.1), (5.0.2) can model several real phenomena in
beam theory ([1, 16]), suspension bridges ([13, 22]) and elasticity
theory, among others. Equation (5.0.1) is often referred as a beam
equation, because it describes the deflection of an elastic beam under
a certain force. The boundary conditions (5.0.2) mean that the beam
is simply supported at infinity.

The chapter is organized as it follows: first section contains the
definition of an adequate space, a technical lemma that allows to re-
late solutions of (5.0.1), (5.0.2) with homoclinic solutions, the explicit
expressions of Green’s functions and other auxiliary tools, such as
the criterion used to deal with the lack of compactness and the fixed-
point theorem. Next section contains the main theorem and, finally,
last section shows an application to the study of the bending of an
infinite beam on elastic foundations.

5.1 auxiliary definitions and green’s functions

The space of admissible functions to be used forward will be

XL =

{
x ∈ C3(R) : lim

|t|→+∞
x(t) = 0

}
,

equipped with the norm ‖x‖XL = max {‖x‖∞, ‖x′‖∞, ‖x′′‖∞, ‖x′′′‖∞},
where ‖ω‖∞ = sup

t∈R

|ω(t)|.

In this way (XL, ‖.‖XL) is a Banach space.

The following result will play an important role in the proof of the
main result, giving an explicit solution of some linear fourth order
problem via Green’s functions:

Lemma 5.1.1. If h ∈ L1(R), then for k ∈ R, the linear problemuiv(t) + k4u(t) = h(t), t ∈ R,

u(±∞) = u′′(±∞) = 0
(5.1.1)
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has a unique solution in XL which can be expressed as

u(t) =
∫ +∞

−∞
G(t, s)h(s)ds

where

G(t, s) =
e−k∗|s−t|
√

2
5
k3
∗

sin
(

k∗|s− t|+ π

4

)
, (5.1.2)

with k∗ = k
√

2
2 .

Proof.
The homogeneous solution of the linear equation is given by

u(t) = ek∗t (c1 cos(k∗t) + c2 sin(k∗t))+ e−k∗t (c3 cos(k∗t) + c4 sin(k∗t))

with c1, c2, c3, c4 ∈ R and the general solution of the homogeneous
problem associated to (5.1.1), is given by

u(t) =
1

2k3

∫ +∞

−∞
e−k∗|s−t| sin

(
k∗|s− t|+ π

4

)
h(s)ds.

For G(t, s) := G(t, s) = e−k∗|s−t|
√

2
5
k3∗

sin
(
k∗|s− t|+ π

4

)
, one can write

u(t) =
∫ +∞

−∞
G(t, s)h(s)ds.

Some properties of these Green’s functions are in the following
remark:

Remark 5.1.2. For i = 0, 1, 2, 3, defining

G−i (t, s) :=
ek∗(s−t)

√
2

5−i
k3−i
∗

sin
(

k∗(t− s) +
π(3i + 1)

4

)
,

G+
i (t, s) :=

ek∗(t−s)

√
2

5−i
k3−i
∗

sin
(

k∗(s− t) +
π(3i + 1)

4

)
,

one has

u(i)(t) =
∫ t

−∞
G−i (t, s)h(s)ds + (−1)i

∫ +∞

t
G+

i (t, s)h(s)ds. (5.1.3)

66



5.2 existence result

The following properties of the Green function can easily be proved

lim
|t|→+∞

G(t, s) = lim
t→+∞

G−i (t, s) = lim
t→−∞

G+
i (t, s) = 0, (5.1.4)

|Gi(t, s)| ≤ 1
√

2
5−i

k3−i
∗

, i = 0, 1, 2, 3. (5.1.5)

Next theorem is a key argument to deal with the lack of compact-
ness :

Theorem 5.1.3. For a set D ⊂ XL to be relatively compact, it is necessary
and sufficient that:

i) {x(t) : x ∈ D} is relatively compact in R for any t ∈ R;

ii) for each a > 0 the family Da := {x : [−a, a]→ R} ⊂ D is equicon-
tinuous;

iii) D is stable at ±∞, i.e., for arbitrary functions x and y in D, and any
ε > 0, there exist T > 0 and δ > 0 such that if |x(i)(T)− y(i)(T)| ≤
δ then |x(i)(t)− y(i)(t)| ≤ ε for t > T, and if |x(i)(−T)− y(i)(−T)| ≤
δ then |x(i)(t)− y(i)(t)| ≤ ε for t < −T, for each i = 0, 1, 2, 3.

Proof.
The proof is a direct application of [93], Theorem 1.

5.2 existence result

The main result of this chapter is given by the following theorem :

Theorem 5.2.1. Let f : R5 → R be a continuous function. If for each
r > 0 with max {‖x‖∞, ‖y‖∞, ‖z‖∞, ‖w‖∞} < r there exists a positive
function φr : R→ [0,+∞) such that

| f (t, x, y, z, w)| < φr(t) and
∫ +∞

−∞
φr(t)dt < +∞, (5.2.1)

then problem (5.0.1), (5.0.2) has a solution u ∈ XL, which is also a homo-
clinic solution.
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Proof.

Define
Fu(t) := f (t, u(t), u′(t), u′′(t), u′′′(t))

and consider the operator T : XL → XL given by

Tu(t) =
∫ +∞

−∞
G(t, s)Fu(s)ds,

with G(t, s) defined by (5.1.2).

As f is a continuous function, u ∈ XL, and verifies (5.2.1), it is
obvious that Fu ∈ L1(R), and, by Lemma 5.1.1, fixed points of T are
solutions of problem (5.0.1), (5.0.2). So, it is enough to prove that T
has a fixed point.

Clearly Tu ∈ C3(R) and, by Lebesgue’s dominated convergence
theorem and (5.1.4),

lim
|t|→+∞

(Tu)(t) =
∫ +∞

−∞
lim
|t|→+∞

G(t, s)Fu(s)ds = 0,

lim
|t|→+∞

(Tu)′′(t) =
∫ +∞

−∞
lim
|t|→+∞

G2(t, s)Fu(s)ds = 0,

and

lim
|t|→+∞

(Tu)′(t) =
∫ t

−∞
lim

t→+∞
G−1 Fu(s)ds−

∫ +∞

t
lim

t→−∞
G+

1 Fu(s)ds = 0,

lim
|t|→+∞

(Tu)′′′(t) =
∫ t

−∞
lim

t→+∞
G−3 Fu(s)ds−

∫ +∞

t
lim

t→−∞
G+

3 Fu(s)ds = 0.

Therefore Tu ∈ XL, and T : XL → XL is well defined.

Let B ⊂ XL be a bounded subset . That is, there is r1 > 0 such
that, for any u ∈ B, one has ‖u‖XL < r1. By (5.1.5) and (5.2.1), for
i = 0, 1, 2, 3,∣∣∣(Tu(t))(i)

∣∣∣ ≤ ∫ +∞

−∞
|Gi(t, s)||Fu(s)|ds

≤ 1
√

2
5−i

k3−i
∗

∫ +∞

−∞
φr1(s)ds < +∞, ∀t ∈ R,

and, therefore, {Tu(t) : Tu ∈ B} is relatively compact in R.
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For some a > 0 and t1, t2 ∈ [−a, a], as t1 → t2,

|Tu(t1)− Tu(t2)| =
∫ +∞

−∞
|G(t1, s)− G(t2, s)||Fu(s)|ds −→ 0,∣∣(Tu)′′(t1)− (Tu)′′(t2)

∣∣ =
∫ +∞

−∞
|G2(t1, s)− G2(t2, s)||Fu(s)|ds −→ 0,

and for i = 1, 3,

∫ t

−∞

∣∣G−i (t1, s)− G−i (t2, s)
∣∣ |Fu(s)|ds

+
∫ +∞

t

∣∣G+
i (t1, s)− G+

i (t2, s)
∣∣ |Fu(s)|ds −→ 0.

So the set {u : [−a, a]→ R} ⊂ B is equicontinuous.

As the stability at ±∞, by the continuity of f , for any ε > 0, there
exists t+ > 0 and δ > 0 such that when |u(t)− v(t)| ≤ ε, for t > t+,
then

|Fu(t+)− Fv(t+)| ≤ δ.

So, for i = 0, 1, 2, 3,∣∣∣(Tu)(i)(t)− (Tv)(i)(t)
∣∣∣ ≤ ∫ t

−∞

∣∣G−i (t, s)
∣∣ |Fu(s)− Fv(s)|ds

+
∫ +∞

t

∣∣G+
i (t, s)

∣∣ |Fu(s)− Fv(s)|ds −→ 0,

as t→ +∞.

Analogously, when |u(t)− v(t)| ≤ ε, for t < −t+, then

|Fu(−t+)− Fv(−t+)| ≤ δ.

So, T is stable at ±∞ and by Theorem 5.1.3, TB is relatively compact.

Consider now a subset D ⊂ XL defined as

D := {u ∈ XL : ‖u‖XL ≤ r2} ,

with
r2 > max

{
r,
∫ +∞

−∞
M φr(s)ds

}
,
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lidstone boundary value problems

where r > 0 is given by (5.2.1) and

M := max

{
1,

1
√

2
5
k3
∗

,
1

2k2
∗

,
1

√
2

3
k∗

}
,

For t ∈ R, by (5.1.5) and (5.2.1),

‖Tu‖∞ = sup
t∈R

∣∣∣∣∫ +∞

−∞
G(t, s)Fu(s)ds

∣∣∣∣
≤

∫ +∞

−∞

1
√

2
5
k3
∗

∣∣ f (s, u(s), u′(s), u′′(s), u′′′(s))
∣∣ ds

≤
∫ +∞

−∞

1
√

2
5
k3
∗

φr(s)ds < r2,

‖(Tu)′′‖∞ = sup
t∈R

∣∣∣∣∫ +∞

−∞
G2(t, s)Fu(s)ds

∣∣∣∣ ≤ ∫ +∞

−∞

1
√

2
3
k∗

φr(s)ds < r2,

and

‖(Tu)′‖∞ = sup
t∈R

∣∣∣∣∫ t

−∞
G−1 (t, s)Fu(s)ds−

∫ +∞

t
G+

1 (t, s)Fu(s)ds
∣∣∣∣

≤
∫ +∞

−∞
sup
t∈R

(∣∣G−1 (t, s)
∣∣+ ∣∣G−1 (t, s)

∣∣) φr(s)ds

≤ 1
2k2
∗

∫ +∞

−∞
φr(s)ds < r2,

‖(Tu)′′′‖∞ = sup
t∈R

∣∣∣∣∫ t

−∞
G−3 (t, s)Fu(s)ds−

∫ +∞

t
G+

3 (t, s)Fu(s)ds
∣∣∣∣

≤
∫ +∞

−∞
sup
t∈R

(∣∣G−3 (t, s)
∣∣+ ∣∣G−3 (t, s)

∣∣) φr(s)ds

≤
∫ +∞

−∞
φr(s)ds < r2.

Therefore, TD ⊂ D and, by Theorem 1.1.6, T has at least a fixed
point u ∈ XL.

This fixed point is a solution (5.0.1), (5.0.2) and, moreover, a homo-
clinic solution of (5.0.1), (5.0.2), by Lemma 3.1.1.

Remark 5.2.2. By Lemma 3.1.1, the solution of problem (5.0.1), (5.0.2)
given by the previous theorem, is also a solution of the complementary Lid-
stone problem (5.0.1), (5.0.3).
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5.3 an infinite beam resting on granular foundations

5.3 an infinite beam resting on granular foundations

Soil improvement via stone columns (filling a cylindrical cavity
with granular material) is achieved by accelerating the consolidation
of the soft soil due to the shortened drainage path, by an increase
in the load-carrying capacity and/or by a decrease in the settlement
due to the inclusion of stronger granular material.

Apart from improving the ground below the foundations of resi-
dential as well as industrial buildings, stone columns are also instal-
led in soft soils or loose sand for rail roads and roadways due to the
stringent settlement restrictions.

Many studies are available on the analysis of rails, treated as infi-
nite beams on elastic foundations, subjected to concentrated moving
loads as well as dynamic loads, using different techniques. For de-
tails see [76, 77, 89] and the references therein.

A longitudinal section of a rail idealized as an infinite beam resting
on a ballast layer of a granular fill-stone column-reinforced soft soil
system, is sketched in Fig.10.

Figure 10: Railway resting on reinforced granular fill-poor soil
system

The beam is founded on a granular fill layer of thickness H over-
lying saturated soft soil. The shear modulus of the granular fill layer
is G. The diameter and the spacing of the stone columns are d and s,
respectively.
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lidstone boundary value problems

In [76], the differential equation of an infinite beam with a uniform
cross section and a moving load can be written as

EI
d4w
dξ4 + ρv2 d2w

dξ2 − c
dw
dξ

+ q = P(ξ),

where EI is the flexural rigidity of the infinite beam, ξ is the distance
from the point of action of load at time t has been considered as
ξ = x − vt, where v is the constant velocity at which the load is
moving on the infinite beam, w(ξ) is the transverse displacement of
the beam at ξ, ρ is the mass per unit length of the beam, c is the
coefficient of viscous damping per unit length of the beam, P(ξ) is
the applied load intensity and q is the reaction of the granular fill
on the beam, a function that involves the shear modulus G and the
thickness of the granular fill layer H.

Suppose that, (see [76]),

q :=
(

1− 1
1 + ξ2

)
a w− GH

d2w
dξ2 ,

for some positive parameters a, b and d. Then an example of this type
of problems is given by the Lidstone boundary value problem in the
whole real line, composed by the differential equation

d4w
dξ4 +

a
EI

w =
1

1 + ξ2
1

EI

[(
GH − ρv2

) d2w
dξ2 + cv

dw
dξ

+ aw + P(ξ)
]

,

(5.3.1)
together with the boundary conditions (5.0.2).

This problem (5.3.1), (5.0.2) is a particular case of the initial pro-
blem (5.0.1), (5.0.2) with k4 = a

EI and

f (ξ, x1, x2, x3, x4) :=
1

1 + ξ2
1

EI

[(
GH − ρv2

)
x3 + cvx2 + a x1 + P(ξ)

]
is a continuous function.

If the applied load P(ξ) is bounded, that is, there is K > 0 such
that ‖P‖ ≤ K, and not identically to 0, then f verifies (5.2.1) with

φr(ξ) :=
1

1 + ξ2
1

EI

[
|GH − ρv2|r + (cv + a) r + K

]
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5.3 an infinite beam resting on granular foundations

By Theorem 5.2.1 there is a nontrivial solution w of problem (5.3.1),
(5.0.2), which is, by Lemma 3.1.1, a homoclinic solution.
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part iii: functional boundary value problems

introduction

Many phenomena of real life have a retrospective effect, i.e., their
status in the future may depend not only from the present but also
from what happened in the past. One of the mathematical processes
appropriate to study this effect distributed over time, it is given by
Functional Differential Equations (FDEs). It should be noted that,
the concept of FDEs generalizes the common differential equations
into functions with a continuous argument.

Let us precise a little more the meaning of "functional". In Algebra,
we deal with algebraic equations involving one or more unknown
real numbers. Functional equations are much like algebraic equa-
tions, except that the unknown quantities are functions rather than
real numbers.

From an historic point a view, as far as we know, the first time
where functional equations were studied, was in the work of the
fourteenth century mathematician Nicole Oresme (1323-1382) who
provided an indirect definition of linear functions by means of a
functional equation: in modern terminology, we have three distinct
real numbers x, y, and z, and, associated to each one, a variable (the
“intensity” of the quality at each point) which we can write as f (x),
f (y), and f (z), respectively (for more details see [96]). The function
f , considered as a linear function, is defined by the relation

y− x
z− y

=
f (y)− f (x)
f (z)− f (y)

, for all distinct values of x, y, z.

FDEs only appear, to the best of our knowledge, in the second half
of last century (see, for example, [41, 57, 66]).

However, the word "functional" was restrict to delay, advanced or
neutral differential equations. This concept was adapted to a global
unknown functional variable in, for instance, [23, 27]. If the func-
tional part appear in the differential equation, then it covers diffe-
rential, integral or integro-differential equations, delay, neutral or
advanced equations, among others. If the functional variation exists
in the boundary conditions, so these boundary values problems in-
clude the classical two-point or multipoint conditions, but also non-
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part iii: functional boundary value problems

local, integral boundary data, and cases where the global behavior
of the unknown variable and its derivatives are involved. As an illus-
tration of this type of functional problem with functional boundary
conditions, we refer the problem in [85], with a functional variation
in u, u′ and u′′ in the differential equation:

−
(
φ
(
u′′′(x)

))′
= f (x, u′′(x), u′′′(x), u, u′, u′′),

for a.e. x ∈]a, b[, where φ is an increasing homeomorphism, I := [a, b],
and f : I ×R2 × (C(I))3 → R2 is a L1-Carathéodory function, and
the boundary conditions

0 = L1 (u (a) , u, u′, u′′)
0 = L2 (u′ (a) , u, u′, u′′)
0 = L3 (u′′ (a) , u′′ (b) , u′′′ (a) , u′′′ (b) , u, u′, u′′)
0 = L4 (u′′ (a) , u′′ (b))

where Li, i = 1, 2, 3, 4, are suitable functions with L1 and L2 not
necessarily continuous, satisfying some monotonicity assumptions.

In all the above references, functional boundary value problems
are considered on bounded intervals. On unbounded domains the
techniques are more delicate due to the lack of compactness of the
correspondent operators. By this reason, for example, the usual
Arzèla-Ascoli Theorem can not be applied.

The three chapters of this third part will present methods and tech-
niques in order to consider some of these type of functional problems
to unbounded domains, namely, the half-line or the whole real line.

In Chapter 6 it will be proved an existence and localization result
for a second order BVP with functional boundary conditions. An
application to an Emden-Fowler equation will be shown to illustrate
the main result of the chapter.

Chapter 7 deals with third order BVPs with functional boundary
conditions. These type of problems can be observed, for example, in
a Falkner-Skan equation and may describe the behavior of a viscous
flow over a flat plate. The localization of a solution and, moreover,
some of its qualitative properties, will be presented in this chapter.

Last chapter, Chapter 8, concerns the study of φ -Laplacian equa-
tions. An existence and localization result will be proved and, in
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part iii: functional boundary value problems

order to demonstrate the applicability of the main result, two exam-
ples will be shown.
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6

S e c o n d o r d e r p r o b l e m s

Previous chapters have shown that some real phenomena are mo-
deled by differential equations of various orders with different types
of boundary conditions such as Sturm-Liouville, Homoclinic or Lid-
stone - type. There are, however, other problems with functional con-
ditions, that is, situations where the boundary data do not depend
on particular points but on the global variation of the unknown func-
tion. These may, for example, be provided with integral, differential,
maximum or minimum arguments.

In order to cover a wide range of applications, in this chapter it
will be studied the general second order differential equation

u ′ ′ ( t ) = f ( t , u ( t ) , u ′ ( t ) ) , t≥ 0 (6.0.1)

coupled with functional conditions as follows L ( u , u ( 0 ) , u ′ ( 0 ) ) = 0

u ′ ( +∞ ) = B ,
(6.0.2)

with L : C (R+
0 ) × R 2 → R a continuous function verifying some

monotone assumption and B∈R , u ′ ( +∞ ) := l i m
t→+∞

u ′ ( t ) .

Notice that this functional dependence allows, not only conditions
on the boundary, but also multipoint conditions, that is, require-
ments on one or more interior points.

BVP (6.0.1), (6.0.2) covers a huge variety of problems such as sepa-
rated, multipoint, nonlocal, integrodifferential, periodic, anti-periodic
and with maximum or minimum arguments. For example, in the
case of integral conditions, it covers problems that arise naturally in
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the description of physical phenomena, for instance thermal conduc-
tion, semiconductor and hydrodynamic problems (see [21, 49, 64, 72,
84, 99, 108, 111, 113] and references therein).

In most cases positive solutions are searched in compact intervals.
However results on the solvability of BVPs on unbounded intervals
(half-line or real line) are scarce.

The main technique relies on the lower and upper solutions. Rather
than the existence of bounded or unbounded solutions, their locali-
zation provides some qualitative data, like, for example, signal vari-
ation and behavior (see [25, 82]). Some results are concerned with
the existence of bounded or positive solutions, as in [71, 109], and
the references therein. For problem (6.0.1), (6.0.2) it is proved the
existence of two types of solution, depending on B : if B 6= 0 the
solution is unbounded; if B = 0 the solution is bounded.

This chapter follows the paper [33]. In this way it is organized
as it follows: first some auxiliary results are defined such as the
adequate space functions, some weighted norms, a criterion to over-
come the lack of compactness, and the definition of lower and upper
solutions. Next section contains the main result, an existence and
localization theorem, which proof combines lower and upper solu-
tion technique with the fixed-point theory. Finally, last two sections
contain one example and an application to some problem composed
by an Emden-Fowler-type equation with a infinite multipoint condi-
tions, which are not covered by the existent literature.

6.1 definitions and auxiliary results

Consider the space of admissible functions

XF =

{
x ∈ C1(R+

0 ) : lim
t→+∞

x(t)
1 + t

∈ R, lim
t→+∞

x′(t) ∈ R

}
equipped with the norm ‖x‖XF = max {‖x‖0, ‖x′‖1}, where

‖ω‖0 := sup
t≥0

|ω(t)|
1 + t

and ‖ω′‖1 := sup
t≥0
|ω′(t)|.

In this way (XF, ‖.‖XF) is a Banach space.
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second order problems

Solutions of the linear problem associated to (6.0.1) and usual
boundary conditions are defined with Green’s function, which can
be obtained by standard calculus.

Lemma 6.1.1. Let th, h ∈ L1(R+
0 ) and A, B ∈ R. Then the linear BVP

u′′(t) = h(t), t ≥ 0,

u(0) = A,

u′(+∞) = B,

(6.1.1)

has a unique solution in XF, given by

u(t) = A + Bt +
∫ +∞

0
G(t, s)h(s)ds (6.1.2)

where

G(t, s) =

−s, 0 ≤ s ≤ t

−t, t ≤ s < +∞.
(6.1.3)

Proof.

If u is a solution of problem (6.1.1), then the general solution for
the differential equation is:

u(t) = c1 + c2 t +
∫ t

0
(t− s)h(s)ds,

where c1, c2 ∈ R. Since u should satisfy the boundary conditions,
one has

c1 = A, c2 = B−
∫ +∞

0
h(s)ds.

The solution becomes

u(t) = A + Bt− t
∫ +∞

0
h(s)ds +

∫ t

0
(t− s)h(s)ds.

And by computation

u(t) = A + Bt +
∫ +∞

0
G(t, s)h(s)ds,

with G given by (6.1.3).
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Conversely, if u is a solution of (6.1.2), it is easy to show that
it satisfies the differential equation in (6.1.1). Also u(0) = A and
u′(+∞) = B.

The lack of compactness of XF is overcome by the following lemma
which gives a general criterion for relative compactness, referred in
[3].

Lemma 6.1.2. A set M ⊂ XF is relatively compact if the following condi-
tions hold:

i) all functions from M are uniformly bounded;

ii) all functions from M are equicontinuous on any compact interval of
R+

0 ;

iii) all functions from M are equiconvergent at infinity, that is, for any
given ε > 0, there exists a tε > 0 such that∣∣∣∣ x(t)

1 + t
− lim

t→+∞

x(t)
1 + t

∣∣∣∣ < ε,
∣∣∣∣x′(t)− lim

t→+∞
x′(t)

∣∣∣∣ < ε,

for all t > tε and x ∈ M.

The functions considered as lower and upper solutions for the ini-
tial problem are defined as it follows:

Definition 6.1.3. Given B ∈ R, a function α ∈ XF is a lower solution of
problem (6.0.1), (6.0.2) if

α′′(t) ≥ f (t, α(t), α′(t)), t ≥ 0,

L(α, α(0), α′(0)) ≥ 0,

α′(+∞) < B.

A function β ∈ XF is an upper solution if it satisfies the reverse inequa-
lities.
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6.2 existence and localization results

In this section it is proved the existence of at least one solution for
the problem (6.0.1), (6.0.2), and, moreover, some localization data,
following the arguments applied in [33].

Theorem 6.2.1. Let f : R+
0 ×R2 → R be a continuous function, and

for each ρ > 0, there exists a positive function ϕρ with ϕρ, tϕρ ∈ L1(R+
0 )

such that for (x(t), y(t)) ∈ R2 with sup
t≥0

{
|x(t)|
1 + t

, |y(t)|
}

< ρ,

| f (t, x, y)| ≤ φρ(t), t ≥ 0. (6.2.1)

Moreover, if L(x1, x2, x3) is nondecreasing on x1 and x3 and there are α, β,
lower and upper solutions of (6.0.1), (6.0.2), respectively, such that

α(t) ≤ β(t), ∀t ≥ 0, (6.2.2)

then problem (6.0.1), (6.0.2) has at least one solution u ∈ XF with α(t) ≤
u(t) ≤ β(t), for t ≥ 0.

Proof.
Let α, β be, respectively, lower and upper solutions of (6.0.1), (6.0.2)

verifying (6.2.2). Consider the modified problem
u′′(t)= f (t, δ(t, u(t)), u′(t)) + 1

1+t3
u(t)−δ(t,u(t))

1+|u(t)−δ(t,u(t))| , t ≥ 0,

u(0) = δ(0, u(0) + L(u, u(0), u′(0))),

u′(+∞) = B.

(6.2.3)

where δ : R+
0 ×R→ R is given by δ(t, x) =


β(t) , x > β(t)

x , α(t) ≤ x ≤ β(t)

α(t) , x < α(t).
For clearness, the proof will follow several steps:

Step 1: If u is a solution of (6.2.3) then α(t) ≤ u(t) ≤ β(t), ∀t ≥ 0.
Let u be a solution of the modified problem (6.2.3) and suppose, by

contradiction, that there exists t ≥ 0 such that α(t) > u(t). Therefore

inf
t≥0

(u(t)− α(t)) < 0.
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6.2 existence and localization results

If there is t∗ > 0 such that

min
t≥0

(u(t)− α(t)) := u(t∗)− α(t∗) < 0,

one has u′(t∗) = α′(t∗) and u′′(t∗)− α′′(t∗) ≥ 0. By Definition 6.1.3
the following contradiction holds

0 ≤ u′′(t∗)− α′′(t∗)

= f (t∗, δ(t∗, u(t∗)), u′(t∗))+
1

1 + t3
∗

u(t∗)− δ(t∗, u(t∗))
1 + |u(t∗)− δ(t∗, u(t∗))|

− α′′(t∗)

= f (t∗, α(t∗), α′(t∗)) +
1

1 + t3
∗

u(t∗)− α(t∗)
1 + |u(t∗)− α(t∗)|

− α′′(t∗)

≤ u(t∗)− α(t∗)
1 + |u(t∗)− α(t∗)|

< 0.

So u(t) ≥ α(t), ∀t > 0.

If the infimum is attained at t = 0 then

min
t≥0

(u(t)− α(t)) := u(0)− α(0) < 0.

As u is solution of (6.2.3), by the definition of δ the following contra-
diction is achieved

0> u(0)− α(0) = δ(0, u(0) + L(u, u(0), u′(0)))− α(0) ≥ α(0)− α(0)

= 0.

If
inf
t≥0

(u(t)− α(t)) := u(+∞)− α(+∞) < 0,

then u′(+∞)− α′(+∞) ≤ 0. As u is solution of (6.2.3), by Definition
6.1.3, this contradiction holds

0 ≥ u′(+∞)− α′(+∞) = B− α′(+∞) > 0.

Therefore u(t) ≤ α(t), ∀t ≥ 0.

In a similar way it can be proved that u(t) ≥ β(t), ∀t ≥ 0.

Step 2: Problem (6.2.3) has at least one solution.
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Let u ∈ XF and define the operator T : XF → XF

Tu(t) = ∆ + Bt +
∫ +∞

0
G(t, s)Fu(s)ds,

with

Fu(s) := f (s, δ(s, u(s)), u′(s)) +
1

1 + s3
u(s)− δ(s, u(s))

1 + |u(s)− δ(s, u(s))| ,

∆ := δ(0, u(0) + L(u, u(0), u′(0))) and G is the Green function given
by (6.1.3).

Therefore, problem (6.2.3) becomes
u′′(t) = Fu(t), t ≥ 0

u(0) = ∆,

u′(+∞) = B,

(6.2.4)

and if tFu(t), Fu(t) ∈ L1(R+
0 ), by Lemma 6.1.1 it is enough to prove

that T has a fixed point.

Step 2.1: T is well defined.

As f is a continuous function, Tu ∈ C1(R+
0 ) and, by (6.2.1), for any

u ∈ XF with ρ > max {‖α‖XF , ‖β‖XF}∫ +∞

0
|Fu(s)| ds ≤

∫ +∞

0

(
φρ(s) +

1
1 + s3

)
ds < +∞.

That is Fu(t) and tFu(t) ∈ L1(R+
0 ). By Lebesgue Dominated Conver-

gence Theorem,

lim
t→+∞

(Tu)(t)
1 + t

= lim
t→+∞

∆ + Bt
1 + t

+
∫ +∞

0
lim

t→+∞

G(t, s)
1 + t

Fu(s)ds

≤ B +
∫ +∞

0

(
φρ(s) +

1
1 + s3

)
ds < +∞,

and analogously for

lim
t→+∞

(Tu)′(t) = B− lim
t→+∞

∫ +∞

t
Fu(s)ds = B < +∞.

Therefore Tu ∈ XF.
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6.2 existence and localization results

Step 2.2: T is continuous.

Consider a convergent sequence un → u in XF, there exists ρ1 > 0
such that max {‖α‖XF , ‖β‖XF} < ρ1.

With M := sup
t≥0

|G(t, s)|
1 + t

, one has

‖Tun − Tu|XF = max
{
‖Tun − Tu|0, ‖(Tun)

′ − (Tu)′‖1
}

≤
∫ +∞

0
M|Fun(s)− Fu(s)|ds

+
∫ +∞

t
|Fun(s)− Fu(s)|ds −→ 0,

as n→ +∞.

Step 2.3: T is compact.

Let B ⊂ XF be any bounded subset. Therefore there is r > 0 such
that ‖u‖XF < r, ∀u ∈ B.

For each u ∈ B, and for max {r, ‖α‖XF , ‖β‖XF} < r1

‖Tu‖0 = sup
t≥0

|Tu(t)|
1 + t

≤ sup
t≥0

|∆ + Bt|
1 + t

+
∫ +∞

0
sup
t≥0

|G(t, s)|
1 + t

|Fu(s)|ds

≤ sup
t≥0

|∆ + Bt|
1 + t

+
∫ +∞

0
M
(

φr1(s) +
1

1 + s3

)
ds < +∞,

‖(Tu)′‖1 = sup
t≥0
|(Tu)′(t)| ≤ |B|+

∫ +∞

t
|Fu(s)|ds

≤ |B|+
∫ +∞

t

(
φr1(s) +

1
1 + s3

)
ds < +∞.

So ‖Tu‖XF = max {‖Tu‖0, ‖(Tu)′‖1} < +∞ , that is, TB is uni-
formly bounded in XF.

TB is equicontinuous, because, for L > 0 and t1, t2 ∈ (0, L], one
has, as t1 → t2,
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∣∣∣∣Tu(t1)

1 + t1
− Tu(t2)

1 + t2

∣∣∣∣ ≤ ∣∣∣∣∆ + Bt1

1 + t1
− ∆ + Bt2

1 + t2

∣∣∣∣
+
∫ +∞

0

∣∣∣∣G(t1, s)
1 + t1

− G(t2, s)
1 + t2

∣∣∣∣ |F(u(s))|ds

≤
∣∣∣∣∆ + Bt1

1 + t1
− ∆ + Bt2

1 + t2

∣∣∣∣
+
∫ +∞

0

∣∣∣∣G(t1, s)
1 + t1

− G(t2, s)
1 + t2

∣∣∣∣ (φr1(s) +
1

1 + s3 )ds −→ 0,

∣∣(Tu)′(t1)− (Tu)′(t2)
∣∣ =

∣∣∣∣∫ +∞

t1

Fu(s)ds−
∫ +∞

t2

Fu(s)ds
∣∣∣∣

≤
∫ t2

t1

|Fu(s)|ds ≤
∫ t2

t1

(
φr1(s) +

1
1 + s3

)
ds −→ 0.

So TB is equicontinuous.

Moreover TB is equiconvergent at infinity, because, as t→ +∞,∣∣∣∣Tu(t)
1 + t

− lim
t→+∞

Tu(t)
1 + t

∣∣∣∣ ≤ ∣∣∣∣∆ + Bt
1 + t

− B
∣∣∣∣+ ∫ +∞

0

∣∣∣∣G(t, s)
1 + t

+ 1
∣∣∣∣ |Fu(s)|ds

≤
∣∣∣∣∆ + Bt

1 + t
− B

∣∣∣∣+ ∫ +∞

0

∣∣∣∣G(t, s)
1 + t

+ 1
∣∣∣∣ (φρ1 +

1
1 + s3

)
ds→ 0, (6.2.5)

and∣∣∣∣(Tu)′(t)− lim
t→+∞

(Tu)′(t)
∣∣∣∣ =

∫ +∞

t
|Fu(s)|ds

≤
∫ +∞

t

(
φρ1 +

1
1 + s3

)
ds −→ 0, as t→ +∞.

So, by Lemma 6.1.2, TB is relatively compact.

Then by Schauder’s Fixed Point Theorem 1.1.6, T has at least one
fixed point u1 ∈ XF.

Step 3: u1 is a solution of problem (6.0.1), (6.0.2).

By Step 1, as u1 is a solution of (6.2.3) then α(t) ≤ u1(t) ≤ β(t), for
all t ≥ 0. So, the differential equation (6.0.1) is obtained. It remains
to prove that α(0) ≤ u1(0) + L(u1, u1(0), u′1(0)) ≤ β(0).

Suppose, by contradiction, that α(0) > u1(0) + L(u1, u1(0), u′1(0)).
Then

u1(0) = δ(0, u1(0) + L(u1, u1(0), u′1(0))) = α(0)
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and by the monotony of L and Definition 6.1.3, the following contra-
diction holds

0 > u1(0) + L(u1, u1(0), u′1(0))− α(0)

= L(u1, α(0), u′1(0)) ≥ L(α, α(0), α′(0)) ≥ 0.

So α(0) ≤ u1(0) + L(u1, u1(0), u′1(0)) and in a similar way it can
be proved that u1(0) + L(u1, u1(0), u′1(0)) ≤ β(0).

Therefore, u1 is a solution of (6.0.1), (6.0.2).

A similar result can be obtained if f is a L1−Carathéodory func-
tion and equation (6.0.1) is replaced by

u′′(t) = f (t, u(t), u′(t)), a.e. t ≥ 0. (6.2.6)

However in this case it must be assumed an extra assumption on
f :

Theorem 6.2.2. Let f : R+
0 ×R2 → R be a L1− Carathéodory function

such that f (t, x, y) is monotone on y. If there are α, β, lower and upper
solutions of (6.2.6), (6.0.2), respectively, verifying (6.2.2) and L(x1, x2, x3)

is nondecreasing on x1 and x3, then problem (6.2.6), (6.0.2) has at least
one solution u ∈ XF with α(t) ≤ u(t) ≤ β(t), ∀t ≥ 0.

Proof.
The proof is similar to Theorem 6.2.1 except the first step.
Let u be a solution of the modified problem composed by

u′′(t) = f (t, δ(t, u(t)), u′(t))+
1

1 + t3
u(t)− δ(t, u(t))

1 + |u(t)− δ(t, u(t))| , a.e. t ≥ 0,

and the boundary conditions

u(0) = δ(0, u(0) + L(u, u(0), u′(0))),

u′(+∞) = B.

If, by contradiction, there is t∗ > 0 such that

min
t≥0

(u(t)− α(t)) := u(t∗)− α(t∗) < 0,
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then u′(t∗) = α′(t∗), u′′(t∗)− α′′(t∗) ≥ 0, and there exists an interval
I− :=]t−, t∗[ where u(t) < α(t), u′(t) ≤ α′(t), ∀t ∈ I−.

By Definition 6.1.3 and if f (t, x, y) is nondecreasing on y, this con-
tradiction holds for t ∈ I−:

0 ≤ u′′(t)− α′′(t) =

= f (t, δ(t, u(t)), u′(t)) +
1

1 + t3
u(t)− δ(t, u(t))

1 + |u(t)− δ(t, u(t))| − α′′(t)

≤ f (t, α(t), α′(t)) +
1

1 + t3
u(t)− α(t)

1 + |u(t)− α(t)| − α′′(t)

≤ u(t)− α(t)
1 + |u(t)− α(t)| < 0.

The same remains valid if f is nonincreasing, considering an inter-
val I+ :=]t∗, t+[ where u(t) < α(t), u′(t) ≥ α′(t), ∀t ∈ I+.

So in both cases u(t) ≥ α(t), ∀t ≥ 0.

The remaining steps are identically to the proof of Theorem 6.2.1,
and it will be omitted.

6.3 example

Consider the second order problem in the half-line with functional
boundary conditions

u′′(t) = sin(u(t)+1)+(u′(t))3+u(t)e−t

1+t3 , t ≥ 0,

4u2(0) + mint≥0 u(t) + u′(0)− 2 = 0,

u′(+∞) = 0, 5.

(6.3.1)

Remark that the above problem is a particular case of (6.0.1), (6.0.2)
with

f (t, x, y) =
sin(x + 1) + y3 + xe−t

1 + t3 ,

B = 0, 5,

L(a, b, c) = 4b2 + min
t≥0

a(t) + c− 2.
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6.4 emden-fowler equation

As f is continuous in R+
0 then for u ∈ XF, assumption (6.2.1) holds

with ϕρ = k
1+t3 , for some k > 0 and ρ > 1.

The function L(a, b, c) is not decreasing in a and c, and α(t) ≡ −1
and β(t) = t are lower and upper solutions for (6.3.1), respectively,
then, by Theorem 6.2.1, there is at least an unbounded solution u of
(6.3.1) such that

−1 ≤ u(t) ≤ t, ∀t ≥ 0.

6.4 emden-fowler equation

Emden-Fowler-types equations (see [107]) can model the heat dif-
fusion perpendicular to parallel planes by

∂2u(x, t)
∂x2 +

α

x
∂u(x, t)

∂x
+ a f (x, t)g(u) + h(x, t) =

∂u(x, t)
∂t

, 0 < x < t,

where f (x, t)g(u)+ h(x, t) means the nonlinear heat source and u(x, t)
gives the temperature at time t.

In the steady-state case, and with h(x, t) ≡ 0, last equation be-
comes

u′′(x) +
α

x
u′(x) + a f (x)g(u) = 0, x ≥ 0. (6.4.1)

If f (x) ≡ 1 and g(u) = un, (6.4.1) is called the Lane-Emden equa-
tion of the first kind, whereas in the second kind one has g(u) = eu.
Both cases are used in the study of thermal explosions. For more
details see [59].

In the literature, Emden-Fowler-types equations are associated to
Dirichlet or Neumann boundary conditions (see [56, 105]). To the
best of author’s knowledge, is the first time where some Emden-
Fowler is considered together with functional boundary conditions
on the half-line.

Consider that one looks for nonnegative solutions for the problem
composed by the discontinuous differential equation

u′′(x) =
u′(x)
1 + x3 +

u4(x)
ex , a.e. x > 0, (6.4.2)

91



second order problems

coupled with the infinite multi-point conditions
+∞
∑

n=1
anu(ηn)− u(0) + u′(0) = 0,

u′(+∞) = δ, (0 < δ < 1),
(6.4.3)

where an and ηn are nonnegative sequences such that

a1η1 ≥ a2η2 ≥ ... ≥ anηn ≥ ...,
+∞

∑
n=1

anu(ηn)

and
+∞
∑

n=1
anηn are convergent with

+∞
∑

n=1
an (ηn + k) ≤ 1− k, (0 < k < 1).

This is a particular case of (6.2.6), (6.0.2), where

f (x, y, z) =
z

1 + x3 +
y4

ex ,

B = δ,

L(v, y, z) =
+∞

∑
n=1

anv(ηn)− y + z.

| f (x, y, z)| ≤ k1

1 + x3 +
k2

ex := ϕr(x), k1, k2 > 0, r > 1.

As ϕr(x), xϕr(x) ∈ L1(R+
0 ) thus f is L1-Carathéodory, and, more-

over, f is monotone on z (is nondecreasing).
As L(v, y, z) is not decreasing in v and z, and functions α(x) ≡ 0

and β(x) = x + k, are lower and upper solutions for problem (6.4.2),
(6.4.3), respectively, then, by Theorem 6.2.2, there is at least an un-
bounded and nonnegative solution u of (6.4.2), (6.4.3) such that

0 ≤ u(x) ≤ x + k, ∀x ≥ 0.
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7

T h i r d o r d e r f u n c t i o n a l p r o b l e m s

In this chapter it is consider a third order BVP, composed by a fully
differential equation

u ′ ′ ′ ( t ) = f ( t , u ( t ) , u ′ ( t ) , u ′ ′ ( t ) ) , t≥ 0 , (7.0.1)

where f : R+
0 × R 3 → R is a L 1 - Carathéodory function, and the

functional boundary conditions on the half-line

L 0 ( u , u ( 0 ) ) = 0 ,

L 1 ( u , u ′ ( 0 ) ) = 0 , (7.0.2)

L 2 ( u , u ′ ′ ( +∞ ) ) = 0 ,

with L i : C (R+
0 ) × R → R , i = 0 , 1 , 2 continuous functions

verifying some monotone assumptions and

u ′ ′ ( +∞ ) := l i m
t→+∞

u ′ ′ ( t ) .

There is an extensive literature on BVP defined in bounded do-
mains, as this type of problems is an adequate tool to describe count-
less phenomena of real life, such as models on chemical engineer-
ing, heat conduction, thermo-elasticity, plasma physics, fluids flow,...
(see, for instance, [22, 42, 48, 58, 64, 68, 75, 90]). However, on the real
line or half-line the results are scarcer (see, for example, [3, 111] and
the references therein).

In some backgrounds the models require different kinds of non-
local or integral boundary conditions. In this way, it is useful to
consider generalized boundary data, which include usual and non
classic boundary conditions. In fact, if BVP contains a functional
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dependence on the unknown functions, or in its derivatives, either
in the differential equation, or in the boundary data, these functional
BVP allow a much more variety of problems such as separated, multi-
point, non-local, integro-differential, with maximum or minimum
arguments,..., as it can be seen, for instance, in [26, 29, 46, 49, 50, 84].

To the author’s best knowledge, it is the first time where this type
of functional boundary conditions are applied to third order BVP
on the half-line. From the different arguments used it can be high-
lighted weighted norms, fixed point theory and lower and upper so-
lutions method. This last technique provides a location result, which
is particularly useful to get some qualitative properties on the solu-
tion, such as positivity, monotony, convexity,...

The chapter is organized as it follows: in the first section some au-
xiliary results are defined such as the adequate space of admissible
functions, the weighted norms, an existence result for a linear BVP
via Green’s functions, an a priori bound for the second derivative
from a Nagumo-type condition, a criterion to overcome the lack of
compactness, and the definition of lower and upper solutions. Next
section contains the main result of the chapter - an existence and lo-
calization theorem, which proof combines lower and upper solution
technique with the fixed point theory. Finally an application to a
Falkner-Skan equation is shown to illustrate the main result, which
is not covered by previous works in the literature, as far as we know.

7.1 definitions and a priori bounds

Consider the space of admissible functions

XF3=

{
x ∈ C2(R+

0 ) : lim
t→+∞

x(t)
1 + t2 ∈ R, lim

t→+∞

x′(t)
1 + t

∈ R, lim
t→+∞

x′′(t) ∈ R

}
,

with the norm ‖x‖XF3 = max {‖x‖0, ‖x′‖1, ‖x′′‖2}, where

‖ω‖0 := sup
t≥0

|ω(t)|
1 + t2 , ‖ω‖1 := sup

t≥0

|ω(t)|
1 + t

and ‖ω‖2 := sup
t≥0
|ω(t)|.
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Defining in this way, (XF3, ‖.‖XF3) is a Banach space.

The solutions of the linear problem associated to (7.0.1), with the
two-point boundary conditions in the half line, can be defined with
Green’s functions:

Lemma 7.1.1. Let t2h, th, h ∈ L1(R+
0 ). Then the linear BVP

u′′′(t) = h(t), a.e.t ≥ 0,

u(0) = A,

u′(0) = B,

u′′(+∞) = C,

(7.1.1)

with A, B, C ∈ R, has a unique solution given by

u(t) = A + Bt +
Ct2

2
+
∫ +∞

0
G(t, s)h(s)ds (7.1.2)

where

G(t, s) =

 s2

2 − ts, 0 ≤ s ≤ t

− t2

2 , 0 ≤ t ≤ s < +∞.
(7.1.3)

Proof.

If u is a solution of problem (7.1.1), then the general solution for
the differential equation is:

u(t) = c1 + c2t + c3t2 +
∫ t

0

(
s2

2
− ts +

t2

2

)
h(s)ds,

where c1, c2, c3 are real constants. Since u(t) should satisfy the boun-
dary conditions,

c1 = A, c2 = B, c3 =
C
2
− 1

2

∫ +∞

0
h(s)ds,

and, therefore,

u(t) = A + Bt +
Ct2

2
− t2

2

∫ +∞

0
h(s)ds +

∫ t

0

(
s2

2
− ts +

t2

2

)
h(s)ds,

which can be written as (7.1.2), with G(t, s) given by (7.1.3).
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Some trivial properties of (7.1.3) will play an important role for-
ward:

Lemma 7.1.2. Function G(t, s) defined by (7.1.3) verifies

i) lim
t→+∞

G(t, s)
1 + t2 ∈ R, ∀s ≥ 0;

ii) G1(t, s) :=
∂G(t, s)

∂t
:=

−s, 0 ≤ s ≤ t

−t, 0 ≤ t ≤ s < +∞.
;

iii) lim
t→+∞

G1(t, s)
1 + t

∈ R, ∀s ≥ 0.

Let γ, Γ ∈ XF3 be such that γ(t) ≤ Γ(t), γ′(t) ≤ Γ′(t), ∀t ≥ 0 and
γ′′(+∞) ≤ Γ′′(+∞). Consider the set

EF3 =

(t, x, y, z) ∈ R+
0 ×R3 :

γ(t) ≤ x ≤ Γ(t),
γ′(t) ≤ y ≤ Γ′(t),

γ′′(+∞) ≤ z(+∞) ≤ Γ′′(+∞)

 .

The following Nagumo condition allows some a priori bounds on
the second derivative of the solution:

Definition 7.1.3. A function f : EF3 → R is said to satisfy a Nagumo-
type growth condition in EF3 if, for some positive continuous functions ψ, h
and some ν > 1, such that

sup ψ(t)(1 + t)ν < +∞,
∫ +∞

0

s
h(s)

ds = +∞, (7.1.4)

it verifies

| f (t, x, y, z)| ≤ ψ(t)h(|z|), ∀(t, x, y, z) ∈ EF3. (7.1.5)

Lemma 7.1.4. Let f : R+
0 ×R3 → R be a L1− Carathéodory function

satisfying (7.1.4) and (7.1.5) in EF3. Then for every solution u of (7.0.1)
satisfying, for t ≥ 0,

γ(t) ≤ u(t) ≤ Γ(t),
γ′(t) ≤ u′(t) ≤ Γ′(t),

γ′′(+∞) ≤ u′′(+∞) ≤ Γ′′(+∞),

(7.1.6)
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there exists R > 0 (not depending on u) such that ‖u′′‖2 < R.

Proof.
Let u be a solution of (7.0.1) verifying (7.1.6). Consider r > 0 such

that
r > max

{
|γ′′(+∞)|, |Γ′′(+∞)|

}
. (7.1.7)

By the previous inequality it cannot happen |u′′(t)| > r, ∀t ≥ 0,
because

|u′′(+∞)| < r.

If |u′′(t)| ≤ r, ∀t ≥ 0, taking R > r the proof is complete as

‖u′′‖2 = sup
t≥0
|u′′(t)| ≤ r < R.

In the following it will be proved that even when there exists t ≥ 0
such that |u′′(t)| > r, the norm ‖u′′‖2 remains bounded.

Suppose there exists t0 > 0 such that |u′′(t0)| > r, that is u′′(t0) > r
or u′′(t0) < −r.

In the first case, by (7.1.4), one can take R > r such that

∫ R

r

s
h(s)

ds > M max

{
M1 + sup

t≥0

Γ′(t)
1 + t

ν

ν− 1
, M1 − inf

t≥0

γ′(t)
1 + t

ν

ν− 1

}

with M := sup
t≥0

ψ(t)(1 + t)ν and M1 := sup
t≥0

Γ′(t)
(1 + t)ν

− inf
t≥0

γ′(t)
(1 + t)ν

.

If condition (7.1.5) holds, then by (7.1.7) there are t∗, t+ ≥ 0 such
that t∗ < t+, u′′(t∗) = r and u′′(t) > r, ∀t ∈ (t∗, t+]. Therefore

∫ u′′(t+)

u′′(t∗)

s
h(s)

ds=
∫ t+

t∗

u′′(s)
h(u′′(s))

u′′′(s)ds ≤
∫ t+

t∗
ψ(s)u′′(s)ds

≤ M
∫ t+

t∗

u′′(s)
(1 + s)ν

ds

= M
∫ t+

t∗

[(
u′(s)

(1 + s)ν

)′
+

νu′(s)
(1 + s)1+ν

]
ds

≤ M

(
M1 + sup

t≥0

Γ′(t)
1 + t

∫ +∞

0

ν

(1 + s)ν
ds

)
<
∫ R

r

s
h(s)

ds.

So u′′(t+) < R and as t∗ and t+ are arbitrary in R+
0 , one has that

u′′(t) < R, ∀t ≥ 0.
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Similarly, it can be proved the case where there are t−, t∗ ≥ 0 such
that t− < t∗ and u′′(t∗) = −r, u′′(t) < −r, ∀t ∈ [t−, t∗).

Therefore ‖u′′‖2 < R, ∀t ≥ 0.

The lack of compactness of XF3 is overcome by the following lemma
which gives a general criterion for relative compactness, suggested
in [3] or [37] :

Lemma 7.1.5. A set Z ⊂ XF3 is relatively compact if the following condi-
tions hold:

i) all functions from Z are uniformly bounded;

ii) all functions from Z are equicontinuous on any compact interval of
R+

0 ;

iii) all functions from Z are equiconvergent at infinity, that is, for any
given ε > 0, there exists a tε > 0 such that∣∣∣∣ x(t)

1 + t2 − lim
t→+∞

x(t)
1 + t2

∣∣∣∣ < ε,∣∣∣∣ x′(t)1 + t
− lim

t→+∞

x′(t)
1 + t

∣∣∣∣ < ε,∣∣∣∣x′′(t)− lim
t→+∞

x′′(t)
∣∣∣∣ < ε for all t > tε, x ∈ Z.

The functions considered as lower and upper solutions for the
initial problem are defined as it follows, with W3,1 (R+

0
)

the usual
Sobolev space:

Definition 7.1.6. A function α ∈ XF3 ∩W3,1 (R+
0
)

is a lower solution of
problem (7.0.1),(7.0.2) if

α′′′(t) ≥ f (t, α(t), α′(t), α′′(t)), t ≥ 0,

L0(α, α(0)) ≥ 0,

L1(α, α′(0)) ≥ 0,

L2(α, α′′(+∞)) > 0.

A function β ∈ XF3 ∩W3,1 (R+
0
)

is an upper solution if it satisfies the
reverse inequalities.
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Remark 7.1.7. If α′(t) ≤ β′(t), a.e. t ≥ 0 and α(0) ≤ β(0), by integra-
tion on [0, t] one has α(t) ≤ β(t), ∀t ≥ 0.

The following Lemma, suggested by [104], will ensure the exis-
tence and convergence of the derivative of some truncature-function
to be used forward:

Lemma 7.1.8 ([104]). For y1, y2 ∈ C1 (R+
0
)

such that y1(t) ≤ y2(t), ∀t ≥
0, define

p(t, v) =


y2(t) , v > y2(t)

v , y1(t) ≤ v ≤ y2(t)

y1(t) , v < y1(t).

Then, for each v ∈ C1 (R+
0
)

the next two properties hold:

i) d
dt p(t, v(t)) exists for a.e. t ≥ 0;

ii) If v, vm ∈ C1 (R+
0
)

and vm → v in C1 (R+
0
)

then

d
dt

p(t, vm(t))→
d
dt

p(t, v(t)) for a.e. t ≥ 0.

7.2 existence and localization results

In this section it is proved the existence and localization of at least
one solution for the problem (7.0.1), (7.0.2).

The following assumptions are needed:

( H1 ) There are α , β lower and upper solutions of (7.0.1), (7.0.2),
respectively, with α ′ ( t) ≤ β ′ ( t) , t ≥ 0, α(0) ≤ β(0) and
α ′ ′ (+∞) ≤ β ′ ′ (+∞);

( H2 ) f satisfies the Nagumo condition on EF3 defined with γ = α

and Γ = β;

E∗ :=

( t , x , y , z) ∈ R+
0 × R3 :

α( t) ≤ x ≤ β( t) ,
α ′ ( t) ≤ y ≤ β ′ ( t) ,

α ′ ′ (+∞) ≤ z(+∞) ≤ β ′ ′ (+∞)

 ;
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( H3 ) f ( t , x , y , z) verifies the growth condition

f ( t , α( t) , α ′ ( t) , α ′ ′ ( t)) ≥ f ( t , x , α ′ ( t) , α ′ ′ ( t)) ,

f ( t , β( t) , β ′ ( t) , β ′ ′ ( t)) ≤ f ( t , x , β ′ ( t) , β ′ ′ ( t)) ,

for t ≥ 0 fixed and α( t) ≤ x ≤ β( t);

( H4 ) The continuous functions L i : C(R+
0 ) × R → R , i = 0, 1, 2,

are such that, for α ≤ v ≤ β,

L i (α , α ( i) (0)) ≤ L i (v , α ( i) (0)) and

L i (β , β ( i) (0)) ≥ L i (v , β ( i) (0)) , for i = 0, 1;

L2 (α , α ′ ′ (+∞)) ≤ L2 (v , α ′ ′ (+∞)) and

L2 (β , β ′ ′ (+∞)) ≥ L2 (v , β ′ ′ (+∞)) ,

lim
t→+∞

L2 (v , w) ∈ R , and α ′ ′ (+∞) ≤ w ≤ β ′ ′ (+∞) .

Theorem 7.2.1. Let f : R+
0 × R3 → R be a L1−Carathéodory function.

If hypotheses (H1)-( H4) are verified then problem (7.0.1), (7.0.2) has at
least a solution u ∈ XF3 ∩W 3,1 (R+

0
)

and there exists R > 0 such that

α( t) ≤ u( t) ≤ β( t) , α ′ ( t) ≤ u ′ ( t) ≤ β ′ ( t) , −R ≤ u ′ ′ ( t) ≤ R , t ≥ 0,

and
α ′ ′ (+∞) ≤ u ′ ′ (+∞) ≤ β ′ ′ (+∞) .

Proof.

Let α , β ∈ XF3 ∩W 3,1 (R+
0
)

verifying (H1).

Consider the modified and perturbed problem composed by the
third order differential equation

u ′ ′ ′ ( t) = f
(

t , δ0 ( t , u( t)) , δ1 ( t , u ′ ( t)) ,
d
dt
(

δ1 ( t , u ′ ( t))
))

+
1

1 + t4
u ′ ( t) − δ1 ( t , u ′ ( t))

1 + |u ′ ( t) − δ1 ( t , u ′ ( t)) | , t ≥ 0, (7.2.1)
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and the functional boundary equations
u(0) = δ0 (0, u(0) + L0 (δF (u) , u(0)))

u ′ (0) = δ1 (0, u ′ (0) + L1 (δF (u) , u ′ (0)))
u ′ ′ (+∞) = δ∞ (u ′ ′ (+∞)) + L2 (δF (u) , δ∞ (u ′ ′ (+∞))) ,

(7.2.2)
where functions δi : R+

0 ×R→ R are given by

δi(t, x) =


β(i)(t) , x > β(i)(t)

x , α(i)(t) ≤ x ≤ β(i)(t)

α(i)(t) , x < α(i)(t)

, i = 0, 1,

δ∞(x(+∞)) =


β′′(+∞) , x(+∞) > β′′(+∞)

x(+∞) , α′′(+∞) ≤ x(+∞) ≤ β′′(+∞)

α′′(+∞) , x(+∞) < α′′(+∞)

,

δF(v) =


β , v > β

v , α ≤ v ≤ β

α , v < α

.

For clearness, the proof follows several steps:

Step 1: If u is a solution of (7.2.1), (7.2.2) then

α′(t) ≤ u′(t) ≤ β′(t), α(t) ≤ u(t) ≤ β(t), −R ≤ u′′(t) ≤ R, ∀t ≥ 0

and α′′(+∞) ≤ u′′(+∞) ≤ β′′(+∞).

Let u be a solution of the modified problem (7.2.1), (7.2.2) and
suppose, by contradiction, that there exists t ≥ 0 such that α′(t) >

u′(t). Therefore,
inf
t≥0

(u′(t)− α′(t)) < 0.

• If the infimum is attained at t = 0, then

min
t≥0

(u′(t)− α′(t)) = u′(0)− α′(0) < 0,
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therefore the contradiction holds

0 > u′(0)− α′(0) = δ1(0, u′(0) + L1
(
δF(u), u′(0)

)
)− α′(0)

≥ α′(0)− α′(0) = 0.

• If the infimum occurs at t = +∞, then

inf
t≥0

(u′(t)− α′(t)) = u′(+∞)− α′(+∞) < 0.

Therefore u′′(+∞)− α′′(+∞) ≤ 0 and by (H4) and Definition
7.1.6 the contradiction holds

0 ≥ u′′(+∞)− α′′(+∞) = δ∞(u′′(+∞)) + L2
(
δF(u), δ∞(u′′(+∞))

)
≥ L2(δF(u), α′′(+∞)) ≥ L2(α, α′′(+∞)) > 0. (7.2.3)

• If there is an interior point t∗ ∈ R+ such that

min
t≥0

(u′(t)− α′(t)) := u′(t∗)− α′(t∗) < 0,

then there exists 0 ≤ t1 < t∗ where

u′(t)− α′(t) < 0, u′′(t)− α′′(t) ≤ 0, ∀t ∈ [t1, t∗],

u′′′(t)− α′′′(t) ≥ 0, a.e.t ∈ [t1, t∗].

Therefore, for t ∈ [t1, t∗] by (H3) and Definition 7.1.6 the contra-
diction holds

0 ≤
∫ t

t1

[
u′′′(s)− α′′′(s)

]
ds

=
∫ t

t1

[
f
(
(s, δ0(s, u(s)), δ1(s, u′(s)),

d
ds
(δ1(s, u′(s)))

)
+

1
1 + s4

u′(s)− δ1(s, u′(s))
1 + |u′(s)− δ1(s, u′(s))| − α′′′(s)

]
ds

≤
∫ t

t1

[
f (s, α(s), α′(s), α′′(s)) +

u′(s)− α′(s)
1 + |u′(s)− α′(s)| − α′′′(s)

]
ds

≤
∫ t

t1

[
u′(s)− α′(s)

1 + |u′(s)− α′(s)|

]
ds < 0.
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So u′(t) ≥ α′(t) for t > 0.

In a similar way it can be proved that u′(t) ≤ β′(t), and, therefore,

α′(t) ≤ u′(t) ≤ β′(t), ∀t ≥ 0. (7.2.4)

Remark that α(0) ≤ u(0), otherwise, by (H4) and Definition 7.1.6,
it will happen the contradiction

0 > u(0)− α(0) = δ0(0, u(0) + L0 (δF(u), u(0)))− α(0)

≥ L0 (δF(u), u(0))) ≥ L0 (α, α(0))) ≥ 0.

Analogously, it can be proved that u(0) ≤ β(0). So, integrating
(7.2.4) in [0, t], it is easily obtained that α(t) ≤ u(t) ≤ β(t), ∀t ≥ 0.

Arguing like in (7.2.3) one can prove that u′′(+∞) ≥ α′′(+∞) and,
similarly, that u′′(+∞) ≤ β′′(+∞).

Therefore, (t, u(t), u′(t), u′′(t)) ∈ E∗ and the inequality −R ≤
u′′(t) ≤ R is a direct consequence of Lemma 7.1.4.

Step 2: The problem (7.2.1), (7.2.2) has at least one solution.

Define the operator T : XF3 → XF3

Tu(t) = ∆ + Γt +
Ψt2

2
+
∫ +∞

0
G(t, s)Fu(s)ds,

where
∆ := δ0 (0, u(0) + L0δF(u), u(0))) ,

Γ := δ1
(
0, u′(0) + L0

(
δF(u), u′(0)

))
,

Ψ := δ∞(u′′(+∞)) + L2
(
δF(u), δ∞(u′′(+∞))

)
,

G(t, s) is the Green function given by (7.1.3) associated with the pro-
blem 

u′′′(t) = Fu(t), t ≥ 0,

u(0) = ∆,

u′(0) = Γ,

u′′(+∞) = Ψ,

(7.2.5)
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and

Fu(t) := f
(

t, δ0(t, u(t)), δ1(t, u′(t)),
d
dt
(δ1(t, u′(t)))

)
+

1
1 + t4

u′(t)− δ1(t, u′(t))
1 + |u′(t)− δ1(t, u′(t))| .

By Lemma 7.1.1 the fixed points of T are solutions of (7.2.5) and,
therefore, of problem (7.2.1), (7.2.2).

So it is enough to prove that T has a fixed point.

Step 2.1: T is well defined and , for a compact D ⊂ XF3, TD ⊂ D.

As f is a L1−Carathéodory function, Tu ∈ C2 (R+
0
)

and for any
u ∈ XF3 with

ρ > max
{
‖u‖XF3

, ‖α‖XF3
, ‖β‖XF3

, R
}

there exists a positive function φρ(t) such that t2φρ(t), tφρ(t), φρ(t) ∈
L1 (R+

0
)

and

∫ +∞

0
|Fu(s)| ds ≤

∫ +∞

0

(
φρ(s) +

1
1 + s4

)
ds < +∞,∫ +∞

0
|sFu(s)| ds ≤

∫ +∞

0

(
sφρ(s) +

s
1 + s4

)
ds < +∞,∫ +∞

0

∣∣∣s2Fu(s)
∣∣∣ ds ≤

∫ +∞

0

(
s2φρ(s) +

s2

1 + s4

)
ds < +∞.

That is Fu, tFu, t2Fu ∈ L1 (R+
0
)
.

By Lebesgue Dominated Convergence Theorem, Lemma 7.1.3 and
(H4), setting

lim
t→+∞

L2
(
δF(u), δ∞(u′′(+∞))

)
:= L,

and M∞ := max
{∣∣α′′(+∞)

∣∣+ |L|, ∣∣β′′(+∞)
∣∣+ |L|} ,
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one has

lim
t→+∞

(Tu)(t)
1 + t2 = lim

t→+∞

∆ + Γt + Ψt2

2
1 + t2 +

∫ +∞

0
lim

t→+∞

G(t, s)
1 + t2 Fu(s)ds

≤ M∞

2
+

1
2

∫ +∞

0

(
φρ(s) +

1
1 + s4

)
ds < +∞,

lim
t→+∞

(Tu)′(t)
1 + t

= lim
t→+∞

Γ + Ψt
1 + t

+
∫ +∞

0
lim

t→+∞

G1(t, s)
1 + t

Fu(s)ds

≤ M∞ +
∫ +∞

0

(
φρ(s) +

1
1 + s4

)
ds < +∞,

lim
t→+∞

(Tu)′′(t) = M∞ + lim
t→+∞

∫ +∞

t
Fu(s)ds < +∞.

Therefore Tu ∈ XF3.

Consider now the subset D ⊂ XF3 given by

D :=
{

x ∈ XF3 : ‖u‖XF3
< ρ0

}
,

with ρ0 > 0 such that

ρ0 > max {|α(0)| , |β(0)|}+ max
{∣∣α′(0)∣∣ ,

∣∣β′(0)∣∣}+ |k0|

+
∫ +∞

0
M(s)

(
φρ(s) +

1
1 + s4

)
ds,

where

k0 := max
{
|α′′(+∞)|, |β′′(+∞)|

}
+ sup

t≥0
L2(v, w),

for α ≤ v ≤ β and α′′(+∞) ≤ w ≤ β′′(+∞) and

M(s) := max

{
sup
t≥0

|G(t, s)|
1 + t2 , sup

t≥0

|G1(t, s)|
1 + t

, 1

}
.

So, for t ≥ 0,
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‖Tu‖0 = sup
t≥0

|Tu(t)|
1 + t2 ≤ sup

t≥0


∣∣∣∆ + Γt + Ψt2

2

∣∣∣
1 + t2


+ sup

t≥0

(∫ +∞

0

|G(t, s)|
1 + t2 |Fu(s)| ds

)
≤ |∆|+ |Γ|+ |Ψ|

2
+
∫ +∞

0
M(s)

(
φρ0(s) +

1
1 + s4

)
ds < ρ0,

∥∥(Tu)′
∥∥

1=sup
t≥0

|(Tu)′|
1 + t

≤ sup
t≥0

(
|Γ + Ψt|

1 + t
+
∫ +∞

0

|G1(t, s)|
1 + t

|Fu(s)| ds
)

≤ |Γ|+ |Ψ|+
∫ +∞

0
M(s)

(
φr1(s) +

1
1 + s4

)
ds < ρ0,

and

∥∥(Tu)′′
∥∥

2 = sup
t≥0

∣∣(Tu)′′
∣∣ ≤ sup

t≥0

(
|Ψ|+

∫ +∞

t
|Fu(s)| ds

)
≤ sup

t≥0

(
|Ψ|+

∫ +∞

t
φr1(s) +

1
1 + s4 ds

)
< ρ0.

So, TD ⊂ D.

Step 2.2: T is continuous.

Consider a convergent sequence un → u in XF3, there exists ρ1 > 0
such that max

{
supn ‖un‖XF3

, ‖α‖XF3
, ‖β‖XF3

, R
}

< ρ1. By Lemma
7.1.8 one has

‖Tun − Tu‖X=max
{
‖Tun − Tu‖0 ,

∥∥(Tun)
′ − (Tu)′

∥∥
1 ,
∥∥(Tun)

′′ − (Tu)′′
∥∥

2

}
≤

∫ +∞

0
M(s) |Fun(s)− Fu(s)| ds −→ 0, as n→ +∞

Step 2.3: T is compact.

Let B ⊂ XF3 be any bounded subset. Therefore there is r > 0 such
that ‖u‖XF3

< r, ∀u ∈ B.

For each u ∈ B, and for max
{

r, R, ‖α‖XF3
, ‖β‖XF3

}
< r1, it can be

applied similar arguments to Step 2.1 and prove that ‖Tu‖0 , ‖(Tu)′‖1

and ‖(Tu)′′‖2 are finite.

106



7.2 existence and localization results

So ‖Tu‖XF3
= max {‖Tu‖0 , ‖(Tu)′‖1 , ‖(Tu)′′‖2} < +∞ , that is,

TB is uniformly bounded in XF3.

TB is equicontinuous, because, for L > 0 and t1, t2 ∈ [0, L], one
has, as t1 → t2,∣∣∣∣∣Tu(t1)

1 + t2
1
− Tu(t2)

1 + t2
2

∣∣∣∣∣ ≤
∣∣∣∣∣∆ + Γt1 +

Ψt1
2

1 + t2
1

−
∆ + Γt2 +

Ψt2
2

1 + t2
2

∣∣∣∣∣
+
∫ +∞

0

∣∣∣∣∣G(t1, s)
1 + t2

1
− G(t2, s)

1 + t2
2

∣∣∣∣∣ |F(u(s))| ds

≤
∣∣∣∣∣∆ + Γt1 +

Ψt1
2

1 + t2
1

−
∆ + Γt2 +

Ψt2
2

1 + t2
2

∣∣∣∣∣
+
∫ +∞

0

∣∣∣∣∣G(t1, s)
1 + t2

1
− G(t2, s)

1 + t2
2

∣∣∣∣∣
(

φr1(s) +
1

1 + s4

)
ds −→ 0,

∣∣∣∣ (Tu)′(t1)

1 + t1
− (Tu)′(t2)

1 + t2

∣∣∣∣ ≤ ∣∣∣∣Γ + Ψt1

1 + t1
− Γ + Ψt2

1 + t2

∣∣∣∣
+
∫ +∞

0

∣∣∣∣G1(t1, s)
1 + t1

− G1(t2, s)
1 + t2

∣∣∣∣ |F(u(s))| ds

≤
∣∣∣∣Γ + Ψt1

1 + t1
− Γ + Ψt2

1 + t2

∣∣∣∣
+
∫ +∞

0

∣∣∣∣G1(t1, s)
1 + t1

− G1(t2, s)
1 + t2

∣∣∣∣ (φr1(s) +
1

1 + s4

)
ds −→ 0,

∣∣(Tu)′′(t1)− (Tu)′′(t2)
∣∣ =

∣∣∣∣∫ +∞

t1

Fu(s)ds−
∫ +∞

t2

Fu(s)ds
∣∣∣∣

≤
∫ t2

t1

|Fu(s)| ds

≤
∫ t2

t1

(
φr1(s) +

1
1 + s4

)
ds −→ 0.

Moreover TB is equiconvergent at infinity, because, as t→ +∞,
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∣∣∣∣ Tu(t)
1 + t2 − lim

t→+∞

Tu(t)
1 + t2

∣∣∣∣ ≤
∣∣∣∣∣∆ + Γt + Ψt2

2
1 + t2 − Ψ

2

∣∣∣∣∣
+
∫ +∞

0

∣∣∣∣G(t, s)
1 + t2 +

1
2

∣∣∣∣ |Fu(s)| ds

≤
∣∣∣∣∣∆ + Γt + Ψt2

2
1 + t2 − Ψ

2

∣∣∣∣∣
+
∫ +∞

0

∣∣∣∣G(t, s)
1 + t2 +

1
2

∣∣∣∣ (φρ1 +
1

1 + s4

)
ds→ 0,

∣∣∣∣ (Tu)′(t)
1 + t

− lim
t→+∞

Tu(t)
1 + t

∣∣∣∣ ≤ ∣∣∣∣Γ + Ψt
1 + t

−Ψ
∣∣∣∣

+
∫ +∞

0

∣∣∣∣G1(t, s)
1 + t

+ 1
∣∣∣∣ |Fu(s)| ds

≤
∣∣∣∣Γ + Ψt

1 + t
−Ψ

∣∣∣∣
+
∫ +∞

0

∣∣∣∣G1(t, s)
1 + t

+ 1
∣∣∣∣ (φρ1 +

1
1 + s4

)
ds→ 0,

and∣∣∣∣(Tu)′′(t)− lim
t→+∞

(Tu)′′(t)
∣∣∣∣ =

∫ +∞

t
|Fu(s)| ds

≤
∫ +∞

t

(
φρ1 +

1
1 + s4

)
ds −→ 0.

So, by Lemma 7.1.5, TB is relatively compact.

Then by Schauder’s Fixed Point Theorem 1.1.6, T has at least one
fixed point u1 ∈ XF3.

Step 3: u1 is a solution of (7.0.1), (7.0.2).

Suppose, by contradiction, that

α(0) > u1(0) + L0(δF, u1(0)).
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Then, by (7.2.2), u1(0) = α(0) and, by (H4), and Definition 7.1.6, the
following contradiction holds

u1(0) + L0(δF(u1), u1(0)) = α(0) + L0(δF(u1), α(0))

≥ α(0) + L0(α, α(0)) ≥ α(0).

So α(0) ≤ u1(0) + L0(δF, u1(0)). In a similar way it can be proved
that u1(0) + L0(δF(u1), u1(0)) ≤ β(0).

Assuming, by contradiction, that α′(0) > u′1(0)+ L1(δF(u1), u′1(0)),
then u′1(0) = α′(0) and, by (H4) and Definition 7.1.6, this contradic-
tion is achieved:

u′1(0) + L1(δF(u1), u′1(0)) = α′(0) + L1(δF(u1), α′(0))

≥ α′(0) + L1(α, α′(0)) ≥ α′(0).

So α′(0) ≤ u′1(0) + L1(δF(u1), u′1(0)). By similar arguments it can
be proved that u′1(0) + L1(δF(u1), u′1(0)) ≤ β′(0).

By Step 1, α(0) ≤ u1(0) ≤ β(0), α′(0) ≤ u′1(0) ≤ β′(0) and −R ≤
u′′1 (+∞) ≤ R, and therefore, u1(t) verifies the differential equation
(7.0.1) and boundary conditions (7.0.2), that is, u1 is a solution of
(7.0.1), (7.0.2).

7.3 falkner–skan equation

A classical third order differential equation, known as the Falkner-
Skan equation, is at the form

u′′′(t) + au(t)u′′(t) + b(1− (u′(t))2) = 0, t ≥ 0. (7.3.1)

This general equation is obtained from partial differential equa-
tions, by some transformation technique (see [115]).

When b = 0, (7.3.1) it is known as the Blasius equation, and it
models the behavior of a viscous flow over a flat plate. A boundary
layer is created by a two-dimensional flow over a fixed impenetrable
surface, and particles move more slowly near the surface than near
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the free stream. In this way equation (7.3.1) can be subject to the
following boundary conditions on the half line

u(0) = 0, u′(0) = 0, u′(+∞) = 1. (7.3.2)

In the literature, only numerical techniques are applied to deal
with these type of problems, (7.3.1), (7.3.2), with general a, b (see, for
instance, [117]).

To illustrated the main result let consider a boundary value pro-
blem of this family, composed by the third order fully differential
equation

u′′′(t) =
(u′(t))2 − 1

1 + t6 − u(t)|u′′(t)|
e3t +

u′′(t)
1 + t4 , t ≥ 0, (7.3.3)

and the functional boundary conditions on the half-line:

∫ +∞

0

|u(t)|
(t2 + t + 1)(t2 + 1)

dt− 2u(0) = 0, (7.3.4)

u′(0) = 1,

inf
t≥0

u(t)
1 + t2 − u′′(+∞) = −0.5.

Remark that the above problem is a particular case of (7.0.1), (7.0.2)
with

f (t, x, y, z) =
y2 − 1
1 + t6 −

x|z|
e3t +

z
1 + t4 ,

L0(a, b) =
∫ +∞

0

|a(t)|
(t2 + t + 1)(t2 + 1)

dt− 2b

L1(a, c) = c− 1 (7.3.5)

L2(a, d) = inf
t≥0

a(t)
1 + t2 − d + 0.5.

Functions β(t) = t2 + t + 1 and α(t) = t are, respectively, upper
and lower solutions of the problem (7.3.3), (7.3.4), verifying (H1).

The nonlinear function f : R+
0 ×R3 → R verifies the assumptions

of Theorem 7.2.1. In fact:
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• f is a L1−Carathéodory function as for |x| < ρ(1 + t2), |y| <
ρ(1 + t) and |z| < ρ, one has

| f (t, x, y, z)| ≤ ρ2(1 + t)2 + 1
1 + t6 +

ρ2(1 + t2)

e3t +
ρ

1 + t4 := φρ(t),

with φρ, tφρ, t2φρ ∈ L1 (R+
0
)

;

• f verifies the Nagumo condition on the set

E∗ =

(t, x, y, z) ∈ R+
0 ×R3 :

t ≤ x ≤ t2 + t + 1,
1 ≤ y ≤ 2t + 1,
0 ≤ z(+∞) ≤ 2

 ,

with ψ(t) = k
1+t4 and h = 1, where k > 0 is a real constant;

• f (t, x, y, z) is non-increasing in x, therefore it satisfies.(H3);

As the functions Li, i = 0, 1, 2, given by (7.3.5) verify (H4), then, by
Theorem 7.2.1, there is at least a solution u of (7.3.3), (7.3.4) such that

t ≤ u(t) ≤ t2 + t + 1, 1 ≤ u′(t) ≤ 2t + 1, 0 ≤ u′′(t) ≤ 2, for t ≥ 0.

This localization part shows that this solution is unbounded, non-
negative, increasing and convex.
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8

P H I - L A P L A C I A N E Q U AT I O N S W I T H
F U N C T I O N A L B O U N D A RY C O N D I T I O N S

This chapter is concerned with the study of φ- Laplacian equations,
sometimes called in the literature as half-linear equations. More pre-
cisely, we consider a fully nonlinear equation on the half line

( φ ( u ′ ( t ) ) ) ′ + q ( t ) f ( t , u ( t ) , u ′ ( t ) ) = 0 , t≥ 0 , (8.0.1)

where φ : R→R is an increasing homeomorphism with φ ( 0 ) = 0,
f : R+

0 × R 2→R and q : R+→R+
0 are both continuous functions,

verifying adequate assumptions, but q is allowed to have a singula-
rity when t = 0 , coupled with the functional boundary conditions

L ( u , u ( 0 ) , u ′ ( 0 ) ) = 0 , u ′ ( +∞ ) := l i m
t→+∞

u ′ ( t ) = B , (8.0.2)

where L : C
(

R+
0
)
× R 2 → R is a continuous function with pro-

perties to be precise later and B ∈ R . Remark that if B 6= 0 the
solution of (8.0.1), (8.0.2) is unbounded and for B = 0 the corres-
ponding solution must be bounded.

Boundary value problems, usually, are considered on compact do-
mains. However, problems on the half-line are becoming increa-
singly more popular on the literature, due to their applications to
fields like Engineering, Chemistry and Biology (see, for instance,
[86, 109, 111]). Moreover, if equation (8.0.1) is considered on the
whole real line, some techniques to guarantee the existence of homo-
clinic and heteroclinic solutions have been developed in last years, as
it can be seen in [78, 79, 80, 88].
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Problems defined on unbounded domains require more delicate
procedures to deal with the lack of compactness. In this chapter,
this is overcome by applying the so-called Bielecki norm and the
equiconvergence at ∞ , as in [37].

It is important to note that, in this chapter, it is introduced two
types of new features:

• The homeomorphism φ does not need to be surjective, that is,
φ(R) can be different from R. This is overcome by an auxiliary
surjective homeomorphism that extends, eventually, φ;

• A new and more general type of boundary conditions, given
by a functional that can depend globally on the unknown func-
tion.

Moreover, this method can be applied to classical or singular φ-
Laplacian, that is, even for homeomorphism φ : (−a, a) → R., with
0 < a < +∞ (for more details see [17, 28]).

In general, the lower and upper solutions method is a very ade-
quate and useful technique to deal with functional boundary value
problems as it provides not only the existence of bounded or un-
bounded solutions but also their localization and, from that, some
qualitative data about solutions, their variation and behavior (see
[26, 49, 50, 73, 74, 82]).

The technique used in this paper follows the work [47], and apply
some arguments suggested in [40], combined with the upper and
lower solution and a Nagumo condition to control the first deriva-
tive. The usage of such tool allows to improve the existent, namely
the introduction of functional boundary conditions in the problem.
These boundary conditions are very general in nature. They not
only generalize most of the classical boundary conditions as they
also cover the separated and multipoint cases, nonlocal or integral
conditions or other boundary conditions with maximum/minimum
arguments, that is, for example, of the type

u(0) = max
t≥0

u(t) or u′(τ) = min
t≥0

u′(t), with τ ≥ 0,

provided that the assumptions on L are satisfied.

113



phi-laplacian equations with functional boundary conditions

The chapter is organized as it follows: in the first section some
auxiliary result are defined such as the space, the weighted norms,
lower and upper solutions to be used and the necessary lemmas
to proceed. The second section contains new results of existence
and localization of solutions. Finally, two examples, which are not
covered by the existent literature, show the applicability of the main
theorems. In the first one the Nagumo conditions are verified. On
the other hand, in the second one, these assumptions are replaced
by a stronger condition on lower and upper solutions together with
a local monotone growth on f .

8.1 preliminary results

In this section, it is presented some definitions and auxiliary re-
sults needed for the proof of the main result. Consider the following
space

Xφ =

{
x ∈ C1(R+

0 ) : lim
t→+∞

x(t)
eθt ∈ R

}
equipped with a Bielecki norm type in C1(R+

0 ),

‖x‖Xφ := max
{
‖x‖0, ‖x′‖1

}
,

where
‖w‖0 = sup

t≥0

|w(t)|
eθt and ‖w‖1 = sup

t≥0
|w(t)|.

In this way, it is clear that (Xφ, ‖.‖Xφ) is a Banach space.
In addition, the following conditions must hold:

(h1) φ : R→ R is an increasing homeomorphism with φ(0) = 0;

(h2) The function f : R+ ×R2 → R is continuous and f (t, x, y) is
uniformly bounded for t > 0 when x and y are bounded.

(h3) The function q : R+ → R+
0 is integrable, not identically to 0 in

a subinterval of R+.

(h4) L : C (R+)×R2 → R is a continuous function, nondecreasing
in the first and third variables.
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The approach on problem (8.0.1), (8.0.2), will be from the perspec-
tive of a fixed point problem. In this order, next lemmas will estab-
lish the link between problem (8.0.1), (8.0.2) and its integral formu-
lation.

Let γ, Γ ∈ Xφ be such that γ(t) ≤ Γ(t), ∀t ≥ 0. Consider the set,
for θ > 0,

Eθ =

{
(t, x, y) ∈ R+

0 ×R2 :
γ(t)
eθt ≤ x ≤ Γ(t)

eθt

}
.

The following Nagumo condition allows some a priori bounds on
the first derivative of the solution:

Definition 8.1.1. A function f : Eθ → R is said to satisfy a Nagumo-type
growth condition in Eθ if, for some positive and continuous functions ψ, h,
such that

sup
t≥0

ψ(t) < +∞,
∫ +∞

0

|φ−1(s)|
h(|φ−1(s)|)ds = +∞, (8.1.1)

it verifies

|q(t) f (t, x, y)| ≤ ψ(t)h(|y|), ∀(t, x, y) ∈ Eθ. (8.1.2)

Lemma 8.1.2. Let f : R+
0 ×R2 → R be a continuous function satisfying

a Nagumo-type growth condition in Eθ. Then there exists N > 0 (not
depending on u) such that every solution u of (8.0.1), (8.0.2) with

γ(t)
eθt ≤ u(t) ≤ Γ(t)

eθt , for t ≥ 0, θ > 0,

one has
‖u′‖1 < N. (8.1.3)

Proof.
Let u be a solution of (8.0.1), (8.0.2) with (t, u(t), u′(t)) ∈ Eθ. Con-

sider r > 0 such that
r > |B|. (8.1.4)

If |u′(t)| ≤ r, ∀t ≥ 0, taking N > r the proof is complete as

‖u′‖1 = sup
t≥0
|u′(t)| ≤ r < N.
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Suppose there exists t0 ≥ 0 such that |u′(t0)| > N, that is u′(t0) >

N or u′(t0) < −N.

In the first case, by (8.1.1), one can take N > r such that

∫ φ(N)

φ(r)

|φ−1(s)|
h(|φ−1(s)|)ds > M

(
sup
t≥0

Γ(t)
eθt − inf

t≥0

γ(t)
eθt

)
(8.1.5)

with M := sup
t≥0

ψ(t) .

Consider t1, t2 ∈ [t0,+∞) such that t1 < t2, u′(t1) = N, u′(t2) = r
and r ≤ u′(t) ≤ N, ∀t ∈ [t1, t2]. Therefore, the following contradic-
tion with (8.1.5) is achieved:

∫ φ(N)

φ(r)

|φ−1(s)|
h(|φ−1(s)|)ds=

∫ φ(u′(t1))

φ(u′(t2))

φ−1(s)
h(φ−1(s))

ds

=
∫ t1

t2

u′(s)
h(u′(s))

(φ(u′(s)))′ds

= −
∫ t2

t1

q(s) f (s, u(s), u′(s))
h(u′(s))

u′(s)ds

≤
∫ t2

t1

|q(s) f (s, u(s), u′(s))|
h(u′(s))

u′(s) ds

≤
∫ t2

t1

ψ(s)u′(s) ds ≤ M
∫ t2

t1

u′(s) ds

≤M(u(t2)− u(t1))≤ M

(
sup
t≥0

Γ(t)
eθt − inf

t≥0

γ(t)
eθt

)
.

So u′(t) < N, ∀t ≥ 0.

Similarly, it can be proved that u′(t) > −N, ∀t ≥ 0 and, therefore,
‖u′‖1 < N, ∀t ≥ 0.

Define a surjective homeomorphism ϕ : R→ R as

ϕ(y) =


φ(y) if |y| ≤ R

φ(R)−φ(−R)
2R y + φ(R)+φ(−R)

2 if |y| > R

(8.1.6)

with R > 0 to be defined later.
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Lemma 8.1.3. Let v ∈ L1 (R+
0
)
. Then u ∈ Xφ such that (ϕ(u′(t))) ∈

AC
(
R+

0
)

is the unique solution of

(ϕ(u′(t)))′ + v(t) = 0, t ≥ 0 (8.1.7)

u(0) = A

u′(+∞) = B,

with A, B ∈ R, if and only if

u(t) = A +
∫ t

0
ϕ−1

(
ϕ (B) +

∫ +∞

s
v (τ) dτ

)
ds (8.1.8)

Proof.
Let u ∈ Xφ be a solution of (8.1.7). Then

(ϕ(u′(t)))′ = −v(t),

by integration one has

ϕ(u′(t)) = ϕ(B) +
∫ +∞

t
v(s)ds.

As ϕ is continuous and ϕ(R) = R, then

u′(t) = ϕ−1
(

ϕ(B) +
∫ +∞

t
v(s)ds

)
and by integration again,

u(t) = A +
∫ t

0
ϕ−1

(
ϕ(B) +

∫ +∞

s
v (τ) dτ

)
ds.

The lack of compactness is overcome by the following lemma,
which will provide a general criteria for relative compactness.

Lemma 8.1.4. ([37]) Let M ⊂ Xφ . The set M is said to be relatively
compact if the following conditions hold:

a) M is uniformly bounded in Xφ;

b) the functions belonging to M are equicontinuous on any compact
interval of R+

0 ;
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c) the functions f from M are equiconvergent at +∞, i.e., given ε > 0,
there corresponds T(ε) > 0 such that ‖ f (t)− f (+∞)‖Xφ

< ε for
any t > T(ε) and f ∈ M.

The adaptation of the euclidean norm of Rn to the weighted norms
of Xφ is a scholar exercise and, by this reason, was omitted.

To prove the main result it is important to rely on the upper and
lower solution method. The functions to be considered as upper and
lower solutions are defined as it follows:

Definition 8.1.5. A function α ∈ Xφ ∩ C2 (R+) such that (φ(α′)) ∈
AC

(
R+

0
)

is said to be a lower solution of problem (8.0.1), (8.0.2) if

(φ(α′))′(t) + q(t) f (t, α(t), α′(t)) ≥ 0

and
L(α, α(0), α′(0)) ≥ 0, α′(+∞) < B (8.1.9)

where B ∈ R.

A function β ∈ Xφ ∩ C2 (R+) is an upper solution if it satisfies the
reversed inequalities.

The following condition is applied for well ordered lower and up-
per solutions of problem (8.0.1), (8.0.2):

(h5) There are α and β lower and upper solutions of (8.0.1), (8.0.2),
respectively, such that

α(t) ≤ β(t), ∀t ≥ 0. (8.1.10)

Throughout the proof of the main result a modified and perturbed
problem will be considered. It is given by

(ϕ(u′(t)))′ + q(t) f (t, δ0(t, u), δ1(t, u′)) = 0
u(0) = δ0(0, u(0) + L(u, u(0), u′(0)))

u′(+∞) = B
(8.1.11)
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with the truncature δ0 : R+
0 ×R→ R is given by

δ0(t, y) =


β(t) , y > β(t)

y , α(t) ≤ y ≤ β(t)

α(t) , y < α(t),

(8.1.12)

and δ1 : R+
0 ×R→ R by

δ1(t, w) =


N , w > N

w , −N ≤ w ≤ N

−N , w < −N,

(8.1.13)

where N is defined in (8.1.3), for functions f satisfying Nagumo’s
condition.

Consider ϕ : R→ R given by (8.1.6) where R := max {N, ‖α′‖1, ‖β′‖1},
with N given by (8.1.3).

The operator T : Xφ → Xφ, associated to (8.1.11) can then be de-
fined as

(Tu)(t) : = δ0(0, u(0) + L(u, u(0), u′(0))) + (8.1.14)∫ t

0
ϕ−1

(
ϕ(B) +

∫ +∞

s
q(τ) f (τ, δ0(τ, u), δ1(τ, u′))dτ

)
ds.

One of the essential step is to prove that the operator T has a fixed
point. However, the function q may, or may not, be singular at the
origin. In this way two results are presented: one for the regular
case, where q is not singular when t = 0, and another result for the
singular case.

First, let us start by presenting some lemmas for the regular case.

Lemma 8.1.6. (Regular case) Assume that q : R+
0 → R+

0 is continuous
and that conditions (H1), (H2), (H3) and (H5) hold. Then the operator T
is well defined.

Proof.

For any u ∈ Xφ there is K > 0, such that ‖u‖Xφ < K.

119



phi-laplacian equations with functional boundary conditions

From (8.1.11) and (8.1.12)

lim
t→+∞

(Tu)(t)
eθt ≤ lim

t→+∞

β(0)
eθt +

lim
t→+∞

∫ t
0 ϕ−1

(
ϕ(B) +

∫ +∞
s q(τ) f (τ, δ0(τ, u), δ1(τ, u′))dτ

)
ds

eθt

≤ lim
t→+∞

∫ t
0 ϕ−1

(
ϕ(B) +

∫ +∞
s q(τ) f (τ, δ0(τ, u), δ1(τ, u′))dτ

)
ds

eθt .

As δ0(τ, u) and δ1(τ, u′) are bounded, by (H2), then

f (τ, δ0(τ, u), δ1(τ, u′))

is uniformly bounded. Let us define

SK := sup
t≥0
{ f (t, x, y), t ≥ 0, |x| ∈ (0, K0), |y| ∈ (0, N)} , (8.1.15)

with K0 = max {‖α‖0, ‖β‖0} and N given by (8.1.3).

Remark that SK does not depend on u.

From (H3) it can be defined k1 a real number such that

∫ +∞

s
q(τ)SKdτ := k1. (8.1.16)

As ϕ is nondecreasing, the previous inequality now becomes

lim
t→+∞

(Tu)(t)
eθt ≤ lim

t→+∞

∫ t
0 ϕ−1

(
ϕ(B) + SK

∫ +∞
s q(τ)dτ

)
ds

eθt

≤ lim
t→+∞

∫ t
0 ϕ−1 (ϕ(B) + k1) ds

eθt

≤ lim
t→+∞

ϕ−1 (ϕ(B) + k1) t
eθt = 0. (8.1.17)

For

lim
t→+∞

(Tu)′(t) = ϕ−1
(

ϕ(B) +
∫ +∞

t
q(τ) f (τ, δ0(τ, u), δ1(τ, u′))dτ

)
= B < +∞.

Therefore T is well defined.
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Lemma 8.1.7. (Regular case) Assume that q : R+
0 → R+

0 is continuous
and that conditions (H1), (H2), (H3), (H4) and (H5) hold. Then the opera-
tor T is continuous.

Proof.

Consider a convergent sequence un → u ∈ Xφ.

By the arguments used in the previous lemma, the upper bounds
are uniform and, therefore, do not depend on n.

Defining

Θ := ϕ(B) +
∫ +∞

s
q(τ) f (τ, δ0(τ, un), δ1(τ, u′n))dτ

and as ϕ is continuous, by (H2) and the Lebesgue’s Dominated Con-
vergence Theorem, one has

‖(Tun)− (Tu)‖0

= sup
t≥0

e−θt

∣∣∣∣∣ δ (0, un (0) + L (un, un (0) , u′n (0))) +
∫ t

0 ϕ−1(Θ)ds
−δ (0, u (0) + L (u, u (0) , u′ (0)))−

∫ t
0 ϕ−1(Θ)ds

∣∣∣∣∣→0,

as n→ +∞, and

∥∥(Tun)
′ − (Tu)′

∥∥
1

≤ sup
t≥0

∣∣∣∣∣∣ ϕ−1
(

ϕ(B) +
∫ +∞

t q(τ) f (τ, δ0(τ, un), δ1(τ, u′n))dτ
)

−ϕ−1
(

ϕ(B) +
∫ +∞

t q(τ) f (τ, δ0(τ, u), δ1(τ, u′))dτ
) ∣∣∣∣∣∣→ 0,

as n→ +∞.

Therefore T is continuous in Xφ.

Lemma 8.1.8. The operator T is compact.

Proof.

The idea in this proof is to apply Lemma 8.1.4. For that it is im-
portant to show that the operator T is equicontinuous and equicon-
vergent at +∞.

Let us consider t1, t2 ∈ (0, T0), where T0 > 0 and t1 < t2.

Defining Θ := ϕ(B) +
∫ +∞

s
q(τ) f (τ, δ0(τ, u), δ1(τ, u′))dτ, then, for

θ > 0,
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∣∣∣∣ (Tu)(t1)

eθt1
− (Tu)(t2)

eθt2

∣∣∣∣ ≤ max {|α(0)|, |β(0)|} eθt2 − eθt1

eθ(t1+t2)

+

∣∣∣∣ eθt2 − eθt1

eθ(t1+t2)

∫ t1

0
ϕ−1(Θ)ds

∣∣∣∣+
∣∣∣∣∣∣ e

θt1
∫ t2

t1
ϕ−1(Θ)ds

eθ(t1+t2)

∣∣∣∣∣∣
≤ max {|α(0)|, |β(0)|} eθt2 − eθt1

eθ(t1+t2)

+

∣∣∣∣∣∣
eθt2 − eθt1

∫ t1
0 ϕ−1

(
ϕ(B) + SK

∫ +∞
s q(τ)dτ

)
eθ(t1+t2)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
eθt1
∫ t2

t1
ϕ−1

(
ϕ(B) + SK

∫ +∞
s q(τ)dτ

)
eθ(t1+t2)

∣∣∣∣∣∣→ 0,

as t1 → t2.
Also, as ϕ−1 is continuous, defining F := q(τ) f (τ, δ0(τ, u), δ1(τ, u′)),

by (8.1.15) and (8.1.16),

∣∣(Tu)′(t1)− (Tu)′(t2)
∣∣ = ∣∣∣∣ϕ−1

(∫ +∞

t1

Fdτ

)
− ϕ−1

(∫ +∞

t2

Fdτ

)∣∣∣∣→ 0,

as t1 → t2. Therefore T is equicontinuous.
For the equiconvergence at +∞ of the operator T, one has, by

(8.1.17), ∣∣∣∣ (Tu)(t)
eθt − lim

t→+∞

(Tu)(t)
eθt

∣∣∣∣ = ∣∣∣∣e−θt
∫ t

0
ϕ−1(Θ)ds

∣∣∣∣→ 0,

as t→ +∞. For∣∣∣∣(Tu)′(t)− lim
t→+∞

(Tu)′(t)
∣∣∣∣ = ∣∣∣∣ϕ−1(Θ)− lim

t→+∞
ϕ−1(Θ)

∣∣∣∣
that tends to 0 as t→ +∞, from (H3) and the continuity of ϕ−1.

As T is equicontinuous and equiconvergent, then from Lemma
8.1.4, T is compact.

Now let us consider the singular case.

Lemma 8.1.9. (Singular case) Let q be singular at t = 0. Then the operator
T given by (8.1.14) is completely continuous.
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Proof.

For each n ≥ 1 and Θ := ϕ(B)+
∫ +∞

s
q(τ) f (τ, δ0(τ, u), δ1(τ, u′))dτ

let us define the approximating operator Tn : Xφ → Xφ given by

(Tnu) (t) := δ0(0, u(0) + L(u, u(0), u′(0))) +
∫ t

1
n

ϕ−1(Θ)ds. (8.1.18)

In this case it is sufficient to show that Tn tends to T on Xφ. In fact,
from (H1), (H2), (H3), (8.1.15) and (8.1.16), one has

∣∣∣∣ (Tu)(t)
eθt − (Tnu)(t)

eθt

∣∣∣∣ =

∣∣∣∣∣∣
∫ 1

n
0 ϕ−1(Θ)ds

eθt

∣∣∣∣∣∣
≤

∫ 1
n

0 ϕ−1
(

ϕ(B) + SK
∫ +∞

s q(τ)dτ
)

eθt → 0,

as n→ +∞, and,

|(Tu)′(t)− (Tnu)′(t)| =∣∣∣∣∣∣ ϕ−1
(

ϕ(B) +
∫ +∞

1
n

q(τ) f (τ, δ0(τ, u), δ1(τ, u′))dτ
)

−ϕ−1
(

ϕ(B) +
∫ +∞

0 q(τ) f (τ, δ0(τ, u), δ1(τ, u′))dτ
) ∣∣∣∣∣∣→ 0,

as n→ +∞.
Hence the operator T is completely continuous.

8.2 existence and localization result

In this section it is proved an existence and location result for
(8.0.1), (8.0.2).

Theorem 8.2.1. Let f : R+
0 ×R2 → R and q : R+

0 → R be both conti-
nuous functions, where q can have a singularity when t = 0, and f verifies
the Nagumo conditions (8.1.1) and (8.1.2). If conditions (H1), (H2), (H3),
(H4) and (H5) are satisfied, then problem (8.0.1), (8.0.2) has at least one
solution u ∈ Xφ and there exists N > 0 such that

α(t) ≤ u(t) ≤ β(t) and − N < u′(t) < N, ∀t ≥ 0.
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Proof.
Claim 1 - Every solution u of (8.1.11) verifies α(t) ≤ u(t) ≤ β(t) and
there is N > 0 such that −N < u′(t) < N, ∀t ≥ 0.

Let u ∈ Xφ be a solution of the modified problem (8.1.11) and
suppose, by contradiction, that there exists t > 0 such that α(t) >

u(t). Therefore
inf
t≥0

(u(t)− α(t)) < 0.

Suppose that this infimum is attained as t→ +∞. Therefore

lim
t→+∞

(u′(t)− α′(t)) = u′(+∞)− α′(+∞) ≤ 0.

By Definition 8.1.5, one gets the contradiction,

0 ≥ u′(+∞)− α′(+∞) = B− α′(+∞) > 0.

Analogously, the infimum does not happen at t = 0, otherwise the
following contradiction holds:

0 > u(0)− α(0) = δ(0, u(0) + L(u, u(0), u′(0)))− α(0) ≥ 0.

Therefore there are t∗ > 0 and t0 < t∗ such that

min
t≥0

(u(t)− α (t))) : = u(t∗)− α(t∗) < 0,

u′(t∗) = α′(t∗),

u(t) < α(t) , u′(t) < α′(t), ∀t ∈ [t0, t∗[,

and, by (H1),

ϕ(u′(t)) < ϕ(α′(t)), ∀t ∈ [t0, t∗[. (8.2.1)

So, for t ∈ [t0, t∗[, by (8.1.11), (8.1.12), (8.1.6) and Definition 8.1.5,
one has

(ϕ(u′(t)))′ = −q(t) f (t, δ0(t, u), δ1(t, u′)) = −q(t) f (t, α(t), α′(t))

≤ (φ(α′(t)))′ = (ϕ(α′(t)))′.
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Therefore the function ϕ(u′(t)) − ϕ(α′(t)) is non-increasing on
[t0, t∗[ and

ϕ(u′(t0))− ϕ(α′(t0)) ≥ ϕ(u′(t∗))− ϕ(α′(t∗)) = 0,

which is a contradiction with (8.2.1).
So, u(t) ≥ α(t), ∀t ≥ 0.
Analogously it can be shown that u(t) ≤ β(t), ∀t ≥ 0.
The first derivatives inequalities are an immediate consequence of

Lemma 8.1.2, taking

γ(t) =
α(t)
eθt and Γ(t) =

β(t)
eθt , for t ≥ 0, θ > 0.

From the lemmas in the previous section one has that the operator
T is completely continuous, both for the singular and regular cases.
Claim 2 - The problem (8.1.11) has at least a solution u ∈ Xφ.

In order to apply the Schauder’s fixed point theorem, we consider
a closed and bounded set D defined as

D =
{

u ∈ Xφ : ‖u‖X ≤ ρ
}

,

with ρ such that

ρ := max

{
K0 + sup

t∈[0,+∞)

(
ϕ−1 (ϕ (B) + k1) t

eθt

)
,
∣∣∣ϕ−1 (ϕ (B) + k1)

∣∣∣} ,

where K0 is given by (8.1.15) and k1 by (8.1.16).
For u ∈ D, arguing as in the proof of Lemma 8.1.6, as ϕ−1 is

increasing, we have, for SK given by (8.1.15),

‖Tu‖0 = sup
t∈[0,+∞)

|(Tu) (t)|
eθt

≤ sup
t∈[0,+∞)

(
K0 +

∫ t
0 ϕ−1 (ϕ (B) +

∫ ∞
s q (τ) SK

)
ds

eθt

)

≤ sup
t∈[0,+∞)

(
K0 +

∫ t
0 ϕ−1 (ϕ (B) + k1) ds

eθt

)

= sup
t∈[0,+∞)

(
K0 +

ϕ−1 (ϕ (B) + k1) t
eθt

)
≤ ρ,
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and

∥∥(Tu)′
∥∥

1 = sup
t∈[0,+∞)

∣∣(Tu)′ (t)
∣∣

≤ sup
t∈[0,+∞)

∣∣∣∣ϕ−1
(

ϕ (B) +
∫ ∞

0
q (τ) f

(
τ, δ0(τ, u), δ1(τ, u′)

)
dτ

)∣∣∣∣
≤ sup

t∈[0,+∞)

∣∣∣ϕ−1 (ϕ (B) + k1)
∣∣∣ ≤ ρ.

Therefore TD ⊆ D.

Then by Schauder’s Fixed Point Theorem 1.1.6, T has at least one
fixed point u ∈ Xφ, that is, the problem (8.1.11) has at least one
solution u ∈ Xφ.

Claim 3 - Every solution u of the problem (8.1.11) is a solution of problem
(8.0.1), (8.0.2).

Let u be a solution of the modified problem (8.1.11). By last claim,
function u verifies equation (8.0.1).

Then, it will be enough to prove the inequalities

α(0) ≤ u(0) + L(u, u(0), u′(0)) ≤ β(0).

Suppose, by contradiction, that α(0) > u(0) + L(u, u(0), u′(0)).
By (8.1.11) and (8.1.12),

u(0) = δ0(0, u(0) + L(u, u(0), u′(0))) = α(0).

Therefore, by Claim 1, u′(0) ≥ α′(0).

By (H4) and Definition 8.1.5, the following contradiction is ob-
tained

0 > u(0) + L(u, u(0), u′(0))− α(0) ≥ L(α, α(0), α′(0)) ≥ 0.

In a similar way one can prove that u(0) + L(u, u(0), u′(0)) ≤ β(0).

Remark 8.2.2. Theorem 8.2.1 still remains true for singular φ−Laplacian
equations. Indeed, from Nagumo condition and Lemma 8.1.2, for every u
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solution of problem (8.1.11), ‖u′(t)‖1 < N, and, therefore, considering in
(8.1.6),R > N, one has

φ :]− N, N[→ R and φ(u′(t)) ≡ ϕ(u′(t)), ∀t ∈ R+
0 .

The control on the first derivative given by Nagumo condition and
Lemma 8.1.2, which implies a subquadratic growth on the nonline-
arity, can be overcome assuming stronger conditions on lower and
upper solutions, as in the next theorem.

Theorem 8.2.3. Let f : R+
0 ×R2 → R and q : R+

0 → R be both conti-
nuous functions, where q can have a singularity when t = 0. Assume that
there are α and β lower and upper solutions of (8.0.1), (8.0.2), respectively,
such that

α′(t) ≤ β′(t), ∀t ≥ 0, (8.2.2)

and
α(0) ≤ β(0). (8.2.3)

If conditions (H1), (H2), (H3) and (H4) are satisfied and

f (t, α(t), y) ≤ f (t, x, y) ≤ f (t, β(t), y), (8.2.4)

for α(t) ≤ x ≤ β(t) and y ∈ R fixed, then problem (8.0.1), (8.0.2) has at
least a solution u ∈ Xφ such that

α′(t) ≤ u′(t) ≤ β′(t), ∀t ≥ 0.

Remark 8.2.4. Condition (8.2.2) together with (8.2.3) imply (H5).

Proof.
The proof follows analogous steps as in Claims 1 and 2 of Theorem

8.2.1, with ϕ defined by

R := max
{∥∥α′

∥∥
1 ,
∥∥β′
∥∥

1

}
. (8.2.5)

It remains to prove that α′(t) ≤ u′(t) ≤ β′(t), ∀t ≥ 0.
Assume that there is a t ≥ 0 such that u′(t) < α′(t), and define

t0 ≥ 0 as
inf
t≥0

(
u′(t)− α′(t)

)
:= u′(t0)− α′(t0) < 0. (8.2.6)
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By (8.0.2), there is t1 ∈ (t0,+∞) such that u′(t1) = α′(t1).
By (8.2.4), for t ∈ [t0, t1],(

ϕ
(
u′(t)

))′
(t) =−q (t) f

(
t, δ0(t, u), δ1(t, u′)

)
=−q (t) f

(
t, δ0(t, u), α′(t)

)
≤ −q (t) f

(
t, α (t) , α′(t)

)
≤
(
φ
(
α′(t)

))′
=
(

ϕ
(
α′(t)

))′ .
Therefore, ϕ (u′(t))− ϕ (α′(t)) is non-increasing on [t0, t1] and

ϕ
(
u′(t0)

)
− ϕ

(
α′(t0)

)
≥ ϕ

(
u′(t1)

)
− ϕ

(
α′(t1)

)
= 0.

So, ϕ (u′(t0)) ≥ ϕ (α′(t0)) , and by (H1), u′(t0) ≥ α′(t0) which
contradicts (8.2.6). That is, α′(t) ≤ u′(t), ∀t ≥ 0.

In the same way it can be shown that u′(t) ≤ β′(t), ∀t ≥ 0.

Remark 8.2.5. Theorem 8.2.3 holds for singular φ−Laplacian equations.
If in (8.1.6) it is consider R given by (8.2.5), one has

φ :]− R, R[→ R and φ(u′(t)) ≡ ϕ(u′(t)), ∀t ≥ 0.

8.3 examples

In order to demonstrate the applicability of the results in this chap-
ter two examples will follow. In the first one the nonlinearity f satis-
fies the Nagumo conditions and, in the second one, this assumption
is replaced by a monotone behavior in f .

In both cases the null function is not a solution of the referred
problem.
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EXAMPLE A

Consider for some θ > 0 the nonlinear problem composed by the
differential equation

u′′(t)
1 + (u′(t))2 −

1
1 + t2

u(t)(u′(t))2

1 + u2(t)
= 0, t ≥ 0, (8.3.1)

and the functional boundary conditions

max
t≥0

|u(t)|
eθt + (u′(0))3 − u(0) = 0, u′(+∞) =

1
2

. (8.3.2)

Remark that this problem (8.3.1), (8.3.2) is a particular case of
(8.0.1)-(8.0.2) with

• φ(v) = arctan v ;

• f (t, x, y) = − xy2

1+x2 ;

• q(t) = 1
1+t2 ;

• L(u, x, y) = max
t∈R+

0

|u(t)|
eθt + y3 − x;

• B = 1
2 .

With these settings it is easy to prove the following statements:

• φ is a nonsurjective homeomorphism satisfying (H1);

• f (t, x, y) and q(t) verify (H2), (H3) and the Nagumo conditions
(8.1.1) and (8.1.2) with ψ(t) ≡ 1 and h(|y|) = y2 ;

• L(u, x, y) satisfies (H4);

• α(t) = 0, 5 and β(t) = t + 2 are, respectively, lower and upper
solutions of (8.3.1), (8.3.2) verifying (H5).

So, by Theorem 8.2.1, there is, at least, a solution u of (8.3.1), (8.3.2)
such that

0, 5 ≤ u(t) ≤ t + 2, ∀t ≥ 0.

Moreover, this solution is unbounded and, from the location part,
strictly positive in R+

0 .
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EXAMPLE B

The functional problem
3(u′(t))2u′′(t) + 1

1+t3

(
arctan

(
(u(t))3)− 2 (u′(t))5

1+|u′(t)|5
)
= 0, t ≥ 0,∫ 1

0
u(t)
eθt dt− 5u(0) + u′(0) = 1,

u′(+∞) = B,
(8.3.3)

for some θ > 0 and B > −1, is a particular case of (8.0.1), (8.0.2) with

• φ(v) = v3;

• f (t, x, y) = arctan
(
x3)− 2 y5

1+|y|5 ;

• q(t) = 1
1+t3 ;

• L(u, x, y) =
∫ 1

0
u(t)
eθt dt− 5x + y− 1.

Remark that, in this case, φ is a surjective homeomorphism and f
does not satisfy the Nagumo conditions but it verifies (8.2.4).

As the functions α(t) = −t − 1 and β(t) ≡ 0 are, respectively,
lower and upper solutions of (8.3.3), satisfying assumptions (8.2.2)
and (8.2.3), then, by Theorem 8.2.3, there is, at least, a solution u of
(8.3.3), such that

−t− 1 ≤ u(t) ≤ 0, ∀t ≥ 0.

Indeed, this solution is unbounded if B 6= 0 and bounded if B = 0,
and, in any case, non-positive in R+

0 .
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