7.4. Sonogashira Coupling Reaction of Aryl Derivatives: A Versatile Method for Acetylide Building Blocks

Tiago J. Silva**, Paulo J. Mendes**, António P. S. Teixeira**, M. Paula Robalo**^c**^d, and M. H. Garcia**

**Centro de Ciências Moleculares de Materiais, Faculdade de Ciências da Universidade de Lisboa, Portugal;
**Departamento de Química, Escola de Ciências e Tecnologia, Centro de Ciência de Évora, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal;
**Area Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Portugal;
**Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Portugal. *E-mail: tjsilva@fc.ul.pt

![Sonogashira reaction diagram](image)

<table>
<thead>
<tr>
<th>Number of sessions (duration of each session)</th>
<th>Hazard level</th>
<th>Difficulty level</th>
<th>Level of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (5 h + 3 h)</td>
<td>Moderate</td>
<td>High</td>
<td>Intermediate</td>
</tr>
</tbody>
</table>

Class names Aryl halides, terminal alkynes, alkylsilanes

Concepts involved Palladium catalysis, cross coupling reaction, deprotection of alkynylsilanes

Chemicals needed 5-Bromo-2-nitrothiophene, triethylamine, copper(i) iodide, ammonium fluoride, bis[triphenylphosphine]palladium(II) dichloride, ethynyl(trimethyl)silane, tetrahydrofuran, n-hexane, diethyl ether, methanol, silica gel, anhydrous sodium sulfate, saturated sodium bicarbonate solution, 5% hydrochloric acid solution

Equipment and experimental techniques involved Liquid–liquid extraction, column chromatography, NMR, heating plate with magnetic stirring, vacuum/nitrogen line, rotatory evaporation apparatus

Keywords Chromatography, cross coupling, heterocyclic chemistry, NMR, palladium catalysis, terminal alkynes

Background

The coupling of aryl or vinyl halides with terminal alkynes catalysed by palladium, commonly known as the Sonogashira¹ cross-coupling reaction, is one of the most important and widely used sp²–sp carbon−carbon bond formation reactions in organic synthesis. The obtained products have frequently found applicability in several areas of chemistry, such as natural products, biologically active molecules, dyes, molecular electronics, dendrimers and conjugated polymers. The reaction name arises from the discovery in 1975 by Sonogashira et al. that this process could be performed easily at room temperature using a palladium catalyst, combined with a co-catalytic amount of CuI in an amine as solvent (Scheme 7.4.1).¹

1. Comprehensive Organic Chemistry Experiments for the Laboratory Classroom
 © The Royal Society of Chemistry 2017
 Published by the Royal Society of Chemistry, www.rsc.org