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Abstract We introduce the reader to a fundamental exterior differential system of
Riemannian geometry which arises naturally with every oriented Riemannian n+1-
manifold M. Such system is related to the well-known metric almost contact struc-
ture on the unit tangent sphere bundle SM, so we endeavor to include the theory
in the field of contact systems. Our EDS is already known in dimensions 2 and
3, where it was used by Ph. Griffiths in applications to mechanical problems and
Lagrangian systems. It is also known in any dimension but just for flat Euclidean
space. Having found the Lagrangian forms αi ∈ Ω n, 0 ≤ i ≤ n, we are led to the
associated functionals Fi(N) =

∫
N αi, on the set of hypersurfaces N ⊂ M, and to

their Poincaré-Cartan forms. A particular functional relates to scalar curvature and
thus we are confronted with an interesting new equation.

1 Geometric structures and the fundamental differential system

1.1 The manifold SM

Let M be any smooth oriented n+1-dimensional Riemannian manifold. Our study is
centred on the geometry of the tangent bundle T M as an oriented Riemannian 2n+
2-manifold, endowed with the well-known Sasaki metric. Let π : T M −→M denote
the canonical projection. The vector bundle V := kerdπ ' π?T M −→ T M agrees
fibrewise with the tangent bundle to the fibres of T M. Moreover the tangent bundle
of T M splits as T T M = H⊕V , where H is a sub-vector bundle depending on ∇, the
Levi-Civita connection. Clearly the horizontal sub-bundle H is also isomorphic to
π∗T M through the map dπ . We thus define an endomorphism
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B : T T M −→ T T M (1)

transforming H in V and vanishing on the vertical sub-bundle V . This is used by
many authors perhaps not giving it so much importance. Partly because one simply
recurs to lifts of the same vector on M to either horizontal or vertical parts.

There also exists a connection independent vector field ξ over T M defined by
ξu = u, or maybe more precisely ξu = π?u, ∀u ∈ T M, turning explicit the verti-
cal lift. Henceforth, there exists a unique horizontal ∇-dependent vector field, for-
mally, Badξ ∈ H, such that B(Badξ ) = ξ . That field is the geodesic spray of the
connection, cf. [17]. One can see easily that π?∇wξ = wv, one reason being that
H = ker(π?∇·ξ ).

The manifold T M also inherits a linear connection, denoted ∇∗, which is just

π
∗
∇⊕π

?
∇

preserving the canonical splitting T T M = H ⊕V ' π∗T M⊕ π?T M. We observe
then that the connecting endomorphism B is parallel for such ∇∗. The torsion of
∇∗ is given by π∗T ∇(v,w)⊕Rξ (v,w), ∀v,w ∈ T T M, where the vertical part is
Rξ (v,w) = Rπ?∇(v,w)ξ = π?R∇(v,w)ξ .

Now we come forward with the metric tensor of M. The Sasaki metric 〈 , 〉 on T M
is given naturally by the pull-back of the metric on M both to H and V . The parallel
mirror morphism B| : H→V is then metric-preserving. Now Bad really denotes the
adjoint endomorphism of B and the map J = B−Bad is the Sasaki almost complex
structure on T M.

Any frame in H extended with its mirror in V clearly determines an orientation
on the manifold T M. We convention to adopt the order ‘first H, then V ’, which is a
relevant issue when dimM is odd.

Let us suppose ∇ is the Levi-Civita connection and consider the radius 1 tangent
sphere bundle

SM = {u ∈ T M : ‖u‖= 1} . (2)

∇∗ is a metric connection and so, differentiating 〈ξ ,ξ 〉= 1, we deduce T SM = ξ⊥.
Since the manifold T M is orientable, SM is also always orientable — the restriction
of ξ being a unit outward normal. By the Gram-Schmidt process and the orthogonal
group action, for any u ∈ SM we may find a local horizontal orthonormal frame
e0,e1 . . . ,en on a neighbourhood of u in SM and such that e0 = Badξ or, equivalently,
e0 = u ∈ H.

With the dual horizontal coframing, clearly the identity π∗volM = e0∧e1∧·· ·∧en

is satisfied. Adding the mirror subset {ξ [,en+1, . . . ,e2n}, with en+i = ei ◦Bad, ∀i≥ 1
(equivalently en+i(e j) = ei(e j+n) = 0, en+i(e j+n) = ei(e j) = δ i

j, ∀i, j), we find the
volume form of T M:

VolT M = e0∧ e1∧·· ·∧ en∧ξ
[∧ en+1∧·· ·∧ e(2n) = (−1)n+1

ξ
[∧vol∧α . (3)

We use vol = π∗volM ; whereas α denotes the n-form on T M which is defined as the
interior product of ξ with the vertical pull-back of the volume form of M. Hence,
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choosing appropriately±ξ as unit normal direction, the canonical orientation of the
Riemannian submanifold SM, given by ±ξyVolT M , agrees with vol∧α = e01···(2n).
A direct orthonormal frame as the one introduced previously is said to be adapted.

1.2 Further metric properties

The submanifold SM admits a metric linear connection ∇F. For any vector fields y,z
on SM, the covariant derivative ∇∗yz is well-defined and, admitting y,z perpendicular
to ξ , we just have to add a correction term:

∇
F
y z = ∇

∗
yz−〈∇∗yz,ξ 〉ξ = ∇

∗
yz+ 〈yv,zv〉ξ . (4)

Since 〈Rξ (y,z),ξ 〉 = 0, then a torsion-free connection D is easy to find as Dyz =
∇
F
y z− 1

2Rξ (y,z). This connection is most useful for some computations, but ceases
to be metric. For the Levi-Civita connection we must add to D another term, A, given
by:

〈Ayz,w〉= 1
2
(〈Rξ (y,w),z〉+ 〈Rξ (z,w),y〉) . (5)

Details on metric connections on SM are described in [4, 5].
We have found in [9] the conditions for natural maps to become isometries be-

tween tangent sphere bundles of different radius, including weighted Sasaki metric
and conformal variation of the metric on the base manifold M when dimM ≥ 3.
Notice the induced horizontal subspaces on SM are not fixed on the same conformal
class on M. We do not explore here these results with the weights and radius, which
are all aloud to be pullbacks of functions on M.

Just with the Sasaki metric we have a particular, new result which may catch
the readers’ attention for those theorems. Consider the constant norm s > 0 sphere
bundle SsM = sSM and let M = M±R denote the space-form with metric g of constant
sectional curvature ±1/R2, where R > 0.

Proposition 1. Let gS denote the Sasaki metric on the tangent bundle induced from
the metric g on M±R . Then (SsM±R ,gS) is isometric to (SsM±1 ,(R2g)S).

Proof. We use the map F defined in [9, section 2.6] and then apply twice corollary
2.2 from the same article, so the notation now is also from there:

(SsM±R ,gS)' (S s
R

M±1 ,gR2,R2
)' (S1M±1 ,(R2g)1,s2

)' (SsM±1 ,(R2g)S) .

We recall the notation, g f1, f2 = f1π∗g⊕ f2π?g, gS = g1,1. ut

We have also computed in [4] the scalar curvature of the metrics above. For the
weighted metric with f1, f2 constant, we have

Scal(SsMR,g f1 , f2 ) =±
n(n+1)

f1R2 − f2

4 f 2
1

s2

R4 2n+
(n−1)n

f2s2 , (6)



4 Rui Albuquerque

which is a positive (negative) constant for small (large) s, although we do not have
an Einstein metric. The value of these results from [4, 9] has only recently been
understood. Of course it is fun to verify the isometric invariance of our formulas.

1.3 The contact structure

We denote by θ the 1-form on SM defined by

θ = (Bad
ξ )[ = 〈ξ ,B · 〉= e0 . (7)

Y. Tashiro discovered in the 1960’s that θ defines a metric contact structure, cf. [10].
In our adapted frame we find dθ = e(1+n)1 + · · ·+ e(2n)n. In other words, ∀v,w ∈
T SM, dθ(v,w) = 〈v,Bw〉−〈w,Bv〉.

Now we present the set of natural n-forms α0,α1, . . . ,αn existing always on SM.
Together with θ they consist of the fundamental differential system we have an-
nounced. But we begin with the low dimension cases before a general definition.

In case n = 1 we have a global coframing of SM with θ and two 1-forms α0 = e2

and α1 = e1, which are global forms. The following formulas were probably already
known (to Cartan?), where k denotes the Gauss curvature of M:

dθ = α0∧α1 dα0 = k α1∧θ dα1 = θ ∧α0 . (8)

For the case n = 2, α0 = e34, α1 = e14 + e32, α2 = e12, or the case n = 3, α0 =
e456, α1 = e156 + e264 + e345, α2 = e126 + e234 + e315, α3 = e123, we do not have
any special example or easier way of computing the exterior derivatives other than
that which we use in [8] with the connections ∇∗,D above — except in case n = 3
and flat metric coordinates, as shown in [3], because the 3-sphere is parallelizable
and so we may explicit an adapted frame (just as with n = 1).

Finally we define the n+1 natural n-forms on SM. First, for 0≤ i≤ n, let

ni =
1

i!(n− i)!
. (9)

Continuing with the adapted frame introduced earlier, we then define:

α0 = α = ξy(π?volM ) = e(n+1)∧·· ·∧ e(2n) (10)

where π?volM is the vertical pull-back of the volume form of M. Now for each i we
write, ∀v1, . . . ,vn ∈ T SM,

αi(v1, . . . ,vn) = ni ∑
σ∈Sn

sg(σ)α(Bvσ1 , . . . ,Bvσi ,vσi+1 , . . . ,vσn). (11)

We remark that αn = e1...n, which justifies the introduction of the weight ni. For
convenience we define α−1 = αn+1 = 0.
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Only a scarce number of references have used the exterior differential system of
θ and the αi, yet not rising them to the level of a field of study. It seems the n-forms
have only been considered as an auxiliary tool in the solution of very few mechanical
systems problems. First for 2 or 3 dimensional base space in Ph. Griffiths’ book
[13]. Then in [11, p.152] with emphasis on a 3-dimensional metric and an algebraic
problem. The same being true regarding later articles in [14], as well as in [15].

Regarding the n-dimensional case, we suppose to be correct in saying it appears
for the first time, though only for the Euclidean base space, in [12, p. 32]. To the
best of our knowledge, the definition in full generality (11) is introduced first by the
author in [8].

Our differential system is original for we do not have any other reference for the
following formulas deduced in [8]. On a manifold with constant sectional curvature
k we have

dα0 = θ ∧ ( −k α1)

dα1 = θ ∧ ( nα0−2k α2)

dα2 = θ ∧ ((n−1)α1−3k α3)

...
dαn−1 = θ ∧ (2αn−2−nk αn)

dαn = θ ∧αn−1

(12)

or simply dαi = θ ∧ ((n− i+1)αi−1− k(i+1)αi+1), ∀i = 0, . . . ,n. The particular
case of formula (12) with sectional curvature k = 0 is already known, as we referred.

1.4 Some structural relations

The proofs of the following are quite easy, cf. [8]. For any 0≤ i≤ n we have:

∗(dθ)i = (−1)
n(n+1)

2
i!

(n− i)!
θ ∧ (dθ)n−i

∗αi = (−1)i
θ ∧αn−i .

(13)

Also αi∧dθ = 0 and αi∧α j = 0, ∀ j 6= n− i. Of course ∗ denotes the Hodge star-
operator on SM, which satisfies ∗∗= 1 on Λ ∗SM . In our notation,

Ri jkl = 〈∇ei∇e j ek−∇e j ∇eiek−∇[ei,e j ]ek,el〉 . (14)

Theorem 1 (1st-order structure equations, [8]). We have

dαi = (n− i+1)θ ∧αi−1 +Rξ
αi (15)

where
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Rξ
αi = ∑

0≤ j<q≤n

n

∑
p=1

R jq0p e jq∧ ep+nyαi . (16)

This theorem is proved with the tools of connection theory introduced in the first
section. We do not have any other method which could ease the computations.

Defining r = Ric(ξ ,ξ ) = ∑
n
j=1 R j00 j as a smooth function on SM determined by

the Ricci curvature of M, we have after computations ([8])

dαn = θ ∧αn−1 dαn−1 = 2θ ∧αn−2− r vol , (17)

i.e. Rξ αn = 0 and Rξ αn−1 =−rθ ∧αn. Then clearly

d(Rξ
αi) = (n− i+1)θ ∧Rξ

αi−1 dθ ∧Rξ
αi = 0 . (18)

Proposition 2. The differential forms θ , α0 and α1 are always coclosed. Moreover,
for all 0≤ i≤ n,

d(i∗αi +(−1)iRξ
αn−i+1) = 0 . (19)

Proof. One just applies (13) and (18):

di∗αi = i(−1)i+1
θ ∧dαn−i = i(−1)i+1

θ ∧Rξ
αn−i = (−1)i+1d(Rξ

αn−i+1)

Clearly, Rξ αn+1 = 0 and it is true d∗αn = dvol = 0. ut

No further assumptions on M are required, so we believe there are good reasons
to refer to the d-closed differential ideal I = span{θ ,α0, . . . ,αn} as a fundamental
object of any oriented Riemannian n+1-manifold.

It is quite interesting to consider the case of constant sectional curvature k in any
dimension. The Riemann curvature tensor is Ri jpq = k(δiqδ jp−δipδ jq), so one may
prove that Rξ αi =−k(i+1)θ ∧αi+1, cf. (12).

1.5 Gwistor space and problems for calibrated geometries

The author’s discovery of the exterior differential system I came after and with
that of a natural G2 structure on SM for M of dimension 4.

In [1, 2] it is proved that the total space of the radius 1 tangent sphere bundle
SM −→ M of any given oriented Riemannian 4-manifold M carries a natural G2-
structure. The space is now called G2-twistor or gwistor space. Its fundamental
structure 3-form is

φ1 = θ ∧dθ +α2−α0 . (20)

Gwistor space is being studied as a subject of its own importance. It has had several
developments in [1, 2, 3, 6, 7] in relation with G2 geometry. We know that φ1 is
never closed and it is coclosed if and only if M is Einstein. The G2 structure φ2 =
θ ∧dθ +α3−α1 is more restrictive. There is a circle of G2 structures on SM within
φ1 and φ2 compatible with the Sasaki metric.
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An important open problem in linear algebra is to find the conditions for which
a linear combination ϕ = ∑

n
i=0 biαi + cθ ε ∧ (dθ)[

n
2 ], with bi,c ∈ C∞

SM , ε = 0,1, be-
comes a calibration. Recall a calibration is a closed p-form ϕ such that ϕ|V ≤ volV
for every oriented tangent p-plane V , cf. [16]. One expects all bi,c to be constant,
yet we are unable to eliminate other possibility.

For even n = dimM−1 we have an obvious ϕ of degree n. For n = 1 the question
may be solved easily recurring to (8). For n = 2 and 3 we have a complete linear
algebra classification of the calibrations in [16, Theorems 4.3.2 and 4.3.4]. In case
n = 3, we recover gwistor space.

The following result is quite interesting. Let ρ = ξyπ?Ric , the vertical lift of the
Ricci tensor. With an adapted frame, we deduce

ρ =
n

∑
a,b=1

Rab0a eb+n . (21)

We have the following theorem giving a reduction of the degree of a differential
equation.

Theorem 2 ([8]). In any dimension we have d∗α2 = ρ∧vol. Henceforth, the metric
on M is Einstein if and only if δα2 = 0.

2 Geometric applications

2.1 Recalling Euler-Lagrange systems

We wish to study the Euler-Lagrange system (SM,θ ,ϕ), where ϕ is a calibration,
in applications to Riemannian geometry. We start further above recalling the theory
of contact systems from [12]. In this section we assume (S,θ) is any given contact
manifold, not necessarily metric, of dimension 2n+1.

The contact differential ideal I is defined as the d-closed ideal generated by
θ ∈ Ω 1

S . A generalisation of the famous Darboux Theorem assures that locally S is
the 1-jet manifold J1(Rn) of Euclidean flat space, with (Pfaff) coordinates (z,xi, pi)
and contact form θ = dz−∑

n
i=1 pi dxi. The submanifold N given by z = 0, pi = 0

satisfies θ|N = 0. That is also the case with any submanifold {(z(x),xi,∂iz)} where
z is a C1 function on the xi.

An integral submanifold of S consists of a submanifold N together with an
immersion f : N → S such that f ∗θ = 0. Then of course f ∗I = 0. A Legen-
dre submanifold is a C1-differentiable integral n-dimensional submanifold N. The
Legendre submanifolds which appear as the graph of a function on N in the
Pfaff coordinates are called transverse. Equivalently, N is transverse if and only
if f ∗(dx1∧·· ·∧dxn) 6= 0.
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Any form Λ ∈Ω n
S is called a Lagrangian. An equivalence relation is immediately

associated with equivalence class Λ +I n+dΩ n−1, where Λ is a representative and
I n = I ∩Ω n.

An algebraic identity deduced in [12] carries over to the whole contact manifold
as:

I k = Ω
k, ∀ k > n . (22)

Hence there exist two forms α,β on S such that dΛ = θ ∧α +dθ ∧β = θ ∧ (α +
dβ )+ d(θ ∧ β ). By [12, Theorem 1.1] there exists a unique global exact form Π

such that Π ∧θ = 0 and Π ≡ dΛ in H̄n+1(Ω ∗/I ,d). The Poincaré-Cartan form is
Π = d(Λ −θ ∧β ) = θ ∧ (α +dβ ). The form Ψ = α +dβ turns out to be of great
importance.

Now one wishes to find the critical points of a functional on the set of smooth,
compact Legendre submanifolds N ↪→ S, possibly with boundary, defined by:

FΛ (N) =
∫

N
f ∗Λ . (23)

Note that Λ clearly induces the same functional on its class for Legendre submani-
folds without boundary.

Suppose we have a variation of Legendre submanifolds with fixed boundary, i.e.
suppose there is a curve of smooth maps ft : N→ S which defines a Legendre sub-
manifold Nt for each t and ∂ (Nt) = ∂ (N0). Differentiating FΛ (Nt), cf. [12], leads
to the conclusion that

d
dt |t=0

FΛ (Nt) = 0 if and only if f ∗Ψ = 0 . (24)

A Legendre submanifold satisfying (24) is called a stationary Legendre submani-
fold. The exterior differential system algebraically generated by θ ,dθ ,Ψ is called
the Euler-Lagrange system of (S,θ ,Λ); its Poincaré-Cartan form Π is said to be
non-degenerate if it has no other degree 1 factors besides the multiples of θ .

In order to determine conditions on the stationary submanifolds of FΛ one pro-
ceeds as follows: find the Poincaré-Cartan n-form, transform it into the product
θ ∧Ψ and then do the analysis of f ∗Ψ = 0, i.e. study the Euler-Lagrange equation.

2.2 On the unit tangent sphere bundle

Let us admit again an oriented n+1-dimensional Riemannian manifold M together
with its unit tangent sphere bundle SM π−→M. Now we let f : N→M be a compact
oriented isometric immersed hypersurface.

Then we have also a smooth lift f̂ : N → SM of f , the unique unit normal ν ∈
Tf (x)M chosen according to the orientations of N and M. Note that f̂ is also defined
on ∂N. It is easy to see that we have the decomposition into horizontal plus vertical:
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d f̂ (w) = (d f (w))h +( f ∗∇)w f ∗ν , ∀w ∈ TxN . (25)

Indeed, at each point x ∈ N the vertical part is ∇∗
d f̂ (w)

ξ = ( f̂ ∗∇∗)w f̂ ∗ξ , where ξ is

the canonical vertical vector field on SM. Clearly, ( f̂ ∗ξ )x = f̂ (x) = ν f (x) = ( f ∗ν)x

and f̂ ∗π∗ = f ∗. By definition of f̂ we clearly have that f̂ : N −→ SM defines a
Legendre submanifold of the natural contact structure, f̂ ∗θ = 0, and that it is a
transverse submanifold.

A smooth Legendre submanifold Y is locally the lift N → Y ⊂ SM of an ori-
ented smooth n-submanifold N ↪→M if and only if e1···n

|Y 6= 0, i.e. precisely when
Y is transverse. We are thus going to assume throughout such open condition on
submanifolds, defined by the top differential form: αn|Y 6= 0.

Let us consider an adapted direct orthonormal coframe e0,e1, . . . ,en,en+1, . . . ,e2n

locally defined on SM. Then it may not be tangent to N ⊂ SM. Yet we have also a
direct orthonormal coframe e1, . . . ,en for N (we use the same letters for the pull-
back). Now, from (25), for any 1≤ j ≤ n we have

f̂ ∗e j = e j and f̂ ∗e j+n =−
n

∑
k=1

A j
kek (26)

with A the second fundamental form of N. We recall, A = −∇ν : T N → T N is a
symmetric endomorphism; the associated tensor H = 1

n (TrA)ν is the mean curva-
ture vector field.

We now consider the n-forms αi, which give in their own right interesting La-
grangian systems on the contact manifold SM. We wish to study the functionals
Fi = Fαi on the set of compact immersed hypersurfaces of M with fixed boundary.

Let σi(A) denote the elementary symmetric polynomial of degree i in the eigen-
values λ1, . . . ,λn of A. Then we have that

f̂ ∗αn−i = (−1)i
σi(A)volN . (27)

We do not know a more simple proof for the following result (only for Euclidean
base space it is in [12] with the same method), than by using (24) on Fn and the
Poincaré-Cartan form given by dαn = θ ∧αn−1.

Theorem 3 (Classical theorem, [8]). Let N be a compact isometrically immersed
hypersurface in the Riemannian manifold M. Then, ∀v ∈ Γ0(N, f ∗T M),

δvol(N)(v) =−
∫

N
n〈v,H〉volN . (28)

In particular, N is minimal for the volume functional within all compact hypersur-
faces with fixed boundary ∂N if and only if H = 0.

As used previously, one deduces f̂ ∗αn−1 =−n〈H,ν〉volN =−n‖H‖volN , hence
the functional Fn−1 corresponds with

Fn−1(N) =−n
∫

N
‖H‖volN , (29)



10 Rui Albuquerque

i.e. the integral of the mean curvature on immersed submanifolds N ⊂M.

Theorem 4 ([8]). Suppose the Riemannian manifold M has dimension n+ 1 > 2.
Then a compact isometric immersed hypersurface f : N →M with fixed boundary
is stationary for the mean curvature functional Fn−1 if and only if

ScalN = ScalM− rν (30)

where rν = Ric(ν ,ν) is induced from the Ricci tensor of M and Scal denotes scalar
curvature functions.

In particular, if M is an Einstein manifold, say where Ric = cg with c a constant,
then N has stationary mean curvature volume if and only if N has constant scalar
curvature ScalN = nc.

For an Einstein metric on the ambient manifold M, a formula in the last proof
shows that Fn−2 leads to an Euler-Lagrange equation essentially on the scalar cur-
vature of N.

Theorem 5 ([8]). Let M be a Riemannian manifold of dimension n + 1 > 2 and
constant sectional curvature k. Then a compact hypersurface N is a critical point of
the scalar curvature functional

∫
N ScalN volN with fixed boundary if and only if the

eigenvalues λ1, . . . ,λn of A satisfy (assume λ3 = 0 for n = 2)

6 ∑
j1< j2< j3

λ j1λ j2λ j3 + k(n−1)(n−2)(λ1 + · · ·+λn) = 0 . (31)

In other words, 6σ3(A)+ kn(n−1)(n−2)‖H‖= 0.

The case n = 2 is always satisfied and invariant of the ambient manifold - that is
partly the theorem of Gauss-Bonnet.
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