

## **Research Article Distribution patterns of endemic flora to define hotspots on Hispaniola**

# ANA CANO-ORTIZ<sup>1</sup>, CARMELO M. MUSARELLA<sup>2</sup>, JOSÉ C. PIÑAR FUENTES<sup>3</sup>, CARLOS J. PINTO GOMES<sup>4</sup> & EUSEBIO CANO<sup>3</sup>

<sup>1</sup>Departamento Sustainability Interra, Engineering and Resources SL, Plaza España, 317, 5. C.P.27004 Salamanca, Spain
 <sup>2</sup>Dipartimento di AGRARIA - Università "Mediterranea" di Reggio Calabria, Località Feo di Vito, 89122 Reggio Calabria, Italy
 <sup>3</sup>Departamento of Animal and Plant Biology and Ecology, Section of Botany, University of Jaén, Campus Universitario Las Lagunillas s/n, 23071 Jaén, Spain

<sup>4</sup>Departamento de Paisagem, Ambiente e Ordenamento/Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Portugal

(Received 22 November 2014; accepted 30 November 2015)

Nineteen areas on the island of Hispaniola (Haiti and the Dominican Republic) were studied with the aim of determining the distribution pattern of the endemic flora in these areas, and their variability with altitude. The main concentration of endemic species occurs in mountains with a medium altitude and in certain mountain sites (palaeo-islands), which coincide with hotspots; a lower number of endemics are found in low-lying areas (coldspots), due to the degradation of their habitats. A total of 1,582 endemic species were studied and were distributed in 19 areas. The whole island is of outstanding interest for its richness in endemics; it has 2,050 endemic species, representing 34.16% of its total flora. The territory in the study is home to 1,284 genera of which 31 are endemic to the island, including monotypical genera such as *Tortuella abietifolia* Urb. & Ekman, and endemic genera such as *Hottea*, containing seven endemic species. The sites with the highest rate of endemics are area A16 in the central range with a total of 440 endemic species, of which 278 are exclusive to the territory; and the Sierra de Bahoruco, la Selle, La Hotte and Tiburón in area A12, where we found 699 plants of which 482 are endemic and exclusive to the area; and A13 with 173 and 129 respectively. This work highlights the exceptional floristic diversity in endemic species and genera and analyses their distribution patterns as a tool for conservation in this area of the world, whose high endemicity rate makes it one of the most significant hotspots in the Caribbean.

Key words: biodiversity, biogeography, Caribbean, Dominican Republic, endemicity, Republic of Haiti

### Introduction

Hispaniola (Dominican Republic and Republic of Haiti) is located between parallels  $17-19^{\circ}$  N. The island belongs to the Greater Antilles group – part of the Antillean Arc – and has an area of 76,484 km<sup>2</sup>, making it the second largest island after Cuba with 110,861 km<sup>2</sup>.

Mollat, Wagner, Cepek, and Weiss (2004) published a recent study of the geological formations on the island. The mountains on Hispaniola are estimated to date from the Cretaceous (130 million years ago) and the Oligocene–Miocene (Tertiary) periods. The island of Hispaniola is the result of the union-separation-union of various orographic units formed in different geological eras. These combined territories extend from the central to the eastern mountain range, and date from the Cretaceous period. The formation of these first

ISSN 1477-2000 print / 1478-0933 online © The Trustees of the Natural History Museum, London 2016. All Rights Reserved. http://dx.doi.org/10.1080/14772000.2015.1135195 territories was followed by the northernmost range dating from the Oligocene-Miocene period, and the Sierra de Bahoruco, La Selle and La Hotte with Neiba, Matheux, Negras and Martín García. The Cordillera Central range contains the highest altitudes – not only in Hispaniola but in the Antilles as a whole – and includes the peaks of Pico Duarte (3,175 m), La Polona (3,087 m), La Rusilla (3,038 m) and Pico del Yaque (2,761 m).

We studied the endemic flora of Hispaniola based on our own research and a series of publications containing studies on geology, flora and vegetation (Borhidi, 1991; Cano, Veloz Ramirez, & Cano-Ortiz, 2010b, 2011; García & Clase, 2002; García, Mejía, & Zanoni, 1994; García, Mejía, Peguero, & Jiménez, 2001; García, Mejía, Peguero, Salazar, & Jiménez, 2002; Guerrero, Jiménez, Höner, & Zanoni, 1997; Höner & Jimenez, 1994; May, 1997, 2000, 2001; May & Peguero, 2000; Mejía & Jiménez, 1998; Mejía, García, & Jiménez, 2000; Mejía, García, &

Correspondence to: Eusebio Cano. E-mail: ecano@ujaen.es

Jiménez, 1998; Peguero & Salazar, 2002; Salazar, Peguero, & Veloz, 1997; Samek, 1988; Slocum, Mitchell, Zimmerman, & Navarro, 2000: Trejo-Torres & Ackerman, 2001; Velóz & Peguero, 2002; Zanoni, Mejía, Pimentel, & García, 1990). This study of the endemic areas of Hispaniola is based on earlier geological works by Liogier (2000) and Mollat et al. (2004). López Almirall (1998) studied the endemics in Cuba at the district level, and then assigned them to 86 botanical families; of these 86 with district-level taxa, 20 have over 70% of the infraspecies richness. According to Borhidi (1991), Cuba has 6,300 species in a larger area than Hispaniola, and with lower altitudes. Liogier (2000) made a comparative analysis of species density in Cuba and Hispaniola, and found 0.064 species per km<sup>2</sup> in Hispaniola, and 0.05 in Cuba. Recently Hernández Valdés and Castañeira Colomé (2006) reported that over 50% of the autochthonous spermatophyte flora in Cuba is endemic. fundamentally due to the serpentine outcrops. The island has an abundant representation of the families Poaceae, Arecaceae, Araceae, Bromeliaceae and Orchidaceae, the latter with over 30 genera, among which we have described the new species Psilochilus crenatifolius Kolan., given by Kolanowska (2013) in the San José de las Matas district (Dominican Republic). Other well-represented families are Legumino-Malpighiaceae, Euphorbiaceae, sae. Sapindaceae, Malvaceae, Cactaceae, Myrtaceae, Solanaceae, Bignoniaceae, Rubiaceae and Asteraceae. Less abundant groups include the Zingiberaceae family, comprising 14 of the

1,300 species gathered by Uma and Muthukumar (2014), and 13 species of the genus *Paspalum*, together with the 49 collected by Lonchi-Wagner, Welker, and Waechter (2012) for grasslands in the mountains in eastern Brazil. The island has 1,284 genera, of which 31 are endemic: *Zombia, Leptogonum, Arcoa, Neobuchia, Fuertesia, Sarcopilea, Salcedoa, Vegaea, Coeloneurum, Theophrasta, Haitia, Stevensia, Samuelssonia, Hottea, Anacaona* and *Tortuella*, among others; and some of these genera are monotypes. These territories form one of the most important hotspots in the Caribbean (Francisco-Ortega et al., 2007; Francisco-Ortega et al., 2008; Maunder et al., 2008; Santiago-Valentín & Francisco-Ortega, 2008).

#### Materials and methods

This study considered 19 areas previously established by Cano and Cano-Ortiz (2012). The previous study included 1,582 endemic species obtained from the bibliography and from our own sampling. The influence of Central and South America on Hispaniola was highlighted by Acevedo-Rodríguez and Strong (2008), and included in Cano, Veloz Ramirez, Cano-Ortiz, and Esteban (2009a) (Fig. 1), where we used 58 genera and 675 species of *Melastomataceae*. For the authorship of the taxa we followed Liogier (1996–2000) and Martín and Cremers (2007). The bioclimatology of the island was studied following Cano, Veloz Ramirez, Cano-Ortiz, and Esteban (2009b) using thermotypes and ombrotypes. These bioclimatic concepts



**Fig. 1.** Study areas of Hispaniola (Dominican Republic and Republic of Haiti). A1. – Cordillera Septentrional. A2. – Coastal-Atlantic Unit. A3. – Cibao Valley. A4. – Samana Peninsula. A5. – Cordillera Oriental. A6. – Los Haitises. A7. – Eastern Coastal Plain. A8. – Sierras of Yamasa and Prieta. A9. – Azua-Lago Henriquillo. A10. – Central Plain (Haiti). A11. – Port-au-Prince-Gonaivë. A12 – Bahoruco-La Selle. A13 – Massif de La Hotte and Tiburón. A14. – Massif of Matheux and Montañas Negras. A15. – Northwest Haiti. A16. – Cordillera Central Oriental (Dominican Rep.). A17. – Cordillera Central Occidental (Rep. of Haiti). A18. – Gonaive Island. A19. – Tortuga Island (from Cano et al., 2009a).

Hierarchical classification of 19 areas using Jaccard distance



Fig. 2. Jaccard analysis based on endemic species in the sample study areas (from Cano et al., 2010a).

describe the relationship between climate factors and the living beings that inhabit the territory, and, together with the bioclimatic indices of thermotypes and ombrotypes, were established by Rivas-Martínez, Sánchez Mata, and Costa (1999). The map of the 19 biogeographic areas takes into account their geological history, substrate and the presence/absence of the 1,582 endemics. To observe the endemic rate we use the cosmopolitanism index (Rapoport, Ezcurra, and Drausal, 1976):  $C = (\Sigma(r \cdot Yr/n) - \Sigma(r \cdot Yr/n))$ 1)/rmax-1 = 0.018494943; whose result is 19; this nearzero indicates that the 19 areas have a high rate of endemics. We applied a Jaccard clustering to determine the greater or lesser similarity between the areas (Fig. 2). We calculated the Shannon index in order to determine the biodiversity of the study areas, and applied the formula described in Shannon and Weaver (1959) to the abundance indices of the inventories described above. This analysis separated the inventories taken on serpentines (22) from those on other substrates (88), and analysed the 110 inventories as a whole. They were then linearly correlated with the altitude variable, divided into 50 intervals. and the inventories were assigned to each interval by clustering with the K-means method, both with Shannon's index and with the total number of species and endemics.

For the Jaccard and Shannon Pearson values we used the statistical software XLSTAT 2009. We applied Jaccard and Pearson analyses to the 1,582 endemic species to determine the relationship between the 19 study areas. We consider that the sample of 1,582 (77.17%) endemic species out of a total of 2,050 is sufficiently representative for a comparative analysis between areas. An analysis of series was done to find the areas with the greatest diversity of endemics, based on the number of times each of the 1,582 species appeared in each of the 19 areas. This means that a particular species may be in 1, 2, 3 or more areas, according to the cosmopolitanism index (Rapoport et al., 1976) (Table 1). For the relationship between altitude and number of endemics, 110 samples were taken at different sites and at different heights on the island over an area of  $100-2000 \text{ m}^2$ . We followed the phytosociological methodology of Braun-Blanquet (1979) for the vegetation field sampling. The plot size was selected homogeneously based on the physiognomy, dynamism, and structure of the vegetation.

#### Results

The study of the 19 areas described by Cano, Veloz Ramirez, and Cano-Ortiz (2010a) in six biogeographic sectors faithfully represents the total areas existing on the island at the district level. The comparative analysis between these 19 district areas reveals a low correlation between them, as in all cases the Pearson correlation value is near zero, and the maximum degree of similarity between areas A04 and A06 is 28.5%. When Shannon's index was applied to the 110 samplings, we obtained a group found at altitudes of over 1,000 m, with Shannon values (H) ranging between 3.34 and 4.28; whereas the rest of the plots sampled at altitudes below 1,000 m have a Shannon index of between 3.91 for plots located on serpentines, and the lowest value of 1.03 (Tables 2 and 3) (Shannon & Weber, 1959). The correlation analysis with altitude, using the average values of Shannon's

| Table 1. | Vegetation | data in the | 110 samples. |
|----------|------------|-------------|--------------|
|----------|------------|-------------|--------------|

| Inventory no. | Order<br>no. | UTM_X            | UTM_Y   | Altitude<br>(m.) | Area | %<br>Coverage | Average<br>vegetation<br>height (m) | Number<br>of<br>native | Number<br>of<br>endemic | Substrate   |
|---------------|--------------|------------------|---------|------------------|------|---------------|-------------------------------------|------------------------|-------------------------|-------------|
| <br>Inv0106   | 60           | 3/3808           | 2302285 | 300              | 2000 | 100           | 8                                   | 42                     | 16                      |             |
| Inv0206       | 61           | 242000           | 2302285 | 300              | 1000 | 80            | 8                                   | 42<br>51               | 10<br>8                 |             |
| IIIV0200      | 62           | 294100           | 2502265 | 192              | 2000 | 00<br>100     | 5<br>10                             | 31                     | 0                       |             |
| IIIV0300      | 62           | 202242           | 2030733 | 102              | 2000 | 100           | 10                                  | 20                     | 11                      |             |
| IIIV0400      | 64           | 392342<br>400861 | 2008910 | 140              | 2000 | 90<br>40      | 12                                  | 20                     | 11                      |             |
| IIIV0300      | 64           | 490801           | 2033790 | 15               | 200  | 40            | 12                                  | 4                      | 0                       |             |
| IIIV0000      | 65           | 490801           | 2033/90 | 10               | 200  | 00            | 23<br>5 5                           | 4                      | 0                       |             |
| IIIV0/00      | 67           | 490283           | 2024002 | 15               | 2000 | 95            | 5,5                                 | 23<br>20               | 3                       |             |
| IIIV0800      | 0/           | 469200           | 2034829 | 0                | 2000 | 90            | 5                                   | 20<br>42               | 3                       |             |
| Inv0906       | 08           | 490488           | 203/340 | 24<br>1472       | 2000 | 100           | 0                                   | 42                     | 3<br>17                 |             |
| IIIV1005      | <i>S</i>     | 540265           | 2100095 | 14/5             | 2000 | 100           | 10                                  | 19                     | 17                      |             |
| IIIV1000      | 09           | 240288           | 2055770 | 1441             | 500  | 100           | 12                                  | 49                     | 12                      |             |
|               | 4            | 510402           | 2100283 | 1441             | 500  | 100           | 4                                   | 20<br>20               | 15                      |             |
| INV1106       | /0           | 519492<br>240165 | 202/803 | 4                | 2000 | 100           | 4,5                                 | 3U<br>20               | 3<br>16                 |             |
| Inv1205       | 5<br>71      | 540165           | 2106429 | 1465             | 2000 | 100           | 20                                  | 20                     | 10                      |             |
| Inv1206       | /1           | 51/200           | 2000026 | 29               | 500  | 60            | 8                                   | 32                     | 6<br>7                  |             |
| Inv1305       | 6            | 339971           | 2105962 | 13/3             | 500  | 100           | 9                                   | 31                     | 1                       |             |
| Inv1306       | 72           | 489524           | 2092418 | 519              | 2000 | 70            | 14                                  | 49                     | l                       |             |
| Inv1405       | 7            | 339590           | 2105699 | 1377             | 1000 | 100           | 9                                   | 25                     | 9                       |             |
| Inv1505       | 8            | 339203           | 2105784 | 1251             | 1000 | 100           | 15                                  | 21                     | 11                      |             |
| Inv1506       | 74           | 486735           | 2092513 | 541              | 2000 | 100           | 12                                  | 19                     | 2                       |             |
| Inv1705       | 9            | 339203           | 2105784 | 1200             | 500  | 100           | 7                                   | 21                     | 9                       |             |
| Inv1706       | 76           | 398581           | 2061827 | 109              | 500  | 100           | 5,5                                 | 36                     | 11                      | Serpentines |
| Inv1805       | 10           | 321806           | 2082834 | 2058             | 1000 | 100           | 19                                  | 11                     | 13                      |             |
| Inv1806       | 77           | 398246           | 2062093 | 102              | 500  | 90            | 5,5                                 | 36                     | 13                      | Serpentines |
| Inv1905       | 11           | 325399           | 2078286 | 2336             | 1000 | 75            | 9                                   | 4                      | 9                       |             |
| Inv1906       | 78           | 397232           | 2062450 | 110              | 500  | 100           | 5                                   | 39                     | 17                      | Serpentines |
| Inv2005       | 12           | 326681           | 2076397 | 2290             | 1000 | 90            | 20                                  | 4                      | 9                       |             |
| Inv2006       | 79           | 397231           | 2062447 | 106              | 500  | 100           | 5                                   | 35                     | 16                      | Serpentines |
| Inv2105       | 13           | 331098           | 2069273 | 2383             | 1000 | 100           | 20                                  | 10                     | 11                      |             |
| Inv2106       | 80           | 398451           | 2063175 | 113              | 500  | 100           | 3,5                                 | 29                     | 14                      | Serpentines |
| Inv2206       | 81           | 272603           | 2176209 | 47               | 500  | 70            | 3,5                                 | 20                     | 1                       |             |
| Inv2305       | 14           | 267592           | 2002124 | 1207             | 2000 | 100           | 25                                  | 36                     | 11                      |             |
| Inv2306       | 82           | 273593           | 2176232 | 83               | 500  | 80            | 4,5                                 | 25                     | 5                       |             |
| Inv2405       | 15           | 268161           | 2002764 | 1239             | 2000 | 100           | 25                                  | 34                     | 19                      |             |
| Inv2406       | 83           | 273241           | 2177242 | 139              | 500  | 40            | 4,5                                 | 21                     | 3                       |             |
| Inv2505       | 16           | 268152           | 2002964 | 1233             | 2000 | 100           | 20                                  | 27                     | 16                      |             |
| Inv2506       | 84           | 273458           | 2178554 | 163              | 500  | 70            | 4,5                                 | 19                     | 2                       |             |
| Inv2605       | 17           | 268736           | 2000217 | 1140             | 2000 | 100           | 15                                  | 30                     | 10                      |             |
| Inv2606       | 85           | 267694           | 2177030 | 166              | 500  | 85            | 6                                   | 15                     | 1                       |             |
| Inv2705       | 18           | 229587           | 2006325 | 1358             | 2000 | 80            | 15                                  | 13                     | 18                      |             |
| Inv2706       | 86           | 265559           | 2177065 | 160              | 500  | 75            | 6,5                                 | 16                     | 2                       |             |
| Inv2805       | 19           | 229143           | 2006087 | 1343             | 2000 | 85            | 15                                  | 14                     | 23                      |             |
| Inv2806       | 87           | 265579           | 2177120 | 162              | 500  | 100           | 6                                   | 14                     | 3                       |             |
| Inv2905       | 20           | 227793           | 2005430 | 1286             | 2000 | 85            | 15                                  | 7                      | 21                      |             |
| Inv2906       | 88           | 262945           | 2180508 | 94               | 500  | 70            | 4,5                                 | 22                     | 4                       |             |
| Inv3005       | 21           | 225980           | 2005665 | 1203             | 2000 | 85            | 15                                  | 4                      | 22                      |             |
| Inv3006       | 89           | 262882           | 2181400 | 121              | 500  | 65            | 6,5                                 | 33                     | 5                       |             |
| Inv3105       | 22           | 219951           | 1995921 | 144              | 500  | 60            | 6                                   | 29                     | 18                      |             |

(continued)

| Table 1. | ( <i>Continued</i> ) |
|----------|----------------------|
|----------|----------------------|

| Inventory no. | Order<br>no. | UTM_X  | UTM_Y    | Altitude<br>(m.) | Area | %<br>Coverage | Average<br>vegetation<br>height (m) | Number<br>of<br>native | Number<br>of<br>endemic | Substrate                   |
|---------------|--------------|--------|----------|------------------|------|---------------|-------------------------------------|------------------------|-------------------------|-----------------------------|
| Inv3106       | 00           | 122565 | 2200608  | 16               | 500  | 60            | 3                                   | 30                     | 7                       |                             |
| Inv3205       | 90<br>23     | 222303 | 1003286  | 104              | 500  | 50            | 5                                   | 23                     | 16                      |                             |
| Inv3205       | 01           | 219730 | 2200836  | 3                | 500  | 50<br>70      | 3 5                                 | 30                     | 10                      |                             |
| Inv3200       | 24           | 210223 | 1000101  | 15               | 600  | 50            | 0                                   | 21                     | 17                      |                             |
| Inv3306       | 02           | 219225 | 2200760  | 15<br>26         | 300  | 90            | 1                                   | 0                      | 1/                      |                             |
| Inv3405       | 25           | 219663 | 1988966  | 13               | 1000 | 60            | 6                                   | 7                      | 2                       |                             |
| Inv3505       | 25           | 219003 | 1969945  | 15               | 500  | 100           | 7                                   | 7                      | 0                       |                             |
| Inv3505       | 94           | 273543 | 2201543  | 21               | 800  | 80            | ,<br>Д                              | 30                     | 8                       |                             |
| Inv3605       | 27           | 223343 | 10600/15 | 0                | 500  | 100           | 7                                   | 50<br>7                | 0                       |                             |
| Inv3606       | 27<br>95     | 273546 | 2201547  | 25               | 300  | 100           | 1                                   | 13                     | 3                       |                             |
| Inv3705       | 28           | 223540 | 2201347  | 25               | 500  | 70            | 1 7                                 | 15                     | 0                       |                             |
| Inv3705       | 20<br>96     | 243245 | 2197512  | 169              | 1000 | 90            | 75                                  | 30                     | 8                       |                             |
| Inv3805       | 29           | 278689 | 2014182  | 0                | 500  | 100           | 7,5                                 | 30<br>4                | 0                       |                             |
| Inv3805bis    | 30           | 278689 | 2014182  | 0                | 500  | 100           | 7                                   | 3                      | 0                       |                             |
| Inv3805015    | 97           | 238370 | 2014182  | 27               | 500  | 80            | 4 5                                 | 37                     | 8                       |                             |
| Inv3000       | 31           | 278689 | 2202751  | 0                | 500  | 100           | ч,5<br>7                            | 5                      | 0                       |                             |
| Inv3906       | 98           | 235750 | 22014102 | 70               | 500  | 80            | 5 5                                 | 34                     | 5                       |                             |
| Inv4005       | 32           | 278689 | 2201373  | ,0               | 500  | 100           | 3,5<br>7                            | 8                      | 0                       |                             |
| Inv4005       | 99           | 234500 | 22014102 | 53               | 500  | 80            | ,<br>Д                              | 32                     | 4                       |                             |
| Inv4000       | 33           | 283638 | 201310   | 160              | 600  | 60            | 5                                   | 26                     | 9                       |                             |
| Inv4105       | 100          | 234505 | 2043023  | 71               | 300  | 80            | 1                                   | 20                     | 3                       |                             |
| Inv4205       | 34           | 234303 | 201310   | 200              | 1000 | 80            | 1                                   | 10                     | 5                       |                             |
| Inv4205       | 101          | 273035 | 2000001  | 58               | 500  | 75            | 3 5                                 | 17                     | 8                       |                             |
| Inv4200       | 35           | 340420 | 2001565  | 218              | 1000 | 90            | 10                                  | 27                     | 6                       |                             |
| Inv4305       | 102          | 228383 | 2001000  | 210              | 500  | 70            | 10                                  | 21                     | 6                       |                             |
| Inv4300       | 36           | 353122 | 2025661  | 118              | 1000 | 85            | 7                                   | 21                     | 8                       | Pine forests on serpentines |
| Inv4406       | 103          | 225402 | 2156162  | 200              | 1000 | 80            | 75                                  | 21                     | 9                       | Sementines                  |
| Inv4505       | 37           | 489790 | 2039255  | 38               | 1000 | 100           | 9                                   | 51                     | 3                       | Pine forests on serpentines |
| Inv4506       | 104          | 226716 | 2157562  | 250              | 1000 | 70            | 10                                  | 32                     | 9                       | Sementines                  |
| Inv4500       | 38           | 490159 | 2037558  | 39               | 1000 | 100           | 8                                   | 37                     | 4                       | Pine forests on serpentines |
| Inv4605       | 105          | 229337 | 2158209  | 172              | 1000 | 60            | 85                                  | 32                     | 7                       | Sementines                  |
| Inv4000       | 39           | 490586 | 2038122  | 36               | 1000 | 100           | 5                                   | 29                     | 3                       | Pine forests on serpentines |
| Inv4706       | 106          | 227746 | 2158156  | 245              | 1000 | 60            | 10                                  | 31                     | 8                       | Serpentines                 |
| Inv4805       | 40           | 516942 | 2032979  | 42               | 2000 | 95            | 17                                  | 44                     | 7                       | Serpentines                 |
| Inv4806       | 107          | 318408 | 2192458  | 41               | 500  | 80            | 5                                   | 22                     | 12                      | Sementines                  |
| Inv4905       | 41           | 517849 | 2031060  | 8                | 2000 | 90            | 3                                   | 34                     | 2                       | Serpentines                 |
| Inv4906       | 108          | 318034 | 2192804  | 95               | 1000 | 95            | 7                                   | 24                     | 2<br>7                  | Sementines                  |
| Inv5005       | 42           | 517877 | 2031096  | 8                | 2000 | 100           | 19                                  | 41                     | 1                       | Serpentines                 |
| Inv5005       | 109          | 318034 | 2192804  | 100              | 300  | 90            | 0.8                                 | 14                     | 5                       | Sementines                  |
| Inv5105       | 43           | 516780 | 2030824  | 100              | 500  | 80            | 5                                   | 14                     | 1                       | Serpentines                 |
| Inv5105       | 110          | 318198 | 2192601  | 69               | 1000 | 70            | 25                                  | 27                     | 9                       | Sementines                  |
| Inv5205       | 44           | 565493 | 2050559  | 14               | 2000 | 100           | 18                                  | 38                     | 1                       | Serpentines                 |
| Inv5205       | 111          | 318595 | 2192785  | 18               | 1000 | 80            | 5                                   | 22                     | 8                       | Sementines                  |
| Inv5305       | 45           | 564945 | 2051672  | 12               | 2000 | 100           | 20                                  | 38                     | 1                       | Superioritatios             |
| Inv5306       | 112          | 367683 | 2171293  | 64               | 1000 | 85            | 3.5                                 | 28                     | 3                       | Sementines                  |
| Inv5405       | 46           | 478610 | 2041154  | 0                | 2000 | 100           | 12                                  | -0                     | 0                       | Serpendinos                 |
| Inv5406       | 113          | 367771 | 2171272  | 89               | 1000 | 60            | 4                                   | 2.7                    | 6                       | Sementines                  |
| Inv5505       | 47           | 267385 | 2176805  | 84               | 1000 | 60            | 4                                   | 20                     | 2                       | r                           |

(continued)

| Inventory no. | Order<br>no. | UTM_X  | UTM_Y   | Altitude<br>(m.) | Area | %<br>Coverage | Average<br>vegetation<br>height (m) | Number<br>of<br>native | Number<br>of<br>endemic | Substrate   |
|---------------|--------------|--------|---------|------------------|------|---------------|-------------------------------------|------------------------|-------------------------|-------------|
| Inv5506       | 114          | 367336 | 2172128 | 12               | 1000 | 65            | 5,5                                 | 34                     | 4                       | Serpentines |
| Inv5605       | 48           | 228891 | 2192923 | 16               | 1000 | 90            | 4                                   | 21                     | 4                       |             |
| Inv5606       | 115          | 368174 | 2172212 | 15               | 1000 | 75            | 3,5                                 | 22                     | 5                       | Serpentines |
| Inv5705       | 49           | 222203 | 2198952 | 1                | 1000 | 90            | 3                                   | 6                      | 0                       |             |
| Inv5706       | 116          | 481397 | 2129511 | 31               | 500  | 45            | 4,5                                 | 16                     | 4                       |             |
| Inv5805       | 50           | 221947 | 2200447 | 1                | 1000 | 90            | 5                                   | 8                      | 0                       |             |
| Inv5806       | 117          | 482276 | 2129906 | 18               | 500  | 70            | 4,5                                 | 16                     | 3                       |             |
| Inv5905       | 51           | 220785 | 2188049 | 7                | 2000 | 90            | 5                                   | 15                     | 2                       |             |
| Inv5906       | 118          | 482611 | 2130197 | 40               | 500  | 60            | 4,5                                 | 18                     | 4                       |             |
| Inv6005       | 52           | 213308 | 2180654 | 1                | 1000 | 90            | 2                                   | 5                      | 0                       |             |
| Inv6006       | 119          | 482718 | 2130308 | 25               | 500  | 50            | 2                                   | 14                     | 4                       |             |
| Inv6105       | 53           | 219187 | 2178798 | 5                | 1000 | 100           | 7                                   | 5                      | 0                       |             |
| Inv6205       | 54           | 219184 | 2178801 | 12               | 2000 | 90            | 2                                   | 25                     | 13                      |             |
| Inv6805       | 59           | 233257 | 2046743 | 12               | 1000 | 100           | 5                                   | 26                     | 9                       |             |

Table 1. (Continued)

biodiversity index and the total number of species, shows a high correlation after the elimination of the 22 serpentine samples, with  $R^2$  values between 0.983 and 0.945 (Fig. 3). This correlation decreases when the analysis is applied to the 110 inventories – including the 22 on serpentines – giving  $R^2$  values of between 0.443 and 0.705 (Fig. 4). This correlation does not occur when applied exclusively to serpentine samples, which have a  $R^2$  of between 0.004 and 0.055 (Fig. 5).

In this study, we used 1,582 endemic species to characterize the 19 previously established natural areas (A01 ... A19). The floristic relationship between the 19 study areas on Hispaniola is shown in the Jaccard and Pearson analyses. In the analysis of distances established by Jaccard, areas A12 and A16 have a distance of 0.898, representing a coincidence of only 10.2% (Cano et al., 2010a). The high number of endemic species in areas A12 and A16 – with 699 endemics as opposed to 482 exclusively endemic plants in area A12, and 440 compared with 278 in A16 (Table 4) (Figs 6, 7) – shows that these are two points with a high rate of endemicity and deserving of special conservation measures.

The high number of endemic species with a widespread distribution on the island is the reason the Pearson index reveals a low relationship between areas A12 and A16 (r = -0.254), as they have different geological and floristic characteristics; between A16 and A13 (r = -0.168); and between A12 and A13 (r = -0.226). In this last case, the weak relationship between both areas is due to the difference in the number of endemics; and although both zones have calcareous substrates, A13 has been subject to greater human impact and the resulting habitat loss and fragmentation. Similarly, A16 and A17 are separated with

r = -0.036, as expected, as the Massif du Nord (A17) is a prolongation of the Cordillera Central (A16).

An analysis of the number of times a particular endemic species is repeated in each of the 19 areas reveals that series 1R presents endemics exclusive to the area. In 2R there are a number of endemics in two areas, and in 3R there are few cases in which the species are repeated. Table 4 shows that areas A12, A16, and A13 have the greatest diversity in endemic species.

The total number of endemics in the 19 areas is 2,094, and the sum of exclusive endemics is 1,162; the difference between 2,094-1,162 = 932, indicating the significant number of endemics distributed around the island. The greatest concentrations are found in areas A12, A13, A16, whereas the remaining areas have a lower rate of endemics, with an increase in areas A04, A09. These areas continue to be of interest as they present endemic species that are exclusive to the territory, in some cases including endemic genera, as in A18 and A19 (Table 5).

The linear correlation analysis between the number of endemics and altitude shows a higher correlation after eliminating the plots on serpentines  $-R^2 = 0.502$  (Fig. 8). The number of endemics increases with altitude until 1,200–1,300 m, and then decreases at greater heights. When the analysis is applied to the 110 plots the correlation is lower ( $R^2 = 0.396$ ), and minimal and near zero in the case of plots on serpentines ( $R^2 = 0.101$ ) (Figs 9, 10). This natural noise is due to serpentine soils (Cano, Cano-Ortiz, Del Río, Veloz Ramirez, and Esteban Ruiz, 2014b). There is no correlation between altitude and serpentines, as the species found on serpentines are edaphic and are not affected by the altitude parameter.

| Table 2. Shan                                   | non (H) in                       | altitudes <                      | 1,000  m                         |                                  |               |               |               |               |                  |               |               |               |               |               |               |
|-------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------|---------------|---------------|---------------|------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| No. rel.                                        | Inv0106                          | Inv0206                          | Inv0306                          | Inv0406                          | Inv0706       | Inv0806       | Inv0906       | Inv1006       | Inv1106          | Inv1206       | Inv1306       | Inv1506       | Inv1706       | Inv1806       | Inv1906       |
| Altitude<br>Shannon (H)                         | 300<br>3,932                     | 300<br>4,119                     | 182<br>3.819                     | 140<br>3.543                     | 15<br>3.693   | 8<br>3.743    | 24<br>2.138   | 69<br>3.595   | 4<br>3.680       | 29<br>3.897   | 519<br>3.466  | 541<br>3_793  | 109<br>3.839  | 102<br>3.901  | 110           |
| No. rel.                                        | Inv2006                          | Inv2106                          | Inv2206                          | Jnv2306                          | Inv2406       | Jnv2506       | Linv2606      | Inv2706       | 5,000<br>Inv2806 | Juv2906       | Jnv3006       | Inv3105       | Linv3106      | Jnv3205       | Inv3206       |
| Altitude                                        | 106                              | 113                              | 47                               | 83                               | 139           | 163           | 166           | 160           | 162              | 94            | 121           | 144           | 16            | 104           | ю             |
| Shannon (H)                                     | 3,734                            | 3,707                            | 3,034                            | 3,320                            | 3,219         | 2,913         | 2,720         | 2,877         | 2,782            | 3,240         | 3,564         | 3,857         | 3,609         | 3,676         | 3,517         |
| No. rel.                                        | Inv3305                          | Inv3506                          | Inv3706                          | Inv3806                          | Inv3906       | Inv4006       | Inv4105       | Inv4205       | Inv4206          | Inv4305       | Inv4306       | Inv4405       | Inv4406       | Inv4505       | Inv4506       |
| Altitude                                        | 15                               | 21                               | 169                              | 27                               | 70            | 53            | 160           | 209           | 58               | 218           | 8             | 118           | 200           | 38            | 250           |
| Shannon (H)                                     | 3,630                            | 3,552                            | 3,559                            | 3,722                            | 3,610         | 3,529         | 3,483         | 3,147         | 3,113            | 3,557         | 3,203         | 3,401         | 3,559         | 3,919         | 3,537         |
| No. rel.                                        | Inv4605                          | Inv4606                          | Inv4705                          | Inv4706                          | Inv4805       | Inv4806       | Inv4905       | Inv4906       | Inv5005          | Inv5106       | Inv5205       | Inv5206       | Inv5305       | Inv5306       | Inv5406       |
| Altitude                                        | 39                               | 172                              | 36                               | 245                              | 42            | 41            | 8             | 95            | 8                | 69            | 14            | 18            | 12            | 64            | 89            |
| ShanNon (H)                                     | 3,578                            | 3,615                            | 3,404                            | 3,446                            | 3,801         | 3,519         | 3,596         | 3,382         | 1,040            | 3,499         | 3,605         | 3,226         | 3,642         | 3,372         | 3,456         |
| No. rel.                                        | Inv5505                          | Inv5506                          | Inv5605                          | Inv5606                          | Inv5706       | Inv5806       | Inv5905       | Inv5906       | Inv6006          | Inv6205       | Inv6805       | Inv0506       | Inv0606       | Inv5006       | Inv3306       |
| Altitude                                        | 84                               | 12                               | 16                               | 15                               | 31            | 18            | L             | 40            | 25               | 12            | 12            | 13            | 10            | 100           | 26            |
| Shannon (H)                                     | 3,070                            | 3,649                            | 3,182                            | 3,164                            | 2,898         | 3,032         | 2,702         | 3,127         | 2,860            | 3,632         | 3,483         | 3,443         | 2,451         | 3,179         | 2,130         |
| No. rel.                                        | Inv3405                          | Inv3505                          | Inv3605                          | Inv3606                          | Inv3705       | Inv3805       | Inv3805bis    | Inv3905       | Inv4005          | Inv4106       | Inv5105       | Inv5405       | Inv5705       | Inv5805       | Inv6005       |
| Altitude                                        | 13                               | 1                                | 0                                | 25                               | 0             | 0             | 0             | 0             | 0                | 71            | 1             | 0             | 1             | -             | 1             |
| Shannon (H)                                     | 2,334                            | 1,707                            | 1,858                            | 2,750                            | 2,059         | 1,318         | 1,035         | 1,717         | 1,958            | 3,032         | 2,614         | 1,985         | 1,488         | 2,017         | 1,526         |
| No. rel.                                        | Inv6105                          |                                  |                                  |                                  |               |               |               |               |                  |               |               |               |               |               |               |
| Altitude                                        | 5                                |                                  |                                  |                                  |               |               |               |               |                  |               |               |               |               |               |               |
| Shannon (H)                                     | 1,498                            |                                  |                                  |                                  |               |               |               |               |                  |               |               |               |               |               |               |
|                                                 |                                  |                                  |                                  |                                  |               |               |               |               |                  |               |               |               |               |               |               |
| Table 3. Shan                                   | non in altit                     | udes >1,00                       | 0 m                              |                                  |               |               |               |               |                  |               |               |               |               |               |               |
| No. rel.                                        | Inv3005                          | Inv2605                          | Inv2305                          | Inv1105                          | Inv1005       | Inv1205       | Inv2505       | Inv1305       | Inv1405          | Inv1505       | Inv1705       | Inv2805       | Inv2905       | Inv2705       | Inv2405       |
| Altitude<br>Shannon (H)<br>No. rel.<br>Altitude | 1203<br>3,347<br>Inv1805<br>2058 | 1140<br>3,681<br>Inv1905<br>2336 | 1207<br>3,830<br>Inv2005<br>2290 | 1441<br>3,464<br>Inv2105<br>2383 | 1473<br>3,566 | 1465<br>3,557 | 1233<br>3,781 | 1373<br>3,557 | 1377<br>3,458    | 1251<br>3,424 | 1200<br>3,357 | 1343<br>3,533 | 1286<br>3,367 | 1358<br>3,431 | 1239<br>3,972 |
|                                                 |                                  |                                  |                                  |                                  |               |               |               |               |                  |               |               |               |               |               |               |

|             | יווטוו ווו מונוו | uucs >1,000 |         |         |         |         |         |         |         |         |         |         |         |         |
|-------------|------------------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| No. rel.    | Inv3005          | Inv2605     | Inv2305 | Inv1105 | Inv1005 | Inv1205 | Inv2505 | Inv1305 | Inv1405 | Inv1505 | Inv1705 | Inv2805 | Inv2905 | Inv2705 |
| Altitude    | 1203             | 1140        | 1207    | 1441    | 1473    | 1465    | 1233    | 1373    | 1377    | 1251    | 1200    | 1343    | 1286    | 1358    |
| Shannon (H) | 3,347            | 3,681       | 3,830   | 3,464   | 3,566   | 3,557   | 3,781   | 3,557   | 3,458   | 3,424   | 3,357   | 3,533   | 3,367   | 3,431   |
| No. rel.    | Inv1805          | Inv1905     | Inv2005 | Inv2105 |         |         |         |         |         |         |         |         |         |         |
| Altitude    | 2058             | 2336        | 2290    | 2383    |         |         |         |         |         |         |         |         |         |         |
| Shannon (H) | 3,987            | 4,185       | 3,881   | 3,509   |         |         |         |         |         |         |         |         |         |         |
|             |                  |             |         |         |         |         |         |         |         |         |         |         |         |         |

267



**Fig. 3.** Correlation between Shannon's index, no. of species, and altitude (m) in non-serpentine samples.



**Fig. 4.** Correlation between Shannon's index, no. of species, and altitude (m) including all samples.



**Fig. 5.** Correlation between Shannon's index, no. of species, and altitude in serpentine samples.

As can be seen in Fig. 1, the Cordillera Central A16 (Dominican Rep.) is dominated by siliceous materials, and some serpentines in the easternmost areas. The thermotype ranges from the infratropical to the supratropical, and the dominant ombrotype is humid-hyperhumid. This unit is very rich in endemics, with a total of 440 endemic

species, compared with 278 that are exclusive to the area. The influence of the Alyssian winds towards the midmountain causes a predominance of rainforests – both broadleaf and cloud forest – with 100% coverage, and a high proportion of species in the genera *Prestoea*, *Magnolia*, *Didymopanax*, *Cyathea*; in contrast, in the high-mountain areas beyond the reach of the Alyssians there is a prevalence of *Pinus occidentalis* Sw., constituting endemic forests, as in unit A12 (Cano, Veloz Ramirez, and Cano-Ortiz, 2011), and hemicryptophytic communities of *Danthonia domingensis* Hack. & Pilg. Areas A16 and A17 in the Cordillera Central have r = -0.036; this distance is due to the lower number of endemic taxa in A17 caused by the impact of human activity in the Republic of Haiti.

Bahoruco-La Selle (A12) consists of calcareous mountains with sporadic presence of the supratropical thermotype and the humid ombrotype. There is a broadleaf cloud forest of Magnolia hamorii Howard and Didymopanax tremulus Krug & Urb., with 100% coverage. In the rainiest sites and in gorges there are formations of Prestoea montana (Cano, Veloz Ramirez, and Cano-Ortiz, 2014a). Area A12 has a high rate of endemicity with a total of 699 endemics, of which 482 are exclusive to these mountains. In basal areas such as Procurrente de Barahona, Ceitillan, and Pedernales, the ombrotype is semiarid and the thermotype is infratropical, with a predominance of dry forest with a floristic composition characterized by Lemaireocereus hystrix Britt & Rose, Pilosocereus polygonus (Lam.) Byles & Rowles, Consolea moniliformis (L.) Britt, Agave antillarum Descourt., Cylindropuntia caribaea (Britt & Rose) Kunth and Melocactus pedernalensis (Ait.) Mejía and R. García. The continuation of these sierras is the Massif de La Hotte (A13), an area characterized by calcareous substrates located at the end of the southwest peninsula (Haiti), with 173 endemic plants compared with 129 which are exclusive to the area. The relationship between areas A12 and A13 is r = -0.226, as they include different endemic flora and the endemic genus Hottea.

The rest of the areas are also of interest for conservation, as they contain endemics that are exclusive to these sites. The Sierras of Neiba, Matheux and Noires (A14) reveal a certain influence of the Cordillera Central due to the presence of *Podocarpus aristulatus* Parl. The absence of Magnolia hamorii Howard and the presence of Pinus occidentalis Sw. connect it with Bahoruco, as does the presence of the endemic genus Hottea, containing the endemics H. crispula (Urb.) Urb., H. goavensis Urb., H. malangenis (Urb. & Ekm.) Urb., H. micrantha Urb. & Ekm., H. miragoanae Urb., H. neibensis Alain and H. torbeciana Urb., distributed throughout biogeographic units A12, A13 and A14. Tortuga Island (A19) has a calcareous character and is located to the north of Haiti at a maximum altitude of 378 m; the Alyssian winds thus only affect the highest areas. Most of the territory has a dry and

| A01         A02         A03         A04         A05         A06         A07         A08         A09         A10         A11         A12         A13         A14         A15         A16         A17         A1           1R         20         15         24         36         1         12         23         2         26         1         27         482         129         11         28         278         29         8           2R         12         31         26         60         1         24         32         3         38         1         19         154         30         9         17         115         24         5           3R         6         9         11         18         2         5         7         0         16         4         21         39         10         6         14         30         9         6           4R         1         1         3         7         4         4         2         1         2         1         3         4         1         1         2         5         1         0           5R         1         3         3 <th></th> |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | A01 | A02 | A03 | A04 | A05 | A06 | A07 | A08 | A09 | A10 | A11 | A12 | A13 | A14 | A15 | A16 | A17 | A18 | A19 |
| 2R       12       31       26       60       1       24       32       3       38       1       19       154       30       9       17       115       24       5         3R       6       9       11       18       2       5       7       0       16       4       21       39       10       6       14       30       9       6         4R       1       1       3       7       4       4       2       1       2       1       3       4       1       1       2       5       1       0         5R       1       3       3       4       0       1       1       1       2       0       0       5       1       1       1       4       1       0         6R       1       2       0       2       1       1       0       0       3       0       0       2       0       0       3       0       1       1       1       1       0       0       3       0       0       2       0       0       3       0       1       1       1       1       0       0                                                                                                                                                                                                                                                                                                                                         | 1R | 20  | 15  | 24  | 36  | 1   | 12  | 23  | 2   | 26  | 1   | 27  | 482 | 129 | 11  | 28  | 278 | 29  | 8   | 10  |
| 3R       6       9       11       18       2       5       7       0       16       4       21       39       10       6       14       30       9       6         4R       1       1       3       7       4       4       2       1       2       1       3       4       1       1       2       5       1       0         5R       1       3       3       4       0       1       1       1       2       0       0       5       1       1       1       4       1       0       0       3       0       0       2       0       0       3       0       1       1       1       2       0       0       1       1       1       0       0       3       0       0       2       0       0       3       0       1       1       1       1       1       1       1       1       0       0       3       0       0       3       0       1       1       1       1       1       1       0       0       3       0       0       3       0       1       1       1                                                                                                                                                                                                                                                                                                                                      | 2R | 12  | 31  | 26  | 60  | 1   | 24  | 32  | 3   | 38  | 1   | 19  | 154 | 30  | 9   | 17  | 115 | 24  | 5   | 5   |
| 4R       1       1       3       7       4       4       2       1       2       1       3       4       1       1       2       5       1       0         5R       1       3       3       4       0       1       1       1       2       0       0       5       1       1       1       2       0       0         6R       1       2       0       2       1       0       0       3       0       0       2       0       0       3       0       1       1       1       0       0       3       0       1       1       1       0       0       3       0       0       2       0       0       3       0       1       1       1       0       0       3       0       0       2       0       0       3       0       1       1       1       0       0       3       0       0       2       0       0       3       0       1       1       1       1       0       0       3       0       0       3       0       1       1       1       0       0       3<                                                                                                                                                                                                                                                                                                                                     | 3R | 6   | 9   | 11  | 18  | 2   | 5   | 7   | 0   | 16  | 4   | 21  | 39  | 10  | 6   | 14  | 30  | 9   | 6   | 1   |
| 5R       1       3       3       4       0       1       1       1       2       0       0       5       1       1       1       4       1       0         6R       1       2       0       2       1       1       0       0       3       0       0       2       0       0       3       0       1       1       1       4       1       0         6R       1       2       0       2       1       1       0       0       3       0       0       2       0       0       3       0       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4R | 1   | 1   | 3   | 7   | 4   | 4   | 2   | 1   | 2   | 1   | 3   | 4   | 1   | 1   | 2   | 5   | 1   | 0   | 0   |
| 6R 1 2 0 2 1 1 0 0 3 0 0 2 0 0 0 3 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5R | 1   | 3   | 3   | 4   | 0   | 1   | 1   | 1   | 2   | 0   | 0   | 5   | 1   | 1   | 1   | 4   | 1   | 0   | 1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6R | 1   | 2   | 0   | 2   | 1   | 1   | 0   | 0   | 3   | 0   | 0   | 2   | 0   | 0   | 0   | 3   | 0   | 1   | 0   |

Table 4. Number of species and repetitions in the area (series 1R...6R).

occasionally subhumid-humid ombrotype. The relationship of A19 with areas A3 and A15 is r = -0.21 and r =-0.112. The presence of the monotypical genus *Tortuella* abietifolia Urb. & Ekman and 10 exclusive endemics points to the fact that, in spite of its small size, this island is of great interest for conservation. Unit A09, of recent geological formation, contains emblematic endemic plants such as Neoabbottia paniculata (Lam.) Britt & Rose, Melocactus lemairei (Monv.) Mig. and Acacia barahonensis Urb. & Ekman. Gonâve Island (A18), located in the middle of the bay of Port au Prince, has an altitude of 702 m and is practically devoid of natural vegetation due to considerable human pressure; this satellite island of Hispaniola has an infra- and thermotropical thermotype and a semiarid-dry ombrotype due to its isolation. The floristic analysis reveals the presence of endemics that are exclusive to this island such as Mouriri gonavensis Urb. & Ekman, Pilea dispar Urb., Solanum aquartia Dunal var. luxurians (O.E. Schulz) Alain, Dendropemon gonavensis Urb., D. spathulatus Urb. & Ekman, Galactia caimitensis Urb. & Ekman and Isidorea gonavensis Aiello & Borhidi; and it shares other endemic species with A11 -Pearson's index r = 0.165 - and the same vegetation type (dry forest).

The eastern coastal plain (A07) is coralline in origin with species of particular concern, as they are under serious threat from tourism, namely *Pereskia quisqueyana* Alain and *Melicoccus jimenezii* (Alain) Acev. Rodr., classified as endangered by Peguero and Jiménez (2008, 2011) (Table 6, see online supplemental material, which is available from the article's Taylor & Francis Online page at http://dx.doi.org/10.1080/ 14772000.2015.1135195).

The Samaná peninsula (A04) was isolated from the rest of the territory until 300–400 years ago (Salazar et al., 1997). It is a geomorphological unit dominated by karstic and limestone materials, schists and marbles. It has an infratropical thermotype and a subhumid-humid ombrotype, where the presence of escarpments (outcrops) gives rise to special edaphoxerophilous communities dominated by *Pilosocereus polygonus* (Lam.) Byles & Rowles, *Zamia debilis* L., *Agave antillarum* Descourt., *Eugenia samanensis* Alain, *Bursera simaruba* (L.) Sarg., *Ficus velutina* H. B. ex Willd. and *Opuntia dillenii* (Ker-Gawl) Haw. From the floristic point of view it has 127 species, of which are 36 exclusive endemics. There are several reasons for the high number of endemic species and habitats: the island's geological origin, the bioclimate – with



Relationship between the relation of endemic taxa (total number) to exclusive endemic taxa per study

are

Fig. 6. Relation of endemic taxa (total number) to exclusive endemic taxa in each study area.



Fig. 7. Number of repetitions of endemic species in the 19 areas.

thermotypes ranging from the infratropical to supratropical, the semiarid-hyperhumid ombrotype, the origin of the flora due to migratory routes, and the isolation of its mountains.

#### Discussion

The geological origin of the island, the result of its unionseparation-union, has produced mountains that are biogeographic islands (Liira, Jürjendal, and Paal, 2014), and given rise to the island's high diversity. The distribution and species richness in the tropical forest varies with altitude and with other patterns such as rainfall distribution, topography, geographic distance, and human impact (Eisenlohr et al., 2013), and in places altered by humans there are fewer trees to enable the presence of climbing species (Pereira Villagra, Pereira Cabral Gomes, Buruham, and Romaniuc Neto, 2013). It is difficult to establish the origin of high neotropical biodiversity (Rull, 2013); in the case of Hispaniola, its geology, topography, and geographic distance act as significant obstacles on migratory routes, which has led to its current diversity. The island's similar diversity invites comparison with the megadiversity of Mexico (Luna-Vega, Espinosa, Rivas, and Contreras-Medina, 2013).

Rumeu, Alfonso, Fernández-Palacios, and Nogales (2014) established three species of conifers for Hispaniola, two of which are vulnerable and critically endangered according to IUCN (2013); these data should be corrected, as in Hispaniola there is a representation of the families *Pinaceae* (2 species), *Araucariaceae* (1 species), *Cupressaceae* (9 species), *Podocarpaceae* (3 species) with the endemics *Podocarpus hispaniolensis* Laubenfels and *Podocarpus aristulatus* Parl.



Fig. 8. Relationship between altitude and no. of endemic species including all samples.

Relationship between Altitude and N<sup>o</sup> of Endemic Species in Serpentin samples



Fig. 9. Relationship between altitude and no. of endemic species in serpentine samples.



**Fig. 10.** Relationship between altitude and no. of endemic species in non-serpentine samples.

**Table 5.** Comparative analysis of the ratio of endemic taxa (total number) to exclusive endemic taxa in each study area. 1.- Number of exclusive endemic taxa per area.

 2. Total number of endemic taxa per area.

|   | A01 | A02 | A03 | A04 | A05 | A06 | A07 | A08 | A09 | A10 | A11 | A12 | A13 | A14 | A15 | A16 | A17 | A18 | A19 |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 20  | 15  | 24  | 36  | 1   | 12  | 23  | 2   | 26  | 1   | 27  | 482 | 129 | 11  | 28  | 278 | 29  | 8   | 10  |
| 2 | 40  | 61  | 68  | 127 | 9   | 45  | 64  | 7   | 87  | 9   | 72  | 699 | 173 | 29  | 64  | 440 | 65  | 20  | 15  |

| Table ( | 6. Pears | on index | values. |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|---------|----------|----------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|         | A01      | A02      | A03     | A04    | A05    | A06    | A07    | A08    | A09    | A10    | A11    | A12    | A13    | A14    | A15    | A16    | A17    | A18    | A19    |
| A01     | -        | 0,01     | 0,045   | 0,071  | 0,041  | -0,003 | -0,033 | 0,05   | 0,014  | 0,041  | -0,016 | -0,127 | -0,056 | 0,008  | -0,013 | -0,046 | -0,033 | 0,054  | 0,026  |
| A02 (   | 0,01     | 1        | -0,026  | 0,267  | 0,029  | 0,143  | 0,026  | 0,086  | -0,02  | -0,015 | -0,044 | -0,086 | -0,07  | -0,027 | -0,024 | -0,051 | -0,041 | -0,023 | 0,014  |
| A03 0   | ,045 -   | -0,026   | 1       | 0,006  | -0,016 | -0,036 | 0,051  | 0,033  | 0,154  | 0,025  | 0,043  | -0.088 | -0,044 | 0,041  | 0,02   | -0,09  | 0,05   | 0,004  | -0,021 |
| A04 0   | ,071     | 0,267    | 0,006   | 1      | 0,194  | 0,285  | 0,069  | 0,015  | 0,021  | -0,022 | -0,065 | -0,169 | -0,104 | -0.04  | -0,037 | -0.048 | -0,061 | -0,033 | -0,005 |
| A05 0   | ,041     | 0,029    | -0.016  | 0,194  | 1      | 0,088  | -0.016 | 0,122  | 0,019  | -0,006 | -0,017 | -0.033 | -0,027 | -0,01  | -0,016 | 0,066  | -0,016 | -0,009 | -0,007 |
| A06     | 0-       | 0,143    | -0.036  | 0,285  | 0,088  | 1      | -0.035 | 0,046  | -0,008 | 0,038  | -0,019 | -0,106 | -0.048 | -0,023 | -0,035 | -0,072 | -0.016 | -0,019 | -0.017 |
| A07 -   | -0,03    | 0,026    | 0,051   | 0,069  | -0,016 | -0.035 | 1      | -0.014 | 0,077  | 0,027  | -0,014 | -0.028 | -0,062 | -0,004 | -0,026 | -0,12  | -0.01  | -0,023 | -0,02  |
| A08 (   | 0,05     | 0,086    | 0,033   | 0,015  | 0,122  | 0,046  | -0,014 | 1      | -0,016 | -0,005 | -0,015 | -0,04  | -0,023 | -0,009 | -0,014 | 0,001  | -0,014 | -0,008 | -0,007 |
| A09 0   | ,014     | -0.02    | 0,154   | 0,021  | 0,019  | -0,008 | 0,077  | -0.016 | -      | 0,092  | 0,027  | -0,002 | -0.076 | 0,008  | -0,021 | -0.088 | -0,022 | -0,002 | 0,005  |
| A10 0   | ,041 -   | -0,015   | 0,025   | -0,022 | -0,006 | 0,038  | 0,027  | -0,005 | 0,092  | 1      | 0,185  | -0.05  | 0,027  | 0,052  | 0,155  | -0,009 | 0,069  | 0,142  | -0,007 |
| A11 -   | -0,02 -  | -0,044   | 0,043   | -0,065 | -0,017 | -0,019 | -0,014 | -0,015 | 0,027  | 0,185  | 1      | -0,109 | 0,079  | 0,083  | 0,109  | -0,095 | 0,031  | 0,165  | 0,01   |
| A12 -   | -0,13 -  | -0,086   | -0.088  | -0,169 | -0,033 | -0,106 | -0,028 | -0,04  | -0,002 | -0.05  | -0,109 | 1      | -0,226 | -0,046 | -0,144 | -0,254 | -0,165 | -0,089 | -0,087 |
| A13 –   | -0,06    | -0.07    | -0,044  | -0,104 | -0,027 | -0,048 | -0,062 | -0,023 | -0.076 | 0,027  | 0,079  | -0,226 | -      | -0.018 | -0,041 | -0,168 | -0,011 | -0,022 | -0.034 |
| A14 0   | - 800;   | -0,027   | 0,041   | -0,04  | -0,01  | -0,023 | -0,004 | -0,009 | 0,008  | 0,052  | 0,083  | -0,046 | -0,018 | 1      | 0,068  | -0,043 | 0,09   | 0,027  | -0.013 |
| A15 -   | -0,01 -  | -0,024   | 0,02    | -0,037 | -0,016 | -0,035 | -0,026 | -0,014 | -0,021 | 0,155  | 0,109  | -0,144 | -0,041 | 0,068  | -      | -0,07  | 0,135  | 0,063  | 0,112  |
| A16 -   | -0,05 -  | -0.051   | -0,09   | -0,048 | 0,066  | -0.072 | -0,12  | 0,001  | -0.088 | -0,009 | -0,095 | -0,254 | -0.168 | -0.043 | -0.07  | 1      | -0.036 | -0.045 | -0,061 |
| A17 –   | -0,03 -  | -0,041   | 0,05    | -0,061 | -0,016 | -0,016 | -0,01  | -0,014 | -0,022 | 0,069  | 0,031  | -0,165 | -0,011 | 0,09   | 0,135  | -0.036 | 1      | 0,005  | 0,013  |
| A18 0   | ,054 -   | -0,023   | 0,004   | -0,033 | -0,009 | -0,019 | -0,023 | -0,008 | -0,002 | 0,142  | 0,165  | -0,089 | -0,022 | 0,027  | 0,063  | -0.045 | 0,005  | 1      | -0,011 |
| A19 C   | ,026     | 0,014    | -0,021  | -0,005 | -0,007 | -0,017 | -0.02  | -0,007 | 0,005  | -0,007 | 0,01   | -0,087 | -0,034 | -0,013 | 0,112  | -0,061 | 0,013  | -0,011 | 1      |

Endemic flora on Hispaniola

Echeverry and Morrone (2010) noted the panbiogeographic character of Caribbean territories and considered the evolutionary character of the taxa, as interpreted from the cladograms made by these authors. We agree on the natural character of the biogeographic range of the Province of Hispaniola proposed by Echeverry and Morrone, and also proposed by us in Cano et al. (2010a); as the geographic location of this island makes it the frontier for various migration routes, such as the route from the Bahamas and the Lesser Antilles, and to lesser extent, the Gulf of Mexico. This is due to the isolation of the taxa (clades), which have evolved and led to a high rate of endemism.

The high biodiversity found in the mountains decreases in low-lying areas due to the impact of farming communities (Aitken, 2012), which has caused a deterioration in the local ecosystems. This includes the mangrove (Cano, Cano-Ortiz, Veloz Ramirez, Alatorre, and Otero, 2012), with a decline in the populations of *Rhizophora mangle* L., and supports the thesis of Takayama, Tamura, Tateishi, Webb, and Kajita (2013) regarding the influence of the American continent as a geographic barrier to the dispersion of the propagules of Rhizophora towards the Pacific. Mangrove forests are being altered due to their improper use as an energy source by the local population. This causes fragmentation, a decrease in their propagules, and hence reduced dispersion, a phenomenon also occurring in other low-lying areas used by humans, with the resulting decline in the number of endemics. It is however possible to combine conservation and development and sustain indigenous populations while regulating their activities (Kothari, 2013). This can be done by raising awareness of the value of the various biogeographic territories (Cano et al., 2010a) and analysing the diversity of the invasive species in these areas in order to outline measures for biogeographic conservation (Richardson, 2012).

The floristic analysis reveals a very diverse range of influences, and points to a significant affinity with the flora of tropical South and Central America, as a large part of the flora of Hispaniola was formed from these floras, and arrived on the island through migratory routes (Cano et al., 2009a). The isolation of the mountain chains and ranges is one of the causes of the high rate of endemics: 2,050 (34.16%) out of a total of 6,000 species (Mejía, 2006), representing 50% of the 12,000 species included in Oleas et al. (2013), and 25.6% of the endemics in the Caribbean. Global change is endangering the conservation of this endemic flora (Weller, Sunding, and Sakai, 2013) and creating the need for predictive models for its conservation (Addison et al., 2013). This biodiversity is not only due to the isolation of the flora over a period of millions of years, but also to Hispaniola's altitudinal gradient, the highest in all the Antilles. This explains the fact that the greatest number of endemic plants is found in the Cordillera Central and in the Sierra de Bahoruco, La Selle and La Hotte, where there is less habitat fragmentation.

The analysis of the results highlights areas with a greater concentration of endemics, A12, A13, and A16, possibly a case of palaeo-islands that were separated for some time. These palaeo-islands are currently linked by large warmer and drier valleys that have acted as barriers to dispersion (Dod, 1984). Our analysis of the concentration of endemics in the area coincides with that of May (2001), as the highest number of endemics is found in Sierra de Bahoruco (A12), the Cordillera Central (A16), and Massif de la Hotte (A13). However the frequent presence of calcareous patches in A17 and the serious impact of human activity - in combination with the island effect (Primack & Ros, 2002) – is leading to the extinction of habitats and species. Thus A17 is nearer the altered territories to the northwest of Haiti: A15 (r = 0.135). Areas A03, A09, and A12 all have arid-dry ombrotypes with similar vegetation and endemic species and a good representation of the genus Croton, which has a high diversity in Caribbean areas (Van Ee, Berry, Riina, and Gutierrez Amaro, 2008) and contains 14 endemic plants always located in dry environments, unlike the subgenus Macrocroton which was not found on the island.

The *Leguminosae* family is well represented (Lavin and Beyra Matos, 2008) in all the biogeographic areas of Hispaniola (Caribbean), with approximately 50 genera and 2,500 species; and the locally endemic species *Acacia barahonenis* Urban, *Caesalpinia buchii* Urban, *Calliandra tortuensis* Alain, and *Pithecelobium domingense* Alain.

The oldest palaeo-islands on Hispaniola correspond to the Cordillera Central (A16), Cordillera Oriental (A05 and A06), Sierra de Bahoruco (A12), and Massif de la Hotte (A13); whereas the Cordillera Septentrional (A1) and the other areas are younger. The relatively young age of these areas, in combination with their use which has led to the fragmentation of habitats, accounts for the lower concentration of endemics. It is precisely these low-lying areas that are the most altered by human activity; this leads to the modification of habitats, a decrease in the number of endemics, and an increase in the number of generalist (native) species (Table 1). Our results concur with the research of Liira et al. (2014), as the fragmentation of habitats has given rise to new small patches with a high richness in common species and a lower number of endemics.

The sampling of the 110 plots located at altitudes of between zero and 2,383 m reveals that the greatest concentration of endemics occurs at medium altitudes, with a decrease in low-lying areas and at higher altitudes. This follows the altitude distribution pattern (Eisenlohr et al., 2013) whereby the greatest richness of endemic species is found in mountain areas at medium altitudes. The mountains that act as islands show a similar pattern of distribution of flora (Pérez-García et al., 2012), and constitute a bioclimatic ecotone as they serve as a bioclimatic transition between the tropical xeric, tropical pluvial and tropical pluviseasonal macrobioclimates (Rivas-Martínez et al., 1999). This distribution pattern is modified by the alteration of habitats, the presence of soil islands (serpentines), and by topography and geographic distance. The linear distribution pattern with altitude is due to the effects of palaeo-islands (hotspots) and habitat fragmentation (coldspots), with the highest number of endemics located in areas of bioclimatic ecotone and in soil islands at lower altitudes. Coldspots are areas in which habitat fragmentation has led to a loss of endemic species and the ingression of generalist species. Diversity may be high, but with a decrease in the number of habitat-specific and endemic plants; the only way to maintain high-quality diversity is through habitat conservation. Our results show that the mountain areas have a high rate of endemicity, and particularly the mountains in areas A12, A13, A16, and A17. The conservation of these areas should be entrusted to small indigenous populations who have a traditional knowledge of these species, as has been demonstrated in other territories with experiments in Ontario. British Columbia, and Coastal Canadian Arctic, where value is placed on the traditional knowledge of the indigenous population (Agrawal, 2009; Berkes, 2009; Robson et al., 2009).

### Conclusions

Hispaniola has a high diversity concentrated in specific mountain sites and soil islands, due to the effect of palaeoand neo-islands (soil islands). The greatest richness in endemic species occurs in mountains at medium altitudes; the increase in endemism at medium altitudes is caused mainly by the fact it is an ecotonic area from the bioclimatic point of view, since there is contact between the pluvial and the pluviseasonal bioclimate in the high mountain. The most seriously degraded areas are found below altitudes of 500 m; this decline in diversity is caused by deforestation, burning, high-density tourism, and collection of wood as an energy source (charcoal production). We therefore propose protection measures for certain specific areas.

Finally we recommend the establishment of a Biosphere Reserve in areas A12 and A13, including the Sierra de Bahoruco, La Selle, Tiburón, and La Hotte (Dominican Republic and Republic of Haiti); and A16 and A17 in the Cordillera Central belonging to both countries. The remaining areas are also highly important, and some have been declared protected nature reserves. Where this is not yet the case, we propose the following as protected nature reserves: A1 Northern Cordillera, A4 Samaná Peninsula, A6 Los Haitises, A8 Sierras of Yamasa and Prieta, A18 Gonâve Island, and A19 Tortuga Island.

#### Acknowledgements

We are grateful to the two anonymous reviewers who provided valuable suggestions for improvements to the first draft of this paper. This article was translated by Ms Pru Brooke-Turner (M.A. Cantab.).

#### **Disclosure statement**

No potential conflict of interest was reported by the authors.

#### References

- Acevedo-Rodríguez, P., & Strong, M. T. (2008). Floristic richness and affinities in the West Indies. *Botanical Review*, 74, 5–36. doi:10.1007/s12229-008-9000-1
- Addison, P. F. E., Rumpft, L., Ban, S. S., Carey, S. M., Chee, Y. E., Jarrad, F. C., ... Burgman, M. A. (2013). Practical solutions for making models indispensable in conservation decision-making. *Diversity and Distributions*, 19, 490–502. doi:10.1111/ddi.12054
- Agrawal, A. (2009). Why "indigenous" knowledge? Journal of the Royal Society of New Zealand, 39, 157–158. doi:10.1080/03014220909510569
- Aitken, S. (2012). The value of diversity. *Biodiversity*, *13*, 1. doi:10.1080/14888386.2012.666722
- Berkes, F. (2009). Indigenous ways of knowing and the study of environmental change. *Journal of the Royal Society of New Zealand*, 39, 151–156. doi:10.1080/03014220909510568
- Borhidi, A. (1991). Phytogeography and vegetation ecology of Cuba. Nordic Journal of Botany, 12, 470. doi: 10.1111/ j.1756-1051.1992.tb01330.x
- Braun-Blanquet, J. (1979). *Pflanzensoziologie: Grundzüge der Vegetationskunde*. Madrid: Ed. Blume.
- Cano, E., & Cano-Ortiz, A. (2012). Establishment of biogeographic areas by distributing endemic flora and habitats (Dominican Republic, Haiti R.). In L. Stevens (Ed.), *Global Advances in Biogeography*. (pp. 1–118) Croatia: Rijeka. doi:10.5772/ 31591. Retrieved from http://www.intechopen.com/books/ global-advances-inbiogeography/stablishmentof-biogeographi careas-by-distributing-endemic-flora-and-habitats (accessed 16 September 2015).
- Cano, E., Cano-Ortiz, A., Del Río, S., Veloz Ramirez, A., & Esteban Ruiz, F. J. (2014b). A phytosociological survey of some serpentine plant communities in the Dominican Republic. *Plant Biosystems*, 148, 200–212. doi:10.1080/ 11263504.2012.760498
- Cano, E., Cano-Ortiz, A., Veloz Ramirez, A., Alatorre, J., & Otero, R. (2012). Comparative analysis between the mangrove swamps of the Caribbean and those of the State of Guerrero (Mexico). *Plant Biosystems, 146 (Supplement)*, 112–130. doi:10.1080/11263504.2012.704885
- Cano, E., Veloz Ramirez, A., & Cano-Ortiz, A. (2010a). Contribution to the biogeography of the Hispaniola (Dominican Republic, Haiti). *Acta Botanica Gallica*, 157, 581–598. doi:10.1080/12538078.2010.10516233
- Cano, E., Veloz Ramirez, A., & Cano-Ortiz, A. (2010b). The habitats of *Leptochloopsis virgata* in the Dominican Republic. *Acta Botanica Gallica*, 157, 645–658. doi:10.1080/ 12538078.2010.10516238
- Cano, E., Veloz Ramirez, A., & Cano-Ortiz, A. (2011). Phytosociological study of the *Pinus occidentalis* forests in the

Dominican Republic. *Plant Biosystems*, 145, 286–297. doi:10.1080/11263504.2010.547685

- Cano, E., Veloz Ramirez, A., & Cano-Ortiz, A. (2014a). Rain forests in subtropical mountains of Dominican Republic. *American Journal of Plant Sciences*, 5, 1459–1466. doi:10.4236/ajps.2014.510161
- Cano, E., Veloz Ramirez, A., Cano-Ortiz, A., & Esteban, F. J. (2009a). Distribution of Central American *Melastomataceae*: A biogeographical analysis of the islands of the Caribbean. *Acta Botanica Gallica*, 156, 527–558. doi:10.1080/ 12538078.2009.10516176
- Cano, E., Veloz Ramirez, A., Cano-Ortiz, A., & Esteban, F. J. (2009b). Analysis of *Pterocarpus officinalis* forest in the gran Estero (Dominican Republic). *Acta Botanica Gallica*, 156, 559–570. doi:10.1080/12538078.2009.10516177
- Dod, D. D. (1984). Massif de la Hotte Isla Paculiar: Orquideas nuevas iluminan su historia. *Moscosoa*, *3*, 91–100.
- Echeverry, A., & Morrone, J. J. (2010). Parsimony analysis of endemicity as a panbiogeographical tool: An analysis of Caribbean plant taxa. *Biological Journal of the Linnean Society*, 101, 961–976.
- Eisenlohr, P. V., Alves, L. F., Bernacci, L. C., Padgurschi, M. C. G., Dos Santos, F. A. M., Rochelle, A.L.C., ... Joly, C. A. (2013). Disturbances, elevation, topography and spatial proximity drive vegetation patterns along an altitudinal gradient of a top biodiversity hotspot. *Biodiversity Conservation*, 22, 2767–2783. doi:10.1007/s10531-013-0553-x
- Francisco-Ortega, J., Santiago-Valentín, E., Acevedo-Rodríguez, P., Lewis, C., Pipoly, J., Meerow, A. W., & Maunder, M. (2007). Seed plant genera endemic to the Caribbean island biodiversity hotspot: A review and a molecular phylogenetic perspective. *Botanical Review*, 73, 183–234. doi: http://dx. doi.org/10.1663/0006-8101(2007)73[183:SPGETT]2.0. CO:2
- Francisco-Ortega, J., Ventosa, R., Oviedo, F., Jiménez, P., Herrera Maunder, M., & Panero, J. L. (2008). Caribbean Island *Asteraceae*: Systematics, molecules, and conservation on a biodiversity hotspot. *Botanical Review*, 74, 112–131. doi:10.1007/s12229-008-9008-6
- García, R., & Clase, T. (2002). Flora y vegetación de la zona costera de las provincias Azua y Barahona, República Dominicana. *Moscosoa*, 13, 127–173.
- García, R., Mejía, M., Peguero, B., & Jiménez, F. (2001). Flora endémica de la Sierra de Bahoruco, República Dominicana. *Moscosoa*, 12, 9–44.
- García, R., Mejía, M., Peguero, B., Salazar, J., & Jiménez, F. (2002). Flora y vegetación del Parque Natural del Este, República Dominicana. *Moscosoa*, 13, 22–58.
- García, R., Mejía, M., & Zanoni, T. H. (1994). Composición florística y principales asociaciones vegetales en la reserva científica de Ébano Verde, cordillera Central, República Dominicana. *Moscosoa*, 8, 86–130.
- Guerrero, A., Jiménez, F., Höner, D., & Zanoni, T. (1997). La flora y la vegetación de la loma Barbacoa, Cordillera Central, República Dominicana. *Moscosoa*, 9, 84–116.
- Hernández Valdés, J. A., & Castañeira Colomé, M. A. (2006). Análisis de representatividad de especies vegetales en ecosistemas de serpentina en áreas protegidas de Cuba. Presented at the IX Congreso Latinoamericano de Botánica, 18-25 junio 2006, Santo Domingo, República Dominicana.
- Höner, D., & Jiménez, F. (1994). Flora vascular y vegetación de la loma la Herradura (Cordillera Oriental, República Dominicana). *Moscosoa*, 8, 65–85.

- IUCN (2013). IUCN Red list of Threatened Species. Version 2013.1. Available at: http://www.iucnredlist.org/(accessed 16 september 2013).
- Kolanowska, M. (2013). A new species of *Psilochilus (Orchidaceae)* from the Dominican Republic. *Plant Biosystems*, 147, 832–834. doi:10.1080/11263504.2013.829879
- Kothari, A. (2013). Communities, conservation and development. *Biodiversity*, 14, 223–226. doi:10.1080/14888386. 2013.848101
- Lavin, M., & Beyra Matos, A. (2008). The impact of ecology and biogeography on legume diversity, endemism, and phylogeny in the Caribbean Region: A new direction in historical biogeography. *Botanical Review*, 74, 178–196. doi:10.1007/s12229-008-9006-8
- Liira, J., Jürjendal, I., & Paal, J. (2014). Do forest plants conform to the theory of island biogeography: The case study of bog islands. *Biodiversity Conservation*, 23, 1019–1039. doi:10.1007/s10531-014-0650-5
- Liogier, A. H. (1996-2000). La Flora de la Española (Vols. I-IX). Santo Domingo, República Dominicana: Jardín Botánico Nacional Dr. Rafael Ma. Moscoso.
- Liogier, A. H. (2000). *Diccionario botánico de nombres vulgares de la Española*. Santo Domingo: Jardín Botánico Nacional Dr. Rafael Ma. Moscoso. 598 p.
- Lonchi-Wagner, H. M., Welker, C. A. D., & Waechter, S. L. (2012). Floristic affinities in montane grasslands in eastern Brazil. Systematics and Biodiversity, 10, 537–550. doi:10.1080/14772000.2012.753487
- López Almirall, A. (1998). Diversidad de la flora endémica en Cuba Oriental: Familias con endemismos distritales. *Moscosoa*, 1, 136–163.
- Luna-Vega, I., Espinosa, D., Rivas, G., & Contreras-Medina, R. (2013). Geographical patterns and determinants of species richness in Mexico across selected families of vascular plants: Implications for conservation. *Systematics and Biodiversity*, 11, 237–256. doi:10.1080/14772000.2013.797517
- Martín, C. V., & Cremers, G. (2007). Les Melastomataceae américaines décrites par C. Naudin. Le Journal de Botanique de la Société Botanique de France, 37, 3–111.
- Maunder, M., Leiva, A., Santiago-Valentín, E., Stevenson, D. W., Acevedo-Rodríguez, P., Meerow, A. W., ... Francisco-Ortega, J. (2008). Plant conservation in the Caribbean island biodiversity hotspot. *Botanical Review*, 74, 197–207.
- May, T. H. (1997). Fases tempranas de la sucesión en un bosque nublado de *Magnolia pallescens* después de un incendio (Loma de Casabito, Reserva Científica Ébano Verde, Cordillera Central, República Dominicana). *Moscosoa*, 9, 117–144.
- May, T. H. (2000). Respuesta de la vegetación en un calimetal de Dicranopteris pectinata después de un fuego, en la parte oriental de la Cordillera Central, República Dominicana. Moscosoa, 13, 113–132.
- May, T. H. (2001). El endemismo de especies de plantas vasculares en República Dominicana, en relación con las condiciones ambientales y los factores biogeográficos. *Moscosoa*, *12*, 60–78.
- May, T. H., & Peguero, B. (2000). Vegetación y flora de la Loma el Mogote, Jarabacoa, Cordillera Central, República Dominicana. *Moscosoa*, 11, 11–37.
- Mejía, M. (2006). Flora de la Española: Conocimiento actual y estado de conservación. Presented at the IX Congreso Latinoamericano de Botánica, 18-25 junio 2006, Santo Domingo, República Dominicana.
- Mejía, M., García, R., & Jiménez, F. (1998). Gaussia attenuata (O.F.Cook) Becc. y Coccothrinax barbadensis (Lodd. ex

Mart) Becc. (*Arecaceae*). Dos nuevos registros para la isla Española. *Moscosoa*, 10, 3–9.

- Mejía, M., García, R., & Jiménez, F. (2000). Sub-región fitogeográfica Barbacoa-Casabito: Riqueza florística y su importancia en la conservación de la flora de la isla Española. *Moscosoa*, 11, 57–106.
- Mejía, M., & Jiménez, F. (1998). Flora y vegetación de Loma la Humeadora, Cordillera Central, República Dominicana. *Moscosoa*, 10, 10–46.
- Mollat, H., Wagner, B. M., Cepek, P., & Weiss, W. (2004). Mapa geológico de la República Dominicana 1:250.000. Hannover: Geologisches Jahrbuch.
- Oleas, N., Jestrow, B., Calonje, M., Peguero, B., Jiménez, F., Rodríguez-Peña, R., ... Francisco-Ortega, J. (2013). Molecular systematic of threatened seed plant species endemic in the Caribbean Islands. *Botanical Review*, 79, 528–541. doi:10.1007/s12229-013-9130-y
- Peguero, B., & Jiménez, F. (2008). Inventario preliminar de plantas endémicas locales en peligro de extinción en República Dominicana. *Moscosoa*, 16, 84–94.
- Peguero, B., & Jiménez, F. (2011). Inventario y estado de conservación de plantas exclusivas de la República Dominicana. *Moscosoa*, 17, 29–57.
- Peguero, B., & Salazar, J. (2002). Vegetación y flora de los cayos Levantado y la Farola, Bahía de Samaná, República Dominicana. *Moscosoa*, 13, 234–262.
- Pereira Villagra, B., Pereira Cabral Gomes, E., Buruham, R. J., & Romaniuc Neto, S. (2013). Diversity and abundance of climbers from the Atlantic Forest, southeastern Brazil. *Biodiversity and Conservation*, 22, 2505–2517. doi:10.1007/ s10531-013-0533-1
- Pérez-García, F. J., Medina-Cazorla, J. M., Martínez-Hernández, F., Garrido-Becerra, J. A., Mendoza-Fernández, A. J., Salmerón-Sánchez, E., & Mota, J. F. (2012). Iberian Baetic endemic flora and the implications for a conservation policy. *Annales Botanici Fennici*, 49: 43–54. doi: http://dx.doi.org/ 10.5735/085.049.0106
- Primack, R. B., & Ros, J. (2002). Introducción a la biología de la conservación. Barcelona: Ariel Editores.
- Rapoport, E. H., Ezcurra, E., & Drausal, B. (1976). The distribution of plant diseases: A look into the biogeography of the future. *Journal of Biogeography*, *3*,365–372.
- Richardson, D. M. (2012). Conservation biogeography: What's hot and what's not? *Diversity and Distributions*, *18*, 319–322. doi:10.2307/41419518
- Rivas-Martínez, S., Sánchez Mata, D., & Costa, M. (1999). North American boreal and western temperate forest vegetation. Syntaxonomical synopsis of the potential natural plant communities of North America, II. *Itinera Geobotanica*, 12, 5–326.
- Robson, J. P., Miller, A. M., Idrobo, C. J., Burlando, C., Deutsch, N., Kocho-Schellenberg, J. E., ... Turner, K.L. (2009). Building communities of Learning: Indigenous ways of knowing in contemporary natural resources and environmental management. *Journal of the Royal Society of New Zealand*, 39, 173–177. doi:10.1080/03014220909510574

- Rull, V. (2013). Some problems in the study of the origin of neotropical biodiversity using paleoecological and molecular phylogenetic evidence. *Systematics and Biodiversity*, 11, 415–423. doi: 10.1080/14772000.2013.865682
- Rumeu, B., Alfonso, V., Fernández-Palacios, J. M., & Nogales, M. (2014). Diversity, distribution and conservation status of island conifers: A global review. *Diversity and Distributions*, 20, 272–283. doi:10.1111/ddi.12163
- Salazar, J., Peguero, B., & Veloz, A. (1997). Flora de la península de Samaná, República Dominicana. *Moscosoa*, 8, 133–188.
- Shannon, C. E., & Weaver, W. (1959). *The mathematical theory of communication*. Illinois: University of Illinois Press. 54 pp.
- Samek, V. (1988). Fitorregionalización del Caribe. Revista del Jardín Botánico Nacional (Cuba), 9, 25–38.
- Santiago-Valentín, E., & Francisco-Ortega, J. (2008). Plant evolution and biodiversity in the Caribbean Islands-perspectives from molecular markers. *Botanical Review*, 74, 1–4. doi:10.1007/s12229-008-9001-0
- Slocum, M., Mitchell, T., Zimmerman, J. K., & Navarro, L. (2000). La vegetación leñosa en helechales y bosques de ribera en la reserva científica de Ébano Verde, República Dominicana. *Moscosoa*, 11, 38–56.
- Takayama, K., Tamura, M., Tateishi, Y., Webb, E. L., & Kajita, T. (2013). Strong genetic structure over the American continents and transoceanic dispersal in the mangrove genus *Rhizophora* (*Rhizophoraceae*) revealed by broad-scale nuclear and chloroplast DNA analysis. *American Journal of Botany*, 100, 1191–1201. doi:10.3732/ajb.1200567
- Trejo-Torres, J. C., & Ackerman, J. D. (2001). Biogeography of the Antilles based on a parsimony analysis of orchid distributions. *Journal of Biogeography*, 28, 775–794. doi:10.1046/j.1365-2699.2001.00576.x
- Uma, E., & Muthukumar, T. (2014). Comparative root morphological anatomy of *Zingiberaceae*. Systematics and Biodiversity, 12: 195–209. doi:10.1080/14772000.2014. 894593
- Van Ee, B. W., Berry, P. E., Riina, R., & Gutierrez Amaro, J. E. (2008). Molecular phylogenetics and biogeography of the Caribbean – centered *Croton* subgenus *Moacroton* (*Euphor-biaceae* s.s.). *Botanical Review*, 74, 132–165. doi:10.1007/ s12229-008-9003-y
- Veloz, A., & Peguero, B. (2002). Flora y vegetación del Morro de Montecristi, República Dominicana. *Moscosoa*, 13, 81–107.
- Weller, S. G., Sunding, K., & Sakai, A. K. (2013). Botany and changing world: Introduction to the special issue on global biological change. *American Journal of Botany*, 100, 1229–1233. doi:10.3732/ajb.1300198
- Zanoni, T. H., Mejía, M., Pimentel, J. D., & García, R. (1990). La flora y vegetación de los Haitises, Republica Dominicana. *Moscosoa*, 6, 46–98.

#### Associate Editor: Polly Hayes