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Abstract

We consider a class of nonlinear dissipative-dispersive perturbations of the scalar
conservation law 9;u + div f(u) = 0' and we study the convergence of the
approximated solutions to its entropy solution. In particular, we obtain conditions
under which the balance between dissipation and dispersion gives rise to the
convergence (by DiPerna’s measure-valued solution technique).

Do ¢, 0 in
Oeu +div (f(u) — e B(u, Vu) + 6 C(u, Vu, V?u)) = 0,
u(x,0) = ui’ (x).
Example. The 1-dimensional Korteweg-de Vries-Burguers' equation (shortly:
KdV-B eq.), where f(u) = u?/2, B(u,Vu) = uy and C(u, Vu, V?u) = uy:

uy + (u2/2)x = Elyy — Olyxx-

IPossibly non-convex transport f and non-linear viscosity B3 or capillarity C.
Giaeaew R 33730165



Nonlinear hyperbolic conservation laws

@ Cauchy Problem (1st order nonlin. pde’'s) = hyperb. (real eigenvalues =
finite velocity) = discontinuities (characteristic lines meet) = weak sol.
(global in time) = non uniqueness

@ Entropy Methods from Gas Dynamics and 2nd Law of Thermodynamics (for
Euler Equations = inviscid and compressible Navier-Stokes Equations)

@ Equivalence to the Vanishing Viscosity Method selection: “classical” entropy
weak solutions or Kruzkov solutions
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Traffic Burgers' Inviscid Equation or
Arnold's particle/wave duality

In a straight line particles move freely and u(x, t) is the velocity of the particle
which is in position x at time t.

Let x = x(t;0,xp) be the position at time t of the particle in xo at initial time
to = 0, which we abbreviate as x = x(t).

By Newton's law (particles are moving freely) x”(t) = 0, then x(t) = xo + Vt
where V = u(xp,0).

‘Particle description’: the physical system is described by an infinite set of ODEs,
one for each xp € R,

x(0) = xp.

{x’(t) = u(x0,0), t>0
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Now, V = x'(t) = u(x(t), t), then

0= x"(t) = ue(x(t), t) + X' (t)ux(x(t), t) = ur + uuy.

‘Wave description’: the physical system is described by a single PDE

u + uuy, =0, xeR,t>0
u(x,0) = up(x).

Rk. if we reverse that computation, we are solving the PDE by the 'characteristics
method'.

Joaquim Correia Applied Analysis Seminar Glasgow, April 22, 2016 6/33



A convergence result

Correia [2, 201677] “Zero Limit for Multi-D Conservation Laws with Nonlinear
Diffusion and Dispersion™: we have (formal)? convergence, if r > p+ 1+ 1 and

0 = o(e”) with v = rﬁ_zﬁ(g 1), when

d
Oru + div f(u) = div (5 bi(u,Vu) + 6 g(u) Z O i (g(u) Vu))
k=1 1<j<d

(A1) forsome m > 1, |f'(u)] = O (Ju]™"t)
as |u| — oo,
(Az) forsome >0, r>2, |b(u,A)]=0(ul") O(A")
as |ul, |\| = oo,
(As) forsome o >0, 9 <r, D>0, - b(u,\)> D |u' |\
YueR, A€ R
(As) for some p >0, [[[cx(N]ll = O(AF)
as [A| — oo.

2Cf. Bedjaoui-Correia-Mammeri [3, 2015] “Well-Posedness of the Generalized K&rteweg-de
Vries-Burgers Equation with Nonlinear Dispersion and Nonlinear Dissipation”.
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Singular limits

o (¢ =0, Lax-Levermore [3, 1983])  The solutions of KdV equation
U 4 (1%/2) = —6 U

do not converge as § N\, 0 in a strong topology (oscillatory effect of
capillarity; “zero-dispersion limit". Failure).

o (0 =0, Kruzkov [2, 1970])  The solutions of Burgers’ equation
ug + (u2/2)x = € Uxx

converge as € \, 0 in a strong topology (“vanishing viscosity method").

@ (6 = Ke7) In the phase transition regime, we can converge to physical
solutions different from the entropy solutions. (Reliability.)
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Breaking paradigmas

@ Truskinovsky [4, 1993]: physical nonclassical solutions (considering dispersive
terms; phase transition problems)

@ Brenier-Levy [1, 1999]: dissipative KdV-type equations (3rd order equations
without the 2nd order viscosity term (¢ = 0); conjecture)

@ Perthame-Ryzhik [1, 2007]: &/ balance in KdV-B equation § = o(e?)
(Riemann problem; travelling waves ¢, 0-limit)
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Applied analysis

From the point of view of ‘applications’, as ¢, << 1, the equations are simplified
by neglecting small scale mechanisms: “5 and C are spurious terms”.

We are then concerned with the Cauchy problem for the hyperbolic (first order)
conservation laws

Oru+divf(u) =0,
u(x,0) = wp(x),

which have non-unique solution.

Because of 'singular limits" and of 'nonuniqueness’,

o the classification is a practical problem (of practical interest: failure,
reliability and integrity);

o the theoretical /applied points of view of approaching/approached equations
conduct us to a dilemma, paradoxical situation.
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Conclusion

Thus, we are concerned
@ with a proof of a "vanishing viscosity-capillarity method" relying on
> the well-posedness of the genKdV-B equations (dispersive techniques),
> the convergence of their solutions (DiPerna’s measure-valued solution
techniques),

@ with the behaviour and selection of the

> right models,
> right solutions.

N.B. In most real phenomena we handle together viscosity and capillarity like
mechanisms. Then, we expect reliability if the dissipation effects dominate the
dispersion ones and this is given by a §/¢ balance and a ratio of viscosity and
capillarity growths. Moreover, according this balance we can select different
mathematical solutions: what about the physical solution (Integrity®)?

3Correia [1, 2010] and Correia-Sasportes [2, 2009]
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Shocks
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‘Confidential’, 193817
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“Springer” (Interscience Publ., N.Y, 1948)

R. Courant
K.O. Friedrichs

Matheratical | SUPErSONIC
% | Flow and
Shock
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Applied Analysis Seminar



In use...

Modelling on continuum physics, chemistry, biology, environment, etc.

Areas as gas dynamics, nonlinear elasticity, shallow water theory, geometric optics,
magneto-fluid dynamics, kinetic theory, combustion theory, cancer medicine,
petroleum engineering, irrigation systems, etc.

Applications as optimal shape design (aeronautics, automobiles), noise reduction
in cavities and vehicles, flexible structures, seismic waves (earthquakes, tsunamis),
laser control in quantum mechanical and molecular systems, chromatography,
chemostasis, oil prospection and recovery, cardiovascular system, traffic flow, the
Thames barrier, etc.
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Optimal design and active control in structures: bridges, the Thames barrier,
wind towers, aeroplanes or the shuttle and the orbital spatial station...

. shocks and oscillations are fundamental issues:
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| Mach number: 031 040 0.41 043 D44 046 047 048 050 051 051 0.53 054 054 056 0.57 058 050

The transonic regime issues:
@ control of vibrations and

@ shocks strength magnitude
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3. _

NASA: Hypersonic flow with shocks at the nose

Joaquim Correia Applied Analysis Seminar



NASA: Visible shocks at the nose in the windtunnel test

@ "for the engineer working... in the wind tunnel, design and control problems
are much harder as they become inverse problems”, see lecture by E. Zuazua
at the "Ist Porto Meeting on Mathematics for Industry”, Porto, 2009).
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Our general issues concern:

@ the behaviour and selection of the right models and solutions;

@ the proof and criteria for a “vanishing viscosity-capillarity method”.

Rk: Numerics is hopeless.
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Schonbek [2, 1982]

The (generalised) Korteweg-de Vries-Burgers equation

Uy + F(U)x = € Uxx — 0 Unx

@ with linear viscosity and linear capillarity;
@ Kruzkov solutions only for convex fluxes;
e § = o(e?) for f(u) = u?/2 (and O(e?) for general quadratic flux).

Rk.1: Sharp condition should be § = o(e!)? (Perthame-Ryzhic [1, 2007]).

Rk.2: Too many technical restrictions (1-D, specific LP and m growth flux ).
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LeFloch-Natalini [4, 1997]

Korteweg-de Vries-Burgers type equations

uy + f(U)X = Eﬁ(ux)x - 5UXXX

@ with nonlinear viscosity and linear capillarity;

@ Kruzkov solutions for possibly non-convex fluxes.

Rk. still with the same technical restrictions of Schonbek [2, 1982].
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Correia-LeFloch [4, 1998]

Korteweg-de Vries-Burgers type equations

O:u + div f(u) = div (5 bj(Vu) + 58%‘“) 1<j<d
YA

@ multi-D equation with general flux;

@ nonlinear viscosity but diagonal linear capillarity;

@ Kruzkov solutions in general LP spaces;

@ new estimates;

@ convergence if 6 = o(£7) with r > 2 and v = r%l <1.

N.B. Here p+2 = 3 and + is better than the previous, but is it sharp?
Rk. c(Vu) or ¢(V2u)?*

4cf. Correia-LeFloch [3, 1999]
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Brenier-Levy [1, 1999]

Lax-Levermore [3, 1983]) showed that for the Kdrteweg-de Vries equation
ur + (1% /2) = =6 U
their solutions do not converge in a strong topology.

This should not be the paradigma: Brenier-Levy considered the “pure-dispersive
equation” with nonlinear capillarity

ug + (U2/2)X = _5(U>2<x)x

and showed through numerical evidence a dissipative behaviour®.

5See their Conjecture and Bedjaoui-Correia [5, 2012].
T e



“Unexpected” regime °

with r =1 and p = 2 (§ = 0(¢%/?)), we proved the well-posedness of the initial
value problem

ue + F(u)x = e — 0(uZ ),
u(x,0) = 45’ ()

and as €,0 \, 0 the convergence of the previous solutions to the entropy weak
solution of the initial value problem

us + f(u)X = Oa
u(x,0) = wp(x).

6Bedjaoui-Correia-Mammeri [1, 4, 2016, 2014]: “On a Limit of Perturbed Conservation Laws
with Diffusion and Non-positive Dispersion” and “On vanishing dissipative-dispersive
perturbations of hyperbolic conservation laws".
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Slemrod’s PDEs Seminar, IST, September 16, 2014

PARTIAL DIFFERENTIAL EQUATIONS SEMINAR [5]

16/09/2014, 15:00 -- Room P4.35, Mathematics Building

namely the passage from Boltzmann equation to the classical Euler
equations of mass, momentum, and energy for an ideal gas as a small
parameter (Knudsen number) tends to zero. The main idea is that via

attainable.
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Hilbert's 6th problem (from Boltzmann to Euler)

4. Implications of Gorban and Karlin’s summation for Hilbert’s 6th problem

The implication of the exact summation of C-E by Gorban and Karlin now becomes clear. The whole issue may be seen
in Eq. (11), the energy balance, If we put the Knudsen number scaling into (11), the coefficient « is actually a term egs? and
to recover the classical balance of energy of the Euler equation would require the sequence

2 p 3% 9p° — 0
in the sense of distributions as ¢ — 0. This would require a strong interaction with viscous dissipation. The natural analogy
is given by the use of the KdV-Burgers equation:

Up + Ully = £l — K2ty (12)

where at a more elementary level we see the competition between viscosity and capillarity. The resultin (12)is known but
far from trivial. Specifically in the absence of viscosity we have the KdV equation

Up + Uty = —K & tgex (13)
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M. Slemrod / Computers and Mathematics with Applications 65 (2013) 1497-1501 1501

and we know from the results of Lax and Levermore [9] that as ¢ — 0 the solution of (13) will not approach the solution of
the conservation law

U +ui, =0 (14)

after the breakdown time of smooth solutions of (14). On the other hand, addition of viscosity which is sufficiently strong,
i.e. K sufficiently small in (12), will allow passage as ¢ — 0 to a solution of (14), This has been proven in the paper of
Schonbek [10]. So, the next question is whether we are in the Lax-Levermore case (13) or the Schonbek case (12) with K
sufficiently small. In my paper [11] | noted the C-E summation of Gorban and Karlin for the Grad 10-moment system leads
to a rather weak viscous dissipation, i.e. Egs. (5.10), (5.11) of [ 11]. At the moment, this is all we have to go on and I can only
conclude that things are not looking too promising for a possible resolution of Hilbert's 6th problem. It appears that in the
competition between viscosity and capillarity (mathematically, dissipation of oscillation versus generation of oscillation),
capillarity has become a very dogged opponent, and the capillarity energy will not vanish in the limit as ¢ — 0. Hilbert's
hope may have been justified in 1900, but as a result of the work of Gorban, Karlin, Lax, Levermore, and Schonbek, [ think
that serious doubts are now apparent.
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Have you some suggestions?

Thank you very much!
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