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ABSTRACT 

This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem 

of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on 

electricity price and wind power is considered through a set of scenarios. Thermal units are modeled by variable 

costs, start-up costs and technical operating constraints, such as: ramp up/down limits and minimum up/down time 

limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated 

production of thermal and wind energy generation, aiming to maximize the expected profit. A case study with data 

from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed 

approach. 

 

KEYWORDS: Mixed-integer linear programming; stochastic optimization; wind-thermal coordination; offering 

strategies. 

1 INTRODUCTION 

The negative environmental impact of fossil fuel burning and the desire to achieve energy supply sustainability 

promote exploitation of renewable sources. Mechanisms and policies provide subsidy and incentive for renewable 

energy conversion into electric energy [1], for instance, wind power conversion. But as the wind power technology 

matures and reaches breakeven costs, subsidy is due to be less significant and wind power conversion has to face the 

electricity markets for better profit [2]. Also, the incentives for wind power exploitation are feasible for modest 

penetration levels but will become flawed as wind power penetration increases [3]. EU in 2014 has of all new 

renewable installations a 43.7% based on wind power and is the seventh year running that over 55% of all additional 

power capacity is form renewable energy [4]. The growing worldwide usage of renewable energy is a fact, but 

electricity supply is still significantly dependent on fossil fuel burning, for instance, statistics for electricity supply in 

2012 accounts that the usage of fossil fuel burning is more than 60% [5].  

Deregulation of electricity market imposes that a generation company (GENCO) has to face competition to obtain 

the economic revenue. Periodic nodal variations of electricity prices [6] have to be taken into consideration. The 

wind power producer (WPP) has to address wind power and electricity price uncertainties to decide for realistic bids, 

because cost is owed either in case of excessive or moderate bids due to the fact that other power producers must 

reduce or increase production to fill the so-called deviation [7]. While the thermal power producer has to address 

only electricity price uncertainty. 

2 STATE OF THE ART 

Thermal energy conversion into electric energy has a significant state of art on optimization methods to solve the 

unit commitment problem (UC), ranging from the old priorities list method to the classical mathematical 

programming methods until the more recently reported artificial intelligence methods [8]. The priority list method is 



easy implemented and requires a small processing time, but does not ensure a convenient solution near the global 

optimal one [9]. Within the classical methods are included dynamic programming and Lagrangian relaxation-based 

methods [10]. The dynamic programming method is a flexible one but has a limitation known by the "curse of 

dimensionality". The Lagrangian relaxation can overcome the previous limitation, but does not necessarily lead to a 

feasible solution, implying further processing for satisfying the violated constraints in order to find a feasible 

solution, which does not ensure optimal solution. The mixed integer linear programming (MILP) method has been 

applied with success for solving UC problem [11]. MILP is one of the most successful explored methods for 

scheduling activities because of flexibility and extensive modeling capability [12]. Although, artificial intelligence 

methods based on artificial neural networks, genetic algorithms, evolutionary algorithms and simulating annealing 

have been applied, the major limitation of the artificial intelligence methods concerning with the possibility to obtain 

a solution near the global optimum one is a disadvantage. So, classical methods are the main methods in use as long 

as the functions describing the mathematical model have conveniently smoothness. 

Deregulated market and variability of the source of wind power impose uncertainties to WPP. These uncertainties 

have to be conveniently considered, i.e., processed into the variables of the problems [13] to be addressed by a WPP 

in order to know how much to produce and the price for bidding. 

A WPP in a competitive environment can benefit without depending on third-parties from: a coordination of wind 

power production with energy storage technology [14]; a financial options as a tool for WPP to hedge against wind 

power uncertainty [15]; a stochastic model intended to produce optimal offer strategies for WPP participating in an 

electricity market [16]. The stochastic model is a formulation explicitly taking into account the uncertainties faced 

by the scheduling activities of a WPP [17], using uncertain measures and multiple scenarios built by computer 

applications for wind power and electricity price forecasts [18]. The participation in bilateral contracts is suitable for 

thermal power producers in order to hedge against price uncertainty [19,20]. 

3 PROBLEM FORMULATION 

3.1 Day-Ahead Market 

The uncertainties about the availability of wind power may result in differences between the energy traded with a 

WPP and the actual quantity of energy delivered by the WPP. The revenue tR  of the GENCO for hour t  is stated 

as: 

t
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In (1), 
offer

tP  is the power at the close of the day-ahead market accepted to be traded and tI  is the imbalance income 

resulting from the balancing penalty of not acting in accordance with the accepted trade. The total deviation for hour 

t  is stated as: 

offer

t

act

tt PP   (2) 

where 
act

tP  is the actual power for hour t . 

In (2), a positive deviation means the actual power traded is higher than the traded in the day-ahead market and a 

negative deviation means the power is lower than the traded. Let 


t  be the price paid for excess of production and 



t  the price to be charged for deficit of production. Consider the price ratios given by the equalities stated as: 

1,  




tD

t

t
t rr




   and   1,  




tD

t

t
t rr




 (3) 

In (3), the inequalities at the right of the equalities mean, respectively, that the positive deviation never has a higher 

price of penalization and the negative one never has a lower price of penalization in comparison with the value of the 

closing price. 



3.2 Wind-Thermal Gencos 

The operating cost, tiF , for a thermal unit can is stated as: 

tizCbduAF tiitititiiti  ,,  (4) 

In (4), the operating cost of a unit is the sum of: the fixed production cost, iA , a fixed associated with the unit state 

of operation; the added variable cost, tid  , part of this cost is associated with the amount of fossil fuel consumed by 

the unit; and the start-up and shut-down costs, respectively, tib , and iC , of the unit. The last three costs are in 

general described by nonlinear function and worse than that some of the functions are non- convex and non-

differentiable functions, but some kind of smoothness is expected and required to use MILP, for instance, as being 

sub-differentiable functions. 

The functions used to quantify the variable, the start-up and shut-down costs of  units in (4) are considered to be 

such that is possible to approximate those function by a piecewise linear or step functions. The variable cost, tid   is 

stated as: 
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In (5), the variable cost function is given by the sum of the product of the slope of each segment, l

iF , by the segment 

power l

ti . In (6), the power of the unit is given by the minimum power generation plus the sum of the segment 

powers associated with each segment. The binary variable tiu  ensures that the power generation is equal to 0 if the 

unit is in the state offline. In (7), if the binary variable l

tit   has a null value, then the segment power 1

ti  can be 

lower than the segment 1 maximum power; otherwise and in conjunction with (8), if the unit is in the state on, then 
1

ti  is equal to the segment 1 maximum power.  In (9), from the second segment to the second last one, if the binary 

variable l

tit   has a null value, then the segment power l

ti  can be lower than the segment l maximum power; 

otherwise and in conjunction with (10), if the unit is in the state on, then l

ti  is equal to the segment l maximum 

power. In (11), the segment power must be between zero and the last segment maximum power. 

 



The nonlinear nature of the start-up costs function, tib , is normally considered to be described by an exponential 

function. This exponential function is approximated by a piecewise linear formulation as in [2] stated as: 

tiuuKb

r

rtitiiti 













 



 ,,

1

   






  (12) 

In (12), the second term models the lost of thermal, i.e., if the unit is a case of being in the state online at hour t and 

has been in the state offline in the   preceding hours, the expression in parentheses is equal to 1. So, in such a case 

a start-up cost is incurred for the thermal energy that are not accountable for added value in a sense of that energy 

has not been converted into electric energy. The maximum number for   is given by the number of hours need to 

cool down, i.e., completely lose all thermal energy. So, for every hour at cooling and until total cooling one 

inequality like (12) is considered. 

The units have to perform in accordance with technical constraints that limit the power between successive hours 

stated as: 
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In (13) and (14), the upper bound of 
max

tip  is set, which is the maximum available power of the unit. This variable 

considers: unit’s actual capacity, start-up/shut-down ramp rate limits, and ramp-up limit. In (16), the ramps-down 

and shut-down ramp rate limits are considered. In (14)–(16), the relation between the start-up and shut-down 

variables of the unit are given, using binary variables for describing the states and data parameters for ramp-down, 

shut-down and ramp-up rate limits. 

The minimum down time constraint is imposed by a formulation stated as: 
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In (17), if the minimum down time has not been achieved, then the unit remains offline at hour 0. In (18), the 

minimum down time will be satisfied for all the possible sets of consecutive hours of size iDT . In (19), the 

minimum down time will be satisfied for the last 1iDT  hours. 

 



The minimum up time constraint is also imposed by formulation stated as: 
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In (20), if the minimum up time has not been achieved, then the unit remains offline at hour 0. In (21), the minimum 

up time will be satisfied for all the possible sets of consecutive hours of size iUT . In (22), the minimum up time will 

be satisfied for the last 1iUT  hours. 

The relation between the binary variables to identify start-up, shutdown and forbidden operating zones is stated as: 
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The total power generated by the thermal units is stated as: 
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In (26), 
g

tp  is the actual power generated by the thermal units for the day-ahead market and 
bc

tmp   is the power 

contracted in each bilateral contract m . 

3.3 Objective Function 

The offer submitted by the GENCO is the sum of the power offered from the thermal units and the power offered 

from the wind farm 
D

tp . The offer is stated as: 
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The actual power generated by the GENCO is the sum of the power generated by the thermal units and the power 

generated by the wind farm. The actual power is stated as: 
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In (28), 
g

tp  is the actual power generated by the thermal units and d
tp   is the actual power generated by the wind 

farm for each scenario  . 



Consequently, the expected revenue of the GENCO is stated as: 

  tFrrP

N TN

t

I

i

titt

D

ttt

D

t

offer

t

D

t 













 

  

 ,

1 1 1






  (29) 

Subject to:  

tpp M

t

offer

t  ,0   (30) 

  tpp offer

t

act

tt  ,   (31) 

tttt   ,   (32) 

tdP ttt   ,0    (33) 

In (29), the revenue from the bilateral contracts are not included, however the cost of thermal production includes 

the total power generated by the thermal units stated in (26). 

In (30), 
M

tp  is maximum available power, limited by the sum of the installed capacity in the wind farm, maxEp , with 

the maximum thermal production stated as: 
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Some system operators require non-decreasing offers to be submitted by the GENCO. Non-decreasing offers is 

considered by a constraint stated as: 
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In (35), if the increment in price in two successive hours is not null, then the increment in offers in the two 

successive hours has two be of the same sign of the increment in price or a null value. 

4 CASE STUDY 

The proposed stochastic MILP approach is illustrated by a case study of a GENCO with a WTPP, having 8 units 

with a total installed capacity of 1440 MW, the data is in [21]. Data from the Iberian electricity market for 10 days of 

June 2014 [19] are used for the energy prices and the energy produced from wind farm. This data is shown in Fig. 1. 

 
 

 
 

Fig 1. Iberian market June 2014 (ten days); left: prices, right: energy. 



The nondecreasing offer is required. The energy produced is obtained using the total energy produced from wind 

scaled to the installed capacity in the wind farm, 360 MW. The expected results with and without coordination in the 

absence of bilateral contracts are shown in Table 1. 

Table 1. Results with and without coordination 

Case Expected profit 

Wind uncoordinated (€) 119 200 

Thermal uncoordinated (€) 516 848 

Coordinated Wind and thermal (€) 642 326 

Gain (%) 0,99 

 

The non-decreasing energy offer for the coordinated and uncoordinated approach is shown in Fig. 2 for two different 

hours. 

 
 

 
 

Fig 2. Bidding energy offers. 

In Fig. 2, the coordination allows for a minimum value of power offered higher than the one offered without 

coordination and allows for a lower price of the offering, which is a potential benefit to into operation. 

For the bilateral contracts 10 levels of energy contracted are simulated for the same market conditions described 

above. The power contracted in the bilateral contracts and the impact of bilateral contracts treated as a deterministic 

problem in the energy offered in the day-ahead market is shown in Fig. 3, where the energies are the average of the 

ten market scenarios for each level of energy from the bilateral contract. 

 
 

 
 

Fig 3. Left: bilateral contract; right: market scenarios energy average. 

In Fig. 3, the part of the energy offered from the wind is practically constant and the committed energy is always 

lower than the part of the energy offered from the thermal units. As the energy contracted increases and approaches 

the limit capacity of the thermal units, the difference between the committed energy and the part of the energy from 

the thermal units wind decreases as decreases the part of the energy offered from the wind. 

5 CONCLUSION 

A stochastic MILP approach for solving the offering strategy and the self-scheduling problem of a price-taker 

thermal and wind power producer is developed in this paper. The main results are the short-term bidding strategies 



and the optimal schedule of the thermal units. A mixed-integer linear formulation is used to model the main 

technical and operating characteristics of thermal units. The coordinated offer of thermal and wind power proved to 

provide better revenue results than the sum of the isolated offers. The stochastic programming is a suitable approach 

to address parameter uncertainty in modeling via scenarios. Hence, the proposed stochastic MILP approach proved 

both to be accurate and computationally acceptable, since the computation time scales up linearly with number of 

price scenarios, units and hours on the time horizon. Since the bids in the pool-based electricity market are made one 

day before, this approach is a helpful tool for the decision-maker. 

 

REFERENCES 

[1] Kongnam, C., Nuchprayoon, S. (2009). Feed-in tariff scheme for promoting wind energy generation. IEEE 

Bucharest Power Tech Conference, 1–6, Bucarest, Roumanie. 

[2] Morales, J.M., Conejo, A.J., Ruiz, J.P. (2010). Short-term trading for a wind power producer. IEEE 

Transactions on Power Systems, 25(1), 554–564. 

[3] Bitar, E.Y., Rajagopal, R., Khargonekar, P.P., Poolla, K., Varaiya, P. (2012). Bringing wind energy to market. 

IEEE Transactions on Power Systems, 27(3), 1225–1235. 

[4] EWEA. (2014). European Statistics Report. 

[5] International Energy Agency. (2014). Key World Energy Statistics Report. 

[6] Wu, A., Shahidehpour, L., Li, T. (2007). Stochastic security-constrained unit commitment. IEEE Transactions 

on Power Systems, 22(2), 800–811. 

[7] Pousinho, H.M.I., Catalão, J.P.S., Mendes, V.M.F. (2012). Offering strategies for a wind power producer 

considering uncertainty through a stochastic model. 12th International Conference on Probabilistic Methods 

Applied to Power Systems, 1139–1144, Istanbul, Turkey. 

[8] Trivedi, A., Srinivasan, D., Biswas, S., Reindl, T. (2015). Hybridizing genetic algorithm with differential 

evolution for solving the unit commitment scheduling problem. Swarm and Evolutionary Computation, 23,  

50–64. 

[9] Senjyu, T., Shimabukuro, K., Uezato, K., Funabashi, T. (2003). A fast technique for unit commitment problem 

by extended priority list. IEEE Transactions on Sustainable Energy, 18, 277–287. 

[10] Laia, R., Pousinho, H.M.I., Melício, R., Mendes, V.M.F., Reis, A.H. (2013). Schedule of thermal units with 

emissions in a spot electricity market. Technological Innovation for the Internet of Things, 394, 361–370. 

[11] Ostrowski, J., Anjos, M.F., Vannelli, A. (2012). Tight mixed integer linear programming formulations for the 

unit commitment problem. IEEE Transactions on Power Systems, 27(1), 39–46. 

[12] Floudas, C., Lin, X. (2005). Mixed integer linear programming in process scheduling: modeling, algorithms, 

and applications. Annals of Operations Research, 139, 131–162. 

[13] El-Fouly, T.H.M., Zeineldin, H.H., El-Saadany, E.F., Salama, M.M.A. (2008). Impact of wind generation 

control strategies, penetration level and installation location on electricity market prices. IET Renewable Power 

Generation, 2, 162–169. 

[14] Angarita, J.L., Usaola, J., Crespo, J.M. (2008). Combined hydro-wind generation bids in a pool-based 

electricity market. Electric Power Systems Research, 79, 1038–1046. 

[15] Hedman, K., Sheble, G. (2006). Comparing hedging methods for wind power: using pumped storage hydro 

units vs options purchasing. International Conf. on Probabilistic Methods Applied to Power Systems, 1–6, 

Stockholm, Sweden. 

[16] Matevosyan, J., Soder, L. (2006). Minimization of imbalance cost trading wind power on the short-term power 

market. IEEE Transactions on Power Systems, 21(3), 1396–1404. 

[17] Ruiz, P.A., Philbrick, C.R., Sauer, P.W. (2009). Wind power day-ahead uncertainty management through 

stochastic unit commitment policies. IEEE/PES Power Systems Conf. and Exposition, 1–9, Seattle, USA. 

[18] Coelho, L.S., Santos, A.A.P. (2011). A RBF neural network model with GARCH errors: application to 

electricity price forecasting. Electric Power Systems Research, 81, 74–83. 

[19] Laia, R., Pousinho, H.M.I., Melício, R., Mendes, V.M.F., Reis, A.H. (2013). Schedule of thermal units with 

emissions in a spot electricity market. In Technological Innovation for the Internet of Things, Springer, Berlin, 

361–370. 

[20] Laia, R., Pousinho, H.M.I., Melício, R., Mendes, V.M.F. (2015). Self-scheduling and bidding strategies of 

thermal units with stochastic emission constraints. Energy Conversion and Management, 89, 975–984.  

[21] Red Eléctrica de España. (2015, October 2015). http://www.esios.ree.es/web-publica/. 

 


