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Abstract
Irrigation canals are complex hydraulic systems
difficult to control. Many models and control
strategies have already been developed using linear
control theory. In the present study, a PI controller
is developed and implemented in a brand new
prototype canal and its features evaluated
experimentally. The base model relies on the
linearized Saint-Venant equations which is
compared with a reservoir model to check its
accuracy. This technique will prove its capability
and versatility in tuning properly a controller for
this kind of systems.

1 Introduction
It is nowadays clear and well accepted that water
resources are becoming scarce and, in the near
future, will actually present one of the biggest
problems that modern societies have to face.

Irrigation water is the main use of water resources
and so, better conveyance efficiencies as well as
intelligent management of open-channel
conveyance and delivery systems are main goals to
achieve within a short period of time.

Upstream control canals are only efficient when
operates with rigid water delivery methods [6].
Nevertheless, a great part of these systems work

with flexible water delivery schedules and, in that
case, operational losses become much more
significant [6].

One of the several ways to try to achieve a better
efficiency in irrigation canals is to provide
automatic systems of control and monitoring to this
kind of facilities.

The present paper will show a possible technique
of tune experimentally a PI controller for an
automatic upstream control canal.

2 Brief description of the experimental
facilities
The experimental automatic canal is located in the
University of Évora1, Portugal.

The canal has four pools, measuring roughly 40 m
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Figure 1: Geometric characteristics of a canal pool
                                                
1 All the equipments as well as some experimental facilities
photos can be seen in http://canais.nuhcc.uevora.pt
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each, and the geometry of its cross section is
trapezoidal (Figure 1). The  hydraulic features used
in project, as well as in all the following analysis,
were a flow of 0,090 m3/s for a uniform water
depth of 0,700 m.

The water in this experimental canal flows in
closed circuit, regarding water savings; the return
to the storage reservoir is guaranteed by a
traditional canal.

Besides these hydraulic equipments, each group
gate-offtake is controlled and monitorised with
PLCs responsible for all data acquisition and
transfer (analogic and digital signals) as well as the
control actions after appropriate programming.

The traditional canal has also a couple of cross-
section regulators and two offtakes for
Figure 2: Schematic longitudinal representation
of a generic group gate-offtake of the automatic

canal
t

The four pools of the automatic canal are divided
by three sluice gates; the last one ends with an
overshot gate, which discharges to the referred
traditional canal.

Immediately upstream of each gate there is an
orifice type offtake, equipped with a flowmeter,
and a counterweight-float level sensor (Figure 2); a
servo-motorised valve controls the flow in the
offtake. The gate is also motorised and both
equipments have position sensors.

The flow within the automatic canal is regulated by
another servo-motorised valve located at the exit of
an high reservoir (head of the automatic canal),
simulating a real load situation. This high reservoir
is filled with the recovered water pumped from a
low one, which collects the flow from the
traditional canal (Figure 3).

Regarding water savings, all offtakes discharge
towards the traditional canal. Therefore, the
installation has no losses of water except
evaporation effects which are not, in this case,
significant.
Figure 3: Schematic representation of both
raditional and automatic experimental canals



demonstrating purposes. These equipments were
not mentioned earlier because the following study
will only involve automatic control chains.

It is noticeable the versatility of this experimental
facilities on the field of irrigation canal studies
once one can choose the length of each reach,
modifying its hydraulic behaviour, as well as
simulate several water demand scenarios.

3 Mathematical Modelling
The main goal of an irrigation canal is to supply
water as well as transport it from its source, river or
dam, for instance, to the final users, usually
farmers.

3.1 Basic equations
3.1.1 Saint-Venant equations
The dynamic behaviour of these systems can be
well described by a set of equations known as the
Saint-Venant equations [7]:
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where Q is the discharge, H the water depth, B the
water surface width, A the water cross-section area,
g the gravity acceleration, x the longitudinal
abscissa in the direction of flow, t the time, i the
bottom slope and J the energy gradient slope that
can be accurately approximated by the Manning-
Strickler formula:
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where K is the Manning-Strickler coefficient and R
the hydraulic radius defined by P

AR = , where P

is the wetted perimeter.

These equations are strongly non-linear and, for
real canal systems, have no known analytical
solution.

3.1.2 Linearization

There are many methods to solve numerically the
Saint-Venant equations in order to better study real
systems. In the present case, the referred equations
were in the first place made linear, to overcome
their non-linearity and in order to become possible
the use of linear controllers.

The equations are linearized assuming conditions
near some steady state. This ensures that, for small
deviations from a considered setpoint, the resulting
equations will still describe the behaviour of the
system.

The linearization of the Saint-Venant equations
leads to ([9] cited by [3]):
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where q and h are the variations of discharge and
water depth, respectively, from a considered steady

state, c the wave celerity ( B
gAc = ), V flow

velocity ( A
QV = ) and 0 subscript stands for steady

state values; 0ξ  and 0γ are factors due to
linearization defined by
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where Fr is the Froude number defined
by c

VFr = .

In spite of having now all the necessary equations
linearized, there are still many steady state
parameters left to determine, exception made to



steady state discharge that one can choose freely as
it is the condition for linearization.

Steady state parameters can be calculated by taking
again the Saint-Venant equations and assuming no
variations in discharge and flow depth in time. So,
solving them leads to [7]:
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This equation represents the spatial gradually
varied flow and will be used to determine the flow
profile in steady state flow conditions.
Nevertheless, it is necessary to solve it by a
numerical method, once it has no analytical
solutions. As mentioned before, the values assumed
are the project nominal features of the canal, i.e.,
discharge of 0,090 m3/s and 0,070 m of water
depth.

3.1.3 Finite differences method
Although the equations are linearized, they are still
partial differential equations. Thereby, by using the
finite differences method they are transformed in a
set of ordinary differential equations which is
achieved by discretizing the equations (4) and (5).

In the present study, central differences in space
were chosen for the discretization:
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Applying this to the linearized Saint-Venant
equations and assuming that the spaced grid is
regular leads to:
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where ii xxx −=∆ +1 .

As the method considered is the central differences
method, it is not possible to apply it to upstream
neither to downstream boundaries once there is in
both cases one node that is missing.

Therefore, instead of central differences it is
possible to apply forward and backward differences
to downstream and upstream boundaries,
respectively.
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There is no need of any equations for q1 or qn as
they are external boundary conditions.

It is known that this operation leads to a set of 2n-2
equations, if n is the number of nodes used in
discretizing. So, a state space representation will be
so much helpful as convenient in analysing the
system from now on, once the system state is
perfectly described by all these variables – state
variables. Nevertheless, all further analysis will be
made in frequency domain.

The form of the state space representation can be
written as [4]

BuAxx
dt
d += (16)

Cxy = (17)

where x is the state vector, A the state matrix, B the
input matrix, y the output vector and C the output
matrix.

In the present situation, it can be seen that the state
vector, x, will contain the flow and depth variations
in all the nodes while the input vector, u, will
contain the discharges at the upstream and
downstream boundaries; the output matrix will
only have one non-zero element depending on
which level is measured and, in this particular case,
desirable of controlling. This feature it is typical of
canal control, where the measured and controlled
variable are the same [7].

4 Control Strategy and Numerical
Simulations

4.1 PI controller



The most commonly used controller in standard
applications is PID control and hydraulic systems
like irrigation canals make no exception.

In general, the PID control algorithm can be written
as [4]:
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where u(t) is the control action, e(t) the deviation of
the controlled variable from the desired setpoint
and KP, KD and KI are the proportional, derivative
and integral gains, respectively.

In most cases, the controller is reduced to a PI due
to difficulties in tuning properly the derivative
gain, KD ([1] cited by [2]).

Many standard ways have been developed to tune a
PI controller, as the well-known and widely used
Ziegler-Nichols method [4]; these empirical rules
allow to determine the proportional and integral
gains based on the transient response of the real
system.

Transposing the problem to an irrigation canal with
multiple pools and gates, it is easy to verify that
any experiments who aim to determine
experimentally these parameters will not be much
accurate due to the interactions between the various
pools of the whole canal.

The strategy adopted in the present study to
determine the proportional and integral gains was
to compare the frequency response of the state
space model, which relies on the linearized Saint-
Venant equations, with a simple model with the
assumption of each pool as a reservoir (reservoir
model)

So, assuming each pool as a reservoir, water depth
and flow are related by

Q
A

H
dt
d

Sup

∆1= (19)

where H is the water depth, Q the discharge and
ASup is the superficial area of the pool.

Taking the Laplace transform to equation (19)
leads to
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where s is the Laplace variable.

Qin and Qout can be thought as the upstream and
downstream discharges for the considered pool of
the canal for better understanding of this procedure.

Taking the Laplace transform, it is possible to
rewrite the equation (18), assuming no derivative
gain,

( ) ( )se
s

K
Ksu I

P 




 += (21)

Considering the water depth as the controlled
variable and the discharges as control actions,
equation (21) yields
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for upstream water depth control.

Combining equations (20) and (22)
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assuming already that both gains are negative.

Equation (22) is a second order transfer function
which has a global form defined by [4]
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where nϖ  is the natural frequency of the system
and ξ  the damping ratio.

Combining equations (23) and (24) leads to  quite
simple expressions for KP and KI.
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Figure 4: Bode representations for the first pool
of the canal and for both reservoir and finite

differences models

The value of nω  adopted will depend of the Bode
response of both systems, i.e., the selected value
for calculations has to correspond to a frequency
where both systems have similar behaviours.

The frequency value will be related with the lowest
resonance frequency of the system by

n
r
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ω
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where n is an integer number that is chosen
according to the condition mentioned above. In all
calculations, ξ  will be assumed as 1, as it is the
value that better fits experimentally to this canal.

4.2 Numerical results
The Bode plot for the first pool of the canal (Figure
4) shows clearly that both models respond
approximately until a certain value of frequency;
any controller that will be designed must take that
fact in consideration. All these plots were

computed for the first pool of the canal with all its
specific geometric characteristics and assuming the

transfer function 
n
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H
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Now, it is possible to identify the value of the
frequency of the lowest resonance peak as well as
the value where the differences of both models
become significant (Figure 5).

It can be seen by analysing the Bode plot above
that any value of n (equation (27)) has to be greater
or equal than 4. So, the values of n chosen and the
correspondent proportional and integral gains
calculated by equations (25) and (26) are shown in
Table 1.

These values of KP and KI were submitted to
experimental testing of its performance with results
and discussion shown in the following sections.

Table 1: Chosen values of n and resulting
proportional and integral gains, KP and KI

Controller n KP KI
A 4 -1,2 -0,024

B 6 -0,8 -0,010

C 8 -0,6 -0,006

5 Experimental Validation

5.1 Test basis
Although in upstream control canals the main goal
of any kind of regulator or control systems is to
keep constant the water depth in order to provide
previously accorded discharges without any
significant delay, the tests here presented were not
made using any offtake. These tests only intend to
prove the capability of the controller with the
parameters calculated by the proceeding above
described.

All the tests were made only working with the first
gate, having all the others controlling as well the
upstream water depth in their pools, using
controller C, once these had their performance
already proven [8].

As mentioned before, the project nominal features
of the experimental canal are a 0,090 m3/s flow and

h

Figure 5: Bode magnitude representations of
the lowest resonance peak frequency and

ighest frequency value of similar behaviour of
both models



a 0,070 m uniform water depth. So, the setpoint in
water depth used in all testing was precisely 0,700
m, having the flow varying from 0,020 m3/s to a
maximum of 0,080 m3/s and the other way down.
The maximum project flow was not achieved
because a 0,090 m3/s value was found to be quite
severe for the installed equipments. Nevertheless,
there are three distinct scenarios: the flow was
modified in steps of 0,010 m3/s, correspondent to
11 % of the canal global capacity, 0,020 m3/s (22
%) and 0,030 m3/s (33 %).

In spite of testing had not included any offtake
operations, the results can easily be thought as so,
because the final selected controller will prove its
capability of bringing the water level back to the
desired setpoint, independently of the disturbance
epicentre, flow or offtake opening. In other words,
the controller will be capable of responding
properly to all upstream disturbances.

5.2 Test results
The following figures show the results of all the
tests described above. An exception occurs with the

0,030 m3/s step of the controller A test, which is not
presented, due to the fact of the gate opens
completely as a result of the 33 %  disturbance, not
showing any influence on the water level.

As one can see, the controller A has a bit severe
behaviour to the actuators, although it can actually
accomplish the task of keeping the water level on
the desired setpoint (Figures 6 and 7). This

Figure 6 – Test result of discharge step
disturbances of 0,010 m3/s for the controller A
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Figure 7– Test result of discharge step
turbances of 0,020 m3/s for the controller A
Figure 8– Test result of discharge step
turbances of 0,010 m3/s for the controller B
Figure 10 – Test result of discharge step
sturbances of 0,030 m3/s for the controller B
Figure 9 – Test result of discharge step
turbances of 0,020 m3/s for the controller B



performance is altered when the disturbance is 33
% of the canal capacity; in this case, the controller
does not respond to the expected.

By the other hand, the controller B responds quite
good to disturbances of 11 % and 22 % global
capacity (Figure 8 and 9). For the last test of this
controller, shown in Figure 10, the behaviour of the
actuators almost reaches the similar test of the
controller A, with the gate higher than the water
level for a short period of time

Controller C responds very well to all tests made,
bringing the water level to the desired setpoint,
with no significant overshoot or severe behaviour
to the actuators.

Anyway, for better understanding, it is possible to
zoom and superpose both controller B and C
responses to 11% and 22% disturbances; 33%
disturbance is not considered as it quite
exaggerated disturbance to a canal of this kind
(Figures 14 and 15).
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Figure 14 – Superposition of step disturbances
of 0,010 m3/s test for the controllers B and C
Figure 15 – Superposition of step disturbances
of 0,020 m3/s test for the controllers B and C
Figure 11 – Test result of discharge step
sturbances of 0,010 m3/s for the controller C
Figure 12 – Test result of discharge step
sturbances of 0,020 m3/s for the controller C
Figure 14 the differences between the controllers
 not very visible due to noise measurements,
hough it is noticeable that controller C can bring
 level back to the setpoint quicker, especially
en working with higher values of flow. The
ferences can be better observed in Figure 15,
ere it becomes clear that controller C has a
aller overshoot.
Figure 13 – Test result of discharge step

sturbances of 0,030 m3/s for the controller C



6 Discussions and Conclusions
The main objective of this paper it was to study
upstream water level control in an experimental
irrigation canal and design and tune a PI controller.

It is clear that the goal was achieved and this
technique proved its capability of properly tune the
desired controller. In spite of having the advantage
of using experimentally the considered canal, this
can work as well as a disadvantage because not
always is possible to study experimentally an
irrigation canal.

By the results shown, the conclusions point that
controller C must be selected for a more accurate
control once it fits well the purpose of keeping the
water level constant, reacting to the provoked
upstream disturbances, without significant
overshoot or even severe behaviour to the
actuators.

Nevertheless, it was expected that the other two
controllers should in fact work even better,
fulfilling their goal. The reason why this was not
observed, is that servo-gates have constant speed,
roughly 3,75 mm/s, and for that every control
actions are limited by rising and falling slew rates.
Further investigation will improve these and
develop another control strategies.
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