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Abstract

The main goal of this paper is to expose and validate a method-
ology to design efficient automatic controllers for irrigation
canals, based on the Saint-Venant model. This model-based
methodology enables to design controllers at the design stage
(when the canal is not already built). The methodology is ap-
plied on an experimental canal located in Portugal. First the full
nonlinear PDE model is calibrated, using a single steady-state
experiment. The model is then linearized around a functioning
point, in order to design linear PI controllers. Two classical
control strategies are tested (local upstream control and distant
downstream control) and compared on the canal. The experi-
mental results shows the effectiveness of the method.

1 Introduction

The control of irrigation canals has been the subject of nu-
merous scientific publications since the introduction of com-
puters in the management of such large and complex systems
[4]. However, only few of the proposed controllers have been
effectively tested in a real situation [16]. In this paper we vali-
date on a real system a model-based methodology to design PI
automatic controllers for irrigation canals.

The problem of designing controllers for irrigation canals is
difficult, because their management involves many different as-
pects. From a control point of view, this problem is reduced to
the control of water levels at some specific points in the main
canal. In this case, since the water distribution is done by grav-
ity offtakes, a “good” distribution is obtained by maintaining
a constant water level at the offtake. In order to simplify the
exposition, we will consider the case where the control speci-
fication has been expressed in terms of controlling water lev-
els upstream of control structures, and only consider classical
control design methods (PI controllers). This is a first step val-
idation for more advanced control design methods [12, 10] that
will be validated in another paper [11].

From a control point of view, we want to control a nonlinear
system around equilibrium points with a linear controller (typ-
ically a PI). This requires alinear model of the system around
the given equilibrium points.

Two main approaches can be followed to obtain a linear model
in the case of irrigation canals:

1. To use identification tools [17],

2. To linearize a knowledge-based full nonlinear model, i.e.
Saint-Venant equations and hydraulic structures equations
(see [13] and references therein).

The cost of each approach in terms of experimental data can be
summarized as follows:

1. The first approach requires to use the canal to identify the
dynamics. Experiments have to cover all the required set-
points of the system: a set of discharge values between
maximum and minimum values, set of downstream limit
conditions, set of gate openings. This has to be done on
each pool of the canal, which leads to a large number
of experiments, and model identifications. The system is
thus represented by a large number of linear systems.

2. The second approach necessitates the data needed to cal-
ibrate a full Saint-Venant model for simulation purposes.
Actually, one needs the canal geometry, and a single ex-
periment in steady state (for the canal or for each pool), in
order to calibrate Manning coefficients and gate discharge
coefficients.

At this stage, it should be clear that the second approach is
less demanding in terms of data, since the geometry is usu-
ally available in most of the existing canals. Moreover, a good
estimate of Manning coefficient can usually be deduced from
the canal material –this is the basis of the (structural) design
of irrigation canals– and even the gate discharge coefficients
can be estimated from the structure geometry [8]. Therefore,
once the geometry is known, this knowledge-based model can
easily be obtained. This enables to have anintegrated design
methodfor irrigation canals: the automatic control scheme can
be integrated into the structural design of irrigation canals.

Since the objective is to design linear controllers, one needs
linear models. For this purpose, let us examine the implications
of both approaches:

1. In the first approach, the linear models obtained from
identification can be used directly. A difficulty that arises
is: How to quantify the uncertainty?



2. For the second approach, linear models have to be de-
duced from Saint-Venant equations. The dynamic uncer-
tainty is then directly linked to the physical parameters
uncertainties (e.g. uncertainty on coefficients of Saint-
Venant equations, actuator uncertainty, sensor uncertainty,
etc.).

If the full nonlinear model is valid, then the second approach
encompasses the first one. In fact, a linear model could be
directly identified on the nonlinear simulator (see [7], [6]).

However, even if Saint-Venant equations have been used by
hydraulic engineers for simulation purposes, the obtention of
linear models for controller design directly from the equations
needs to be clarified. A first way is to consider only uniform
regimes (where discharge and water depth are constant along
the pool) and the associated analytical solution in the Laplace
domain (see [2] [3]). In this case, how to describe the behavior
in non uniform cases (i.e. the vast majority of cases)? A tenta-
tive step to approximate the transfer function has been done by
[16], but did not lead to an exact solution.

A second way is to use numerical schemes (e.g. Preissmann
scheme) to deduce linear models (see [13], [1], [5]). In this
case, how the obtained approximate model can be validated
from a control point of view (in contrast to the classical valida-
tion in the time-domain)?

In conclusion of this short discussion, the use of a model-based
method has been largely undermined by the difficulties linked
to both ways. Recent works allow to bypass these difficulties,
by the obtention of a continuous linear model directly from
Saint-Venant equations for any regime [9].

On this basis, we propose a complete model-based methodol-
ogy to design controllers for irrigation canals. This methodol-
ogy can be summarized in four successive steps:

1. Obtain the data necessary for the full nonlinear model:
canal geometry, hydraulic structures description, steady
state measurements (upstream discharge, upstream and
downstream water levels at each structure, gate openings).

2. Calibrate the model:

– hydraulic model calibration: determine Manning
and discharge coefficients using the steady state
measurements,

– dynamic model calibration: model the actuators,
sensors and data transmission dynamics, using either
the data given the constructor, either direct identifi-
cation on step response.

3. Obtain linear models based on the calibrated full nonlinear
one.

4. Design controllers using the linear models. In a first ap-
proximation, the actuator/sensors dynamics can be ne-
glected, since they are usually very rapid compared to the
canal dynamics.

The methodology is exposed and applied for simple controllers
(PI). This allows to use classical design methods in order to
validate the general methodology, by applying it to a real sys-
tem. Once the linear models are validated, it is easy to use them
to design more sophisticated controllers. Such an approach is
developed in another paper [11], which examines the perfor-
mance requirements attached to the control of irrigation canals.

The paper is structured as follows: a brief description of the
experimental canal is firstly given, then the methodology is ex-
posed, and applied to this specific case. Experimental results
validating the approach are finally presented and discussed.

2 Canal description

The automatic canal used in the present study is a component of
the experimental facility of the Hydraulics and Canal Control
Center (NuHCC) of the University of́Evora (Portugal).
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Figure 1: Schematic representation of the experimental canal

Design The experimental canal is a trapezoidal and lined
canal, with a general cross section of bottom width 0.15 m,
sides slope 1:0.15 (V:H) and depth 0.90 m. The last 7 m down-
stream of canal have a rectangular cross section of 0.7 m width.
The overall canal is 145.5 m long and the average longitudinal
bottom slope is about1.5 × 10−3. The design flow is 0.09
m3s−1.

A longitudinal view of the canal is schematized in figure 1.

Control devices The canal inlet is equipped with a motor-
ized flow control valve, that delivers a dischargeu1. The down-
stream end is controlled with a rectangular sluice gateu2 (over-
shot gate).

Outlet An offtakep is located at the downstream end of the
pool, equipped with an electromagnetic flowmeter and a mo-
torized butterfly valve.

Sensors A water level sensor is installed within an offline
stilling well at the downstream end of the pool, measuring the
downstream water depthy. The sensor is of float and counter-
weight type attached by a stainless steel tape; this tape runs
over a sprocket wheel. The wheel movements are transmitted
to a potentiometer that transmits to the controller the analogical
input corresponding to the water surface.



3 Modelling of an irrigation canal

3.1 Hydraulic model

The Saint-Venant equations are used to model the flow in the
canal. These equations are nonlinear hyperbolic partial differ-
ential equations involving the average dischargeQ(x, t) and
the water depthY (x, t) along one space dimensionx [4]:

∂A

∂t
+

∂Q

∂x
= 0 (1)

∂Q

∂t
+

∂Q2/A

∂x
+ gA

∂Y

∂x
= gA(I − Sf ) (2)

with A(x, t) is the wetted area [m2], Q(x, t) the discharge
[m3/s] across sectionA, Y (x, t) the water depth [m],Sf (x, t)
the friction slope,I the bed slope andg the gravitational accel-
eration [m/s2].

Two boundary conditions are necessary for this partial differ-
ential system, for exampleQ(0, t) = Q0(t) andQ(X, t) =
QX(t), whereX is the length of the considered channel. The
initial conditions are given byQ(x, 0) andY (x, 0).

The friction slopeSf is modelled with Manning-Strickler for-
mula:

Sf =
Q2n2

A2R4/3
(3)

with n the Manning coefficient [sm−1/3] andR the hydraulic
radius [m], defined byR = A/P , whereP is the wetted
perimeter [m].

Hydraulic structure equation

The hydraulic structure (over shot gate) is modelled using the
classical equation (free flow case):

Q = CdLv

√
2g(Y −W )3/2 (4)

with Q the discharge through the structure,Y the upstream wa-
ter level,W the sill elevation andLv the gate width.

3.1.1 Steady flow model calibration

For a given constant upstream discharge (45 l/s), the water level
and sill elevation were monitored. This steady flow period en-
abled to identify the Strickler coefficientK for each pool and
the discharge coefficient at each structure. The calibration lead
to a discharge coefficient of 0.4 for the overshot gate and a
Strickler coefficient of 60 for the canal.

3.1.2 Unsteady flow model validation

The nonlinear model calibrated in steady flow is validated in
unsteady flow for different flow configurations. For simula-
tion purposes, we used SIC, a computer program developed by
Cemagref [14]. This mathematical model solves the full non-
linear Saint-Venant equations using a finite difference scheme
(Preissmann scheme). Figure 2 corresponds to the same regime
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Figure 2: Step response aroundQ0 = 45 l/s, downstream
boundary conditiony0 = 0.6 m

as the one used for the steady flow calibration. The model fits
very well the data.

In figure 3, the downstream boundary condition has changed.
The model is still able to accurately reproduce the level varia-
tions.
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Figure 3: Step response aroundQ0 = 45 l/s, downstream
boundary conditiony0 = 0.7 m

Many other simulations were done to validate the model, which
appeared to be very accurate, even for different flow conditions.
This validates the Saint-Venant model for this canal.

3.2 Control oriented model

3.2.1 Linear hydraulic model

The linear model used for control design is obtained following
[9]: we consider small variations of water depthy(x, t) and
dischargeq(x, t) around stationary values defined byY0(x) (m)
andQ0(x) (m3/s). This leads to the linearized Saint-Venant



equations:

L0
∂y

∂t
+

∂q

∂x
= 0 (5)

∂q

∂t
+ 2V0

∂q

∂x
− β0q + (C2

0 − V 2
0 )L0

∂y

∂x
− γ0y = 0 (6)

L0 is the top width for the equilibrium regime (m),
V0 the average velocity (m/s) andC0 =

√
gA0/L0

the wave celerity (m/s). Moreover, one hasγ0 =
V 2

0
∂L0
∂x + gL0

[
(1 + κ)I − (1 + κ− F 2

0 (κ− 2))∂Y0
∂x

]
, β0 =

− 2g
V0

(
I − ∂Y0

∂x

)
and κ = 7

3 − 4S0
3L0P0

∂P0
∂Y . F0 is the Froude

numberF0 = V0
C0

. A transfer matrix linear model that can be
used for control purposes is obtained using Laplace transform
and a specific numerical method [9].

As a linearized model can be obtained from the computer
program SIC, we compare the continuous time linear model
with the discrete time model obtained with the finite difference
scheme [13] (see figure 4). It is clear that the frequency domain
responses of the models are very close up to a decade below the
Nyquist frequency.
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Figure 4: Bode plots of the continuous model (—) and of the
finite difference model (– –), forQ = 0.045 m3/s, YX = 0.6
m.

This model needs to be completed in our case with a model of
the actuators and sensors dynamics. The equations describing
hydraulic structures interactions with the flow are linearized
and added to the model. The hydraulic structure (overshot gate)
is modelled using the linearized equation:

q(X, t) = k1y(X, t) + k2u2(t) (7)

with q(X, t) the discharge through the structure,y(X, t) the
upstream water level,u2 the gate opening. Coefficientsk1, k2

are obtained by linearizing the structure equation (4) around a
given functioning point.

3.2.2 Actuators and sensors modelling

Actuators and sensors dynamics are identified using their step
responses. They are represented by linear models of first order

with delay. The upstream actuatoru1 delivering a discharge is
modelled with the following transfer function:

f1(s) =
e−4s

8s + 1

The downstream actuator (overshot gate)u2 is modelled with
the following transfer function:

f2(s) = 0.415
e−2s

3s + 1

Putting together these transfer functions with the linear model
obtained from the hydraulic nonlinear PDE model (Saint-
Venant equations), leads to the model for controller design:

y = G1(s)u1 + G2(s)u2 + G̃(s)p

wherey is the downstream water level,u1 the upstream control
variable (a discharge),u2 the downstream control variable (gate
opening), andp is a perturbation corresponding to the outlet
flow.

This model will be used to design simple monovariable PI con-
trollers.

4 PI controllers design

4.1 Control politics for an irrigation canal

The real-time management of an open-channel irrigation canal
is a difficult task, especially because of the time-lag between
the water resource (located upstream) and the water user (lo-
cated downstream). In fact, a simple way to satisfy water needs
would be to deliver a constant upstream discharge correspond-
ing to the maximal water demand, and to let the remaining
discharge flow downstream. This type of management corre-
sponds to the so-calledupstream controlstrategy, used in the
majority of irrigated perimeters managed with a scheduled ro-
tational delivery.

An opposite way to manage the system would be to deliver only
the necessary water requested by the users (downstream control
strategy). Then, since a time-delay is necessary to transport
water from the reservoir to the user, this control strategy cannot
immediately satisfy the water demands.

Taken into account the physical limitations in terms of civil en-
gineering, the two classical ways to control an irrigation canal
are as follows [15]:

• distant downstream control, where the upstream control
variableu1 is manipulated to control a water levely lo-
cated at the downstream end of the pool,

• local upstream control, where the downstream control
variableu2 is manipulated to control a water levely lo-
cated just upstream.

In the following, PI controllers will be designed for each of
these classical control strategies, using the obtained model.



4.2 Distant downstream control

The real-time performance of distant downstream control is
limited by the time-delay between upstream discharge and
downstream level (hereτ = 60 s). The time-delay structurally
limits the achievable bandwidth up to about1/τ (see [12]). The
tuning of the controller is done using classical rules in order to
get the desired gain and phase margins (in our case a gain mar-
gin of 8 dB and at least 60 degrees of phase margin, see figure
5).

The distant downstream controller is obtained as:

K1(s) =
0.455s + 4.5× 10−3

s
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Figure 5: Bode plot ofK1G1 for the distant downstream con-
troller

Figure 6 gives the experimental results obtained with the dis-
tant downstream PI controller. A downstream withdrawal of 10
l/s (0.01 m3/s) is done at timet = 280 s. The controller is able
to reject this unknown perturbation in about 400 s (time for the
outputy to meet the targetyc = 0.6 m). The outlet is closed at
time t = 750 s, and the response appears to be symmetrical.

4.3 Local upstream control

Local upstream control is not subject to control performance
limitations, since there is no delay between the actuator and
the controlled variable (in fact, it can be shown that the trans-
fer function isouter). However, the actuator dynamics induce
physical limitation on the control.

The PI controller is tuned in order to have a gain margin of
12 dB (in order not to control the first resonant mode of the
system) and at least 60 degrees of phase margin, see figure 7.

The local upstream controller is given by:

K2(s) =
2s + 0.1

s

Figure 8 gives the experimental results obtained with the local
upstream PI controller. The simulation with a linear model is
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Figure 6: Experimental response of the distant downstream PI
controller to a downstream withdrawal, comparison with a lin-
ear simulation
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able to rather accurately reproduce the dynamic behavior of
the system in response to a downstream withdrawal.

A downstream withdrawal of 10 l/s (0.01 m3/s) is done at time
t = 120 s. The controller is able to reject this unknown pertur-
bation in about 100 s, which is about 4 times quicker than with
the downstream controller.

In the local upstream control case, the bandwidth is signifi-
cantly higher than in the distant downstream control case. The
measurement noise is then amplified by the control system.
This explains the difference between the linear simulated con-
trol and the measured one in figure 8 (there is a dead band of 5
mm on the control actionu2). The measurement noise should
be filtered in order to have a better fit. In fact, part of the gain
margin is used to take this into account.
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troller to a downstream withdrawal, comparison with a linear
simulation

5 Conclusion

The paper has exposed and validated a methodology to design
efficient automatic controllers for irrigation canals, based on
the Saint-Venant model. The methodology has been applied on
an experimental canal located in Portugal. The interest of the
method is to greatly simplify the model calibration (asingle
experiment is needed to calibrate the model in steady state).
Linear models around different reference points can then be
obtained using recent results [9].

Two types of PI controllers were designed and field tested:

• a distant downstream PI controller, where the downstream
water elevationy is controlled using the upstream dis-
chargeu1,

• a local upstream PI controller, where the downstream wa-
ter levely is controlled using the downstream gateu2.

The experimental results are very satisfactory for classical PI
controllers design for local upstream and distant downstream
control. The proposed model-based methodology is therefore
validated for PI controllers; these promising results will be gen-
eralized to the control of multiple canal pools.
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de ŕegulateurs automatiques pour le canal réduit d’Évora”.
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complexes : application aux systèmes hydrauliques̀a surface
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