Development of a long-life vacuum-packaged ready-to-eat meat product based on a traditional Portuguese seasoned meat

Marta Laranjo,1 Ana Gomes,2 Maria Eduarda Potes,1,3 Maria José Fernandes,4 Maria João Fraqueza4 & Miguel Elias1,2*

1 Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
2 Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
3 Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
4 CIISA, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, 1300-477 Lisbon, Portugal

(Received 16 October 2015; Accepted in revised form 17 January 2016)

Summary Carne do alguidar is a Portuguese traditional pork fried meat, usually manufactured for self-consumption purposes. This study developed a ready-to-eat (RTE) meat product, to meet today’s consumers’ convenience, manufactured at the industrial scale evaluating its quality and shelf life, assessing the effect of vacuum packaging and the use of an antioxidant (50 ppm BHT) to enhance oxidative stability. Physicochemical and microbiological parameters were assessed, and a sensory analysis was performed. Interestingly, no significant differences were recorded between control (non-BHT) and antioxidant (BHT) samples. Microbiological counts remained at low levels throughout the storage period, ensuring the product’s required microbiological quality. At later storage stages, higher values of thiobarbituric acid-reactive substances arose and off flavours and aromas were perceived. Still, overall appreciation was not affected until 12 months of storage and a significant depreciation was perceived only after 15 months. Fibrousness and rising of off flavours were negatively correlated with overall appreciation.

Keywords Butylated hydroxytoluene, fried pork seasoned meat, lipid oxidation, microbiological quality, sensory evaluation.

Introduction Carne do alguidar is a home-made Portuguese fried seasoned meat product preserved in pork lard for several months usually for self-consumption. The preservation of carne do alguidar for long periods results from the effect of both thermal processing of pork meat (fried in lard) and its subsequent conservation in pork lard. High temperatures reached during frying and anaerobic conditions, generated by the immersion of meat in lard, are able to eliminate most microorganisms involved in meat products spoilage. Keeping fried meat in lard also prevents the natural dehydration of the product during storage. This product dates to ancient times, and it originally appeared in response to the need to preserve meat for longer periods. Traditionally, people used to slaughter their homebred pigs at home and, before the use of refrigerators and freezers, carne do alguidar was one possible way to store pork meat for periods of up to 6 months. This seasoned meat was consumed mainly between the months of December through April to avoid the periods of heat, which accelerate the autoxidation of fat. Currently, this method is no longer used for meat preservation purposes; however, carne do alguidar is a gastronomic speciality still consumed in the Alentejo region.

The potential commercial value of carne do alguidar is the result of two aspects highly valued by today’s consumers as it is a ready-to-eat (RTE) traditional product (Stratakos & Koidis, 2015). However, the manufacturing of carne do alguidar at the industrial level is only possible, if issues regarding its processing are taken into account, to ensure the stability of microbiological and sensory quality throughout the shelf life of the product.

Oxidation is an unavoidable phenomenon in meat industry, which is responsible for food deterioration and shortening the product’s shelf life. Even though
oxidation process is not exclusive to fats, the energy required to trigger lipid oxidation is reduced when compared to other biomolecules such as proteins, carbohydrates and nucleic acids, thus making them more susceptible. This is an important issue for meat products as their composition often includes great amounts of fats, making the lipid fraction oxidation a major concern due to its negative impact. In the course of the lipid oxidation process, numerous undesired compounds such as aldehydes, ketones and alcohols are formed and rancidity arises, as well as several off-aroma and off-flavour compounds, which are easily perceived by consumers with a negative impact on the product’s sensory properties (Zanardi et al., 2004). On the other hand, some of these compounds possess mutagenic and carcinogenic activities which may pose risk consumers’ health (Weiss et al., 2010). Moreover, associated with fats oxidation, lipids nutritional value is also affected as a result of lower amounts of unsaturated fatty acids (Wood et al., 2003).

Lipid oxidation is affected by substrate availability (lipids and oxygen) as well as by processing conditions. However, antioxidants may be added to meat and meat products to prevent lipid oxidation and retard the development of off-flavours (Kumar et al., 2015). Endogenous antioxidants, such as vitamins A and E, carotenoids, ubiquinol and histidine-containing dipeptides, are some of the antioxidants that naturally occur in meat (Sacchetti et al., 2008; Serpen et al., 2012), known to play an important role in delaying lipid oxidation. Despite this, some additional strategies, such as vacuum packaging, can be undertaken to prevent meat deterioration (Min & Ahn, 2015). Considering that removing oxygen is often assumed as an inefficient approach (Zanardi et al., 2002; Summo et al., 2006), exogenous antioxidants are used to prevent oxidative rancidity (Timón et al., 2014). The tert-butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are examples of commercially available antioxidants that are broadly used in meat industry. BHT, in particular, is a phenolic compound whose antioxidant activity relies in donating a hydrogen atom to free radicals which trigger the oxidative process. Its important antioxidant activity has been demonstrated before (Jongjareonrak et al., 2008).

Considering the added commercial value of a RTE traditional meal and the need of technology transfer from the laboratory to the industry, with the consequent upscale, this experimental study was performed at a local meat factory. This study aimed to evaluate the quality and shelf life of carne do alguidar when manufactured at the industrial scale, assessing the effect of a vacuum package and the use of an antioxidant, butylated hydroxytoluene (BHT), to enhance oxidative stability.

Materials and methods

Carne do alguidar processing and sampling procedures

For this study, three independent batches of carne do alguidar were processed in a local meat industry, each of them being divided into two equal parts: one containing butylated hydroxytoluene (BHT) [2,6-Bis(1,1-dimethylethyl)-4-methylphenol] added to the lard as antioxidant (identified as BHT samples) and the other without antioxidant (named as control samples).

The commercial hybrid Iberian × Duroc pork meat was manually cut into pieces with approximately 7 cm and seasoned with pepper (Capsicum annuum L.) paste (containing 5% sugars) (Incopil, Portugal), white wine, garlic (Allium sativum L.) paste (with 11.6% sugars) (Incopil, Portugal), salt and laurel powder. Once properly mixed, the meat batter remained under refrigeration (0–5 °C) for 5 days allowing the meat to absorb the flavours. Meat pieces were fried in commercial black pig lard (in a proportion of 80% regarding to meat weight) for 20 min at 140 °C. Half of the resulting lard was reserved and added with 50 ppm of BHT. The fried seasoned meat was packed in portions containing 250 g and fully covered with lard (both control and BHT samples). Once lard was completely solid, polyamide/polyethylene co-extruded film packages (Alempack, Portugal) were sealed under vacuum using the packing machine 700 STE-XL (Turbovac, The Netherlands) and stored at 0–5 °C for 15 months. Two different samples of meat (removed from the lard) per batch were analysed immediately and at 3, 6, 12 and 15 months of storage.

Physicochemical analyses

pH was measured with a Crison 507 (Barcelona, Spain) pH meter according to standard procedures ISO 2917:1999. A hygrometer (Hygroskop Rotronic DT, Zurich, Switzerland), equipped with a WA-40 probe at 25 °C, in its turn was used to determine water activity.

The proximate composition of the RTE carne do alguidar was analysed in accordance with procedures established by the International Organization for Standardization, including moisture content (ISO 1442:1997), total ash (ISO 936:1998), crude protein (ISO 937:1978) and crude lipid content (ISO 1443:1973).

The TBA test was accomplished as described by Fraqueza & Barreto (2009). Portions of 15 g of meat samples were homogenised in the presence of trichloroacetic acid, propyl gallate and EDTA, for the extraction of malondialdehyde (MDA). The TBA-reactive substance (TBARS) resulting from reaction of MDA with TBA (red-coloured complex) was determined with
a UV/Visible Ultrospec 2000 spectrophotometer (Phar-
macia Biotech, Buckinghamshire, UK) set for a
538 nm wavelength and final results expressed in mg
MDA kg⁻¹.

The peroxide values were determined according to
the ISO 3960:2007. The fatty fraction was extracted
using chloroform and later oxidation of potassium
iodate to iodine form by active oxygen in the presence
of acetic acid. The amount of iodine generated was
then determined by volumetric titration with sodium
thiosulphate, and final results expressed in meq O₂/kg.

Microbiological analyses

For microbiological analyses, 10 g of sample was
homogenised for 90 s in 90 mL of sterile peptone
water using a Stomacher Masticator (IUL Instru-
mients, Barcelona, Spain). Serial dilutions with peptone
water were held, plated and incubated following proce-
dures specific for each microbial group. Total aerobic
(mesophiles) and total anaerobic (anaerobes) at 30 °C
counts were performed in tryptone glucose extract
agar (TGE) (Scharlau) at 30 °C for 48 h, wherein the
latter were kept under anaerobic conditions, in an
AnaeroJar (Oxoid) using an AnaeroGen sachet
(Oxoid). TGE (Scharlau) was also used for psy-
chrophiles counts, with incubations carried out at
10 °C for 7 days. Lactic acid bacteria (LAB) were
incubated in Man, Rogosa and Sharpe (MRS) Agar
(Scharlau) at 30 °C for 48 h under anaerobic condi-
tions (as described above) and yeasts and moulds in
Rose Bengal Chloramphenicol (Scharlau) at 25 °C for
48 h. Listeria monocytogenes enumeration was per-
formed according to standard procedures (ISO

Sensory evaluation

Carne do alguidar sensory evaluation was carried out
according to ISO 8586:2012 in a room especially pre-
pared for the purpose. A group of ten trained panel-
lists (including five men and five women, aged from
40 to 60 years old) were asked to evaluate products
in terms of their appearance, off colours, aroma
intensity, off aromas, hardness, fibrousness, succu-
ulence, flavour intensity, off flavours, salt perception
and overall appreciation according to a 0 (‘minimum
perception’) to 100 (‘maximum perception’) scale.
Specifically for hardness and salt perception attrib-
utes, panellists were instructed to consider 50 as the
optimum value.

Prior to evaluation, carne do alguidar was heated for
30 s in a microwave oven (Whirlpool 800) preset to
800W and immediately served in white dishes (identi-
fied with a random three-digit code). Samples were
served with mineral water (at room temperature) and
unsalted crackers, so panellists could clean their palate
between samples.

Statistical analysis

Data were submitted to analysis of variance (ANOVA)
and principal component analysis (PCA), both using
Statistica™ v.8.0 software (StatSoft Inc, Tulsa, OK,
1984–2007). Significant differences (P < 0.05) were
determined according to Tukey’s honest significant dif-
fferences (HSD) test. Pearson’s correlations were also
calculated for a significance level of P = 0.05.

Results and discussion

The proximate analysis of carne do alguidar (Table 1)
showed no significant differences between control and
BHT samples (P > 0.05). The lipid fraction was the
most abundant corresponding in average to 36.42 and
37.28% (found in control and BHT samples, by the
same order). In our samples, the moisture content rep-
resented around 35%, while the protein fraction was
about 24%.

With the purpose of evaluating quality and shelf life
of this new commercial RTE meat product, physico-
chemical parameters (a_w, pH, TBARS and peroxide
value) and microbiota were assessed in the final pro-
duct throughout the storage period. Moreover, sensory
evaluation was also carried out, in terms of product’s
appearance, aroma, flavour and texture.

As shown in Fig. 1, a_w and pH of the fried sea-
soned meat did not change significantly over the
15 months of storage, irrespective of addition, or not,
of the antioxidant BHT. Probably due to the osmotic
gradient established between meat and its surrounding
environment, water activity decreased over time, yet
no significant differences were found between the final
product under vacuum at 0 and 15 months of storage
(P > 0.05). The evolution of a_w was similar for both
control and BHT samples. Regarding pH values, they
were not significantly different and only showed slight
variations ranging between 6.05 and 6.12. The stability

| Table 1 One-way ANOVA for Carne do alguidar proximate composition (g/100 g) |
|-----------------|-----------------|----------------|
| Moisture | Fat | Protein |
| Control | BHT | Significance |
| 35.37 ± 4.44 | 35.32 ± 4.76 | ns |
| 36.42 ± 4.16 | 37.28 ± 4.78 | ns |
| 24.07 ± 0.44 | 23.67 ± 0.42 | ns |
| 3.09 ± 0.21 | 3.17 ± 0.16 | ns |
| 0.69 ± 0.35 | 0.69 ± 0.35 | ns |

Ns, not significant.

Data are given as mean ± SD (n = 6).

*CH - Carbohydrates
of pH values is related to the observed lack of microbial development, namely for LAB (Table 2). Based on the ANOVA statistical analysis, no significant differences were found for microbial counts during the time that carne do alguidar was kept under chilled storage, regardless of the considered microbial group (Table 2). During the first months of storage, a slight ($P > 0.05$) decrease was observed for all microbial groups that lasted for 3 months (as observed for psychrophiles, yeasts or even longer mesophiles, LAB and anaerobes). However after this initial period, microbial counts increased again. While for psychrophiles, it occurred just after the first trimester, and for mesophiles and LAB, it was only observed after 12 and 15 months, respectively, with the highest microbial loads being detected at the later sampling time (15 months). Anaerobic bacteria and yeasts counts were the exception as they increased and declined consecutively throughout carne do alguidar storage period as a result of vacuum packaging. In general, the increased microbial counts leaded to higher microbial loads at the end of the storage period when compared to those found.

Figure 1 Mean (a) a_w and (b) pH values during storage. Data are given as means ($n = 6$), where vertical bars denote 0.95 confidence intervals. Different letters denote significantly different arithmetic means (HSD test, $P = 0.05$).
Table 2: Two-way ANOVA for microbial counts (log cfu/g) during the storage period

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>t</td>
<td>S</td>
<td>t × S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BHT</td>
<td>t</td>
<td>S</td>
<td>t × S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesophiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab</td>
<td>0.09 ± 0.02</td>
<td>0.67 ± 0.06</td>
<td>0.97 ± 0.10</td>
<td>2.14 ± 0.26</td>
<td>0.12 ± 0.03</td>
</tr>
<tr>
<td>Lab</td>
<td>0.17 ± 0.12</td>
<td>0.04 ± 0.06</td>
<td>0.07 ± 0.10</td>
<td>0.27 ± 0.26</td>
<td>0.12 ± 0.03</td>
</tr>
<tr>
<td>LAB</td>
<td>0.26 ± 0.12</td>
<td>0.41 ± 0.06</td>
<td>0.77 ± 0.10</td>
<td>0.97 ± 0.26</td>
<td>0.12 ± 0.03</td>
</tr>
<tr>
<td>Yeasts</td>
<td>0.96 ± 0.05</td>
<td>0.22 ± 0.03</td>
<td>0.24 ± 0.05</td>
<td>0.25 ± 0.05</td>
<td>0.25 ± 0.05</td>
</tr>
<tr>
<td>ND, not detected.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data are given as mean ± SD (n = 6).
* = storage time, S = sample type, t = interaction between the two factors.

To our knowledge, there are no published studies regarding the development of long-life vacuum-packaged RTE meat product based on a traditional Portuguese seasoned meat such as carne do alguidar available; in fact, the microbial load found in our samples (Table 2) is similar or even lower than those disclosed for other cooked meat products vacuum packaged and stored under refrigeration (Cuchaldora et al., 2013; del Olmo et al., 2014). The application of vacuum package contributed to keep products microbial stability, which Paleari et al. (2004) also found to be effective on pork lard conservation. Therefore, the combination of anaerobic conditions, with low temperatures for preservation of cooked seasoned meat, was shown to be effective in preventing growth of most microbial groups, thus ensuring the necessary microbiological stability.

The lard used in the frying process and later preservation of carne do alguidar may undergo a series of chemical reactions regarding to oxidative degradation of fatty acids, affecting products’ quality, especially in products with extended storage periods. Indeed, only storage time had a significant effect on lipids oxidation (P < 0.05). Regarding control samples, as shown in Table 3, TBARS results significantly decreased at 6 months of storage (P < 0.05), after a slight increase observed over the first trimester (from 0.66 to 0.77 mg MDA kg⁻¹). According to our results, such progression over this period of time revealed to be somewhat different for BHT samples, for which products measured free MDA initial contents (0.71 mg MDA kg⁻¹) consistently decreased during the first 6 months of storage (0.23 mg MDA kg⁻¹). However, for both control and BHT samples, TBARS values increased from six to 12 months, not suffering any significant changes from 12 to 15 months of storage. Irrespective of adding BHT to the lard where carne do alguidar was preserved, no differences were detected after the 15th month of storage in TBARS values. As shown in Table 3, free MDA contents for these samples were 1.13 mg MDA kg⁻¹ in BHT samples and 1.16 mg MDA kg⁻¹ in control samples. Even though the reported increment on TBARS values in later storage stages always remained below the cut-off value of 2.0 mg MDA kg⁻¹ at which rancidity may be detected...
by consumers (Wood et al., 2003). Concerning peroxide values, there was a consistent increase ($P > 0.05$) during the first 12 months of storage (with a particular focus in the last semester), time when the maximum value was reached (6.83 and 7.80 meq O$_2$ kg$^{-1}$, in control and BHT samples, respectively). A slight decrease occurred for samples stored for 15 months, for levels comparable ($P > 0.05$) to those measured for final product ($t = 0$), both for control and BHT samples. This reported oxidation stability is probably related to the antioxidant activity effect of Maillard reaction products (Ramírez et al., 2004; Serpen et al., 2012), as a considerable amount of sugars was added (high % of sugars in garlic and pepper pastes), but also due to antioxidant activity of the added wine and garlic. Maillard reaction is important for colour, flavour and aroma development of fried meat products. High temperatures initiate the reaction between reducing sugars and amino groups existent in meat. At high temperatures, cell structures are broken, allowing the interaction between lipids and the existing oxidising groups. For this reason, the process of lipid oxidation in cooked meat is faster than in fresh meat (Ramírez et al., 2004). In particular, for cooked meat products, which are chilled and then reheated, unpleasant aromas, known as ‘warmed-over-flavours’, quickly arise.

During carne do alguidar storage, various sensory characteristics related with products aroma, appearance and texture were evaluated by a group of experienced panellists, whose mean scores are summarised in Table 4. Sensory evaluation data were initially analysed with a two-way ANOVA; still from the statistical evaluation, it was clear that storage time was the only factor showing a significant ($P < 0.05$) effect regarding sensory parameters. Moreover, both sample type and respective ‘storage time x sample type’ combination had no influence in the scores attributed by the panellists. Such results were already expected; as, as shown in Table 4, for similar storage times, identical scores were given.

As factors’ interaction was not significant ($P > 0.05$), for physicochemical, microbiological and sensory data, all results were submitted to one-way ANOVAs, which are summarised in Table 5.

Still regarding sensory data, both flavour/aroma and texture were affected over time (Table 5). In particular, aroma intensity, fibrousness, succulence, flavour intensity and overall appreciation were the most affected attributes (Table 5). The main changes were noted during the first trimester, where important losses regarding aroma intensity, succulence, flavour and intensity had occurred ($P < 0.05$). On the other hand, during this same period of time, a marked increase in carne do alguidar fibrousness was also perceived. Together, the evolution of these attributes has led to lower overall appreciations rated by the panellists’
group. In fact, for all these attributes the highest rates were found in ‘fresh’ products (t = 0), except for fibrousness.

During the second trimester of products’ storage, overall appreciation slightly recovered, due to more positive evaluations, namely higher aroma intensity, succulence and flavour intensity and lower meat fibrousness. After this period, global appreciation rates consecutively declined until 15 months of storage, where the lowest rates were scored. At this point, a few panellists denoted some rancidity and a musty taste, which together contributed to a depreciation in the products’ acceptability. Moreover, according to the panellists’ additional comments, ‘warmed-over-flavours’

Table 4 Two-way ANOVA for sensory attributes throughout the storage period.

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Control</th>
<th>BHT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Appearance</td>
<td>72 ± 14</td>
<td>67 ± 13</td>
</tr>
<tr>
<td>Off colours</td>
<td>0 ± 0</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>Aroma intensity</td>
<td>74 ± 10</td>
<td>64 ± 17</td>
</tr>
<tr>
<td>Off aomas</td>
<td>0 ± 1</td>
<td>1 ± 5</td>
</tr>
<tr>
<td>Hardness</td>
<td>53 ± 13</td>
<td>44 ± 25</td>
</tr>
<tr>
<td>Fibrousness</td>
<td>24 ± 24</td>
<td>36 ± 29</td>
</tr>
<tr>
<td>Succulence</td>
<td>69 ± 15</td>
<td>55 ± 21</td>
</tr>
<tr>
<td>Flavour intensity</td>
<td>78 ± 9</td>
<td>68 ± 11</td>
</tr>
<tr>
<td>Off flavours</td>
<td>1 ± 2</td>
<td>1 ± 3</td>
</tr>
<tr>
<td>Salt perception</td>
<td>56 ± 8</td>
<td>55 ± 13</td>
</tr>
<tr>
<td>Overall appreciation</td>
<td>75 ± 15</td>
<td>66 ± 10</td>
</tr>
</tbody>
</table>

Data are given as mean ± SD (n = 6).

Table 5 One-way ANOVA for physicochemical, microbiological and sensory data throughout the storage period.

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Parameters</th>
<th>0</th>
<th>3</th>
<th>6</th>
<th>12</th>
<th>15</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td>6.10 ± 0.11</td>
<td>6.09 ± 0.10</td>
<td>6.06 ± 0.11</td>
<td>6.06 ± 0.02</td>
<td>6.12 ± 0.04</td>
<td>ns</td>
</tr>
<tr>
<td>Mesophiles</td>
<td>1.79 ± 1.82</td>
<td>2.49 ± 1.36</td>
<td>0.81 ± 1.47</td>
<td>2.24 ± 0.63</td>
<td>2.87 ± 1.79</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>LAB</td>
<td>1.57 ± 2.17</td>
<td>0.22 ± 0.52</td>
<td>ND</td>
<td>ND</td>
<td>1.86 ± 0.80</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Psychrophiles</td>
<td>0.87 ± 1.38</td>
<td>1.20 ± 1.79</td>
<td>0.70 ± 1.47</td>
<td>1.73 ± 0.95</td>
<td>2.03 ± 2.18</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Anaerobes</td>
<td>2.14 ± 2.39</td>
<td>0.74 ± 0.96</td>
<td>0.91 ± 1.37</td>
<td>0.89 ± 0.96</td>
<td>1.18 ± 1.60</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Yeasts</td>
<td>1.22 ± 1.33</td>
<td>1.40 ± 1.72</td>
<td>1.67 ± 1.72</td>
<td>1.05 ± 1.10</td>
<td>2.41 ± 1.56</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>TBARS</td>
<td>0.69 ± 0.10</td>
<td>0.69 ± 0.13</td>
<td>0.27 ± 0.22</td>
<td>1.15 ± 0.12</td>
<td>1.14 ± 0.33</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Peroxide value</td>
<td>1.37 ± 0.56</td>
<td>1.68 ± 1.95</td>
<td>2.18 ± 0.68</td>
<td>7.31 ± 2.43</td>
<td>4.20 ± 1.84</td>
<td>***</td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td>72 ± 13</td>
<td>67 ± 13</td>
<td>70 ± 15</td>
<td>69 ± 15</td>
<td>69 ± 14</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Off colour</td>
<td>0 ± 0</td>
<td>1 ± 3</td>
<td>2 ± 4</td>
<td>0 ± 2</td>
<td>0 ± 2</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Aroma intensity</td>
<td>73b ± 12</td>
<td>65b ± 16</td>
<td>68b ± 11</td>
<td>63b ± 16</td>
<td>67b ± 15</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Off aroma</td>
<td>0 ± 1</td>
<td>1 ± 4</td>
<td>0 ± 1</td>
<td>1 ± 3</td>
<td>1 ± 3</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td>54 ± 12</td>
<td>55 ± 18</td>
<td>55 ± 13</td>
<td>54 ± 14</td>
<td>56 ± 11</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Fibrousness</td>
<td>22b ± 22</td>
<td>37b ± 29</td>
<td>33b ± 27</td>
<td>35b ± 26</td>
<td>37b ± 29</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Succulence</td>
<td>69b ± 16</td>
<td>56b ± 22</td>
<td>62b ± 19</td>
<td>60b ± 19</td>
<td>57 ± 20</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Flavour intensity</td>
<td>77b ± 9</td>
<td>56b ± 14</td>
<td>71b ± 11</td>
<td>69b ± 12</td>
<td>70b ± 12</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td>Off flavour</td>
<td>0b ± 2</td>
<td>1b ± 3</td>
<td>4b ± 2</td>
<td>3b ± 9</td>
<td>3b ± 9</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Salt perception</td>
<td>56 ± 10</td>
<td>53 ± 13</td>
<td>54 ± 8</td>
<td>56 ± 9</td>
<td>54 ± 9</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Overall appreciation</td>
<td>76b ± 13</td>
<td>66b ± 15</td>
<td>72b ± 12</td>
<td>65b ± 16</td>
<td>61b ± 17</td>
<td>***</td>
<td></td>
</tr>
</tbody>
</table>

ND, not detected.

Data are given as mean ± SD (n = 6).

ns = not significant, *P < 0.05, **P < 0.01, ***P < 0.001

In the same line, different letters represent significantly different means.
were never perceived in our samples. Although, at later storage stages, in particular at 12 and 15 months, residual off flavours have emerged, this was not the only factor contributing to lower ratings assigned to these samples, as the overall appreciation negatively correlated both with fibrousness ($r = -0.59$) and off flavours ($r = -0.45$). Despite no changes have been noticed in products hardness throughout storage, a significant ($P < 0.05$) correlation was found between hardness and other assessed attributes such as fibrousness ($r = 0.378$), succulence ($r = -0.366$) and overall appreciation ($r = 0.304$).

Based on the sensory evaluation results, undesirable sensory changes resulting from oxidation processes with time, namely the development of off aromas, off flavours and off colours, were negligible (Table 5). Similar results about rancidity in cooked meat products chilled stored for 120 days have been reported by del Olmo et al. (2014). Such minor changes might indicate the antioxidant activity of some products of Maillard reactions; however, a possible masking effect from the seasoning used must also be considered.

Regarding principal component analysis, two main factors explain 74.45% of the observed variance, where PC1 accounts for 55.05% and PC2 to 19.40%. The factors that significantly contribute for PC1 are aroma intensity, fibrousness, succulence, flavour intensity and overall appreciation, while PC2 includes appearance and salt perception. An important correlation is observed for aroma intensity, flavour intensity, succulence, overall appreciation (Fig. 2), which in turn correlate time zero control and BHT samples, but also with 6-month-old BHT samples (second and third quadrants) (Fig. 2). For these three sample types, ratings assigned to the overall appreciation, aroma and flavour intensity and juiciness were quite identical. Likewise, their positioning in the fourth quadrant of the principal component analysis (Fig. 2) also shows that the appearance of undesirable aromas and flavours occurred mainly in samples stored for 12 and 15 months, which have certainly contributed to lowering overall appreciation. In fact, such results are highlighted by a negative Pearson’s correlation ($P < 0.05$) between TBARS results and overall appreciation ($r = -0.301$).

Conclusions

In summary, physicochemical and microbiological results for the development of a long-life vacuum-packaged RTE meat product, *carne do alguidar*, evidenced that the quality of this product was maintained throughout the storage period. On the other hand, lipid oxidation results and sensory evaluation revealed the high quality and stability of this seasoned meat product over a period of up to 12 months, which can be considered an extended shelf life for this type of product. These results encourage the transfer of the *carne do alguidar* process technology to meat-processing factories to be manufactured at the industrial scale without the use of antioxidants. Considering that BHT was the only additive studied, and that it was concluded to be unnecessary, this traditional RTE product can be produced free of food additives.
Acknowledgments

The authors acknowledge financial support provided by PRODER 13.021 (REN/PRODER/Medida 4.1), Programa Operacional Regional do Alentejo (InAlentejo) ALENT-07-062-FEDER-001871 (Laboratório de Biotecnologia Aplicada e Tecnologias Agro-Ambientais) and also by FCT (Fundaçao para a Ciência e a Tecnologia) under the Strategic Project PEst-OE/AGR/C223/09 and co-funded by FEDER funds through the COMPETE Programme. The authors also wish to thank PALADARES ALENTEJANOS, Lda. for their collaboration and A. Oliveira and G. Pias for their technical assistance.

References

ISO (2012). Sensory analysis - General guidelines for the selection, training and monitoring of selected assessors and expert sensory assessors.

