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Abstract

Wildlife population parameters, such as capture or detection probabilities, and

density or population size, can be estimated from capture-recapture data. These

estimates are of particular interest to ecologists and biologists who rely on ac-

curate inferences for management and conservation of the population of interest.

However, there are many challenges to researchers for making accurate inferences

on population parameters. For instance, capture-recapture data can be considered

as binary longitudinal observations since repeated measurements are collected on

the same individuals across successive points in times, and these observations are

often correlated over time. If these correlations are not taken into account when

estimating capture probabilities, then parameter estimates will be biased, possibly

producing misleading results. Also, an estimator of population size is generally

biased under the presence of heterogeneity in capture probabilities. The use of

covariates (or auxiliary variables), when available, has been proposed as an alter-

native way to cope with the problem of heterogeneous capture probabilities. In

this dissertation, we are interested in tackling these two main problems, (i) when

capture probabilities are dependent among capture occasions in closed population

capture-recapture models, and (ii) when capture probabilities are heterogeneous

among individuals. Hence, the capture-recapture literature can be improved, if we

could propose an approach to jointly account for these problems. In summary, this

dissertation proposes: (i) a generalized estimating equations (GEE) approach to

model possible effects in capture-recapture closed population studies due to cor-

relation over time and individual heterogeneity; (ii) the corresponding estimating
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equations for each closed population capture-recapture model; (iii) a comprehen-

sive analysis on various real capture-recapture data sets using classical, GEE and

generalized linear mixed models (GLMM); (iv) an evaluation of the effect of ac-

counting for correlation structures on capture-recapture model selection based on

the ‘Quasi-likelihood Information Criterion (QIC)’; (v) a comparison of the per-

formance of population size estimators using GEE and GLMM approaches in the

analysis of capture-recapture data. The performance of these approaches is eval-

uated by Monte Carlo (MC) simulation studies resembling real capture-recapture

data. The proposed GEE approach provides a useful inference procedure for esti-

mating population parameters, particularly when a large proportion of individuals

are captured. For a low capture proportion, it is difficult to obtain reliable esti-

mates for all approaches, but the GEE approach outperforms the other methods.

Simulation results show that quasi-likelihood GEE provide lower standard error

than partial likelihood based on generalized linear modelling (GLM) and GLMM

approaches. The estimated population sizes vary on the nature of the existing

correlation among capture occasions.

Keywords: Capture-recapture experiment; Correlation structure; Generalized

estimating equations; Generalized linear mixed models; Heterogeneity; Popula-

tion size estimation; Quasi-likelihood information criterion.



UMA ABORDAGEM DE EQUAÇÕES DE ESTIMAÇÃO

GENERALIZADAS PARA MODELOS DE CAPTURA-

RECAPTURA EM POPULAÇÃO FECHADAS:

MÉTODOS E APLICAÇÕES

Resumo

Parâmetros populacionais em espécies de vida selvagens, como probabilidades de

captura ou detecção, e abundância ou densidade da população, podem ser estima-

dos a partir de dados de captura-recaptura. Estas estimativas são de particular

interesse para ecologistas e biólogos que dependem de inferências precisas para

a gestão e conservação das populações. No entanto, há muitos desafios para os

investigadores fazer inferências precisas de parâmetros populacionais. Por ex-

emplo, os dados de captura-recaptura podem ser considerados como observações

longitudinais binárias uma vez que são medições repetidas coletadas nos mesmos

indiv́ıduos em pontos sucessivos no tempo, e muitas vezes correlacionadas. Se

essas correlações não são levadas em conta ao estimar as probabilidades de cap-

tura, as estimativas dos parâmetros serão tendenciosas e possivelmente produzirão

resultados enganosos. Também, um estimador do tamanho de uma população é

geralmente enviesado na presença de heterogeneidade das probabilidades de cap-

tura. A utilização de co-variáveis (ou variáveis auxiliares), quando dispońıveis,

tem sido proposta como uma forma de lidar com o problema de probabilidades de

captura heterogéneas. Nesta dissertação, estamos interessados em abordar dois

problemas principais em mode1os de captura-recapturar para população fechadas,

(i) quando as probabilidades de captura são dependentes entre ocasiões de captura,

e (ii) quando as probabilidades de captura são heterogéneas entre os indiv́ıduos.

Assim, a literatura de captura-recaptura pode ser melhorada, se pudéssemos pro-

por uma abordagem conjunta para estes problemas. Em resumo, nesta dissertação
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propõe-se: (i) uma abordagem de estimação de equações generalizadas (GEE) para

modelar posśıveis efeitos de correlação temporal e heterogeneidade individual nas

probabilidades de captura; (ii) as correspondentes equações de estimação gen-

eralizadas para cada modelo de captura-recaptura em população fechadas; (iii)

uma análise sobre vários conjuntos de dodas reais de captura-recaptura usando

a abordagem clássica, GEE e modelos linear generalizados mistos (GLMM); (iv)

uma avaliação do efeito das estruturas de correlação na selecção de modelos de

captura-recaptura com base no ‘critério de informação da Quasi-verossimilhança

(QIC)’; (v) uma comparação da performance das estimativas do tamanho da

população usando GEE e GLMM. O desempenho destas abordagens é avaliado

usando simulações Monte Carlo (MC) que se assemelham a dados de captura-

recapture reais. A abordagem GEE proposto é um procedimento de inferência

útil para estimar parâmetros populacionais, especialmente quando uma grande

proporção de indiv́ıduos é capturada. Para uma proporção baixa de capturas, é

dif́ıcil obter estimativas fiáveis para todas as abordagens aplicadas, mas GEE su-

pera os outros métodos. Os resultados das simulações mostram que o método da

quase-verossimilhança do GEE fornece estimativas do erro padrão menor do que

o método da verossimilhana parcial dos modelos lineares generalizados (GLM) e

GLMM. As estimstivas do tamanho da população variam de acordo com a na-

tureza da correlação existente entre as ocasiões de captura.

Palavras-chave: Captura-recaptura experiência; Estrutura de correlação; Equações

de estimação generalizadas; Modelos lineares generalizados mistos; Heterogenei-

dade; Estimativa de tamanho da população; Critério de informação quasi- verossim-

ilhança.
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Chapter 1

Introduction

This chapter introduces some important concepts (time dependence and hetero-

geneity) that are useful for the application of generalized estimating equations

and mixed effects models to capture-recapture studies. Some capture-recapture

data sets published in the literature are also presented and used for illustrative

purposes. Finally, research goals and an overview of the following chapters is also

given.

1.1 Clustering: A Source of Dependence

Often in applied statistics, after collecting some empirical data given a study de-

sign, the purpose of the analysis is to construct a statistical model to estimate

population parameters. That means, we are interested in situations where the

primary aim is to explain how a response variable of particular interest is related

to a set of explanatory covariates. Classically, a single observation on the re-

sponse variable is obtained for each observational unit and one of the fundamental

hypotheses of standard statistical modelling in this case is independence among

observations. Many types of studies, however, have designs which imply gather-

ing data in response groups or clusters. Familiar examples of clusters are animal
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litters, families or schools. In each of these examples, a cluster is a collection of

subunits on which observations are made. Another usual form of clustering arises

when data are measured repeatedly on the same unit. In both cases the elements

of a cluster share some common characteristics. Therefore, observations within

a cluster tend to be more correlated than observations from different clusters.

Thus, unlike in the classical setting where there exists a single source of variation

between observational units, the heterogeneity among clusters introduces an addi-

tional source of variation and complicates the analysis. When this variation cannot

be explained by measured covariates, we require advanced statistical methods for

analysis which account explicitly for the clustering in the data.

1.2 Time Dependence: A Challenge in Capture-

Recapture Studies

Capture-recapture data are collected on the same individuals across successive

points in time; that is, the capture events are measured on the same individual at

several time points. Thus, the capture history of each individual can be considered

as a cluster of binary longitudinal observations that tend to be correlated. Hwang

and Huggins (2007) also state that the assumption of independence among capture

occasions is often violated in practice, but the authors still rely on that assump-

tion. Observations within the same individual are generally positively correlated

for any type of clustering (Fitzmaurice, 1995). If these correlations are not taken

into account when estimating capture probabilities, then the parameter estimates

will be biased, possibly producing misleading inferences. Assuming independence

of correlated repeated observations within an individual can lead to a consider-

able loss of efficiency in estimating the regression parameters (Fitzmaurice, 1995).

Hence one should drop the standard assumption of independence among observa-

tions within the same individual, and model the correlation structure explicitly.
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1.3 Effect of Ignoring Time Dependence

A very common question that arise is ‘what are the impacts of ignoring time de-

pendence when we use the conventional regression method assuming independence

among capture occasions?’ From a statistical point of view, there are at least two

consequences as a result of ignoring time dependence: incorrect inferences about

regression coefficients and inefficient estimation of regression coefficients (Diggle

et al., 2002). Now we discuss these two issues in detail through a simple model

for correlated data.

Let Yij be an indicator variable of the ith individual (cluster) on the jth capture

occasion , i = 1, 2, ..., n, j = 1, 2, ..., m. Here n is the number of cluster (individ-

ual) and m the cluster size (number of capture occasions). We assume that for

each i,

E(Yij) = β0 + β1xij ; Var(Yij) = σ2;

Cov(Yij, Yik) = σ2α; j 6= k = 1, 2, ..., m.

(1.1)

The model also assume that the expected value of Y is a simple linear function

of a covariate, x, and that the correlation, as a measure by correlation coefficient,

between each pair of responses from the same cluster has the same value, α (say).

Our interest is on the inference for β1 when ignoring the correlation among capture

occasions. The ordinary least square estimator of β1 is given by

β̂1 =

n∑

i=1

m∑

j=1

(yij − ȳi)(xij − x̄i)

/ n∑

i=1

m∑

j=1

(xij − x̄i)
2,

with ȳi =
m∑
j=1

yij/m and x̄i =
m∑
j=1

xij/m be the sample means of the Yi’s and xi’s

from the ith individual.
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1.3.1 Incorrect Variance

According to Diggle et al. (2002) and Liang (1999), the variance, V1 of least square

estimate β̂1, ignoring the time association is given by

V1 = σ2

/ n∑

i=1

m∑

j=1

(xij − x̄i)
2 = σ2/VT ,

where x̄ =
n∑

i=1

m∑
j=1

xij
/
(mn), σ2 = Var(Yij), and VT =

n∑
i=1

m∑
j=1

(xij− x̄i)2. The correct

variance, V2 of β̂1 considering time association has the following form

V2 = V1
{
1 + α(mφ− 1)

}
,

where φ = n
n∑

i=1

(x̄i−x̄)2
/
VT is the fraction of the total variation in the x’s explained

by the between cluster variation in x̄i’s and α = Corr(Yij, Yik), j 6= k = 1, 2, ..., m.

Two important cases of φ deserve special attention. One is when φ = 0, i.e.,

x̄1 = ... = x̄n. This occurs commonly in longitudinal studies in which every

individual’s response is measured at the same set of times. In this case, β1 is

estimated mainly by using the time changes in Y . The other extreme cases is

when φ = 1, i.e., xi1 = xi2 = ... = xim for i = 1, 2, ..., n. In either case, invalid

scientific conclusions, which could be either false positive or negative, may be

drawn if V1 is used as the variance estimate of β̂1 (see for details Diggle et al.

2002).

1.3.2 Loss of Efficiency

When the ordinary least square estimate β̂1 is an unbiased estimator of β1, the well

known Gauss-Markov theorem suggests that the uncertainty in estimating β1 may

be reduced by using the weighted least square estimator, β̃1 (say), which properly

accounts for the time association (Liang, 1999). Under the specified correlation
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structure in (1.1), Diggle et al. (2002) and Liang (1999) showed that β̃1 has the

variance of the following form

V3 = V1(1− α)
{
1 + (m− 1)α

}/{
1− α+mα(1− φ)

}
.

Interestingly, no efficiency loss occurs when φ is equal to 0 or 1, irrespective of

α and m. On the other hand, a great deal of efficiency loss by using β̂1 may

result when φ approaches 0.5. Such phenomenon is more apparent with increased

α but less so for m. The main message is that ignoring correlation could lead to

a substantial loss of statistical power to estimate β1, and that it is important to

examine and incorporate the time association structure such as to help improve

upon the efficiency for the β inference (see for details Diggle et al. 2002).

1.4 Measures of Time Dependence

The pattern of time dependence is very important in several regards:

(i) it may help to characterize the relationship between the capture probabilities

and covariates, and

(ii) it is also important to estimate the population parameters accurately in

capture-recapture studies.

Following Liang (1999), we briefly discuss how one measures the time association

and its patterns. The correlation coefficient as a measure of association is less

useful for binary responses because the range of α is narrowed considerably due

to the constraint that

max(0, γj + γk − 1) < Pr(Yj = Yk = 1) < min(γj, γk)



22 1.4. Measures of Time Dependence

where γj = Pr(Yj = 1) and γk = Pr(Yk = 1) and the degree of constraint depends

on values of the γ’s.

As an alternative, one may consider the use of the odds ratio (OR)

OR(Yj, Yk) =
Pr(Yj = Yk = 1)Pr(Yj = Yk = 0)

Pr(Yj = 1, Yk = 0)Pr(Yj = 0, Yk = 1)
,

as a measure of association between a pair of responses, Yj and Yk. For this

quantity, no constraint is induced other than the fact that it must be positive. A

positive association results if OR is greater than one and a negative association

may be claimed if OR is less than one. For a more detailed discussion on the

use of odds ratios for within-cluster (time) associations, see Heagerty and Zeger

(1998) for longitudinal data. At last, different measures of association between dis-

crete covariates have been suggested in the literature; see Goodman and Kruskal

(1979).

For continuous responses, the most commonly used measure of dependence be-

tween a pair of capture occasions from the same individual is the correlation

coefficient, which is defined as

α(Yj, Yk) =
Cov(Yj, Yk){

Var(Yj)Var(Yk)
}1/2 ; j 6= k = 1, 2, ..., m.

This quantity (α) takes values between -1 and 1 inclusively. There exist very

weak dependence between Yj and Yk if α is close to zero, and a strong association

between Yj and Yk, if α close to 1 or -1. Furthermore, a positive association

between Yj and Yk, i.e., α > 0, means Yj tends to be larger than expected if Yk is

and vice versa.

For longitudinal studies, it is a common belief that the correlation coefficient

between two observations adjacent in times is likely to be larger than that when

two observations are far apart in times. To capture this phenomenon, one may
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model

α(Yj, Yk) = α|tj−tk|,

where tj and tk are times at which Yj and Yk are observed, respectively. This

pattern is known as the AR-1 (auto-regressive model of order one) model. For

more detailed discussion on the patterns of within-individuals (time) association

for longitudinal data, we refer the readers to the work by Diggle (1988), Diggle,

Heagerty, Liang and Zeger (2002) and the references therein.

1.5 Estimation Methods for Correlated Data

An important consideration in the statistical modelling of correlated data con-

cerns the type of response. Methods for continuous (read ‘normally distributed’)

data are undeniably the best developed and the linear mixed models (Laird and

Ware, 1982; Verbeke and Molenberghs, 1997, 2000) have played a prominent role

in extending the general linear model to handle correlated continuous data. Owing

to the elegant properties of the multivariate normal distribution, its theory and

implementation are greatly simplified.

When the response variable is discrete (e.g. counts) or categorical (nominal or

ordinal data), a first issue arises which is the lack of a discrete analogue to the

multivariate normal distribution. Complete specification of the joint distribution

of the response vector becomes more problematic and fully likelihood-based meth-

ods are generally awkward.

Another issue arises by this type of responses is that the researcher must distin-

guish among three broad model families: marginal models, random effects models

or conditional models. For simplicity, let us concentrate on the special case of cor-

related binary responses. A marginal model is one in which marginal probabilities

of response are directly modelled. There is an extensive statistical literature on
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marginal modelling of correlated binary responses. For example, Bahadur (1961)

and Zhao and Prentice (1990), describe maximum likelihood estimation (MLE)

where marginal correlations are used to account for the association among re-

sponses. Alternatively, the within-cluster (time) association can be parameterized

in terms of marginal odds ratios, as shown by Dale (1986), Liang, Zeger and

Qaqish (1992), Lang and Agresti (1994), Molenberghs and Lesaffre (1994), and

Glonek and McCullagh (1995) for instance.

Since few joint probability models for multivariate categorical data permit tractable

modelling of marginal probabilities, alternative methods have been in demand.

Thus, Liang and Zeger (1986) and Zeger and Liang (1986) proposed the so-called

generalized estimating equations (GEE), which do not require assumptions about

the complete joint distribution of the response vector. Their approach relies on

estimating functions and provides a natural extension of quasi-likelihood (Wedder-

burn, 1974) to the multivariate response setting. Standard generalized estimating

equations require only correct specification of the univariate marginal probabilities

while adopting some working assumptions about the association structure.

Drawing on direct analogies with linear models for continuous responses, another

way to model the joint distribution of the response vector is to postulate the ex-

istence of unobserved latent variables, often called random effects. These can be

thought of as representing various features shared by the subunits of a cluster

and hence introduce correlation among observations. Such cluster-specific effects

are usually assumed to be independent and identically distributed according to

a certain mixing distribution. An additional assumption that is frequently used

is that the observations within a cluster are conditionally independent given the

random effects. When the mixing distribution is assumed Gaussian, the families of

linear mixed models and generalized linear models (Nelder and Wedderburn, 1972;

McCullagh and Nelder, 1989) can be combined to form the class of generalized

linear mixed models (GLMM). These models have been studied, among others,
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by Stiratelli, Laird and Ware (1984), Anderson and Aitkin (1985), Gilmour, An-

derson and Rae (1985), Zeger, Liang and Albert (1988), Breslow and Clayton

(1993), Wolfinger and O’Connell (1993) and Goldstein and Rasbach (1996). Some

authors have advocated different distributional assumptions for the mixing dis-

tribution (e.g. Lee and Nelder, 1996). Also, cluster-specific approaches are not

limited to mixed models, as demonstrated by the popular beta-binomial model

(Williams, 1975).

There are some important distinctions between the two model families described

so far. In marginal models, parameters may be interpreted with respect to the

marginal or population-averaged distribution; therefore, such models are often re-

ferred to as population-averaged models. In random-effects models, on the other

hand, parameters have cluster-specific effects and these models are consequently

also called cluster-specific. This distinction is, in effect, irrelevant for normal

responses since parameters have both population-averaged and cluster-specific in-

terpretations in this case, but it becomes critical with categorical data. Zeger,

Liang and Albert (1988), for example, discuss these two approaches to modelling

of longitudinal data using GEE to estimate model parameters.

The third class of models that is commonly used to model correlated data is that

of (response) conditional models. In a conditional model the parameters describe

a feature (e.g. response probability) of a set of responses conditionally on the

other responses. Due to the popularity of marginal and random-effects models,

these have received relatively little attention, especially in the case of clustered

data. An example in the specific context of clustered binary responses was given

by Molenberghs and Ryan (1999). Conditional models have been much more pop-

ular in the context of longitudinal data, where they have been termed transition

models (Diggle, Heagerty, Liang and Zeger, 2002). The (response) conditional

approach, however, is usually criticized because of the conditional interpretation

of the parameters on other responses, and on cluster sizes.
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The debate continues about the relative merits of the different approaches. For

several years, it seemed that marginal models, particularly GEE, were the most

popular. More recently, there has been a renewed interest in random-effects mod-

els. An advantage of using GLMM for the estimation of capture probabilities is to

accommodate not only the heterogeneity due to measurable individual characteris-

tics, but also the uncertainty that the measurable individual characteristics cannot

explain. A comparative advantage of GEE over random-effects models relates to

the ability of GEE to allow specific correlation structures to be assumed within

capture occasions. However, there are merits and disadvantages to all three model

families. Recently, Bayesian inference is also becoming population for modelling

correlated binary data, but our focus is based on frequentist approaches. Arguably,

model choice will depend not only on the application of interest, but also on the

specific analysis goals.

1.6 Individual Heterogeneity: The Bane of Abun-

dance Estimation

Individual heterogeneity refers to the variation among individual animals in their

probability of capture. Some capture-recapture models assume that capture prob-

ability is constant across individuals within a group. When individuals vary in

their capture probabilities, the most catchable animals are likely to be caught

first and more often. Behavioral differences, age, sex, and other innate differ-

ences can make an individual more or less likely to be captured. There are two

types of heterogeneity of capture probability, (i) heterogeneity due to measurable

individual characteristics, and (ii) heterogeneity due to unmeasurable individual

characteristics. Heterogeneity due to measurable individual characteristics refers

to situations when the factors causing the differences can be identified. For exam-

ples, (i) Males and females may have different capture probabilities. Differences
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may occur because males are more active than females during the time of the

survey, e.g., males are bringing food to offspring while the females brood offspring

and so forth. (ii) Condition of individuals may affect capture probability because

animals in poor condition are more easily attracted to traps. Heterogeneity due

to unmeasurable individual characteristics refers to situations when the factors

causing differences in capture probability cannot be identified. This could simply

mean that we have absolutely no clue what might cause differences, but are will-

ing to accept that (even though we are clueless) there might be differences that

we cannot measure. This could also be situations where we cannot observe the

difference at the time of capture. For example, in some cases we cannot identify

the sex of individuals at the time of capture. Age may also cause differences in

capture probabilities but probably could not be determined in the field.

Modelling heterogeneity in capture probabilities is a serious problem in estimating

animal abundance in capture-recapture studies. Failure to account for such het-

erogeneity has long been known to cause substantial bias (Cormack, 1968; Manly,

1970; Otis et al., 1978; Chao and Lee, 1992; Lee and Chao, 1994). Moreover, Link

(2003) shows that without strong assumptions on the underlying distribution, es-

timates of population size under individual heterogeneity model is fundamentally

non-identifiable. The effect of ignoring heterogeneous probabilities of capture leads

to capture probability being over estimated and abundance being underestimated

(Hwang and Huggins, 2005). This can be partially overcome by modelling the

heterogeneity of capture probabilities through individual covariates such as age,

and sex, and environmental conditions such as temperature, rainfall, and location

(Pollock et al., 1984; Huggins, 1989; Alho, 1990; Pollock, 2002). Huggins (1989)

and Alho (1990) developed methods for incorporating measurable covariates caus-

ing heterogeneity in estimation, while Burnham (1972), Agresti (1994), Norris and

Pollock (1996), Pledger (2000) and Dorazio and Royle (2003) developed methods

for accommodating heterogeneity due to unmeasured covariates.
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1.7 Motivating Data Sets

In this section we give a brief description of the motivating capture-recapture data

sets considered in this dissertation. Some details on the captured species are also

included.

1.7.1 Deer Mice Data

The Deer mice data considered in this dissertation were originally collected by V.

Reid and distributed with the program CAPTURE of Otis et al. (1978) which is

extracted from Appendix 1 from Huggins (1991). V. Reid reported the results of

Figure 1.1: A photograph of Peromyscus maniculatus (Deer mice)

Photo credit Phil Myers, collected from
http://sciblogs.co.nz/misc-ience/tag/sperm/

live-trapping Deer mice (Peromyscus maniculatus) (see Figure 1.1) in a drainage
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bottom of sagebrush, gambel oak, and serviceberry with pinyon pine and juniper

on the uplands. The data were taken in a 6 consecutive night’s live-trapping study

(m = 6) in the summer of 1975 near Wet Swizer Creek, Rio Blanco County at

East Stuart Gulch Colorado. A rectangular grid of 9 × 11 traps was used, with

50-foot (15.2-m) trap spacing. One Sherman live trap (for small mammals) was

placed at each grid point and trapping was done twice daily (morning and night)

(Otis et al., 1978). Totally 38 distinct mice were caught and associated with three

covariates: age (young, semi-adult or adult), sex (male or female), and weights

in grams. These data are well known and have analysed in numerous capture-

recapture literature, for example see Huggins (1991), Huggins and Yip (1997) and

Stanley and Richards (2005). The data are reported in Appendix C.
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1.7.2 Least Chipmunk Data

In the summer of 1975, V. Reid laid out a 9 × 11 livetrapping grid with traps

spaced 50 feet (15.2 m) apart at a Colorado location in a bottom area dominated

by sagebrush and snowberry and peripherally by gambel oak, serviceberry, and

juniper. Least chipmunk (Eutamias minimus) (see Figure 1.2) were trapped once

a day, for 6 consecutive days (m = 6) (Otis et al., 1978). The data were recorded

Figure 1.2: A photograph of Eutamias minimus (Least chipmunk)

Photo credit Michael Patrikeev, collected from
http://www.wildnatureimages.org/id12.html

with the sex (male and female) and capture history of each captured individual.

Based on the discriminant procedure described in Otis et al. (1978), the temporal

variation model (Mt) was indicated as the most appropriate model. Recently,

Wang et al. (2007) and Xu et al. (2013) reanalyzed and discussed this data set.

The data are reproduced in Appendix C.
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1.7.3 House Mouse Data

The House mouse data also considered in this dissertation were originally collected

by Coulombe in his unpublished master’s thesis in 1965, University of California,

Los Angeles, and available as one of the sets of data accompanying their program

CAPTURE (Rexstad and Burnham, 1991). He conducted a live trapping study on

an outbreak of feral House mice (Mus musculus) (see Figure 1.3) in mid-December

1962 as the result of a population ecology study on salt marsh rodents at Ballana

Creek, Los Angeles County, California.

Figure 1.3: A photograph of Mus musculus (House mouse)

Photo credit Josef Lubomir Hlasek, collected from
http://www.guildfordpestcontrol.com/RatandMice.html

A square 10×10 grid was used with traps spaced 3m apart and trapping was done

twice daily, morning and evening, for 5 days (Otis et al., 1978, pp.62-64). Hence,

there are 10 trapping occasions (m = 10). The data recorded associated with two
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covariates: age (juvenile, semi-adult or adult) and sex (male or female). This data

set has previously analyzed and discussed by Otis et al. (1978), Huggins (1989),

Huggins and Yip (2001), Hwang and Chao (2002). The data are also presented in

Appendix C.

1.8 Research Goals and Outline of Subsequent

Chapters

This research aims at establishing methodology to estimate population size in

closed capture-recapture experiment taking into account individual heterogeneity

to capture probabilities and dependency among capture occasions. For this pur-

pose, we have reviewed the concerning methodologies and available estimators.

Ultimately, we propose alternative analytical approach to estimate population

size and make comparison with currently used methodologies.

This thesis consists of five more chapters. A brief outline is given below:

Chapter 2 presents a summary of the relevant methodologies that enhance to build

up our proposed Generalized Estimating Equations (GEE) approach in capture-

recapture closed population models to estimate the population parameters.

Chapter 3 presents the proposed quasi-likelihood based generalized estimating

equations approach in capture-recapture closed population models to estimate

capture probability and population size. Here GEE versions of all closed popula-

tion capture-recapture models, and their corresponding estimating equations are

also presented. Quasi-likelihood Information Criterion (QIC) is used to evaluate

the effect of accounting for different correlation structures among capture occa-

sions on capture-recapture model selection. Finally, we fit the behavioral response

and heterogeneity among individuals model (Mbh) using our proposed approach

to real capture-recapture data and conduct a simulation study to examine the

performance of the estimators and their standard errors.
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In Chapter 4, we apply our proposed GEE approach in the temporal variation and

heterogeneity among individuals model (Mth) of capture-recapture closed popula-

tion to estimate population parameters. Our approach is illustrated on three real

capture-recapture data sets, and a simulation study is also conducted.

In Chapter 5, estimation of closed population size is considered under heterogene-

ity model (Mh) through individual covariates. We consider a partial likelihood

approach which is constructed from a conditional likelihood. This allows for extra

modelling flexibility using techniques, such as GLM and GLMM. Here we compare

estimates of population size and corresponding standard errors based on the three

estimating methodologies: GLM, GLMM and our propose GEE. Three real data

sets are used for illustration purposes. A simulation study is also conducted to

show the performance of the estimation procedures.

Chapter 6 provides a general conclusion and further related research topics for

future work.





Chapter 2

Methodological Reviews

This chapter begins with an introduction to capture-recapture methods followed by

a brief literature review on founding capture-recapture closed population models.

Other common statistical methodologies considered throughout this dissertation

are also provided for the reader with general details and references. The methods

presented in this chapter are not new and are simply intended to give a clearer

exposition. Notation and techniques described here are presented in their sim-

plest form, and will be generalized to the capture-recapture context in subsequent

chapters.

2.1 Capture-Recapture Methods

The estimation of animal abundance is important for decision making and planning

in both the theoretical and applied biological sciences. In recent years, capture-

recapture methods have experienced important theoretical developments. New

application areas have been added to their spectrum, in turn supporting new de-

velopments on the methodological side. Conventional capture-recapture models

are either closed or open models. For example, closed population models arise

when the time period between capture occasions is short, and it is assumed the
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population is closed to immigration, emigration, birth and death. Open popula-

tion models arise when any of these assumptions is relaxed. It is also possible to

have models that combine these assumptions. For example, the so called Robust

Design assumes that there are series of capture occasions for which the popula-

tion is closed interspersed with periods for which the population is assumed open

(Pollock, 1982).

Capture-recapture has its origin in the Biological/Ecological Sciences with the

work of Lincoln (1930) and Petersen (1896). More than one hundred years ago

Petersen published his landmark paper suggesting what later became known as the

Lincoln-Petersen estimator, still in use by numerous practitioners. The Lincoln-

Petersen estimator and the original capture-recapture models of Schnabel (1938)

assume a closed population where the primary aim is to estimate the size of the

population and capture probabilities are treated as nuisance parameters. The pio-

neering work of Darroch (1958) provided a mathematical foundation for the theory.

Seber (1982, 1986, 1992), Schwarz and Seber (1999), Chao (2001), Williams et al.

(2002) and Amstrup et al. (2005) provided excellent and comprehensive reviews

of models for estimating animal abundance in closed capture-recapture studies.

Other important general references on closed models and applications include

Otis, Burnham, White, and Anderson (1978), White, Anderson, Burnham, and

Otis (1982), Pollock (1991), Hook and Regal (1995), and the two reviews by the

International Working Group for Disease Monitoring and Forecasting (IWGDMF)

(1995a,b). Recent encyclopedia articles include Cormack and Buckland (1997)

and Chao (1998).

Capture-recapture techniques are often much less expensive and may be more in-

formative than hypothesis testing (classical) approaches to estimate population

parameters. Researchers face limited budgets in both the developing and the in-

dustrialized world. Those interested in the size of difficult-to-identify populations

will undoubtedly find estimation procedures based on these methods appealing.
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Capture-recapture methods can be seen to be applied in three major sciences:

(i) Biological sciences, where the size of animal populations and their diversity

are of importance.

(ii) The life and medical sciences, where we often want to know the size of the

population having hidden disease, such as depression or drug use.

(iii) The social sciences, where we may be interested in the amount of illegal

activities, such as illegal immigration.

Since every estimation method is based on a set of assumptions, hence the first

step is to decide what assumptions must hold if the estimated population size

provide a suitable estimate of true population. The key general assumptions for

capture-recapture methods are listed below.

(a) The population is closed either geographically and demographi-

cally.

A population is assumed to be closed both geographically and demographi-

cally (i.e., no additions or deletions) when there is no change in population

size (N). No births, deaths, or migration in or out of the population occur

among the sampling periods. This assumption can be weakened. If only

deletions occur during the experiment, N will be an estimator of the pop-

ulation size at the time of the first sample whereas if only additions occur

N will be an estimator of the population size at the time of the last sample

(Pollock et al., 1990).

(b) Animals do not lose their marks during the trapping occasions.

Marks loss represents one form of violation of the closure assumption. The

population size N will be overestimated if marks are lost. Carrying out

short-term studies may sometimes reduce the loss of marks. Alternatively,

double marking is a technique used to estimate mark loss (Seber, 1982).
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(c) All marks are recorded accurately and are neither overlook nor

misread, and are reported on each trapping occasion j.

This assumption is violated when observers do not see tags that have been

previously put on some of the marked animals. This problem is particularly

common in fisheries. Sometimes missing tags can be avoided or reduced by

careful planning of the study. A training program for the observers and pilot

studies in the field are helpful to identify any problem with the marking

method (Otis et al., 1978) which might cause marks to either be lost or

overlooked.

(d) All animals are equally likely to be captured on each trapping oc-

casion. This also implies that capture and marking do not affect

catchability of the animal.

This assumption is very difficult to achieve in practice because capture prob-

abilities vary with time, behavioral (or trap) response, and inherent differ-

ences among individuals in the population (heterogeneity). Capture proba-

bilities can change during the period of study depending on weather condi-

tions (time variation). For example, a cold rainy day during the study might

reduce activity of the animals and reduce the probability of capture. The

trapping method used can also affect the trap response, and consequently the

capture probability. Baiting traps, for example, is likely to lead to a trap

happy response where marked animals are more likely to be caught than

others due to differences in species, sex, age, social dominance, number and

placement of traps or other inherent characteristics (homogeneity) (Pollock

et al., 1990).

We are interested to estimate population size of capture-recapture closed popula-

tion models. Hence all the models discussed in this thesis assume population clo-

sure. A closed population is one that experiences neither losses nor gains between
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sampling occasions. Therefore, the parameter we wish to estimate is population

size N , which is assumed to be constant in the course of the capture-recapture

study. Moreover, because the same individual animals compose the population on

each trapping occasion, j = 1, 2, ..., m, we can conceive of the individuals as being

numbered i = 1, 2, ..., N . The basic capture data are conveniently expressed in

matrix form as

Y =




Y11 Y12 ... Y1m

Y21 Y22 ... Y2m
...

...
. . .

...

YN,1 YN,2 ... YN,m




where the subscript i for matrix element Yij denotes an individual animal (i =

1, 2, ..., N) and j denotes the capture occasion (j = 1, 2, ..., m) and

Yij =





1, if individual ith animal is caught on the jth capture occasion

0, otherwise.

The Y matrix is a simple way to record the capture or noncapture of each animal

in the population on each trapping occasion. Row i gives the trapping results

for individual i, while column j gives the results of the jth trapping occasion.

Capture-recapture estimators are based on probabilistic models of events giving

rise to the data in Y. In models of closed populations, the relevant model param-

eters include capture probabilities at each of the capture occasions.

In many capture-recapture experiments, covariates are collected when the individ-

uals are caught. These covariates could be individual-specific, such as sex, length

or weight, or they could be common to all individuals caught in that sample, for

example, air temperature.
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2.1.1 Closed Population Models

The key parameter of interest in closed population models is the size of the pop-

ulation, denoted N . When studying animal populations, scientists and biologists

are usually interested in sampling a population several (m > 2) times. In this

situation, it is necessary to keep a complete capture history of those animals that

have been captured at least once. Population size estimates could be affected by

chances in capture probabilities. Capture probabilities vary due to factors such as

time, behavioral response to capture, and other individual inherent factors (sex,

age, etc.). Inherent heterogeneity among animals in the population causes bias

on estimates of N while behavioral responses may cause positive or negative bias

on estimates of N . A ‘trap happy’ response produces a negative bias, and con-

sequently underestimates the population size N , whereas a ‘trap shy’ response

causes positive bias overestimating population size N . In order to estimate N , we

write the likelihood in terms of capture probabilities

P =




P11 P12 ... P1m

P21 P22 ... P2m

...
...

. . .
...

PN,1 PN,2 ... PN,m




where Pij is the probability of individual i being caught on occasion j. The

challenge is to recognize and model the patterns in these probabilities and to use

the corresponding probability models to develop estimates of population size. We

use information from the individuals observed, as well as, assumptions about P

to estimate the number of individuals with capture history (0, ..., 0) that were

available for capture but never seen. The standard likelihood is

L(P, N ; Y ) ∝ N !

n!(N − n!)

n∏

i=1

m∏

j=1

P
Yij

ij (1− Pij)
1−Yij

N∏

i=n+1

m∏

j=1

(1− Pij). (2.1)
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This is the most general likelihood with assumptions about P leading to different

classes of model where n is the total number of individuals were captured during

the study period. A series of specific models for capture data derived by Otis et

al. (1978) defining the following general structural model: Pij = the capture prob-

ability of the ith individual in the population being captured on the jth trapping

occasion, where i = 1, 2, ..., N , and j = 1, 2, ..., m. Following Otis et al. (1978),

the model can incorporate up to three sources of variation among capture proba-

bilities: a temporal effect (subscript t), a heterogeneity effect among individuals

(subscript h) and a behavioral effect in response to the trap (subscript b). They

give details about 8 classes of model: M0, Mt, Mb, Mh, Mtb, Mth, Mbh and Mtbh

assuming independence among capture occasions and individuals. Estimators are

available of these models, and a computer program called CAPTURE (Otis et

al., 1978; Rexstad and Burnham, 1991) has been written in order to help biolo-

gists and scientists to choose the most suitable model for a particular set of data.

CAPTURE uses numerical methods to obtain the MLE of N when m > 2. A list

of these models with a summary of their basic characteristics and assumptions

follows:

• Constant Capture Probability- Model M0

The simplest of all models under consideration results from the assumption that

all members of the population are equally at risk to capture on every trapping

occasion. Moreover, the occasions themselves do not affect capture probabilities.

We thus have a model in which there is no heterogeneity of capture probability,

no behavioral response to capture, and no variation in the experimental situation

over time. This model is designated Model M0, and involves only 2 parameters:

N , the population size, and P , the probability that an animal is captured on any

given capture occasion.
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The model M0 has one capture probability that is constant across individual and

time, mathematically,

Pij = P ; i = 1, 2, ..., N, j = 1, 2, ..., m.

It is straightforward to show that the joint probability distribution for the data

under model M0 can be written as

Pr({Yω} | N,P ) = N !

[
∏

ω Yω!](N − n)!
P n.(1− P )mN−n. (2.2)

where n. =
m∑
j=1

nj , is the total number of captures where nj is the number of

individuals caught on each sampling occasion, and {Yω} denotes the number of

animals exhibiting each capture history ω.

Although this model is very unlikely to hold in practice, it provides a base for

generalization to more complex models, and has been used as the basis of tests

of assumptions. In the case of several sampling occasions (m > 2), the only way

to estimate N and its standard error is by using an iterative computer proce-

dure. Simulation studies have shown that assumption violations, especially un-

equal catchability, cause serious bias, and for low capture probabilities (P ) and

small population size (N), the estimator of N is not precise (White et al., 1982).

• Temporal Variation- Model Mt

The model Mt was originally developed by Schnabel (1938), and it takes into

account that capture probabilities may vary over time. The model assume that all

members of the population are equally at risk to be captured on the jth trapping

occasion. Thus, all animals have the same probability of capture on any particular

trapping occasion, but that probability can change from one occasion to the next.

For example, a cold rainy day may reduce the activity of the animals, and reduce

their capture probabilities. On the other hand, animals may be more active on a

warm sunny day and thus their capture probabilities increase.
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Mathematically,

Pij = Pj; i = 1, 2, ..., N ; j = 1, 2, ..., m.

The set of (m+ 1) parameters involved in this model contains N , the population

size, and the Pj, j = 1, 2, ..., m, where Pj is the probability of capture on the jth

occasion. The joint probability distribution for the data under model Mt can be

written as

Pr({Yω} | N,P ) = N !

[
∏

ω Yω!](N − n)!
×

m∏

j=1

P
nj

j (1− Pj)
N−nj (2.3)

where P is the vector of capture probabilities, P1, P2, ..., Pm. Thus, the statistics

needed for estimation are simply the number of animals caught on each sampling

occasion (nj) and the total number of individuals captured (n).

Pollock et al. (1990) recommend the use of CAPTURE to find the maximum

likelihood estimation (MLE) for N in this model. They also point out that a

detailed capture history is not required for this model because of its simplicity.

Yip (1991) came up with a estimate of N and its variance based on a method of

moments for martingales. Bayesian methods have also been used for model Mt.

Some references are Castledine (1981), Gazey and Staley (1986), Smith (1988,

1991).

• Behavioral Response- Model Mb

This model deals with the failure of the assumption that initial capture does not

affect the probability of capture on subsequent occasions. That is, the model

allows an animal to exhibit a behavioral response to capture and become either

‘trap happy’ or ‘trap shy’. For example, if food is provided in a trap, the animal

may be ‘happy’ after capture and try to enter another trap afterwards. Then

its recapture probability increases. However, if an animal is frightened or hurt
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during initial capture or marking, it will try to avoid entering another trap, and

thus its capture probability decreases. Formally, model Mb assumes that on any

given trapping occasion, all unmarked animals have one probability of capture,

and all marked animals have another probability of capture. It is assumed that

capture probabilities do not vary with time. An implication of those assumptions

is that all members of the population have the same probability of capture at

the beginning of the experiment. Also note that the assumption is made that an

animal’s capture probability is altered only once, after first capture. Although one

might think it is more realistic to allow the capture probability to be changed more

than once (e.g., after both first and second capture) this more general assumption

turns out to have no effect on the estimation of population size N . Therefore,

for simplicity of presentation the assumption is made that all marked animals,

regardless of the number of times they might have been captured, have the same

capture probability.

The assumptions of model Mb result in 3 model parameters: N , population size;

Pc if an individual has never been caught; and Pr if an individual has been caught

before. Mathematically,

Pij =





Pc, if i has never been caught

Pr, if i has been caught before

; i = 1, 2, ...N ; j = 1, 2, ..., m.

This model allows for the study to influence the behaviour of the animals. If the

capture process is a bad experience for the animals, we get a trap-shy response

with Pc > Pr. However, if the capture process is a good experience for the ani-

mals, we get a trap-happy response with Pc < Pr. Note that these responses can

also be induced by the study design used. For example, if our sampling targets

areas where animals were previously caught, we are likely to observe a trap-happy

response.
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To describe the likelihood function for this model, let qj be the total number of

marked animals caught on capture occasion j, with Qj the number of marked

animals in the population at the time of capture occasion j. The probability dis-

tribution for model Mb can be described in terms of the total number of recaptures

q. =
m∑
j=2

qj,

during the study, the total number of marked individuals at the completion of

the study (n), and the sum (over all occasions) of the number of marked animals

available for capture at each capture occasion

Q. =
m∑
j=2

Qj.

The corresponding probability density function as Williams et al. (2002) is given

by

Pr
(
{Yω} | N,Pc, Pr

)
=

N !

[
∏

ω Yω!](N − n)!
Pc

n

× (1− Pc)
mN−n−Q. × Pr

q.

× (1− Pr)
Q.−q.. (2.4)

The trap response model (Mb) is statistically similar to the removal model (Se-

ber, 1982), but animals are not being physically removed from the population,

instead they are considered removed from the unmarked population after the ini-

tial capture. A linear regression model to estimate N and P is also mentioned

in the literature (Seber, 1982). Since little difference has been found between

the linear regression method and the trap response model, Pollock et al. (1990)

recommended the use of the maximum likelihood estimation available in the pro-

gram CAPTURE for the trap response model. Maximum likelihood estimation

has theoretical advantages.
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• Heterogeneity among Individuals- Model Mh

This model assumes that there is no difference between trapping occasions and no

behavioral response to capture, but that there is heterogeneity among the capture

probabilities of individuals. Different home range size, social dominance, age,

gender or weight may cause individual heterogeneity of capture. For example,

assume that male birds are used to finding food and female birds are used to

guarding the nest; then the capture probability of males is higher than that of

females. Model Mh has a different capture probability for each individual in the

population which is constant through time, i.e.,

Pij = Pi; i = 1, 2, ..., N ; j = 1, 2, ..., m.

Conceptually, model Mh involves N + 1 parameters: the population size N and

the set of capture probabilities Pi, i = 1, 2, ..., N , where Pi is the probability of

capture of the ith animal on any trapping occasion. This more general formula-

tion of model Mh does not allow estimation of population size N because of the

presence of too large a number of nuisance parameters (Otis et al., 1978).

The historically popular approach to estimate N for model Mh is to use the non-

parametric jackknife of Burnham and Overton (1978). Chao (1988) proposed a

moment estimator which is generally less biased than the jackknife estimator, es-

pecially when capture probabilities are small (Pollock et al., 1990). Stratification

technique can also be used to reduce heterogeneity of capture probabilities (for

example, separate analyses by sex or age or other variables which might cause

heterogeneity in capture probabilities); however, there are disadvantages of strat-

ification when the sample sizes are too small in the strata. Lee and Chao (1991),

and Norris and Pollock (1996) have proposed nonparametric approaches to derive

estimators of population size for this model. Alternatives include using finite mix-

tures for (P) (Pledger, 2000) or assuming the capture probabilities (P) are drawn

from a probability density function with support on [0, 1]. Holzmann et al. (2006)
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showed that the population size N is identifiable in model Mh conditional on a

model for (P) . However, Link (2003) showed that different probability density

functions for (P) can lead to identical sufficient statistics with different values of

N .

The approach of Burnham and Overton (1978) was to conceptualize the vector

of capture probabilities {Pi} as a random sample of size N from some probabil-

ity distribution F (P ) defined on the interval [0, 1]. The corresponding statistical

model can be described in terms of the number fj of animals caught on exactly j

occasions:

Pr(f1, f2, ..., fm | F ) = N !
[ m∏
j=1

fj !
](
N − n

)
!
η0

N−n
[ m∏

j=1

η
fj
j

]
(2.5)

where ηj =
∫ 1

0
m!

(m−j)!j!
P j(1 − P )m−j dF (P ). The cell probability ηj in Eq. (2.5)

can be viewed as the average probability that an individual is caught exactly j

times.

If the investigator can identify covariates (e.g., a size variable) associated with

variation in capture probability among individuals, it is possible to use this ad-

ditional information in estimation under a special case of model Mh. Pollock et

al. (1984), Huggins (1989, 1991), and Alho (1990) all consider modelling capture

probability as a linear-logistic function of individual covariates, e.g., as

Pi =
eβ0+β1xi

1+eβ0+β1xi
,

where β0 and β1 are parameters to be estimated and xi is the covariate value for

individual i.

• Temporal Variation and Behavioral Response- Model Mtb

This model assumes a behavioral response to capture and also permits temporal

variation in both initial capture and recapture probabilities. The model contains
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2m parameters: population size N , a vector P ′
c = {Pc1, Pc2, ..., Pcm} of initial cap-

ture probabilities, and a vector P ′
r = {Pr2, Pr3, ..., Prm} of recapture probabilities.

Mathematically,

Pij =





Pcj, for any first capture, j = 1, 2, ..., m

Prj , for any recapture, j = 2, 3, ..., m

The corresponding joint probability distribution for the data can be written in

several ways (Otis et al., 1978), including

Pr({Yω} | N,Pc, Pr) =
N ![∏

ω Yω!
]
(N − n)!

×
[ m∏

j=1

P
uj

cj (1− Pcj)
(N−Qj+1)

]

×
[ m∏

j=2

P
qj
rj (1− Prj)

Qj−qj

]
(2.6)

where uj and qj are the numbers of unmarked and marked animals, respectively,

that are caught at time j, and Qj is the number of marked animals present in the

population at the time of occasion j.

Burnham (1972) has come up with a estimator for this model which assumes that

capture probabilities vary with time and with behavioral effects (trap happiness,

trap shyness). The model assumes that recapture probability is some function of

initial capture probability, C = θ
√
P , as otherwise there are too many parameters

and the model is nonidentifiable. Parameter estimates for this model, such as

population size, initial capture probabilities, and θ, have been implemented in the

version of CAPTURE. The program also provides a variance-covariance matrix of

the parameter estimates and goodness-of-fit test (Rexstad and Burnham, 1991).

Again this estimator does not have good precision properties unless P and C are

quite high. Lloyd (1994) developed a martingale estimator for this model and
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studied his efficiency compared to that of the Mt model.

• Temporal Variation and Individual Heterogeneity- Model

Mth

This model permits variation in capture probabilities Pij both over time, j =

1, 2, ..., m, and for individual animals, i = 1, 2, ..., N . If, on the jth trapping

occasion, the ith animal has a capture probability of Pij = Pi × Pj where 0 ≤

PiPj ≤ 1 that is independent of its capture history (i.e., there is no behavioral

response to capture), then model Mth is the appropriate probability model for a

capture-recapture experiment on such a population. Notice that the structure of

Pij implies that variation in capture probabilities due to time is independent of

the variation caused by individual heterogeneity. Otis et al. (1978) viewed Pi

as a random sample from some probability distribution F (P ) and described the

probability distribution of the observed sample {Yij} as

Pr[Yij] = Pr[Yij |n]Pr[n],

with

Pr[Yij|n] =
[ m∏

j=1

P
nj

j

][ n∏

i=1

1∫

0

P Yi
[ m∏

j=1

(1− PPj)
1−Yij

]
dF (P )

]
,

where Yi is the number of times animal i is captured and Pr[n] is the probability

distribution of the number of animals (n) caught in the study, depending on the

parameters N,P1, ..., Pj, and the distribution F (P ).

This is useful as a conceptual model of how time and heterogeneity might operate

as a simple product. Chao et al. (1992) has developed an estimator for this

model. The proposed estimator has been implemented in the version of program

CAPTURE. The program provides parameter estimates for population size and

average capture probabilities for each occasion (Rexstad and Burnham, 1991).
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The estimator may not have good precision unless capture probabilities are high

on average.

If capture probability can be modelled using individual covariates, then the linear-

logistic modelling approach of Pollock et al. (1984), Huggins (1989, 1991), and

Alho (1990) can be implemented for this special case of Mth. In particular, capture

probability Pij for individual i at time j can be modelled as,

Pij =
eβ0j+β1xi

1 + eβ0j+β1xi
,

where β0 and β1 are parameters to be estimated and xi is the covariate value for

individual i.

• Behavioral Response and Individual Heterogeneity- Model

Mbh

The model assumes that every member of the population has a specific pair of

capture probabilities: Pi, the probability that the ith animal is caught on any

trapping occasion given that it has not been previously captured; and Ci, the

probability that the ith animal is recaptured given that it has been captured at

least once previously. Mathematically,

Pij =





Pi, for first capture, j = 1, 2, ..., m

Ci, for all recapture, j = 2, 3, ..., m

for i = 1, 2, ..., N .

Thus, the model allows both behavioral response to first capture and individual

heterogeneity of capture probabilities. An important and appealing characteristic

of the model is that it allows the behavioral response to capture to vary with the

animal, i.e., all members of the population do not exhibit an identical response
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to first capture. The most general formulation of the model involves 2N + 1

total parameters consisting of N (population size), and 2 capture probabilities for

each of the N members of the population. The density function for this model is

available in Otis et al. (1978).

The model Mbh, first considered by Pollock (1974) and later by Otis et al. (1974),

is a generalization of the removal method (see Otis et al., 1978 and Pollock et al.,

1990 for details). Otis et al. (1978) proposed an estimator termed by the general

removal estimator while Pollock and Otto (1983) proposed an alternative estimator

based on the jackknife method which is sometimes better than the generalized

removal estimator. Lee and Chao (1991), and Norris and Pollock (1996) have

proposed nonparametric approaches to derive estimators of population size for

this model. If capture probabilities can be modelled using individual covariates,

then the logistic models of Pollock et al. (1984), Huggins (1989, 1991), and Alho

(1990) can be used with Mbh.

• Temporal Variation, Behavioral Response and Individual

Heterogeneity- Model Mtbh

The most conceptually useful model is Mtbh because it represents the case in

which all three sources of variation operate. The model contains an initial capture

probability for each individual in each capture occasion (Pij, i = 1, 2, ..., N ; j =

1, 2, ..., m) as well as a recapture probability for each individual in each capture oc-

casion after the first (Cij , i = 1, 2, ..., N ; j = 2, 3, ..., m). That is, for i = 1, 2, ..., N ,

Pij =





Pij, for first capture, j = 1, 2, ..., m

Cij, for all recapture, j = 2, 3, ..., m.

It is the most realistic model for a closed population, but the model has no practical

use in estimating the size of the population because this model has (2m−1)N +1
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parameters, which clearly are not estimable with the available data. Pledger (2000)

considered estimation for model Mtbh using linear-logistic modelling in conjunction

with her finite mixtures approach. She considered time, behavioral response, and

heterogeneity as main effects and incorporated interaction terms as well. Though

her ‘fully interactive’ model with all interactions (including the three-way interac-

tion) requires some constraints on parameters, she also considered partially inter-

active models incorporating most or all of the two way interactions.

2.1.2 Covariates in Capture-Recapture Models

In capture-recapture experiments field researchers frequently measure covariates in

addition to capture records that might be associated with the capture probability

of the animals in the population. The types of covariates considered include group

or environmental covariates (e.g. temperature, humidity and rainfall) that may

vary by occasion, but are constant over animals, and individual animal covariates

(e.g. age, sex, body weight etc.) that are usually assumed to be constant over time.

The covariates can help to explain capture probabilities and improve estimation

of population size (N). Statisticians may think that the primary purpose of using

covariates is to get a more robust model and avoid bias due to heterogeneity (in

the closed models). Biologists may be drawn to covariate modelling to explore

important ecological hypotheses on the relationship of capture probabilities to

auxiliary variables such as animal weight. However, there are some very important

reasons to model covariates in capture-recapture study.

(i) it improves the estimation of the model and thus precision of all parameter

estimates is increased.

(ii) the models provide a clear description of the sources of heterogeneity, and

the each covariate effect can be assessed.
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(iii) model comparisons and model selection can be performed under a unified

framework.

(iv) there may be inherent ecological importance in understanding the nature

of the relationships between the parameters and specific environmental and

individual animal covariates. Hence, it helps to investigate biologically in-

teresting relationships. In this case the effect of the covariates improves

knowledge about the population dynamics of the species.

Surprisingly, little attention was given to incorporating covariates in early capture-

recapture development. One of the first papers to consider using covariate data in

models of closed populations was written by Pollock et al. (1984). Pollock, Hines

and Nichols (1984) proposed an estimation procedure that accommodates individ-

ual characteristics to model the capture probabilities of the animals. They only

considered categorical covariates. Another difficulty arises in the model of Pollock

et al. (1984) for individual covariates is that no information is available for the

individuals in the population that were never captured. Huggins (1989, 1991) and

Alho (1990) extended the case of continuous covariates. They developed a con-

ditional likelihood model to estimate capture probabilities in terms of observable

characteristics related to the capture individuals. However, one assumption is that

the heterogeneity effects are fully determined by the observable covariates. The

use of covariates does not take into account the heterogeneity due to unobservable

innate characteristics of the individuals. If some important covariates were not

recorded, the models might workless well than those without using covariates.

2.1.3 Horvitz-Thompson Estimator

The estimator proposed by Horvitz-Thompson (1952) is a general estimator for

a population size, which can be used for any probability sampling plan. This

includes both sampling with and without replacement. Let P ∗
i , for i = 1, 2, ..., N ,
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be the probability that the ith individual of the population is included in the sample

(inclusion probability). The Horvitz-Thompson (H-T) estimator is unbiased to the

size of the population, and is given by

N̂ =
∑

iǫsn

1

P ∗
i

, (2.7)

where sn is the sample composed only by n distinct sample animals, the value n

is sometimes referred to as the ‘effective’ sample size. Therefore, this estimator

is independent on the number of times selected each animal, since each animal is

used only once. The variance of this estimator is given by

Var[N̂ ] =

N∑

i=1

(
1− P ∗

i

P ∗
i

) +

N∑

i=1

∑

j 6=i

(
P ∗
ij − P ∗

i P
∗
j

P ∗
i P

∗
j

), (2.8)

where, P ∗
ij is the joint inclusion probability of units i and j.

An unbiased estimator of variance is given by

︷︸︸︷
Var [N̂ ] =

∑

iǫsn

(
1− P ∗

i

P ∗
i
2 ) +

N∑

iǫsn

∑

j 6=i

(
P ∗
ij − P ∗

i P
∗
j

P ∗
i P

∗
j

)
1

P ∗
ij

, (2.9)

where the extra P ∗
i in the denominator of the first term and the P ∗

ij in the denom-

inator of the second term can be attributed to the use of n sample units instead

of the N population units in the theoretical variance, if all the joint inclusion

probabilities are not zero. Note that this variance estimators may sometimes give

negative results, then, alternatives unbiased approximations should be selected.

The inclusion probabilities must be estimated when these probabilities are un-

known, then the estimator is called Horvitz-Thompson type. This estimator is

not centred, and there is no analytic expression for its variance, hence, it has to

be approximated by the delta method or methods for re-sampling.
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2.2 Generalized Linear Models

The combination of many statistical methods was presented by Nelder and Wed-

derburn (1972) exploring the idea of a generalized linear models (GLM). In statis-

tics, the GLM is a versatile overview of ordinary linear regression that enables for

response variables that have other than a normal distribution like logistic, Poisson,

Binomial, Gamma (McCullah and Nelder, 1989). The GLM generalizes linear re-

gression by allowing the linear regression model to be associated with the response

variable via a link function, and by permitting the magnitude of its variance of

each measurement to be a function of its predicted value. The GLM is a typical

tool in statistics and are easily applied to ecological studies. The GLM approach

is attractive because

(i) it provides a general theoretical framework for many commonly encountered

statistical models;

(ii) it simplifies the implementation of these different models in statistical soft-

ware, since essentially the same algorithm can be used for estimation, infer-

ence and assessing model adequacy for all GLM.

2.2.1 The Linear Model

Suppose Y is an n × 1 column vector containing the response variable whose

components are independently distributed with n× 1 column vector of means µ,

X is an n× p model or design matrix of explanatory covariates with rank p and a

leading column vector of ones, β is a p×1 column vector of estimated coefficients,

and ǫ is an n × 1 column vector of disturbances. Then the multiple regression

linear model in matrix notation is given by

Y = Xβ + ǫ. (2.10)
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On the right-hand side, Xβ is called the systematic component and ǫ is called

the stochastic component. The linear model requires a relatively strict set of

assumptions. The Gauss-Markov theorem states that if:

(i) the relationship between each explanatory covariate and the response vari-

able is linear in structure,

(ii) the residuals are independent with mean zero and constant variance,

(iii) there is no correlation between any regressor and residual,

then the solution produced by selecting coefficient values that minimize the sum

of the squared residuals is unbiased and has the lowest total variance among

unbiased linear alternatives. The first two assumptions are eliminated with the

basic generalized linear modelling approach and the third can be relaxed with more

advanced forms. However, the dependence of the variance on the mean function

must be known (except in the extension based on quasi-likelihood functions).

Generalized linear models provide a way to analyze the effects of explanatory

covariates in a way that closely resembles that of analyzing covariates in a standard

linear model, except that the assumptions are far less confining. The key is the

specification of a link function which relates the systematic component of the

linear model (Xβ) with a wider class response variables and residual forms.

2.2.2 Specification of Generalized Linear Models

Generalized linear models are an extension of classical linear models (McCullah

and Nelder, 1989). To simplify the transition to generalized linear models, the

generalization of the linear model produces the following three-part specification:

(i) The stochastic component: the component of Y is the random or stochas-

tic which remains distributed i.i.d. according to a specific exponential family

distribution, with mean µ = E(Y ). This component is sometimes also called

the ‘error structure’, or ‘response distribution’.
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(ii) The systematic component: η = Xβ is the systematic component pro-

ducing the linear predictor, Xβ. This linear predictor describe how the

location of the response variable changes with the explanatory covariates

(Lindsey, 2007). Hence, the explanatory covariates, X , affect the observed

response variable, Y , only through the functional form of the g() function.

(iii) The link function: the stochastic component and the systematic compo-

nent are linked by a function of η which is exactly the canonical link function

summarized in Table 2.1. The link function connects the stochastic compo-

nent which describes some response variable from a wide variety of forms

to all of the standard normal theory supporting the systematic component

through the mean function,

g(µ) = η = Xβ,

g−1(g(µ)) = g−1(η) = g−1(Xβ) = µ = E(Y ).

(2.11)

Hence the inverse link function ensures thatXβ̂, here β̂, the estimated coeffi-

cient vector, maintains the Gauss-Markov assumptions for linear models and

all of the standard theory applies even though the response variable takes

on a variety of nonnormal forms (Gill, 2001). The link function connects the

linear predictor, the systematic component (η), to the expected value of the

specified exponential family form (µ). It is essential that the link function

chosen is differentiable and monotonic, such that β can be estimated, and

that each value of Xβ has only one corresponding µ value. The most impor-

tant advantage of the link function is that it can be chosen independently of

the distribution. In classical linear models the mean and therefore the linear

predictor are identical, and the identity link is plausible in that both η and

µ can take any value on the real line. The foremost common link function

to use, is the canonical link function (McCullah and Nelder, 1989).
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2.2.3 Properties of Generalized Linear Models

Assuming that the distribution of each component of Y follows an exponential

family, taking the following form

fY (yi; θi, φ) = exp

{
θiyi − b(θi)

a(φ)
+ c(yi, φ)

}
(2.12)

for some specific functions a(.), b(.) and c(.), where θi is the canonical form of the

location parameter, some function of the mean, µi. If φ is known, this follows an

exponential-family model with canonical parameter θi. If φ is unknown, it may or

may not be a two-parameter exponential family (McCullagh and Nelder, 1989).

The most important distributions of the form (2.12) are summarized in Table 2.1.

• First Two Moments of GLM

The exponential dispersion family displayed in (2.12) does not explicitly reveal

how the moments of Yi, in particular the first two moments, may be related to θi

and φ. By algebraic simplification of (2.12), we get

µi = b′(θi),

Var(Yi) = a(φ)b′′(θi).

(2.13)

The expression for the variance of Yi explains the rationale behind the phrase

‘dispersion parameters’ for φ. Finally, given the relationship between θi and β

through (2.12) and (2.13) above, f(Y ; θ, φ) can also be expressed as f(Y ; β, φ)

(McCullagh and Nelder, 1989).

• Likelihood and Score Function

To make inferences about the unknown parameters β and φ, we would like to

develop the likelihood and score functions for (2.12). We assume that the Yi’s are

independent and represent a random sample from the targeted population, the
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likelihood function for β and φ is simply proportional to

L(β, φ) ∝
n∏

i=1

f(yi; β, φ) = exp

{
n∑

i=1

θi(β)yi − b(θi(β))

a(φ)
+ c(yi, φ)

}
.

Since the likelihood function and log likelihood function have identical modal

points, it is convenient to work with the log likelihood function which is as follows,

l(β, φ) =

n∑
i=1

θi(β)yi − b(θi(β))

a(φ)
+ c(yi, φ). (2.14)

Consequently, the score function for β can be derived as

Sβ(β, φ) = ∂l(β, φ)/∂β =

n∑

i=1

(∂µi

∂β

)′(
Var(Yi; β, φ)

)−1(
yi − µi(β)

)
. (2.15)

It is important to mention that the score function for β depends only on the first

two moments of the Yi’s despite the full specification of f(.) through (2.12). More-

over, given that a(φ) appears as a proportional factor in Var(Yi), no knowledge

on φ is needed to derive the MLE of β, β̂, by solving Sβ(β, φ) = 0, although the

asymptotic variances of β̂,
∑

(β, φ), does depend on φ, where

Σ−1(β, φ) = lim
n→∞

n∑

i=1

(∂µi

∂β

)′(
Var(Yi; β, φ)

)−1(∂µi

∂β

)
/n. (2.16)

2.2.4 Estimation of Parameters

In the generalized linear models, the unknown parameter β is typically estimated

with the maximum likelihood method or the quasi-likelihood technique.

• Maximum Likelihood Estimates

Estimation of β is conducted via an iterative procedure known as iterative re-

weighted least squares (IRLS). The estimation procedure is based on maximizing

the log-likelihood
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l(β) =
n∑

i=1

log{fYi
(yi; θ)}

with respect to β where θ is independent on β. This yields a set of estimating

equations and an iterative procedure is then constructed. GLM share similar

theoretical properties as linear models, hence GLM properties will not be covered

here, for further details on GLM see Wood (2006).

• Quasi-likelihood Estimates

One needs to specify the random component for the response variables to imple-

ment the generalized linear modelling approach. In several situations, some details

of the distribution governing the data is known, however the distribution may be

unable to be specified correctly. This may be due to the fact that the underlying

biological theory is not completely developed, and/or no substantial (empirical)

knowledge of similar data from previous studies is available. This precludes the

use of maximum likelihood method, which requires exact specification of the dis-

tribution in order to construct the likelihood function. Wedderburn (1974) first

proposed the idea of Quasi-likelihood methods for regression analysis that requires

few assumptions about the distribution of the response variable. To describe a

quasi-likelihood function, only the relationship between the mean and variance

needs to be specified through the variance function (Wedderburn, 1974).

Suppose the response yi has expectation µi and variance function, V (µi), where V

is some known function. The parameter of interest, β, is related to µi with inverse

link function of g(Xiβ) = µi. Then for each observation the quasi-likelihood is

given by

Q(yi;µi) =

µi∫

yi

(yi − w)

V (w)
dw (2.17)

or

∂Q(yi;µi)

∂µi
=

(yi − µi)

V (µi)
.
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To estimate β, we maximize the quasi-likelihood function by differentiating with

respect to β, which yields

U(β) = D′V (µ)−1(Y − µ) = 0, (2.18)

where D is the matrix of partial derivatives Dij = ∂µi/∂βj and V (µ) is the diag-

onal matrix with elements (V (µ1), ..., V (µn)). For V (µ) = 1, the quasi likelihood

reduces to the least square method. This quasi-likelihood method is used to fit

generalized linear models and generalized estimating equations for estimating re-

gression coefficients.
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Table 2.1: Characteristics of some common univariate exponential family distributions

Normal Poisson Binomial Gamma Inverse Gaussian

Notation N (µ, σ2) P (µ) Bin(m,π)/m G(µ, v) IG(µ, σ2)

Range of y (−∞,∞) 0(1)∞ 0(1)m

m
(0,∞) (0,∞)

Dispersion parameter: φ φ = σ2 1
1

m
φ = v−1 φ = σ2

Cumulant function: b(θ) θ2/2 exp(θ) log(1 + eθ) −log(−θ) −(−2θ)1/2

c(y;φ) −1

2
(
y2

φ
+ log(2πφ)) −log(y!) log

( m
my

)
vlog(vy)− logy − logΓ (v) −1

2

{
log(2πφy3) +

1

φy

}

Canonical link: θ = g(µ) µ log(µ) logit: log(
µ

1− µ
) − 1

µ
1/µ2

probit: Φ−1(µ)

cloglog: log(−log(1− µ))

Inverse link: µ = g−1(θ) θ exp(θ) logit: eθ/(1 + eθ) −1/θ (−2θ)−1/2

probit: Φ(θ)

cloglog: 1− exp(−exp(θ))

Variance function V (y) 1 µ µ(1− µ) µ2 µ3

The mean value parameter is denoted by µ, or by π for the binomial distribution.

The parameterization of the gamma distribution is such that its variance is µ2/v.

The canonical parameter, denoted by θ, is defined by 2.12. The relationship between µ and θ is also given.

Φ(.) is the standard normal c.d.f.

Table 2.1 is adapted from McCullah and Nelder (1989).
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2.3 Generalized Estimating Equations

The class of generalized linear models (GLM) plays a central role in regression

problems which have discrete or continuous response variables. However they are

based on the classical assumption that observations within a data set are indepen-

dent. GLM were extended by Liang and Zeger (1986) such that longitudinal or

correlated data could be analyzed, and this approach is known as the Generalized

Estimating Equations (GEE) method. The method is called the GEE method

because estimates are solutions of generalized estimating equations.

The GEE are called a population average or marginal method because GEE pro-

duce the average value of the individual regression lines for the regression coeffi-

cients. Hence, the regression coefficients estimated with GEE are called ‘popula-

tion average’ (Diggle et al., 2002; Zeger and Liang, 1986). In marginal models,

the primary interest of the analysis is to model the marginal expectation of the

response variable given the covariates. In other words, for every one unit increase

in a covariate across the population, the GEE tells us how much the average re-

sponse would change (Zorn, 2001). For the binary covariates, the GEE calculates

average response as the discrete change in the explanatory covariate from 0 to 1.

The correlation, or more generally, the association between the response variables

is modelled separately and is regarded as a nuisance parameter (Ziegler et al.,

1996).

This method has received wide use in biological and medical applications such

as epidemiology, gerontology, ecology, and biology (Ballinger, 2004; Akanda and

Khanam, 2011), and is becoming increasingly popular in other disciplines such

as organizational and psychological research. Much of the appeal of GEE is due

to their broad capabilities, including: modelling correlated responses; allowing for

time-varying covariates; and facilitating regression analysis on dependent variables

that are not normally distributed (McCullagh and Nelder, 1989).
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2.3.1 Notation

Consider a model of observations on a dependent variable Yij and a p× 1 vector

of covariates Xij, observed at times j = 1, 2, ..., m for individuals i = 1, 2, ..., N .

Thus the number of clusters or individuals is N . Let Yi = (Yi1, Yi2, ..., Yim)
′ be the

m× 1 vector of outcome values and Xi = (Xi1, Xi2, ..., Xim)
′ be the m× p matrix

of covariate values for the ith individual (i = 1, 2, ..., N). In the case of capture-

recapture data, to correspond with the notation described above, the following

notation is applied:

(i) Each animal forms one unit or cluster. Therefore, if only one animal is

examined, N = 1. If two animals are examined, then N = 2. Thus, i = 1

for one animal and i = 1, 2 for two animals.

(ii) The response variable, Yij, is the capture history (0 or 1) where, 1 indicates

capture and 0 otherwise. Thus, if one animal is examined, the response

variable becomes Y1j. If two animals are examined, there are two response

vectors of Y1j and Y2j.

(iii) The observed time, j, corresponds with the time values at which the capture

history is measured. For example j = 1, 2, 3 would correspond with capture-

recapture experiments taken at time point 1, time point 2, and time point

3.

(iv) The equal number of time points m for all animals is considered.

2.3.2 Assumptions

There are four assumptions about the use of GEE to model correlated data that

need to be articulated.
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(i) The most crucial assumption is that the following conditional expectation

needs to be specified correctly,

µij = E[Yij | Xij ] = E[Yij | Xi] (2.19)

Equation (2.19) implies the conditional mean µij of Yij, given the explanatory

covariate Xi, measured at all possible time points m, is equal to a set of the

same point specific explanatory variables Xij (Dahmen and Ziegler, 2003).

(ii) The second assumption is that the response variable Yij should have a mean

and variance which are characterised by a GLM (Equation 2.12).

(iii) It is further assumed that a true conditional m×m covariance matrix exists

(Dahmen and Ziegler, 2003).

(iv) Finally, it is imperative that any missing data is missing completely at ran-

dom (MCAR), otherwise results become inconsistent (Dobson and Williams,

2003).

2.3.3 Generalized Estimating Equations Modelling

To model the relation between the response and covariates, one can use a regression

model similar to the generalized linear models, g(µi) = Xiβ, where µi = E(Yi|Xi),

g is a specified link function, and β = (β1, β2, ...., βp)
′ is a vector of unknown

regression coefficients to be estimated.

The GEE approach estimates β through solving the following estimating equations

(Liang and Zeger, 1986):

U(β) =
N∑

i=1

D′
iV

−1
i (Yi − µi) = 0 (2.20)
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where Di = ∂µi(β)/∂β
′ and Vi is a working variance-covariance matrix of Yi. Vi

can be expressed in terms of a working correlation matrix R = R(α) which repre-

sents the average dependency among capture occasions, Vi = A
1
2
i Ri(α)A

1
2
i , where

Ai is a diagonal matrix with elements Var(Yij) = V (µij), which is specified as a

function of the mean µij. The α may be some unknown parameters involved in

the working correlation structure, which can be estimated through the methods

of moments or another set of estimating equations. GEE permits a set of work-

ing correlation structures. A broad range of options available for specifying the

correlation structure is an advantage for using the GEE approach. Some details

(working correlation matrix, estimation of α) are discussed in the next chapter.

To estimate β, the GEE estimator (Equation 2.20) is rearranged to obtain the

following,

β̂ =
N∑

i=1

(D′
iV̂

−1
i D′

i)
−1

N∑

i=1

(D′
iV̂

−1
i Yi). (2.21)

As generalized estimating equations are not a likelihood-based method of esti-

mation, computations based on likelihoods are not possible. Thus, in order to

find a solution for Equation (2.21), estimation may be accomplished either via

generalized weighted least-squares, or through an iterative process (Zorn, 2001).

2.3.4 Fitting GEE Models

One should fulfil some requirements when fitting a GEE model. Details are given

below to accurately specify these conditions step by step.

Step 1 & 2: Linear predictor and best link function

To model the expected value of the marginal response for the population µi =

E(Yi) to a linear combination of the covariates, one must specify a link transfor-

mation function that will allow the response variable to be expressed as a vector of

parameter estimates (β) in the form of an additive model (McCullagh and Nelder,
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1989). The choices available for the link function depend primarily on the dis-

tribution specified, and a list of these available with GEE models can be seen in

Table (2.2). This table gives the distributions and corresponding link functions

currently available with GEE models in most statistical packages.

Table 2.2: Distribution choices and link functions in generalized estimating equa-
tions (GEE)

Distribution Link Functions Brief Description

Normal Identity Link This fits the same model as the glm

Power Link Any power transformation

Reciprocal Link Links using reciprocal of response

variable

Binomial Logit Link Fits logistic regression models

Probit Link Fits cumulative probability func-

tions

Power Link Any power transformation

Reciprocal Link Links using reciprocal of response

variable

Poisson Log Link

Power Link Any power transformation

Reciprocal Link Links using reciprocal of response

variable

Negative Binomial Power Link Any power transformation

Gamma Power Link Any power transformation

Reciprocal Link Links using reciprocal of response

Multinomial Cumulative Logit Link

Table 2.2 is adapted from Ballinger (2004).

Step 3: Distribution of the response variable

The next step involves specifying the distribution of the outcome variable such that

the variance might be calculated as a function of the mean response calculated in
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step 1 and 2 (Hardin and Hilbe, 2003). GEE, like GLM, permit the specification of

distributions from the exponential family of distributions, including the Normal,

inverse Normal, binomial, Poisson, negative binomial, and gamma distributions.

The GEE methodology is applied to the correlated capture-recapture data. Mis-

specification of the variance function, and thus the response distribution, can have

important consequences and lead to incorrect statistical conclusions.

In fitting a GEE (or any GLM), one should make every reasonable effort to cor-

rectly specify the distribution of the response variable so that the variance can be

efficiently calculated as a function of the mean and the regression coefficients can

be properly interpreted (Ballinger, 2004). It is usual for the user to have some

prior knowledge of the distribution of the response variable.

Step 4: Structure of the correlation within the response

variable

The final step involves the specification of the form of the correlation of responses

within units or nested within a group in the sample. Even though GEE models

are generally robust to misspecification of the correlation structure (Liang and

Zeger, 1986), it is still important that the user takes precautions in specifying

this structure. This is because a structure that does not incorporate all of the

information on the correlation of measurements within the cluster may result in

inefficient estimators. Some correlation structures described in the next chapter.

Step 5: Fitting the model and diagnostics

A GEE model can be fitted to the data, however this usually takes considerable

time and effort. Finally, and often most importantly, the model should be checked

to see if it is adequate and justifiable, using numerous diagnostic techniques.
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2.3.5 Remarks on GEE

The major, and most obvious advantage of GEE is they can be used to model

non-Normal, correlated longitudinal data. This advantage is further strengthened

by the broad range of options available that help specify the correlation between

observations through the working correlation matrix. Another advantage is that

even if an incorrect working correlation matrix is specified, it is still possible to

obtain consistent parameter estimates for β that are asymptotically Normally

distributed, provided the mean µi has been correctly specified as a function of

all possible explanatory covariates Xi (Dahmen and Ziegler, 2003). GEE are

gaining popularity, however there is some evidence that the use of an incorrect

dependence structure within the GEE approach can produce worse results than

if using an independent structure to model correlated data (Sutradhar and Das,

1999, Crowder, 1995). Horton and Lipsitz (1999) suggest that the GEE robust

variance estimate should only be used when there are more than 20 units or

clusters, that is, N should be greater than 20. If a data set contains fewer than

20 units, the model-based or naive approach to estimating the variance should

be used, as it gives better estimates for the variance of β. Recently the GEE

algorithm has been incorporated into many major statistical packages, including

SAS, STATA, HLM, LIMDEP, GAUSS, SUDANN, R, and S-Plus.

2.4 Generalized Linear Mixed Models

Generalized linear mixed models (GLMM) (Breslow and Clayton, 1993) is an

extension of the classes of linear mixed models (LMM) (Laird and Ware, 1982),

and generalized linear models (GLM) (McCullagh and Nelder, 1982) in which

the linear predictor contains random effects in addition to the fixed effects. The

class of GLMM is a broad class of flexible statistical models that simultaneously

enable (i) the modelling of non-normally distributed data, (ii) the specification of
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a linear or even non-linear link function between the mean of the response, and

the predictor, and (iii) the accommodation of over-dispersion (McGilchrist, 1994)

and correlation (Davis et al., 2000) by incorporating random effects.

2.4.1 Modelling Structure

Consider a sample of n independent randommultivariate response Yi = (Yi1, ..., Yim)
′,

i = 1, 2, ..., n, where Yij is the jth response (j = 1, 2, ..., m) to the ith individual.

We shall assume that Yij depends on a p× 1 vector of fixed covariates xij associ-

ated with a vector of fixed effects β = (β1, ..., βp)
′ and on a q × 1 vector of fixed

covariate zij associated with the multivariate q × 1 random effect bi. The GLMM

satisfy the following conditions.

• Given bi, the outcome variables Yi1, ..., Yim are mutually independent with a

density function belonging to the exponential family

f(Yij|bi, β) = exp

{
Yijθij − α(θij)

dij(φ)
+ c(Yij, φ)

}
(2.22)

where θij is the canonical parameter and φ is the scale parameter. The

functions dij and c are specific to each distribution.

• The conditional mean and the conditional variance of Yij are given by

E(Yij|bi) = µbi
ij = h−1(x′ijβ + z′ijbi),

Var(Yij|bi) = v(µbi
ij)dij(φ),

(2.23)

where h and v are, respectively, the link and the variance function.

• The random effects b1, ..., bn are mutually independent with a common un-

derlying distribution G which depends on the unknown parameters α.
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The likelihood can be considered as the joint distribution of the response and the

random effects. To estimate β and α, the marginal likelihood of the response is

obtained by integrating out the random effects. The integral can be approximated

by penalized quasi-likelihood (Breslow and Clayon, 1993) which enables parameter

estimation via an iterative procedure. GLMM are also very commonly used in

ecological studies and they have well developed theoretical properties.

2.4.2 Modelling Correlation and Over-dispersion

The major aspect of random effects in GLMM is to accommodate the correlation

existing among observations in the non-normally distributed data. In practice,

correlation arises in a variety of contexts with dependent data. These type of data

are always encountered in repeated measures designs where responses are mea-

sured repeatedly from the same experimental unit; in longitudinal studies where

repeated measurements are made on the same individual across time; in hierar-

chical designs where clustering occurs on more than one level and the clusters are

hierarchically nested; and in a wide range of studies employing cluster sampling.

Depending on the design of dependent data collected, the correlation modelled by

the random effects have variant interpretations. For example in cluster sampling,

the random effects model the correlation between observations on the associated

individuals within a cluster; while in repeated measure design, the random effects

are responsible for describing the dependence among repeated observations on the

same experimental unit. In the case that correlated random effects are included

in GLMM, the association among the observations as well as among the random

effects in the linear structure can be accommodated simultaneously.

By the term ‘over-dispersion’, it means that the actual variance of the observed

response is larger than that explained by the nominal variance of the model. This

phenomenon is not uncommon in practice. This often occurs when the unobserved

heterogeneity, which arises from some unobservable covariate effects varying from
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one individual to another, has not been taken into account by the linear predictor.

Sometimes, this could also be due to the inadequate specification of the model

such as some relevant explanatory covariates have been omitted, or the link func-

tion is misspecified. Another possible situation of over-dispersion is that the data

collected contain a lot of zeros. This phenomenon may not be easily incorpo-

rated in standard regression models unless some parameters can be specified to

accommodate the situation. With the use of random effects, GLMM are capable

to describe such situations in the sense that random effects act as the subject-

specific variables to model or attribute over-dispersion to a particular source, and

hence GLMM can be widely applicable to analyze non-normally distributed data

with over-dispersion, particularly for those distributed according to the binomial

or Poisson distributions.

To conclude, the random effects in the linear predictor of GLMM are useful in

accounting for the correlation, over-dispersion, dependence, subject-specific infer-

ence, heteroscedasticity or any combinations of the above observed in the data.

With their wide applicability and practical importance, GLMM became an ex-

tremely popular modelling tool and received considerable attention for analyzing

the correlated and over-dispersed data in recent years.

2.5 Partial and Conditional Likelihood

Partial likelihood (Cox, 1975; Wong, 1986) arises from partitioning the full like-

lihood into products of conditional densities and only considering some of these

product terms, isolating nuisance parameters. This partial likelihood may yield a

much simpler form than the full likelihood (and still retain many of its properties

due to the usual conditions on the conditional densities), which allows for more

flexible and convenient inference.

Consider a vector y of observations represented by a random variable Y hav-

ing density fY (y; θ) and suppose that Y is transformed to new random variables
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(V,W ) by a transformation not depending on the unknown parameter. We call

fY (v; θ) the marginal likelihood based on V and fW |V (w|v; θ) the conditional like-

lihood based on W given V = v, both being considered as functions of θ; the usual

notation for probability densities is used. These definitions are both special cases

of the following definition of partial likelihood. Suppose that the random variable

Y , can be transformed into the sequence

(U1, S1, U2, S2, ..., Um, Sm), (2.24)

where the components may themselves be vectors. The number of pairs of terms

may in some cases be random; alternatively we can imagine dummy variables

added to complete the sequence up to the maximum conceivable m. The full

likelihood of the sequence (2.24) is given by

fY (y; θ) =

m∏

j=1

fSj |U (j),S(j−1)

(
sj |u(j), s(j−1); θ

)

×
m∏

j=1

fUj |U (j−1),S(j−1)

(
uj|u(j−1), s(j−1); θ

)
,

(2.25)

where u(j) = (u1, ..., uj) and s
(j) = (s1, ..., sj). The first product of (2.25) is called

the partial likelihood based on S in the sequence {Uj , Sj}. Partial likelihood was

originally applied to survival data, however this approach is also appropriate for

capture-recapture studies. The conditional likelihood based on W given V = v

corresponds to the special case

S1 = W, U1 = V

and the marginal likelihood of V to the special case in which U1 is a known

constant, S1 = V and U2 = W . Both marginal and conditional likelihoods are in

a natural sense ordinary likelihoods for derived experiments, but the same is not
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true in general for partial likelihood; this is because of the way the conditioning

events change (Cox, 1975).

If the full likelihood contains nuisance parameters as well as the parameters of

interest, then a conditional likelihood (Kalbfleisch and Sprott, 1970, 1973) may

be considered, such that the nuisance parameters are eliminated, and inference

about the parameters of interests can be made. Suppose now that y has density

fY (y; θ, ψ) where θ is the parameter of interest and ψ is the nuisance parameter.

Both θ and ψ may be considered as vectors, but for simplicity consider the one

dimensional case. As in Kalbfleisch and Sprott (1973), suppose that for given

value of θ, Tθ = (y1, ..., yn, θ)
′ is sufficient for ψ, then the full likelihood is given by

fY (y; θ, ψ) ∝ fY (y; θ|Tθ)× fTθ
(Tθ; θ, ψ).

The first product is called the conditional likelihood of θ. Note that it does

not involve ψ, furthermore the second product contains no available information

concerning θ in the absence of knowledge of ψ. The conditional likelihood is

readily used in practice and can be applied to common model forms, such as

GLMM (Sartori and Severini, 2004).
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The estimation of population parameters, such as capture probability, population

size, or population density, is an important issue in many ecological applications.

In this chapter, we propose a generalized estimating equations (GEE) approach to

account for correlation over time instead of assuming independence as in the tra-

ditional closed population capture-recapture studies. Current modelling strategies

involve a logit link-function of the covariates through a generalized linear modelling

(GLM) framework. We also account for heterogeneity due to measurable individ-

ual covariates and over-dispersion, modelling capture probabilities as a function of

individual covariates. The GEE versions of all closed population capture-recapture

models and their corresponding estimating equations are proposed. We evaluate

the effect of accounting for correlation structures on capture-recapture model se-

lection based on the Quasi-likelihood Information Criterion (QIC). An example is

used for an illustrative application and for comparison to currently used methodol-

ogy. A Horvitz-Thompson-like estimator is used to obtain estimates of population

size based on conditional arguments. A simulation study is conducted to evaluate

the performance of the GEE approach in capture-recapture studies.

3.1 Background

There is a vast body of literature on the statistical methodology of capture-

recapture studies, with much of it involved with building realistic models of the

sampling processes. Otis et al. (1978) presented a detailed account of traditional

closed population capture-recapture models. Seber (1986, 1992, 2002), Williams et

al. (2002), Chao and Huggins (2005) discussed many capture-recapture techniques

and associated statistical models. Pollock et al. (1984) suggested linear logistic

regression modelling of capture probabilities using measurable time dependent

environmental and other auxiliary variables (such as effort) without considering

dependencies among capture occasions. Their approach is very straightforward,
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and it is now widely used to model capture probabilities in both closed and open

population models. Huggins (1989) also uses data from capture-recapture ex-

periments to estimate the size of a closed population when capture probabilities

are heterogeneous, and modelled in terms of measurable covariates such as age,

sex, weight, rainfall, etc. The modelling is based on a likelihood approach, condi-

tional on the captured individuals, to estimate the associated parameters. Huggins

(1991) extended his previous work, providing more details about model structures

and considering capture probabilities in a linear logistic regression framework.

Hwang and Huggins (2005) and Zhang (2012) introduced an estimating equation

approach to examine the effect of heterogeneity on the estimation of population

size using capture-recapture data by solving estimating equations assuming inde-

pendence of capture occasions.

One may view capture-recapture data as binary longitudinal or repeated mea-

surements since these are typically collected on the individuals across successive

points in time (Huggins and Yip, 2001). These repeated observations are often

correlated over time. Failure to account for this correlation provides biased pa-

rameter estimates. Hwang and Huggins (2007) also state that the assumption of

independence among capture occasions is often violated in practice, but the au-

thors still rely on that assumption. Bayesian methods are becoming popular in

capture-recapture studies. An extensive Bayesian literature on capture-recapture

closed population models includes Castledine (1981), Smith (1991), George and

Robert (1992), Madigan and York (1997), Basu and Ebrahimi (2001), Ghosh and

Norris (2005), King and Brooks (2008), Gosky and Ghosh (2009, 2011). Bayesian

statistical modelling requires the development of a likelihood function for the ob-

served data, given a set of parameters, as well as the joint prior distribution of

all model parameters. Bayesian methods allow for estimation of the heterogeneity

due to measurable and unmeasurable individual characteristics, but the perfor-

mance of their estimates often depends on the chosen prior distributions. The
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method of selecting prior distributions is often too subjective (Lee et al., 2003).

The generalized estimating equations (GEE) method is an extension of the gener-

alized linear modelling (GLM) framework of Nelder and Wedderburn (1972). The

GEE approach is considered as one of the most important and widely applicable

techniques in analyzing correlated binary outcomes. This approach, developed by

Liang and Zeger (1986) and Zeger and Liang (1986), facilitates analysis of data

collected in longitudinal, or repeated measures designs. The method has been

widely used in medical and life sciences, such as epidemiology, ecology, gerontol-

ogy, and biology. Generalized estimating equations use a generalized linear mod-

elling framework to estimate more efficient and unbiased regression parameters

relative to ordinary least squares regression. Moreover, GEE permit specification

of a working correlation structure that accounts for a form of correlation among

capture occasions.

Here we propose capture probabilities to be estimated using a GEE modelling ap-

proach, accounting for heterogeneity due to measurable individual characteristics

and correlation over time instead of assuming independence. The GEE approach

has also the ability to account for over-dispersion. The modelling strategies in-

volve a logit link-function of the covariates through a generalized linear modelling

(GLM) framework. A comparative advantage of GEE over Bayesian methods re-

lates to the ability of GEE to allow specific correlation structures to be assumed

within capture occasions. Eight standard closed population models exist, allowing

for time, behavioral, and heterogeneity effects (Otis et al., 1978). The GEE ver-

sions of these models and their corresponding estimating equations are presented

when capture probabilities depend on covariates. We also evaluate the effect of

accounting for correlation structures on capture-recapture model selection based

on the Quasi-likelihood Information Criterion (QIC) (Pan, 2001).

In Section 3.2 we describe GEE models considered in this work. Section 3.3

presents different types of capture-recapture closed population models within the
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GEE framework. Model selection procedures are described and considered in Sec-

tion 3.4. In Section 3.5, we fit GEE in capture-recapture methodology for different

correlation structures and the estimation of the population size is examined. A

simulation study is given in Section 3.6 to evaluate the performance of GEE in

capture-recapture methodology. Finally, we provide some concluding remarks in

Section 3.7.

3.2 Notation and Models

Suppose that the total number of individuals in the study population is N , and

the possible number of capture occasions is m(≥ 2). Let Yij be the indicator

variable of the ith individual being caught on the jth occasion, that is, Yij = 1 if

the ith individual is captured on the jth occasion, and Yij=0, otherwise. Let Ti

be the number of occasions in which the ith individual has been caught during

the course of a experiment, then Ti =
m∑
i=1

Yij. Let Yi = (Yi1, Yi2, ..., Yim)
′ be the

m× 1 random vector to record the capture history of the ith individual for the m

capture occasions. Covariates zi, xij and vij are associated with the ith individual

and the jth occasion, for i = 1, 2, ..., N and j = 1, 2, ..., m. Let zi be an individual

measurable covariate, such as age, sex or weight, etc. For simplicity, we consider zi

a single covariate, but the model can be easily generalized for zi to be considered

a vector of covariates. We also consider xij to be an measurable occasion related

covariate for the ith individual, and vij be an indicator of the capture of individual

ith prior to occasion jth, which depends on occasions as well as individual, i.e.,

vij =





1, if individual i has been captured before j

0, elsewhere.
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Suppose that, Pij , the probability that the ith individual is captured on the jth

occasion is given by

Pij = Pr(Yij = 1|zi, xij , vij) = h(β0 + β1zi + βj+1xij + βbvij) (3.1)

for i = 1, 2, ..., N ; j = 1, 2, ..., m, where h(u) = exp(u)/(1 + exp(u)) = (1 +

exp(−u))−1 is the logistic function and

Xi =




1 1 . . . 1

zi zi . . . zi

xi1 0 . . . 0

0 xi2 . . . 0

...
...

. . .
...

0 0 . . . xim

vi1 vi2 . . . vim




′

is the design matrix. The logit transform, ln[Pij/(1−Pij)] = β0+β1zi +βj+1xij +

βbvij is a linear function of covariates corresponding to both, individual and envi-

ronmental characteristics. This type of linear logistic regression model has been

previously used by Pollock et al. (1984) and has been extensively used in the

statistical literature (Cox, 1970). Note that model (3.1) is a more general version

than those presented in Hwang and Huggins (2005) and Zhang (2012). This is

because it is extended to include all possible effects in closed capture-recapture

studies.

If xi1j = xi2j = xj for all i1 6= i2 that is, individuals are captured assuming the

same environmental characteristics (occasion related) for a particular occasion,

those may vary only occasion to occasion, but do not depend on individual or
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other characteristics such as behavior. Hence, we could simplify (3.1) to

Pij = Pr(Yij = 1|zi, xj, vij) = h(β0 + β1zi + β2xj + βbvij) (3.2)

for i = 1, 2, ..., N ; j = 1, 2, ..., m.

In this case, the design matrix Xi has the following form

Xi =




1 1 . . . 1

zi zi . . . zi

x1 x2 . . . xm

vi1 vi2 . . . vim




′

.

The mean vector of Yi is,

µi =




E(Yi1)

E(Yi2)

...

E(Yim)



=




Pi1

Pi2

...

Pim



= Pi,

where, Pij = µij = Pr(Yij = 1|zi, xj , vij); j = 1, 2, ...., m; i = 1, 2, ..., N . The

probability of not capturing the ith individual on the jth occasion is (1−Pij), and

the variance of Yij is Pij(1− Pij) = µij(1− µij).

Thus, the m×m variance-covariance matrix of Yi is given by

Var(Yi) =




Var(Yi1) Cov(Yi1, Yi2) . . . Cov(Yi1, Yim)

Cov(Yi1, Yi2) Var(Yi2) . . . Cov(Yi2, Yim)

...
...

. . .
...

Cov(Yi1, Yim) Cov(Yi2, Yim) . . . Var(Yim)



.
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In addition to the mean and covariance of the vector of responses, Yij, Liang and

Zeger (1986) suggested to use a m×m working correlation matrix for each Yi. The

working correlation matrix (denoted by Ri(α)) is an approximation to the actual

correlation matrix of Yi. While Ri(α) is assumed to be fully specified by the vector

of unknown parameters α, its structure is determined by the investigator based on

the study design, and it is often assumed to be constant across individuals. This

working covariance matrix can be expressed in the following form:

Vi = A
1
2
i Ri(α)A

1
2
i (3.3)

where, Ai = diag[Var(Yi1),Var(Yi2), ...,Var(Yim)] is a m×m diagonal matrix with

Ai =




Var(Yi1) 0 . . . 0

0 Var(Yi2) . . . 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 . . . Var(Yim)


 = φ




exp(ui1)

(1+exp(ui1))2
0 . . . 0

0
exp(ui2)

(1+exp(ui2))2
. . . 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 . . .
exp(uim)

(1+exp(uim))2


 ,

φ is a known or estimated variance parameter (depending on the response dis-

tribution) to allow for over-dispersion, such that Var(Yij) = φVar(Pij). In this

model setting, φ = 1 since the response variable follows a Bernoulli distribution.

Moreover, we use logit link with continuous covariates (Carruthers et al., 2008;

Hojsgaard and Halekoh, 2005). Hence, the model automatically accounts for over-

dispersion.

Let the vector of parameters, β = (β0, β1, β2, βb)
′ and Ri(α) = Corr(Yi) is a m×m

working correlation structure among Yi1, Yi2, ..., Yim, which describes the average

dependency of individuals being captured from occasion to occasion. For example,

if individual captures are independent from occasion to occasion, then the Ri(α)

has the form: Ri(α) = I, where I is a m×m identity matrix.

Liang and Zeger (1986) showed that if the correlation matrices Ri(α) are correctly

specified, the estimator β̂ is consistent and asymptotically Normal. Furthermore,

β̂ is fairly robust against misspecification of Ri(α). They used the term work-
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ing correlation matrix for Ri(α), and suggested that knowledge of the study de-

sign and results from exploratory analyses should be used to select a plausible

form. Preferably, Ri(α) should depend on only a small number of parameters,

using assumptions such as equicorrelation or autocorrelation. The most common

structures used to model the working correlation matrix are the independent,

exchangeable, autoregressive, stationary, nonstationary, unstructured, and fixed

correlation structures. The broad range of options available for specifying the

correlation structure is another advantage for using the GEE approach. Some of

these structures are examined in more detail below.

(i) Independent Structure:

The independent structure is the simplest form that the working correla-

tion matrix can take, as it assumes that no correlation actually exists and

observations within the series are independent. With this structure, the

working correlation matrix becomes the identity matrix, Ri(α) = I, and the

resulting GEE is then called the Independent Estimating Equations (Dah-

men and Ziegler, 2003). No estimation of α is required, since no correlation

is assumed to exist. This structure does not simply produce the algorithm

used for a GLM, as it still involves the ‘working’ correlation matrix, which

a GLM does not. For the independent structure, Ri(α) is defined as,

Rj,k =





1, j = k

0, otherwise.

In matrix notation this becomes,

Ri(α) =




1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1



.
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(ii) Exchangeable Structure:

The exchangeable structure assumes that there is a common correlation

within observations. Thus, all of the correlations inRi(α) are equal (Hedeker,

2005). An exchangeable correlation may be used when each pair of observa-

tions within a time frame has approximately the same correlation. For the

exchangeable structure, Ri(α) is defined as,

Rj,k =





1, j = k

α, otherwise.

In matrix notation this becomes,

Ri(α) =




1 α . . . α

α 1 . . . α

...
...

. . .
...

α α . . . 1



.

(iii) Autoregressive Structure:

For data that are correlated within cluster over time, an autoregressive cor-

relation structure is specified to set the time correlations as an exponential

function of this lag period, which is determined by the user (Ballinger, 2004).

The autoregressive structure assumes time dependence for the association

between observations and considers each time series to be an AR(m) pro-

cess. The most difficult task for this structure is determining the correct

order of the autoregressive process (Hardin and Hilbe, 2003). It is common

to choose an AR(1) structure, which is defined as,

Rj,k =





1, j = k

α|j−k|, otherwise.
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In matrix notation this becomes,

Ri(α) =




1 α α2 . . . αn−1

α 1 α . . . αn−2

α2 α 1 . . . αn−3

...
...

...
. . .

...

αn−1 αn−2 αn−3 . . . 1




.

(iv) Unstructured structure:

The unstructured form of the working correlation matrix is the most gen-

eral of all of the correlations discussed in this dissertation as no structure

is imposed on the correlation matrix. This form requires all m(m − 1)/N

correlations of Ri(α) to be estimated, and thus when there are many time

points this structure becomes very computationally burdensome.

An unstructured correlation matrix is used when there is no logical ordering

for the observations in the cluster, and is recommended if the number of ob-

servations is small in a balanced and complete design (Horton and Lipsitz,

1999). This correlation matrix is the most efficient structure, but is only

useful when there are relatively few observations as its estimate is not guar-

anteed to be a positive number and there is often a problem with inverting

Ri(α) (Hedeker, 2005). For the unstructured structure, Ri(α) is defined as,

Rj,k =





1, j = k

αjk, otherwise.
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In matrix notation this becomes,

Ri(α) =




1 α12 . . . α1m

α21 1 . . . α2m

...
...

. . .
...

αm1 αm2 . . . 1



.

Following the notation in Dobson (2010), let Di be the matrix of derivatives

∂µi/∂β
′. If the zi, xj and vij are observable covariates for each captured indi-

vidual, the vector of parameters β = (β0, β1, β2, βb)
′ for model (3.2) could be

estimated by solving the following generalized estimation equations:

U(β) =

N∑

i=1

D′
iV

−1
i (Yi − µi) = 0. (3.4)

However, the number of total individuals, N , is unknown and our purpose is to

estimate it. Also, the covariates zi, xj and vij are not known for individuals that

are never captured. To accommodate these situations, equation (3.4) has to be

modified as in Zhang (2012). Let Ψ be a set of distinct individuals captured

in at least one occasion that are indexed by i = 1, 2, ..., n and the uncaptured

individuals would be indexed by i = n+ 1, ..., N without lost of generality. Thus,

Yij is conditional on the captured individuals (n) (i.e., Ti ≥ 1) like Huggins (1989)

and Zhang (2012).

Therefore, an estimator of β, the vector of parameters defined by model (3.2), can

be obtained by solving the following generalized estimating equations:

U(β) ≡
n∑

i=1

D′
iV

−1
i

(
Yi − µi

)
= 0. (3.5)

We may call these estimating equations as a transformed GEE for the capture-

recapture models (GEECR). To solve equation (3.5), we consider the mean vector,
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µi = (µi1, ..., µim)
′ and the variance-covariance matrix Vi. The variance-covariance

matrix varies according to the nature of correlation structures Ri(α), as described

earlier. We used iterative procedures, e.g., Fisher scoring (McCullagh and Nelder,

1989) to handle convergence problems associated with the fully iterated GEE.

After solving for β, the standardized residuals are calculated to estimate α.

Specifically, if we consider the independent working correlation structure (R(α) =

I), this is assuming that Yi1, Yi2, ..., Yim are independent and letting Di = AiXi,

then the working covariance matrix (3.3) becomes

Vi = A
1
2
i IA

1
2
i = A =




Var(Yi1) 0 . . . 0

0 Var(Yi2) . . . 0

...
...

. . .
...

0 0 . . . Var(Yim)



.

Hence, the vector of parameters, β can be estimated by solving the following

GEECR equations,
n∑

i=1

X ′
i

(
Yi − µi

)
= 0. (3.6)

These estimating equations are the same that are obtained by assuming that the

observations of each individual are independent of each other (Hwang and Huggins,

2005).

We can estimate the vector of parameters β by solving the following GEECR

equations for the exchangeable and autoregressive correlation structures

n∑

i=1

X ′
iAiV

−1
i

(
Yi − µi

)
= 0 (3.7)

where, the covariance matrix (Vi) for Yi changes according to the assumption of ex-

changeable and autoregressive working correlation structures within the repeated

responses.
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Equations (3.7) can be solved by an iterative procedure, and at each iteration,

the correlation parameter α can be estimated from the current Pearson’s residuals

defined by

r̂ij =
Yij − µ̂ij

[µ̂ij(1− µ̂ij)]
1/2
,

where µ̂ij depends upon the current value for β. Liang and Zeger (1986) estimated

α as following,

α̂ =
n∑

i=1

m∑

j>l

r̂ij r̂il

/{
1

2
nm(m− 1)− p

}

where p is the number of parameters in the model.

The vector of parameters, β can be estimated by solving the following GEECR

equations under pairwise correlation structure,

n∑

i=1

X ′
iAi

(
A

1
2
i R̂(α)A

1
2
i

)−1 (
Yi − µi

)
= 0. (3.8)

where, according to Liang and Zeger (1986), R(α) can be estimated by

R̂(α) =
1

n

n∑

i=1

A
−1/2
i

(
Yi − µ̂i

)(
Yi − µ̂i

)′
A

−1/2
i .

3.2.1 Asymptotic Properties of β̂

The GEE model outlined here has a number of attractive properties for applied

researchers. Because the first two terms of (3.5) do not depend on Yi, the score

equations converge to zero (and thus have consistent roots) so long as E(Yi−µi) =

0. Assuming that the model for µ is correctly specified, GEE estimates of β

(here, β̂GEE) will be consistent in n. Moreover, n1/2(β̂GEE − β) is asymptotically

multivariate normal, and the covariance matrix of the estimates can be consistently

estimated by the inverse of the derivative of the quasi-score function, evaluated at

α̂ and β̂ following the theorem given by Liang and Zeger (1986). The proof of the

theorem is reported in Appendix A.
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Theorem 1: Under mild regularity conditions and given that:

1). α̂ is n
1
2 -consistent given β and φ;

2). φ̂ is n
1
2 -consistent given β; and

3). | ∂α̂(β, φ)/∂φ |≤ H(Y, β) which is Op(1), then n
1/2(β̂GEE−β) is asymptotically

multivariate Gaussian with zero mean and covariance matrix VGEE given by

Var(β̂GEE) = lim
n→∞

n

( n∑

i=1

D′
iV

−1
i Di

)−1[ n∑

i=1

D′
iV

−1
i Cov(Yi)V

−1
i Di

]( n∑

i=1

D′
iV

−1
i Di

)−1

.

Most important, the asymptotic consistency of β̂GEE holds even in the presence

of misspecification of the ‘working’ correlation structure α; thus, GEE offer the

potential of providing asymptotically unbiased estimates of the parameters of pri-

mary interest even in cases where the exact nature of the intracluster dependence

is unknown. Note, however, that the consistency of the variance estimate for β̂

does depend on proper specification of the working correlation structure; mis-

specification of the working correlation structure yields estimates of β̂ which are

still asymptotically normal, but for which Var(β̂) does not equal (D′V −1D)−1. In

such cases, Liang and Zeger (1986) propose a ‘robust’ estimate of the variance-

covariance matrix of β̂:

Var(β̂GEE) = n

( n∑

i=1

D̂′
iV̂i

−1
D̂i

)−1[ n∑

i=1

D̂′
iV̂i

−1
SiV̂i

−1
D̂i

]( n∑

i=1

D̂′
iV̂i

−1
D̂i

)−1

(3.9)

where Si = (Yi − µ̂i)(Yi − µ̂i)
′ is a simple empirical covariance estimate. This

‘robust’ (or ‘empirically-corrected’) estimate is analogous to that derived by White

(1982) and is consistent even under misspecification of the correlation matrix. In

practice, this robust estimator is nearly always used, since a key reason for using

GEE in the first place is the belief that the observations in the data are dependent.

3.2.2 Estimation of Population Size and their Variance

Derived GEE estimates for β, can be used to estimate the capture probabilities,

Pij. To estimate the population size we follow the method of Huggins (1989)
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which is based on a Horvitz-Thompson estimator (1952). Let πi(β) = Pr(Ti ≥

1|Xi) = 1−
m∏
j=1

(1−Pij) be the probability of being captured at least once given the

covariates in the course of the trapping experiment, where Ti =
m∑
j=1

Yij , as defined

earlier. An unbiased estimate of the population size N is

N̂(β) =

n∑

i=1

πi(β)
−1, (3.10)

and an estimate of the variance of N̂ is given by

V̂ar(N̂) =

n∑

i=1

πi(β)
−2
(
1− πi(β)

)
+∆(β)′Γ (β)−1∆(β) (3.11)

where Γ (β) represents the conditional information matrix for β and ∆(β) is the

vector of
n∑

i=1

πi(β)
−2∂πi(β)/∂β with all quantities evaluated at β̂.

3.3 Different Kinds of Capture-Recapture Closed

Models

The most general closed population capture-recapture model is denoted by Mtbh,

considered by Otis et al. (1978). The subscripts t, h, and b refer to time, hetero-

geneity, and behavioral effects, respectively, indicating which effects are present

in the modelling of capture probabilities. The specification of a closed population

capture-recapture model is given by the restrictions imposed on the capture proba-

bility parameters. These capture probabilities depend on the vector of parameters

β. The general estimating equations of closed population models are equations

(3.7) for exchangeable and autoregressive correlation structures, and equations

(3.8) for pairwise correlation structure. As in Huggins (1991), we could consider a

class of models related to those of Otis et al. (1978) when appropriate, but rather
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than the usual likelihood approach and AIC, we use GEE estimation and quasi-

likelihood methods considering variance structure under independence. The GEE

versions of the class of models and their corresponding estimating equations are

presented below. To our knowledge, with the exception of estimating equations

for models M0 and Mh, none of them have been previously proposed.

Model 1. (M0)

If the individual capture probability does not vary with time, the individual’s prior

capture history, or any covariates, model (3.1) simplifies to ln[Pij/(1 − Pij)] =

β0; j = 1, 2, ..., m, i = 1, 2, ..., N. This model assumes that all the individuals

are equally at risk of capture on every trapping occasion. This model is a re-

parameterization of model (M0) in Otis et al. (1978). Suppose, Pij = h(β0) = P0,

then equations (3.5) becomes the result of the homogeneity assumption (Hwang

and Huggins, 2005; Zhang, 2012), and is given by:

n∑

i=1

(
m∑

j=1

Yij −
mP0

1− (1− P0)m

)
= 0. (3.12)

Model 2. (Mb)

ln[Pij/(1− Pij)] = β0 + βbvij ; j = 1, 2, ..., m, i = 1, 2, ..., N .

This model allows the capture probabilities to vary only according to an individ-

ual’s prior capture history and is a re-parameterization of model Mb of Otis et

al. (1978). Let, Pij = h(β0 + βijvij) then equations (3.5) can be written as the

following classes of estimating equations,





n∑
i=1

m∑
j=1

(Yij − µij) = 0

n∑
i=1

m∑
j=1

(Yij − µij)vij = 0.

(3.13)
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Model 3. (Mt)

ln[Pij/(1− Pij)] = β0 + βj+1xj ; j = 1, 2, ..., m, i = 1, 2, ..., N ,

where βm+1 = 0 for identifiability. This model allows that all animals have the

same probability of capture on any particular trapping occasion, but that proba-

bility can change from one occasion to the next, that is, capture probabilities vary

only by time. In this case, Pij = h(β0 + βj+1xj) = Pj , then equations (3.5) can be

written as the following estimating equations,





n∑
i=1

m∑
j=1

(Yij − µij) = 0

n∑
i=1

m∑
j=1

(Yij − µij)xj = 0.

(3.14)

Model 4. (special case of Mh)

ln[Pij/(1− Pij)] = β0 + β1zi; j = 1, 2, ..., m, i = 1, 2, ..., N ,

where β1 is the effect of individual covariate. This model accounts for heterogeneity

among the capture probabilities of individuals only, but there is no difference in

capture probabilities among trapping occasions and no behavioural response to

capture. There is no equivalent model of Otis et al. (1978) although this model is

a restricted version of their model Mh. If Pij = h(β0 + β1zi) = Pi, then equations

(3.5) can be written as





n∑
i=1

(
Ti − mPi

1−(1−Pi)m

)
= 0

n∑
i=1

(
Ti − mPi

1−(1−Pi)m

)
zi = 0.

(3.15)

Equation (3.15) has been previously considered by Hwang and Huggins (2005).

Model 5. (Mtb)

ln[Pij/(1− Pij)] = β0 + βj+1xj + βbvij ; j = 1, 2, ..., m, i = 1, 2, ..., N ,
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where βm+1 = 0 and βb is the effect of individual’s prior capture history. This

model allows that the probability of capture changes after initial capture, and

that temporal changes also affect capture probabilities. Suppose, Pij = h(β0 +

βj+1xj +βbvij) then the set of estimating equations from equations (3.5) are given

below: 



n∑
i=1

m∑
j=1

(Yij − µij) = 0

n∑
i=1

m∑
j=1

(Yij − µij)xj = 0

n∑
i=1

m∑
j=1

(Yij − µij)vij = 0.

(3.16)

Model 6. (special case of Mbh)

ln[Pij/(1− Pij)] = β0 + β1zi + βbvij ; j = 1, 2, ..., m, i = 1, 2, ..., N .

In this case, the capture probabilities depend on both behavioural response to

first capture and individual heterogeneity. There is no equivalent model of Otis

et al. (1978), although this model is a restricted version of their model Mbh. Let,

Pij = h(β0 + β1zi + βbvij) then equations (3.5) can be written as





n∑
i=1

m∑
j=1

(Yij − µij) = 0

n∑
i=1

m∑
j=1

(Yij − µij)zi = 0

n∑
i=1

m∑
j=1

(Yij − µij)vij = 0.

(3.17)

Model 7. (special case of Mth)

ln[Pij/(1− Pij)] = β0 + β1zi + βj+1xj ; j = 1, 2, ..., m, i = 1, 2, ..., N ,

where βm+1 = 0. This model accounts for heterogeneity resulting from individual

covariates and time, but does not depend on individual’s prior capture history.
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There is no equivalent model of Otis et al. (1978) although this model is a re-

stricted version of their model Mth. Here, Pij = h(β0 + β1zi + βj+1xj), then the

corresponding estimating equations are the followings,





n∑
i=1

m∑
j=1

(Yij − µij) = 0

n∑
i=1

m∑
j=1

(Yij − µij)zi = 0

n∑
i=1

m∑
j=1

(Yij − µij)xj = 0.

(3.18)

Model 8. (special case of Mtbh)

ln[Pij/(1− Pij)] = β0 + β1zi + βj+1xj + βbvij ; j = 1, 2, ..., m, i = 1, 2, ..., N .

This is Model 6 with probabilities allowed to vary over time. Again this is a special

case of the model Mtbh of Otis et al. (1978), but there is not equivalent to their

model. Suppose Pij = h(β0 + β1zi + βj+1xj + βbvij), then we get the following

estimating equations from GEECR:





n∑
i=1

m∑
j=1

(Yij − µij) = 0

n∑
i=1

m∑
j=1

(Yij − µij)zi = 0

n∑
i=1

m∑
j=1

(Yij − µij)xj = 0

n∑
i=1

m∑
j=1

(Yij − µij)vij = 0.

(3.19)

3.4 Methods of Model Selection

The GLM methodology relies on maximum likelihood theory for independent ob-

servations (McCullagh and Nelder, 1989) whereas the GEE methodology relies on

the quasi-likelihood theory (Wedderburn, 1974) for analyzing longitudinal data,

and no assumption is made regarding the distribution of response observations.
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Therefore, model selection criteria derived under likelihood theory in GLM, as an

example, Akaike’s information criterion (AIC) (Akaike, 1973) is not appropriate

to GEE directly. However, Pan (2001) proposed a modification of AIC, called

‘quasi-likelihood information criterion’ (QIC). The quasi-likelihood in QIC is con-

structed on the basis of the independence working correlation assumption. This

criterion can also be applied to select the appropriate working correlation struc-

ture and therefore the best subset of covariates that is nearest to the true model

from a set of potential candidate models in GEE analyses.

We already defined, Yi to be the vector of capture history of the ith individual and

Xi to be the design matrix. Hence under the framework of GLM, g(µi) = Xiβ,

where g(·) is the link function and µi = E(Yi). Then according to Akaike (1973),

the AIC is given by

AIC = −2LL+ 2p,

denoting LL as the log-likelihood and p is the number of parameters in the model.

Pan (2001) modified the above formula and created an adjustment for the penalty

term 2p for GEE, leading to the subsequent formula for QIC as

QIC = −2Q(µ̂; I) + 2trace(Ω̂−1
I V̂R), (3.20)

where I symbolizes the covariance structure under independence used to calculate

the quasi-likelihood function. The coefficient estimates β̂ and robust variance

estimator V̂R are obtained from a general working correlation structure R(α).

Another variance estimator Ω̂I is obtained under the independence correlation

structure assumption. Here µ̂i = g−1(Xiβ̂) and g
−1(·) is the inverse link function

in the GEE model. When trace(Ω̂−1
I V̂R) ≈ trace(I) = p, then the simplified

version of QIC, denoted by QICu (Pan, 2001) is given by,

QICu = −2Q(µ̂; I) + 2p. (3.21)
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Table 3.1: Variance and quasi-likelihood functions for commonly used distributions
in the exponential family

Distribution V (µ) Q(µ)
Bernoulli µ(1− µ) yln( µ

1−µ
) + ln(1− µ)

Normal 1 −1
2

∑
(y − µ)2

Poisson µ yln(µ)− µ
Gamma µ2 −( y

µ
+ ln(µ))

Negative Binomial µ+ µ2 y(ln(µ))− 2ln(µ+ 1)
Inverse Gaussian µ3 − y

2µ2 +
1
µ

However, QICu cannot be used to select the best working covariance structure

because of the assumption of asymptotic equivalence of Ω̂Iand V̂R (Cui, 2007).

Therefore, we use QIC to select an optimal correlation structure. Based on this

best correlation structure we can further select the best subset of explanatory

variables. The model with the smallest QIC value will be chosen as the most

parsimonious model with the best correlation structure (Pan, 2001; Cui, 2007).

Other statistics, such as the Wald χ2 and deviance, cannot be used for comparing

GEE models because they do not take into account the number of parameters in

the model. Therefore, they may give misleading decisions for model selection in

GEE analyses.

The general form of the quasi-likelihood model in (3.20) and (3.21) (Wedderburn,

1974) is given by

Q(µ) =

µ∫

y

y − w

V (w)
dw. (3.22)

V (µ) is the variance of the response observations which is a function of the mean µ.

The value of V (µ) is given in Table 3.1 for some exponential family distributions.

We can compute the value of the quasi-likelihood Q(µ) by substituting with the

corresponding value of V (µ) in (3.22).
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3.5 An Illustrative Example

For illustration purposes, we considered the Deer mice (Peromyscus maniculatus)

data set extracted from Appendix 1 of Huggins (1991). This data set, collected

by V. Reid at East Stuart Gulch Colorado, was also distributed with program

CAPTURE (Otis et al., 1978). We select this data set since it has capture history

with corresponding individual covariates of Peromyscus maniculatus for the appli-

cation of GEE in capture-recapture methodology and for comparison to currently

used methodology. The data set to be analyzed consists of 38 distinct deer mice

of which 21 males and 17 females that were caught on 6 trapping occasions. The

averaged observed weight is 14.53 grams, with sample standard deviation 4.84.

There were 24 youngs, 3 semi-adults and 11 adults Peromyscus maniculatus. The

semi-adults were considered as adults in our analysis. In the previous discussion

of this data set, Otis et al. (1978, p. 32) using their techniques, determined that

the most suitable model of those available at that time was model Mb, which al-

lows for capture probabilities to vary in response to prior capture. Huggins (1991)

applied this data set on seven models and use AIC to select among them. Model

5, a special case of model Mbh of Otis et al. (1978) was then chosen as the ‘best’

model. We use this model as a real example for illustration of GEE in capture-

recapture methodology.

For model Mbh, the following equation is formulated according to the covariates

of the data set,

ln(
Pij

1−Pij
) = β0 + βsex × sex(i) + βage × age(i) + βwt × weight(i) + βb × vij; j =

1, 2, ..., m; i = 1, 2, ..., n, where, βsex, βage, βwt and βb represent the sex, age, weight

and behavior effect respectively, and vij is the indicator for capture or not capture

before occasion j. The capture probabilities depend on the individual covariates

and its past capture history. The covariates are assumed to remain the same dur-

ing the course of trapping experiment.

Here we estimate the parameters assuming independence, exchangeable, unstruc-
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Table 3.2: GEE estimates (standard error in parenthesis) for Peromyscus manic-
ulatus ’s capture-recapture data assuming various correlation structure models

Independent Correlation Exchangeable Correlation

Covariate Coff. P- 95% O.R. M.E. Coff. P- 95% O.R. M.E.
(S.E.) value CI (S.E.) value CI

sex 0.702 .015 (.136, 2.02 .173 0.709 .025 (.091, 2.03 .175
(.289) 1.27) (.316) 1.33)

age -1.536 .004 (-2.57, .215 -.366 -1.573 .007 (-2.71, 0.21 -.374
(.529) -.498) (.578) -.440)

weight 0.127 .015 (.024, 1.14 .032 0.129 .024 (.017, 1.14 .032
(.052) .229) (.057) .241)

vij 0.670 .020 (.104, 1.95 .166 0.528 .069 (-.041, 1.70 .131
(.289) 1.24) (.290) 1.096)

constant -1.935 .003 (-3.19, · · · · · · -1.880 .007 (-3.25, · · · · · ·
(.641) -.678) (.699) -.509)

N̂ 40.67 · · · · · · · · · · · · 39.88 · · · · · · · · · · · ·
(2.18) (1.79)

Autoregressive Correlation Pairwise Correlation

sex 0.691 .013 (.143, 2.00 .171 0.544 .066 (-.036, 1.72 .135
(.280) 1.234) (.296) 1.12)

age -1.52 .003 (-2.53, .218 -.363 -1.55 .004 (-2.62, .212 -.370
(.513) -.519) (.544) -.485)

weight 0.126 .013 (.027, 1.13 .031 0.130 .015 (.026, 1.14 .032
(.051) .225) (.053) .235)

vij 0.743 .009 (.188, 2.10 .184 0.593 .018 (.102, 1.81 .147
(.283) 1.30) (.250) 1.08)

constant -1.97 .002 (-3.16, · · · · · · -1.82 .005 (-3.09, · · · · · ·
(.621) -.750) (.651) -.540)

N̂ 39.64 · · · · · · · · · · · · 39.17 · · · · · · · · · · · ·
(1.34) (1.13)

tured and autoregressive working correlation structures among capture occasions

to estimate capture probabilities. The resulting capture probabilities is used to

estimate population size. Table 3.2 provides the point estimates and standard

error of the parameters, P-value, 95% confidence interval, odds ratio (O.R.) and

marginal effects (M.E.). Odds ratio estimates the chances of a particular event

capturing in one group (for instance male) in relation to its rate of capture in

another group (female), which describes the strength of association or dependence

between two groups. For continuous explanatory covariates, the odds ratio tells

us what the odds (the ratio of the probability of an event capturing to the prob-
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ability of its not capturing) are for a unit change in the explanatory covariate.

Marginal effects measure the expected instantaneous change in the response vari-

able as a function of a change in a certain explanatory covariate while keeping all

the other covariates constant. The marginal effects are computed at their means

for the continuous explanatory covariates. For the binary covariates, however, the

marginal effects are calculated as the discrete change in the explanatory covariate

form 0 to 1. The estimation is done by the statistical software stata 11 (Stata,

2010) and R (R Development Core Team, 2013). We observe that the covariates

age, sex, weight and vij are all significant for a nominal significant level of 0.07

(see P-values in Table 3.2). The probability of capture appears to be significantly

higher for males than for females, assuming all other covariates remain fixed. For

instance, the probability of capturing males is about twice the probability of cap-

turing females except for pairwise correlation structure, where 1.72 times. Males

are more likely to increase recapture by about 17% points than females except

when pairwise correlation structure is used. In that case there is about 14% in-

crease. In terms of odds ratio, the probability of capturing individuals in the young

age group are approximately 4.65 times more than the probability of capturing

individuals in the adult age group. The marginal effects also indicate that for any

given correlation structure, individuals in the adult age group are less likely to be

captured than the ones in the young age group. There is a 14% increase in the

odds of capturing for one unit increase of weight, but slightly lower for autore-

gressive correlation structure. Marginal effects indicate that individuals are 3.2%

more likely to increase recapture for one unit increase of weight. The individuals

that are captured before a given capture time are 1.95, 1.70, 2.10 and 1.81 times

more likely to increase recapture in terms of odds ratio, and are more likely to

increase recapture by 16.6%, 13.1%, 18.4% and 14.7% in terms of marginal effect

for independence, exchangeable, autoregressive and pairwise correlation structure

models respectively than the individuals that are not captured before a given cap-



100 3.5. An Illustrative Example

ture time. All the β’s are significant and the positive estimate of βb shows that the

animals are trap happy for this data set which support the findings of Otis et al.

(1978). Considering the assumption of various working correlation structures, the

estimates of population size are given in Table 3.2, those are quite close to the es-

timates given by Otis et al. (1978) using their model Mb (N̂ = 41, SE(N̂) = 3.01).

However, the estimated standard errors of different parameters are not very simi-

lar for various correlation structures (see Table 3.2). We observed that estimates

obtained under the assumption of exchangeable correlation within the responses

having greater standard errors than the others. We also observed that time corre-

lation play an important role when analyzing this data. The question is what sort

of correlation structure to use. One strategy may be selecting a model that shows

better relative efficiency of the estimated coefficients as GEE provide unbiased

estimates. Table 3.3 compares the relative efficiencies of the parameters obtained

from different methods with respect to parameters obtained under the assumption

of independence correlation structure. It is shown that for almost all covariates the

estimates obtained under autoregressive correlation are more efficient estimators

when compared to the others but the relative efficiency of the estimated coefficient

of vij is 1.021 under autoregressive correlation structure and 1.156 under pairwise

correlation structure. Although the differences are minimal, the QIC model selec-

tion criteria (Pan, 2001) suggests that a model with pairwise correlation structure

should be chosen as it has the smallest QIC (297.693) (see Table 3.3). There are

small differences among N̂ , and QIC for the different correlation structures. This

is generally true particularly for two cases, when (i) all individuals have the same

number of capture occasions (m), and (ii) the levels of the covariates do not vary

within an individual. In the example, the values of all covariates sex, age, and

weight for an individual are similar for all capture occasions.
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Table 3.3: QIC for the various working correlation structure models and relative
efficiencies of the estimated coefficients under independent correlation structure
model

Covariate Independence Exchangeable Autoregressive Pairwise
QIC 298.386 298.938 298.229 297.693
QICu 297.303 297.546 297.369 297.776
sex 1.000 0.915 1.032 0.976
age 1.000 0.915 1.031 0.972
weight 1.000 0.912 1.020 0.981
vij 1.000 0.997 1.021 1.156

3.6 A Simulation Study

Since we found that covariates in autoregressive correlation structure were gener-

ally more efficient for the applied data set, a Monte Carlo (MC) simulation study

was carried out considering this approach to evaluate the performance of GEE in

capture-recapture studies. The program was written in R (R Development Core

Team, 2013) and simulations were run on Core i3-2310M CPU computer.

Program inputs were the number of Monte Carlo replicates (B), population size

(N), mean capture probability (p̄), number of trapping occasions (m), correlation

coefficient (α), behavioral effect, and individual covariates. Factors used in the

simulations were population size, N = 100, 200, and 500; mean capture probability,

p̄ = 0.1, 0.3, and 0.5; number of trapping occasions, m = 6 and 8; and correlation

coefficient, α = −0.5, −0.3, −0.1, 0, 0.1, 0.3, 0.5 for the autoregressive correlation

structure. Based on results from a real data analysis, we generated two individual

level covariates, one was considered as continuous, for example, weight that fol-

lows N (15, 22) and another was discrete for example, sex that follows Bin(1, 0.5)

distribution. We generated correlated capture history Yij following the method of

Qaqish (2003), and behavioral effects were generated from the capture history as

an indicator variable assuming the value 1 if individual i has been captured before

j, and 0 otherwise. One thousand repetitions were completed for each combina-

tion of factors.
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To assess estimators performances we computed average estimate of population

size, AVE(N̂); standard error of the population estimates, SE(N̂); average cap-

tured individuals (n̄); percentage relative bias, PRB = 100 × (E[N̂ ] − N) ÷ N ,

where E(N̂) is estimated by AVE(N̂); percent coefficient of variation, CV =

100×SE(N̂)÷E[N̂ ] and normal-based 95% confidence intervals (CI), i.e., E(N̂)±

1.96×SE(N̂). Estimator performance is based on comparisons of root mean square

error, RMSE =

√
V̂ar(N̂) + bias2.

Simulation results in Table 3.4 and Table 3.5 show that estimation of average an-

imal abundance (AVE(N̂)) is almost the same as true population size (N) when

there is no correlation (α = 0) for the trapping occasions 6 and 8 for the av-

erage capture probability 0.5 (p̄ = 0.5). For lower average capture probability

(p̄ = 0.1 or 0.3), the GEE estimator in capture-recapture studies is not stable.

For low average capture probability, the estimated population size and its stan-

dard error vary depending on the strength of linear correlation among capture

occasions and related factors. For a fixed average capture probability and trap-

ping occasions, the estimated population size and its standard error is higher for

negative correlation comparatively to the same strength of positive correlation.

The performance of estimators for 8 trapping occasions is better than for 6 trap-

ping occasions considering lower CV, absolute value of PRB and RMSE. Overall,

the simulation study clearly shows that estimator performance of population size

and its standard error depends on average capture probability, correlation among

capture occasions and number of trapping occasions. Finally, we observe that an

inverse relationship exists between estimated population size and the linear corre-

lation among capture occasions for fixed average capture probability and trapping

occasions.
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Table 3.4: Under model Mbh -simulation results (1000 repetitions) of m = 6 trap-
ping occasions for the proposed GEE approach assuming autoregressive correlation
structure

p̄ α N n̄ AVE(N̂) SE(N̂) 95%CI PRB CV RMSE
0.10 -0.1 100 53 70.96 5.73 59.73-82.19 -29.04 8.07 30.08
0.10 0.0 100 53 64.05 5.04 54.17-73.93 -35.95 7.87 36.69
0.10 0.1 100 42 57.90 4.43 49.22-66.58 -42.10 7.65 42.63
0.10 0.3 100 42 45.71 3.18 39.48-51.94 -54.29 6.97 54.60
0.10 0.5 100 17 34.90 2.12 30.74-39.06 -65.10 6.07 65.32
0.30 -0.3 100 97 104.71 3.41 98.03-111.39 4.71 3.23 5.58
0.30 -0.1 100 91 100.03 3.18 93.80-106.26 0.03 3.18 3.45
0.30 0.0 100 90 96.85 3.05 90.87-102.83 -3.15 3.15 4.97
0.30 0.1 100 84 93.19 2.86 87.58-98.80 -6.81 3.07 8.01
0.30 0.3 100 74 83.76 2.41 79.04-88.48 -16.24 2.88 16.84
0.30 0.5 100 66 71.55 1.78 68.06-75.04 -28.45 2.49 28.89
0.50 -0.5 100 99 101.58 1.28 99.07-104.09 1.58 1.26 1.62
0.50 -0.3 100 99 101.41 1.28 98.90-103.92 1.41 1.26 1.52
0.50 -0.1 100 99 100.69 1.26 98.22-103.16 0.69 1.25 1.23
0.50 0.0 100 98 100.00 1.23 97.59-102.41 0.00 1.23 1.30
0.50 0.1 100 97 99.18 1.21 96.81-101.55 -0.82 1.22 1.78
0.50 0.3 100 94 95.72 1.08 93.60-97.84 -4.28 1.13 4.84
0.50 0.5 100 88 90.06 0.86 88.37-91.75 -9.94 0.95 10.42
0.10 -0.1 200 93 141.28 8.03 125.54-157.02 -29.36 5.68 59.71
0.10 0.0 200 91 127.48 7.03 113.70-141.26 -36.26 5.51 73.22
0.10 0.1 200 87 115.32 6.15 103.27-127.37 -42.34 5.34 85.26
0.10 0.3 200 64 91.47 4.43 82.79-100.15 -54.26 4.84 108.86
0.10 0.5 200 63 70.32 2.93 64.58-76.06 -64.84 4.16 129.89
0.30 -0.3 200 190 209.52 4.78 200.15-218.89 4.76 2.28 10.34
0.30 -0.1 200 185 199.84 4.48 191.06-208.62 -0.08 2.24 4.90
0.30 0.0 200 182 193.43 4.26 185.08-201.78 -3.28 2.20 8.46
0.30 0.1 200 179 186.22 4.01 178.36-194.08 -6.89 2.16 14.85
0.30 0.3 200 148 167.92 3.37 161.31-174.53 -16.04 2.01 32.67
0.30 0.5 200 140 143.34 2.45 138.54-148.14 -28.33 1.71 57.09
0.50 -0.5 200 199 203.12 1.81 199.57-206.67 1.56 0.89 3.15
0.50 -0.3 200 199 202.64 1.80 199.11-206.17 1.32 0.89 2.79
0.50 -0.1 200 199 201.31 1.76 197.86-204.76 0.66 0.87 1.94
0.50 0.0 200 198 199.98 1.73 196.59-203.37 -0.01 0.86 1.86
0.50 0.1 200 195 198.04 1.67 194.77-201.31 -0.98 0.84 3.03
0.50 0.3 200 191 191.50 1.48 188.60-194.40 -4.25 0.77 9.10
0.50 0.5 200 177 179.79 1.19 177.46-182.12 -10.11 0.65 20.71
0.10 -0.1 500 257 352.12 12.59 327.44-376.80 -29.58 3.58 148.87
0.10 0.0 500 248 319.80 11.10 298.04-341.56 -36.04 3.47 180.95
0.10 0.1 500 211 287.44 9.63 268.57-306.31 -42.51 3.35 213.14
0.10 0.3 500 212 228.25 6.91 214.71-241.79 -54.35 3.03 272.06
0.10 0.5 500 156 173.78 4.45 165.06-182.50 -65.24 2.56 326.43
0.30 -0.3 500 477 523.27 7.55 508.47-538.07 4.65 1.44 24.11
0.30 -0.1 500 448 498.92 7.02 485.16-512.68 -0.22 1.41 7.81
0.30 0.0 500 447 483.64 6.72 470.47-496.81 -3.27 1.39 18.37
0.30 0.1 500 425 465.19 6.30 452.84-477.54 -6.96 1.35 35.97
0.30 0.3 500 396 418.34 5.24 408.07-428.61 -16.33 1.25 82.34
0.30 0.5 500 346 357.31 3.82 349.82-364.80 -28.54 1.07 143.09
0.50 -0.5 500 499 507.81 2.85 502.22-513.40 1.56 0.56 7.85
0.50 -0.3 500 498 506.54 2.83 500.99-512.09 1.31 0.56 6.67
0.50 -0.1 500 492 503.22 2.77 497.79-508.65 0.65 0.55 3.93
0.50 0.0 500 494 499.73 2.70 494.44-505.02 -0.05 0.54 2.87
0.50 0.1 500 491 495.02 2.61 489.90-500.14 -1.00 0.53 6.15
0.50 0.3 500 472 478.24 2.32 473.69-482.79 -4.35 0.48 22.39
0.50 0.5 500 453 448.80 1.82 445.23-452.37 -10.24 0.41 51.68
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Table 3.5: Under model Mbh -simulation results (1000 repetitions) of m = 8 trap-
ping occasions for the proposed GEE approach assuming autoregressive correlation
structure

p̄ α N n̄ AVE(N̂) SE(N̂) 95%CI PRB CV RMSE
0.10 -0.1 100 66 81.66 5.56 70.76-92.56 -18.34 6.81 19.78
0.10 0.0 100 58 74.90 4.98 65.14-84.66 -25.10 6.65 26.10
0.10 0.1 100 57 68.18 4.44 59.48-76.88 -31.82 6.51 32.51
0.10 0.3 100 39 54.52 3.27 48.11-60.93 -45.48 6.00 45.93
0.10 0.5 100 40 42.05 2.16 37.82-46.28 -57.95 5.14 58.21
0.30 -0.3 100 98 103.44 2.40 98.74-108.14 3.44 2.32 3.83
0.30 -0.1 100 97 101.11 2.34 96.52-105.70 1.11 2.31 2.53
0.30 0.0 100 96 99.42 2.28 94.95-103.89 -0.58 2.29 2.60
0.30 0.1 100 90 97.20 2.19 92.91-101.49 -2.80 2.26 4.08
0.30 0.3 100 92 90.51 1.92 86.75-94.27 -9.49 2.12 10.25
0.30 0.5 100 86 80.60 1.52 77.62-83.58 -19.40 1.88 19.88
0.50 -0.5 100 99 100.38 0.62 99.16-101.60 0.38 0.62 0.39
0.50 -0.3 100 99 100.38 0.63 99.15-101.61 0.38 0.63 0.42
0.50 -0.1 100 98 100.25 0.64 99.00-101.50 0.25 0.64 0.49
0.50 0.0 100 97 100.08 0.64 98.83-101.33 0.08 0.64 0.59
0.50 0.1 100 98 99.71 0.64 98.46-100.96 -0.29 0.64 0.91
0.50 0.3 100 97 98.05 0.62 96.83-99.27 -1.95 0.63 2.49
0.50 0.5 100 96 93.97 0.54 92.91-95.03 -6.03 0.57 6.53
0.10 -0.1 200 119 163.49 7.84 148.12-178.86 -18.26 4.79 37.93
0.10 0.0 200 118 149.12 6.98 135.44-162.8 -25.44 4.68 51.83
0.10 0.1 200 114 136.50 6.22 124.31-148.69 -31.75 4.56 64.26
0.10 0.3 200 104 109.49 4.53 100.61-118.37 -45.26 4.14 90.91
0.10 0.5 200 77 83.78 2.99 77.92-89.64 -58.11 3.56 116.47
0.30 -0.3 200 197 206.71 3.35 200.14-213.28 3.35 1.62 7.09
0.30 -0.1 200 185 202.11 3.24 195.76-208.46 1.06 1.60 3.78
0.30 0.0 200 190 198.75 3.18 192.52-204.98 -0.62 1.60 3.88
0.30 0.1 200 178 194.65 3.07 188.63-200.67 -2.67 1.58 6.68
0.30 0.3 200 177 181.59 2.72 176.26-186.92 -9.20 1.50 19.04
0.30 0.5 200 163 160.80 2.08 156.72-164.88 -19.60 1.30 39.71
0.50 -0.5 200 199 200.76 0.87 199.05-202.47 0.38 0.44 0.77
0.50 -0.3 200 199 200.72 0.89 198.98-202.46 0.36 0.44 0.77
0.50 -0.1 200 198 200.46 0.89 198.72-202.20 0.23 0.45 0.74
0.50 0.0 200 197 200.10 0.89 198.36-201.84 0.05 0.45 0.88
0.50 0.1 200 198 199.39 0.89 197.65-201.13 -0.31 0.45 1.34
0.50 0.3 200 197 196.23 0.84 194.58-197.88 -1.88 0.43 4.33
0.50 0.5 200 188 188.24 0.72 186.83-189.65 -5.88 0.39 12.20
0.10 -0.1 500 296 407.08 12.28 383.01-431.15 -18.59 3.02 94.46
0.10 0.0 500 280 372.94 10.99 351.40-394.48 -25.41 2.94 128.11
0.10 0.1 500 279 338.94 9.67 319.99-357.89 -32.21 2.85 161.80
0.10 0.3 500 225 271.21 7.04 257.41-285.01 -45.76 2.60 229.22
0.10 0.5 500 195 207.43 4.56 198.49-216.37 -58.51 2.20 292.81
0.30 -0.3 500 482 516.50 5.33 506.05-526.95 3.30 1.03 16.93
0.30 -0.1 500 479 504.63 5.12 494.59-514.67 0.93 1.02 6.82
0.30 0.0 500 472 496.07 4.98 486.31-505.83 -0.79 1.00 6.91
0.30 0.1 500 459 484.83 4.78 475.46-494.20 -3.04 0.99 16.45
0.30 0.3 500 429 452.17 4.18 443.98-460.36 -9.57 0.92 48.54
0.30 0.5 500 387 401.20 3.23 394.87-407.53 -19.76 0.81 99.25
0.50 -0.5 500 499 501.88 1.38 499.18-504.58 0.38 0.27 1.89
0.50 -0.3 500 499 501.81 1.39 499.09-504.53 0.36 0.28 1.86
0.50 -0.1 500 499 501.10 1.40 498.36-503.84 0.22 0.28 1.46
0.50 0.0 500 498 500.06 1.39 497.34-502.78 0.01 0.28 1.38
0.50 0.1 500 494 498.38 1.39 495.66-501.10 -0.32 0.28 2.53
0.50 0.3 500 495 490.36 1.31 487.79-492.93 -1.93 0.27 10.21
0.50 0.5 500 472 470.18 1.11 468.00-472.36 -5.96 0.24 30.34
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3.7 Discussion

In this chapter, we proposed a generalized estimating equations approach to model

capture probabilities of heterogeneous populations, and to evaluate the effect of

accounting for correlation structures on capture-recapture model selection. The

GEE approach is an important tool for getting unbiased estimates in the analysis

of correlated capture-recapture data when capture probabilities are modelled as a

function of covariates. To evaluate the pattern of time dependency is important

in several regards: (i) it may help to characterize the relationship between the

capture probability and covariates, and (ii) it may also be important to estimate

the population parameters accurately in capture-recapture studies. A common

question arise is ‘what happens if one ignores the time dependency and uses the

traditional regression methodology assuming independence among capture occa-

sions?’ From a theoretical point of view, there are at least two consequences as

results of ignoring time dependency: incorrect assessment of the regression esti-

mates and inefficient estimation of regression coefficients. Therefore, estimated

capture probabilities may be incorrect and consequently population size may not

be accurately estimated. We account for heterogeneity due to measurable individ-

ual characteristics modelling capture probabilities as a function of covariates. The

GEE versions of all closed population capture-recapture models considered by Otis

et al. (1978) and Huggins (1991), and their corresponding estimating equations

are also presented. A real application is presented for the various working cor-

relation structures that are permitted in GEE instead of assuming independence

of capture occasions. The GEE approach in capture-recapture studies provides a

useful inference procedure for estimating population size, particularly when the

capture probability is high but the estimates become unstable for low capture

probabilities. However, other existing methods in the capture-recapture literature

allowing for heterogeneity have similar problems (Hilborn et al., 1976; Nichols and

Pollock, 1983; Nichols, 1986). Estimation results agree with Otis et al. (1978),
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but our model jointly accounts for the heterogeneous capture probabilities, time

dependence and over-dispersion. According to QIC, it is shown that the GEE

method for pairwise correlation structure, is more efficient than the other work-

ing correlation structures for the data. To the best of our knowledge, this is the

first time that QIC has been applied to capture-recapture studies. The simulation

study shows that the estimated population size varies on the nature of existing

correlation among capture occasions. Hence, it is important to consider the type of

correlation structure among capture occasions when estimating animal population

parameters in capture-recapture studies.
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Akanda, M.A.S. and Alpizar-Jara, R. (2012). ‘Estimation of Capture Proba-

bilities and Model Selection Using a Generalized Estimating Equation Ap-

proach.’ Resumos de XX Congresso Anual da Sociedade Portuguesa de Es-

tatistica, September 26–29, 2012, Porto, Portugal, pp.595–596.

In this chapter, the proposed generalized estimating equations (GEE) approach

is applied to a capture-recapture closed population Mth model to data sets from

various capture-recapture experiments. The GEE approach accounts for temporal

variation, heterogeneity that can be explained by measurable individual char-

acteristics, and correlation among capture occasions. Here, we model capture

probabilities as a function of individual and environmental covariates. We argued

that heterogeneity of capture probability and correlation among capture occasions

should be accounted for. Quasi-likelihood information criterion (QIC) is used for

selecting best fitted model. The estimates of capture probabilities may then be

used to estimate population size. A simulation study is also conducted to evaluate

the performance of our proposed methodology.

4.1 Background

The primary aim is to estimate the population size in capture-recapture experi-

ments. There are many challenges to statisticians for making accurate inferences,

but we are interested in, if (i) the capture probabilities are heterogeneous between

individuals, and (ii) capture probabilities are dependent among capture occasions

in capture-recapture studies. Importantly, ignoring heterogeneity arising from

individuals or clusters of individuals may induce biases in parameter estimates

(Barry et al., 2003; Hwang and Huggins, 2005). Modelling dependency among

capture occasions is another important issue in capture-recapture studies. Fail-

ure to account for this dependency also provides biased estimates. Other authors
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have addressed the problem of time dependence in capture probabilities using

multilevel analyses in open population models (Choquet et al., 2013), log-linear

models in epidemiological indications (Zwane and Heijden, 2005), and some sort

of dependencies deal through the modelling of behavioral effects (Pradel and Sanz-

Aguilar, 2012). Our interest is in estimating the size of a closed population using

a sub-model of the type Mth, where heterogeneity and time effect are considered,

there is no behavioral response to capture, and the capture probabilities depend

on covariates. There are various advantages for models incorporating covariates

such as, (i) the models provide a clear explanation of the sources of heterogeneity,

and each covariate effect can be assessed; and (ii) if all relevant covariates are

included, then these models generally yield better estimators with respect to bias

and precision.

A wide variety of approaches have been considered when fitting capture-recapture

closed population Mth model, including martingale methods (Lloyd and Yip,

1991), sample coverage models (Chao et al., 1992), log-linear and latent class

models (Agresti, 1994), finite mixture models (Pledger, 2000), the use of individ-

ual covariates in GLM (Huggins, 1989) and robust P-spline approach (Stoklosa

and Huggins, 2012). Similar to Huggins (1989, 1991), we assume that the capture

probabilities can be modeled through a logit-link function of the covariates, but in

this chapter, we use a generalized estimating equations (GEE) (Liang and Zeger,

1986; Zeger and Liang, 1986) approach which accounts for correlation over time

instead of assuming independence of capture occasions. A quasi-likelihood pro-

cedure is used in this approach to estimate the regression parameters associated

to the capture probabilities and population size. The term ‘quasi’ in this context

indicates that the model for the mean response depends only on the covariates of

interest and not on any random effects.

The models considered here are briefly described in Section 4.2, and they are

fitted to the different data sets in Section 4.3. In section 4.4, we discuss a pro-
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posed model selection procedure based on quasi-likelihood information criterion

(QIC). A simulation study is conducted to show the performance of our proposed

approach in Section 4.5. Finally, in Section 4.6 we conclude with some discussion.

4.2 Model Formulation

We follow the same notation described in the previous chapters to build-up mod-

elling structure. Let, the probability Pij that the i
th animal is captured on the jth

capture occasion is given by

Pij = Pr(Yij = 1|zi, xij) = h(β0 + β1zi + βj+1xij) (4.1)

for i = 1, 2, ..., N ; j = 1, 2, ..., m where h(u) = exp(u)/{1 + exp(u)} is the logistic

function and

Xi =




1 1 . . . 1

zi zi . . . zi

xi1 0 . . . 0

0 xi2 . . . 0

...
...

. . .
...

0 0 . . . xim




′

is the design matrix. This design matrix is useful to construct a capture-recapture

closed population model of the type Mth where variation among individuals, time,

and correlation among capture occasions may be explained by the individual co-

variate zi and environmental covariate xij .

If the environmental covariate xij only depends on the jth capture occasion for the

ith individual, then we could simplify equation (4.1) to

Pij = Pr(Yij = 1|zi, xj) = h(β0 + β1zi + β2xj) (4.2)
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for i = 1, 2, ..., N ; j = 1, 2, ..., m.

In this case, the design matrix Xi have the following form

Xi =




1 1 ... 1

zi zi ... zi

x1 x2 ... xm




′

.

Therefore, the vector of parameters, β = (β0, β1, β2)
′ for model (4.2) can be ob-

tained by solving the following GEECR following the previous Section 3.2:

U(β) =

n∑

i=1

D′
iV

−1
i (Yi − µi) = 0. (4.3)

Let β̂ be the resulting estimator of β, then the Horvitz-Thompson estimator

(1952), as defined in (3.10), may be used to estimate population size as in Huggins

(1989). We can estimate the variance of the estimated population size N̂ by using

the formula (3.11).

4.3 Illustrative Examples

In this section, we apply the techniques discussed in Section 4.2 to real data sets.

4.3.1 Example 1: Deer mice data

Our first example concerns the captures of 38 distinct Deer mice (Peromyscus man-

iculatus) for m = 6 capture occasions from Section 1.7.1. Basic capture-recapture

frequency statistics in Table 4.1 are computed by Rcapture package (Baillargeon

and Rivest, 2007). It displays, for j = 1, 2, ..., m, the number of animals captured

exactly j times (fj), the number of animals captured for the first time on occa-

sion j (uj), the number of animals captured for the last time on occasion j (vj)

and the number of animals captured on occasion j (nj). Table 4.1 shows that
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9 out of 38 animals (23.68%) were captured only once. An interesting tool to

explore heterogeneity in the capture probabilities are the graphs of log
(
fj/
(
m
j

))

and log(uj) versus j generated by the Rcapture package (Baillargeon and Rivest,

2007). Figure 4.1 shows that there is some evidence of heterogeneity in capture

probabilities. We estimated the population size, standard error and AIC for model

selection by applying capture-recapture estimators available in Rcapture package

(see Table 4.2). The notation and models in Table 4.2 are described in Baillargeon

and Rivest (2007) and references therein.

Table 4.1: Frequency statistics for the capture-recapture occasions of Deer mice

data

fj uj vj nj

j = 1 9 15 0 15

j = 2 6 8 0 20

j = 3 7 6 2 16

j = 4 6 3 2 19

j = 5 6 3 9 25

j = 6 4 3 25 25

We use this data to apply our proposed generalized estimating equations approach

in the capture-recapture Mth model using covariates. According to the model

formulation of Mth, the following equation is used for the Deer mice data,

ln
( Pij

1− Pij

)
= β0+βage×age(i)+βsex×sex(i)+βwt×weight(i)+βt×time(j); (4.4)

j = 1, 2, ..., m; i = 1, 2, ..., n, where, βage, βsex, βwt and βt represent the age, sex,

weight and time effect respectively. The estimated model parameters, their stan-

dard errors, P-values, and odds ratios (OR) assuming various correlation struc-

tures within the repeated measures for the capture events at different occasions

are reported in Table 4.3. The odds ratios indicate that for any given correlation

structure, individuals in the young age group are more likely to be captured than
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Figure 4.1: Exploratory heterogeneity graph of log
(
fj/
(
m
j

))
and log(uj) versus j

generated by the Rcapture function for the Deer mice data

the ones in the adult age group, assuming all other covariates remain fixed. The

odds of capturing individuals in the young age group are about (1/.171) 5.85 times

higher than the ones in the adult age group, but (1/.146) 6.85 times higher for

pairwise correlation structure model. The probability of capturing males is about

twice the probability of capturing females. The probability of capture appears to

be significantly higher for males than for females at a nominal significance level

of 0.05, except for the pairwise correlation structure (see P-values in Table 4.3).

There is also about a 15% increase in the odds of capturing for one unit increase

of weight except when pairwise correlation structure is used. In that case there is

about 18% increase. There is a 26% increase in the risk of capturing for chang-

ing one occasion to another occasion, but slightly lower for pairwise correlation
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Table 4.2: Abundance estimations and model fits of Deer mice data using capture-

recapture methods

Models Abundance stderr Deviance df AIC

M0 38.5 0.7 84.542 61 143.512

Mt 38.4 0.7 74.839 56 143.809

Mh Chao (LB) 43.6 5.0 64.754 57 131.724

Mh Poisson2 40.2 1.8 67.896 60 128.866

Mh Darroch 45.7 5.8 65.127 60 126.097

Mh Gamma3.5 60.7 19.7 64.979 60 125.949

Mth Chao (LB) 43.3 4.8 52.676 52 129.646

Mth Poisson2 39.9 1.7 56.234 55 127.204

Mth Darroch 45.7 5.7 53.056 55 124.026

Mth Gamma3.5 62.7 21.3 52.918 55 123.888

Mb 42.3 3.8 70.866 60 131.836

Mbh 44.9 17.9 70.264 59 133.234

Note: 1 eta parameter has been set to zero in the Mh Chao model

structure model. This outcome may indicate that animals are trap happy as the

capturing risk of individuals increases from one occasion to another occasion.

Table 4.3: GEE estimates for Peromyscus maniculatus ’s capture-recapture data

under the various working correlation structures

Independent Correlation Exchangeable Correlation

Cov. Coff. Std. Err. P-value O.R. Coff. Std. Err. P-value O.R.

age -1.767 .531 0.001 0.171 -1.775 .654 0.007 0.170

sex 0.753 .291 0.010 2.124 0.759 .358 0.034 2.136

weight 0.143 .053 0.007 1.154 0.144 .065 0.028 1.154

time 0.233 .085 0.006 1.262 0.233 .080 0.004 1.262

cons. -2.532 .722 0.000 · · · -2.539 .853 0.003 · · ·
Autoregressive Correlation Pairwise Correlation

age -1.760 .551 0.001 0.172 -1.926 .628 0.002 0.146

sex 0.761 .302 0.012 2.140 0.632 .341 0.064 1.881

weight 0.142 .055 0.010 1.153 0.164 .062 0.009 1.178

time 0.233 .087 0.007 1.262 0.220 .070 0.002 1.246

cons. -2.530 .748 0.001 · · · -2.625 .812 0.001 · · ·
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4.3.2 Example 2: Least chipmunk data

For our second example we consider the Least chipmunk (Eutamias minimus)

data from Section 1.7.2. The numbers of animals caught for m = 6 occasions

(n1 to n6) were 7, 15, 16, 24, 19, 7 and
∑
nk = 88. Out of these 88 captures,

n = 45 distinct animals were captured where 22 males and 23 females. The

recorded capture frequencies (f1 to f6) were 21, 12, 7, 3, 2, 0. The average capture

frequencies for male and female were 1.86 and 2.04 respectively. Hence, we might

guess some heterogeneity of capture probabilities for individual covariates. For

these data, Otis et al. (1978) applied a procedure of model selection and found

that there was significant time variation and model Mt was selected as the most

appropriate model for the data. The fj plot in Figure 4.2 shows that there exist

little heterogeneity in the capture probabilities and suggests that Mh or Mth may

be considered for this data set (Rivest, 2008). Model Mth is more general than Mh

model. Therefore, combining of the above mentioned two issues, we would like

to use model Mth to apply the GEE approach in capture-recapture methodology

for this data. The estimated population size, standard error and AIC for model

selection using capture-recapture methods are given in Table 4.4.

The following equation can be used to applicable the GEE approach for this data,

ln
( Pij

1− Pij

)
= β0 + βsex × sex(i) + βt × time(j); (4.5)

j = 1, 2, ..., m; i = 1, 2, ..., n, where, βsex and βt represent the effect of sex and

time respectively.

The estimation results are reported in Table 4.5 applying the GEE approach in

the closed population capture-recapture Mth model for this data. The odds ratios

indicate that for any given correlation structure, the probability of capture appears

to be higher for females than for males, assuming all other covariates remain fixed.

The odds of capturing females are about (1/.872) 1.15 times higher than those of
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Figure 4.2: Exploratory heterogeneity graph of log
(
fj/
(
m
j

))
and log(uj) versus j

generated by the Rcapture function of the Least chipmunk data

males but (1/.775) 1.29 times higher for pairwise correlation structure model. The

probability of capturing increases for changing one occasion to another. There is a

6% increase in the risk of capturing for changing one occasion to another occasion,

but slightly lower for pairwise correlation structure model. In such case there is

only 1% increase. This finding may suggest that animals are trap happy for this

data set.
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Table 4.4: Abundance estimations and model fits of Least chipmunk data using

capture-recapture methods

Models Abundance stderr Deviance df AIC

Mo 52.2 3.7 69.021 61 129.770

Mt 51.2 3.3 46.662 56 117.412

Mh Chao (LB) 60.3 8.9 63.739 58 130.488

Mh Poisson2 56.2 5.6 65.650 60 128.400

Mh Darroch 67.4 13.7 64.096 60 126.845

Mh Gamma3.5 84.5 31.6 63.910 60 126.660

Mth Chao (LB) 59.2 8.3 39.685 53 116.435

Mth Poisson2 55.2 5.2 42.062 55 114.812

Mth Darroch 67.9 14.1 40.080 55 112.829

Mth Gamma3.5 89.8 36.0 39.899 55 112.649

Mb 60.9 12.7 67.316 60 130.066

Mbh 50.2 12.8 61.283 59 126.033

Note: 1 eta parameter has been set to zero in the Mh Chao model

Table 4.5: GEE estimates for Eutamias minimus’s capture-recapture data under

the various working correlation structures

Independent Correlation Exchangeable Correlation

Cov. Coff. Std. Err. P-value O.R. Coff. Std. Err. P-value O.R.

sex -.137 .260 0.599 0.872 -.137 .256 0.592 0.872

time .058 .076 0.447 1.059 .058 .077 0.449 1.060

cons. -.865 .325 0.008 · · · -.865 .324 0.008 · · ·
Autoregressive Correlation Pairwise Correlation

sex -.137 .260 0.599 0.872 -.256 .223 0.252 0.775

time .058 .076 0.445 1.060 .009 .069 0.896 1.009

cons. -.865 .325 0.008 · · · -.609 .280 0.029 · · ·
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4.3.3 Example 3: House mice data

Our third example concerns the captures of the House mice (Mus musculus),

see Section 1.7.3. For this data set, a total of 173 individuals were captured.

The data were recorded including two covariates: age (juvenile, semi-adult or

adult) and sex (male or female). Detailed capture information was given as an

example in program CAPTURE (Rexstad and Burnham, 1991). We excluded

two records in the analysis because the covariates for the two mice were missing.

Therefore, n = 171 distinct House mice were captured at least once. We considered

the groups of juveniles and semi-adults into a ‘non-adult’ class since there were

only 8 juveniles. The data consist of 77 non-adults (45 males, 32 females) and

94 adults (41 males, and 53 females). The numbers of house mice caught for

m = 10 occasions (n1 to n10) were 68, 60, 62, 52, 73, 41, 76, 35, 76, 38 and
∑
nk = 581. Out of these 581 captures, n = 171 distinct animals were captured.

The recorded capture frequencies (f1 to f10) were 2, 62, 40, 31, 16, 13, 5, 1,

0, 1. On average, the capture frequencies for males and females were 3.08 and

3.72, respectively; the capture frequencies for adults and non-adults were 3.81

and 2.90, respectively. The estimated population size, standard error and AIC

for model selection using capture-recapture methods is given in Table 4.6. For

this data set, Otis et al. (1978) selected model Mth as the most parsimonious

model. The fj plot in Figure 4.3 also suggest that there exist heterogeneity among

capture probabilities. Hence, we consider the Mth model for the application of

GEE approach in capture-recapture methodology based on this data set.

According to the model formulation of Mth, the following equation is useful for

the available data,

ln
( Pij

1− Pij

)
= β0 + βage × age(i) + βsex × sex(i) + βt × time(j); (4.6)

j = 1, 2, ..., m; i = 1, 2, ..., n, where, βsex, βage and βt represent the sex, age and
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Figure 4.3: Exploratory heterogeneity graph of log
(
fj/
(
m
j

))
and log(uj) versus j

generated by the Rcapture function of the House mice data

time effect respectively.

The estimation results using GEE approach are summarized in Table 4.7. We

observe that the covariates age, sex and time are all significant for a nominal

significant level 0.05 (see P-values in Table 4.7). The odds ratios indicate that

for any given correlation structure, individuals in the adult age group are more

likely to be captured than the ones in the young age group, assuming all other

covariates remain fixed. There is about a 46% increase in the odds of capturing

for the individual in adult age group than the individual in young age group

but slightly lower for autoregressive and pairwise correlation structures. In those

cases, there are about 45% increase. The probability of capture appears to be

significantly lower for males than for females. According to the odds ratios, the
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Table 4.6: Abundance estimations and model fits of House mice data using

capture-recapture methods

Models Abundance stderr Deviance df AIC

M0 174.0 1.8 567.562 1021 848.791

Mt 173.7 1.7 507.888 1012 807.117

Mh Chao (LB) 175.0 2.2 552.801 1019 838.030

Mh Poisson2 174.9 2.1 556.666 1020 839.895

Mh Darroch 175.7 2.7 565.209 1020 848.439

Mh Gamma3.5 174.6 2.6 567.386 1020 850.615

Mth Chao (LB) 174.8 2.1 491.010 1010 794.239

Mth Poisson2 174.6 2.0 495.296 1011 796.525

Mth Darroch 175.7 2.7 504.444 1011 805.673

Mth Gamma3.5 174.8 2.7 507.371 1011 808.600

Mb 173.0 1.6 566.198 1020 849.427

Mbh 173.7 18.8 564.773 1019 850.002

Note: 1 eta parameter has been set to zero in the Mh Chao model

Table 4.7: GEE estimates for Mus musculus’s capture-recapture data under the

various working correlation structures

Independent Correlation Exchangeable Correlation

Cov. Coff. Std. Err. P-value O.R. Coff. Std. Err. P-value O.R.

age .379 .105 0.000 1.461 .379 .102 0.000 1.461

sex -.232 .104 0.026 0.793 -.232 .100 0.021 0.793

time -.041 .018 0.024 0.960 -.041 .018 0.024 0.960

cons. -.545 .138 0.000 · · · -.544 .136 0.000 · · ·
Autoregressive Correlation Pairwise Correlation

age .374 .099 0.000 1.454 .375 .101 0.000 1.454

sex -.230 .098 0.019 0.794 -.223 .099 0.025 0.801

time -.039 .017 0.024 0.962 -.044 .018 0.016 0.957

cons. -.551 .131 0.000 · · · -.529 .139 0.000 · · ·

odds of capturing females are about (1/.793) 1.26 times higher than those of males.

The risk of capturing decreases for changing one occasion to another occasion that

is capture probabilities depend on time which support the findings of Otis et al.

(1978). This finding may also suggest that animals are trap shy for this data.
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4.4 Model Selection

We have seen that time correlation play an important role when analyzing data

sets using GEE approach. Hence, we need to select a correlation structure that

builds up the most parsimonious model in GEE analysis. We found that the esti-

mated standard errors of different parameters are not very similar. One may select

the best fitting model observing the relative efficiency of the estimated coefficients

as GEE approach provides unbiased estimates. Quasi-likelihood information cri-

teria (QIC) is also applicable for selecting best fitting model when GEE approach

is used in capture-recapture studies that has been described in the previous chap-

ter. QIC is a modified version of the usual AIC, which allows comparisons of

GEE models and selection of a correlation structure (Pan, 2001). Table 4.8 com-

pares the relative efficiencies of the parameters obtained from different models

with respect to the ones obtained under the assumption of independence working

correlation structure. We also provide the QIC for various working correlation

structure models for each data set previously analyzed.

For the Deer mice data, it is shown that for almost all covariates the estimates

obtained under independence correlation structure are more efficient as compared

to the others except for capture time. The relative efficiency of the estimated

coefficient (under independent correlation structure) of capture time is 1.063 in

exchangeable correlation structure and 1.214 in pairwise correlation structure.

The QIC suggests that pairwise correlation structure model has the smallest QIC

(297.81) and thus is chosen as the best fitting model for this data set. Under the

pairwise correlation structure, the estimated population is 39.17 with standard

error 1.13. Otis et al. (1978) estimated population size for this data set was

41 with standard error 3.05 and Huggins (1991) estimated population size 42.26

with a standard error of 3.75 under model M0. Huggins (1991) also used his Mbh

model using covariates and estimated population size 47.144 with standard error
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Table 4.8: Quasi-likelihood information criterion (QIC) under various correlation

structure models and relative efficiencies of the coefficients under independence

correlation structure model for the various data sets

Data Covariates Independence Exchangeable Autoregressive Pairwise

D
ee
r
m
ic
e

QIC 298.75 298.73 298.85 297.81

QICu 294.91 294.91 294.91 294.31

age 1.000 0.812 0.964 0.846

sex 1.000 0.813 0.964 0.853

weight 1.000 0.815 0.964 0.855

time 1.000 1.063 0.977 1.214

L
.
ch
ip
. QIC 354.54 345.54 345.54 345.10

QICu 346.03 346.03 346.03 346.69

sex 1.000 1.016 1.000 1.166

time 1.000 0.987 1.000 1.101

H
ou

se
m
ic
e QIC 2173.59 2173.59 2172.61 2173.49

QICu 2173.92 2173.92 2172.93 2173.96

age 1.000 1.029 1.061 1.040

sex 1.000 1.040 1.061 1.051

time 1.000 1.000 1.059 1.000

7.18. In the Least chipmunk data, Table 4.8 clearly shows that pairwise correla-

tion structure model is the best fitting model considering relative efficiencies and

QIC. We estimated population size 52.27 with standard error 2.87 under pairwise

correlation structure model for the Least chipmunk data. Wang et al. (2007)

applied a Bayesian approach and estimated population size of 50 with a standard

error of 3.14 for the same data set. All the covariates are more efficient under

autoregressive correlation structure according to the relative efficiencies for the

House mice data. The model selection criterion QIC also suggest that autoregres-

sive correlation structure model may be the best choice for this data set. The

estimated population size is 175.08 with standard error 2.07 for the House mice

data considering autoregressive correlation structure. Huggins (1989) examined

this data set and modelled the individual heterogeneity as a function of the sex
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and age category of the individuals. He estimated the population size 176.9 with

standard error 2.01 from this data set. The discrete-time sample coverage method

for model Mth (Chao et al., 1992) yields a population size estimate of 174 with an

estimated standard error 1.0; a similar continuous-time approach (Chao and Lee,

1993) gives an estimate of 172 with an estimated standard error 3.3. All these

estimation procedures imply that almost no or only few individuals were missed

in the capture-recapture experiment. Moreover, the GEE estimation results of

the three examples agree with Otis et al.(1978), but in addition to the heteroge-

neous capture probabilities, our applied GEE approach also accounts for the time

dependence.

4.5 Simulation Study

A Monte Carlo (MC) simulation study is carried out to investigate performance of

the estimators. We considered the Mth model to evaluate the performance of the

GEE approach. We use R (R Development Core Team, 2013) to write a program

and run on an Intel(R) Core(TM) i5-3320M CPU computer. We used number of

Monte Carlo replicates (B), population size (N), mean capture probability (p̄),

number of capture occasions (m), correlation coefficient (α), individual and envi-

ronmental covariates as simulation inputs. Factors used in the simulations were

population size, N = 100, 200, and 500; mean capture probability, p̄ = 0.1, 0.3,

and 0.5; number of capture occasions, m = 6 and 10; and correlation coefficient,

α = −0.5, −0.3, −0.1, 0, 0.1, 0.3, 0.5. We generated correlated capture history

Yij following the method of Qaqish (2003) considering autoregressive correlation

structure. Individuals capture probabilities depended upon the sex (SEX) and

weight (WT) of the individual and allowed an environmental covariate (ENV) for

each occasion. Following the real data analysis, the simulated individuals were

assigned their sex with probability 0.5 and the weights were normally distributed
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with mean 15 and variance 4. The environmental covariates were normal with

mean 2 and variance 1. All the covariates were recomputed for each simulation.

One thousand repetitions were completed for each combination of factors.

Statistics computed were average estimate of population size, AVE(N̂); standard

error of the population estimates, SE(N̂); average captured individuals (n̄); per-

centage relative bias, PRB = 100 × (E[N̂ ] − N) ÷ N , where E[N̂ ] is estimated

by AVE(N̂); percentage coefficient of variation, CV = 100 × SE(N̂) ÷ E[N̂ ] and

confidence intervals (CI). Confidence intervals were computed at the nominal 95%

level based on E[N̂ ] ± 1.96 × SE(N̂). The ‘best’ estimator was chosen by com-

paring the bias, and root mean square error (RMSE =

√
V̂ar(N̂) + bias2) of all

estimators.

The main simulation results are summarized in Table 4.9 and Table 4.10. The

GEE approach in capture-recapture studies performs well for estimating popula-

tion size (N) when there is no linear correlation (α = 0) among capture occasions

and for the high average capture probability 0.5 (p̄ = 0.5). For those cases, there is

low standard error, absolute value of PRB, coefficient of variation and RMSE. The

performance of GEE estimator is poor, and it is very difficult to obtain reliable

estimates when the average capture probabilities (p̄ = 0.1 or 0.3) are low. The

estimated population size and its standard error vary depending on the number of

capture occasions and strength of linear correlation among capture occasions. For

a fixed average capture probability and capture occasions, the estimated popula-

tion size is higher, but its standard error is lower for negative correlation compar-

atively to the same strength of positive correlation. The simulation results also

show that the GEE approach overestimate the population size for negative linear

correlation, and underestimate for positive linear correlation among capture oc-

casions at the high average capture probability (p̄ = 0.5). There exists an inverse

relationship between estimated population size and the linear correlation among
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capture occasions for the fixed average capture probability and capture occasions.

The performance of estimators for m = 10 capture occasions is better than for

m = 6 capture occasions yielding lower CV, absolute value of PRB and RMSE. In

general, the simulation study clearly shows that estimator performance of popula-

tion size and its standard error depends on number of capture occasions, average

capture probability, and correlation among capture occasions.
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Table 4.9: Under model Mth - simulation results (1000 repetitions) of m = 6 cap-
ture occasions for the proposed GEE approach assuming autoregressive correlation
structure

p̄ α N n̂ AVE(N̂) SE(N̂) 95%CI PRB CV RMSE

0.10 -0.1 100 49.7 67.30 6.78 54.01-80.60 -32.70 7.26 33.39
0.10 0.0 100 46.9 61.77 6.86 48.33-75.22 -38.23 7.17 38.84
0.10 0.1 100 43.7 55.77 6.49 43.06-68.48 -44.23 7.04 44.70
0.10 0.3 100 37.3 44.60 5.74 33.36-55.84 -55.40 6.65 55.70
0.10 0.5 100 30.1 33.74 5.19 23.56-43.92 -66.27 5.95 66.47
0.30 -0.3 100 94.1 104.92 3.07 98.91-110.92 4.92 3.31 5.79
0.30 -0.1 100 90.7 99.88 3.39 93.23-106.53 -0.12 3.18 3.40
0.30 0.0 100 88.6 96.92 3.73 89.61-104.23 -3.08 3.12 4.84
0.30 0.1 100 85.9 93.30 4.18 85.10-101.49 -6.71 3.03 7.90
0.30 0.3 100 79.2 84.24 4.44 75.54-92.94 -15.76 2.74 16.37
0.30 0.5 100 70.6 73.37 4.84 63.88-82.87 -26.63 2.29 27.06
0.50 -0.5 100 99.9 101.62 0.34 100.96-102.28 1.62 1.28 1.66
0.50 -0.3 100 99.8 101.37 0.59 100.22-102.53 1.37 1.26 1.49
0.50 -0.1 100 99.1 100.66 1.03 98.64-102.67 0.66 1.24 1.22
0.50 0.0 100 98.6 100.11 1.29 97.58-102.64 0.11 1.24 1.30
0.50 0.1 100 97.6 99.06 1.60 95.91-102.20 -0.94 1.20 1.86
0.50 0.3 100 94.5 95.63 2.34 91.04-100.21 -4.37 1.10 4.96
0.50 0.5 100 89.3 90.03 3.00 84.15-95.91 -9.97 0.93 10.41
0.10 -0.1 200 99.7 134.78 9.81 115.56-154.01 -32.61 5.11 65.95
0.10 0.0 200 93.9 123.21 9.53 104.52-141.89 -38.40 5.04 77.39
0.10 0.1 200 87.6 111.47 9.25 93.34-129.60 -44.27 4.95 89.01
0.10 0.3 200 74.9 89.19 8.26 73.01-105.37 -55.41 4.63 111.12
0.10 0.5 200 60.7 67.34 7.17 53.28-81.40 -66.33 4.02 132.85
0.30 -0.3 200 188.2 209.51 4.26 201.15-217.87 4.75 2.32 10.42
0.30 -0.1 200 181.6 199.90 4.85 190.40-209.40 -0.05 2.24 4.85
0.30 0.0 200 176.8 193.27 5.27 182.94-203.60 -3.36 2.19 8.55
0.30 0.1 200 171.9 186.19 5.69 175.05-197.33 -6.91 2.11 14.94
0.30 0.3 200 158.8 168.51 6.11 156.54-180.48 -15.75 1.91 32.08
0.30 0.5 200 141.2 146.41 6.72 133.24-159.58 -26.80 1.58 54.01
0.50 -0.5 200 199.9 203.19 0.46 202.28-204.09 1.59 0.90 3.22
0.50 -0.3 200 199.5 202.69 0.87 200.99-204.39 1.35 0.89 2.83
0.50 -0.1 200 198.3 201.38 1.39 198.66-204.10 0.69 0.87 1.96
0.50 0.0 200 197.1 200.06 1.81 196.51-203.61 0.03 0.86 1.82
0.50 0.1 200 195.3 198.05 2.26 193.63-202.47 -0.98 0.84 2.98
0.50 0.3 200 189.4 191.55 3.24 185.20-197.90 -4.23 0.76 9.05
0.50 0.5 200 178.6 179.88 4.44 171.18-188.58 -10.06 0.63 20.60
0.10 -0.1 500 248.9 336.38 15.85 305.30-367.45 -32.72 3.23 164.39
0.10 0.0 500 234.6 307.51 15.05 278.01-337.01 -38.50 3.18 193.08
0.10 0.1 500 219.3 278.60 14.63 249.93-307.26 -44.28 3.12 221.89
0.10 0.3 500 187.2 221.95 13.30 195.87-248.03 -55.61 2.89 278.37
0.10 0.5 500 151.9 167.64 11.07 145.94-189.34 -66.47 2.49 332.54
0.30 -0.3 500 470.5 523.52 6.70 510.39-536.65 4.70 1.47 24.45
0.30 -0.1 500 453.4 498.60 7.74 483.43-513.77 -0.28 1.42 7.87
0.30 0.0 500 442.1 482.75 8.42 466.25-499.25 -3.45 1.38 19.20
0.30 0.1 500 429.8 464.98 8.85 447.63-482.33 -7.00 1.33 36.12
0.30 0.3 500 397.4 421.29 9.90 401.89-440.70 -15.74 1.20 79.33
0.30 0.5 500 352.5 365.01 10.93 343.59-386.43 -27.00 0.99 135.43
0.50 -0.5 500 499.8 507.89 0.78 506.35-509.42 1.58 0.57 7.92
0.50 -0.3 500 498.7 506.66 1.34 504.04-509.27 1.33 0.56 6.79
0.50 -0.1 500 495.6 503.14 2.29 498.65-507.62 0.63 0.55 3.88
0.50 0.0 500 492.9 500.08 2.83 494.54-505.63 0.02 0.54 2.83
0.50 0.1 500 488.3 494.98 3.59 487.95-502.02 -1.00 0.53 6.17
0.50 0.3 500 473.4 478.55 5.24 468.29-488.81 -4.29 0.48 22.08
0.50 0.5 500 446.1 449.17 7.06 435.34-463.00 -10.17 0.39 51.32
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Table 4.10: Under model Mth - simulation results (1000 repetitions) of m = 10
capture occasions for the proposed GEE approach assuming autoregressive corre-
lation structure

p̄ α N n̂ AVE(N̂) SE(N̂) 95%CI PRB CV RMSE

0.10 -0.1 100 66.5 86.62 6.30 74.28-98.96 -13.38 5.53 14.79
0.10 0.0 100 62.9 80.27 5.97 68.57-91.97 -19.73 5.44 20.62
0.10 0.1 100 59.5 74.49 5.88 62.96-86.02 -25.51 5.33 26.18
0.10 0.3 100 51.1 61.33 5.81 49.94-72.72 -38.67 5.02 39.11
0.10 0.5 100 41.6 47.62 5.40 37.05-58.20 -52.38 4.36 52.65
0.30 -0.3 100 97.2 102.18 1.05 100.12-104.23 2.18 1.71 2.42
0.30 -0.1 100 96.2 100.98 1.48 98.08-103.88 0.98 1.68 1.77
0.30 0.0 100 95.4 100.06 1.70 96.72-103.40 0.06 1.65 1.71
0.30 0.1 100 94.1 98.58 2.06 94.56-102.61 -1.42 1.60 2.50
0.30 0.3 100 90.7 94.60 2.67 89.36-99.83 -5.40 1.47 6.03
0.30 0.5 100 83.9 87.10 3.61 80.02-94.18 -12.90 1.23 13.39
0.50 -0.5 100 98.0 100.11 0.02 100.07-100.15 0.11 0.33 0.11
0.50 -0.3 100 98.0 100.11 0.05 100.00-100.21 0.11 0.33 0.12
0.50 -0.1 100 98.0 100.08 0.18 99.72-100.43 0.08 0.33 0.20
0.50 0.0 100 97.9 100.03 0.28 99.49-100.58 0.03 0.32 0.28
0.50 0.1 100 97.8 99.93 0.43 99.09-100.76 -0.07 0.32 0.43
0.50 0.3 100 97.2 99.29 0.92 97.49-101.09 -0.71 0.31 1.16
0.50 0.5 100 95.0 97.07 1.64 93.86-100.28 -2.93 0.27 3.36
0.10 -0.1 200 135.0 173.00 8.77 155.80-190.19 -13.50 3.90 28.40
0.10 0.0 200 128.7 161.38 8.68 144.36-178.39 -19.31 3.82 39.59
0.10 0.1 200 121.0 148.61 8.58 131.80-165.43 -25.69 3.75 52.10
0.10 0.3 200 104.3 121.89 8.17 105.87-137.90 -39.06 3.48 78.54
0.10 0.5 200 84.8 94.22 7.74 79.04-109.40 -52.89 3.01 106.07
0.30 -0.3 200 196.3 204.24 1.50 201.30-207.17 2.12 1.21 4.49
0.30 -0.1 200 194.3 201.73 2.10 197.62-205.83 0.86 1.17 2.71
0.30 0.0 200 192.7 199.80 2.34 195.22-204.39 -0.10 1.15 2.35
0.30 0.1 200 190.5 197.20 2.90 191.52-202.88 -1.40 1.12 4.03
0.30 0.3 200 183.1 188.79 3.91 181.14-196.45 -5.61 1.02 11.87
0.30 0.5 200 170.1 174.35 5.03 164.49-184.21 -12.83 0.85 26.14
0.50 -0.5 200 198.0 200.22 0.03 200.15-200.28 0.11 0.23 0.22
0.50 -0.3 200 198.0 200.21 0.07 200.07-200.35 0.10 0.23 0.22
0.50 -0.1 200 197.9 200.15 0.24 199.69-200.61 0.08 0.23 0.28
0.50 0.0 200 197.8 200.04 0.40 199.26-200.82 0.02 0.22 0.40
0.50 0.1 200 197.6 199.82 0.63 198.58-201.06 -0.09 0.22 0.66
0.50 0.3 200 196.3 198.52 1.34 195.90-201.14 -0.74 0.21 2.00
0.50 0.5 200 192.0 194.12 2.36 189.49-198.75 -2.94 0.18 6.34
0.10 -0.1 500 340.5 431.38 13.71 404.51-458.24 -13.73 2.45 69.98
0.10 0.0 500 323.9 402.25 13.42 375.94-428.55 -19.55 2.41 98.67
0.10 0.1 500 305.8 371.16 14.00 343.72-398.60 -25.77 2.36 129.60
0.10 0.3 500 264.1 304.75 12.95 279.38-330.13 -39.05 2.19 195.68
0.10 0.5 500 214.5 234.28 12.29 210.19-258.38 -53.14 1.87 266.00
0.30 -0.3 500 493.9 510.55 2.25 506.14-514.97 2.11 0.76 10.79
0.30 -0.1 500 489.0 504.44 3.29 497.99-510.89 0.89 0.74 5.53
0.30 0.0 500 484.7 499.33 3.90 491.68-506.98 -0.13 0.72 3.96
0.30 0.1 500 479.0 492.58 4.70 483.37-501.79 -1.49 0.70 8.78
0.30 0.3 500 460.5 471.31 6.30 458.96-483.66 -5.74 0.63 29.38
0.30 0.5 500 428.1 435.24 7.72 420.11-450.37 -12.95 0.52 65.22
0.50 -0.5 500 498.0 500.53 0.05 500.43-500.63 0.11 0.15 0.53
0.50 -0.3 500 498.0 500.50 0.14 500.23-500.77 0.10 0.14 0.52
0.50 -0.1 500 497.9 500.35 0.40 499.56-501.14 0.07 0.14 0.54
0.50 0.0 500 497.6 500.10 0.59 498.94-501.25 0.02 0.14 0.60
0.50 0.1 500 497.1 499.54 0.96 497.65-501.42 -0.09 0.14 1.07
0.50 0.3 500 493.8 496.24 2.09 492.15-500.32 -0.75 0.13 4.30
0.50 0.5 500 483.2 485.47 3.87 477.89-493.04 -2.91 0.11 15.04
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4.6 Discussion

Generalized estimating equations (GEE) approach is an important tool for getting

unbiased estimates in the analysis of capture-recapture correlated data when cap-

ture probabilities are modelled as a function of covariates. The GEE approach has

been applied for adjusting capture probabilities of heterogeneous population and

accounting for correlation structures on capture occasions. Estimation results and

model selection criteria (QIC) show that the best GEE model for a given work-

ing correlation structure in capture-recapture Mth model depends on the data set.

The GEE estimator performs well when the capture probabilities are high but the

estimates seem to be unreliable for low capture probabilities. Simulation results

also reveal that estimated population parameters vary on the on the nature of ex-

isting correlation among capture occasions, the number of capture occasions and

average capture probability. We agree with Hwang and Huggins (2005) sugges-

tion that estimators dealing with heterogeneity of capture probabilities should be

considered. Moreover, it is also important to consider the correlation structure

among capture occasions.
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In this chapter, a proposed generalized estimating equations (GEE) and gener-

alized linear mixed modelling (GLMM) approaches are used to estimate capture

probabilities and population size for closed population models. We account for in-

dividual heterogeneity in capture probabilities, modelling capture probabilities as

a function of individual covariates. Generalized linear models (GLM) assumes in-

dependence, GEE account for dependency among capture occasions and GLMM

are useful to accommodate heterogeneity due to unmeasurable individual char-

acteristics. The purpose of this chapter is to compare the results of estimating

population size and its standard error by using these methodologies in the anal-

ysis of a capture-recapture data. For illustrative purposes, we analyze several

data sets that has already been discussed in the literature, and compare results

with currently used methodology. We build-up various modelling structures using

individual covariates in our analysis. Conditional arguments are used to obtain

a Horvitz-Thompson-like estimator for estimating population size. A simulation

study is also conducted to show the performance of the estimation procedures.

5.1 Background

The estimation of the size of a closed wildlife population in capture-recapture

experiment is a vital issue in ecological statistics. The population is assumed to

be closed over the course of the trapping experiment, implying that there are no

births, deaths, and migrations during the study period. In this chapter, we are

interested in estimating the population size and standard error of a sub-model

of the type Mh, where individual heterogeneity can be modelled as a function

of covariates. Development of capture-recapture models dealing with individual

heterogeneity in capture probabilities has been one of the most challenging tasks.

Failure to account for such heterogeneity has long been known to cause substantial

bias in population estimates (Otis et al., 1978; Lee and Chao, 1994; Hwang and
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Huggins, 2005). Moreover, Link (2003) shows that without strong assumptions

on the underlying distribution, estimates of population size under model Mh is

fundamentally non-identifiable.

The use of covariates (or auxiliary variables), if available, has been proposed as

an alternative way to partially cope with the problem of heterogeneous capture

probabilities (Pollock et al., 1984; Huggins, 1989; Alho, 1990; Pollock, 2002). The

idea is to model capture probabilities as a function of individual (i.e., age, sex,

and weight) and environmental (i.e., temperature, rainfall, and location) covari-

ates, using a generalized linear modeling (GLM) approach, such as logistic regres-

sion. The method of Huggins (1989, 1991), based on a conditional likelihood to

estimate population size, has become very popular, but it assumes independence

among capture occasions (Huggins and Hwang, 2011). Hwang and Huggins (2007)

also state that the assumption of independence among capture occasions is often

violated in practice but the authors still rely on that assumption. Some sort of

dependencies among capture occasions deal through the modelling of behavioral

effects such as trap happiness and trap shyness being special cases in the capture-

recapture literature (Yang and Chao, 2005; Pradel and Sanz-Aguilar, 2012).

One alternative approach is to use a generalized estimating equations (GEE) to

account for a working correlation structure over capture occasions (Liang and

Zeger, 1986), and use individual measurable characteristics to model heterogene-

ity in capture probabilities. A mixed effects modelling approach may also be used

to model heterogeneity of individual measurable and unmeasurable characteristics

in capture-recapture experiments motivating the use of generalized linear mixed

models (GLMM) (Pinheiro and Bates, 2000). The GLMM can be used for estimat-

ing capture probabilities, which has a linear predictor consisting of fixed effects

relating to measurable covariates and random effects relating to unmeasurable co-

variates. The random effects structure consisting of a random intercept is used

to account for correlation among different observations on the same individual or
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among observations on different individuals (e.g., Breslow and Clayton, 1993 and

references therein). The need to consider random effects beside any fixed effect in

capture-recapture models is well emphasized by Barry et al. (2003) and Gimenez

and Choquet (2010). Some authors have previously introduced the use of GLMM

(logit models with normal random effects) (e.g., Coull and Agresti, 1999, 2000;

Stoklosa et al., 2011). Both techniques are suitable for the analysis of capture-

recapture correlated data since in GEE and GLMM methods a correction is made

for the dependency among capture occasions and taking into account the individ-

ual heterogeneity of capture probabilities. An advantage of using GLMM for the

estimation of capture probabilities is to accommodate not only the heterogeneity

attributed to individual characteristics, but also the heterogeneity that cannot be

explained by the observed individual characteristics. A possible advantage of GEE

over random-effects models and Bayesian methods relates to the ability of GEE

to allow specific correlation structures to be assumed between capture occasions.

Here we propose a GEE approach for estimating capture probabilities and popu-

lation size in capture-recapture closed population studies. We also compare the

results of population size estimates and their standard errors, when using the two

estimation methodologies (i.e., GEE and GLMM). A two-fold estimation proce-

dure is build-up. The first step estimates regression parameters associated with

capture probabilities depending on individual covariates. The second step es-

timates population size using a Horvitz-Thompson-like estimator. In the next

section, we describe the notation and models that are used to estimate capture

probabilities and population size. Section 5.3, illustrates the methodologies for

several real data sets. A simulation study is presented in Section 5.4. We con-

clude with some discussions in Section 5.5.
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5.2 Notation and Models

Consider a population consisting of N animals in a capture-recapture experiment

over m capture occasions, j = 1, 2, ..., m. Let Yij be a binary outcome, equalling 1

if the ith animal is being caught on the jth capture occasion and 0 otherwise. Let

Yi = (Yi1, Yi2, ..., Yim)
′ be a random vector with the capture history of individual i.

Let Ti =
m∑
j=1

Yij be the number of times the ith animal has been caught in the course

of the trapping closed population study. Let ti be the time the ith individual is first

captured. Heterogeneity in captured probabilities is often explained by individual

measurable covariate zi, such as age, sex, weight, etc. For simplicity, we consider

zi a single covariate, but the model can be easily generalized for zi to be considered

a vector of covariates. Let the probability that the ith animal is captured on any

trapping occasion j, be

Pi(β) = Pr(Yij = 1|Xi) = h(Xiβ); i = 1, 2, ..., N, j = 1, 2, ..., m (5.1)

where

Xi =



1 1 . . . 1

zi zi . . . zi




′

; (i = 1, 2, ..., N)

is the design matrix, β = (β0, β1)
′ is the vector of parameters associated with

the covariates, and h(u) = (1 + exp(−u))−1 is the logistic function. This is an

Mh model where variation in capture probabilities among individuals is explained

by the covariate zi. The probability of not capturing the ith individual on the jth

occasion is (1−Pi(β)) and the variance of Yij is Pi(β)(1−Pi(β)) (Liang and Zeger,

1986). Then Ti ∼ Bin(m,Pi(β)) and πi(β) = 1 − (1 − Pi(β))
m is the probability

of individual i being captured at least once, given the covariate zi. Let the set of

distinct individuals captured at least in one occasion be indexed by i = 1, 2, ..., n

and uncaptured individuals would be indexed by i = n + 1, ..., N without loss of

generality. To estimate the population size, once an estimator β̂ of β is available,
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the Horvitz-Thompson estimator N̂ =
n∑

i=1

1

πi(β̂)
may be used as in Huggins (1989).

5.2.1 Methods Based on Partial Likelihood

The full likelihood is proportional to

n∏

i=1

Pi(β)
Ti{1− Pi(β)}m−Ti

πi(β)

n∏

i=1

πi(β)
N∏

i=n+1

{1− πi(β)}. (5.2)

Since the number of total individuals, N , is unknown and the covariates are not

known for individuals that are never captured, this likelihood cannot be directly

evaluated. The conditional likelihood (Huggins, 1989) is the first product compo-

nent of (5.2) and it can be formulated as a GLM (Huggins and Hwang, 2011) for

the positive Binomial distribution (Patil, 1962). It may be rewritten as

n∏

i=1

Pi(β)
Ti−1{1− Pi(β)}m−ti−(Ti−1)

n∏

i=1

[{1− Pi(β)}ti−1Pi(β)

πi(β)

]
. (5.3)

When the full likelihood is partitioned into a product of conditional densities, then

a partial likelihood (Cox, 1975) may arise considering some of the product terms,

but it involves only the parameters of interest, isolating the nuisance parameters.

Therefore, the partial likelihood, PL(β) is the first product of the equation (5.3),

which is the likelihood of the number of recaptures after the first capture (Stoklosa

et al., 2011). For a given ti, (Ti − 1)|ti ∼ Bin(m − ti, Pi(β)), which is used to

estimate the parameters β.

• Generalized Linear Models

To apply GLMwe suppose that Pi(β) = h(Xiβ) for a vector of parameters β, where

Xi is the design matrix for fixed measurable covariates as defined earlier. Hence,

we can use partial likelihood conditioning on the first capture time. Estimation

of β is conducted via an iterative procedure known as iterative re-weighted least
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squares (IRLS). The estimation procedure is based on maximizing the penalized

partial log-likelihood.

Let β̂ be the estimate of β using partial likelihood and Pi(β̂) = h(Xiβ̂) then we

get an estimate of the variance of N̂ is given by

V̂ar(N̂) =
n∑

i=1

πi(β)
−2
(
1− πi(β)

)
+∆(β)′Γ (β)−1∆(β) (5.4)

where Γ (β) represents the conditional information matrix for β and ∆(β) is the

vector of
n∑

i=1

πi(β)
−2∂πi(β)/∂β with all quantities evaluated at β̂.

• Generalized Linear Mixed Models

To utilize a simple GLMM with a random effect, we suppose that Pi(β) = h(Xiβ+

σbνi) where νi is a realization of the standard normal random variable Zi ∼

N (0, 1), with σb > 0. One can think of Zi as an unmeasured covariate, as a

way to model heterogeneity, or as a way to model correlated data. The use of ran-

dom effects reflects the belief that there is heterogeneity that can not be explained

by covariates. This type of GLMM model deserves special attention for several

reasons. First allows modeling of the time variation (or occasion-to-occasion vari-

ation) separately for each individual. Second we model the individual variation by

postulating a distribution. The partial likelihood can be considered as the joint

distribution of the response and the random effects. To estimate β and σb, the

marginal likelihood of the response is obtained by integrating out the random ef-

fects. The integration can be approximated by penalized quasi-likelihood (Breslow

and Clayon, 1993), which enables parameter estimation via an iterative procedure.

The variance of N̂ for a smoothing parameter λ may be estimated according to

Stoklosa et al. (2011) by using the following formula, V̂ar(N̂, λ) =
n∑

i=1

1− πi(β)

πi(β)2
+

{Xiη(β)}′Var(β){Xiη(β)}, where η(β) is a vector with ηi(β) = πi(β)
−2mPi(β){1−

πi(β)}, and all quantities are evaluated at β̂. The smoothing parameter λ, which
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is part of the quasi-likelihood procedure, controls the degree of roughness of the

estimated functions. To obtain an optimal value for λ we used generalized cross

validation (GCV) technique (Wood, 2006).

5.2.2 Generalized Estimating Equations Approach

Let Vi = A
1
2
i Ri(α)A

1
2
i be the covariance matrix of Yi, where, Ai = diag[Var(Yi1),

Var(Yi2), ...,Var(Yim)] is a m × m diagonal matrix and Ri(α) is known as the

working correlation structure among Yi1, Yi2, ..., Yim to describe the average de-

pendency of individuals being captured from occasion to occasion. A GEE ap-

proach permits several types of working correlation structure Ri(α) (for details,

see Diggle et al., 2002). For the description that follows and for simplicity, we

consider an independence working correlation structure, Ri(α) = I where I is

an identity matrix. The covariate zi is never known for the individuals that

have not been captured. Therefore, Yij is conditional on the captured indi-

viduals (n) (i.e., Ti ≥ 1) with the corresponding observed individual covari-

ates like Huggins (1989) and Zhang (2012). The probability that the ith in-

dividual is captured on the jth occasion (Pij) given that the ith individual is

observed at least once is, Pr(Yij = 1|Ti ≥ 1) = Pij

/(
1 −

m∏
k=1

(1 − Pik)
)
. Let

µij = E(Yij|Ti ≥ 1) = Pij

/(
1−

m∏
k=1

(1− Pik)
)
, and Di be the matrix of derivatives

∂µi/∂β
′, where, µi = (µi1, µi2, ..., µim)

′, hence Di = AiXi. The variance vij of Yij

given Ti ≥ 1 is vij = Var(Yij/Ti ≥ 1) = Pij

(
1−Pij−

m∏
k=1

(1−Pik)
)/[

1−
m∏

k=1

(1−Pik)
]2
.

Considering, Vi = diag(vij), an estimator of β can be obtained by solving the fol-

lowing generalized estimating equations:

U(β) =
n∑

i=1

D′
iV

−1
i (Yi − µi) = 0. (5.5)

For a given β̂, then π̂i(β̂) = 1− (1− Pi(β̂))
m and we can estimate the variance of

N̂ using equation (5.4). If the individual capture probability does not depend on
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time, individual prior capture history and any covariates, the model (5.1) simplifies

to Pi(β) = h(β0) = P0, which is a re-parameterization of model M0 of Otis et al.

(1978) (see Huggins, 1991, Hwang and Huggins, 2005). This model assumes all

the individuals have equal capture probabilities. Then the estimating equations

for β0 is simplified to (derivation is given in Appendix A)

n∑

i=1

( m∑

j=1

Yij −
mP0

1− (1− P0)m

)
= 0. (5.6)

Let β̂0 be the resulting estimator of β0 then π̂0 = 1− (1− P̂0)
m where P̂0 = h(β̂0).

5.3 Applications

We apply the techniques discussed in the previous Section to real life data sets.

5.3.1 Example 1: Deer mice data

The data set from Section 1.7.1 are considered for our first example. For these

data, n = 38 distinct Deer mice (Peromyscus maniculatus) were captured at least

once over m = 6 capture occasions. The estimation results for the applied models

are summarized in Table 5.1. Based on the Akaike information criterion (AIC),

the model constitute by age, sex, and weight (Model 10) may be preferred because

of lower AIC (98.03) within all partial likelihood GLM models (Model 1, Model

4, Model 5, Model 6, Model 7 and Model 9 produced AIC 108.02, 107.57, 99.33,

109.94, 100.67, 100.99 and 102.59 respectively). Here, we get the estimated popu-

lation size 38.87 with standard error 1.16. The quasi-likelihood GEE and partial

likelihood GLMM provide similar results except for two cases in GLMM, (i) Model

19 for sex and random variable, and (ii) Model 22 for sex, weight and random vari-

ables. In both cases the estimated population size is 47.95 with standard error

5.48 for model 19 and 5.50 for model 22. Estimation results clearly show that the
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quasi-likelihood GEE models provide consistent results yielding lower standard

error compared to the results of GLM and GLMM models for this data set, see

Table 5.1.

5.3.2 Example 2: Least chipmunk data

Our second example concerns the captures of Least chipmunks (Eutamias min-

imus) from Section 1.7.2. Over the m = 6 capture occasions, n = 45 distinct

animals were captured at least once. The estimation results are summarized in

Table 5.2. The inclusion of the covariate sex does not necessary improve our es-

timates of population size which are very similar, except when the random effect

is considered in the GLMM, which is based on partial likelihood estimation. This

may indicated that there is unmodeled individual heterogeneity in capture prob-

abilities that is not being accounted for with the other models (GLM and GEE).

The population estimate, in this case, is of approximately 74 individuals with a

standard error of 12. Both values are quite high when compared to the values

obtained with the other estimation strategies. Although, GLMM accounts for

heterogeneity due to unmeasured individual characteristics, it may also be overes-

timating population size at the expenses of greater loss in precision, possibly due

to the increase in the number of model parameters that are estimated. In con-

trast, quasi-likelihood GEE methodology provided lower standard errors, when

compared to results from the Bayesian approach of Wang et al. (2007) for the

same data set. The latter authors estimated population size of 50 with a standard

error of 3.14. The GEE estimation results also agree with Otis et al. (1978), but

our model jointly takes into account heterogeneity in capture probabilities and

correlation among capture occasions.
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Table 5.1: Comparison of parameter estimates (standard error in parenthesis) for
Deer mice data after fitting models with and without covariates. A realization of
the standard normal random variable Zi ∼ N (0, 1) is νi. QL= quasi-likelihood
and PL= partial likelihood. Numbers in this table are rounded to two decimal
places; therefore 0.00 does not mean zero

Model No. logit{Pi(β)} N̂

Intercept-only models

1. PL GLM 0.46 38.13
(0.18) (0.37)

2. QL GEE 0.11 38.43
(0.18) (0.66)

3. PL GLMM 0.03 + 0.00 νi 38.56
(0.27) (0.75) (0.88)

Linear covariates models

4. PL GLM 0.65 - 0.60 age 38.23
(0.22) (0.38) (0.52)

5. PL GLM -0.22 + 1.19 sex 38.52
(0.27) (0.37) (0.83)

6. PL GLM 0.30 + 0.01weight 38.13
(0.58) (0.04) (0.37)

7. PL GLM -0.08 - 0.33 age + 1.12 sex 38.59
(0.33) (0.40) (0.38) (0.90)

8. PL GLM -0.56 + 1.21 sex + 0.02weight 38.55
(0.65) (0.37) (0.04) (0.86)

9. PL GLM -1.40 - 2.03 age + 0.18weight 38.06
(0.82) (0.69) (0.07) (0.94)

10. PL GLM -1.71 - 1.57 age + 0.99 sex + 0.15weight 38.87
(0.85) (0.71) (0.39) (0.07) (1.16)

11. QL GEE 0.35 - 0.77 age 38.83
(0.17) (0.28) (0.93)

12. QL GEE -0.49 + 1.01 sex 39.09
(0.20) (0.27) (1.08)

13. QL GEE 0.21 - 0.01weight 38.48
(0.43) (0.03) (0.69)

14. QL GEE -0.22 - 0.64 age + 0.92 sex 39.46
(0.24) (0.29) (0.28) (1.27)

15. QL GEE -1.69 - 2.26 age + 0.18weight 39.62
(0.61) (0.51) (0.05) 1.37

16. QL GEE -0.45 + 1.01 sex - 0.00weight 39.10
(0.47) (0.27) (0.03) (1.08)

17. QL GEE -1.95 - 1.90 age + 0.81 sex + 0.16weight 39.85
(0.14) (0.15) (2.24) (1.17) (1.45)

18. PL GLMM 0.27 - 0.70 age + 0.00 νi 38.89
(0.30) (0.50) (0.71) (1.20)

19. PL GLMM -0.46 + 0.85 sex + 1.44 νi 47.95
(0.36) (0.48) (0.00) (5.48)

20. PL GLMM 0.16 - 0.01weight + 7.62 νi 38.53
(0.92) (0.06) (0.72) (0.87)

21. PL GLMM -0.20 - 0.57 age + 0.76 sex + 0.00 νi 39.28
(0.43) (0.52) (0.50) (0.70) (1.57)

22. PL GLMM -0.44 + 0.85 sex - 0.00weight + 1.44 νi 47.95
(0.84) (0.49) (0.05) (0.00) (5.50)

23. PL GLMM -1.57 - 2.02 age + 0.16weight + 0.00 νi 39.49
(1.09) (0.92) (0.09) (0.70) (1.77)

24. PL GLMM -1.65 - 1.76 age + 0.69 sex + 0.14weight + 6.10 νi 39.49
(1.20) (1.04) (0.58) (0.10) (0.66) (1.80)
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Table 5.2: Comparison of parameter estimates (standard error in parenthesis)

for Least chipmunk data after fitting models with and without covariates. A

realization of the standard normal random variable Zi ∼ N (0, 1) is νi. QL=

quasi-likelihood and PL= partial likelihood. Numbers in this table are rounded

to two decimal places; therefore 0.00 does not mean zero

Model No. logit{Pi(β)} N̂

Intercept-only models

1. PL GLM -0.82 50.72

(0.18) (3.33)

2. QL GEE -0.73 49.66

(0.13) (2.27)

3. PL GLMM -0.85 + 0.00 νi 51.03

(0.26) (0.73) (4.10)

Linear covariates models

4. PL GLM -0.81 - 0.03 sex 50.73

(0.25) (0.37) (3.35)

5. QL GEE -0.84 - 0.21 sex 52.40

(0.18) (0.26) (2.94)

6. PL GLMM -0.83 - 0.14 sex + 1.59 νi 74.16

(0.34) (0.49) (0.00) (12.06)

5.3.3 Example 3: House mice data

Our third example due to the House mice data set of Coulombe (1965), concerns

the captures of 173 Mus musculus, see Section 1.7.3. The data recorded asso-

ciated with two covariates: age (juvenile, semi-adult or adult) and sex (male or

female). Detailed capture information was given as an example in program CAP-

TURE (Rexstad and Burnham, 1991). Two records are excluded in the analysis

because the covariates for the two mice were missing. Hence, for this data set,

n = 171 distinct House mice were captured at least once over m = 10 capture

occasions. We estimated parameters using GLM, GEE and GLMM approaches in

Table 5.3 for intercept only models and linear covariates models. If there were no
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available information of individual covariate, the partial likelihood GLMM gives

very slightly lower population size estimates with lower standard error in com-

parison to the partial likelihood GLM. The linear covariate model of age and sex

(Model 6) is the more parsimonious within all partial likelihood GLM models

because it produced lower AIC (547.93) in comparison of other models, which

estimate the population size is 175.82 with a standard error of 2.50. Note that

Model 1 (intercept only model), Model 4 (covariate model of age) and Model 5

(covariate model of sex) produced AIC 563.17, 549.86 and 559.19 respectively.

The population size estimates are almost same for the quasi-likelihood GEE and

partial likelihood GLMM for all combination of covariate models. This may be

due to the fact that random effect had a negligible effect on the heterogeneity

across individuals in GLMM. Table 5.3 also shows that the quasi-likelihood based

GEE approach provides lower standard error in comparison with other applied

approaches. Huggins (1989) considered a closed population with heterogeneous

capture probabilities modelled using covariates and estimated the population size

as 176.9 with standard error 2.01 for this dataset. If model Mh (capture proba-

bilities vary by individual) is assumed, the jackknife procedures of Burnham and

Overton (1978) estimated the population size as 175 with standard error 43.4,

and the methods of Chao (1988) as implemented in CAPTURE estimated the

population size as 173 with standard error 0.18.
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Table 5.3: Comparison of parameter estimates (standard error in parenthesis)

for House mice data after fitting different models with and without covariates.

A realization of the standard normal random variable Zi ∼ N (0, 1) is νi. QL=

quasi-likelihood and PL= partial likelihood

Model No. logit{Pi(β)} N̂

Intercept-only models

1. PL GLM -0.72 174.34

(0.06) (1.96)

2. QL GEE -0.66 173.73

(0.05) (1.67)

3. PL GLMM 0.06 - 0.68 νi 173.92

(0.40) (0.07) (1.84)

Linear covariates models

4. PL GLM -1.01 + 0.48 age 175.47

(0.10) (0.12) (2.38)

5. PL GLM -0.58 - 0.30 sex 174.77

(0.08) (0.12) (2.13)

6. PL GLM -0.87 + 0.45 age - 0.24 sex 175.82

(0.12) (0.13) (0.12) (2.50)

7. QL GEE -0.95 + 0.45 age 174.89

(0.08) (0.10) (2.00)

8. QL GEE -0.54 - 0.31 sex 174.40

(0.07) (0.10) (1.87)

9. QL GEE -0.81 + 0.42 age - 0.25 sex 175.18

(0.10) (0.11) (0.10) (2.09)

10. PL GLMM -0.91 + 0.41 age + 0.03 νi 174.52

(0.10) (0.13) (0.37) (2.07)

11. PL GLMM -0.54 - 0.29 sex + 0.03 νi 174.20

(0.09) (0.13) (0.37) (1.95)

12. PL GLMM -0.77 + 0.37 age - 0.24 sex + 0.03 νi 174.72

(0.12) (0.13) (0.13) (0.36) (2.14)



Chapter 5. GEE and Mixed Effect Approaches 143

5.4 Simulation Study

A simulation study was conducted in order to evaluate the performance of the

estimators. The effect of heterogeneity among observed individuals was modelled

using two covariates, sex (male = 1 and female = 0) and weight. Four levels of

population sizes N = 50, 100, 200, and 500 and two levels of capture occasions

m = 6 and 10 were considered. For each individual, we assigned sex with proba-

bility 0.5 from a Bernoulli distribution and weight from a normal distribution with

mean 15 and variance 4. These values are based on the previous data analysis.

Individual capture probabilities were modelled with a logistic regression, such that

Pi =
eβ0+β1×sexi+β2×weighti

1 + eβ0+β1×sexi+β2×weighti
, (5.7)

where β0 is the constant term, β1 and β2 represents the sex and weight effects

respectively. A positive β1 implies that the sex taking value 1 is more catchable,

and a possitive β2 means that the catchability increases with weight. We consid-

ered three different simulation scenarios for capture probabilities, (a) high capture

probabilities (β0 = −3.5); (b) medium capture probabilities (β0 = −4.0); (c) low

capture probabilities (β0 = −4.5) and their averaged are presented in Table 2. In

addition, a Gaussian random effect with mean 0 and σb = 0.1 was included as an

unmeasured covariate to ensure the existence of heterogeneity due to unmeasured

individual characteristics. For each simulation scenario, GLM, GEE and GLMM

approaches were used for data analyses, and to assess estimators performances.

The simulation study was carried out with 1,000 Monte Carlo replicates.

We present the average of the resulting 1,000 estimated population size, AVE(N̂ )

and the average number of distinct individuals that are captured (n̄) in the ex-

periments. To evaluate estimators’ performance, we present the standard er-

rors of the estimated population size, SE(N̂); percentage relative bias, PRB =

100× (E(N̂)−N)÷ N , where E(N̂) is estimated by AVE(N̂); root mean square
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Table 5.4: Simulated capture probability scenarios for the capture probability

model, logit(Pi) = β0 + β1 × sex + β2 × weight. p̄ represents average capture

probability when weight = 15 and πi represents the average probability of an

individual being captured at least once in the whole experiment

Simulation Effects of
p̄

πi

Scenarios covariates m = 6 m = 10

β0 β1 β2 male female male female male female

(a) High -3.5 0.1 0.2 0.40 0.38 0.95 0.94 0.98 0.98

(b) Medium -4.0 0.1 0.2 0.29 0.27 0.87 0.85 0.94 0.92

(c) Low -4.5 0.1 0.2 0.20 0.18 0.73 0.70 0.83 0.80

error, RMSE =

√
Var(N̂) + Bias2; percentage coefficient of variation, CV =

100 × SE(N̂) ÷ E(N̂) and confidence interval coverage (%) (COV) for the esti-

mates of population size.

The simulation results for 6 capture occasions are given in Table 5.5. We noticed

that all estimation procedures for scenario (a) perform well. There is little bias,

low standard errors, low coefficient of variation for N̂ . In this scenario, confidence

interval coverage for all estimators are very good (93-96%), considering a nomi-

nal level of 95%. As in our example, the exception is with GLMM that tends to

overestimate population size. Overestimation is particularly severe when capture

probabilities are low, see for instance, results of scenarios (b) and (c). Confidence

interval coverage for GLMM is also poor (77-90%) in these scenarios. For all

scenarios, the GEE approach performs well for estimating population size. This

approach also consistently provides lower standard errors and lower RMSE when

compared to GLM and GLMM estimators, although the differences are minimal

for GEE-GLM comparisons. Therefore, our simulation results indicate that the

general performance of estimators obtained from GEE are better than GLM and

GLMM. The GEE approach may overcome the effect of random effects due to

its ability accounting for the correlation structure among capture occasions. The

simulation results for 10 capture occasions are presented in Table 5.6. The perfor-
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mance of estimators for 10 capture occasions is better than for 6 capture occasions

yielding lower CV, absolute value of PRB, RMSE but higher COV. This is gener-

ally true because the average capture probability is higher for 10 capture occasions

than for 6 capture occasions. Therefore, simulation results reveal that the general

performance of estimator is good if a large proportion of individuals are captured.

For cases where only a small proportion of individuals are captured, the estimates

become unstable but the GEE approach outperforms the other methods.
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Table 5.5: Simulation results (1000 repetitions) considering m = 6 capture occasions. Averages of the numbers of captured individ-

uals, (n̄); the estimates of population size, AVE(N̂ ); standard errors of the estimated population size, SE(N̂); percentage relative

bias, PRB = 100× (E(N̂)−N)÷N , where E(N̂) is estimated by AVE(N̂); root mean square error, RMSE =

√
Var(N̂) + Bias2;

percentage coefficient of variation, CV = 100× SE(N̂)÷ E(N̂) and confidence interval coverage (%), COV

(a) High N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV

PL GLM 50 45 50.72 2.92 1.44 5.76 3.01 95.4 200 180 200.46 5.12 0.23 2.55 5.14 94.2

QL GEE 50 45 50.60 2.17 1.20 4.29 2.25 95.9 200 180 200.49 4.02 0.25 2.01 4.04 95.1

PL GLMM 50 45 51.29 3.27 2.59 6.38 3.52 94.6 200 180 202.98 5.95 1.49 2.93 6.65 93.7

PL GLM 100 92 100.63 3.77 0.63 3.75 3.82 94.5 500 460 500.65 7.97 0.13 1.59 8.00 93.2

QL GEE 100 92 100.66 2.90 0.66 2.88 2.97 95.8 500 460 500.87 6.28 0.17 1.25 6.34 95.3

PL GLMM 100 92 101.81 4.30 1.81 4.22 4.67 95.9 500 460 506.56 9.07 1.31 1.79 11.20 93.1

(b) Medium N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV

PL GLM 50 41 51.95 5.85 3.90 11.30 6.17 94.8 200 162 201.71 9.79 0.86 4.85 9.94 94.9

QL GEE 50 41 51.71 3.70 3.42 7.16 4.08 94.6 200 162 201.54 6.59 0.77 3.27 6.77 94.6

PL GLMM 50 41 55.83 7.50 11.66 13.40 9.50 88.5 200 162 211.52 12.28 5.76 5.81 16.80 86.2

PL GLM 100 84 101.56 7.16 1.56 7.05 7.33 94.3 500 421 501.74 14.89 0.35 2.97 15.00 94.6

QL GEE 100 84 101.51 4.82 1.51 4.75 5.05 95.2 500 421 501.92 10.31 0.38 2.05 10.50 95.2

PL GLMM 100 84 106.58 9.06 6.58 8.50 11.20 89.1 500 421 526.33 18.90 5.27 3.59 32.40 83.3

(c) Low N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV

PL GLM 50 36 56.79 14.13 13.58 24.90 15.70 96.0 200 146 204.25 17.78 2.13 8.71 18.30 93.8

QL GEE 50 36 55.59 11.46 11.18 20.60 12.80 95.7 200 146 204.56 10.21 2.28 4.99 11.20 94.3

PL GLMM 50 36 81.26 23.84 62.52 29.30 39.30 78.3 200 146 245.53 26.45 22.77 10.80 52.70 78.5

PL GLM 100 69 104.61 14.01 4.61 13.40 14.80 95.7 500 356 504.24 26.68 0.85 5.29 27.00 95.0

QL GEE 100 69 103.53 11.48 3.53 11.10 12.00 94.6 500 356 503.86 15.45 0.77 3.07 15.90 94.5

PL GLMM 100 69 131.07 21.14 31.07 16.10 37.60 77.2 500 356 576.72 37.06 15.34 6.43 85.20 77.4
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Table 5.6: Simulation results (1000 repetitions) considering m = 10 capture occasions. Averages of the numbers of captured indi-

viduals, (n̄); the estimates of population size, AVE(N̂); standard errors of the estimated population size, SE(N̂); percentage relative

bias, PRB = 100× (E(N̂)−N)÷N , where E(N̂) is estimated by AVE(N̂); root mean square error, RMSE =

√
Var(N̂) + Bias2;

percentage coefficient of variation, CV = 100× SE(N̂)÷ E(N̂) and confidence interval coverage (%), COV

(a) High N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV

PL GLM 50 48 50.15 1.07 0.30 2.13 1.08 96.8 200 192 200.25 2.04 0.13 1.02 2.06 96.7

QL GEE 50 48 50.13 0.95 0.26 1.90 0.96 96.4 200 192 200.08 1.83 0.04 0.91 1.83 96.3

PL GLMM 50 48 50.16 1.10 0.32 2.19 1.11 94.6 200 192 200.18 2.05 0.09 1.02 2.06 94.7

PL GLM 100 98 100.11 1.43 0.11 1.43 1.43 94.3 500 492 500.20 3.11 0.04 0.62 3.11 95.1

QL GEE 100 98 100.14 1.36 0.14 1.35 1.36 96.3 500 492 500.18 3.03 0.04 0.61 3.03 96.2

PL GLMM 100 98 100.15 1.45 0.15 1.44 1.45 94.6 500 492 500.28 3.19 0.06 0.64 3.20 94.9

(b) Medium N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV

PL GLM 50 44 50.39 2.34 0.78 4.64 2.37 95.9 200 178 200.24 4.28 0.12 2.14 4.29 95.4

QL GEE 50 44 50.43 1.88 0.86 3.73 1.93 95.8 200 178 200.37 3.57 0.19 1.78 3.59 95.0

PL GLMM 50 44 50.72 2.54 1.44 5.01 2.64 94.2 200 178 201.16 4.67 0.58 2.32 4.81 94.5

PL GLM 100 95 100.47 3.14 0.47 3.12 3.17 95.2 500 473 500.76 6.71 0.15 1.34 6.75 94.6

QL GEE 100 95 100.42 2.98 0.42 2.97 3.01 96.5 500 473 500.66 6.35 0.13 1.27 6.38 96.1

PL GLMM 100 95 100.92 3.32 0.92 3.29 3.45 93.4 500 473 502.03 7.20 0.41 1.43 7.48 94.1

(c) Low N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV N n̄ AVE(N̂) SE(N̂) PRB CV RMSE COV

PL GLM 50 38 51.13 4.77 2.26 9.33 4.90 95.1 200 152 201.07 8.54 0.53 4.25 8.61 95.4

QL GEE 50 38 51.27 3.34 2.54 6.51 3.57 95.4 200 152 201.02 6.14 0.51 3.05 6.22 94.8

PL GLMM 50 38 53.01 5.58 6.02 10.53 6.34 87.9 200 152 207.42 10.06 3.71 4.85 12.5 88.3

PL GLM 100 86 101.25 6.18 1.25 6.11 6.31 96.4 500 431 500.98 13.04 0.20 2.60 13.08 95.0

QL GEE 100 86 101.31 5.97 1.31 5.89 6.11 94.2 500 431 500.65 12.57 0.13 2.51 12.58 95.4

PL GLMM 100 86 104.71 7.35 4.71 7.02 8.73 88.6 500 431 512.15 15.21 2.43 2.97 19.46 88.7
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5.5 Discussion

Individual heterogeneity and time dependence are fundamentally important in real

life applications of capture-recapture studies. This work allows to permit capture-

recapture data analysis using individual covariates, that account for heterogeneity

in capture probabilities and dependency among capture occasions. The main pur-

pose of this chapter was to compare the performances of estimating population

size and its standard error using statistical techniques such as, quasi-likelihood for

GEE, and partial likelihood for GLM and GLMM. Furthermore, estimation results

of different model structures using covariates are compared with each others.

There are several issues related to the applied techniques and estimation proce-

dures.

First, it is not straightforward to interpret the magnitude of the regression coeffi-

cients obtained from either GEE or GLMM analysis. Fundamentally both methods

produce ‘pooled’ regression coefficients accounting for time and individual hetero-

geneity relationships. This has the following implications for the interpretation of

the regression coefficients: suppose for a particular individual the probability of

capture is relatively high at each of the capture occasions and little changes over

time. If for that particular individual the weight is also relatively high at each of

the capture occasions, this indicates an individual heterogeneity relationship be-

tween probability of capture and the weight. Suppose that for another individual

the probability of capture increases rapidly along the capturing periods. Suppose

the similar pattern is also found for the weight in the same individual. This in-

dicates a time relationship between the probability of capture and weight. These

two relationships should be taken into account in the capture-recapture analysis

as they are part of the capture-recapture relationship. Basically GEE or GLMM

approach combines the two possible relationships into one estimating regression

coefficient.

Second, in GEE and GLMM methods a correction is made for the dependency of
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the record of capture history within one individual, hence both techniques are suit-

able to analyse capture-recapture data. The question may arise: which one is the

best method? Unfortunately, it is quite difficult to give a clear answer. Statistical

results, and as a result of biological or management implications, sometimes may

differ between GEE and GLMM. One possible reason is that likelihood methods

are different for estimating parameters in GEE and GLMM. Selection of parame-

ter estimates is of essential importance and should be supported for appropriate

biological or management action.

Third, we could not compare relative fit of GEE versus GLM or GLMM directly

mainly for two reasons.

(i) GEE method is based on the quasi-likelihood theory, while GLM and GLMM

typically use a maximum-likelihood theory for model estimation. Compara-

tive measures such as Akaike’s Information Criterion (AIC) (Akaike, 1974)

could be used for GLM or GLMM, whereas the quasi-likelihood under the

independence model information criterion (QIC) (Pan, 2001) could be used

for GEE for evaluating relative fit of models, but there is no unique model

selection criterion that can be used for both models.

(ii) Estimated regression parameters and their significance may be different be-

cause we estimate regression parameters based on partial likelihood method

in GLM or GLMM, while quasi-likelihood method is used to estimate regres-

sion parameters in GEE. Hence their comparison would not be appropriate.

However, to get accurate capture probabilities, one should fit statistical model

considering data type and research objectives. We have applied a set of generalized

models (i.e., GLM, GEE and GLMM) to estimate population parameters using

capture-recapture data. We have also made comparison of the results of estimating

population size and its standard error for the different model structures using

covariates. The quasi-likelihood GEE approach seems to perform better than GLM
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and GLMM approaches because the standard errors of the estimated population

size are consistently lower. The estimators perform well when average capture

probabilities are high, but it is difficult to obtain reliable estimates of GLMM

approach for low capture probabilities. For cases where only a small proportion

of individuals are captured, the GEE approach provides better RMSE and is

robust to violation of the assumption of independence among capture occasions.

This approach also provides means of exploring factors thought to be responsible

for differences in capture probability among individuals. Hence it is important to

account for correlation structure among capture occasions when estimating animal

population parameters in capture-recapture studies.



Chapter 6

General Conclusion and Future

Direction

This dissertation proposes a generalized estimating equations (GEE) approach in

capture-recapture closed population models that accounts for heterogeneity due to

measurable individual characteristics and dependency among capture occasions.

The proposed approach can also account for over-dispersion, modelling capture

probabilities as a logit link function of continuous explanatory covariates, and/or

considering Bernoulli response covariate through a generalized linear modelling

framework. The generalized estimating equations versions of the class of mod-

els related to those of Otis et al. (1978), when appropriate, are considered and

their corresponding estimating equations are also developed. We proposed to

use ‘quasi-likelihood information criterion (QIC)’ to analyse correlated capture-

recapture data and for model selection.

We have discussed several examples where the generalized estimating equations

approach is used to estimate population parameters (such as, capture probabil-

ities, and population size) from wildlife capture-recapture data. We also use a

generalized linear mixed modelling (GLMM) approach to model heterogeneity

of individual measurable and unmeasurable characteristics in capture-recapture
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experiments where heterogeneity due to unmeasurable individual characteristics

is modelled as a random effect. Moreover, comparisons of population size es-

timates has been made using generalized estimating equations and mixed effects

approaches. In particular, the proposed generalized estimating equations approach

has been applied into closed population capture-recapture models taking into ac-

count dependency among capture occasions, these include: behavioral response

and individual heterogeneity model (Mbh) in Chapter 3; temporal variation and

individual heterogeneity model (Mth) in Chapter 4; and individual heterogeneity

model (Mh) and a comparison with GLMM approach in capture-recapture studies

in Chapter 5.

The use of auxiliary information in the form of covariates was considered through-

out the dissertation. If these covariates are biologically meaningful, then such

information can greatly improve inference of population parameters. Our pro-

posed approach performs well to estimate unknown population size in comparison

with other currently used methodologies for data analysis. The estimation results

of generalized estimating equations approach also ensure that time correlation play

an important role when analyzing capture-recapture correlated data.

The simulation studies of the proposed generalized estimating equations approach

for different closed population capture-recapture models show that estimator per-

formance is good if a large proportion of individuals are captured. For a low

capture proportion, the estimates seem to be unstable, but the generalized es-

timating equations approach outperforms the other approaches (i.e., GLM and

GLMM). The simulation studies also indicate that the estimator performance de-

pends on average capture probability, number of capture occasions and correlation

among capture occasions.

Hence, our analyses underpin the importance of considering heterogene-

ity in capture probabilities and correlation among capture occasions

when estimating population parameters in capture-recapture studies.
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With the increasing development of computational power and efficient use of sta-

tistical tools, we see a fruitful future for the proposed generalized estimating equa-

tions approach in capture-recapture studies, and hope the presented technique will

become standard practice to users. Even though our interests focused on ecolog-

ical applications we also envisage the presented techniques to be used in related

areas such as epidemiological applications. A list of future studies are suggested

below:

(i) One potential future avenue for research is to develop a model that include

heterogeneity due to unmeasured individual covariates into our proposed

generalized estimating equations approach in capture-recapture closed pop-

ulation models considering that the generalized estimating equations ap-

proach is population average or marginal model. Further work needs to be

done to increase the utility of the modelling approach when applied to often

complex, different species that have been monitored as a capture-recapture

study. This can help to better understand their biological characteristics

and behavior.

(ii) Extend our proposed approach to open population capture-recapture models

that will simultaneously take into account the heterogeneity due to measur-

able and unmeasurable individual characteristics of capture probabilities and

dependency among capture occasions.

(iii) One may combine Bayesian destination with our proposed approach. In this

case, researchers also need to modify the model selection criterion, QIC for

selecting the best model.

(iv) A user-friendly program needs to be developed. It should be able to simu-

late data or to analyse real dataset as in CAPTURE or MARK programs.

This can make the method of analysis more appealing and assessable to

researchers to estimate the population parameters.
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Proof and Derivation

Proof of Theorem 1:

Write α∗(β) = α̂{β, φ̂(β)} and under some regularity conditions n
1
2 (β̂GEE−β) can

be approximated by

[ n∑

i=1

− δ

δβ
Ui{β, α∗(β)}/n

]−1[
Ui{β, α∗(β)}/n 1

2

]
,

where

δUi{β, α∗(β)}/δβ = ∂Ui{β, α∗(β)}/∂β + [∂Ui{β, α∗(β)}/∂α∗]{∂α∗(β)/∂β}

= Ai +BiC.

Let β be fixed and Taylor expansion gives

n∑
i=1

Ui{β, α∗(β)}

n
1
2

=

n∑
i=1

Ui{β, α}

n
1
2

+

n∑
i=1

δ/δαUi{β, α}

n
n

1
2 (α∗ − α) + oprob(1)

= A∗ +B∗C∗ + oprob(1),

where the sums are over i = 1, 2, ..., n. Now, B∗ = oprob(1), since ∂Ui(β, α)/∂α are

linear functions of Si’s whose means are zero, and the properties of exponential
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family give

C∗ = n
1
2

[
α̂{β, φ̂(β)} − α̂(β, φ) + α̂(β, φ)− α

]

= n
1
2

{
∂α̂

∂φ
(β, φ∗)(φ̂− φ) + α̂(β, φ)− α

}
= Oprob(1).

Consequently,
n∑

i=1

Ui{β, α∗(β)}/n 1
2 is asymptotically equivalent to A∗ whose asymp-

totic distribution is multivariate Gaussian with zero mean and covariance matrix

lim
n→∞

{ n∑

i=1

D′
iV

−1
i Cov(Yi)V

−1
i Di/n

}
.

Finally, it is easy to show that
n∑

i=1

Bi = oprob(n), C = Oprob(1) and that
n∑

i=1

Ai/n

converges as n→ ∞ to −
n∑

i=1

D′
iV

−1
i Di/n. This completes the proof.
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Derivation of estimating equations (5.6):

We have,

U(β) =
1

n

n∑

i=1

D′
iV

−1
i (Yi − µi) = 0

or,
1

n

n∑

i=1

(AiXi)
′V −1

i (Yi − µi) = 0 (since, Di = AiXi)

or,
1

n

n∑

i=1

X ′
iAiA

−1
i

(
Yi − µi

)
= 0

(
since Vi = A

1

2
i Ri(α)A

1

2
i = A

1

2
i IA

1

2
i = Ai

)

or,
1

n

n∑

i=1

X ′
i

(
Yi − µi

)
= 0

or,
1

n

n∑

i=1

(
1 1 · · · 1

)(



Yi1
...

Yim




−




µi1

...

µim




)
= 0

or,
1

n

n∑

i=1

( m∑

j=1

Yij −
m∑

j=1

µij

)
= 0

or,
1

n

n∑

i=1

( m∑

j=1

Yij −
m∑

j=1

P0

1− (1− P0)m

)
= 0

(
µij =

Pij

1−
m∏

k=1

(1− Pik)
=

P0

1−
m∏
k=1

(1− P0)
=

P0

(1− P0)m
; since, Pij = h(β0) = P0

)

Hence,
1

n

n∑

i=1

( m∑

j=1

Yij −
mP0

1− (1− P0)m

)
= 0
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Computational Code

Some base code implemented in R Project pro-

gram, release 3.0.2 (http://www.r-project.org/).

• Estimation of model parameters applying Gen-

eralized Estimating Equations (GEE) approach to

capture-recapture closed population models con-

sidering independence working correlation struc-

ture in GEE:

estim<−func t i on ( data , i n i t i a l ){
f l no<−data [ , 2 ]

cap<−y<−data [ , 3 ]

sex<−data [ , 4 ]

age<−data [ , 5 ]

weight<−data [ , 6 ]

behav<−data [ , 7 ]

count<−0
repeat {

b0<− i n i t i a l [ 1 ]

b1<− i n i t i a l [ 2 ]

b2<− i n i t i a l [ 3 ]

b3<− i n i t i a l [ 4 ]

b4<− i n i t i a l [ 5 ]

m<−6; k<−0
r i j <−0
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score<−c (0 , 0 , 0 , 0 , 0 )

in f<−matrix ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,

nco l =5,byrow=T)

f o r ( i in 1 : l ength ( f l n o ) ){
i f ( f l n o [ i ]==1&&f l n o [ i+1]==2&&f l n o [ i+2]==3&&f l n o [ i+3]==4&&f l n o [ i+4]==5

&&f l n o [ i +5]==6){
k<−k+1

m1<−exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) /
(1+exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) )
m2<−exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1])/

(1+exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1]))

m3<−exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2])/

(1+exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2]))

m4<−exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3])/

(1+exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3]))

m5<−exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4])/

(1+exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4]))

m6<−exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5])/

(1+exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5]))

v<−c (m1∗(1−m1) ,m2∗(1−m2) ,m3∗(1−m3) ,m4∗(1−m4) ,m5∗(1−m5) ,m6∗(1−m6) )

a i<−matrix ( c ( v [ 1 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 2 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 3 ] , 0 , 0 , 0 , 0 , 0 , 0 ,

v [ 4 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 5 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 6 ] ) , nco l=m, byrow=T)

ymi<−c ( y [ i ]−m1, y [ i +1]−m2, y [ i +2]−m3, y [ i +3]−m4, y [ i +4]−m5, y [ i +5]−m6)

x i t<−matrix ( c (1 , 1 , 1 , 1 , 1 , 1 , age [ i ] , age [ i +1] , age [ i +2] , age [ i +3] , age [ i +4] ,

age [ i +5] , sex [ i ] , sex [ i +1] , sex [ i +2] , sex [ i +3] , sex [ i +4] , sex [ i +5] , weight [ i ] ,

weight [ i +1] , weight [ i +2] , weight [ i +3] , weight [ i +4] , weight [ i +5] , behav [ i ] ,

behav [ i +1] , behav [ i +2] , behav [ i +3] , behav [ i +4] , behav [ i +5]) , nco l=m, byrow=T)

xi<−t ( x i t )

score<−s co r e+x i t%∗%ymi

in f<−i n f+x i t%∗%a i%∗%xi

} }
cat ( ‘ ‘ The s co r e vec to r i s \n”)
pr in t ( s co r e )

in f i nv<−s o l v e ( i n f )

cat ( ‘ ‘ The i nv e r s e in fo rmat ion matrix i s \n”)
pr in t ( i n f i n v )

es t<− i n i t i a l+i n f i n v%∗%sco r e

cat ( ‘ ‘ The i n i t i a l e s t imate i s \n”)
pr in t ( e s t )

conv<−abs ( s co r e )

i f ( conv [1]<=0.0001&&conv [2]<=0.0001&&conv [3]<=0.0001&&conv [4]<=0.0001

&&conv [5]<=0.0001)

break

i n i t i a l <−e s t
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p i j<−exp ( e s t [1 ]+ age∗ e s t [2 ]+ sex ∗ e s t [3 ]+ weight ∗ e s t [4 ]+ behav∗ e s t [ 5 ] ) /
(1+exp ( e s t [1 ]+ age∗ e s t [2 ]+ sex ∗ e s t [3 ]+ weight ∗ e s t [4 ]+ behav∗ e s t [ 5 ] ) )

}
cat ( ‘ ‘ The r equ i r ed number o f i t e r a t i o n i s \n”)
pr in t ( count )

cat ( ‘ ‘ The e s t imate s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( e s t )

p<−matrix ( c ( p i j ) , nco l=m, byrow=T)

prod<−1
f o r ( k in 1 :m){
prod<−prod∗(1−p [ , k ] ) }
pi<−1−prod

Nhat<−sum(1/ pi )

varA<−sum((1− pi )/ ( p i )ˆ2)

d e l t a . beta<−x i t%∗%(pi ˆ(−2)∗(1−p)ˆm ∗ m ∗ p)

varB<−(t ( d e l t a . beta)%∗%in f i n v )%∗%de l t a . beta

varN<−varA+varB
se . Nhat<−s q r t ( varN)

cat ( ‘ ‘ The es t imated populat ion s i z e i s \n”)
pr in t (Nhat )

cat ( ‘ ‘ The standard e r r o r o f the es t imated populat ion s i z e i s \n”)
pr in t ( se . Nhat )

wald0<−e s t [ 1 ] / s q r t ( i n f i n v [ 1 , 1 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b0 i s \n”)
pr in t ( wald0 )

wald1<−e s t [ 2 ] / s q r t ( i n f i n v [ 2 , 2 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b1 i s \n”)
pr in t ( wald1 )

wald2<−e s t [ 3 ] / s q r t ( i n f i n v [ 3 , 3 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b2 i s \n”)
pr in t ( wald2 )

wald3<−e s t [ 4 ] / s q r t ( i n f i n v [ 4 , 4 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b3 i s \n”)
pr in t ( wald3 )

wald4<−e s t [ 5 ] / s q r t ( i n f i n v [ 5 , 5 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b4 i s \n”)
pr in t ( wald4 )

se c<−c ( s q r t ( i n f i n v [ 1 , 1 ] ) , s q r t ( i n f i n v [ 2 , 2 ] ) , s q r t ( i n f i n v [ 3 , 3 ] ) ,

s q r t ( i n f i n v [ 4 , 4 ] ) , s q r t ( i n f i n v [ 5 , 5 ] ) )

cat ( ‘ ‘ The standard e r r o r s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( s e c )

or<−c ( exp ( e s t [ 1 ] ) , exp ( e s t [ 2 ] ) , exp ( e s t [ 3 ] ) , exp ( e s t [ 4 ] ) , exp ( e s t [ 5 ] ) )

cat ( ‘ ‘ The odd r a t i o s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( or )}
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• Estimation of model parameters applying GEE

approach to capture-recapture closed population

models considering exchangeable working corre-

lation structure in GEE:

estim<−func t i on ( data , i n i t i a l ){
f l no<−data [ , 2 ]

cap<−y<−data [ , 3 ]

sex<−data [ , 4 ]

age<−data [ , 5 ]

weight<−data [ , 6 ]

behav<−data [ , 7 ]

count<−0
repeat {

b0<− i n i t i a l [ 1 ]

b1<− i n i t i a l [ 2 ]

b2<− i n i t i a l [ 3 ]

b3<− i n i t i a l [ 4 ]

b4<− i n i t i a l [ 5 ]

k<−0; m<−6
r i j <−0

score<−c (0 , 0 , 0 , 0 , 0 )

in f<−matrix ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,

nco l =5,byrow=T)

f o r ( i in 1 : l ength ( f l n o ) ){
i f ( f l n o [ i ]==1&&f l n o [ i+1]==2&&f l n o [ i+2]==3&&f l n o [ i+3]==4&&f l n o [ i+4]==5

&&f l n o [ i +5]==6){
k<−k+1

m1<−exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) /
(1+exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) )
m2<−exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1])/

(1+exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1]))

m3<−exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2])/

(1+exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2]))

m4<−exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3])/

(1+exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3]))

m5<−exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4])/

(1+exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4]))

m6<−exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5])/

(1+exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5]))

v<−c (m1∗(1−m1) ,m2∗(1−m2) ,m3∗(1−m3) ,m4∗(1−m4) ,m5∗(1−m5) ,m6∗(1−m6) )

a i<−matrix ( c ( v [ 1 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 2 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 3 ] , 0 , 0 , 0 , 0 , 0 , 0 ,
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v [ 4 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 5 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 6 ] ) , nco l=m, byrow=T)

r<−c ( ( y [ i ]−m1)/ s q r t ( v [ 1 ] ) , ( y [ i +1]−m2)/ s q r t ( v [ 2 ] ) ,

( y [ i +2]−m3)/ s q r t ( v [ 3 ] ) , ( y [ i +3]−m4)/ s q r t ( v [ 4 ] ) ,

( y [ i +4]−m5)/ s q r t ( v [ 5 ] ) , ( y [ i +5]−m6)/ s q r t ( v [ 6 ] ) )

r i j<−r i j+r [ 1 ] ∗ r [2 ]+ r [ 1 ] ∗ r [3 ]+ r [ 1 ] ∗ r [4 ]+ r [ 1 ] ∗ r [5 ]+ r [ 1 ] ∗ r [6 ]+

r [ 2 ] ∗ r [3 ]+ r [ 2 ] ∗ r [4 ]+ r [ 2 ] ∗ r [5 ]+ r [ 2 ] ∗ r [6 ]+ r [ 3 ] ∗ r [4 ]+ r [ 3 ] ∗ r [5 ]+

r [ 3 ] ∗ r [6 ]+ r [ 4 ] ∗ r [5 ]+ r [ 4 ] ∗ r [6 ]+ r [ 5 ] ∗ r [ 6 ]

}
}

count<−count+1

cat ( ‘ ‘ The r equ i r ed number o f i t e r a t i o n i s \n”)
pr in t ( count )

alpha<−r i j /(m∗k−1)

cat ( ‘ ‘ The va lue o f alpha i s \n”)
pr in t ( alpha )

r ia<−matrix ( c (1 , alpha , alpha , alpha , alpha , alpha , alpha , 1 , alpha ,

alpha , alpha , alpha , alpha , alpha , 1 , alpha , alpha , alpha , alpha , alpha ,

alpha , 1 , alpha , alpha , alpha , alpha , alpha , alpha , 1 , alpha , alpha , alpha ,

alpha , alpha , alpha , 1 ) , nco l=m, byrow=T)

cat ( ‘ ‘ The c o r r e l a t i o n matrix i s \n”)
pr in t ( r i a )

f o r ( i in 1 : l ength ( f l n o ) ){
i f ( f l n o [ i ]==1&&f l n o [ i+1]==2&&f l n o [ i+2]==3&&f l n o [ i+3]==4&&

f l n o [ i+4]==5&&f l n o [ i +5]==6){
k<−k+1

m1<−exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) /
(1+exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) )
m2<−exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1])/

(1+exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1]))

m3<−exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2])/

(1+exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2]))

m4<−exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3])/

(1+exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3]))

m5<−exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4])/

(1+exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4]))

m6<−exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5])/

(1+exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5]))

v<−c (m1∗(1−m1) ,m2∗(1−m2) ,m3∗(1−m3) ,m4∗(1−m4) ,m5∗(1−m5) ,m6∗(1−m6) )

v<−c (m1∗(1−m1) ,m2∗(1−m2) ,m3∗(1−m3) ,m4∗(1−m4) ,m5∗(1−m5) ,m6∗(1−m6) )

a i<−matrix ( c ( v [ 1 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 2 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 3 ] , 0 , 0 , 0 , 0 , 0 , 0 ,

v [ 4 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 5 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 6 ] ) , nco l=m, byrow=T)

v i j<−matrix ( c ( s q r t ( v [ 1 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 2 ] ) , 0 , 0 , 0 , 0 , 0 , 0 ,

s q r t ( v [ 3 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 4 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 5 ] ) , 0 , 0 ,

0 , 0 , 0 , 0 , s q r t ( v [ 6 ] ) ) , nco l=m, byrow=T)



164 Appendix B

var<−v i j%∗%r i a%∗%v i j

inv<−s o l v e ( var )

ymi<−c ( y [ i ]−m1, y [ i +1]−m2, y [ i +2]−m3, y [ i +3]−m4, y [ i +4]−m5, y [ i +5]−m6)

x i t<−matrix ( c (1 , 1 , 1 , 1 , 1 , 1 , age [ i ] , age [ i +1] , age [ i +2] , age [ i +3] ,

age [ i +4] , age [ i +5] , sex [ i ] , sex [ i +1] , sex [ i +2] , sex [ i +3] , sex [ i +4] ,

sex [ i +5] , weight [ i ] , weight [ i +1] , weight [ i +2] , weight [ i +3] , weight [ i +4] ,

weight [ i +5]) , behav [ i ] , behav [ i +1] , behav [ i +2] , behav [ i +3] , behav [ i +4] ,

behav [ i +5] , nco l=m, byrow=T)

di t<−x i t%∗%a i

di<−t ( d i t )

score<−s co r e+d i t%∗%inv%∗%ymi

in f<−i n f+d i t%∗%inv%∗%di

}
}

cat ( ‘ ‘ The s co r e vec to r i s \n”)
pr in t ( s co r e )

in f i nv<−s o l v e ( i n f )

cat ( ‘ ‘ The i nv e r s e in fo rmat ion matrix i s \n”)
pr in t ( i n f i n v )

es t<− i n i t i a l+i n f i n v%∗%sco r e

cat ( ‘ ‘ The i n i t i a l e s t imate i s \n”)
pr in t ( e s t )

conv<−abs ( s co r e )

i f ( conv [1]<=0.0001&&conv [2]<=0.0001&&conv [3]<=0.0001&&

conv [4]<=0.0001&&conv [5]<=0.0001)

break

i n i t i a l <−e s t

p i j<−exp ( e s t [1 ]+ age∗ e s t [2 ]+ sex ∗ e s t [3 ]+ weight ∗ e s t [4 ]+ behav∗ e s t [ 5 ] ) /
(1+exp ( e s t [1 ]+ age∗ e s t [2 ]+ sex ∗ e s t [3 ]+ weight ∗ e s t [4 ]+ behav∗ e s t [ 5 ] ) )

}
cat ( ‘ ‘ The r equ i r ed number o f i t e r a t i o n i s \n”)
pr in t ( count )

cat ( ‘ ‘ The e s t imate s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( e s t )

p<−matrix ( c ( p i j ) , nco l=m, byrow=T)

prod<−1
f o r ( k in 1 :m){
prod<−prod∗(1−p [ , k ] ) }
pi<−1−prod

Nhat<−sum(1/ pi )

varA<−sum((1− pi )/ ( p i )ˆ2)

d e l t a . beta<−x i t%∗%(pi ˆ(−2)∗(1−p)ˆm ∗ m ∗ p)

varB<−(t ( d e l t a . beta)%∗%in f i n v )%∗%de l t a . beta

varN<−varA+varB
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se . Nhat<−s q r t ( varN)

cat ( ‘ ‘ The es t imated populat ion s i z e i s \n”)
pr in t (Nhat )

cat ( ‘ ‘ The standard e r r o r o f the es t imated populat ion s i z e i s \n”)
pr in t ( se . Nhat )

wald0<−e s t [ 1 ] / s q r t ( i n f i n v [ 1 , 1 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b0 i s \n”)
pr in t ( wald0 )

wald1<−e s t [ 2 ] / s q r t ( i n f i n v [ 2 , 2 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b1 i s \n”)
pr in t ( wald1 )

wald2<−e s t [ 3 ] / s q r t ( i n f i n v [ 3 , 3 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b2 i s \n”)
pr in t ( wald2 )

wald3<−e s t [ 4 ] / s q r t ( i n f i n v [ 4 , 4 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b3 i s \n”)
pr in t ( wald3 )

wald4<−e s t [ 5 ] / s q r t ( i n f i n v [ 5 , 5 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b4 i s \n”)
pr in t ( wald4 )

se c<−c ( s q r t ( i n f i n v [ 1 , 1 ] ) , s q r t ( i n f i n v [ 2 , 2 ] ) , s q r t ( i n f i n v [ 3 , 3 ] ) ,

s q r t ( i n f i n v [ 4 , 4 ] ) , s q r t ( i n f i n v [ 5 , 5 ] ) )

cat ( ‘ ‘ The standard e r r o r s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( s e c )

or<−c ( exp ( e s t [ 1 ] ) , exp ( e s t [ 2 ] ) , exp ( e s t [ 3 ] ) , exp ( e s t [ 4 ] ) , exp ( e s t [ 5 ] ) )

cat ( ‘ ‘ The odd r a t i o s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( or )

}
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• Estimation of model parameters applying GEE

approach to capture-recapture closed population

models considering autoregressive working corre-

lation structure in GEE:

estim<−func t i on ( data , i n i t i a l ){
f l no<−data [ , 2 ]

cap<−y<−data [ , 3 ]

sex<−data [ , 4 ]

age<−data [ , 5 ]

weight<−data [ , 6 ]

behav<−data [ , 7 ]

count<−0
repeat {

b0<− i n i t i a l [ 1 ]

b1<− i n i t i a l [ 2 ]

b2<− i n i t i a l [ 3 ]

b3<− i n i t i a l [ 4 ]

b4<− i n i t i a l [ 5 ]

k<−0; m<−6
r i j <−0

score<−c (0 , 0 , 0 , 0 , 0 )

in f<−matrix ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,

nco l =5,byrow=T)

f o r ( i in 1 : l ength ( f l n o ) ){
i f ( f l n o [ i ]==1&&f l n o [ i+1]==2&&f l n o [ i+2]==3&&f l n o [ i+3]==4&&f l n o [ i+4]==5

&&f l n o [ i +5]==6){
k<−k+1

m1<−exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) /
(1+exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) )
m2<−exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1])/

(1+exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1]))

m3<−exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2])/

(1+exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2]))

m4<−exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3])/

(1+exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3]))

m5<−exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4])/

(1+exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4]))

m6<−exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5])/

(1+exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5]))

v<−c (m1∗(1−m1) ,m2∗(1−m2) ,m3∗(1−m3) ,m4∗(1−m4) ,m5∗(1−m5) ,m6∗(1−m6) )

a i<−matrix ( c ( v [ 1 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 2 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 3 ] , 0 , 0 , 0 , 0 , 0 , 0 ,
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v [ 4 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 5 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 6 ] ) , nco l=m, byrow=T)

r<−c ( ( y [ i ]−m1)/ s q r t ( v [ 1 ] ) , ( y [ i +1]−m2)/ s q r t ( v [ 2 ] ) ,

( y [ i +2]−m3)/ s q r t ( v [ 3 ] ) , ( y [ i +3]−m4)/ s q r t ( v [ 4 ] ) ,

( y [ i +4]−m5)/ s q r t ( v [ 5 ] ) , ( y [ i +5]−m6)/ s q r t ( v [ 6 ] ) )

r i j<−r i j+r [ 1 ] ∗ r [2 ]+ r [ 1 ] ∗ r [3 ]+ r [ 1 ] ∗ r [4 ]+ r [ 1 ] ∗ r [5 ]+ r [ 1 ] ∗ r [6 ]+

r [ 2 ] ∗ r [3 ]+ r [ 2 ] ∗ r [4 ]+ r [ 2 ] ∗ r [5 ]+ r [ 2 ] ∗ r [6 ]+ r [ 3 ] ∗ r [4 ]+ r [ 3 ] ∗ r [5 ]+

r [ 3 ] ∗ r [6 ]+ r [ 4 ] ∗ r [5 ]+ r [ 4 ] ∗ r [6 ]+ r [ 5 ] ∗ r [ 6 ]

}
}

count<−count+1

cat ( ‘ ‘ The r equ i r ed number o f i t e r a t i o n i s \n”)
pr in t ( count )

alpha<−r i j /(m∗k−1)

cat ( ‘ ‘ The va lue o f alpha i s \n”)
pr in t ( alpha )

r ia<−matrix ( c (1 , alpha , alpha ˆ2 , alpha ˆ3 , alpha ˆ4 , alpha ˆ5 , alpha , 1 ,

alpha , alpha ˆ2 , alpha ˆ3 , alpha ˆ4 , alpha ˆ2 , alpha , 1 , alpha , alpha ˆ2 ,

alpha ˆ3 , alpha ˆ3 , alpha ˆ2 , alpha , 1 , alpha , alpha ˆ2 , alpha ˆ4 , alpha ˆ3 ,

alpha ˆ2 , alpha , 1 , alpha , alpha ˆ5 , alpha ˆ4 , alpha ˆ3 , alpha ˆ2 , alpha , 1 ) ,

nco l=m, byrow=T)

cat ( ‘ ‘ The c o r r e l a t i o n matrix i s \n”)
pr in t ( r i a )

f o r ( i in 1 : l ength ( f l n o ) ){
i f ( f l n o [ i ]==1&&f l n o [ i+1]==2&&f l n o [ i+2]==3&&f l n o [ i+3]==4&&

f l n o [ i+4]==5&&f l n o [ i +5]==6){
k<−k+1

m1<−exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) /
(1+exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) )
m2<−exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1])/

(1+exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1]))

m3<−exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2])/

(1+exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2]))

m4<−exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3])/

(1+exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3]))

m5<−exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4])/

(1+exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4]))

m6<−exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5])/

(1+exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5]))

v<−c (m1∗(1−m1) ,m2∗(1−m2) ,m3∗(1−m3) ,m4∗(1−m4) ,m5∗(1−m5) ,m6∗(1−m6) )

v<−c (m1∗(1−m1) ,m2∗(1−m2) ,m3∗(1−m3) ,m4∗(1−m4) ,m5∗(1−m5) ,m6∗(1−m6) )

a i<−matrix ( c ( v [ 1 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 2 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 3 ] , 0 , 0 , 0 , 0 , 0 , 0 ,

v [ 4 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 5 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 6 ] ) , nco l=m, byrow=T)

v i j<−matrix ( c ( s q r t ( v [ 1 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 2 ] ) , 0 , 0 , 0 , 0 , 0 , 0 ,

s q r t ( v [ 3 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 4 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 5 ] ) , 0 , 0 ,
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0 ,0 , 0 , 0 , s q r t ( v [ 6 ] ) ) , nco l=m, byrow=T)

var<−v i j%∗%r i a%∗%v i j

inv<−s o l v e ( var )

ymi<−c ( y [ i ]−m1, y [ i +1]−m2, y [ i +2]−m3, y [ i +3]−m4, y [ i +4]−m5, y [ i +5]−m6)

x i t<−matrix ( c (1 , 1 , 1 , 1 , 1 , 1 , age [ i ] , age [ i +1] , age [ i +2] , age [ i +3] ,

age [ i +4] , age [ i +5] , sex [ i ] , sex [ i +1] , sex [ i +2] , sex [ i +3] , sex [ i +4] ,

sex [ i +5] , weight [ i ] , weight [ i +1] , weight [ i +2] , weight [ i +3] , weight [ i +4] ,

weight [ i +5]) , behav [ i ] , behav [ i +1] , behav [ i +2] , behav [ i +3] , behav [ i +4] ,

behav [ i +5] , nco l=m, byrow=T)

di t<−x i t%∗%a i

di<−t ( d i t )

score<−s co r e+d i t%∗%inv%∗%ymi

in f<−i n f+d i t%∗%inv%∗%di

}
}

cat ( ‘ ‘ The s co r e vec to r i s \n”)
pr in t ( s co r e )

in f i nv<−s o l v e ( i n f )

cat ( ‘ ‘ The i nv e r s e in fo rmat ion matrix i s \n”)
pr in t ( i n f i n v )

es t<− i n i t i a l+i n f i n v%∗%sco r e

cat ( ‘ ‘ The i n i t i a l e s t imate i s \n”)
pr in t ( e s t )

conv<−abs ( s co r e )

i f ( conv [1]<=0.0001&&conv [2]<=0.0001&&conv [3]<=0.0001&&

conv [4]<=0.0001&&conv [5]<=0.0001)

break

i n i t i a l <−e s t

p i j<−exp ( e s t [1 ]+ age∗ e s t [2 ]+ sex ∗ e s t [3 ]+ weight ∗ e s t [4 ]+ behav∗ e s t [ 5 ] ) /
(1+exp ( e s t [1 ]+ age∗ e s t [2 ]+ sex ∗ e s t [3 ]+ weight ∗ e s t [4 ]+ behav∗ e s t [ 5 ] ) )

}
cat ( ‘ ‘ The r equ i r ed number o f i t e r a t i o n i s \n”)
pr in t ( count )

cat ( ‘ ‘ The e s t imate s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( e s t )

p<−matrix ( c ( p i j ) , nco l=m, byrow=T)

prod<−1
f o r ( k in 1 :m){
prod<−prod∗(1−p [ , k ] ) }
pi<−1−prod

Nhat<−sum(1/ pi )

varA<−sum((1− pi )/ ( p i )ˆ2)

d e l t a . beta<−x i t%∗%(pi ˆ(−2)∗(1−p)ˆm ∗ m ∗ p)

varB<−(t ( d e l t a . beta)%∗%in f i n v )%∗%de l t a . beta
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varN<−varA+varB
se . Nhat<−s q r t ( varN)

cat ( ‘ ‘ The es t imated populat ion s i z e i s \n”)
pr in t (Nhat )

cat ( ‘ ‘ The standard e r r o r o f the es t imated populat ion s i z e i s \n”)
pr in t ( se . Nhat )

wald0<−e s t [ 1 ] / s q r t ( i n f i n v [ 1 , 1 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b0 i s \n”)
pr in t ( wald0 )

wald1<−e s t [ 2 ] / s q r t ( i n f i n v [ 2 , 2 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b1 i s \n”)
pr in t ( wald1 )

wald2<−e s t [ 3 ] / s q r t ( i n f i n v [ 3 , 3 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b2 i s \n”)
pr in t ( wald2 )

wald3<−e s t [ 4 ] / s q r t ( i n f i n v [ 4 , 4 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b3 i s \n”)
pr in t ( wald3 )

wald4<−e s t [ 5 ] / s q r t ( i n f i n v [ 5 , 5 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b4 i s \n”)
pr in t ( wald4 )

se c<−c ( s q r t ( i n f i n v [ 1 , 1 ] ) , s q r t ( i n f i n v [ 2 , 2 ] ) , s q r t ( i n f i n v [ 3 , 3 ] ) ,

s q r t ( i n f i n v [ 4 , 4 ] ) , s q r t ( i n f i n v [ 5 , 5 ] ) )

cat ( ‘ ‘ The standard e r r o r s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( s e c )

or<−c ( exp ( e s t [ 1 ] ) , exp ( e s t [ 2 ] ) , exp ( e s t [ 3 ] ) , exp ( e s t [ 4 ] ) , exp ( e s t [ 5 ] ) )

cat ( ‘ ‘ The odd r a t i o s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( or )

}
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• Estimation of model parameters applying GEE

approach to capture-recapture closed population

models considering pairwise working correlation

structure in GEE:

estim<−func t i on ( data , i n i t i a l ){
f l no<−data [ , 2 ]

cap<−y<−data [ , 3 ]

sex<−data [ , 4 ]

age<−data [ , 5 ]

weight<−data [ , 6 ]

behav<−data [ , 7 ]

count<−0
repeat {

b0<− i n i t i a l [ 1 ]

b1<− i n i t i a l [ 2 ]

b2<− i n i t i a l [ 3 ]

b3<− i n i t i a l [ 4 ]

b4<− i n i t i a l [ 5 ]

k<−0; m<−6
score<−c (0 , 0 , 0 , 0 , 0 )

in f<−matrix ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) ,

nco l =5,byrow=T)

r i j<−matrix ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , nco l=m, byrow=T)

f o r ( i in 1 : l ength ( f l n o ) ){
i f ( f l n o [ i ]==1&&f l n o [ i+1]==2&&f l n o [ i+2]==3&&f l n o [ i+3]==4&&

f l n o [ i+4]==5&&f l n o [ i +5]==6){
k<−k+1

m1<−exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) /
(1+exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) )
m2<−exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1])/

(1+exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1]))

m3<−exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2])/

(1+exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2]))

m4<−exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3])/

(1+exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3]))

m5<−exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4])/

(1+exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4]))

m6<−exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5])/

(1+exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5]))

v<−c (m1∗(1−m1) ,m2∗(1−m2) ,m3∗(1−m3) ,m4∗(1−m4) ,m5∗(1−m5) ,m6∗(1−m6) )
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ai<−matrix ( c ( v [ 1 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 2 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 3 ] , 0 , 0 , 0 , 0 ,

0 ,0 , v [ 4 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 5 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 6 ] ) , nco l=m, byrow=T)

v i j<−matrix ( c ( s q r t ( v [ 1 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 2 ] ) , 0 , 0 , 0 , 0 ,

0 ,0 , s q r t ( v [ 3 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 4 ] ) , 0 , 0 , 0 , 0 , 0 , 0 ,

s q r t ( v [ 5 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 6 ] ) ) , nco l=m, byrow=T)

ymi<−c ( y [ i ]−m1, y [ i +1]−m2, y [ i +2]−m3, y [ i +3]−m4, y [ i +4]−m5, y [ i +5]−m6)

ymit<−t ( ymi )

v i j i nv<−s o l v e ( v i j )

r i j<−r i j+v i j i n v%∗%ymi%∗%ymit%∗%v i j i n v

}
}

count<−count+1

cat ( ‘ ‘ The number o f i t e r a t i o n i s \n”)
pr in t ( count )

r ia<−r i j /k

cat ( ‘ ‘ The c o r r e l a t i o n matrix i s \n”)
pr in t ( r i a )

f o r ( i in 1 : l ength ( f l n o ) ){
i f ( f l n o [ i ]==1&&f l n o [ i+1]==2&&f l n o [ i+2]==3&&f l n o [ i+3]==4&&

f l n o [ i+4]==5&&f l n o [ i +5]==6){
k<−k+1

m1<−exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) /
(1+exp ( b0+b1∗age [ i ]+b2∗ sex [ i ]+b3∗weight [ i ]+b4∗behav [ i ] ) )
m2<−exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1])/

(1+exp ( b0+b1∗age [ i +1]+b2∗ sex [ i +1]+b3∗weight [ i +1]+b4∗behav [ i +1]))

m3<−exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2])/

(1+exp ( b0+b1∗age [ i +2]+b2∗ sex [ i +2]+b3∗weight [ i +2]+b4∗behav [ i +2]))

m4<−exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3])/

(1+exp ( b0+b1∗age [ i +3]+b2∗ sex [ i +3]+b3∗weight [ i +3]+b4∗behav [ i +3]))

m5<−exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4])/

(1+exp ( b0+b1∗age [ i +4]+b2∗ sex [ i +4]+b3∗weight [ i +4]+b4∗behav [ i +4]))

m6<−exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5])/

(1+exp ( b0+b1∗age [ i +5]+b2∗ sex [ i +5]+b3∗weight [ i +5]+b4∗behav [ i +5]))

v<−c (m1∗(1−m1) ,m2∗(1−m2) ,m3∗(1−m3) ,m4∗(1−m4) ,m5∗(1−m5) ,m6∗(1−m6) )

a i<−matrix ( c ( v [ 1 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 2 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 3 ] , 0 , 0 , 0

, 0 , 0 , 0 , v [ 4 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 5 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 6 ] ) , nco l=m, byrow=T)

v i j<−matrix ( c ( s q r t ( v [ 1 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 2 ] ) , 0 , 0 , 0 , 0 ,

0 ,0 , s q r t ( v [ 3 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 4 ] ) , 0 , 0 , 0 , 0 , 0 , 0 ,

s q r t ( v [ 5 ] ) , 0 , 0 , 0 , 0 , 0 , 0 , s q r t ( v [ 6 ] ) ) , nco l=m, byrow=T)

var<−v i j%∗%r i a%∗%v i j

inv<−s o l v e ( var )

ymi<−c ( y [ i ]−m1, y [ i +1]−m2, y [ i +2]−m3, y [ i +3]−m4, y [ i +4]−m5, y [ i +5]−m6)

x i t<−matrix ( c (1 , 1 , 1 , 1 , 1 , 1 , age [ i ] , age [ i +1] , age [ i +2] , age [ i +3] ,

age [ i +4] , age [ i +5] , sex [ i ] , sex [ i +1] , sex [ i +2] , sex [ i +3] , sex [ i +4] ,
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sex [ i +5] , weight [ i ] , weight [ i +1] , weight [ i +2] , weight [ i +3] ,

weight [ i +4] , weight [ i +5] , behav [ i ] , behav [ i +1] , behav [ i +2] ,

behav [ i +3] , behav [ i +4] , behav [ i +5]) , nco l=m, byrow=T)

di t<−x i t%∗%a i

di<−t ( d i t )

score<−s co r e+d i t%∗%inv%∗%ymi

in f<−i n f+d i t%∗%inv%∗%di

}
}

cat ( ‘ ‘ The s co r e vec to r i s \n”)
pr in t ( s co r e )

in f i nv<−s o l v e ( i n f )

cat ( ‘ ‘ The i nv e r s e in fo rmat ion matrix i s \n”)
pr in t ( i n f i n v )

es t<− i n i t i a l+i n f i n v%∗%sco r e

cat ( ‘ ‘ The i n i t i a l e s t imate i s \n”)
pr in t ( e s t )

conv<−abs ( s co r e )

i f ( conv [1]<=0.0001&&conv [2]<=0.0001&&conv [3]<=0.0001&&

conv [4]<=0.0001&&conv [5]<=0.0001)

break

i n i t i a l <−e s t

p i j<−exp ( e s t [1 ]+ age∗ e s t [2 ]+ sex ∗ e s t [3 ]+ weight ∗ e s t [4 ]+ behav∗ e s t [ 5 ] ) /
(1+exp ( e s t [1 ]+ age∗ e s t [2 ]+ sex ∗ e s t [3 ]+ weight ∗ e s t [4 ]+ behav∗ e s t [ 5 ] ) )

}
cat ( ‘ ‘ The r equ i r ed number o f i t e r a t i o n i s \n”)
pr in t ( count )

cat ( ‘ ‘ The e s t imate s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( e s t )

p<−matrix ( c ( p i j ) , nco l=m, byrow=T)

prod<−1
f o r ( k in 1 :m){
prod<−prod∗(1−p [ , k ] ) }
pi<−1−prod

Nhat<−sum(1/ pi )

varA<−sum((1− pi )/ ( p i )ˆ2)

d e l t a . beta<−x i t%∗%(pi ˆ(−2)∗(1−p)ˆm ∗ m ∗ p)

varB<−(t ( d e l t a . beta)%∗%in f i n v )%∗%de l t a . beta

varN<−varA+varB
se . Nhat<−s q r t ( varN)

cat ( ‘ ‘ The es t imated populat ion s i z e i s \n”)
pr in t (Nhat )

cat ( ‘ ‘ The standard e r r o r o f the es t imated populat ion s i z e i s \n”)
pr in t ( se . Nhat )
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wald0<−e s t [ 1 ] / s q r t ( i n f i n v [ 1 , 1 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b0 i s \n”)
pr in t ( wald0 )

wald1<−e s t [ 2 ] / s q r t ( i n f i n v [ 2 , 2 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b1 i s \n”)
pr in t ( wald1 )

wald2<−e s t [ 3 ] / s q r t ( i n f i n v [ 3 , 3 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b2 i s \n”)
pr in t ( wald2 )

wald3<−e s t [ 4 ] / s q r t ( i n f i n v [ 4 , 4 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b3 i s \n”)
pr in t ( wald3 )

wald4<−e s t [ 5 ] / s q r t ( i n f i n v [ 5 , 5 ] )

ca t ( ‘ ‘ The Wald s t a t i s t i c f o r b4 i s \n”)
pr in t ( wald4 )

se c<−c ( s q r t ( i n f i n v [ 1 , 1 ] ) , s q r t ( i n f i n v [ 2 , 2 ] ) , s q r t ( i n f i n v [ 3 , 3 ] ) ,

s q r t ( i n f i n v [ 4 , 4 ] ) , s q r t ( i n f i n v [ 5 , 5 ] ) )

cat ( ‘ ‘ The standard e r r o r s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( s e c )

or<−c ( exp ( e s t [ 1 ] ) , exp ( e s t [ 2 ] ) , exp ( e s t [ 3 ] ) , exp ( e s t [ 4 ] ) , exp ( e s t [ 5 ] ) )

cat ( ‘ ‘ The odd r a t i o s o f r e g r e s s i o n c o e f f i c i e n t s are\n”)
pr in t ( or )

}
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• Estimation of Quasi-likelihood Information Cri-

terion (QIC) for GEE approach in capture-recapture

studies:

QIC = func t i on (model .R){
r e qu i r e (MASS)

model . indep = update (model .R, c o r s t r = ‘ ‘ independence ’ ’ )

mu.R = model . R$ f i t t ed . va lue s # Quasi−l i k e l i h o o d

y = model . R$y

type = fami ly (model .R) $ fami ly

quas i .R = switch ( type ,

po i s s on = sum( ( y∗ l o g (mu.R) ) − mu.R) ,

gauss ian = sum ( ( ( y − mu.R)ˆ2)/−2) ,

binomia l = sum(y∗ l o g (mu.R/(1 − mu.R) ) + log (1 − mu.R) ) ,

Gamma = sum(−y/(mu.R − l o g (mu.R) ) ) ,

stop ( ‘ ‘ Error : d i s t r i b u t i o n not r e cogn i z ed ” ) )

# Trace Term ( pena l ty f o r model complexity )

omegaI = ginv (model . indep$geese$vbeta . na iv )

# Omega−hat ( I ) v ia Moore−Penrose g en e r a l i z e d

i nv e r s e o f a matrix in MASS package

AI inver se = so l v e (model . indep$geese$vbeta . na iv ) #so l v e v ia inden i ty

Vr = model . R$geese$vbeta

t r a c e .R = sum( diag ( omegaI %∗% Vr ) )

p x = length (mu.R) #number non−redunant columns in des ign matrix

QIC = 2∗( t r a c e .R − quas i .R) #QIC

QICu = (−2)∗ quas i .R + 2∗p x

#Approximation assuming model s t ruc tur ed c o r r e c t l y

output = c (QIC ,QICu , quas i .R, t r a c e .R, p x )

names ( output ) = c ( ‘QIC ’ , ‘QICu ’ , ‘ Quasi Lik ’ , ‘ Trace ’ , ‘ p x ’ )

r e turn ( output ) }

• STATA code for the estimation of QIC consid-

ering various correlation structures:

q i c cap sex age weight behav , i ( id ) t ( f l n o ) fami ly ( binomia l )

l i n k ( l o g i t ) co r r ( independent )

q i c cap sex age weight behav , i ( id ) t ( f l n o ) fami ly ( binomia l )

l i n k ( l o g i t ) co r r ( exchangeable )

q i c cap sex age weight behav , i ( id ) t ( f l n o ) fami ly ( binomia l )

l i n k ( l o g i t ) co r r (AR 1)

q i c cap sex age weight behav , i ( id ) t ( f l n o ) fami ly ( binomia l )

l i n k ( l o g i t ) co r r ( unstructured )
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• Simulation code for GEE approach in capture-

recapture Mbh model:

# nsim : number o f Monte Carlo r e p l i c a t e s ; N: popula t ion s i z e ;

m: capture o c c a s i o n s ; r : c o r r e l a t i o n parameter ; mu: mean

vec to r o f capture p r obab i l i t y

s e t . seed (999)

r e qu i r e ( binarySimCLF)

sim<−func t i on ( nsim ,N,m, r ,mu){
npar<−2
para<−matrix (0 , nsim , npar )

f o r ( s in 1 : nsim ){
R<−ar1 (m, r ) #c o r r e l a t i o n matrix

na tura l . compat<−chkBinC (R,mu)

V<−cor2var (R,mu) #cova r i ance matrix from R and mu

B<−a l lReg (V)

c l f . compat<−blrchk1 (mu,B) ; #checks f o r CLF compa t i b i l i t y

i f ( c l f . compat ){
y<−mbscl f (N,mu,B) ;

}
e l s e { pr in t ( ‘ ‘ Not CLF compatible ”)

}
c . h i s t<−y$y # Corre la ted capture h i s t o r i e s f o r s p e c i f i e d p r obab i l i t y

mean vec to r and c o r r e l a t i o n matrix

c . mat<−c . h i s t [ apply ( c . h i s t , 1 , sum)>0 ,] #capture h i s t o r y f o r observed

ind iv idua l ’ s only

z1<−z2<−z3<−z4<−z5<−z6<−z7<−z8<−z9<−z10<−numeric ( l ength ( c . mat [ , 1 ] ) )

f o r ( i in 1 : l ength ( c . mat [ , 1 ] ) ) {
i f ( c . mat [ i ,1]==1) z2 [ i ] <− 1 e l s e z2 [ i ] <− 0

i f ( c . mat [ i , 2 ]==1 | | c . mat [ i ,1]==1) z3 [ i ] <− 1 e l s e z3 [ i ] <− 0

i f ( c . mat [ i , 3 ]==1 | | c . mat [ i , 2 ]==1 | | c . mat [ i ,1]==1) z4 [ i ]<−1 e l s e z4 [ i ]<−0

i f ( c . mat [ i , 4 ]==1 | | c . mat [ i , 3 ]==1 | | c . mat [ i , 2 ]==1 | | c . mat [ i ,1]==1)

z5 [ i ] <− 1 e l s e z5 [ i ] <− 0

i f ( c . mat [ i , 5 ]==1 | | c . mat [ i , 4 ]==1 | | c . mat [ i , 3 ]==1 | | c . mat [ i , 2 ]==1 | |
c . mat [ i ,1]==1) z6 [ i ] <− 1 e l s e z6 [ i ] <− 0

i f ( c . mat [ i , 6 ]==1 | | c . mat [ i , 5 ]==1 | | c . mat [ i , 4 ]==1 | | c . mat [ i , 3 ]==1 | |
c . mat [ i , 2 ]==1 | | c . mat [ i ,1]==1) z7 [ i ] <− 1 e l s e z7 [ i ] <− 0

i f ( c . mat [ i , 7 ]==1 | | c . mat [ i , 6 ]==1 | | c . mat [ i , 5 ]==1 | | c . mat [ i , 4 ]==1 | |
c . mat [ i , 3 ]==1 | | c . mat [ i , 2 ]==1 | | c . mat [ i ,1]==1) z8 [ i ]<−1 e l s e z8 [ i ]<−0

i f ( c . mat [ i , 8 ]==1 | | c . mat [ i , 7 ]==1 | | c . mat [ i , 6 ]==1 | | c . mat [ i , 5 ]==1 | |
c . mat [ i , 4 ]==1 | | c . mat [ i , 3 ]==1 | | c . mat [ i , 2 ]==1 | |
c . mat [ i ,1]==1) z9 [ i ] <− 1 e l s e z9 [ i ] <− 0

i f ( c . mat [ i , 9 ]==1 | | c . mat [ i , 8 ]==1 | | c . mat [ i , 7 ]==1 | | c . mat [ i , 6 ]==1 | |
c . mat [ i , 5 ]==1 | | c . mat [ i , 4 ]==1 | | c . mat [ i , 3 ]==1 | | c . mat [ i , 2 ]==1 | |
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c . mat [ i ,1]==1) z10 [ i ]<−1 e l s e z10 [ i ]<−0

}
zj<−cbind ( z1 , z2 , z3 , z4 , z5 , z6 , z7 , z8 , z9 , z10 )

# behav io r a l r e sponse i . e . , captured at the pr ev i ous s tag e or not

z i j<−c ( t ( z j ) )

nobs<−nrow( c .mat) # number o f i n d i v i d u a l s captured at l e a s t once

cap<−c ( t ( c . mat ) )

id <− g l ( nobs , m, nobs∗m)

f lno<− rep ( 1 :m, nobs )

sex<−rep ( rbinom( nobs , 1 , 0 . 5 ) , each=m) #ind i v i dua l d i s c r e t e c o va r i a t e

weight<−rep ( rnorm( nobs , mean=15 ,sd=5) , each=m)# ind i v i dua l cont inuous c ova r i a t e

data <− data . frame ( id , f l no , cap , sex , weight , z i j )

r e qu i r e ( gee )

gee<−gee ( cap˜ sex+weight+z i j , id=id , data=data , fami ly=binomial ,

s c a l e . f i x =TRUE, s c a l e . va lue = 1 , c o r s t r = ‘ ‘AR−M” , Mv=1)

p i j<−f i t t e d ( gee )

pi<−matrix ( c ( p i j ) , nco l=m, byrow=T)

prod<−1
f o r ( k in 1 :m){
prod<−prod∗(1− pi [ , k ] )

}
phi<−1−prod

nhat<−sum(1/ phi )

para [ s ,1]<−nhat

para [ s ,2]<−nobs

}
para

cind<−mean( para [ , 2 ] )

ca t ( ‘ ‘ The average capture i n d i v i d u a l s i s \n”)
pr in t ( c ind )

cat ( ‘ ‘ The average populat ion s i z e es t imate i s \n”)
pr in t (mean( para [ , 1 ] ) )

se<−s q r t ( var ( para [ , 1 ] ) )

cat ( ‘ ‘ The standard e r r o r o f the populat ion e s t imate s i s \n”)
pr in t ( se )

lcov<−mean( para [ , 1 ] ) −1 .96∗ s q r t ( var ( para [ , 1 ] ) )
ucov<−mean( para [ , 1 ] )+1 . 9 6 ∗ s q r t ( var ( para [ , 1 ] ) )
cat ( ‘ ‘ The 95% con f idence i n t e r v a l (95 %CI ) i s \n”)
pr in t ( c ( lcov , ucov ) )

prb<−(mean( para [ ,1 ] ) −N)/N∗100
cat ( ‘ ‘ The percentage r e l a t i v e b ia s (PRB) o f the es t imated populat ion i s \n”)
pr in t ( prb )

cv<−s q r t ( var ( para [ , 1 ] ) ) / mean( para [ , 1 ] ) ∗ 1 0 0
cat ( ‘ ‘ The percentage cv o f the es t imated populat ion i s \n”)
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pr in t ( cv )

rmse<−s q r t ( var ( para [ , 1 ] )+ (mean( para [ ,1 ] ) −N)ˆ2)

cat ( ‘ ‘ The root mean square e r r o r (RMSE) o f the populat ion es t imate i s \n”)
pr in t ( rmse )

}

• Simulation code for GEE approach in capture-

recapture Mth model:

# nsim : number o f Monte Carlo r e p l i c a t e s ; N: popula t ion s i z e ;

m: capture o c c a s i o n s ; r : c o r r e l a t i o n parameter ; mu: mean

vec to r o f capture p r obab i l i t y

s e t . seed (999)

sim<−func t i on ( nsim ,N,m, r ,mu){
npar<−2
para<−matrix (0 , nsim , npar )

f o r ( s in 1 : nsim ){
r e qu i r e ( binarySimCLF)

R<−ar1 (m, r ) #c o r r e l a t i o n matrix

na tura l . compat<−chkBinC (R,mu)

V<−cor2var (R,mu) #cova r i ance matrix from R and mu

B<−a l lReg (V)

c l f . compat<−blrchk1 (mu,B) ; #checks f o r CLF compa t i b i l i t y

i f ( c l f . compat ){
y<−mbscl f (N,mu,B) ;

} e l s e { pr in t ( ‘ ‘ Not CLF compatible ”)}
c . h i s t<−y$y #co r r e l a t e d capture h i s t o r i e s f o r s p e c i f i e d p r obab i l i t y

mean vec to r and c o r r e l a t i o n matrix .

c . mat<−c . h i s t [ apply ( c . h i s t , 1 , sum)>0 ,]

#capture h i s t o r y f o r observed ind iv idua l ’ s only .

n<−nrow( c .mat) # number o f i n d i v i d u a l s captured at l e a s t once

cap<−c ( t ( c . mat ) )

id <− g l (n , m, n∗m)

f lno<− rep ( 1 :m, n)

sex<−rep ( rbinom(n , 1 , 0 . 5 ) , each=m) # ind i v i dua l d i s c r e t e c o va r i a t e

weight<−rep ( rnorm(n ,mean=15 , sd=2) , each= m)# ind i v i dua l cont inuous c ova r i a t e

ENV<−rep ( rnorm(m,mean=2,sd=1) , n ) # time vary ing c ova r i a t e

data <− data . frame ( id , f l no , cap , sex , weight ,ENV)

r equ i r e ( gee )

gee<−gee ( cap˜ sex+weight+ENV, id=id , data=data , fami ly=binomial ,

s c a l e . f i x =TRUE, s c a l e . va lue = 1 , c o r s t r = ‘ ‘AR−M” , Mv=1)

p i j<−f i t t e d ( gee )

pi<−matrix ( c ( p i j ) , nco l=m, byrow=T)
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prod<−1
f o r ( k in 1 :m){
prod<−prod∗(1− pi [ , k ] )

}
phi<−1−prod

nhat<−sum(1/ phi )

para [ s ,1]<−nhat

para [ s ,2]<−n

}
para

acind<−mean( para [ , 2 ] )

ca t ( ‘ ‘ The average capture i n d i v i d u a l s i s \n”)
pr in t ( ac ind )

mu<−mean( para [ , 1 ] )

ca t ( ‘ ‘ The average es t imated populat ion s i z e i s \n”)
pr in t (mu)

se<−s q r t ( var ( para [ , 1 ] ) )

cat ( ‘ ‘ The standard e r r o r o f the es t imated populat ion i s \n”)
pr in t ( se )

lcov<−mu−1.96∗ se
ucov<−mu+1.96∗ se
cat ( ‘ ‘ The 95% con f idence i n t e r v a l (95 %CI ) i s \n”)
pr in t ( c ( lcov , ucov ) )

prb<−(mu−N)/N∗100
cat ( ‘ ‘ The percentage r e l a t i v e b ia s (PRB) o f the es t imated populat ion i s \n”)
pr in t ( prb )

cv<−s q r t ( var ( para [ , 1 ] ) ) / mean( para [ , 1 ] ) ∗ 1 0 0
cat ( ‘ ‘ The percentage cv o f the es t imated populat ion i s \n”)
pr in t ( cv )

rmse<−s q r t ( var ( para [ , 1 ] )+ (mean( para [ ,1 ] ) −N)ˆ2)

cat ( ‘ ‘ The root mean square e r r o r (RMSE) o f the es t imated populat ion i s \n”)
pr in t ( rmse )

}

• Estimation of model parameters under Gener-

alized Linear Models (GLM):

# t1 : time o f f i r s t capture ; Ti : number o f t imes captured

l i b r a r y ( f o r e i g n )

data<−read . dta ( ‘ ‘ cou . glmm . dta ”)

tau <− 10 # number o f capture o c c a s i o n s

attach ( data )

D <− nrow( data ) # number o f i n d i v i d u a l s captured at l e a s t once
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h <− tau − t1 # number o f t r i a l s

R <− (Ti− 1)/h # observed propo r t i ons

R[ i s . na (R) ] <− 0

r e qu i r e (MASS) ; r e qu i r e ( nlme ) ; r e qu i r e (PL. popN)

cou . glm<−glm (R˜1 , fami ly=binomial , weight=h , data=data )

summary( cou . glm)

PL. popN( cou . glm , tau ,D)

cou . glm<−glm (R˜age , fami ly=binomial , weight=h , data=data )

summary( cou . glm)

PL. popN( cou . glm , tau ,D)

cou . glm<−glm (R˜sex , fami ly=binomial , weight=h , data=data )

summary( cou . glm)

PL. popN( cou . glm , tau ,D)

cou . glm<−glm (R˜age+sex , fami ly=binomial , weight=h , data=data )

summary( cou . glm)

PL. popN( cou . glm , tau ,D)

• Estimation of model parameters under Gener-

alized Linear Mixed Effects Models (GLMM):

# t1 : time o f f i r s t capture ; Ti : number o f t imes captured

l i b r a r y ( f o r e i g n )

data<−read . dta ( ‘ ‘ cou . glmm . dta ”)

tau <− 10 # number o f capture o c c a s i o n s

attach ( data )

D <− nrow( data ) # number o f i n d i v i d u a l s captured at l e a s t once

h <− tau − t1 # number o f t r i a l s

R <− (Ti− 1)/h # observed propo r t i ons

R[ i s . na (R) ] <− 0

r e qu i r e (MASS) ; r e qu i r e ( nlme ) ; r e qu i r e (PL. popN)

nID <− 1 : D

cou . glmm<−glmmPQL(R˜1 , random=˜1|nID , fami ly=binomial , verbose=FALSE)

summary( cou . glmm)

PL. popN( cou . glmm , tau ,D)

cou . glmm<−glmmPQL(R˜age , random=˜1|nID , fami ly=binomial , verbose=FALSE)

summary( cou . glmm)

PL. popN( cou . glmm , tau ,D)

cou . glmm<−glmmPQL(R˜sex , random=˜1|nID , fami ly=binomial , verbose=FALSE)

summary( cou . glmm)

PL. popN( cou . glmm , tau ,D)

cou . glmm<−glmmPQL(R˜age+sex , random=˜1|nID , fami ly=binomial , verbose=FALSE)

summary( cou . glmm)

PL. popN( cou . glmm , tau ,D)
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• Simulation code under model Mh using GLM

approach:

# nsim : number o f Monte Carlo r e p l i c a t e s ; N: popula t ion s i z e ;

m: capture o c c a s i o n s ; npar : number o f parameters

s e t . seed (999)

sim<−func t i on ( nsim ,N,m, b0 ){
npar<−5
para<−matrix (0 , nsim , npar )

f o r ( s in 1 : nsim ){
sex<−rbinom(N, 1 , 0 . 5 ) # ind i v i dua l d i s c r e t e c o va r i a t e

weight<−rnorm(N,mean=15 ,sd=2) # ind i v i dua l cont inuous c ova r i a t e

z i<−rnorm(N, 0 , 1 ) # random e f f e c t

y <− p <− matrix (NA, m,N)

f o r ( i in c ( 1 :N) ) {
p [ , i ] <− p l o g i s ( b0+0.1∗ sex [ i ]+0.2∗weight [ i ]+0.1∗ z i [ i ] )

y [ , i ] <− rbinom(m, 1 , p [ , i ] )

}
cap<−t ( y ) # populat ion capture h i s t o r i e s

Ti<−apply ( cap , 1 , sum) # number o f t imes captured

z1<−z2<−z3<−z4<−z5<−z6<−numeric ( l ength ( cap [ , 1 ] ) )

f o r ( i in 1 : l ength ( cap [ , 1 ] ) ) {
i f ( cap [ i ,1]==1) z1 [ i ]<−1 e l s e z1 [ i ]<−0

i f ( cap [ i ,2]==1&cap [ i ,1]==0) z2 [ i ]<−2 e l s e z2 [ i ]<−0

i f ( cap [ i ,3]==1&cap [ i ,1]==0&cap [ i ,2]==0) z3 [ i ]<−3 e l s e z3 [ i ]<−0

i f ( cap [ i ,4]==1&cap [ i ,1]==0&cap [ i ,2]==0&cap [ i ,3]==0) z4 [ i ]<−4

e l s e z4 [ i ]<−0

i f ( cap [ i ,5]==1&cap [ i ,1]==0&cap [ i ,2]==0&cap [ i ,3]==0&cap [ i ,4]==0)

z5 [ i ]<−5 e l s e z5 [ i ]<−0

i f ( cap [ i ,6]==1&cap [ i ,1]==0&cap [ i ,2]==0&cap [ i ,3]==0&cap [ i ,4]==0&

cap [ i ,5]==0) z6 [ i ]<−6 e l s e z6 [ i ]<−0

}
t1<−z1+z2+z3+z4+z5+z6 # time o f f i r s t capture

pop . data <− data . frame ( cap , sex , weight , Ti , t1 )

sex<−subset ( sex , Ti>0)

weight<−subset ( weight , Ti>0)

t1<−subset ( t1 , Ti>0)

Ti<−subset (Ti , Ti>0)

data<−data . frame ( sex , weight , Ti , t1 )

D <− nrow( data ) # number o f i n d i v i d u a l s captured at l e a s t once

h <− m − t1 # number o f t r i a l s

R <− (Ti− 1)/h # observed propo r t i ons

R[ i s . na (R) ] <− 0

r e qu i r e (MASS) ; r e qu i r e ( nlme ) ; r e qu i r e (PL. popN)
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glm <− glm(R ˜ sex+weight , fami ly = binomial , weight=h , data=data )

es t<−PL. popN(glm , m, D)

para [ s ,1]<− e s t [ 4 ] $N . hat # est imated populat ion s i z e

para [ s ,2]<− e s t [ 5 ] $N . hat . s e # standard e r r o r

para [ s ,3]<−D
para [ s ,1]− 1 .96∗ para [ s ,2]−>para [ s , 4 ]

para [ s ,1 ]+ 1 .96∗ para [ s ,2]−>para [ s , 5 ]

}
para

acind<−mean( para [ , 3 ] )

ca t ( ‘ ‘ The average capture i n d i v i d u a l s i s \n”)
pr in t ( ac ind )

mu<−mean( para [ , 1 ] )

ca t ( ‘ ‘ The average es t imated populat ion s i z e i s \n”)
pr in t (mean( para [ , 1 ] ) )

se<−s q r t ( var ( para [ , 1 ] ) )

cat ( ‘ ‘ The standard e r r o r o f the es t imated populat ion i s \n”)
pr in t ( se )

prb<−(mean( para [ ,1 ] ) −N)/N∗100
cat ( ‘ ‘ The percentage r e l a t i v e b ia s (PRB) o f the es t imated populat ion i s \n”)
pr in t ( prb )

cv<−se /mean( para [ , 1 ] ) ∗ 1 0 0
cat ( ‘ ‘ The percentage cv o f the es t imated populat ion i s \n”)
pr in t ( cv )

rmse<−s q r t ( var ( para [ , 1 ] )+ (mean( para [ ,1 ] ) −N)ˆ2)

cat ( ‘ ‘ The root mean square e r r o r (RMSE) o f the es t imated populat ion i s \n”)
pr in t ( rmse )

r e qu i r e ( Rlab )

count (N<para [ , 4 ] ) −> bad . lower

count ( para [ ,5 ]<N) −> bad . upper

c iv<−(nsim−(bad . lower + bad . upper ) )/ nsim∗100
cat ( ‘ ‘ The 95% con f idence i n t e r v a l coverage (COV) i s \n”)
pr in t ( c i v )

}
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• Simulation code under model Mh using GLMM

approach:

# nsim : number o f Monte Carlo r e p l i c a t e s ; N: popula t ion s i z e ;

m: capture o c c a s i o n s ; npar : number o f parameters

l i b r a r y ( f o r e i g n )

s e t . seed (999)

sim<−func t i on ( nsim ,N,m, b0 ){
npar<−5
para<−matrix (0 , nsim , npar )

f o r ( s in 1 : nsim ){
sex<−rbinom(N, 1 , 0 . 5 ) # ind i v i dua l d i s c r e t e c o va r i a t e

weight<−rnorm(N,mean=15 ,sd=2) # ind i v i dua l cont inuous c ova r i a t e

z i<−rnorm(N, 0 , 1 ) # random e f f e c t

y <− p <− matrix (NA, m,N)

f o r ( i in c ( 1 :N) ) {
p [ , i ] <− p l o g i s ( b0+0.1∗ sex [ i ]+0.2∗weight [ i ]+0.1∗ z i [ i ] )

y [ , i ] <− rbinom(m, 1 , p [ , i ] )

}
cap<−t ( y ) # populat ion capture h i s t o r i e s

Ti<−apply ( cap , 1 , sum) # number o f t imes captured

z1<−z2<−z3<−z4<−z5<−z6<−numeric ( l ength ( cap [ , 1 ] ) )

f o r ( i in 1 : l ength ( cap [ , 1 ] ) ) {
i f ( cap [ i ,1]==1) z1 [ i ]<−1 e l s e z1 [ i ]<−0

i f ( cap [ i ,2]==1&cap [ i ,1]==0) z2 [ i ]<−2 e l s e z2 [ i ]<−0

i f ( cap [ i ,3]==1&cap [ i ,1]==0&cap [ i ,2]==0) z3 [ i ]<−3 e l s e z3 [ i ]<−0

i f ( cap [ i ,4]==1&cap [ i ,1]==0&cap [ i ,2]==0&cap [ i ,3]==0) z4 [ i ]<−4

e l s e z4 [ i ]<−0

i f ( cap [ i ,5]==1&cap [ i ,1]==0&cap [ i ,2]==0&cap [ i ,3]==0&cap [ i ,4]==0)

z5 [ i ]<−5 e l s e z5 [ i ]<−0

i f ( cap [ i ,6]==1&cap [ i ,1]==0&cap [ i ,2]==0&cap [ i ,3]==0&cap [ i ,4]==0&

cap [ i ,5]==0) z6 [ i ]<−6 e l s e z6 [ i ]<−0

}
t1<−z1+z2+z3+z4+z5+z6 # time o f f i r s t capture

pop . data <− data . frame ( cap , sex , weight , Ti , t1 )

data<− subset ( pop . data , Ti>0)

sex<−subset ( sex , Ti>0)

weight<−subset ( weight , Ti>0)

t1<−subset ( t1 , Ti>0)

Ti<−subset (Ti , Ti>0)

D <− nrow( data ) # number o f i n d i v i d u a l s captured at l e a s t once

h <− m − t1 # number o f t r i a l s

R <− (Ti− 1)/h # observed propo r t i ons

R[ i s . na (R) ] <− 0
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nID <− 1 : D

r equ i r e (MASS) ; r e qu i r e ( nlme ) ; r e qu i r e ( simex ) ; r e qu i r e (sm ) ;

r e qu i r e (PL. popN)

glmm<−glmmPQL(R˜ sex+weight , random=˜1|nID , fami ly=binomial ,

data=data , verbose=FALSE)

es t<−PL. popN(glmm , m, D)

para [ s ,1]<− e s t [ 4 ] $N . hat

para [ s ,2]<− e s t [ 5 ] $N . hat . s e

para [ s ,3]<−D
para [ s ,1]− 1 .96∗ para [ s ,2]−>para [ s , 4 ]

para [ s ,1 ]+ 1 .96∗ para [ s ,2]−>para [ s , 5 ]

}
para

acind<−mean( para [ , 3 ] )

ca t ( ‘ ‘ The average capture i n d i v i d u a l s i s \n”)
pr in t ( ac ind )

mu<−mean( para [ , 1 ] )

ca t ( ‘ ‘ The average es t imated populat ion s i z e i s \n”)
pr in t (mu)

se<−s q r t ( var ( para [ , 1 ] ) )

cat ( ‘ ‘ The standard e r r o r o f the es t imated populat ion i s \n”)
pr in t ( se )

prb<−(mean( para [ ,1 ] ) −N)/N∗100
cat ( ‘ ‘ The percentage r e l a t i v e b ia s (PRB) o f the es t imated populat ion i s \n”)
pr in t ( prb )

cv<−se /mean( para [ , 1 ] ) ∗ 1 0 0
cat ( ‘ ‘ The percentage cv o f the es t imated populat ion i s \n”)
pr in t ( cv )

rmse<−s q r t ( var ( para [ , 1 ] )+ (mean( para [ ,1 ] ) −N)ˆ2)

cat ( ‘ ‘ The root mean square e r r o r (RMSE) o f the es t imated populat ion i s \n”)
pr in t ( rmse )

r e qu i r e ( Rlab )

count (N<para [ , 4 ] ) −> bad . lower

count ( para [ ,5 ]<N) −> bad . upper

c iv<−(nsim−(bad . lower + bad . upper ) )/ nsim∗100
cat ( ‘ ‘ The 95% con f idence i n t e r v a l coverage (COV) i s \n”)
pr in t ( c i v )

}
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• Simulation code under model Mh using GEE ap-

proach:

# nsim : number o f Monte Carlo r e p l i c a t e s ; N: popula t ion s i z e ;

m: capture o c c a s i o n s ; npar : number o f parameters

l i b r a r y ( f o r e i g n )

s e t . seed (999)

sim<−func t i on ( nsim ,N,m, i n i t i a l , b 0 ){
npar<−5
para<−matrix (0 , nsim , npar )

f o r ( s in 1 : nsim ){
sex<−rbinom(N, 1 , 0 . 5 ) # ind i v i dua l d i s c r e t e c o va r i a t e

weight<−rnorm(N,mean=15 ,sd=2) # ind i v i dua l cont inuous c ova r i a t e

z i<−rnorm(N, 0 , 1 ) # random e f f e c t s

c <− p <− matrix (NA, m,N)

f o r ( i in c ( 1 :N) ) {
p [ , i ]<−p l o g i s ( b 0+0.1∗ sex [ i ]+0.2∗weight [ i ]+0.1∗ z i [ i ] )

c [ , i ]<−rbinom(m, 1 , p [ , i ] )

}
c . mat<−t ( c ) # populat ion capture h i s t o r i e s

c . h i s t<−c . mat [ apply ( c . mat , 1 , sum)>0 ,] # observed capture h i s t o r i e s

cap<−c ( t ( c . h i s t ) )

Ti<−apply ( c . mat , 1 , sum) # number o f t imes captured

n<−nrow( c . h i s t ) # number o f i n d i v i d u a l s captured at l e a s t once

id <− g l (n , m, n∗m) # ind i v i dua l id

f l no<− rep ( 1 :m, n) # capture o c c a s i o n s

sex<−rep ( subset ( sex , Ti>0) , each=m)

weight<−rep ( subset ( weight , Ti>0) , each=m)

Ti<−rep ( subset (Ti , Ti>0) , each=m)

data<−data . frame ( id , f l no , cap , sex , weight , Ti )

f l no<−data [ , 2 ]

cap<−y<−data [ , 3 ]

sex<−data [ , 4 ]

weight<−data [ , 5 ]

count<−0
repeat {

b0<− i n i t i a l [ 1 ]

b1<− i n i t i a l [ 2 ]

b2<− i n i t i a l [ 3 ]

s core<−c (0 , 0 , 0 )

in f<−matrix ( c ( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ) , nco l =3, byrow=T)

r i j <−0
k<−0

f o r ( i in 1 : l ength ( f l n o ) ){
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i f ( f l n o [ i ]==1&&f l n o [ i+1]==2&&f l n o [ i+2]==3&&f l n o [ i+3]==4&&f l n o [ i+4]==5

&&f l n o [ i +5]==6){
k<−k+1

m1<−exp ( b0+b1∗ sex [ i ]+b2∗weight [ i ] ) /

(1+exp ( b0+b1∗ sex [ i ]+b2∗weight [ i ] ) )

m2<−exp ( b0+b1∗ sex [ i +1]+b2∗weight [ i +1])/

(1+exp ( b0+b1∗ sex [ i +1]+b2∗weight [ i +1]))

m3<−exp ( b0+b1∗ sex [ i +2]+b2∗weight [ i +2])/

(1+exp ( b0+b1∗ sex [ i +2]+b2∗weight [ i +2]))

m4<−exp ( b0+b1∗ sex [ i +3]+b2∗weight [ i +3])/

(1+exp ( b0+b1∗ sex [ i +3]+b2∗weight [ i +3]))

m5<−exp ( b0+b1∗ sex [ i +4]+b2∗weight [ i +4])/

(1+exp ( b0+b1∗ sex [ i +4]+b2∗weight [ i +4]))

m6<−exp ( b0+b1∗ sex [ i +5]+b2∗weight [ i +5])/

(1+exp ( b0+b1∗ sex [ i +5]+b2∗weight [ i +5]))

pi<−1−((1−m1)∗(1−m2)∗(1−m3)∗(1−m4)∗(1−m5)∗(1−m6) )

mu<−c (m1/pi ,m2/pi ,m3/pi ,m4/pi ,m5/pi ,m6/ pi )

v<−c (mu[1 ]∗(1−mu[ 1 ] ) ,mu[2 ]∗(1−mu[ 2 ] ) ,mu[3 ]∗(1−mu[ 3 ] ) ,mu[4 ]∗(1−mu[ 4 ] ) ,

mu[5 ]∗(1−mu[ 5 ] ) ,mu[6 ]∗(1−mu[ 6 ] ) )

a i<−matrix ( c ( v [ 1 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 2 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 3 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 4 ] ,

0 , 0 , 0 , 0 , 0 , 0 , v [ 5 ] , 0 , 0 , 0 , 0 , 0 , 0 , v [ 6 ] ) , nco l=m, byrow=T)

ymi<−c ( y [ i ]−mu[ 1 ] , y [ i +1]−mu[ 2 ] , y [ i +2]−mu[ 3 ] , y [ i +3]−mu[ 4 ] , y [ i +4]−mu[ 5 ] ,

y [ i +5]−mu[ 6 ] )

x i t<−matrix ( c (1 , 1 , 1 , 1 , 1 , 1 , sex [ i ] , sex [ i +1] , sex [ i +2] , sex [ i +3] , sex [ i +4] ,

sex [ i +5] , weight [ i ] , weight [ i +1] , weight [ i +2] , weight [ i +3] , weight [ i +4] ,

weight [ i +5]) , nco l=m, byrow=T)

xi<−t ( x i t )

score<−s co r e+x i t%∗%ymi

in f<−i n f+x i t%∗%a i%∗%xi

}
}

i n f i nv<−s o l v e ( i n f )

e s t<− i n i t i a l+i n f i n v%∗%sco r e

conv<−abs ( s co r e )

i f ( conv [1]<=0.0001&&conv [2]<=0.0001&&conv [3]<=0.0001)

break

i n i t i a l <−e s t

p i j<−exp ( e s t [1 ]+ sex ∗ e s t [2 ]+ weight ∗ e s t [ 3 ] ) /
(1+exp ( e s t [1 ]+ sex ∗ e s t [2 ]+ weight ∗ e s t [ 3 ] ) )

}
p<−matrix ( c ( p i j ) , nco l=m, byrow=T)

prod<−1
f o r ( k in 1 :m){
prod<−prod∗(1−p [ , k ] ) }
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pi<−1−prod

Nhat<−sum(1/ pi )

varA<−sum((1− pi )/ ( p i )ˆ2)

d e l t a . beta<−x i t%∗%(pi ˆ(−2)∗(1−p)ˆm ∗ m ∗ p)

varB<−(t ( d e l t a . beta)%∗%in f i n v )%∗%de l t a . beta

varN<−varA+varB
se . Nhat<−s q r t ( varN)

para [ s ,1]<−Nhat

para [ s ,2]<− se . Nhat

para [ s ,3]<−n

para [ s ,1]− 1 .96∗ para [ s ,2]−>para [ s , 4 ]

para [ s ,1 ]+ 1 .96∗ para [ s ,2]−>para [ s , 5 ]

}
para

acind<−mean( para [ , 3 ] )

ca t ( ‘ ‘ The average capture i n d i v i d u a l s i s \n”)
pr in t ( ac ind )

mu<−mean( para [ , 1 ] )

ca t ( ‘ ‘ The average es t imated populat ion s i z e i s \n”)
pr in t (mean( para [ , 1 ] ) )

se<−s q r t ( var ( para [ , 1 ] ) )

cat ( ‘ ‘ The standard e r r o r o f the populat ion es t imate \n”)
pr in t ( se )

prb<−(mean( para [ ,1 ] ) −N)/N∗100
cat ( ‘ ‘ The percentage r e l a t i v e b ia s (PRB) o f the es t imated populat ion i s \n”)
pr in t ( prb )

cv<−se /mean( para [ , 1 ] ) ∗ 1 0 0
cat ( ‘ ‘ The percentage cv o f the es t imated populat ion i s \n”)
pr in t ( cv )

rmse<−s q r t ( var ( para [ , 1 ] )+ (mean( para [ ,1 ] ) −N)ˆ2)

cat ( ‘ ‘ The root mean square e r r o r (RMSE) o f the es t imated populat ion i s \n”)
pr in t ( rmse )

r e qu i r e ( Rlab )

count (N<para [ , 4 ] ) −> bad . lower

count ( para [ ,5 ]<N) −> bad . upper

c iv<−(nsim−(bad . lower + bad . upper ) )/ nsim∗100
cat (”The 95% con f idence i n t e r v a l coverage (COV) i s \n”)
pr in t ( c i v )

}
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Table C1: Capture of Deer mice (Peromyscus maniculatus) collected by V. Reid

at East Stuart Gulch, Colorado, USA. The columns represented the sex (m: male,

f: female), the ages (y: young, sa: semi-adult, a: adult), the weights in grams,

and the capture histories of 38 distinct individuals over 6 trapping occasions (1:

captured, 0: not captured)

sex age weight Capture occasion sex age weight Capture occasion

m y 12 1 1 1 1 1 1 m y 13 0 1 1 0 1 0

f y 15 1 0 0 1 1 1 f y 5 0 1 0 1 0 1

m y 15 1 1 0 0 1 1 f a 20 0 1 0 0 0 1

m y 15 1 1 0 1 1 1 m y 12 0 1 0 0 1 1

m y 13 1 1 1 1 1 1 f y 6 0 0 1 0 0 0

m a 21 1 1 0 1 1 1 f a 22 0 0 1 1 1 1

m y 11 1 1 1 1 1 0 f y 10 0 0 1 0 1 1

m sa 15 1 1 1 0 0 1 f y 14 0 0 1 1 1 1

m y 14 1 1 1 1 1 1 f a 19 0 0 1 0 0 0

m∗ y 14 1 1 0 1 1 1 f∗ a 19 0 0 1 0 1 0

m y 13 1 1 0 1 1 1 f a 20 0 0 0 1 0 0

f a 22 1 1 1 0 1 1 m sa 16 0 0 0 1 1 1

m y 14 1 1 1 1 1 1 f y 11 0 0 0 1 1 0

m y 11 1 0 1 1 1 0 m y 14 0 0 0 0 1 0

f y 10 1 0 0 1 0 0 f y 11 0 0 0 0 1 0

f a 23 0 1 0 0 1 0 m a 24 0 0 0 0 1 0

f y 7 0 1 1 0 0 1 m y 9 0 0 0 0 0 1

m y 8 0 1 0 0 0 1 m sa 16 0 0 0 0 0 1

m a 19 0 1 0 1 0 1 f a 19 0 0 0 0 0 1

Note: The semi-adults (sa) were regrouped as adults (a) in the analysis, as in

Huggins (1991). The two individuals marked with asterisks are missing from

Appendix 1 of Huggins (1991).
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Table C2: Capture of Least chipmunk (Eutamias minimus) collected by V. Reid

at Colorado, USA. The columns represented the sex (m: male, f: female)and the

capture histories of 45 distinct individuals over 6 trapping occasions (1: captured,

0: not captured)

sex Capture occasion sex Capture occasion

f 1 0 0 0 0 0 f 0 0 1 0 0 0

m 1 1 1 0 1 0 m 0 0 1 0 0 0

f 1 0 0 0 0 0 m 0 0 1 0 0 0

f 1 0 0 1 0 0 f 0 0 1 1 0 0

m 1 0 0 0 0 0 f 0 0 1 0 0 0

f 1 0 1 0 1 0 f 0 0 0 1 0 0

f 1 0 1 0 0 0 f 0 0 0 1 0 0

m 0 1 1 1 1 0 f 0 0 0 1 0 0

m 0 1 0 1 0 1 m 0 0 0 1 0 0

m 0 1 0 0 0 0 m 0 0 0 1 0 0

f 0 1 1 1 1 1 m 0 0 0 1 0 0

f 0 1 1 1 0 0 m 0 0 0 1 0 0

m 0 1 1 1 0 0 m 0 0 0 1 1 0

f 0 1 0 1 1 1 f 0 0 0 1 0 0

f 0 1 0 1 1 0 f 0 0 0 1 0 0

m 0 1 1 0 1 0 m 0 0 0 1 1 0

m 0 1 0 0 0 1 f 0 0 0 1 1 0

f 0 1 0 0 1 0 f 0 0 0 0 1 1

f 0 1 1 1 1 1 m 0 0 0 0 1 0

f 0 1 0 0 0 0 m 0 0 0 0 1 1

m 0 1 0 1 0 0 m 0 0 0 0 1 0

f 0 0 1 0 1 0 m 0 0 0 0 1 0

m 0 0 1 1 1 0
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Table C3: Capture of House mouse (Mus musculus) collected by Coulombe (1965)

at Ballana Creek, Los Angeles County, California. The columns represented the

sex (1: male, 0: female), the ages (0: young, 1: adult), and the capture histories of

171 distinct individuals over 10 trapping occasions (1: captured, 0: not captured)
age sex Capture occasion age sex Capture occasion

1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 0

1 1 1 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1

0 1 1 1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 0 1 1

1 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0

1 1 1 1 0 1 0 0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 0

0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 1

1 1 1 1 0 0 1 1 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 1

1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 1 0

1 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0

1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0

1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 0 0

1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0

1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0

1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0

1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0

1 1 1 1 0 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0

1 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 0 1 0

0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0

0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0

0 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 1 1

0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 1 1 0

1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 0

1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0

1 0 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0

1 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0

1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0

0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1

0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 1

1 1 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1

1 1 1 1 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0

1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0

1 1 1 1 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0

Continued on next page
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age sex Capture occasion age sex Capture occasion

0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0

0 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0

0 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0

0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0

0 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0

0 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0

1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0

0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1

1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0

1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0

0 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0

0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0

1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1

0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1

0 1 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0

0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0

0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0

0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0

1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0

1 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 0 0

1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0

0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0

1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 1

0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0

1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0

1 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0

1 1 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 1

1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0

1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 0

0 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1

0 0 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0

1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0

1 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0

1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1

0 1 0 0 0 1 0 1 1 1 0 0
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