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Abstract
The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent

studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order

to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont,

theMesorhizobiummediterraneum UPM-Ca36T strain was genetically transformed with

pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed

strain displays an improved stress tolerance, bacterial growth was evaluated under heat

and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the

symbiotic performance was evaluated using plant growth assays (hydroponic and pot tri-

als). The clpB-transformed strain is more tolerant to heat shock than the strain transformed

with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both

plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbio-

sis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the

clpB-transformed strain. This strain also induced a greater number of nodules and, more

notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to

the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed

in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The

superior root hair curling induction, nodulation ability and symbiotic effectiveness of the

clpB-transformed strain may be explained by an increased expression of symbiosis genes.

Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds) were

detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-

copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress

tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants,

particularly under environmental stresses. This is the first report on the successful improve-

ment of a rhizobium with a chaperone gene.
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Introduction
The need of more sustainable agriculture practices, namely the reduction of chemical fertilizers,
highlights the importance of biological nitrogen fixation by symbiotic legume-rhizobia associa-
tions (e.g. [1, 2]). The establishment of these plant-bacteria symbioses is initiated by a complex
signalling dialogue between both partners, allowing the entry of rhizobia into the root and the
development of nodules, which are plant organs where rhizobia bacteroids reduce atmospheric
nitrogen into ammonia that can be used by the plant [3, 4]. Nodulation and symbiotic N2-fixa-
tion involve many rhizobial genes, which are commonly designated as symbiosis genes, such as
nod and nif genes [5]. For example, the genes nodABC (transcriptionally regulated by NodD)
encode enzymes that synthesize Nod factors (lipo-chitoolgosaccharides), which are perceived
by the plant, activating the root hair curling, forming a hook that enclose the bacteria and leads
to the subsequent development of an infection thread [5]. Nevertheless, previous studies have
shown that chaperone proteins, such as GroEL and ClpB, typically involved in stress response,
may also play important roles in the symbiotic legume-rhizobia relationships [6–8].

Stressful environmental conditions are limiting factors for the growth and survival of both
legume and rhizobia symbiotic partners, mostly by the perturbation of the cellular proteins
homeostasis [9, 10]. The nodule formation and nitrogen fixation in bacteroids [11] are highly
affected by stress conditions (e.g. [12, 13]). Therefore, it is likely that proteins involved in rhizo-
bia stress response, as chaperone proteins that act to prevent protein aggregation, assist refold-
ing and mediate degradation of misfolded proteins [14], have a role in the symbiotic
performance of these bacteria. For instance, alfalfa plants inoculated with groELc knockout
mutants of Ensifer meliloti presented a delay in nodulation compared to plants inoculated with
the wild-type strain, and the nodules induced by these mutants show no nitrogen fixation [8].
Similarly, chickpea plants inoculated with a clpB knockout mutant ofMesorizobium ciceri
showed a delay in nodulation and a lower number of bacteroids in the nodules, in comparison
with plants inoculated with the wild-type strain [7].

The ClpB chaperone (belonging to the Hsp100 proteins family) is considered an important
protein in the response to stress conditions, since it is an ATP-dependent disaggregase, which
has the remarkable ability to disaggregate and activate aggregated proteins accumulating under
stress conditions (e.g. [15, 16]). Many studies, in prokaryotes and eukaryotes report the pri-
mordial role of ClpB or its homologous proteins in thermotolerance [17–20], but its action
seems also important for the survival to a variety of other acute stress conditions [21], such as
osmotic, ethanol, acidity and salinity stresses (e.g. [22–25]). In bacteria, ClpB is a multidomain
protein composed of an N-terminal domain, two ATP-binding domains (AAA+ domains),
termed AAA1 and AAA2, and a middle domain inserted into AAA1, the coiled-coil M-domain
(e.g. [26, 27]). To achieve its function, ClpB cooperates with other proteins, namely from the
DnaKJ system (e.g. [28, 29]). Its specific role in protein disaggregation comprises the extraction
of polypeptides from aggregated particles and their translocation through the ClpB central
pore hexamers [27, 30, 31].

In an attempt to improve the symbiotic performance of a chickpeaMesorhizobium, the type
strainMesorhizobium mediterraneum UPM-Ca36T was transformed with extra-copies of the
clpB gene cloned in the expression vector pPHU231. This strain was selected due to its high
sensitivity to different environmental stress conditions [32], as well as low symbiotic effective-
ness [33]. The phenotype of the clpB-transformed strain was evaluated in free-living conditions
and in symbiosis with chickpea, in order to further characterize the role of this chaperone in
rhizobia.
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Material and Methods

Transformation ofM.mediterraneum UPM-Ca36T with extra-copies of
the clpB gene
TheM.mediterraneum UPM-Ca36T clpB gene (GenBank accession number: KT285182,
this work), plus its promoter and terminator regions, were amplified by PCR (primers
ClpB-BamHI-F 5’-GGATCCCGCCGTTTTTGTTTGTGCGC-3’ and ClpB-BamHI-R 5’-GGA
TCCATCCATTTCATGCCGCGTGA-3’), generating a fragment of 3059 bp. These primers
were designed based on the draft genome ofM.mediterraneumUPM-Ca36T (unpublished
data) and include a recognition site for the endonuclease BamHI, used to clone in the expres-
sion vector pPHU231, a low copy plasmid vector [34]. The identification of the putative pro-
moter and terminator regions was previously performed using BPROM-Prediction of bacterial
promoters software (http://www.softberry.com) and ARNold Finding Terminators at IGM—

Web Server (http://rna.igmors.u-psud.fr/toolbox/arnold/), respectively. Total DNA was
extracted using the E.Z.N.A. bacterial DNA kit (Omega Bio-Tek, Norcross, U.S.A.), according
to the manufacturer’s instructions. The PCR reaction was performed in a final volume of
50 μL, using 20 ng of total DNA, 1× reaction buffer, 0.2 mM of each dNTP, 1.5mM of MgSO4,
15 pmol of each primer and 0.02 U of KOD Hot Start DNA polymerase (Merck Millipore,
Darmstadt, Germany). The amplification program was: 2 min of initial denaturation at 95°C,
and 30 cycles of 10 s at 95°C, 10 s at 65°C and 85 s at 70°C. The PCR product was purified
using the GFX DNA purification Kit (GE Healthcare, Little Chalfont, UK), cloned in
pCR-BluntTM vector (ThermoFisher Scientific, Waltham, U.S.A), and sequenced. Subse-
quently, the cloned clpB fragment was introduced as a BamHI fragment into the expression
vector pPHU231, and transformed into Escherichia coli DH5α. To ensure that the expression
of the cloned clpB gene was occurring from its native promoter and not from the lacZ pro-
moter, the fragment was cloned with the terminator region downstream of the lacZ promoter.
The pPHU231 plasmid containing the clpB gene (pPHUclpB) was introduced inM.mediterra-
neum UPM-Ca36T strain by triparental mating, as described in [35], generating strain Ca36p-
PHUclpB. All plasmids and bacteria used in this work are presented in Table 1.M.
mediterraneumUPM-Ca36T transformed with the pPHU231 plasmid (Ca36pPHU) was also
obtained and used to compare bacteria that differ only in additional copies of the clpB gene.

The presence of the pPHU231 or pPHUclpB plasmids inM.mediterraneum UPM-Ca36T

was confirmed by PCR, using universal M13 primers. These PCR reactions were carried out in
a final volume of 25 μL, using 2.5 μL of total DNA [39] from the transformed strains, 1×

Table 1. Bacterial strains and plasmids used in the present work.

Plasmid/Strain Characteristics Reference

pRK600 Helper plasmid pRK2013 npt::Tn9, Cmr [36]

pPHU231 pRK290 derivative, broad-host-range vector, Tcr [34]

pPHUclpB pPHU231 with a copy of M. mediterraneum UPM-Ca36T clpB gene including its promoter and terminator regions This work

E. coli

MT616 MT607 (pRK600) [36]

DH5α SupE44 Δ lacU169 (φ80lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 [37]

Mesorhizobium

Ca36WT M. mediterraneum UPM-Ca36T [38]

Ca36pPHU M. mediterraneum UPM-Ca36T carrying pPHU231 This work

Ca36pPHUclpB M. mediterraneum UPM-Ca36T carrying pPHU231 with a copy of M. mediterraneum UPM-Ca36T clpB gene, including its
promoter and terminator regions

This work

doi:10.1371/journal.pone.0148221.t001
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reaction Green GoTaq1 Flexi buffer, 0.2 mM of each dNTP, 1.5 mMMgCl2, 15 pmol of each
primer and 0.125U of GoTaq1 G2 Flexi DNA Polymerase (Promega, Fitchburg, U.S.A). The
amplification program was: 2 min of initial denaturation at 95°C, 30 cycles of 60 s at 95°C, 45 s
at 54°C, 10 s at 72°C or 205 s at 72°C (for Ca36pPHU and Ca36pPHUclpB, respectively), and a
final extension of 5 min at 72°C.

Analysis of clpB, nodA and nodC genes expression by semiquantitative
RT-PCR
To confirm the expression of the extra-copy of the clpB gene cloned in pPHU231, a semiquan-
titative RT-PCR analysis was performed, as described in [40]. Total RNA of the wild-type
strain (Ca36WT) and its derivates (strains Ca36pPHUclpB and Ca36pPHU) was extracted
using the GeneJET™ RNA Purification Kit (ThermoFisher Scientific, Waltham, U.S.A), from
bacteria grown in minimal medium [41] at 28°C for 24 hours, with a final OD540 of 0.4. DNA
contamination was removed by DNase I (Roche Diagnostics, Basel, Switzerland) digestion, fol-
lowed by RNA cleanup using GeneJET™ RNA Purification Kit. Approximately 250 ng of total
RNA was subjected to reverse transcription for cDNA synthesis, using the RevertAid First
Strand cDNA Synthesis kit (ThermoFisher Scientific, Waltham, U.S.A). Amplification of clpB
gene was performed using the primers ClpBIntF 5’- CGCCGAACCAAGAACAATCC -3’ and
CLPBIntR3 5’- GACCAGCGTGTGCATCTCATC -3’, which generate a fragment of 266 bp.
This PCR reaction was performed in a final volume of 25 μL, using 3 μL of cDNA (diluted
50×), 1× reaction Green GoTaq1 Flexi buffer, 0.2 mM of each dNTP, 1.5 mMMgCl2, 15 pmol
of each primer and 0.125U of GoTaq1 G2 Flexi DNA Polymerase (Promega, Fitchburg, U.S.
A). The amplification program was: 2 min of initial denaturation at 95°C, 30 cycles of 60 s at
95°C, 60 s at 56°C, 16 s at 72°C, and a final extension of 5 min at 72 C.

The analysis of the nodA and nodC genes expression was also performed in the clpB-trans-
formed strain and in the Ca36pPHU strain. The total RNA of these strains was extracted from
bacteria exposed to chickpea root exudates for 24h at 28°C, with a final OD540 of 0.4. The exu-
dates were obtained as described in [42]. DNA contamination was removed as described previ-
ously and approximately 275 ng of total RNA was subjected to reverse transcription for cDNA
synthesis. Amplification of the nodA gene was performed using the NodAIntF 5’- CCGAA
TGTCGAGTGGAAGTT -3’ and NodAIntR 5’- ctcgccaactttgatgaagc -3 primers, whereas the
nodC gene was amplified using NodCIntF 5’- atggaccttctcaccacagc -3’ and NodCIntR 5’- tgtag-
caggggatgatgaca -3 primers, generating fragments of 234bp and 201bp, respectively. The PCR
reaction was performed in a final volume of 25 μL, using 2 μL of cDNA (diluted 100×), 1× reac-
tion Green GoTaq1 Flexi buffer, 0.2 mM of each dNTP, 1.5 mMMgCl2, 15 pmol of each
primer and 0.125U of GoTaq1 G2 Flexi DNA Polymerase (Promega, Fitchburg, U.S.A). The
amplification program was: 2 min of initial denaturation at 95°C, 30 cycles of 60 s at 95°C, 60 s
at 54°C (nodA) or 56°C (nodC), 14 s (nodA) or 12 s (nodC) at 72°C, and a final extension of 5
min at 72°C.

The amplification of the 16S rRNA gene was used to normalize the relative clpB, nodA and
nodC transcripts abundance, using primers IntF and IntR [43], which generate a fragment of
199 bp. The PCR reaction was performed to a final volume of 25 μL, using 1 μL of cDNA
(diluted 100×), 1× reaction Green GoTaq1 Flexi buffer, 0.2 mM of each dNTP, 1.5 mM
MgCl2, 15 pmol of each primer and 0.125U of GoTaq1 G2 Flexi DNA Polymerase (Promega,
Fitchburg, U.S.A). The amplification program was: 2 min of initial denaturation at 95°C, 30
cycles of 60 s at 95°C, 60 s at 56°C, 12 s at 72°C, and a final extension of 5 min at 72°C.

Densitometric analysis of ethidium bromide-stained agarose gels was performed using
Kodak Digital Science 1D version 2.0.3 (Eastman Kodak Company, Rochester, U.S.A). Positive
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controls with total DNA of Ca36WT strain as template and negative controls using RNA with-
out the addition of the reverse transcriptase enzyme were performed. Three biological repli-
cates were performed for the expression analysis of the genes.

Analysis of stress tolerance in free-living conditions
To characterize the phenotype of the Ca36pPHUclpB strain, namely its tolerance to stress con-
ditions, bacterial growth was evaluated in liquid medium by measuring the OD540 every 24 h
up to 168 h. Several heat and acidity stress conditions were tested and the control conditions
were 28°C and pH7. For all treatments, bacterial cultures with an initial OD540 of 0.1 were pre-
pared after an overnight growth, in Tryptone Yeast (TY) medium [44] for heat stress evalua-
tion or in Yeast Extract Mannitol (YEM) broth, buffered as described in [45], for acid stress
evaluation. The media were supplemented with tetracycline (10μg/mL) for the growth of the
Ca36pPHU and Ca36pPHUclpB strains. Three replicas per treatment were performed.

To study the effect of heat stress, Ca36WT, Ca36pPHUclpB and Ca36pPHU strains were
submitted to a continuous heat stress (37°C) and a heat shock (48°C during 30 min, followed
by growth at 28°C). To evaluate the effect of acid stress, the bacterial cultures were submitted
to acid shocks at pH5 and pH3 (during 1 h followed by growth at pH7).

Evaluation of nodulation kinetics
To evaluate the nodulation kinetics, a hydroponic assay was conducted using chickpea plants
inoculated with Ca36WT, Ca36pPHU or Ca36pPHUclpB strains. All the procedures were per-
formed as described in [7]. Eight seeds per treatment were used and the number of nodules
was evaluated every three days for a total of 24 days.

Analysis of the symbiotic performance
In order to evaluate the symbiotic performance of the Ca36pPHUclpB strain, a plant growth
assay was conducted in a growth chamber, under control (pH7) and stress conditions (pH5).
Chickpea seeds (variety ELIXIR, cultivar CHK 3236) were surface-sterilized and pregerminated
as described previously [46]. After germination, the seeds were transferred to plastic pots filled
with sterile vermiculite and subsequently inoculated with the Ca36WT, Ca36pPHU or Ca36p-
PHUclpB strains. These strains were previously grown overnight in TYmedium at 28°C (~18 h).
The cell suspension was centrifuged at 8000g during 5 min and resuspended in fresh TY
medium. The OD540 was adjusted at 1.0, and 1 ml of the bacterial suspension was used to inocu-
late each seedling. Five replicates were used for each treatment. Chickpea plants were grown for 8
weeks as previously described [46].

Plants were watered, three times per week, with 100 mL of a nitrogen-free nutrient solution
[47], with its pH adjusted to 7 (control) or 5 (stress) as previously described [48]. Uninoculated
plants watered with a nutrient solution containing 0.1% of KNO3 (as nitrogen source) were
used as positive controls. Uninoculated plants watered with a nitrogen-free nutrient solution
were used as negative controls. After 8 weeks, the plants were harvested and several parameters
were measured, such as number of nodules (NN), nodule dry weight (NDW), shoot dry weight
(SDW) and root dry weight (RDW). The average weight per nodule (AWN) was calculated as a
ratio between NDW and NN. Symbiotic Effectiveness (SE) was determined using both positive
and negative controls, as described in [49].

To confirm the presence of the pPHU231 or pPHUclpB plasmids in nodules formed by the
transformed strains, recovery of bacteria from the nodules was conducted, following the proce-
dures described in [35].
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Analysis of root hair curling
For the analysis of the chickpea root hair curling induced by the Ca36pPHUclpB, Ca36pPHU
and wild-type strains, 2-day-old germinated chickpea seeds were inoculated as previously
described [50]. The seedlings were inoculated with a bacterial suspension with an OD540 of 0.4,
after an overnight growth on YEM broth. A minimum of 16 seedlings per strain were analysed.
The differentiation zone of the roots was observed under an Olympus BX41 microscope, and
images were captured using an Olympus SC30 digital camera with analySIS getIT software
(version 5.2).

Analysis of nodules histology
Roots and nodules were excised from 8-week-old plants and processed for light microscopy using
Bright field and phase-contrast optics. The internal morphological features of chickpea nodules
were examined by microscopy after Toluidine blue staining. Nodules were fixed in 4% formalde-
hyde in 50 mM phosphate buffer (pH 8), dehydrated in an increasing ethanol series, and embed-
ded in paraffin. Toluidine blue-stained sections (2 μm) of embedded nodules were examined by
light microscopy under a Nikon SMZ800 stereomicroscope and Nikon eclipse 80i microscope.
The images were captured using a Nikon DS-Fi1 and Nikon DS-Ri1 camera respectively.

Statistical analysis
The data obtained from RT-PCR analyses and from the chickpea plant-growth assays were
analyzed using one-way ANOVA (P< 0�05). The post hoc Tukey test was used to compare the
means and indicate which treatments have significant differences. Statistical analysis was car-
ried out using SPSS V.21 software (SPSS Inc., Chicago, U.S.A).

Results

Confirmation of bacterial transformation and analysis of clpB gene
expression in the clpB-transformed strain
To confirm the bacterial transformation with the pPHU231 or pPHUclpB plasmids, a PCR
amplification using M13 primers was performed. As expected, a band of ~4500bp (3059bp cor-
responding to the clpB gene including its promoter and terminator regions, plus ~1500bp of
plasmid sequence) was obtained using as template the total DNA of the Ca36pPHUclpB strain.
A band with ~1500bp was obtained using as template the total DNA of the Ca36pPHU strain,
confirming the presence of the expression vector (data not shown).

To confirm that extra-copies of the clpB gene in the Ca36pPHUclpB strain were being tran-
scribed, the clpB transcript abundance was evaluated by semiquantitative RT-PCR, and com-
pared with the levels in Ca36pPHU strain. In the Ca36pPHUclpB strain the transcriptional levels
of the clpB gene were ~2 fold higher than those detected in Ca36pPHU strain. (Fig 1). The
Ca36WT and Ca36pPHU strains presented similar clpB expression levels (data not shown).

Evaluation of the stress tolerance of the wild-type and transformed
strains in free-living conditions
To determine the effects of extra-copies of the clpB gene inM.mediterraneum UPM-Ca36T

stress response, the growth of the Ca36WT, Ca36pPHU and Ca36pPHUclpB strains was evalu-
ated in liquid medium under control and stress conditions (Fig 2).

At control conditions (28°C), both transformed strains showed a similar growth curve
(Fig 2A). However, when these bacteria were submitted to a heat shock (48°C, 30 min), a
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higher growth rate in the exponential phase was observed for the Ca36pPHUclpB strain in
comparison with the Ca36pPHU (Fig 2B). This suggests the involvement of the ClpB chaper-
one protein in the recovery from heat shock. The lower growth rate of the Ca36pPHU and
Ca36pPHUclpB strains in comparison to the Ca36WT strain, can be justified by the energetic
cost of maintaining the plasmid, which becomes more significant under stressful conditions.

Both transformed strains, Ca36pPHU and Ca36pPHUclpB, showed a similar growth curve
after an acid shock at pH5 and pH3 for 1h (data not shown). Under continuous heat (37°C) a
very low growth rate was observed for the wild-type and both transformed strains (data not
shown).

Nodulation kinetics of the wild-type and transformed strains
In order to evaluate the effect of the extra-clpB gene copies in the initial processes of the symbi-
otic relationship, a hydroponic plant assay was conducted to compare the nodulation kinetics
in plants inoculated with the transformed and the wild-type strains. The nodulation kinetics
analysis shows that 10 days after inoculation the chickpea plants inoculated with Ca36p-
PHUclpB, Ca36pPHU and Ca36WT strains display the first nodules (Fig 3). However, the rate
of nodulation is higher with the Ca36pPHUclpB strain. At 17 days after inoculation and
onwards, a significantly higher number of nodules (NN) was observed in plants inoculated
with the Ca36pPHUclpB strain, compared to the plants inoculated with the Ca36WT and
Ca36pPHU strains. No significant differences were observed in the nodulation kinetics
between the Ca36WT and Ca36pPHU strains (Fig 3).

Fig 1. Analysis of clpB gene transcription by semiquantitative RT-PCR inM.mediterraneumCa36pPHU (lane 1, light gray bar) and Ca36pPHUclpB
(lane 2, dark gray bar) strains. The relative clpB transcript abundance was normalized against the amplification of a fragment of 16S rRNA gene. For the
quantification of RT-PCR analysis, data are presented as the mean and standard error values of three independent biological replicates. Different letters (a,
b) correspond to statistical significant differences (P < 0.05).

doi:10.1371/journal.pone.0148221.g001
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Evaluation of symbiotic performance of the wild-type and transformed
strains
The symbiotic performance of the wild-type and transformed strains was evaluated under con-
trol conditions (pH7) and acid stress (pH5). No significant differences were obtained between
the symbiotic performance of Ca36WT and Ca36pPHU strains (data not shown), therefore
this section will only present the results referring to the Ca36WT and the Ca36pPHUclpB
strains (Fig 4).

Fig 2. Growth curves ofM.mediterraneumUPMCa36T wild-type strain (Ca36WT) and its derivatives
(Ca36pPHU and Ca36pPHUclpB) under control and heat shock conditions. Bacterial growth at 28°C (A).
Bacterial growth after a heat shock of 48°C during 30 min, followed by growth at 28°C (B).

doi:10.1371/journal.pone.0148221.g002

Fig 3. Nodulation kinetics of chickpea plants inoculated with Ca36WT, Ca36pPHU or Ca36pPHUclpB strains during 24 days after inoculation. Each
point represents the mean and standard error values of eight plants per treatment.

doi:10.1371/journal.pone.0148221.g003
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As expected, the acid conditions negatively affected the chickpea growth, since the positive
and negative control plants show values of shoot dry weight (SDW) and root dry weight
(RDW) lower at pH5 compared to pH7 (Fig 4A and 4B). Minor differences between the
parameters obtained at pH5 and pH7 were observed in inoculated plants, either with the
Ca36WT or with the Ca36pPHUclpB strain (except for RDW with Ca36pPHUclpB strain that
shows a significantly higher value at pH7 than at pH5, Fig 4B). These results suggest that rhizo-
bia inoculation per se can alleviate the negative effect of low pH in chickpea plants.

Plants inoculated with Ca36pPHUclpB strain showed a significant increase in the SDW and
NN, compared to the plants inoculated with the Ca36WT strain, at both pH conditions tested
(Fig 4A and 4C). The SDW of chickpea plants inoculated with the Ca36pPHUclpB was 41% (at
pH5) and 36% (at pH 7) higher than those inoculated with the Ca36WT. The remarkable
increase in the NN was around 95% at pH5 and 137% at pH7. More importantly, the symbiotic
effectiveness (SE) of Ca36pPHUclpB strain was ~60% and 83% higher compared to the wild-
type strain, at pH5 and pH7 conditions, respectively (Fig 4E). These results indicate that the
extra-copies of the clpB gene improved the symbiotic performance of theM.mediterraneum
UPM-Ca36T strain.

Fig 4. Results obtained from a plant growth assay performed under control (pH7) and stress conditions (pH5). The chickpea plants were inoculated
with theM.mediterraneumUPM-Ca36T wild-type strain (Ca36WT) and Ca36pPHUclpB. SDW—Shoot dry weight (A). RDW—Root dry weight (B). NN—
Number of Nodules (C). AWN—AverageWeight per Nodule (D). SE-Symbiotic Effectiveness (E). Data correspond to the mean and standard error of five
plant replicates (n = 5) per treatment. Different letters (a-g) correspond to statistical significant differences (P<0.05). Dark grey bars correspond to results
obtained under control conditions (pH7). Light grey bars correspond to results obtained in plants subjected to pH stress conditions (pH5).

doi:10.1371/journal.pone.0148221.g004
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Despite the increase of NN found in plants inoculated with the Ca36pPHUclpB, the average
weight per nodule (AWN) was significantly lower than the one obtained in plants inoculated
with Ca36WT strain, since the nodules resulting from the Ca36pPHUclpB present a smaller
size (Fig 4D). This suggests that the expression of extra-copies of the clpB gene inM.mediterra-
neum UPM-Ca36T contributes not only to an increase in the NN but also to changes in the
nodule development. The nodule dry weight (NDW) of plants inoculated with both strains is
not significantly different (data not shown).

Analysis of the chickpea root hair curling induced by the wild-type and
transformed strains
In order to evaluate if the higher NN produced by the clpB-transformed strain, could be associ-
ated with differences in the root hair curling, this process was monitored for several days in
seedlings inoculated with the wild type and the transformed strains. At day 3, a more evident
root hair curling was observed in seedlings inoculated with the strain Ca36pPHUclpB. At day
4, the seedlings inoculated with either of the three strains showed root hair curling, however,
the clpB-transformed strain induced a higher number of curled root hairs in comparison with
the Ca36WT and Ca36pPHU strains (Fig 5). The Ca36WT and Ca36pPHU strains present a
similar ability in inducing the root hair curling (Fig 5). These results suggest a higher induction
of root hair curling by the clpB-transformed strain, which probably contributes to the higher
nodulation rate obtained with this strain in the plant trials (Fig 3 and Fig 4).

Histological analysis of nodules
To further define the effect of clpB-transformed strain on symbiotic development, we examined
embedded nodule sections induced by Ca36WT, Ca36pPHU and Ca36pPHUclpB strains. No
differences were obtained between the nodule cytology of Ca36WT and Ca36pPHU strains.
Bright field light microscopy (Fig 6A–6D) showed that all nodules examined had the typical
histology of indeterminate effective nodules with differentiated meristematic, infection, and
bacteroid zones (Fig 6A and 6B). However, nodules induced by Ca36WT or Ca36pPHU (Fig
6A) were greater in size and have a higher number of meristematic zones (asterisks in Fig 6A)
than nodules induced by CapPHUclpB (asterisks in Fig 6B). Amplification of these meriste-
matic zones (Fig 6C and 6D) showed no difference between all nodules analyzed. Phase con-
trast microscopy (Fig 6E and 6F) revealed the presence of particles only in the nodules induced
by Ca36pPHUclpB (arrows in Fig 6F). These particles were observed mainly in the infection
zone inside of both infected (Fig 6F, white arrows) and uninfected cells (Fig 6F, black arrows).
The appearance of these particles differs according to the type of cells. In infected cells resemble
vesicles (Fig 6F, white arrows) and in uninfected cells they are more similar to granules (Fig 6F,
black arrows). However, we must proceed to further studies to confirm the nature of these par-
ticles and their involvement in symbiotic performance.

Analysis of nodA and nodC genes expression in the clpB-transformed
strain
To understand how the clpB extra-copies could improve the symbiotic performance of the
strain, namely its nodulation efficiency, the expression of the nodulation genes nodA and nodC
was evaluated by semiquantitative RT-PCR (Fig 7). The transcriptional levels of both nodA
and nodC genes in the clpB-transformed strain were ~3 folds higher than those detected for the
Ca36pPHU strain, suggesting higher levels of Nod factors in Ca36pPHUclpB. This could
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contribute to the enhanced induction of root hair curling and nodulation efficiency in the
plants inoculated with the Ca36pPHUclpB strain.

Discussion
The improvement of rhizobia stress tolerance may allow the development of more efficient
inoculant strains to be used in fields affected by environmental stress conditions. The modifica-
tion of rhizobia by transformation with chaperone genes, coding for proteins commonly
involved in stress response, could act in two beneficial ways: improvement of stress tolerance
and symbiotic effectiveness (SE). Several chaperones were found to be directly involved in the
symbiotic process (e.g. [7, 8]). Our previous results clearly showed the involvement of ClpB
chaperone in plant-rhizobia nodule formation and development: a clpB knockout mutant of

Fig 5. Microscopic analysis of root hair curling of chickpea plants inoculated with Ca36WT,
Ca36pPHU or Ca36pPHUclpB. This analysis was performed in the third and fourth days after inoculation.
Plants inoculated with the Ca36WT strain (A). Plants inoculated with the Ca36pPHU strain (B). Plants
inoculated with the Ca36pPHUclpB strain (C). Scale bar: 0.053 μm.

doi:10.1371/journal.pone.0148221.g005
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M. ciceri LMS-1 displays a delay in the nodulation of chickpea plants, as well as a lower number
of bacteroids, when compared to the wild-type [7]. Therefore, with the major goal of improving
the stress tolerance and symbiotic performance ofM.mediterraneum UPM-Ca36T, this strain
was genetically transformed with an extra-copy of the clpB gene cloned in the expression vector
pPHU231.

Fig 6. Nodule development in chickpea. Portions of nodulated roots inoculated with the Ca36pPHU (A), wild-type Ca36WT (C, E), or Ca36pPHUclpB
strains (B, D, F) are shown. A and B, Stereophotomicrographs of sections of embedded nodules stained with Toluidine Blue. C to F, Photomicrographs of
embedded nodules stained with Toluidine Blue. A to D, bright field light microscopy. E and F, Phase contrast microscopy. A and B, whole nodules (asterisks
indicate meristematic zones). C and D, meristematic zones at higher magnification. E and F, infection zones (Black arrows indicate particles inside
uninfected cells; White arrows indicate particles inside infected cells). Scale Bars: 400 μm (A and B); 100 μm (C and D); 50 μm (E and F).

doi:10.1371/journal.pone.0148221.g006
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Role of clpB in bacterial stress response
Different reports point towards an important role of ClpB in bacterial heat shock tolerance,
namely in E. coli [16], Brucella suis [22], Vibrio cholera [51], as well as in rhizobia, as is the case
of Ensifer meliloti [52],M. ciceri [7] andM. loti [53]. In the present work, the evaluation of
growth under abiotic stress conditions showed that the expression of additional copies of the
clpB gene led to a higher growth rate after a heat shock, indicating that ClpB contributes to the
heat shock response inM.mediterraneum UPM-Ca36T. This is in agreement with the reported
overexpression of the clpB gene ofM. lotiMAFF303099 [53], as well as the overproduction of
this chaperone in aM. ciceri strain [7], in response to heat shock. The fact that the transcription
of the clpB extra-copies is under the control of the native promoter suggests that the native-
and extra-copy genes are similarly regulated. Therefore, it is expected that the phenotypic
effects due to the extra-copies will be more pronounced in stress conditions that significantly
upregulate the native clpB, such as heat shock.

Regarding the tolerance to acid shock in free living conditions, no differences were observed
between the growth curves of Ca36pPHUclpB and Ca36pPHU strains. These results suggest
that the presence of clpB extra-copies is insufficient to overcome the negative effect of acid
stress inM.mediterraneum UPM-Ca36T, which is very sensitive to this condition. InMesorhi-
zobium, the role of ClpB in acid stress tolerance is not yet clear. InM. ciceri LMS-1, the involve-
ment of ClpB in acid stress response was only detected in cells submitted to very severe acid
conditions [7]. In a transcriptome analysis ofM. lotiMAFF303099 submitted to an acidic
shock, a very slight underexpression of clpB gene was detected [54]. Therefore, more studies
are required in order to clarify the ClpB involvement inMesorhizobium tolerance to acidity.

Fig 7. Analysis of nodA and nodC gene transcription by semiquantitative RT-PCR in the Ca36pPHU (lane 1, light gray bars) and clpB-transformed
(lane 2, dark gray bars) strains. To normalize the relative nodA and nodC transcripts abundance the amplification of a fragment of 16S rRNA gene was also
performed. Data in the graph correspond to the mean and standard error values of three independent biological replicates. Different letters (a, b) correspond
to statistical significant differences (P < 0.05).

doi:10.1371/journal.pone.0148221.g007
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Role of clpB in the symbiotic relationship legume-rhizobia
With the main purpose of evaluating the effects of clpB extra-copies in the symbiotic perfor-
mance ofM.mediterraneum UPM-Ca36T, plant growth trials were performed (hydroponic
assay for nodulation kinetics and pot assay for symbiotic effectiveness).

Since acidity is a common problem in the fields, the pot assay was carried out under control
(pH7) and acid stress conditions (pH5). In both pH conditions, the presence of clpB extra-cop-
ies showed a beneficial effect in the symbiotic performance of this mesorhizobium strain, with
a significant increase of approximately 60% and 83% in the SE, at pH5 and pH7, respectively.
The NN and SDW of plants inoculated with the Ca36pPHUclpB strain were significantly
higher than the ones obtained with Ca36WT. Similarly, the root hair curling observed in plants
inoculated with Ca36pPHUclpB was higher than the one obtained with Ca36WT. These results
support the role of the clpB extra-copies in the symbiotic performance, probably through the
increase in root hair curling and nodulation abilities, and leading to the development of more
efficient nodules. Histological analysis shows that the nodules induced by Ca36pPHUclpB
present some particles that are not observed in the nodules induced by the Ca36WT or Ca36p-
PHU strains. However, if and how these particles contributed to the higher symbiotic perfor-
mance of the Ca36pPHUclpB remains unclear. Futher studies are required to confirm the
nature of these particles and their involvement in symbiotic performance. The higher induction
of root hair curling observed in seedlings inoculated with the clpB-transformed strain probably
leads to the higher rate of nodulation. Overall, these results suggest that the extra-copies of the
clpB gene promotes, at least, the nodulation process, which contributes to an increased symbi-
otic effectiveness.

Transcriptomic and proteomic analyses of bacteroids suggest that chaperone genes are
involved in the symbiotic process [55–58]. For instance, studies with the major chaperone
GroEL have shown that it modulates NodD activity, which in turns regulates the nod genes
expression in E.meliloti. E.meliloti groEL1mutants presented a reduction in the nod gene
expression and formed ineffective nodules in different legumes [6]. More recently, Brígido
et al. [7] clearly demonstrated that the chaperone ClpB is involved in the mesorhizobium-
chickpea nodulation process. The delay in nodule formation by a clpBmutant was suggested to
be related to its inability to properly activate the expression of the nod genes, probably due to
an inappropriate folding of the NodD protein [7].

Agreeing with previous studies, our data reinforce the importance of ClpB in the symbiosis,
namely in the nodulation process and ultimately in the SE of the strain. Thus, one possible
explanation for the influence of the clpB extra-copies in the SE is the involvement of ClpB in
the disaggregation and folding of proteins related to the symbiosis, namely nodulation pro-
teins, such as NodD. This is the major activator of nod genes that encode the enzymes involved
in the synthesis and secretion of Nod factors [59], which are perceived by the host plant and
trigger the root hair curling [60]. The hypothesis that extra ClpB chaperone disaggregates and
folds symbiosis-related proteins, such as the nod activator NodD, is supported by our RT-PCR
data showing an increase of ~3 fold in the expression of the nodulation genes nodA and nodC
in the clpB-transformed strain, compared to the Ca36pPHU strain. The increased expression
of nodulation genes detected in the clpB-transformed strain suggests that this strain synthesizes
higher levels of Nod factors. This is supported by the observation of more curled root hairs, as
well as a higher NN, in plants inoculated with the clpB-transformed strain, compared to plants
inoculated with Ca36pPHU or wild type strains.

It has been suggested that rhizobia encounter stress conditions when entering or within the
cells of the plant hosts [61], such as acidity or microaerobiosis, requiring the action of several
molecular chaperones and proteases. In fact, several studies in rhizobia showed the induction
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of chaperone genes, such as clpB, under acidity or microaerobic conditions, supporting their
involvement in the protection of proteins from denaturation and aggregation within the host
cells [23, 62, 63]. Despite the fact that in free-living conditions, no increase in acid stress toler-
ance was obtained with the clpB-extra copies, it is possible that in the rhizosphere and root
nodules the conditions are more complex involving a combination of different stresses. This
could explain the beneficial effect of the clpB-extra copies in overcoming stress and ultimately
increasing the symbiotic effectiveness.

Conclusions
Overall, our data show that the transformation of theM.mediterraneumUPM-Ca36T strain
with extra-copies of the clpB gene has a clear beneficial effect in its symbiotic performance. It is
probable that the contribution of the extra-copies of the clpB in the chickpea-mesorhizobium
symbiosis may be related to a more efficient disaggregation of proteins involved in the symbio-
sis, particularly in the molecular signaling between the two partners. In addition, the extra-cop-
ies of the clpBmay confer a higher ability to counteract the stress conditions found in the
rhizosphere and within the root nodule.

The present work shows that it is possible to improve the symbiotic effectiveness, as well as
the stress tolerance (namely to heat shock) ofM.mediterraneum UPM-Ca36T, by overexpres-
sing the clpB chaperone gene. These results have potential applications, namely in obtaining
more efficient inoculants for field crops, particularly under environmental stress conditions.
Future studies could involve the integration of an extra-copy of clpB gene in the chromosome
of theM.mediterraneumUPM-Ca36T, in order to increase its stability in the bacterial genome.

Although our previous report [7] together with the present study contribute to the elucida-
tion of the involvement of the chaperone ClpB in the symbiosis rhizobia-chickpea, the molecu-
lar mechanisms behind its role in the symbiosis are not fully characterized, requiring further
studies. This report describes the first successful improvement of the SE of a rhizobium by its
transformation with an extra copy of a chaperone gene.
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