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A B S T R A C T

Intra-diffusion coefficients of seven chlorophenols (2-chlorophenol, 3-chlorophenol, 4-chlorophenol,
2,4-dichlorophenol, 2,6-dichlorophenol, 2,4,6-dichlorophenol and pentachlorophenol) in water were
determined by computer simulation (molecular dynamics) for dilute solutions at three different
temperatures and the corresponding mutual diffusion coefficients estimated. The mutual diffusion
coefficients of 2-chlorophenol in water agree with the available experimental results from the literature
for all the temperatures studied. From the dependence of the diffusion coefficients on temperature,
diffusion activation energies were estimated for all the solutes inwater. Analyzing the radial distribution
functions and spatial distribution functions of water around chlorophenols sites enable a discussion
about intermolecular interactions (dominated by hydrogen bonding) between solute and solvent and its
importance on the relative magnitude of diffusion coefficients. Finally the mutual diffusion coefficients
obtained by simulation were correlated by the well-known Wilke–Chang equation.

ã 2015 Elsevier B.V. All rights reserved.

1. Introduction

Chlorophenols are hazardous and persistent pollutants that
are present in surface and ground waters, and one of them
(pentachlorophenol) is considered a priority substance by the
recent European Directive 2013/39/UE [1]. They have been used
worldwide as broad spectrum biocides in domestic, agricultural
and industrial contexts [2]. Chlorophenols also found applications
in extraction of sulfur and nitrogen compounds from coal [3], as
wood preservatives, antiseptics (especially, 4-chlorophenol) [4]
and as intermediate substances for the synthesis of many products
such as highly chlorinated phenols (from mono and dichlorophe-
nols), herbicides (in particular, phenoxyacetic acids), disinfectants,
dyes, pharmaceuticals [5] and phenolic resins [6].

These substances (mainly mono and dichlorophenols) are also
formed accidentally as by-products of drinking water disinfection
[7], wood pulp and paper bleaching, incineration of solid residues
[8] and as products of degradation of numerous pesticides [9], such
as chlorobenzenes and chlorinated cyclohexanes. They can also be
found in wastewaters of coal conversion and petroleum refining
industries [10].

In the environment, chlorophenols are found essentially in
water but can also be detected in soils, sediments and biota [11].
The hydrophobicity of these compounds increases with the
number of chlorine atoms in the molecule, with the consequent
increasing tendency of the heavier ones to accumulate through the
food chain.

Chlorophenols typically cause unpleasant taste and odor on
drinking water, are harmful by ingestion and absorption by skin,
causing cell necrosis and are suspected to have carcinogenic
properties to the human body, essentially based on epidemiologic
studies [12]. Because of the risks to the human health, the use of
chlorophenols has been restricted in many countries [11].
However, since they are still in use in some other countries and
due to their persistent character, chlorophenols still constitute a
matter of environmental concern.

The removal of chlorophenols from water and wastewater has
been done using a significant number of processes [13], such as
liquid–liquid extraction [7], membrane extraction [14], pervapo-
ration, solid–liquid adsorption [15,4,3,16,17], chemical processes
(e.g., advanced oxidation process) [18] and biochemical methods
based on microorganisms and enzymes [13].

The design of effective removal processes, dispersion and
transport models of chlorophenols inwater implies the knowledge
of some key properties, such as the molecular mobility of in
aqueous solutions, expressed by their diffusion coefficients.
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Despite their obvious importance, the diffusion coefficients of
these compounds in water are scarce in literature and in many
cases have to be estimated.

Niesner and Heintz [19] measured the mutual diffusion
coefficients of a series of aromatic compounds in water, including
2-chlorophenol. More frequent is the measurement of diffusion
coefficients of chlorophenols in polymeric membranes, such as
polyether–polyamide block copolymers [20], HDPE geomem-
branes [21] or polyethylene films [22]. Given the difficulty in
obtaining reliable experimental data for these systems due to their
toxicity, low solubility, etc., computer simulations are a convenient
tool to provide systematic estimations of the diffusion coefficients
for the whole chemical family of chlorophenols in water.

Computer simulations involving chlorophenols are almost
inexistent in the literature apart from the work of Plazinski
et al. who modeled 2-chlorophenol and 4-chlorophenol with the
GROMOS 53a6 force field to study their interaction with alginates
and alginic acid [23].

As for related substances, phenol and chlorobenzenes a larger
number of simulation studies can be found.

Forphenol anumberof forcefieldshavebeenproposed in the last
two decades. Mooney et al. [24] developed an atomistic force field
specially parameterized for phenol, with which liquid density and
vaporizationenthalpyvalueswereobtained inclose agreementwith
experimental data. Ferrando et al. [25] were able to reproduce vapor
pressures, liquid densities and vaporization enthalpies of phenol
using an anisotropic united atom force field developed for alcohols
and polyalcohols. Kukzera et al. [26] calculated rotational diffusion
coefficients of phenol inwater using CHARMM and Zheng et al. [27]
used the Gromos 96-43a2 united atom force field to study the
interfacial behavior of phenol in dodecane/water [27].

Using the OPLS-AA forcefield, diffusion coefficients of phenol in
water (bulk and confined environment) were obtained by Lock
et al. [28] and in a polyamide membrane by Hughes et al. [29].
Plugatyr et al. [30] studied the hydration structure and dynamics of
phenol in saturated water describing phenol with the rigid model
of Mooney et al. [24]. In this work it was suggested that in addition
to usual H bonds with the hydroxyl group of phenol, water forms
p-type complexes with the center of the benzene ring.

Chlorobenzenes have been modeled with the TraPPE-EH force
field producing pure saturated liquid densities and vapor pressures
in good agreement with experimental results [31]. The same force
fieldwas used by Garrido et al. [32] to predict 1-hexanol/water and
1-octanol/water partition functions for the same chlorobenzenes
in agreement with experimental results.

Structural studies were done for chlorobenzene, benzene and
o-chlorotoluenemodeled byAMBER,where themutual orientation
of molecules in pure state was investigated and the formation of
agglomerates was reported for binary mixtures involving these
molecules [33,34]. Also using the general AMBER force field,
chlorobenzenewas used as a probe to map the ligand binding sites
on protein surfaces by molecular dynamics simulations [35].

In this work, intra-diffusion coefficients of seven chlorophenols
in water have been obtained by computer simulation (molecular
dynamics, MD) for dilute solutions at three different temperatures.
The compounds studied were three monochlorophenols covering
all the possible positions of the chlorine atom around the aromatic
ring (2-chlorophenol, 3-chlorophenol, 4-chlorophenol); two
di-substituted chlorophenols (2,4-dichlorophenol and 2,6-dichlor-
ophenol); one tri-substituted chlorophenol (2,4,6-trichlorophe-
nol) and pentachlorophenol. Given the typical size of a simulated
system and the low solubility of these substances in water, only a
few solute molecules can be included in a given simulation
box – hence, increasing the uncertainty due to poor statistics. For
this reason, the compositions studied, for each solute and
temperature, correspond to molar fractions just under the

experimental solubility limit. In the case of the most insoluble
chlorophenols and/or at the lowest temperatures, a single solute
molecule per simulation box was used in the calculations; this
situation effectively obeys the infinite dilution definition (since no
solute–solute interactions will occur), even if the nominal
concentration of the system is above the solubility value.

Additionally, mutual diffusion coefficients were estimated for
all solutes and in the case of 2-chlorophenol, compared with the
available experimental results. As will be seen, the agreement
between experimental and simulated values is remarkable, for all
the temperatures studied. This agreement allows a good level of
confidence in the values obtained by MD for the other studied
chlorophenols, for which no experimental data could be found.

With the exception of 2-chlorophenol, this work reports the
first determinations of diffusion coefficients of chlorophenols in
water and is the first systematic study of the diffusion behavior of
these systems.

2. Simulation details

Intra-diffusion coefficients of seven chlorophenols in dilute
aqueous solutions were obtained by computer simulation (MD) as
a function of temperature.

2.1. Models

The optimized potentials for liquid simulations all-atom
(OPLS-AA) force-field [36] framework was used to model
chlorophenols. This force-field models each atom as an interac-
tion site and the potential energy is written as the sum of
contributions due to bond stretching, bond angle bending,
dihedral angle torsion, improper dihedral angles and non-bonded
interactions (van derWaals plus electrostatic interactions). Water
was modeled by TIP4P/2005 force field developed by Abascal and
Vega [37], which is a four-center rigid model based on TIP4P from
Jorgensen et al. [38]. Details about the exact expressions and
parameters used for potential terms can be found in the original
references. The charge distribution of all chlorophenols were
evaluated by a least-squares fit to the electrostatic potential
according to the Kollman and Singh scheme [39], from electronic
densities obtained by the Hartree–Fock method and the 6-31G
basis set. All quantum calculations were performed with the
GAMESS-US package [40]. The molecular structures of the seven
solutes and the point charges of each atom for all of them are
shown in Fig. SI-1 of Supporting information.

Following the OPLS-AA parameterization, geometrical
combining rules were used to compute the non-bonded
Lennard–Jones interactions between sites of different types:

eij ¼
ffiffiffiffiffiffiffiffiffi
eiiejj

p
(1)

sij ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
siisjj

p
(2)

For non-bonded interactions between sites in the same molecule,
only sites separated by three or more bonds are considered.
Non-bonded interactions between sites separated by three bonds
are scaled by a factor of 0.5. In this work, all bonds involving
hydrogen were treated as rigid, with the respective length fixed
at the equilibrium distance, and the LINCS algorithm [41] was used
to constrain them.

2.2. Methods

Molecular dynamics simulations were performed using the
GROMACS package [42,43], in cubic boxes containing up to
10,000 total molecules, with periodic boundary conditions in all
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three directions. The initial liquid box sizes were established
according to the experimental densities. For each binary system,
the following simulation protocol was applied: an initial NpT
equilibration run of 4ns followed by a 10ns long NpT production
run, which was used to determine the equilibrium density of the
system; the box volume was then adjusted to this average density
value and a 4ns NVT equilibration run followed by a 10ns NVT
production run were performed, with the trajectory of the
production run recorded every 500 time steps for subsequent
analysis, which includes the calculation of the solute diffusion
coefficient. The equations ofmotionwere solved using the leapfrog
integration algorithm, with a time step of 1 fs. The Nosé–Hoover
thermostat [44] and the Parrinello–Rahman barostat [45] were
used to control the temperature and pressure (the latter only in the
NpT ensemble), with coupling constants of 0.1 and 2.0ps,
respectively. An initial velocity obtained from a Maxwell distribu-
tion at the desired initial temperature has been assigned to all
atoms.

In all simulations a neighbor list, with a radius of 10Å, was
used and was updated every 5 time steps. Both non-bonded
Lennard–Jones and electrostatic potential were truncated by using
cut-offs of 12Å and 10Å, respectively and analytical tail corrections
to dispersion terms were added. The long-range electrostatic
(Coulombic) interactions beyond the cutoff were calculated using
the particle-mesh Ewald method. Before the molecular dynamics
runs, the boxes were subjected to energy minimization by the
steepest descent method to a maximum force of 10 kJ/mol nm,
with a maximum number of steps of 1�106.

For each state point and system, a total of 20 independent
simulation sequences were performed, each one starting from a
different initial configuration. The diffusion coefficients were
calculated for each trajectory and the average values and the
respective standard errors are reported below.

2.3. Calculations

The intra-diffusion coefficients of different solutes in water (D)
were calculated from the linear part of the mean square
displacement of the center of mass of the solute molecules
according to the Einstein equation:

D1 ¼ 1
6N

lim
t ! 1

d
dt

XN
i¼1

~ri ðtÞ �~ri ð0Þ½ �2
D E

(3)

where ~ri ðtÞ �~rið0Þ½ �2 is themean square displacement of solute and
the hi brackets stand for average over time. The summation extends
to all solute molecules in the simulation box (N). The same
calculation was also done for water and estimations of mutual
diffusion coefficients for chlorophenol/water systems were
obtained using the Darken equation [46], considering dilute
solutions:

D12 ¼ Q x1D2 þ x2D1ð Þ (4)

where D12 is the mutual diffusion coefficient, x1 and D1 are,
respectively the mole fraction and the intra-diffusion coefficient of
chlorophenols and x2 and D2 are the same properties for water. Q is
the thermodynamic factor, given by

Q ¼ 1þ @lng1

@lnx1

� �
T;P

(5)

which, for these generally dilute solutions, is assumed to be
close to unity. In all the cases, the obtained mutual diffusion
coefficients are almost identical to intra-diffusion coefficients
of the solutes, given its low concentration for the systems
studied.

2.4. Systems

Seven different binary systems have been studied in the
present work: 2-chlorophenol, 3-chlorophenol, 4-chlorophenol,
2,4-dichlorophenol, 2,6-dichlorophenol, 2,4,6-trichlorophenol
and pentachlorophenol in water and at three different temper-
atures (277.15, 298.15 and 323.15K). For each system, the amount
of solute and water molecules in the simulation boxes was chosen
in order to obtain compositions slightly below the solubility limit
for each system and temperature [47–50]. In some cases
(e.g., 2,4,6-trichlorophenol and pentachlorophenol) that choice
was not feasible given the low solubility of the solutes in water. In
these cases, we have chosen to build the simulated system with
just one solute molecule surrounded by 999 water molecules,
which effectively correspond to an infinite solution condition. The
2-chlorophenol/water system was studied at two different
compositions in order to better compare our simulation results
with the experimental measurements of Niesner and Heintz
[19], which as far as we know are the only experimental results
available in the literature. The state points at which the seven
chlorophenol/water systemswere studied in the present work are
summarized in Table 1.

In the case of 2-chlorophenol/water system, simulations using
two different box sizes (3000 and 5000 total molecules) were done
for the same composition at each temperature (Table 1). The
differences in the average diffusion coefficients between the two
sets of simulation results for each temperature were found to be
within the simulation uncertainties and the average value between
the two sets was taken as the final result.

The molecular models used were tested simulating pure water
and 2-chlorophenol (the only chlorophenol that is liquid at room
temperature) by MD. For pure water, simulation boxes with
1600moleculeswere prepared and a simulation protocol similar to
that of themixtures was applied at the same temperatures (277.15,
298.15 and 323.15K). In the case of pure 2-chlorophenol,
simulation boxes were built with 400 molecules and a slightly

Table 1
Compositions studied in the simulations for each system and temperature as well as the corresponding proportion solute/solution molecules.

T =277.15K T =298.15K T =323.15K

Solute x1 Proportion x1 Proportion x1 Proportion

2-Chlorophenol 0.001 10/10000 0.001 10/10000 0.001 10/10000
0.002 6/3000 0.003 9/3000 0.003 9/3000

10/5000 15/5000 15/5000
3-Chlorophenol 0.002 6/3000 0.003 9/3000 0.003 9/3000
4-Chlorophenol 0.00233 7/3000 0.003 9/3000 0.003 9/3000
2,4-Dichlorophenol Infinite dilution 1/1000 5�10�4 3/6000 6.67�10�4 4/6000
2,6-Dichlorophenol Infinite dilution 1/1000 Infinite dilution 1/1000 3.33�10�4 2/6000
2,4,6-Trichlorophenol Infinite dilution 1/1000 Infinite dilution 1/1000 Infinite dilution 1/1000
Pentachorophenol Infinite dilution 1/1000 Infinite dilution 1/1000 Infinite dilution 1/1000
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different simulation protocol was followed: a pre-equilibration
stage consisting of a firstNpT run of 500ps at 1 bar followed by five
NpT simulations with the same length and the pressure
successively set to 500, 300, 100, 50 and 20bar; after this stage,
the system was equilibrated for 8ns at 1 bar and finally a NpT
production run of 20ns was stored for further analysis. These
simulations were done at 298.15 and 313.15K. For pure water and
2-cholorophenol, respectively, 16 and 10 independent simulation
sequences were done, from different starting configurations, and
the values presented below are the calculated averages. All other
simulation details were the same as described for the mixtures.

The liquid densities for both pure compounds and the self-
diffusion coefficients of water obtained from the simulations are
reported and comparedwith experimental data from the literature
in Table 2. In the case of water, the agreement with the
experimental densities is remarkable (better than 0.06%) at all
temperatures, and the diffusion coefficients are also well
described, with a maximum deviation less than 8%. It should also
be noted that the self-diffusion coefficient of water at 298.15K
[(2.13�0.02)�10�9m2/s] lies between the experimental value
and that of Abascal and Vega [37] (2.08�10�9m2/s), who proposed
the TIP4P-2005model used here. In the case of 2-chlorophenol the
agreement between simulated and experimental densities is fair,
with deviations around 3%.

3. Results and discussion

3.1. Diffusion coefficients

The intra-diffusion coefficients of chlorophenols (1) in dilute
water (2) solutions are presented in Table 3, along with their error
estimations. Given the low solute concentration of the solutions
studied, the estimated mutual diffusion coefficients obtained
by Eq. (4) are numerically equal to the corresponding solute
intra-diffusion coefficients within their standard errors, and for
simplicity they are not included in the Table 3.

As far as we know, the only study that can be found in the
literature reporting diffusion coefficients for solutions of chlor-
ophenols inwater is that of Niesner andHeintz [19], whomeasured
mutual diffusion coefficients of 2-chlorophenol/water mixtures at
three temperatures (277.2 K, 298.2K and 323.2K) and infinite
dilution using the Taylor dispersion method. In Fig. 1, the results of
the present work are compared with those from Niesner and
Heintz. First of all, it is important to note that the simulatedmutual
diffusion coefficients increase as themole fraction decreases for all
the three temperatures studied, as it is generally observed for

organic solutes in water. Most of the structural characteristics of
dilute aqueous solutions are mainly determined by the unique
properties of water, in particular its tridimensional network (even
in the liquid state) due to hydrogen bonding. As the solute
concentration decreases, its mobility increases as it becomes less
hindered to move around water cavities and so the diffusion
coefficient increases. Fig. 1 shows that the agreement between
simulated and experimental results is very good, especially
considering the trend that diffusion coefficients exhibit with
decreasing solutemole fraction and comparing verywell at infinite
dilution limit.

These results suggest that both the model and themethod used
are suitable to describe the diffusion of 2-chlorophenol in water

Table 2
Densities and self-diffusion coefficients of pure compounds obtained by computer
simulation in comparison with experimental data and their respective percent
deviation.

Water
r (kg/m3) D�109 (m2/s)

T/K Simulation Experiment Dev.
(%)

Simulation Experiment Dev.
(%)

277.15 1000.5�0.1 999.97 [51] 0.06 1.199�0.007 1.19 [52] 0.7
1.26 [53] �4.9

298.15 997.3�0.1 997.05 [51] 0.03 2.13�0.02 2.23 [52] �4.6
2.30 [53] �7.5

323.15 987.8�0.1 988.03 [51] �0.03 3.57�0.02 3.86 [53] �7.5

2-Chlorophenol
r (kg/m3)

T/K Simulation Experiment Deviation (%)

298.15 1296.1�0.2 1258.9 [54] 3.0
313.15 1279.1�0.2 1241.4 [55] 3.0

Table 3
Intra-diffusion coefficients of chlorophenols (1) and water (2) for binary systems
chlorophenols/water obtained by simulation at different temperatures.

T =277.15K
x1 109D1 (m2/s) 109D2 (m2/s)

2-Chlorophenol 0.001 0.49�0.01 1.231�0.005
0.002 0.46�0.02 1.186�0.007

3-Chlorophenol 0.002 0.47�0.01 1.192�0.008
4-Chlorophenol 0.00233 0.45�0.01 1.187�0.005
2,4-Dichlorophenol Infinite dilution 0.40�0.02 1.17�0.01
2,6-Dichlorophenol Infinite dilution 0.37�0.03 1.16�0.01
2,4,6-Trichlorophenol Infinite dilution 0.34�0.02 1.15�0.01
Pentachlorophenol Infinite dilution 0.27�0.03 1.145�0.007

T =298.15K

x1 109D1 (m2/s) 109D2 (m2/s)

2-Chlorophenol 0.001 0.91�0.02 2.198�0.005
0.003 0.86�0.02 2.11�0.01

3-Chlorophenol 0.003 0.83�0.02 2.10�0.01
4-Chlorophenol 0.003 0.82�0.03 2.11�0.01
2,4-Dichlorophenol 0.0005 0.78�0.04 2.190�0.007
2,6-Dichlorophenol Infinite dilution 0.73�0.03 2.08�0.01
2,4,6-Dichlorophenol Infinite dilution 0.58�0.03 2.07�0.01
Pentachlorophenol Infinite dilution 0.53�0.04 2.061�0.009

T =323.15K

x1 109D1 (m2/s) 109D2 (m2/s)

2-Chlorophenol 0.001 1.63�0.03 3.692�0.008
0.003 1.49�0.04 3.57�0.02

3-Chlorophenol 0.003 1.41�0.03 3.54�0.02
4-Chlorophenol 0.003 1.45�0.03 3.55�0.01
2,4-Dichlorophenol 0.000667 1.37�0.05 3.66�0.02
2,6-Dichlorophenol 0.000333 1.43�0.06 3.68�0.01
2,4,6-Trichlorophenol Infinite dilution 1.1�0.1 3.46�0.02
Pentachlorophenol Infinite dilution 0.97�0.08 3.46�0.02

[(Fig._1)TD$FIG]

Fig. 1. Mutual diffusion coefficients of 2-chlorophenol in water as a function of
composition at three temperatures (squares, 277.15K; circles, 298.15K; triangles,
323.15K). Filled symbols: experimental results (Ref. [19]); empty symbols:
simulation results.
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providing a good degree of confidence in the prediction of the
diffusion coefficients of the other chlorophenols in aqueous
solutions.

The mutual diffusion coefficients for all the solutes at 298.15K
are shown in Fig. 2, for comparison. It can be seen that diffusivities
are primarily dependent on the molecular weight of the solute:
diffusion coefficients decrease as the number of chlorine atoms in
the solute molecule increases and that is apparent in Fig. 3 where
intra-diffusion coefficients are plotted as a function of the inverse
of square root of solute molecular weight. This relation, predicted
by the Chapman–Enskog theory is fairly linear at 277.15K, with
more pronounced deviations as the temperature increases. The
experimental results of mutual diffusion coefficients for phenol
from Niesner and Heintz are also included in the figure. It is
important to note that in Fig. 3 diffusion coefficients at different
compositions are compared, in particular at 298.15 and 323.15K,
which in part can explain the observed deviations.

The obtained diffusion coefficients for solutes with the same
molecularweightpresentvalueswhichdonotdiffermuch fromeach
other. Nevertheless, simulations are able to distinguish between
different isomers, being sensitive to the position of chlorine atoms
around the aromatic ring. In the case of the monochlorophenols,
2-chlorophenol presents slightly higher diffusion coefficients
than 3-chlorophenol and 4-chlorophenol despite the molecular

similitude between them. The diffusion coefficients of the two
dichlorophenols are relatively close to each other: those
2,4-dichlorophenol are higher at the lowest temperatures but the
inverse occurs at the highest temperature. As will be shown, the
specific interactions between each chlorophenol and water can
be used to rationalize the dynamic behavior of these solutions.

3.2. Structure

In order to gain a deeper knowledge on the interactions and the
structure of the solutions studied, radial distribution functions
[g(r)] of water sites around selected solute sites were obtained
from the NVT production trajectories for all solutes. The radial
distribution functions of H or O from water around Cl, O and H
(hydroxyl) from solutes at 25 �C are shown and compared for
monochlorophenols in Fig. 4, dichlorophenols in Fig. 5 and the
solutes with more than two chlorine atoms in Fig. 6. Spatial
distribution functions of watermolecules (centers of mass) around
the solutes have also been calculated in order to obtain a three
dimensional view of the population of water molecules around
chlorophenol molecules. The isodensity surfaces at fixed values
of rlocal/rbulk are shown in Fig. 7 for 4-chlorophenol and 2,4-
dichlorophenol.

g(r) for H fromwater around chlorine are very similar for all the
solutes. However, for monochlorophenols (Fig. 4) at very low
distances, g(r) is more intense for 3-chlorophenol and
4-chlorophenol than for 2-chlorophenol, which can be explained
by a more effective steric hindrance in the latter because of the
proximity of the hydroxyl group. For these three solutes, there is no
indication of any specific interaction between the chlorine bonded
to the aromatic ring and the hydrogen atom of water. In fact, g(r) is
below 1 for all the distances, which shows that the average local
density of water molecules around chlorine atoms is lower than
the bulk density, suggesting an overall depletion of water around
chlorine. The preference of water toward the hydroxyl group can
explain this result. The spatial distribution functions show,
however, that despite the preferential location of water molecules
around the hydroxyl group of the chlorophenol, there are also
regions of space around the chlorine atoms where a significant
density of water molecules can be found.

The picture is completely different when the g(r) for hydroxyl/
water pairs are analyzed. For the three monochlorophenols, the
first peaks for the pair H (chlorophenol)/O (water) are much more
intense than those for H (water)/O (chlorophenol) (follows the
charge differences between the relevant atoms), indicating that
water approaches the hydroxyl group of the solutes preferably by
oxygen rather than hydrogen. Additionally the peaks are much
more intense for 3-chlorophenol and 4-chlorophenol than for
2-chlorophenol. The g(r) confirm the existence of hydrogen
bonding between water and the hydroxyl group of chlorophenols,
because the first peak is narrowwith itsmaximumat lowdistances
(0.18–0.19nm). However, the association is less effective in the case
of 2-chlorophenol, probably due to the presence of the chlorine
atom. This can explain the slightly higher diffusion coefficient of
2-chlorophenol relatively to the other isomers since – a less
effective interaction with the solvent would increase the mobility
of the solute.

From the integration of the radial and spatial distribution
functions, the number of hydrogen bonds per solutemoleculewere
obtained for all the systems at all the temperatures and are shown
in Fig. 8. This determination was subject to some criteria, such as,
oxygen was the only acceptor considered, the distance between
donor and acceptor was lower than 0.35nm and the angle between
hydrogen-donor–acceptor lower than 30�. As can be seen in Fig. 8,

[(Fig._2)TD$FIG]

Fig. 2. Mutual diffusion of chlorophenols in water obtained by simulation at
298.15K. *, 2-chlorophenol (2); [TD$INLINE], 3-chlorophenol (3); [TD$INLINE], 4-chlorophenol (4);

[TD$INLINE], 2,4-dichlorophenol (2,4); [TD$INLINE], 2,6-dichlorophenol (2,6); [TD$INLINE], 2,4,6-trichloro-
phenol (2,4,6); [TD$INLINE], pentachlorophenol (penta).

[(Fig._3)TD$FIG]

Fig. 3. Intra-diffusion coefficients of chlorophenols and phenol (mutual diffusion
coefficient from Ref. [19]) as a function of solute molecular weight at 277.15K
(squares), 298.15K (circles) and 323.15K (triangles).
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the system 2-chlorophenol/water presents much less hydrogen
bonds per solute than either 3-chlorophenol or 4-chlorophenol,
confirming the weaker interaction with water.

Sánchez-Flores et al. [16] have suggested the existence of an
intramolecular hydrogen bond in 2-chlorophenol between the
chlorine and the hydrogen from the hydroxyl group. Fig. 9a
displays the intramolecular radial distribution functions corre-
sponding to Cl—H (hydroxyl) pair for all themonochlorophenols. In
fact the peak for 2-chlorophenol is particularly intense with a
maximum at a short distance (ca 0.25nm), that lies within what is
usually considered as hydrogen bond. This intramolecular hydro-
gen bond reduces the availability of the hydroxyl group from
chlorophenol to act as donor toward water molecules, therefore
reducing the solute-solvent interaction. The same effect is further
confirmed by the angle distribution of the dihedral H—O—C—C (Cl
side) for the three monochlorophenols (Fig. 9c). For 2-chlorophe-
nol, the angle distribution shows a single peak at 0� (cis
conformation, with O—H pointing to Cl), whereas in the case of
3-chlorophenol and 4-chlorophenol two peaks are found, at 0� and
180�, with very similar populations.

In Fig. 5,g(r) for the two dichlorophenols are compared and the
observations are slightly different from those of monochlorophe-
nols. The radial distribution functions for H (water)–Cl pairs of
both solutes are almost indistinguishable, independently of the
position of the chlorine being ortho or para. On the other hand, the
first peaks for the pairs involving H and O present similar
intensities for 2,6-dichlorophenol and 2,4-dichlorophenol. It is
interesting to note that the peak from H (chlorophenol OH)–O
(water) is more intense for 2,6-dichlorophenol than for
2,4-dichlorophenol whereas the inverse order is observed for
the peak from H (water)–O (chlorophenol OH) and this trend does
not follow the order of charge difference between acceptor
and hydrogen. The higher steric hindrance in 2,6-dichlorophenol
(due to the presence of two chlorine atoms in ortho position)
makes it more difficult for the solute oxygen to act as donor.

The overall number of hydrogen bonding interactions are very
similar for both dichlorophenols, which can explain the fact that
2,4-dichlorophenol and 2,6-dichlorophenol exhibit diffusion
coefficients that are very similar, as discussed in the previous
section.

[(Fig._4)TD$FIG]

Fig. 4. Radial distribution functions ofwater sites aroundmonochlorophenol sites at 298.15K. Black line: 2-chlorophenol, blue line: 3-chlorophenol; red line: 4-chlorophenol.

[(Fig._5)TD$FIG]

Fig. 5. Radial distribution functions of water sites around dichlorophenol sites at 298.15K. Black line: 2,4-dichlorophenol; red line: 2,6-dichlorophenol; gray line: pair
involving para-chlorine in 2,4-dichlorophenol.
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As for monochlorophenols, the spatial distribution functions of
2,4-dichlorophenol and 2,6-dichlorophenol (Fig. 7) reveal that
water molecules are preferably located around the hydroxyl group
of the solute but also, to a lower extent, around chlorine atoms. The
intramolecular interaction between the ortho chlorine and the
hydroxyl hydrogen seems to be stronger in 2,4-dichlorophenol
than in 2,6-dichlorophenol, as indicated by the more intense peak

shown by the former in g(r) (Fig. 9b). Accordingly, a clear
predominance of the cis conformation is observed in the dihedral
H—O—C—C (ortho Cl side) for 2,4-dichlorophenol, with the angle
distribution favoring 0�, whereas for 2,6-dichlorophenol similar
probabilities are observed at 0� and 180� (Fig. 9d). Furthermore,
since 2,6-dichlorophenol has two chlorine atoms in ortho
positions, a higher steric hindrance is expected in comparison

[(Fig._7)TD$FIG]

Fig. 7. Spatial distribution functions of water (centers of mass) around 4-chlorophenol (1) and 2,4-chlorophenol (2) at 298.15K showing the isodensity surfaces for rlocal/
rbulk = 2.0 (a), 2.25 (b), 2.5 (c) and 3.0 (d).

[(Fig._6)TD$FIG]

Fig. 6. Radial distribution functions of water sites around 2,4,6-trchlorophenol (black lines) and pentachlorophenol (red lines) sites at 298.15K. For pairs involving Cl: gray
line, para-chlorine from 2,4,6-trichlorophenol; orange line, meta-chlorine from pentachlorophenol; yellow line, para-chlorine from pentachlorophenol.
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with 2,4-dichlorophenol, rendering the interaction hydroxyl
group/water more difficult.

g(r) for 2,4,6-triclorophenol and pentachlorophenol are
compared in Fig. 6. For H (water)–Cl pairs, the peaks for
2,4,6-trichlorophenol are slightly more intense than those of
pentachlorophenol, which is an indication of more interactions
between the solvent and chlorine atoms for the former.
Additionally, for 2,4,6-trichlorophenol the number of hydrogen
bonds with water is considerably higher than for pentachlorophe-
nol, probably because the hydroxyl group in the former is more
polarized in terms of charge distribution. These differences in the
interaction of 2,4,6-triclorophenol and pentachlorophenol with
the solvent can be an explanation for the deviations to linearity
observed in plot of the diffusion coefficients against molecular
weight (Fig. 3).

It is important to note that all the chlorophenols studied are
weak acids whose strength increases slightly with the number of
chlorine atoms, presenting pKa values that ranges from 9.37 for
4-chlorophenol to 4.74 for pentachlorophenol [50]. In experimen-
tal conditions, chlorophenols are thus partly dissociated in water,
in particular those with more chlorine atoms and at lower

[(Fig._8)TD$FIG]

Fig. 8. Number of hydrogen bonds between water and chlorophenols per solute
molecule as a function of temperature.*, 2-chlorophenol; [TD$INLINE], 3-chlorophenol; [TD$INLINE],
4-chlorophenol; [TD$INLINE], 2,4-dichlorophenol; [TD$INLINE], 2,6-dichlorophenol; [TD$INLINE], 2,4,6-
trichlorophenol; [TD$INLINE], pentachlorophenol.

[(Fig._9)TD$FIG]

Fig. 9. Intramolecular radial distribution functions of Cl–H (hydroxyl) pair formonochlorophenols (a) and dichlorophenols (b). Angle distribution for the dihedral H—O—C—C
(ortho Cl side) for monochlorophenols (c) and dichlorophenols (d). In (a) and (c): black line, 2-chlorophenol (2); blue line, 3-chlorophenol (3); red line, 4-chlorophenol (4). In
(b) and (d): black line, 2,4-dichlorophenol (2,4); red line, 2,6-dichlorophenol (2,6). In (b): gray line, H–Cl (para) for 2,4-dichlorophenol.
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concentration. Since it is expected that the chlorophenolate ions
present lower diffusion coefficients than the corresponding
chlorophenols owing to the stronger electrostatic interaction with
water, the values obtained by simulation can be viewed as an upper
boundary for the diffusion coefficients of chlorophenols, especially
for 2,4,6-trichlorophenol and pentachlorophenol.

3.3. Correlation

In order to evaluate the regularity of the diffusion coefficients
within the chemical family of chlorophenols, the estimatedmutual
diffusion coefficients obtained by simulation were correlated by
the Wilke–Chang equation [56], an empirical modification of the
Stokes–Einstein relation, which has been widely used as a method
of predicting mutual diffusion coefficients of solutes in solvents at
infinite dilution (Eq. (6)).

D12 ¼ 7:4� 10�8 f:Mm;2
� �1=2T

h2 Vb
m;1

� ��0:6 (6)

HereMm,2 and h2 are the molecular weight and the viscosity of the
solvent, respectively, T is temperature, Vm,1

b is the molar volume of
solute at boiling point and ’ is an association parameter. In the
calculation, experimental values for the viscosity of water were
used. Since the molar volumes at boiling point for chlorophenols
are not available, they were estimated by Le Bas method [57],
which is not able to distinguish between isomers, attributing
exactly the same values for all the monochlorophenols and two
dichlorophenols. For the association parameter, ’, Wilke and
Chang, in their original publication, proposed the value of
2.6 whenever the solvent was water; however it has been also
treated, in later works, as an adjustable parameter. Niesner and
Heintz [19], for instance, found ’ =1.61 as the value that best
correlated their experimental results of diffusion coefficients of
aromatic solutes in water. In our case, w =1.88 provides the best fit
to the simulation results. In Fig. 10, both mutual diffusion
coefficients obtained by simulation and those calculated by the
Wilke–Chang method for the studied chlorophenols in water are
plotted as a function of (Vb)�0.6 at three temperatures.
The experimental diffusion coefficients for phenol in water at
the studied temperatures are also included in the figure. The
Wilke–Chang equation, using the optimized value of ’ =1.88,
correlates the results with maximum deviations of 15%.

The regularity is more apparent at 277.15K, withmore pronounced
deviations at higher temperatures.

3.4. Diffusion activation energies

From the temperature dependence of the mutual diffusion
coefficients, an estimation of the average diffusion activation
energies within the studied temperature range were obtained for
all the systems, assuming an Arrhenius-like behavior of the
diffusion of chlorophenols in water (Eq. (7)).

D12 ¼ ADexp
�ED
RT

� �
(7)

Here AD is a pre-exponential factor and ED is the activation energy
of diffusion. The results are presented in Table 4. It should be noted
that, for most systems, ED was calculated from diffusion
coefficients at slightly different compositions. As can be seen,
the activation energy of diffusion obtained for aqueous
2-chlorophenol (19.4 kJ/mol) is in excellent agreement with the
experimental value reported by Niesner and Heintz [19]
(19.3 kJ/mol), showing that the model used in the present work
for molecular simulations is able to reproduce both the diffusion
coefficients of this solute in water and their temperature
dependence. As in previous studies, it was found that the activation
energies of diffusion for the chlorophenols studied are all very
similar, suggesting that the diffusion activation energy depends
mainly on the solvent [58]. Furthermore, no particular trend or
correlationwith molecular structure details is detected, except the
fact that the heaviest chlorophenols seem to present the highest
activation energies (being 2,4,6-trichlorophenol an exception).

4. Conclusions

Intra-diffusion coefficients of seven chlorophenols in water
were obtained bymolecular dynamics simulation at three different
temperatures and the corresponding mutual diffusion coefficients
estimated by the Darken equation.

For 2-chlorophenol/water solutions, the mutual diffusion
coefficients obtained by simulation agree with the experimental
literature results, granting a high level of confidence in the results
for the remaining chlorophenols. These results constitute, as far as
we know, the first estimations of diffusion coefficients of
chlorophenols in water by computer simulation.

The results show that the diffusion coefficients of aqueous
chlorophenols are mainly sensitive to the solute molecular weight
(and hence to the number of chlorine atoms in the molecule) but
also to the position of chlorine atoms around the aromatic ring. In
this context, the specific interactions between solutes and water
also play an important role in their dynamic properties. In order to
investigate such interactions and fluid structures, radial distribu-
tion functions and spatial distribution functions of water sites
around some particular sites on chlorophenols were also obtained
by simulation. Water molecules are preferentially located around

[(Fig._10)TD$FIG]

Fig. 10. Simulated mutual diffusion coefficients of chlorophenols in water as a
function of molar volume of the solute at normal boiling point at 277.15K (squares),
298.15K (circles) and 323.15K (triangles). Symbols: simulated results; solid lines:
Wilke–Chang results.

Table 4
Activation energy of diffusion in the temperature range of 277–323K from
simulation.

Solute Composition range ED (kJ/mol)

2-Chlorophenol 0.002–0.003 19.0�0.8
0.001 19.4�0.5

3-Chlorophenol 0.002–0.003 17.9�0.7
4-Chlorophenol 0.00233–0.003 19.1�0.5
2,4-Dichlorophenol Infinite dilution – 0.0006667 20�1
2,6-Dichlorophenol Infinite dilution – 0.0003333 22.0�0.2
2,4,6-Trichlorophenol Infinite dilution 18.4�0.3
Pentachlorophenol Infinite dilution 20.4�0.7
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the hydroxyl group of the solute, but also around chlorine atoms, at
lower extent and longer distances.

The number of hydrogen bonds between water and chlor-
ophenols per solute molecule was also obtained from the
simulations and was used to rationalize the simulated diffusion
coefficients. In general, for solutes with the same molecular
weight, the higher the number of hydrogen bonds per solute
molecules, the lower the diffusion coefficient of that solute in
water.

The results also suggest the existence of an intramolecular
hydrogen bond between the hydroxyl group and the chlorine
atoms in ortho positions, reducing the availability of this group to
interact with water. Steric hindrance exerted by ortho chlorine on
hydroxyl group of solute molecules can also contribute to this
effect. It is also seen that the most probable orientation of
water toward chlorophenols directs the oxygen of water toward
the hydroxyl hydrogen of the solute. This is likely due to the
charge difference between the possible hydrogen bonding pairs
[H(OH)—O (water) . H (water)—O(OH)].

The diffusion coefficients obtained can be reasonably correlated
by the Wilke–Chang equation, especially at the lowest tempera-
ture, provided that the association parameter is fitted to the
results.

Diffusion activation energies were estimated for all the solutes
in water, from the dependence of the diffusion coefficients on
temperature. As for the diffusion coefficients, an excellent
agreement between simulated and experimental literature results
of diffusion activation energies was found for the 2-chlorophenol/
water system. On the other hand, no significant differences or
trends between solutes can be detected, which is an indication of
the prevalence of the solvent structure in this particular property
for such dilute solutions.
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