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Abstract

Although parallel computing has been widely researdred, the process of

bringrng concurrency and parallel programming to the mainstream has just be-

gun. Combining a distributed multi-threading environment like PM2 with Pro-

log, opens the way to exploit concurrency and parallel computing using logic

programming. Tlo achieve suú a pu{pose, we developed PM2-Prolog, a Prolog

interface to the PM2 system. It allows multithreaded Prolog applications to run in

multiple GNU Prolog engines in a distributed environment, thus taking advan-

tage of the resources available on a computer network. This is especially useful

for computationally intensive problems, where performance is an important fac-

tor. The system API offers thread management primitives, as well as explicit

communication between threads. Preliminary test results show an almost linear

speedup, when compared to a sequential version.

Keywords: Distributed, Multi-Threading, Prolog, Logic Programming,

Concurrency, Parallel, High-PerformÉulce Computing
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Resumo

Multi-Threading Distribuído no GNU Prolog

Embora a computação paralela já tenha sido alvo de inúmeros estudos,

o processo de a tomar acessível às massas ainda mal começou. Através da

combinação com o Prolog de um ambiente de programação distribsída e mul-

tithreaded, como o PM2, toma-se possível ter computações paralelas e concor-

rentes usando programação em lógica. Com este objectivo foi desenvolvido o

PM2-Prolo& um interface Prolog para o sistema PM2. T!ú sistema permite cor-

rer aplicações Prolog multithreaded emmúltiplas instâncias do GNU Prolog ntun

ambiente distribuído, tirando, assim, partido dos recursos disponíveis nos com-

putadores ligados numa rede. Em problemas computacionalmente pesados, onde

o tempo de execução é crucial, existe particular vantagem em usar este sistema.

A API do sistema oferece primitivas para gestão de threads e para comunicação

explícita entre threads. Têstes preliminares mostram um ganho de desempenho

quase linear, em comparação com urna versão sequencial.
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Chapter L

Introduction

This dissertation stems from a study made in the Logic Programming

field. It describes the implementation of a system that allows distributed multi-

threading in GNU Prolog lDraz and Codognet,2000].

1,.1. Motivation

The motivation for this work came from the conviction that it would be

useful to analyse the viability and perforÍnance of a system that combined High

Performance Computing (IüC) with logic progÍammin& and that it could be

achieved by associating PM2 [Namyst and Méhaut,1996l with GNU Prolog.

PM2 allows distributed multi-threading C applications to be developed

and is based on the Single Program Multiple Data paradigm, and GNU Prolog, a

widely used Prolog system released under GPL license, presents a compiler (Splc)

that generates stand-alone binaries, which fits nicely into this paradigm.

PM2 is, above all, a programming environment. It is based primarily
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on two distinct libraries: one for thread management (Marcel) and another for

communication (Madeleine). Using suú libraries in C, we developed a message-

passing system, PM2-Prolog that allows for the creation of Prolog threads and

communication between them.

The FIPC community has developed other programming environments

besides P\VI?, suú as PVM [Sunderam, t9901, OpenMPI [Gabriel et a1.,2004] or

TreadMarks [Keleher et al., 19941, building a base for the development of multi-

threaded applications in distributed environments. Nevertheless, the viability of

combining suú environments with logic programming has been conÍined to a

few studies,like PVM-Prolog [Marques and Cunha, L9961.

Such combination is specially suitable when dealing with:

o Applications that potentially have some degree of parallelization whose

performance needs to be improved;

o Applications comprised of intelligent agents, hosting one or more agents

per machine;

o Scientific and business problems, such as simulation applications, that pro-

duce large amounts of data that need to be processed for visualization, data

mining or maúine learning. For many cases, faster results can be poten-

tiully achieved, subdividing the problem and processing each sub-task in a

diffrrent processor;

o Applications where some loss of accuracy in result can be traded for faster

execution times.

When dealing with computationally intensive problems on multi-processor

or multi-core arúitectures, creating and optimizing threaded applications can

2



improve performance, since each thread can be assigned to a diffierent processor

unit or core. And with the arrival of multi-core processors, building up a super

computer by assembling several smaller ones, becomes easier and cheaper than

ever.

The use of such arúitectures can reduce the program execution time, some-

times very significantly, although there is a limit on the number of threads that are

efÍectively running in one CPU at the sarne time, i.e., that are not blocked awaiting

re-schedulingby the operating system, since the number of cores or processors in

a single machine is finite.

One way to work around this limitation is to use a distributed multi-

threading environment. Pl:[lf^2, as such an environment, contains features that

solve some important problems of distributed computing, to narne a few:

o transparent deployment of binaries throughout the network;

o implementation of low-level thread m€rnagement routines (Marcel);

o implementation of low-level communicaüon routines (Madeleine);.

o hard distributed computing problems already approached, such as the dis-

tributed termination detection;

o distributed debugging facilities;

o conÍiguration framework for network hosts

Our motivation was also spurred on by the fact that "Marcel" [Namyst and

Méhaut, L9951and "Madeleine" [Aumage, 20021are both available for various

network hardware and architectures.
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1,.2 Objectives

While carrying out the work described herern, our goal was to develop a

system that:

r Allows distributed multi-threaded applications in Prolog to be developed

o Aúieves faster execution times than sequential Prolog systems for problems

that have some degree of parallelization.

o Allows a wider range of Prolog applications to be used.

o Helps to study the viability of combining Prolog and I{PC (High-Performance

Computing).

L.3 Main Contribution

This work introduces a system that allows the exploitation of explicit par-

allelism and multi-threading in logic programming, based on a well known ISO-

compliant Prolog, GNU Prolog and on PM2, a distributed multi-threading pro-

gramming environment widely used in academia.

The implemented architecture allows new abstraction layers to be easily

defined on top of it, providing a framework to develop parallel and distributed

Prolog applications, or as a layer for the support of the execution of other appli-

cations that require heavy computational resources or to which applpng some

degree of parallellization may be beneficial.
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1..4 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 provides

background material on multi-threading, namely its benefits, models,limitations

and gives ar:r example of a multithreaded Prolog program.

Chapter 3 is about parallel systems and logic programming. Concepts

needed to understand the thesis continue to be presented in short form and

related parallel Prolog systems are subjected to appreciation as well as the most

recent level of development of similar systems.

Chapter 4 describes PM2-Prolog in detail, its implementation, design and

architecture. The API it provides is listed and an explanation of how to use it is

also provided. Observations about ISO compatability are made and PM2-Prolog

is compared to a similar system, PVM-Prolo& in terms of usage.

In Chapter 5 the system is experimentally evaluated and the obtained

performance results d i scussed.

Finally, Chapter 6 draws conclusions and outlines possible proposals for

fufure work.
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Chapter 2

Multi'Threading

Each single-thread process is a sequential program, namely, a sequence of

statements that are executed one after the other. Whereas a sequential program

has a single thread of control, a concutrenú program has multiple threads of control.

The next figure illustrates the difference between a single-thread program and a

multithreaded one:

Thread

§lnglethreaded Multl-threadeíl

Figure 2.0.L: Single and multithreaded program.

Athread, sometimes calledalightrareightprocess, is di.:fferentfromaprocess

because when creating threads, they are added to the existing process rather than

starting in a new process. Processes start with a single thread of execution and

can add or remove threads throughout the duration of the program. Also, unlike

processes, whichoperate in difÍerentmemory spaces, allthreads inaprocess share
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the same memory space. Additionaly to this global shared memory space, each

thread has a private area for its own local variables.

Threads have the advantage over processes in that multiple threads can

cooperate and work on a shared data structure to fasten the computation. By

dividing the work into smaller portions and assigning each smaller portion to a

sepÉúate thread, the total work can be completed more quickly.

Muttiple threads are also used in high performance database and Lrternet

seryers to improve the overall throughput of the server. With a single thread, the

program can either be waiting for the next network request or reading the disk to

satisfy the previous request. With multiple threads, one thread can be waiting for

the next network transaction while several other threads are waiting for disk I/O

to complete.

hr a concurrent program the multiple threads work together by communi-

cating with eaú other. Communication is programmed using shared variables

or message passing. When shared variables are used, one process writes into a

variable that is read by another. When message passing is used, one process send

a message that is received by another.

Independently of the form of communication, often away to synchronize

threads with each other is needed. There are two basic kinds of synchronizaion:

mutual exclusion and condition synchronization. The first is based on ensuring

that critical sections of statements do not execute at the same time. The second

consists on delaying a process until a gtven condition is true.

7



2.1 Benefits

According to [Silberschatz et a1.,2000], the benefits of multithreaded pro-

gramming can be broken down into four major categories:

o Responshteness; Multithreading an interactive application is essencial to en-

sure the program continues responding even if part of it is blocked or is

performing a lengthy operation.

o Resource sharing: By default, threads share the memory and the resources

of the process to whiú they belong. The benefit of code sharing allows an

application to have several different threads of activity all wittrir:t the same

address space.

o Economy: Allocating memory and resources for process creation is costly.

Because threads share resources of the process to which they belong, it is

more economical to create and switch the thread context.

o Utilization of multiprocessor architectures: The benefits of multithreading can

be greatly increased in a multiprocessor architecture, where each thread may

be running in parallel on a different processor.

2.2 User-space and Kernel Threads

User-space threads are created, terminated, synchronized, scheduled, and

so forth using interfaces proüded by a threads library. Because user-space threads

are not directly visible to the kernel (which is aware only of the pÍocess containing

the user-space threads), user-space threads require no kemel support. Any user-

level thread performing a blocking system call will cause the entire process to

block, even if there are other threads available to run within the application.
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IQrnel threads are supported directly by the operating system: thread cre-

ation, scheduling and management are done by the kemel in kemel space. Because

thread management is done by the operating system, kernel threads are generally

slower to create and manage. However, since the kemel is managing the threads,

if a thread performs a blocking system call, the kemel can schedule another thread

in the application for execution.

2.3 Thread States

Tlpically, a thread is in one of the following states:

o New - execution has started.

o Runnable - running in the system scheduler

o Blocked - waiting for a mutex or Íesource.

o Dead - execution is stopped and cannot be resumed.

Figure 2.3.1 illustrates the states inwhiú a thread mightbe and the acüons

leading to each state.

2.4 Models

According to [Silberschatz et a1.,2000], many systems provide support for

both user and kemel threads, resulting in different multithreading models.

Themany-to-onemodel maps many user-level threads to one kernel thread,

with thread management being done in user space.

9



blocked

runnable

newÍtêw ___;
§u§pondtl

Figure 2.3.1 Thread states.

the one-to-one model maps each user thread to a kernel thread. As [Sil-

berschatz et a1.,20001 says: If prooides more concutrency tlan the many-to-one model

by allowing another thread to run when a thread makes a blocking systnn call. lt also

allows multiple threads to run in parallel on multiprocessors. The drawback,

also according to lSilberschatz et a1.,20001, to this model is that creating a user

thread requires creating the corresponding kemel thread. Because the overhead

of creating kernel threads can burden the performance of an application, most

implementations of this model restrict the number of threads supported by the

system, for example Windows NT and OSl2.

Other systems like Solaris, IRX, and Digital UND( implement a model

that suffers from neither of the shortcommings described till now. The many-to-

many model consists in mapping user-level threads to a smaller or equal number

of kernel threads. The number of kemel threads may in fact vary for either a

particular application or a particular maúine (an application may allocate more

kemel threads on a multiprocessor than on a uniprocessor).

L0



2.5 Limitations

To quote [Silberschatz et a1.,2000]: "a thread is a flow of control within a

process. A multithreaded process contains seoeral different flows of control within the

same address space. The benefíts of multithreading include increased responsirteness to

the user, resource sharing, economu, and the ability to take adoantage of multiprocessor

architectures."

However, although it is quite practical to have multiple threads with a

single CPU or a mulüprocessor system, with user-space threads, there is no au-

tomatic time sharing [Dowd, L9931, which is useful when threads all want to

perform simultaneous CPU-intensive computations. To have automatic time

sharing, threads need to be created, managed, and scheduled by the operating

system rather than a user-space library.

When the operating system supports multiple threads per process, we can

begin to use these threads to do simultaneous computational activity. There is still

no requirement that these applications be executed on a multiprocessor system.

When an application that uses four operating system threads is executed on a

single processor machine, the threads execute in a time-shared fashion. If there

is no other load on the system, each thread gets 1,l4of the processor. While there

are good reasoÍrs to have more threads than processors for non computational

heavy applications, it's not efficient to have more active threads than processors

for computer-intensive ones because of thread-switúing overhead.

With operating-system threads and multiple processors, a progrÉrm can

realistically break up a large computation between several independent threads

and compute the solution more quickly. Of course this presupposes that the

computation could be done in parallel in the first place.
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2.6 Multi-Threaded Prolog Example

In this section we will look into a complete multi-threaded program in

SWI-Prolog as Íu:r example of a multi-threaded application in Prolog.

The prograrn we propose is an implementation for the dining philosophers

problem.

According to ]im P1ank and Rich Wolski [Plank and Wolski]:

u 
The dining philosophers problem is a classical synchronization problem. Taken at

face oalue, it seems like a meaningless problem, but it is typical of many synchronization

problems that are seen for example when allocating resources in operating systems.[..l

The problem is roughly defined as follows: There are 5 philosophers sitting at a round

table. Betwem each adjacent pair of philosophers is a chopstick. ln other words, there are

floe chopsticlcs. Eachphilosopher does two things: think and eat. The philosopher thinlcs

for a while, and then stops thinking and becomes hungry. When the philosopher becomes

hungry, he/she cannot eat until ht/she owns the chopsticlcs to his/her left and right. When

thephilosopher is done eatingh(sheputs doumthe chopsticlç andbegins thinking again."

There are several solutions proposed to solve this problem. In the example

that will follow we use the easiest one, that consists on having each chopstick be

a monitor (mutex), and eaú philosopher will attempt to pick up the úopstick on

his left first, then right, then eat, then put down the right one, and then put down

the left one.

The only time that this solution is a problem is if a philosopher's thread

gets preempted between picking up the first and the second mutex. For sake of

simplicity we have left that case out.

The example was tested to work with SM-Prolog 5.2.13 multithreaded.

One example call could be init(100). The code is presented on Appendix B.

12



The limitation of this program is that it can only nrn on a single-machine.

Although SWI-Prolog supports basic interacüon with the underlying operating

system that could be used to implement a distributed multi-threading Prolog sys-

tem, it would be difficult to support important aspects of parallel and distributed

programming, such as portability and fault-tolerance, without decreasing the

high-level of Prolog predicates.

13



Chapter 3

Parallel Systems and Logic

Programmrng

By default, statements inside a computer progÍam execute sequentially,

one at a time, one after the other. The goal of multi-threading and parallel

progÍamming is to execute a program faster by working around this limitation.

Concurrent programming originated in the L960s within the field of op-

erating systems. Creating device controllers that operated independently of a

controlling processor and allowed an VO operation to be carried out concurrently

with continued execution of progÍam instructions, required that parts of a pro-

gram could execute in unpredictable order.

The recent several years have witnessed an ever-increasing acceptance and

adoption of such systems, both for high-perforÍnance scientific computing and

for more general purpose applications.

Such systems range from a few hosts to thousands of CPUs and offer

enorÍnous computational power that is used for problems such as global climate

modelling and drug design.

a
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3.L Logic Programming

Logic programming differs from other progÍamming languages because

problems and algorithms are expressed by using logic instead of constructing

sequences of actions that man:ipulate mutable state inÍormation.

A case for using Prolog is presented below:

o An algorithm can be thought as being a combination of logic and control. Due

to its logic nafure, most control in Prolog is ommitted, g1en more chance to

concentrate on the problem at hand rather than on the behavior of the program.

o Unlike imperative programs, which have only a procedural interpretation, logic

programs also have a declarative,logical interpretatiory which hetps to ensure

their correcfuress.

o Scoping rules are simple and uniform in Prolog, and declaration of variable

names and types is not required, thus reducing code size.

o Prolog is a general-purpose programming language with efficient implementa-

tions available on most computing platforms today.

[McCarthy, 19591was the first to publish a proposal that mathematical

logic could be used for programming, but it was not h111972 that Prolog, the still

only one widely available language of its kind, was developed.

It was first infroduced for natural language processing in French, but it

has since then been used for specifying algorithms, searching databases, writing

compilers, building expert systems and many other kinds of applications. Prolog

is especially suited for applications involving pattern matching, backtrack search-

ing, or incomplete information. A historical perspective of the development of

Prolog can be found in [Colmerauer and Roussel,t996l.

15



As with any programming language, Prolog arguably also has some limi-

tations. Some of them are of technical and others are more of a social nature, such

AS:

o Non-logical predicates (e.g. writehy'L, findal|3, !/0) reduce the inherent logic

of programs because they don't have a direct logic meaning and some have

side-effects (output text or modifying the database).

o Steps may be repeatedly derived by the theorem-proveq, being possibly redun-

dant.

o The modules system varies from Prolog system to Prolog system and without

portable libraries, users are easily trapped into a single Prolog implementation.

o To quote Paulo Moura [Moura, 2006] the "lack of code sharing means that Prolog

prografitmers cannot bootstrap their applications without being trapped in some propi-

etary implementation, «ten for basic taslçs. Iack of libraries and bindings for popular

APls mnlces chnosing Prolog as an industrinl tool a risky yroposition' , even when the

advantages whencompared with other languages may seemin favor of Prolog.

r Also, Paulo Moura [Moura,2006] adds that"Broad sharing of Prolog codebetwem

implanentations suffers ftom both arcak ISO Prolog standards and lack of knowledge of

the current standards by Prolog programmer*" .

It is possible to overcome some of these limitations, for example, by com-

bining Prolog with other languages. Combining Prolog and C is a trivial task

using the foreign language interface that most Prolog implementations offer.

SWI-Prolog and GNU Prolog, for example, offer such interface in which

a foreign predicate is a C-function that has the same number of arguments as

the predicate represented. C-functions are provided to analyse the passed terms,

convertthemtobasicC-types aswellas to instantiate arguments usingunification.

L6



Non-deterministic Íoreign predicates are also supported, providing the foreign

funcüon with a handle to control backtracking.

On the C side, it is also possible to call Prolog predicates, providing both

an query interface and an interface to extract mulüple solutions from an non-

deterministic Prolog predicate. For S\M-Prolog, according to [Wielemaker,1997l:

"there is no limit to the nesting of Prolog calling C, calling Prolog, etc. and it is possible

to write the'mnin' in C and use Prolog as an embedded logical ut§ne".

It is also possible to combine Prolog and other languages besides C. Such

an example is the S\M module for Perl programming developed by Robert Barta

[Wielmaker, 2000] or one of the libraries currently available to combine Prolog

and ]ava [Calejo, 200U or P# lCook, 20011, that allows interoperation between

Prolog and C#.

3.2 Parallel Architectures

Irr a network of computers, each computer (node) has fast access to its own

local resources, including memory. T1o access the memory of other nodes, requests

have to be made over the network (distributed mernory architectures). On top of

these mechanisms, usingtheVM'spagtngsystem, eachnode mayhave access to a

large shared memory in addition to its own private memory. Such an organization

is called DSM (distributed sharedmemory architecture).

Each node in a network may of course be a shared memory multiprocesso{,

where processors share access to a common memory space úa a high-speed

memory bus. This global memory space allows the processors to efficiently

exúange or share access to data. Typically, the nurnber of processors used in

shared memory architectures is limited due to the amount of data that can be

17



processed by the bandwidth of the memory bus connecting the processors.

Several modern parallel computers use a mixed shared/distributed mem-

ory arúitecture. Each node consists of a group oÍ 2 to N processors connected

via local shared memory and in turn, those nodes are connected üa a high-speed

network.

Although parallel arúitectures are mostly designed with the goal of solv-

ing problems too big for any single supercomputer CPU, they also permit sharing

other resources, e.g. storage, which are increasingly needed.

3.3 Implicit and Explicit Parallelism

hr order to explore the potencial provided by parallel systems, researú in

logic programming has developed along two major strategies [Gupta et al., 200L,

Wielemaker,2003l.

The first approach relies on erplicit parallelism, where message passing

primitives are added to Prolog for concurency or by modifying the semantics of

the logic programming language in a suitable way (Delta Prolog [Pereira et al.,

19861and CS-Prolog [Futo, 1993D. Systems that rely on this approach usually run

multiple Prolog processes in parallel and can be classified as follows:

o those that add explicit message passing primitives to Prolog;

o those that add blackboard primitives to Prolog;

o those based on guards and data-flow synchronization.

Another approach exploits implicit parallelism in logic programs. This

18



means parallelization of the execution can (potentially) occur without any input

from the programmer.

Two main forms of implicit parallelism have been explored in logic pro-

gramming [Gupta et al., 200L, Wielemaker,20037. And-Parallelism is based on the

parallel evaluation of the various goals in the body of a dause. This form of par-

allelism is usually further subdivided into lndependutt And-Parallelism in which

the goals are independent, that is, they do not share variables, artd Dependent

And-Parallelism, in which goals may share variables. In contrast, Or-Parallelism

corresponds to the parallel execution of alternative clauses for a given predicate

goal. Also there are approaches where both and- and or-parallelism are exploited

[Costa et al., L99tbl.

The next figure illustrates the several strategies for exploring parallelism

in logic progÍamming:

Figure 3.3.L: Strategies for exploiting parallelism in logic Programming.

Although implicit parallelism is appealing because the sequenüal progtam-

ming model is retained, providing the ability to parallelize legary code, there is a

limit on how much parallelism can be found, and current techniques only work

on certain kinds of programs.

ÂnÍl-Paralelism
oaFrulent

fdeFÍdênt
Or-PâÍa[Êlism

Hybfld Solutlons

lmp[clt

Panllelism

E.p[cii

Mresage-Padng

Blackhanl

Guaíds síd Dats Flffil
eynchronlza$on

19



Implicit parallelism can be applied in many cases, but current techniques

can't achieve maximum parallel potential for all problems. This seems an oppor-

tunity to further explore explicit parallelism and increase the range of problems

that can be solved using parallel logic programming.

Since explicit and implicit approaúes are complementary they can appear

together in a single programming language. Such hybrid approach is exemplified,

for instance,by the &-Prolog system [Hermenegildo and Greene, 199L1.

3.3.1" Message Passing Libraries

One of the basic methods of explicit parallelism is the use of message

passing libraries. These libraries manage transfer of data between instances of a

parallel program running (usually) on multiple processors in a parallel computing

architecfure.

The Message Passing hrterface (I\4PI) is the de facto standardl for computer

program communication in High Performance Computing (HPC) environments.

There are many implementations of the MPI standard, created by different groups

in industry, academia, and govemment labs. MPI allows for the coordination of

a program running as multiple processes in a distributed memory environment,

yet it is flefble enough to be used in a shared memory system as well.

Recently, a merge between three well-known MPI implementations re-

sulted in Open MPI [Gabriel et a1.,20041. These implementations are FI-MPI

lFagg et a1.,2003] from the University of Tênnessee, LA-MPI [Grúam et al., 2003]

from Los Alamos National Laboratory and LAIVIIVIPI [Squyres and Lumsdaine,

lThe MPI standard is comprised of 2 documents: MPI-L (published n1994) and MPI-2 (pub-
lished n 1996). MPI-2 is, for the most part, additions and extensions to the original MPI-I
specificaüon. The MPI-1 and MPI-2 documents can be downloaded from the official MPI Forum
web site: http//www.mpi-forum.org/.
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2003] from Lrdiana University. The PACX-MPI team at the University of Stuttgart

is also collaborating as part of the Op". MPI as well as major companies like

Cisco Systems, IBM and Sun Microsystems. Each of the MPI implementations

mentioned earlier excelled in one or more areas and the Op", MPI effort ef-

fectively contains the union of features from each of the previous MPI projects

[Grúam et al., 2006, Angskun et al., 2006a, Keller et al., 2006, Angskun et al.,

2006b, Hoefler et al., 20061.

3.4 Blocking and Non-Blocking Communication

The network communication between two computers can be implemented

by using blocking or non-blocking primitives. Blocking primitives, âlso called

slmchronous, are those that do not return from the subroutine call until the opera-

tion has actually completed. Thus, it ensures that the relevant completion criteria

have been satisfied before the calling process is allowed to proceed.

\{ith a blocking "send", for example, the variables sent can safely be overwritten on

the sending process. \4ith a blocking "receive", the data has actually arrived and is

ready for use.

A non-blocking (or asynúronous) "send" or "receive" returns immedi-

ately, with no information about whether the completion criteria has been sat-

isfied. According to [Team RUNTIME,200Ll, this has t}rte "adoantage that the

processor is free to do other things while the communication proceeds in the background.

Tests can be made later to check whether the operation has actually cornpleted" .
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For example, a non-blocking "send" retums immediately, although the operation will

not be complete until the reception of the message has been acknowledged. The

sending process can then do other useful wor§ testing later to see if the operation

is complete. Until therç howeveq, it can not be assumed that the message has been

received or that the variables to be sent may be saÍely overwritten.

3.5 Problem Decomposition

An approaú to design a parallel algorithm is to decompose the problem

into smaller tasks. These can then be assigned to processors whiú will work

simultaneously, with some coordination. This decomposition can be made focus-

ing on the problem domain or on the functions used to solve the problem. It is

important to distinguish between these two techniques.

}r domain decomposition the program input is divided into smaller inputs

of approximately the sarne size and then mapped to different processors. Each

processor works only on the portion of the input that is assigned to it. Of course,

the processes may need to communicate in order to exchange data.

The domain decomposition strategy is usually not very efficient because

the data assigned to the different processes may require different lenghts of time

to process, making the performance of the progÍam limited by the speed of the

slowest process.

hr such cases, a more efficient strategy will be to use functional decom-

position or "task parallelism". This approaú consists of parallelizing what is

commonly called a task or a iob, that can be identified as a piece of code that is

independent and that can be seen as a function, having an input, some processing
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time working and an output. The tasks are assigned to the processors as they

become available, and processors that finish quickly are assigned more work.

hrboth scenarios it is also necessary to consider that an overhead in terms

of time exists when we Íúe talking about parallel computations. This is due to

task coordination and can include factors such as:

o Tâsk start-up time;

r Synchronizations;

r Data communications;

o Software overhead imposed by parallel compilers, libraries, tools, operating

system, etc;

o Task termination time.

On the conducted work, we try to have a small glance on the results that

canbe achieved from exploring Logic progÍamming withboth these approaúes.

3.6 PM2 - Parallel Multithreaded Machine

PM2 [Namyst and Méhaut, L9961is a distributed multi-threading pro-

gramming environment designed to support irregular parallel applicatioÍrs on

distributed architectures. A problem/algorithm is considered to be irregular if it

involves pointers, such as in algorithms on trees or graphs.

For thread management it uses Marcel, a tserlevel multi-threading li-

brary with support for several different platforms. The communication between
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threads is made using Madeleine, the communication library oÍ.PiV,Í.2, that is avail-

able on top of various network hardware such as Myrinet, SCL Ethernet or VIA

and runs on the following architectures: Linux/IA32,Ltnu;l./y'úpha, Linux/Sparc,

Linux/PowerPC, Solaris/Sparc, Solaris[A32, AIX/P owerPC, WindowsNTÂA32.

PM2 adheres to the SPMD (Single Program Multiple Data) programming

model, in a way very similar to the PVM [Sunderam, L9901and MPI [Graham

et al., 20061communication libraries. The user writes a single progÍam text, a

copy of which is launched by a specific load command on each processing node

of the current configuration. Then, it is up to this corunon program text to

indude branúing so as to differentiate between the processing nodes, based on a

programming scheme exemplified by Program 1.

Program l Branúing to differentiate between processing nodes in PM2.
if(pm2-selfO == g1 { /" Do something "/ }
else { /" Do something else... o/ }

This approach has the advantage of providing a single flow of control. At this

level of presentatiory a processing node is simply a Unix process. The association

between processing nodes and pltysical nodes is made by the pm2conf command,

which defines a static configuration that will be used next time an execution is

requested.

3.7 Related Parallel Prolog Systems

Researchers in the field of logic programminghave longrealized the poten-

tial for the exploitation of parallelism present in the execution of logic progÍarns

as can be witnessed by the significant number of systems that were implemented

with this goal in mind.
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Examples of the multitude of such systems are Aurora [Lusk et al., 1988],

Muse [Ali and Karlsson, 1-990], &-Prolog [Hermenegrtdo and Greene,\991l,DDAS

[Shen, L9921, Andorra-I [Costa et al., 1991"ah1, Parlog [Clark and Gregory,19861,

GHC [Ueda, t9851, KL/1 lUeda and Chikayama,L99}l, YapOr [Rocha et al., 19991

to name a few.

úr the context of the present wor§ particular focus is first taken on systems

that exploit explicit parallelism based on message passing and then on Prolog

systems that support multi-threading. We chose only a few systems that we think

are representative enough of the state-of-the-art in the context of parallel and

distributed logic programming.

3.7.1 Message Passing

Both Delta Prolog [Pereira et al., 1986land CS-Prolog [Futo,tggSlpresent a

system where multiple Prolog engines are mapped to processes that aÍe ruflfng
in parallel and communicate with each other via explicit message passing. These

implementations were the first systems that exploited explicit parallelism based

on message passing for Prolog.

PVM-Prolog [Marques and Cunha, l996lintroduced a programming inter-

face to the PVM system where multiple distributed Prolog processes cooperate

using a message passing model. This is very close to what is presented since PVM

is itself very similar toPlvl2, one fundamental difference being that PM2 can itself

sustain more than one entity of the application on each node.
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3.7.2 Multi-threading

With respect to multi-threading, Prolog systems commonly offer imple-

mentations based on the POSIX threads (pthread) API [Butenhoí 19971. This is

exemplified by Qu-Prolog [Clark et al., 20011, SICStus MT [Eskilson and Carlsson,

19981,IC-Prolog tr [Chu, t9941, PMSProlog [Wise, L9931and more recently by

S\M-Prolog [Wielemaker, 2003].

úr these implementations each Prolog thread is normally a POSD( thread

running a Prolog engine and threads communicate among each other either by

using FIFO message queues or a blackboard system (an area of shared memory).

3.7.3 Assertions

Regarding assertions, for example in SWI-Prolog, according to [Wiele-

maker, 2003]: by default, all predicates, both static and dynamic, are shared between

all threads. Changes to static predicates only influence the test-edit-reload cycle.

As for dynamic predicates, a goal uses the predicate with the clause set as found

when the goal was started, regardless of whether clauses are asserted or retracted

by the calling thread or another thread (lWielemaker,2003]). Thread-local pred-

icates are dynamic predicates that have a different set of clauses in each thread.

Modifications to suú predicates using assert/1 or retracflL are only visible from

the thread that performs the modification ([Wie1emaker,2003]).

3.7.4 Synchronisation

For slmchronisatiory in most cases, for example between threads in SIm-

Prolog, mutexes are used.
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3.8 Summary

According to [Silberschatz et al., 20001, we saw that 'a thread is a flow of

control within a process. A multithreaded process contains sweral diffuent flows of

control within the same address space. The benefits of multithreading include increased

responsiaeness to the user, resource sharing, economy, and the ability to take adoantage

of mult ip r o c es s or ar chit e ctur e s. "

Modemparallel computers use a mixed shared/distributed memory archi-

tecture. Eaú node consists of a group oÍZup to N processors connected via local

shared memory and in tum, those nodes are connected via a high-speed network.

PM2 is a distributed multithreaded programming environment, that ad-

heres to the SPMD (Single Program Multiple Data) programming model, in a way

very similar to the PVM and MPI communication libraries. The user writes a

single program text, a copy of which is launched by a specific command on each

node of the current configuration.

Most Prolog implementaüons offer libraries and modules to supportbasic

interactionwiththe underlying operating system, suchas access tothe file-system,

forking a process or TCPIIP communication.

Although these libraries could be used to implement a distributed multi-

threading Prolog system, they usually offer low-level routines that are difficult to

work with to support important aspects of parallel and distributed programming,

such as portability and fault-tolerance.

These aspects are supported by distributed programming environments

like PVM and PM2, that already account for such problems but rarely offer access

to Prolog.

An integrationbetween Prolog and PM2will allow prograrnmers to exploit
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parallelism and develop distributed multi-threaded Prolog applications.
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Chapter 4

PM2-Prolog

PM2'Prolog is a system that allows the development of distributed multi-

threaded Prolog applications, using GNU Prolog and PM2.

Since PM2 prograÍs are developed in C and GNU Prolog is a Prolog

engine and compileq, it was necessary to estabilish a model for connecting the

two programming environments.

The approach used doesn't involve modifications in GNU Prolog neither

modifications in PM2. Instead, it relies on:

. a new program (Tiabardl), written in C with the PM2libraries, that manages

distributed instances of gprolog engines, and that is transparent for the

end-user.

. a new Prolog library (pm2prolog-1ib), implemented partly in C and partly in

Prolog, which allows the development of distributed multithreaded Prolog

applications.

lliterally, a tabard is a short coat, that in the late middle ages was wom by knights over their
armour. This fits nicely as a name because Tabard will allow "weaÍing" a Prolog prograrn over
PM2 (the armour).
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Whenusing a PM2-Prologprogramwe first generate thebinary that results

from the compilation of our Prolog program linked with Tâbard, the libraries of

PM2 and the libraries of GNU Prolog. To ease this compilation task there is a

Makefile available in Appendix A.

Before compiling there is a configuration that specifies the list of maúines

on which the application is going to run. That configurations maps one or more

processing nodes or virtual processors (VPs) to each machine. While it may seem

coÍunon sense practice to use one virtual processor per physical node, nothing in

PM2-Prolog requires such association, as we will see in detail later.

Then, the binary is executed via the PM2 command pm2load, e.g.:

$ pm2load helloworld

Hello tr{orld

This command starts the following execution model:

L. The binary is copied to all the machines. The mainO function of Tabard is

called on every VP.

2. InVP 0 (master) a gprolog engine is created calling Start}rologO, that will

start executing the linked Prolog code.

3. h the other VPs (workers) a pthread in C is created and stands awaiting

messages. This is done via a call to a blocking read Madeleine function.

4. h the master, now in the Prolog thread, a predicate is called to send a mes-

sage to every workeq, ordering the starting of a Prolog thread by calling

Start-PrologO.

5. The workers receive that message, iniüate a gprolog engine and the new

Prolog thread stands awaiting more messages to come by calling a blocking

read pm2prolog-lib predicate. At this time, there are two threads awaiting

messages, one in C and another in Prolog, for each worker.
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6. In the master, work is distributed throughout the workers through message-

passing.

7. The workers receive tasks which they execute locally. As soon as they finish,

they send their results back to the master and refurn to their prior state,

awaiting for messages.

8. The master assembles the work results by reading as many messages as the

number of previously sent messages.

9. The master redistributes work again (5.) or orders the workers to finish their

execution.

L0. The workers terminate.

LL. The master reiniciates the workers (4.) or terminates itself.

Some of the aspects described in the above model are hansparent for the

end-user and some require explicit use or the program may not work correctly in

the distributed environment.

llnked

oomplledwithgcc

loadedvtapmâoad

H6t I Ho$a Ho6il N

Figure 4.0.1 PM2-Prolog copies the program into each configured host and executes.

A general picfure of the execution model as seen by the end-user, indepen-

dently of the Prolog program itselí is given in above figure.
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4.1. Threads in PM2-Prolog

A thread is most commonly described as a flow of execution. A computer

program has commonly only one flow of execution, that goes from its first in-

struction to the last, not necessarily in sequential order. In Program 2 we can see

.m example of a PrologprogÍam that counts the occurrences of a number in a list.

This program, as most computer programs, has only one flow of execution.

Program 2 A Prolog program to count the occurrences of a number in a list.

:- initialization(init).

init:- n-occurs(2, [23, 35, 2, 6, 43,2, 9], O),
write(O),nl,halt.

7o n-occurs(+X, +List, -N)
n-occurs(X, L, N):- n-occurs(X, L, 0, N)

n-occurs(-, [], Acc, Acc):- l.

n-occurs(X, ElYs], Acc, N):-
X\=Y,
n-occurs(X, Ys, Acc, N).

n-occurs(X, Xlxsl, Acc, N):-
Accl is Acc + 1,
n-occurs(X, Xs, AccL, N)

If wewere to execute Program2 inaparallel computer followingthe SPMD

paradigm, the init predicate, where the program starts, would be called on all

computers or processing nodes thus originatiog N equal threads of execution

running concurrently. The program would still have a single flow of control but

now that flow would be executed once in each node. The list could thenbe splitted

across the processing node which would work with a smaller search-space than

before.

In PM2-Prolog eaú machine in the configuration will have a C thread

(listener) and a Prolog thread, for each VP. The purpose of the C thread is to

control the associated gprolog engine that runs in the Prolog thread, in terms of
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creation, termination, monitoring, etc.

Since GNU Prolog doesn't support multi-threading, PM2-Prolog novelty

is that it allows to control more than one gprolog thread in the same maúine

without introducing changes in GNU Prolog itself.

Also, with this approach, we transparently support all predicates of the

GNU Prolog libraries, which would not happen if we were to modify the gprolog

engine to support multi-threading in which case ma.ny predicates would require

modifications.

In summary, we achieve a multi-threading that is very appellative from a

technical point of üew but that for each Prolog thread has an attached C thread.

However, once GNU Prolog introduces support for multi-threading it is trivial

to change to an architecture where there is only one C thread by machine that

controls N gprolog threads.

4.1.1. Task-Fanning in PM2-Prolog

Branching is cmcial in PM2-Prolog since it allows to differentiate between

the different threads and execute different things in each one to our benefit. The

case described earlier, in which we have amaster thread, that distributes tasks to

be done by the workers is known as taskfarming arrdis a commonly used way of

parallelizing applications. AIso, as described earlieX, the communicationbetween

master and workers occurs by message-passing, as illustrated on the figure 4.1,.1.

The master thread and the workers execute in a VP and what happens

inside each VP deserves a closer look. A VP is a Unix process that receives a

unique ranknurtbet

This rank is an nnsigned int between 0 and pm2-rnaxrar*/L, the configu-
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Figure 4.1.1 Tâsk farming strategy to parallelize a program.

ration size. A VP can learn about its own rankby calling pm2-self/l.

4.1.2 Listener Thread

Processing nodes are able to execute code and simultaneously check if *y
messages arrives. The listener thread receives commands or orders in form of

messages that can result in different actions being carried out on a specific VP,

suú as creating another thread or execute specific code.

Two important messages were specified and implemented: 1) create a

Prolog thread and 2) terminate the listener thread. All other messages that arrive

at a VP will be interpreted not as conunÉlnds, but as conunon messages that must

be delivered to the running Prolog thread inside that VP. A medranism of quoting

to enable passing messages equivalent to these command is not yet implemented,

but is being thought of.

As can be observed on the above figure, the listener thread and the Prolog

thread communicate using a shared data structure. The listener delivers messages

by writing them to amessage queue and the Prolog thread accesses them by reading

Masiter
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Figure 4.1.2: Inside a processing node or vfutual processor.

inFirst ln, First Out (LBO) order from that structure. The message queues provide

a meaÍrs for threads to wait for data without using the CPU. Other meaÍrs to do

this, like checking via a polling loop, would cause busy-waiting, that generally

should be avoided.

The listener thread receives messages from a socket and the Prolog thread

sends messages via its listener "support" thread.

The Prolog thread can also write to its message queue in the special case

where the destination VP is the sarne as the sender.

E,hread send_message/2

thread_get_message/2

pm2_se1f/1

write_message_queue ( )

St,art_Prolog ( )

Stop_Prolog ( )

SOCKET
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4.2 CommunicationScheme

hr terms of communication, the Madeleine layer [Aumage, z}l2lprovides

an API that is similar to POSD( socket. Around this API we've implemented

primitives for sending and receiving Prolog terms over the network. As with

Madeleine, it is also not possible in PM2-Prolog to know the source address when

a message is received. Complementary, we observe that most applications don't

have this requirement. That doesn't mean we will only communicate between

master and workers, because we can configure any host which is network acces-

sible.

To implement the routines we needed to be able to convert a Prolog term

into a C string and also be capable of doing the opposite process. This is required

since the Madeleine routines receive a (char *) bufÍer as an argument.

The approach used consists in transforming the term to a character code

list by using the built-in gprolog predicate writeq-to-codes/2. This is similar to

write/Z except that characters are not written into a text'stream but are collected

as a character code list which is then unified with the first argument.

By using the foreign type term a C string will be ready to be sent. On the

reception side, once the string is read we use llk-CodesO to convert it again to

a draracter code list and read-terrn-from-codes/3 to transform it back into the

original Prolog term.

Threads li rit g on distinct nodes may not directly interact together unless

by message-passing. When this happens the listener thread receives the message

and is responsible for delivering it to the correct local thread.
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4.3 Thread Management

Prolog threads are created by calling marcel-createO, that is part of the

Marcel [Namyst and Méhaut,L995l library . Lr terms of managing threads what

Marcel oÍfers to the programmer is similar to pthreads, and so in terms of structure

the resulting thread can be considered as identical to a regular pthread. The thread

starts by executing the function given as argument to marcel-createO. In this

case, this is Start}rologO, which initializes and starts the Prolog engine.

The mutexes provided by the Marcel API are used to make the operations

on the message queue thread-safe. Their behaviour is also similar to the ones

offered by the pthread API.

One thing that also needs to be guaranteed in the message queues is that

no initial read is made before write. For that purpose another mutex has been

used, as follows:

1. The mutex is initialized and a lock is made.

2. Some VP send a message. The listener thread receives it, writes it to the

message queue and an unlock is made.

3. Since an unlock has been made, the Prolog thread will now acquire the lock

and retrieve the message from the queue. Finally, a lock is made and we go

back to step 1, starting over again when a new message arrives.

4.4 Programming Model

When developing a PM2-Prolog progÍam, three aspects were taken into

account:

L. The SPMD (Single Program Multiple Data) programming model.
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2. The task-farming model.

3. The message-passing model.

The user writes a single program text, a copy of which is launched by

a specific load command on each VP. At this point the progt.uruner typically

includes branching to differentiate between the different VP and execute different

things in each one. One predicate that is included with PM2-Prolog that can help

distinguish if we are in the master node (rank equal to zero) or in another node

is pm2-is-master/0. The following program introduces the use of this and some

other predicates introduced by PM2-Prolog's API:

Program 3 Program to identify the Master and Worker threads.

:- include(lib).
:- initialization(init).

% thread rank = 0
init:-

pm2-is-master,l
pm2-max-rank(MaxRank),
start-prolog-workers (MaxRank),

write(' Itlaster thread' ),n1,
pm2-self(Rank),
write('My rank is'),write(Rank),n1,

stop-prolog-workers (MaxRank),
finish-listeners.

% thread rank l= 0
init:-

write('!Íorker thread.' ),n1,
pm2-self(Rank),
write('My rank is'),wÍite(Rank),n1.

The predicate pm2-rnax-rank/L unifies MaxRank with the highest rank of the

configuration. pm2-self/1 unifies the rank of the current VP.

The second concern has to do with the task-farming model. Let's continue

with Program2 and now consider a predicate that can be used for distributing
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tasks by the workers. We assume that we want to look up the number of occur-

rences of a number on a set of lists. We send the list and the number to look up

over the network and propose the following progrÍIm:

Program 4 Scheduling work to be done by the workers.

r Y" all work scheduled(L):- empty(L).
z send-worker-job([],-,-).
3

a 7o round-robin the workers
s send-worker-job(L, Element, 0):-
6 pm2-max-rank(MaxRank), % obtain the rank of the hightest worker
7 send-worker-job(L, Element, MaxRank). 7o start again
8

e send-worker-job([Llls], Element, Rank):-
10 thread-send-message(vid(Rank,0), query(Element,L)),
11 NextRank is Rank - 1,
12 send-worker-job(Ls, Element, NextRank).

We loop through the workers and when we reach rank zero we call

pmZ-rnax-.ral:/r./Landstartover,inaround-robinsúeme. Thepredicatethread-send-rnessagü

is also used here, which first argument is a componnd term named vid indicating

the destination rank and the thread id inside that rank.

The first argument is a list of the existing worker ranks, the second is the

element for whiú the program will trigger a message if it finds it, and the third

is the current rank of the iterative process.

4.4.1 DealingwithMessage-Passing

Here we briefly analyse, in terms of Prolog, the impact of doing computa-

tions based on a message-passing model on program development.

A computation in Prolog is always a process of production of bindings,

known as unification.
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This unification consists in binding a variable to a value, the scope of

which is local to the Prolog process and not visible or accessible to the outside.

The binding is lost when the variable is referred in a remote node. Via message-

passing, we propose recovering the binding of a variable by reading it from

another message that the remote node should sent. As an example, consider the

Prolog predicate in Program 5 to be in single-threaded mode.

Program 5 A query call that would presumably unify the variable X.

% pred(+A, *8, -C)
pred([l,z] , ll2,2f, [3,2]l, X).

The same query in a multi-threaded application with message-passing,

would have to look as Program 6.

frogram 6 Master side
thread-send-nessage(worker-id, pred(1L,27, ll2,2f , [3,2]l)),
thread-get:nessage (X) .

And in the worker thread side as Program 7.

Program 7 Worker side.
thread-getJnessage (Pred),
(do processing)
thread-send-rnessage (master, Result) .

An example Makefile that can be used for compiling such a progÍam can

be found in Appendix A.

4.5 API

We now present the PM2-Prolog prototype API. Extending PM2-Prolog is

similar to extending any GNU Prolog program. New Prolog predicates or new C
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functions can be added using the foreign interface.

4.5.1 PM2 Facilities

pm2-self(-Rank)

Unifies with the rank number of the processing node, a unique integer number

assigned to eaú maúine.

pm2js-uraster/0

Will succeed when the rank where it is being called is zero, usually the tlread that

distributed work.

pm2.-urax-rank (-Rank)

Unifies with the highest rank number of the configuration.

finishJisteners/O

Terminates the listeners threads in eaú VP. Called upon termination.

4.5.2 Creating and destroying Prolog threads

start-prolo g-workers ( +HighestRank)

Start the Prolog thread in each VP.

4L

stop -prolo g-workers (+Hrgh estllank)



Stop the Prolog thread in each VP

4.5.3 ThreadCommunication

thread-send-message ( + Thr eadld, +Term)

Send a message to the thread Threadld with content Term. This predicate is non-

blocking, meaning it will return immediately after being called. Also, a variable

looses any binding it might have when sent to another thread.

Since eaú thread has by default its own message queue the other threads

will be unaffected by this call.

Threadld is a compound term of the form vid(Rank, Id).

thread-get-me ssage(-Term)

Fetches a message from the message queue of the current thread. This predicate

is based on a blocking read, meaning the execuüon will block, iÍ necessary, on

this thread until a message canbe retrieved. After being retrieved, the message is

deleted from the message queue.

read:esults(Numbu)

Calls thread-get:nessage/L aNumber of times.

4.5.4 lsoCompatibility

Timely fulfilling modern software requirements is only possible through

the extensive use of libraries. As a result, modernprogÍ€ürmers spend a significant
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portion of their time creating and using libraries.

The qualig *d broadness of the accompanying libraries of a particular

progÍamming language become an important part on its success, sometimes even

more than the language intrinsic characteristics.

For this reasor1 is it important that broad sharing of these libraries between

implementations exists, and that is only possible if ISO Prolog standards are

defined and known by current Prolog prograrnmers.

For Prolog systems *ishing to implement multi-threading support predi-

cates, there is a draft technical recommendation (DTR) for Prolog multi-threading

support [Moura,2007l.

Compatability wift the DTR should be reached when the following modi-

fications are made:

o Rename pm2 -sel f ( -Rank) to thread-self ( -Rank) ;

r Implement thread-create(@term, -thread, @options);

o Modify st:rrt-prolog-workers(+Number) in such a way that calling it is

equivalent to calling thread-create(@ter:n, -thread, @options) several

times;

o [mplement an alias that associates a message-queue with a distributed

thread identifier.

o Modify thread-send-rnessage/2 h order to allow receiving a message-

queue alias instead of a distributed thread identifier.
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Program 8 PM2-Prolog example: Send a message to eaú worker thread and read
each reply.

t :- initialization(init).
z :- include('1ib'). 7" include the pm2 interface lib
J

E lo wrll run on thread with rank 0
5 init:-
6 pm2-is-master,l,
7 pm2-max-rank(MaxRank), % lniÍy with the highest rank
8

9 start-prolog-workers(MaxRank), % Start-Prolog on each node
10

11 test-prolog-workers(MaxRank), 7o send a msg to eaú node
t2 read-test(MaxRank), o/" read the response
13

74 finish-listmers.
15

rc Y" wiTl run on thread with rank not 0
u init:-
18 worker-work.

4.6 PM2-Prolog Users Guide

We can observe in the above example the generic strucfure of a PM2-Prolog

program. The execution starts by calling the init,/O predicate, as indicated by the

ini ti a1 i z at i on,/ 1 directive.

The predicate is called on all nodes and with pm2-is-rnaster/0 (line 6,

Program 8) we distinguish what is executed in the master thread and what is

worker code.

Right after this predicate and following the code that is executed on the

thread with rank 0, pmz-rnax-r at,:dr./ L (ltne7 , Program 8) is used to obtain in runtime

the number of workers present in the configuration. This is useful for sending a

message to each worker in a round-robin scheme, for example.

start-prolog-workers/1 will create a new Prolog thread on each worker.

This is done by sending a message to each remote listener thread that will order
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the creation of a new pthread that will call Start-PrologQ

For sake of simplicity we have encapsulated the logic behind sending a

message to eaú worker in the predicate test-prolog-workers. The code for this

predicate is in Program 9.

Program 9 test-prolog-workers predicate.

1 test-pÍolog-workers(0):- l.
2 test-pÍolog-workers(VP):-
s thread-send-message(vid(VP,0), hello),
4 VP1 isVP-1,
5 test-prolog-workers(VP1).

The program argument is the rank of the highest worker rank, as obtained

by calling pm2-rnaxtanl<[7. We send a message to each worker by decrementing

this number until we reach zero (the master rank) on which we stop.

The readJesf/t is then executed to read the workers resporlse. It consists

of the sarne logic we saw in Program 9 but for readin& i.e. we read from eaú

worker by reading first from the highest rank and then decrementing the rank

until we reach the master rank.

Program 10 read-test predicate.

t read-test(0):- l.
2 read-test(VP):-
s thÍead-get-message(X),
a VPLisVP-1,
5 read-test(VP1).

The worker-work,/0 is the predicate called on eaú worker thread. It consists

of a blocking threadqet-messa.geÍ7 predicate that will await for a message, process

it, and send back the result back to the master thread. Our processing consists on

calling mytestgoal/2, a fictional predicate as an example, with the first argument

unified to the received message and with a second argument that can be unified

or not according to the message.
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Program l"L worker-work predicate.
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worker-work:-
pm2-self(Rank),
thread- get-message(Term),
l, mytestgoal(Têrm, X),
write('trüorker'),write(Rank),write(' +'),
write(Term), write(','), write(X), nl,
thread-send-message(vid(0,0), X),
worker-work.

mytestgoal(hello, ok).

finishJisteners/O will, also by sending a message, order the termination of

the Prolog threads.

4.6.1 Compiling a PM2-Prolog ProgÍÍrm

Before compiling a program we include the PM2-Prolog library by using

the directive include, such as:

:- include(pm2prolog).

This directive assumes the presence of the file pm2prolog.pl on the current

directory.

Then, we compile the Prolog program into a object file by using the GNU

Prolog compilergplc.

The result object file is then used on another compilation command, this

time by issuing a gcc compiler conunand, in which we link the PM2-Prolog library,

GNU Prolog and the PM2libraries with our progr€rm.

The arguments for such operation must specify tlne static flag. This makes

sure that the resulting program binary is a stand-alone that can be safely deployed
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throughout the maúines on the network. It must also assure that both the PM2

libraries and the gprolog libraries will be linked together in order to allow the

program to access PM2 functions and gprolog predicates.

An generic example Makefile that can be used to compile a PM2-Prolog

program can be found in Appendix A. The relevant part of suú file however is

presented below:

Program 12 Example usage of gcc(l) to compile a PM2-Prolog program.
tabard: gprolog-pm2.o tabard.o $(0BJECT-PL)

gcc -static -o tabard
$ (PLL)/obj-besin. o

$+
-L$ (PLL)
-lbips-fd -lengine-fd -lbips-p1
$ (PLL)/obj-end. o

$ (LrBS)
-lengine-pl -llinedit -Im

4.6.2 Configurirg and Running

The compiled version of our program is automatically placed into the

private build dtrectory of the user. The final step before execution is to specify the

list of hoshrames on which the application is going to run. This is done via the

pm2conf command.

For example, if the current machine is called ravel, and two neighboring

ones are called debussy and faure, we can configure our application to run on

the three hosts by executing:

ravel.% pmZconf ravel debussy faure

The current PI'12 configuration contains 3 host(s):
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0: ravel

L: debussy

2= faure

Eaú processing node taking part of a given execution receives its own

unique rank nunúer. In this example, PM2 will consider that processing node 0

is a process run by ravel, node 1,by debussy andYP 2by faure.

Loading and running the program is done by calling pm2load. For example,

if Program LL resulting bi.ury would be called 'hello', then the loading would be

done in the following way:

raveL%

[rlorker

trüorker

[Íorker

[Íorker

pm2load hello

L -> hello

0->ok
2 -> hello

0->ok

We can see that our progÍam generates four messages. The first one is the

expected 'hello'message comÍning from debussy. The second one is the reply

the processing node 0 received from one of nodes (we don't know which in this

example), the third is the 'hello' comming from faure and the last one another

reply that node 0 received. The order of these messages is irregular between

different executions since there isn't any mechanism of synchronization in use.

Behind this simple logic there is a number of internal operations that are

spawned and that take care of listening the network and answering to requests

that are being made by the PM2-Prolog program.

The Unix standard input/output streams for example, are protected by a
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lower code abstraction (at the PM2layer) against race conditions that could occuÍ

from the multi-threading paradigm.

From [Team RUNTIME ,20011we read that: "The processing node with rank

0 has a particulnr status because it is the only one which input/output streams are linked

to the terminal from which the application was launched. t..1 As a consequence, only the

main node of an application can access its standard input stream", for example, using

argument-Ii st/ 1 and argument-count er / 2.

While it may seem corunon seÍrse practice to use exactly one virfual node

per physical node, nothing in PM2-Prolog requires such association. For exam-

ple, a valid configuration in which two virtual nodes per physical node exist is

presented below:

raveJr% pm2conf ravel ravel debussy debussy faure faure

The current PMz configuration contains 6 host(s):

0: ravel

1: ravel

2: debussy

3: debussy

4: faure

5: faure

ú:r this example, each hosürame will host two VPs. All processes may even

be started on the same machine. Also, there is no reason why this machine should

be the one which we are logged i.. Any machine on the configured network can

be used.
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4.7 PVM-PÍolog vs PM2-Prolog

In this section we compare, in terms of usage, PVM-Prolog and PM2-Prolog.

PVM [Sunderam, 19901is a framework for parallel and distributed computing

widely disseminated in the academic community.

Both PVM-Prolog and PM2-Prolog are tools, in the form of a code hbrary,

that help in the integration of Prolog with distributed and parallel system. Both

approaches are of pragmatic character and have in mind the reach of a functional

prototype rather than a fully complete system.

We begin by describing some key PVM-Prolog predicates and concepts

that will be used later on the examples.

PVM-Prolog processes correspond to PVM tasks. The unit of parallelism

in PVM is a task (often but not always a Unix process), an independent sequential

thread oÍ control that alternates between communication and computation.

PVM task identifiers are used to idenüfy PVM-Prolog processes, as atom

names. The predicate that allows a PVM task to determine its own unique PVM

task identifier is:

pvm-mytid(-fid)

Additionally if the process is not already a PVM task, it becomes so. An-

other important predicate is pom-spaum, that allows for the dynamic creation of

new PVM-Prolog tasks.

pwn-spawn(+progname, +goal, +opt Jist, +where, +ntasla, -tidJist)
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In general, ntaslcs are created to solve the given goal tn the presence of the

specified program. prognfrme is the n€une of the file containing the Prolog program

andoptJisú and whqe are PVM speciÍic.

This predicate will spawrr a PVM task for the execution of an instance of

the Prolog engine (NanoProlog). The specified Prolog file will then be consulted

and the specified top goal activated. The newly created process is completely

detaúed from its parent. It is up to the user to control all intended interactions

between father and child, e.g. to gather solutions.

For communication, PVM-Prolog offers t}rre pam-send preücate, that allows

for sending messages to another task, while pomsncast allows multicasting of

messages, by sending the same message to several recipients, that are identified

by tidJist.

The API for úrese predicates follows:

prrm-send( +tid, +msgtag, +term)

pvÍnrncast(+tid Jist, +msgtag, +term)

4.7.1 Master/Workerlogic

PM2-Prolog has many parallels with PVM-Prolog. Both are designed pri-

marily as arl interface that allows for the development of parallel and distributed

multi-threaded applications in Prolog. One fundamental difference is that with

PVM-Prolog N tasks are spawned to execute on a virtual single large parallel com-

puter. With PM2-Prolog the number of threads for each machine is controlled.
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This is especially useful for taking advantage of SMP systems, where we can, for

example, assign two threads for a dual processor machine or four threads to a

host with four processors.

Master

Let us continue by translating some PVM-Prolog code into PM2-Prolog.

The following predicate is for a simple prime number generator ProgÍ.Im:

Program 13 Example usage of PVM-Prolog

pvm-mytid(Rank),
pvm-spawn(examplefile, worker-work, [], [], NWorkers, Workersld)'
make-first-primes (FirstPrimes),
pvm-mcast(WorkerslD, 1, FirstPrimes),
read-results (NWorkers),
pvm-exit.

init-

The equivalent in PM2-Prolog would be the program:

Program L4 Example usage of PM2-Prolog.

L
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init:-
pm2-is-master,
pm2-self(Rank),
pm2-max-rank(NWorkers),
start-prolo g-workers (NWorkers),
make-first-primes (FirstPrimes),
send-workers-loop(NWorkers, FirstPrimes),
read-results(NWorkers),
finish-listeners.

init:-
worker-work.

In PVM-Prolog we begin by initi ahzngPvM, creating the workers and also

initializs them. Úr PM2-Prolog we start by checking if the program is running on

the master rank or on a worker by calling pm2is-master. On the node with rank
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zero this predicate will succeed. On the other nodes, the predicate workerruork

willbe called.

On the masteç by callingpm2snaxtank the program will instantiate NWork-

ers with the number of workers present in the configuration. This is relevant for

most predicates as it can be used, for example, to loop through each worker.

We see that PM2-Prolog formulation doesn't require specification on the

number of threads that are to be created. Such configuration is done outside via

the pm2conf command-line tool. One advantage of this approaú is that it allows

for control on how many threads are created on each computer. The drawback is

that specification cannot be changed in run-time. Another advantage that could

be argued is that configuration changes do not require program re-compilation.

Worker

In PVM-Prolog the worker starts by initializing the PVM environment, and

proceeds to do arepeat-failloop, waiting for work to do:

Program 15 Worker code in PVM-Prolog.

pvm-setopt(route,routeDirect),
pvm-paren(PTlD),
pvm-mytid(MTlD),
pvm-recv(PTlD, 1, FirstPrimes),
repeat,

pvm-send(PTlD, 1, more(MTID)),
pvm-recv(PTlD, 1, Order),
worker-do(Order, FirstPrimes PTID),

fail.

Irr PM2-Prolog, the logic behind the worker code consists in having a call

lo thread-gettnessage which will perform a blocking read and never fail. The

following program is the worker code equivalent in PM2-Prolog:

worker:-
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Program L6 Worker code in PM2-Prolog.

1 worker-work:-
z thread-get-message(Term),
3 l, sall primes(Term, X),
a thread-send-message(vid(0,0), X),
5 worker-work.

Once a message has arrived, thread4et-message returns and call4rimes is

called. After the result is uniÍied with X it is send via a message to the master and

this process is repeated for each message that arrives.

4.8 Summary

PM2-Prolog follows the Single Program Multiple Data programming model,

that it inherits from the PM2 environment. The same program is executed in every

node and actions are taking accordingly to the unique rank number that identifies

each node. Commonly, the node with rank 0 distributes workby the nodes with

higher ranks, in a task-farming scheme.

The creationof Prolog threads as well as the communicationis totallybased

on explicit primitives. This mems everything related to the pxallelization is to

be controlled by the programmer. This allows to have control over the parallel

execution and to prevent as much as possible less-than-optimal parallel efficiency

on progÍarns.
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Chapter 5

Performance Evaluation

5.L Evaluation Model

To assess the suitability of PM2-Prolog for a particular purpose, many users

will consider it's performance as the most important and indeed critical feature.

The environment on which PM2-Prolog can be used can widely vary. It

can be a cluster of networked workstations or a set of workstations wide-spread

throughout the úrtemet. As a matter of fact, these workstations need only to be

running Linux and have ssty'rsh access, given that the machines used are of the

same ardritecture.

Our study focuses on a cluster of SMP systems and the speedup that can

be obtained from problems that consist of a large task and that can be split into

subtasks distributed over a pool of threads.

The guiding principle in reporting performance measurements is repro-

ducibility. A valid exercise of this type must allow others to repeat the benúmark

and achieve similar results. We include information aboutboth the hardware and

55



software environments used, and describe the studied problems and the execution

model for each one.

By conducting the benchmark in this way we feel that the results, good

or bad, are credible and valid as a basis for studying the applicability of running

multiple Prolog engines in a distributed environment.

5.2 Measuring Performance

First of all, we have to define "performance". What interests us here is

the elapsed real (wall-clock) time used by the process. It represents the total time

needed to complete a task, induding disk accesses,I/O activity, operating system

overhead ' everything. We obtain the wall-clock time with the Unix time(l)

command (not the shell built-in time but the one norÍnally found in/usr/bidtime)

and with the format set to elapsed time only, specified with the parameter -f
o/iE,, e.g.:

/usr/bín/time -f%E Is

This time will be composed by the initialization time of the pro$am (Ts)

plus the time the program will spend actually doing some processing (T).

The initialization time is not constant. It grows along with the number of

workers, while the processing time will decrease until it reaches a point where it

is less than the initialization time and by then it no longer compensates to have

more workers on the problem.

In order to compare the real processing time between configurations with

different number of workers, the initialization time must be calculated and then

subtracted from the obtained elapsed time.
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The initialization time (76) is given by the elapsed time obtained for what is

called the empty problun, which consists of no more than a program that initializes

the system and efts.

Having these measurements we calculate the speedup (S) using the for-

mula:

s _ T1 - T1(0)

r - r(0)

where T1 is the elapsed time obtained with M + L workeq, fr(O) the elapsed

time obtained with M + 1, worker for the "empty" problem, T the elapsed time

obtained with M + N workers and I(0) the elapsed time obtained with M + N

workers for the "empty" problem.

5.2.1 Hardware Environment

The hardware used consisted of 7 units of the machine shown below:

Table 5.2.L: Hardware Environment

Note that a Pentium 4 with Hyper-Threading enabled is treated by the

CPU Inte(R) Pentium(R) 4 CPU 2.80GHz eaú
Hyper-Threading Enabled

Cache size per CPU 512 Kb
Yes, integratedEPU

Memory 512INIg
Filesystem IDE disk shared via NFS

Filesystem fype Exl2
Network TCPÂP over Ethernet
Network interfaces RealTek RTL8139 Fast Ethernet

Minimum or noneBackground load average
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operating system as two processors. This means we have a maximum of. L4

processors to work with.

5.2.2 Software Environment

We use a suite of three classic literatureproblems plus a real-world applica-

tion to measure the speedup that can be obtained in eaú one by using PM2-Prolog.

The software environment that serves as a basis for the measurement is described

below:

5.3 BenchmaÍk Programs

5.3.1 ParallelMatrixMultiplication

A fundamental numerical problem is the multiplication of two matrices.

We use a simple O(M) algorithm to compute C = AB, where § B, and C are NxN

matrices. The algorithm follows directly from the definition of matrix multiplica-

tion. To compute Cii, we compute the dot product of the í-th row in A with the

Ith column in B.

Hence we order each worker to compute C;y and send the result back to the

master where the final matrix is assembled.

Operating System Debian GNU/Linux kernel 2.6.17.L SMP support
Prolog Compiler GNU Prolog t.z.LB Debian Version

Prolog Compiler options -with-c-fl ags=-static -disable-regs
C compiler gcc2.95.4
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The matrix lines are represented by Prolog lists and the columns are ob-

tained using the nttr/2 predicate. Of course, better algorithms exist for matrix

multiplicatioru for example Strassen's algorithm, but our interest here is not to

work smarter (e.g. with better algorithms) but to work harder, i.e. adding more

processing capacity. We conducted tests with matrices of several sizes but the

presented results refer to the multiplication oÍ a64x64matrix executed fifty times.

Program 17 Matrix Multiplication: Rows are distributed for processing through
the workers.

mult([], -, 0, -):- l.

mult(Rows, Matrix, N, 0):-
pm2-max -rank(MaxRank),
l, mult(Rows, Matrix, N, MaxRank)

mul(fRowlRows], Matrix, N, Rank):-
length(Row,NumRows),
thread-send-message(vid(Rank,0), query§,Row,Matrix,NumRows)),
NLisN-1,
Rânk1 is Rank - 1,
mult(Rows, Matrix, N1., RankL).

5.3.2 Parallel N-Queens Problem

The N queeÍrs puzzle is a well studied toy program in computer science

used mainly to study algorithms and perform benchmarks. It consists in finding

all the solutions for the placement of N queens on an NxN úess board. The only

condition to abide is úrat no two queens attack ttremselves. What this means is

that no queen can share a row, a column, or a diagonal with any other queen.

The moststraightforward way of solving this problem in Prologis by using

constraint logic programming or by using a backtracking algorithm.

Though simple, fiis is a computationally intensive pÍocess. What we

present here is a parallel version of N-Queens using the task-farm paradigm. Tâsk-
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farmingis the mostsimple and commonly used way of parallelizing applications.

A master is setup, which takes care of creating tasks and distributing them among

workers. The workers perform the tasks and send the results back to the master,

whiú reassembles them. For simplifying the task, in this case only the solutions

are counted for eaú problem size. This is largely based on [Marques, 2003].

Parallelizing the algorithm is straightforward. h this case, a job consists

in a valid placement of queens up until a certain column. A result consists in

the number of solutions found for that particular job. A worker must find all the

solutions for that board prefix, then send the number back to the master.

Program 18 Worker code example for finding all the solutions for the placement
of N queens on a NxN chess board.

worker-work:-
thread - get-message (Terrno),
calc-solutions(Termo, X),
thread-send-message(vid(0,0), X),
worker-work.

calc-solutions(q(N, List), NumSolutions):-
findall(L, solution-queens(List, N, L), G),
Iength(G, NumSolutions).

5.3.3 Parallel Number of Occurrences

Consider the program presented in section 3.L but now for running on

a parallel computer. We've seen that such program, to count the number of

occuÍrences of a number in a list of numbers, is rather simple in Prolog.

In the parallel version, the program will now find all occurrences of a

certain integer by dividing the list for processing by the available workers and

doing a local search. Then, on the master, the number of occurrences found is

assembled.
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The conducted tests refer to a parallel search on a list of L0000 elements

executed one hundred times in each worker:

Program 19 Parallel searú executed one hundred times in each worker.

count(q(X,List), 0):-
repeat(1 00, number-of-occurences(X, List, -)).

repeat(0):-l,fail.
repeat(-).
repeat(N):- N1 is N-1, repeat(Nl).

repeat(N, G):-
repeat§), G, fail.

repeat(-, -).

This could also be done by sending a hundred messages to the worker but

that would not generate the CPU intensive work as this approach.

5.3.4 Case Study: Speedup on a Real-World Application

So far, we have only considered synthetic benchmarks. That means we

have only considered artificial prograrns that try to match the characteristics of

Iarge progÍams. Although they are fine for testing, real benúmarks can only be

obtained from testing real-world applications.

This section describes the results of distributing OpenArp [Aires et al.,

20041. OpenArp is a tool for linguists and computer scientists interested in natu-

ral language processing (NLP) and related areas that implements the Centering

theory for enhanced pronominal anaphora resolution in Portuguese language

documents. An anaphor in a text is an entity that refers to another errtrty (an-

tecedent).

The main algorithm in OpenArp relies on searching a space of possible

general pronoun candidates for the one that scores best with respect to several
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constraints, e.g. proximity of the pronoun to the anaphor and the current subject.

Since the algorithm is idealized to run as a series of sequencial steps, we

had to overcome this fact. The approach used consists in doing a paragraph

marking on the input texts.

The searú-space of the algorithm was then changed to treat each paragraph

as the complete text that is being targeted for anaphora resolutiory the drawback

being an anaphor that occurs at the beginning of a paragraph will never be

resolved to a candidate that occurs in the previous paragraph.

Since dtfêrentparagraphs usually deal with distinct subjects we argue that

this kind of separation will allow to distribute the anaphora resolution process

without interfering with the foundations of the algorithm.

Lrdeed we observed that the diffurence between the original OpenArp

implementation and the newly created distributed version is only about less 6%

accurate, in a test set consisting of a total of 3L3 anaphora.

5.4 Benchmark Results

In ttlis section we present the results obtained for each problem. The tasks

were carried out using 2,6 and L2 CPUs. The values aÍe averaged over 6 runs.

5.4.1. Parallel Matrix Multiplication

In the matrix multiply program the system obtained a speedup of 2.92times

with 6 CPUs and of 4.7L times with 1"2 CPUs, comparing to the sarne program

running in a single processor.
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Table 5.4.1: Obtained times for í xí mafrixmultiplication executed fifty times

Workers CPUs Elapsed Time Speedup

1 2 0L:09.7s 1.00

3 6 00:23.9s 2.92

6 t2 00:14.8s 4.71

5.4.2 Parallel N-Queens

In the N-Queens program a speedup oÍ 2.98 times with 6 CPUs and 4.78

times with 12 CPUs was obtained.

Tâble 5.4.2: Obtained elapsed time for the parallelnqueens problem

Workers CPUs Elapsed Time Speedup

1) 2 032?3.2s 1.00

3 6 0L:08.1s 2.98

6 t2 00:42.5s 4.78

5.4.3 Parallel Number of Occurences

úr the parallel array searú program a speedup of 3 times with 6 CPUs and

5.20 with 12 CPUs was obtained.

Tâble 5.4.3: Obtained elapsed time for the parallel number of occurrences problem

Workers CPUs Elapsed Time Speedup

1 2 03:23.2s 1.00

3 6 01:08.1s 3.00

6 L2 00:42.5s 5.20
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5.4.4 Parallel Anaphora Resolution

In the parallel anaphora resolution program a speedup oÍ2.24times with

6 CPUs and 2:50 ümes with 12 CPUs was obtained.

Table 5.4.4: Obtained elapsed time for parallel anaphora resolution

Workers CPUs Elapsed Time Speedup

1 2 00:05.0s 1.00

3 6 00:02.2s 2.24

6 12 00:02.0s 2.50

5.5 Summary

---.-tl
+;arr--+'rr*

ol2lmall,

Figure 5.5.t Speedup with an increasing number of workers defined as elapsed time using
one worker divided by elapsed time using N workers.

Quantifying the obtained speedup is important but very dependent on the
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problem we are dealing with and on its degree of parallelization. By measuring

the speedup we can verify if the system scales.

Looking at Figure 4.5.1 we observe that the speedup is almost linear for

the first three examples. That shows that the system scales without problems, at

least until the considered number of workers.

Since the cluster used in our benchmarking exercise is relatively small (7

nodes) we can't always observe the point of speedup convergence for all the tested

programs, but in the case of the anaphora resolution system we can observe that

the speedup is unlikely to reach more than 3 times, independent of the number

of workers used.

If more machines were added to the cluster, it is believed that the speedup

would elso converge for the other three examples to a value where it no longer

compensates to have more CPUs for the problem, because the initialization time

surpasses the processing time that the task requires. It depends on the problem

when this occurs.

Another issue that should be taken into account is the correctness of the

results. What happened while distributing OpenArp, in whiú we chose to modify

the search-space of the algorithm in order to distribute the problem, affecting

herewith the correctress of the results, will probably happen with other real-world

applications. If this separaüon affects somehow the algorithm of the applicatiory

by ".9. modifying the searú-space, the accuracy of the system will also be

affected. Being so, the accuracy of the results must be assessed in order to verify

if the obtained speedup compensates the loss.

Lr summary, the results show the model is valid and can obtain good

performance gains, even when the number of distributed machines is low.
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Chapter 6

Conclusions

A system that allows the development of distributed multi-threaded ap-

plications in GNU Prolog is now developed.

The system works by executing in each processor a copy of the sarne

program, which is capable of determining it's identity and run ditferent actions

accordingly.

The applications can then be submitted for distributed parallel processing

using Prolog predicates, via a developed abstraction of MPI functions. Included

in this abstraction is the mechanism for remote Prolog job submission. Work is

distributed to processors in form of messages, that are received and processed.

The results are then sent back or forwarded to other processors.

The processors run inference engines (provers) on native pre-emptive

POSD( threads. Each processor has only one thread, but in a computer N proces-

sors (virtual or real) can co-exist.

The abstraction is developed on top of the PM2 programming environ-

ment and is primarly composed in two parts: thread management and thread
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communication.

The Prolog implementation used is GNU Prolog. We've chosen GNU

Prolog due to the relatively small stand-alone binaries it produces. The main

drawback related with this choice was that gprolog doesn't support local multi-

threading (in a shared memory space). For that reason, in each listener thread it

is only possible to create one attached thread. However, since the same machine

can hold multiple listener threads, it becomes possible to run N local threads in

each processor.

The developed system is at a prototype state. It will need further de-

velopment and testing. FIowever, we decided to conduct tests to evaluate the

preliminary performance of our system. We used three classic literature prob-

lems plus a real-world application and measured the obtained speedup in each

one using one worker (sequential version), three workers and six workers. The

programs used were:

o Parallel matrix (64x64) multiplication;

o Parallel N-Queens problem;

o Parallel array searú;

o Parallel Pronominal Anaphora Resolution;

hr the matrix multiply program the system obtained a speedup of 2.92times

with 6 CPUs and of 4.71. úrnes with 12 CPUs, comparing to the same program

running in a single processor.

úr the N-Queens program a speedup oÍ298 times with 6 CPUs and4.78

times with 12 CPUs was aúieved.
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In the parallel array search program the speedup reaúed 3 times with 6

CPUs and 5.20 with 12 CPUs.

hr the parallel anaphora resolution progÍam the speedup reached 2.24 times

with 6 CPUs and 2.50 times with 12 CPUs.

úr summary, the results show the model is vaüd and can obtain good

performance gains, even when the number of distributed machines is low.

The conducted tests obtained an almost linear speedup on the first three

problems. On a more real-world applicatioo OpenArp, we obtained speedup

but relatively less comparing with the other tested progÍams. Our results also

showed how the accuracy of an application might be affected by distributing it's

algorithm. Lr OpenArp this happened because we modified the search-space of

the algorithm instead of using a parallel algorithm for anaphora resolution, if

such algorithm is even possible. The case has been made to show that if a parallel

algorithm isn't possible, then accuracy might be sacrified in favor of a speedup in

execution time.

We noticed that concurrent Prolog programs perform very good and we

feel encouraged to test bigger configurations. Perforrnance, however, degrades

quickly when using predicates that require slmchronization or that make intensive

use of the network. A solution for this issue might reside in the duplication of

what is going to be passed over the network and send only a reference over

the network. This might not be possible to execute in several scenarios, such as

problems where the messages are created at runtime.

Other issues that are associated with the current implementation include:

o Many situations, if not handled carefully, can lead to deadlock, e.B. a thread

not receiving the terminate message, due to an eÍroü will cause the main

thread to deadlock.
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o Theads have to be terminated explicitly. It would increase performance if

the threads terminated as soon as no more jobs are available. This would

release CPU for other threads.

While working towards improving our proposal, solving these issues, we

also want to pursuit several traits. These are:

o Extend the API with introspection and monitoring predicates. That will

permit programmers to control better the running distributed program.

o Test the system with bigger configurations, namely with GRID, and more

powerful applications.

o Use distributed multi-threading to build and control intelligent agents ca-

pable of taking specific actions.

o Test the combination of GNU Prolog with OpenMPI.

r Work closely with Prolog developers extending the Prolog multi-threading

support ISO standard to account for distributed multi-threading.

o lmplement an abstraction for distributed shared-memory system in Prolog

using MPI.

In a non-distributed multi-threaded environment, powerful applications

are limited by the number of threads that can effectively run concurrently.

In a distributed multi-threaded environment resources are pooled and a

scheduler sets the rules for routing the jobs to help optimize resources automati-

cally, for accelerated results and help reducing processing time.

Prolog can play a fundamental part in the next generation of applications

that will exploit multi-core arúitectures and bring concurrency to the masses. It
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will permit on many cases prograrns to have a declarative, logic interpretation

and will allow for the prograrnmer to omit most control, helping the expression

of complex applications and algorithms. The developed system is a tool to help

in this process.
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Appendix A

PM2-Prolog Example Makefile

t OBIECT-PL=intarray.o

2

s CFLAGS= -C -static $(shellpm2-conÍig --cflags ltr' ' '\n' lawk'{printf " -C%s", $$1}')

a LIBS= $(shell pm2-config --libs ltr ' ' '\n' lawk '{printf " -L%s", $$1}')

s LIBS= $(shell pm2-config --libs)
o CCFLAGS= $(shell pm2-config --cflags)
z LDFLAGS= -L -static $(shell pm2-conÍig --libs)
a # prolog libs

s Pll=/home/rurvextended-stack-gprolog/gprolog-1..2. 1 6/lib

to # gcc-2.95

11 L= -C -íusr/[ib/gcc-lib/i486-linux-gnr/2.95.4/include
L2

rs all: tabard

t4

rs gprolog-pm2.o: gprolog-pm2.c

16 gplc -c $(L) $(CFLAGS) gprolog-pm2.c

17

ta tabard.o: tabard.c

ts gplc -c $(L) $(CFLAGS) tabard.c

20

21 Yo.o: Yo.pI

n



» gplc -c $+

23

zE tabard: gprolog-pm2.o tabard.o $(OBIECT-PL)

25 gcc -static -o tabard \
26 $(Pl,I,)/obj-begin.o \
27$+\
28 -L$(PLL) \
2s -lbips-fd -lengine-fd -lbips-pl \
30 $(Pl,I,)/obj-end.o \
31 $(LrBS) \
sz -lengine-pl -llinedit -lm
33 mv tabard /home/nm/build/$(Plú2-FlAVOR)/examples/birV

u
35 clean:

36 rm -f *.o * tabard

37

38 run:

ss @pm2load tabard
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Appendix B

SWI-Prolog Multi-thread Example:

Dining Philosophers

L o/o

z o/o Dining Philosophers in Prolog

s 7o Based on:

4 o/o hftptlwww.cs.utk.edufphnk/plank/classes/cs560/560/notes/Dphil/lecture.html

soh
6

zYo

a % chopstick<->atom correspondece

e "/" (so that a named mutex is created later)

to Y"

11 chopstick-id(l, chopstickl).

rz úopstick-id(2, úopstick2).

ts úopstick-id(3, chopstick3).

ta chopstick-id(4, chopstick4).

ts chopstick-id(5, úopstickS).

16

tz oh

re % dropstick(+Philosopher-Id, +Chopstick-Left-Id, +Chopstick-Right-Id)
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rs 70 Positions of philosophers and úopsticks

20 o/o

zr úopstick(1, 5, 1).

z chopstick(2, 1,2).

zs chopstick(3, 3, 2).

z4 chopstick(4, 4, 3).

zs chopstick(s, 5, 4).

26

27 Yo

za % init(+Number)

zs % Number - run for Number times

30 Vo

3L init(Number):-

sz mutex-create(úopstickl),

33 mutex-create(chopstick2),

yL mutex-create(chopstick3),

35 mutex-create(dropstick4),

s6 mutex-create(chopstick5),

sz thread-create(run(1, 5, 0, Nunrber), A, []),
38 thread-create(run(2, 5, 0, Number), B, []),
gg thread-create(run(3, 5, 0, Number), C, []),

40 thread-create(run(4, 5, 0, Number), D, []),

47 thread-create(run(5, 5, 0, Number), E, []),

42 thread-join(4, -),
43 thread-join(B, -),
u thread-join(C, -),
46 thread-join(D, -),
46 thread-join(E, -).
47

4
49 o/o

so % pickup(+Philosopher, -Secs)

s1 % Philosophsl = philosopher id

sz 7o Secs = number of seconds blocked

$Yo
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sa pickup(Philosopher, Secs):-

55 o/o T0 = time just before the block started

56 my-get-time(M0,S0),

57

58 o/o get the chopstick at its left and right first

5e chopstick(Philosopher, Lef6tickld, Righ6tickld),

60 chopstick-id(Lef6tickld, Lef6tick),

67 chopstick-id(Righ6tickld, Righ6tick),

62

63 % pickup left and then right úopstick

@ mutex-lock(Lef6tick),

65 mutex-lock(Righ6tick),

«
67 % sleep(2), 7o test with fixed blocktime

68

69 Y" T = time just aÍlter the block ended

70 my-get-time(M,S),

71, Secs is ((M.60+S) - (M0.60+S0)).

72

nVo
74 7o putdown(+Philosopher)

75 o/o

zo putdown(Philosopher):-

n ctropstick(Philosopher, Lef6tickld, Righ6tickld),

78 chopstick-id(l.ef6tickld, Lef6ück),

7e úopsück-id(Righ6tickld, Righ6tick),

80

81 % putdown right and then left chopstick

Ez mutex-unlock(Righ6tick),

83 mutex-unlock(Lef6tick),

u
85 Yo

w o/o my-get-time(-Minutes, -Seconds)

87 o/o

aa my-get-time(Minutes,Seconds) :-
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89

90

91

92

93

94

get-time(Time),

convert-time(Time,-,-,-, -,Minutes,Seconds,-).

olto

% MATN

%

95

96 o/o The philosophers basically go through the following steps.

97 o/o

ee % while(1) {

g % think for a random number of seconds

Loo Yo pickup(p);

101 o/o eat for a random number of seconds

102 o/o putdown(p);

7$ Vol

lM Yo

105

706 o/o

707 o/o run(+Philosopher, +MaxSleepTime, +Blocktime, +Counter)

108 o/o

tse yo List - a list containing the philosophers id

110 o/o Max-Sec-Time - max sleep time

111 7o Blocktime - accumulator Íor block time

112 o/o Counter - number of times to run this goal

7B Vo

714

rrs run(Philosopher, -, Acc-Blocktime, 0):- l,

176 write(Philosopher),write('\t'),

777 write(Acc-Blocktime),n1,

118 flush-output.

119

rzo run(Philosopher, Max-Sec-Tlme, Acr-Blocktime, Count):- l,

t2t /* First the philosoplrer thinla for a random number of seconds */

722 think(Philosopher, Max-Sec-Time),

723
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Lz4 f Nout, the philosophn wakes up and wants to eat. He calls pickup

7xt to pick up the chapsticks */

726 pickup(Philosopher, Secs),

727

t2B 7" Accumulate blocktime

tzs Vo write('Debug: '),write(Philosopher),write(' Acc = '),
tn Yo write(Acc-Blocktime),write(', Secs ='),write(Secs),

13r Acc-Blocktimel is (Acc-Blocktime + Secs),

B2 o/o write(', Blocktime - '), write(Acc-Blocktimel),n1,

B3 Yo flush-output,

7y

135 f When pickup returns, the phílosoph* can eat for a random numb* of

t% seconds *f

tsz eat(Philosopher, Max-Sec-Time),

138

lss f Einally, the philosophr is done eating, and calls putdoum to

140 put doum the chopsticYs I
t4t putdown(Philosopher),

L42

L49 Countl is Count - 1,

\M

145 l, run(Philosopher, Max-Sec-Tlme, Acc-Blocktimel, Countl).

7M

147 %

748 %THINK&EAT

74e %

150

tst !" think(+Philosopher, +Max-Sec-Time)

752 o/o eat(+Philosopher, +Max-Sec-Time)

tSg V"

tru "/o Calculate a random number between 0 and Max-Sec-Time and then sleep

155 Yo for that time.

156 Vo

757

$E think(Philosopher, Max*Sec-Time):-
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1s9 random(1, Max-Sec-Time, Sleep-Tlme),

160 write('Philosopher'),

r6t write(Philosopher),

t62 write(' thinking for '),
L63 write(Sleep-Time),

1il write(' seconds.'),n1,

165 flush-output,

766 sleep(Sleep-Time),

t6z wdte('Philosopher'), wdte(Philosopher),

L6B write(' no longer thinking - calling pickup'),nl,

169 flush-output.

170

727 eat(Philosopher, Max-Sec-Time):-

722 random(1, Max-Sec-Tlme, Sleep-Time),

779 wÍite('Philosopher'),

174 write(Philosopher),

725 write(' eating for '),
tz6 write(Sleep-Time),write(' seconds.'),d,

7n flush-output,

tzr sleep(Sleep-Time),

t79 write('Philosopher'),write(Philosopher),

180 write(' no longer eating -- calling putdown'),n1,

181 flush-output.

782

1&!
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Appendix C

Parallel Matrix Multiplication

r :- initialization(init).

2

g % include the pm2 interface lib

a :- include('Iib').

5

o rows(64).

z cols(X):- rows(X).

8

s determine(Rows, Rows):-

10 argument-counter(2),

11 argument-list(Args),

Lz append(§owsStringl-1, [], Args),

1s write-to-úars(Chars, RowsString),

t4 number-chars(Rows, Chars).

15

ro determine(Rows, Cols):-

tz rows(Rows),

18 cols(Cols),

79 write('Going for default row nunber of
20

2't % thread 0

' ),write(Rows),write(' .' ),n1.
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22 init:-

23 pm2-is-master,l,

24 pm2-max-rank(MaxRank),

zs pm2-conÍig-size(Config§ize),

26

27 o/o Íead number of columns from console

28 T" ot go with the default value

29 determine(Rows, Cols),

30

31 7o Start-Prolog(0, 0) on each node

32 start-prolog-workers(MaxRank),

33

y fill-matrix(Matrix1., Rows, Cols),

35 fill-matrix(Makix2, Rows, Cols),

36

37 "/" gpve workers work

38 mult(Matrixl, Matrix2, Rows, MaxRank),

3s read-results(Rows),

4A

47 stop-prolog-workers(MaxRank),

42

B finish-listeners.

M

qs "/o thread t= 0

46 init:-
u worker-work.

48

4e init.

50

51 worker-work:-

sz l, thread-get-message-loop,

53 worker-work.

il

55 worker-work:-

s6 write('worker-work falhou'),nl,l,fail.
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57

se 70 tiraÍ todas as meÍrsageÍui da queue

sr thread-get-message-loop:-

60 thread-get-message(Termo),

61. l, do-query(Termo, X),

62 thread-send-message(vid(0,0), X),

6g thread-get-message-1oop.

64

as lo For NxN matrix will have to read N lines

66 read-results(0):-1.

67 Íead-results(X):-

6E thread-get-message(R),

6e X1isx-1,
zo t, read-results(X1).

77

22 read-results-loop:-

7s thread-get-message(Result),

z4 l, read-results-loop.

75

z6 do-query(query(NumberOfRow,Row,Matrix,NumRows), (NumberOfRow,Nl)):-

n repeat(S0, multiply-row-per-matrix(Row, Matrix,'1, NumRows, -)),

78 multiply-row-per-matrix(Row, Matrix, 1, NumRows, NL).

79

so repeat(O):-l,fail.

81 repeat(-).

az repeat(N):- N1 is N-1, repeat(Nl.).

83

aa repeat(N, G):-

85 repeat§), G, fail.

sr repeat(-, -).
87

§ o/o

89 o/o multiply-matrix(+Matrixl, +Matrix2, +NumRows, -Result)

90 Yo

sL o/" Íot each row in Matrixl call multiply-row-per-col for all the
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gz 7o columns in Matrix2

% o/o

94

es mult([], -, 0, -):- l. % N messages were sent Íor a NxN matrix

96

gz o/o totnd-roubin the machines

ea mult(L, M, N, 0):-
gs pm2-max-rank(MaxRank),

loo t, mult(L, M, N, Maxnank).

101

toz mult(§owlRowsl, Matrix, N, Rank):-

1ffl length(Row,NumRows),

LM thread-send-message(vid(Rank,0), query§,Row,Matrix,NumRows)),

105 N]. is N - 1,

106 Rankl is Rank - 1,

to7 mult(Rows, Matrix, N1, Rankl).

108

709

7\0 o/o the maximum number when generating the matrix content.

trt maximum(7).

L\2

173 o/o

7t4 yo multiply-row-per-matrix(+Row, +Matrix, +NumCol, +NumRows, -Result)

715 o/o

L16 yo multiplies a line of the first matrix per all the columns of the

777 o/o second and obtains the first line of the solution matrix.

118 Vo

rro multiply-Íotv-per-matrix(-, -, N, M, []):- N > M, l.

120

rzt multiply-row-perrnatrix(Row, Matrix, NumCol, NumRows, lRowCollRes]):-

L» col-items(Matrix, NumCol, Col),

tzg multiply-row-per-col(Row, Col, RowCol),

124 NumColl is NumCol + 1,

t?s multiply-row-per-matrix(Row, Matrix, NumColL, NumRows, Res).

126
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727 o/o

128 yo multiply-row-Per-col(+Row, +Col, -Result)

129 o/o

7so Vo multiply a row (list) per a column (list) like this:

131 7o Elem*Elem + Elem*Elem + .. + Elem*Elem

82 o/o

rae multiply-row-peÍ-co(Row, Col, Res):-

lu multiply-row-per-col(Row, Col, 0, Res).

135

rs6 multiply-row-per-co(l], [], V, V):- l.

raz multiply-Íow-peÍ-co1(fFirstlRest], [SecondlSecRest], Acc, Res):-

138 Accl is (Acc + (First.Second)),

tgg multiply-row-per-co1(Rest, SecRest, Acc1., Res).

140

747 %

142 Vo col-items(+Matrix, +NumCol, -Col)

14.3 0/o

tM yo given a matrix unify Col with a list of all the elements in that

145 o/o col on the matrix.

LM Yo

raz col_items([], -, []):- l.

tas col-items([FirstlRest], NumCol, XICoI):-
149 nth(NumCol, First, X),

1so col-items(Rest, NumCol, Col).

151

152 Vo

$g oh fi11-matrix(-Matrix, +Rows, +Cols)

7U Yo

7ss Vo grven N and M return a list of lists (matrix) filled randomly.

756 o/o

157 fill-matrix([], 0, -):- l.

rs8 fill-matrix([FirstlRest], Rows, Cols):-

tss fill-row(First, Cols),

160 Rowsl is Rows - 1,

76L fill-matrix(Rest, Rowsl, Cols).
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162

1$ o/o

164 o/o fill-row(-List, +N)

165 o/o

L66 o/o Given N unifies List with a list of length N filled randomly

M7 o/o

168 fill-row([], 0):- l.

16e fill-row(fFirstlRest], Cols):-

770 maximum(Max),

171 random(2, Max, First),

L72 Colsl is Cols - 1,

L73 fill-row(Rest, Colsl).

774
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Appendix D

Parallel N-Queens

1 :- initiâlization(init).

2

g % include the pm2 interface lib

a :- include('Iib').
5

o size(8).

7

a determine(Size):-

9 argument-counter(2),

10 argument-list(Args),

11 append([SizeStringl-1, [], Args),

tz write-to-chars(Chars, SizeString),

13 number-chars(Size, Chars).

L4

ts determine(Size):-

L6 size(Size).

t7

ta % thread 0

19 init:-
20 pm2-is-master,l,

2t pm2-max-rank(MaxRank),

9L



»
23

24

25

26

27

a3

29

30

31

32

33

u
35

%

37

determine(N),

% Start-Prolog(0, 0) on eaú node

start-prolog-workers (MaxRank),

column(N, I),

findall(ParcialSslutigl, mkmaxüs(I, N, ParcialSolution), G),

length(G, GL),

send-job-worker(G, GL, N, MaxRank),

read-results (GL, Numsolutions),

write (NumSolutions),n1,

stop -prolog-workers (MaxRank),

38 finish-listeners.

39

ao 7" thread l= 0

4L init:-
a worker-work.

43

44 worker-work:-

45 l, thread-get-message-1oop,

46 worker-work.

47

aa thread-get-message-loop:-

49 thread-get-message(Termo),

50 l, do-query(Termo, X), l,

51 thread-send-message(vid(0,0), X),

52 thread-get-message-loop.

53

il

55 read-results(x, N):-
s6 read-results(x, 0, N).
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57

58 read-results(0, N, N):-1.

s9 read-results(X, Acc, N):-
60 thread-get-message(Msg),

61, Msg == 'l 
,

62 Accl, is Acc + 1,

63 XL is X - 1,

@ l, read-results(X1, Accl, N).

65

66 read-results(X, Acc, N):-
67 X1 is X - 1,

68 l, read-results(X1, Acc, N).

69

70 do-query(q(N, List), NumSolutions):-

7t findall(L, solution-queens(List, N, L), G),

72 length(G, NumSolutions).

73

za send-job-worker([], 0, -, -):- l.

75

ze send-job-worker(L, C, N, 0):-

zz pm2-max-rank(MaxRank),

78 I, send-job-worker(L, C, N, MaxRank).

79

eo send-job-worker([FllTail], Counter, N, Rank):-

81 thread-send-message(vid(Rank,0), q(N, H)),

82 Counterl is Counter - 1,

83 NextRank is Rank - 1,

u send-job-worker(Tail, Counterl, N, NextRank)

85

86

ez column(N, X):-

88 XisN-4.
89

90

e7 go(N):-

93



ez findall(Y, teste(N, Y), G),

e3 length(G, GL),

94 write(N),write(' :'),write(Gl-),write(' total solutions.'),nl,fail.

95

96

gz 7o solution-queens(+ParcialSolution, -Solution)

98 solution-queens.([], -, -):- fail.

99 solution-queens(L, N, PossibleSolution):-

1oo column(N, I),

101 MissingQueens is N - I,

702 mkemptylist(MissingQueens, EL),

103 append(L, EL, NL),

lM

105 mkmaxlist(MissingQueens, N, PossibleParcialSolution),

106

to7 cross-lists(Nl, PossibleParcialSolution, PossibleSolution),

108 queens(N, PossibleSolution).

109

tto cross-lists([], -, []):-1.

7tt cross-[ists(-, [], ID:-1.

112 cross-lists(lxlxs], [YlYs], [YlR]):-

113 var(X),

7t4 nonvar(Y),

11s cross-lists(Xs, Ys, R).

116 cross-lists([Xlxs], [YlYs], XRD:-
Lt7 nonvar(X),

118 cross-Iists(Xs, [YlYs], R).

119

120

r2L mkmaxlis(S, N, [XlR]):-

1» s>0,
tz3 for(X, 1, N),

124 51 is S - 1,

L2s mkmadist(SL, N, R).

rzo mkmaxlist(O, -, [D.
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127

128 mkemptylist(N, [-lR]):-

lze N>0,
130 MisN-1,
131 I, mkemptylis(M, R).

\s2 mkemptylis(-, []).

133

LU

tss Vo queens(+BoardSize, -ResultBoard)

1s6 queens(N, Qs):-

7gz range(1,N,Ns),

138 pemrutaüon(Ns,Qs),

Lse safe(Qs).

140

141 safe([QlQs]):- safe(Qs), \+ attack(Q,Qs).

raz safe([]).

143

144 attack(X,Xs):- attack(X,1,Xs).

ras attack(X,N,[Yl-]):- X is Y + N.

146 attack(X,N,[Yl-]):- X is Y - N.

147 attack(X,N,[-lYs]):- N1 is N + 1, attack(X,N1,Ys).

78

t49

rso range(N,N,§):- l.

151

rsz range(M,N,[MlNs]):-

1s3 M<N,
til M1 is M+1,

1s5 range(M1,N,Ns).
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Appendix E

Parallel Number of OccurÍences

r :- initialization(init).

2

s 7o include the pm2 interface lib

a :- include('Iib').

5

o size(8).

7

a deternrine(Size):-

e argument-counter(2),

10 argument-list(Args),

11 append([SizeStringl-], [], Args),

t2 write-to-chars(Chars, SizeString),

13 number-chars(Size, Chars).

74

rs determine(Size):-

76 size(Size),

t7 write('Searching for'),write(Size),write('

18

rg % thread 0

20 init:-
zL pm2-is-master,l,

'),n1.
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»
B

24

25

26

27

28

29

30

31

32

33

u
35

pm2 -max-rank(MaxRank)

determine(El)

% Start-Prolog(0, 0) on each node

start-prolog-workers (MaxRank),

see(' /home/nm/devel/tabard-0 . l/input . txt' ),

read-úunk(El, 1 000, MaxRank, NumberSenMessages),

read-results(Numbe6enMessages, Num),

write(Num) ,nl, o/o number of total occurrences

stop -prolo g-workers (MaxRank),

36 finish-listeners.

37

ss 7o thread l= 0

3e init:-
N worker-work.

4L

42 worker-work:-

I thread-get-message(Termo),

M l, do-query(Termo, X),

45 thread-send-message(vid(0,0), X),

M worker-work.

47

4s read-results(X, N):-
4s read-results(x, 0, N).

50

51 read-results(0, N, N):-1.

52 read-results(x, Acc, N):-

s3 thread-get-message(Msg),

il AccL is Acc + Msg,

55 XL is X - 1,

s6 !, read-results(X1, Acc1", N).
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57

s8 do-query(q(X,List), 0):-

sg repeat(1O0, number-of-occurences(X, List, -)).
60

Gr repeat(0):-l,fail.

ez repeat(-).

ss repeat(N):- N1 is N-1, repeat(Nl).

64

os repeat(N, G):-

66 repeat(N), G, fail.

oz repeat(-, -).
68

69

70

71 number-of-occurences(X, L, N):-

72 number-of-occurences(X, L, 0, N).

73

74 number-of-occurences(-, [], Acc, Acc):-|.

75 number-of-occurences(X, [YlYs], Acc, N):-

76 X\=Y,
n number-of-occurences(X, Ys, Acc, N).

78

79 number-of-occurences(X, Xlxsl, Acc, N):-

80 AccL is Acc + 1,

81 number-of-occurences(X, Xs, Acc1, N).

82

83

g4 read-úunk(El, Chunksize, Rank, N):-

Bs read-chunk(El, Chunksize, Rank, 0, N).

86

87

88

g read-úunk(El, Chunksize, 0, Acc, N):-

90 pm2-max-rank(MaxRank),

gt l, read-chunk(El, Chunksize, MaxRank, Acc, N)
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92

ss % read-chunk(+ChunkSize) reads ChunkSize numbers from input to a list

sa read-chunk(El, Chunksize, Rank, Acc, N):-

ss read-lista(ChunkSize, Chunklist),

s6 length(Chunklist, ChunkSize),

e7 Chunklist \= [],
eB thread-send-message(vid(Rank, 0), q(El, Chunklist)),

ss NextRank is Rank - 1,

1oo Accl. is Acc + 1,

101 read-chunk(El, Chunksize, NextRank, Accl, N).

LO2

ros read-chunk(-, -, -, N, N).

lM

ros read-lista(N, [XlR]):-

106 N>0,
Loz read-token(X),

108 integer(X),

1oe read-token(-),

110 N1 is N - 1,

111 read lista(N1, R).

uz read-lista(-, []).
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