Departamento de Informética

Distributed Multi-Threading in GNU Prolog

Nuno Eduardo Quaresma Morgadinho

<nm@di.uevora.pt>

Supervisor: Salvador Abreu (Universidade de Evora, DI)

This thesis does not include appreciation nor suggestions made by the jury.

Esta dissertagdo ndo inclui as criticas e sugestdes feitas pelo jiri.

Evora

2007

RS/
Soald
= (o]
5 4

o)
& EVD@F

Departamento de Informatica

Distributed Multi-Threading in GNU Prolog

Nuno Eduardo Quaresma Morgadinho

<nm@di.uevora.pt>

Supervisor: Salvador Abreu (Universidade de Evora, DI)

This thesis does not include appreciation nor suggestions made by the jury.

Esta dissertagdo ndo inclui as criticas e sugestoes feitas pelo jiiri.

Evora

2007

Abstract

Although parallel computing has been widely researched, the process of
bringing concurrency and parallel programming to the mainstream has just be-
gun. Combining a distributed multi-threading environment like PM2 with Pro-
log, opens the way to exploit concurrency and parallel computing using logic
programming. To achieve such a purpose, we developed PM2-Prolog, a Prolog
interface to the PM2 system. It allows multithreaded Prolog applications to run in
multiple GNU Prolog engines in a distributed environment, thus taking advan-
tage of the resources available on a computer network. This is especially useful
for computationally intensive problems, where performance is an important fac-
tor. The system API offers thread management primitives, as well as explicit
communication between threads. Preliminary test results show an almost linear

speedup, when compared to a sequential version.

Keywords: Distributed, Multi-Threading, Prolog, Logic Programming,
Concurrency, Parallel, High-Performance Computing

Resumo

Multi-Threading Distribuido no GNU Prolog

Embora a computagdo paralela ji tenha sido alvo de intimeros estudos,
o processo de a tornar acessivel as massas ainda mal comegou. Através da
combinagdo com o Prolog de um ambiente de programacio distribuida e mul-
tithreaded, como o PM2, torna-se possivel ter computagdes paralelas e concor-
rentes usando programacio em légica. Com este objectivo foi desenvolvido o
PM2-Prolog, um interface Prolog para o sistema PM2. Tal sistema permite cor-
rer aplica¢oes Prolog multithreaded em multiplas instdncias do GNU Prolog num
ambiente distribuido, tirando, assim, partido dos recursos disponiveis nos com-
putadores ligados numa rede. Em problemas computacionalmente pesados, onde
o tempo de execugdo é crucial, existe particular vantagem em usar este sistema.
A API do sistema oferece primitivas para gestdo de threads e para comunicagdo
explicita entre threads. Testes preliminares mostram um ganho de desempenho

quase linear, em comparagdo com uma versdo sequencial.

Acknowledgments

Special thanks to Salvador Abreu, my supervisor at Universidade de Evora,
for making this thesis possible. Also thanks to Olivier Aumage, researcher at
INRIA, for answering my initial questions about PM2, Marcel and Madeleine
programming. I also thank Pedro Martelletto, Nuno Lopes, Rui Marques, Cldudio
Fernandes, Paulo Moura and Vasco Pedro for reviewing this thesis. Finally, I have
a lot of gratitude for my family and my love, who provided endless support. This

work is dedicated to them.

Contents

1 Introduction

1.1

1.2

1.3

1.4

Motivation
Objectives
Main Contribution

Thesis Organization.

2 Multi-Threading

2.1

2.2

2.3

24

25

2.6

Benefits
User-space and Kernel Threads

Thread States

Limitations

Multi-Threaded Prolog Example

iv

.....................

.....................

.....................

3 Parallel Systems and Logic Programming 14

31 LogicProgramming 15
3.2 Parallel Architectures 17
3.3 Implicit and Explicit Parallelism 18
3.3.1 Message Passing Libraries 20

3.4 Blocking and Non-Blocking Communication 21
3.5 Problem Decomposition 22
3.6 PM2 - Parallel Multithreaded Machine 23
3.7 Related Parallel Prolog Systems 24
371 MessagePassing 25

372 Multi-threading o 26

373 Assertions i e 26

374 Synchronisation. 26

38 Summary e 27
4 PM2-Prolog 29
41 ThreadsinPM2-Prolog 32
41.1 Task-FarminginPM2-Prolog 33

412 ListenerThread 34

42 CommunicationScheme i i i i i it i e 36

43 Thread Management 37
44 ProgrammingModel, 37
44.1 Dealing with Message-Passing 39
45 APL . .. e 40
451 PM2PFacilities 41
452 Creating and destroying Prolog threads 41
453 Thread Communication 42
454 ISOCompatibility 42
46 PM2-PrologUsersGuide 44
4.6.1 Compiling a PM2-Prolog Program 46
46.2 ConfiguringandRunning 47
47 PVM-PrologvsPM2-Prolog 50
471 Master/WorkerLogic 51
48 Summary. e 54
Performance Evaluation 55
51 EvaluationModel 55
52 Measuring Performance 56

Vi

52.1 HardwareEnvironment 57

522 Software Environment 58

53 BenchmarkProgramso..... 58
5.3.1 Parallel Matrix Multiplication 58

5.3.2 Parallel N-QueensProblem 59

5.3.3 Parallel Number of Occurrences 60

5.34 Case Study: Speedup on a Real-World Application 61

54 BenchmarkResults 62
5.4.1 Parallel Matrix Multiplication 62

542 ParallelN-Queensc.cuuiuuuunenene.. 63

5.4.3 Parallel Number of Occurrences 63

5.4.4 Parallel AnaphoraResolution 64

55 Summary 64

6 Conclusions 66
Appendices 76
A PM2-Prolog Example Makefile 77
B SWI-Prolog Multi-thread Example: Dining Philosophers 79

vii

C Parallel Matrix Multiplication

D Parallel N-Queens

E Parallel Number of Occurrences

85

91

96

List of Figures

2.0.1

23.1

3.3.1

4.0.1

41.1

412

55.1

Single and multithreaded program. 6
Threadstates. 10
Strategies for exploiting parallelism in logic programming. 19
PM2-Prolog copies the program into each configured host and

eXEeCUtes. e e e 31
Task farming strategy to parallelize a program.. 34
Inside a processing node or virtual processor.. 35

Speedup with an increasing number of workers defined as elapsed

time using one worker divided by elapsed time using N workers. 64

List of Tables

5.2.1

522

54.1

54.2

543

544

Hardware Environment (x7)o .. 57
Software Environment o e 58
Obtained times for 64x64 matrix multiplication executed fifty times 63
Obtained elapsed time for the parallel nqueens problem 63

Obtained elapsed time for the parallel number of occurrences prob-

Chapter 1

Introduction

This dissertation stems from a study made in the Logic Programming
field. It describes the implementation of a system that allows distributed multi-

threading in GNU Prolog [Diaz and Codognet, 2000].

1.1 Motivation

The motivation for this work came from the conviction that it would be
useful to analyse the viability and performance of a system that combined High
Performance Computing (HPC) with logic programming, and that it could be
achieved by associating PM2 [Namyst and Méhaut, 1996] with GNU Prolog.

PM2 allows distributed multi-threading C applications to be developed
and is based on the Single Program Multiple Data paradigm, and GNU Prolog, a
widely used Prolog system released under GPL license, presents a compiler (gplc)

that generates stand-alone binaries, which fits nicely into this paradigm.

PM2 is, above all, a programming environment. It is based primarily

1

on two distinct libraries: one for thread management (Marcel) and another for
communication (Madeleine). Using such libraries in C, we developed a message-
passing system, PM2-Pralog that allows for the creation of Prolog threads and

communication between them.

The HPC community has developed other programming environments
besides PM2, such as PVM [Sunderam, 1990], OpenMPI [Gabriel et al., 2004] or
TreadMarks [Keleher et al., 1994], building a base for the development of multi-
threaded applications in distributed environments. Nevertheless, the viability of
combining such environments with logic programming has been confined to a
few studies, like PYM-Prolog [Marques and Cunha, 1996].

Such combination is specially suitable when dealing with:

e Applications that potentially have some degree of parallelization whose

performance needs to be improved;

¢ Applications comprised of intelligent agents, hosting one or more agents

per machine;

e Scientific and business problems, such as simulation applications, that pro-
duce large amounts of data that need to be processed for visualization, data
mining or machine learning. For many cases, faster results can be poten-
tially achieved, subdividing the problem and processing each sub-task in a

different processor;

e Applications where some loss of accuracy in result can be traded for faster

execution times.

When dealing with computationally intensive problems on multi-processor

or multi-core architectures, creating and optimizing threaded applications can

improve performance, since each thread can be assigned to a different processor
unit or core. And with the arrival of multi-core processors, building up a super
computer by assembling several smaller ones, becomes easier and cheaper than

ever.

The use of such architectures can reduce the program execution time, some-
times very significantly, although there is a limit on the number of threads that are
effectively running in one CPU at the same time, i.e., that are not blocked awaiting
re-scheduling by the operating system, since the number of cores or processors in

a single machine is finite.

One way to work around this limitation is to use a distributed multi-
threading environment. PM2, as such an environment, contains features that

solve some important problems of distributed computing, to name a few:

e transparent deployment of binaries throughout the network;
e implementation of low-level thread management routines (Marcel);
e implementation of low-level communication routines (Madeleine);.

e hard distributed computing problems already approached, such as the dis-

tributed termination detection;

distributed debugging facilities;

configuration framework for network hosts.

Our motivation was also spurred on by the fact that “Marcel” [Namyst and
Méhaut, 1995] and “Madeleine” [Aumage, 2002] are both available for various
network hardware and architectures.

1.2 Objectives

While carrying out the work described herein, our goal was to develop a
system that:

e Allows distributed multi-threaded applications in Prolog to be developed.

e Achieves faster execution times than sequential Prolog systems for problems

that have some degree of parallelization.
o Allows a wider range of Prolog applications to be used.

e Helps tostudy the viability of combining Prolog and HPC (High-Performance
Computing).

1.3 Main Contribution

This work introduces a system that allows the exploitation of explicit par-
allelism and multi-threading in logic programming, based on a well known ISO-
compliant Prolog, GNU Prolog and on PM2, a distributed multi-threading pro-

gramming environment widely used in academia.

The implemented architecture allows new abstraction layers to be easily
defined on top of it, providing a framework to develop parallel and distributed
Prolog applications, or as a layer for the support of the execution of other appli-
cations that require heavy computational resources or to which applying some

degree of parallellization may be beneficial.

1.4 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 provides
background material on multi-threading, namely its benefits, models, limitations

and gives an example of a multithreaded Prolog program.

Chapter 3 is about parallel systems and logic programming. Concepts
needed to understand the thesis continue to be presented in short form and
related parallel Prolog systems are subjected to appreciation as well as the most

recent level of development of similar systems.

Chapter 4 describes PM2-Prolog in detail, its implementation, design and
architecture. The API it provides is listed and an explanation of how to use it is
also provided. Observations about ISO compatability are made and PM2-Prolog

is compared to a similar system, PVM-Prolog, in terms of usage.

In Chapter 5 the system is experimentally evaluated and the obtained

performance results discussed.

Finally, Chapter 6 draws conclusions and outlines possible proposals for
future work.

Chapter 2

Multi-Threading

Each single-thread process is a sequential program, namely, a sequence of
statements that are executed one after the other. Whereas a sequential program
has a single thread of control, a concurrent program has multiple threads of control.
The next figure illustrates the difference between a single-thread program and a
multithreaded one:

Thread ——»

Single-threaded Multi-threaded

Figure 2.0.1: Single and multithreaded program.

A thread, sometimes called alightweight process, is different from a process
because when creating threads, they are added to the existing process rather than
starting in a new process. Processes start with a single thread of execution and
can add or remove threads throughout the duration of the program. Also, unlike

processes, which operate in different memory spaces, all threads in a process share

the same memory space. Additionaly to this global shared memory space, each

thread has a private area for its own local variables.

Threads have the advantage over processes in that multiple threads can
cooperate and work on a shared data structure to fasten the computation. By
dividing the work into smaller portions and assigning each smaller portion to a

separate thread, the total work can be completed more quickly.

Multiple threads are also used in high performance database and Internet
servers to improve the overall throughput of the server. With a single thread, the
program can either be waiting for the next network request or reading the disk to
satisfy the previous request. With multiple threads, one thread can be waiting for
the next network transaction while several other threads are waiting for disk I/O

to complete.

In a concurrent program the multiple threads work together by communi-
cating with each other. Communication is programmed using shared variables
or message passing. When shared variables are used, one process writes into a
variable that is read by another. When message passing is used, one process send

a message that is received by another.

Independently of the form of communication, often a way to synchronize
threads with each other is needed. There are two basic kinds of synchronizaion:
mutual exclusion and condition synchronization. The first is based on ensuring
that critical sections of statements do not execute at the same time. The second

consists on delaying a process until a given condition is true.

2.1 Benefits

According to [Silberschatz et al., 2000], the benefits of multithreaded pro-

gramming can be broken down into four major categories:

e Responsiveness: Multithreading an interactive application is essencial to en-
sure the program continues responding even if part of it is blocked or is

performing a lengthy operation.

e Resource sharing: By default, threads share the memory and the resources
of the process to which they belong. The benefit of code sharing allows an
application to have several different threads of activity all within the same

address space.

e Economy: Allocating memory and resources for process creation is costly.
Because threads share resources of the process to which they belong, it is

more economical to create and switch the thread context.

o Utilization of multiprocessor architectures: The benefits of multithreading can
be greatly increased in a multiprocessor architecture, where each thread may

be running in parallel on a different processor.

2.2 User-space and Kernel Threads

User-space threads are created, terminated, synchronized, scheduled, and
so forth using interfaces provided by a threads library. Because user-space threads
are not directly visible to the kernel (which is aware only of the process containing
the user-space threads), user-space threads require no kernel support. Any user-
level thread performing a blocking system call will cause the entire process to

block, even if there are other threads available to run within the application.

8

Kernel threads are supported directly by the operating system: thread cre-
ation, scheduling and management are done by the kernel in kernel space. Because
thread management is done by the operating system, kernel threads are generally
slower to create and manage. However, since the kernel is managing the threads,
if a thread performs a blocking system call, the kernel can schedule another thread

in the application for execution.

2.3 Thread States

Typically, a thread is in one of the following states:

o New - execution has started.

Runnable - running in the system scheduler.

Blocked - waiting for a mutex or resource.

e Dead - execution is stopped and cannot be resumed.

Figure 2.3.1 illustrates the states in which a thread might be and the actions
leading to each state.

2.4 Models

According to [Silberschatz et al., 2000], many systems provide support for
both user and kernel threads, resulting in different multithreading models.

The many-to-one model maps many user-level threads to one kernel thread,

with thread management being done in user space.

9

blocked

Figure 2.3.1: Thread states.

The one-to-one model maps each user thread to a kernel thread. As [Sil-
berschatz et al., 2000] says: It provides more concurrency than the many-to-one model
by allowing another thread to run when a thread makes a blocking system call. It also
allows multiple threads to run in parallel on multiprocessors. The drawback,
also according to [Silberschatz et al., 2000], to this model is that creating a user
thread requires creating the corresponding kernel thread. Because the overhead
of creating kernel threads can burden the performance of an application, most
implementations of this model restrict the number of threads supported by the
system, for example Windows NT and OS/2.

Other systems like Solaris, IRIX, and Digital UNIX implement a model
that suffers from neither of the shortcommings described till now. The many-to-
many model consists in mapping user-level threads to a smaller or equal number
of kernel threads. The number of kernel threads may in fact vary for either a
particular application or a particular machine (an application may allocate more

kernel threads on a multiprocessor than on a uniprocessor).

10

2.5 Limitations

To quote [Silberschatz et al., 2000]: “a thread is a flow of control within a
process. A multithreaded process contains several different flows of control within the
same address space. The benefits of multithreading include increased responsiveness to
the user, resource sharing, economy, and the ability to take advantage of multiprocessor

architectures.”

However, although it is quite practical to have multiple threads with a
single CPU or a multiprocessor system, with user-space threads, there is no au-
tomatic time sharing [Dowd, 1993], which is useful when threads all want to
perform simultaneous CPU-intensive computations. To have automatic time
sharing, threads need to be created, managed, and scheduled by the operating

system rather than a user-space library.

When the operating system supports multiple threads per process, we can
begin to use these threads to do simultaneous computational activity. There is still
no requirement that these applications be executed on a multiprocessor system.
When an application that uses four operating system threads is executed on a
single processor machine, the threads execute in a time-shared fashion. If there
is no other load on the system, each thread gets 1/4 of the processor. While there
are good reasons to have more threads than processors for non computational
heavy applications, it’s not efficient to have more active threads than processors

for computer-intensive ones because of thread-switching overhead.

With operating-system threads and multiple processors, a program can
realistically break up a large computation between several independent threads
and compute the solution more quickly. Of course this presupposes that the

computation could be done in parallel in the first place.

11

2.6 Multi-Threaded Prolog Example

In this section we will look into a complete multi-threaded program in
SWI-Prolog as an example of a multi-threaded application in Prolog.

The program we propose is an implementation for the dining philosophers

problem.
According to Jim Plank and Rich Wolski [Plank and Wolski}:

“ The dining philosophers problem is a classical synchronization problem. Taken at
face value, it seems like a meaningless problem, but it is typical of many synchronization
problems that are seen for example when allocating resources in operating systems.[..]
The problem is roughly defined as follows: There are 5 philosophers sitting at a round
table. Between each adjacent pair of philosophers is a chopstick. In other words, there are
five chopsticks. Each philosopher does two things: think and eat. The philosopher thinks
for a while, and then stops thinking and becomes hungry. When the philosopher becomes
hungry, he/she cannot eat until he/she owns the chopsticks to hisfher left and right. When
the philosopher is done eating he/she puts down the chopsticks and begins thinking again.”

There are several solutions proposed to solve this problem. In the example
that will follow we use the easiest one, that consists on having each chopstick be
a monitor (mutex), and each philosopher will attempt to pick up the chopstick on
his left first, then right, then eat, then put down the right one, and then put down
the left one.

The only time that this solution is a problem is if a philosopher’s thread
gets preempted between picking up the first and the second mutex. For sake of

simplicity we have left that case out.

The example was tested to work with SWI-Prolog 5.2.13 multithreaded.
One example call could be init(100). The code is presented on Appendix B.

12

The limitation of this program is that it can only run on a single-machine.
Although SWI-Prolog supports basic interaction with the underlying operating
system that could be used to implement a distributed multi-threading Prolog sys-
tem, it would be difficult to support important aspects of parallel and distributed
programming, such as portability and fault-tolerance, without decreasing the

high-level of Prolog predicates.

13

Chapter 3

Parallel Systems and Logic

Programming

By default, statements inside a computer program execute sequentially,
one at a time, one after the other. The goal of multi-threading and parallel

programming is to execute a program faster by working around this limitation.

Concurrent programming originated in the 1960s within the field of op-
erating systems. Creating device controllers that operated independently of a
controlling processor and allowed an I/O operation to be carried out concurrently
with continued execution of program instructions, required that parts of a pro-

gram could execute in unpredictable order.

The recent several years have witnessed an ever-increasing acceptance and
adoption of such systems, both for high-performance scientific computing and

for more general purpose applications.

Such systems range from a few hosts to thousands of CPUs and offer
enormous computational power that is used for problems such as global climate

modelling and drug design.

14

3.1 Logic Programming

Logic programming differs from other programming languages because
problems and algorithms are expressed by using logic instead of constructing

sequences of actions that manipulate mutable state information.

A case for using Prolog is presented below:

o An algorithm can be thought as being a combination of logic and control. Due
to its logic nature, most control in Prolog is ommitted, given more chance to

concentrate on the problem at hand rather than on the behavior of the program.

¢ Unlike imperative programs, which have only a procedural interpretation, logic
programs also have a declarative, logical interpretation, which helps to ensure

their correctness.

¢ Scoping rules are simple and uniform in Prolog, and declaration of variable

names and types is not required, thus reducing code size.

e Prolog is a general-purpose programming language with efficient implementa-

tions available on most computing platforms today.

[McCarthy, 1959] was the first to publish a proposal that mathematical
logic could be used for programming, but it was not till 1972 that Prolog, the still
only one widely available language of its kind, was developed.

It was first introduced for natural language processing in French, but it
has since then been used for specifying algorithms, searching databases, writing
compilers, building expert systems and many other kinds of applications. Prolog
is especially suited for applications involving pattern matching, backtrack search-
ing, or incomplete information. A historical perspective of the development of

Prolog can be found in [Colmerauer and Roussel, 1996].

15

As with any programming language, Prolog arguably also has some limi-

tations. Some of them are of technical and others are more of a social nature, such

as:

» Non-logical predicates (e.g. writeln/1, findall/3, !/0) reduce the inherent logic

of programs because they don’t have a direct logic meaning and some have

side-effects (output text or modifying the database).

Steps may be repeatedly derived by the theorem-prover, being possibly redun-
dant.

The modules system varies from Prolog system to Prolog system and without

portable libraries, users are easily trapped into a single Prolog implementation.

To quote Paulo Moura [Moura, 2006] the “lack of code sharing means that Prolog
programmers cannot bootstrap their applications without being trapped in some propri-
etary implementation, even for basic tasks. Lack of libraries and bindings for popular
APIs makes choosing Prolog as an industrial tool a risky proposition”, even when the

advantages when compared with other languages may seem in favor of Prolog.

Also, Paulo Moura [Moura, 2006] adds that “Broad sharing of Prolog code between
implementations suffers from both weak ISO Prolog standards and lack of knowledge of

the current standards by Prolog programmers.”.

It is possible to overcome some of these limitations, for example, by com-

bining Prolog with other languages. Combining Prolog and C is a trivial task

using the foreign language interface that most Prolog implementations offer.

SWI-Prolog and GNU Prolog, for example, offer such interface in which

a foreign predicate is a C-function that has the same number of arguments as

the predicate represented. C-functions are provided to analyse the passed terms,

convert them to basic C-types as well as to instantiate arguments using unification.

16

Non-deterministic foreign predicates are also supported, providing the foreign

function with a handle to control backtracking.

On the C side, it is also possible to call Prolog predicates, providing both
an query interface and an interface to extract multiple solutions from an non-
deterministic Prolog predicate. For SWI-Prolog, according to [Wielemaker, 1997]:
“there is no limit to the nesting of Prolog calling C, calling Prolog, etc. and it is possible

to write the ‘main’ in C and use Prolog as an embedded logical engine”.

It is also possible to combine Prolog and other languages besides C. Such
an example is the SWI module for Perl programming developed by Robert Barta
[Wielmaker, 2000] or one of the libraries currently available to combine Prolog
and Java [Calejo, 2001] or P# [Cook, 2001], that allows interoperation between
Prolog and C#.

3.2 Parallel Architectures

In a network of computers, each computer (node) has fast access to its own
local resources, including memory. To access the memory of other nodes, requests
have to be made over the network (distributed memory architectures). On top of
these mechanisms, using the VM's paging system, each node may have access toa
large shared memory in addition to its own private memory. Such an organization

is called DSM (distributed shared memory architecture).

Each node in a network may of course be a shared memory multiprocessor,
where processors share access to a common memory space via a high-speed
memory bus. This global memory space allows the processors to efficiently
exchange or share access to data. Typically, the number of processors used in

shared memory architectures is limited due to the amount of data that can be

17

processed by the bandwidth of the memory bus connecting the processors.

Several modern parallel computers use a mixed shared/distributed mem-
ory architecture. Each node consists of a group of 2 to N processors connected
via local shared memory and in turn, those nodes are connected via a high-speed

network.

Although parallel architectures are mostly designed with the goal of solv-
ing problems too big for any single supercomputer CPU, they also permit sharing

other resources, e.g. storage, which are increasingly needed.

3.3 Implicit and Explicit Parallelism

In order to explore the potencial provided by parallel systems, research in
logic programming has developed along two major strategies [Gupta et al., 2001,
Wielemaker, 2003].

The first approach relies on explicit parallelism, where message passing
primitives are added to Prolog for concurrency or by modifying the semantics of
the logic programming language in a suitable way (Delta Prolog [Pereira et al.,
1986] and CS-Prolog [Futo, 1993]). Systems that rely on this approach usually run

multiple Prolog processes in parallel and can be classified as follows:

o those that add explicit message passing primitives to Prolog;
e those that add blackboard primitives to Prolog;

e those based on guards and data-flow synchronization.

Another approach exploits implicit parallelism in logic programs. This

18

means parallelization of the execution can (potentially) occur without any input

from the programmer.

Two main forms of implicit parallelism have been explored in logic pro-
gramming [Gupta et al., 2001, Wielemaker, 2003]. And-Parallelism is based on the
parallel evaluation of the various goals in the body of a clause. This form of par-
allelism is usually further subdivided into Independent And-Parallelism in which
the goals are independent, that is, they do not share variables, and Dependent
And-Parallelism, in which goals may share variables. In contrast, Or-Parallelism
corresponds to the parallel execution of alternative clauses for a given predicate
goal. Also there are approaches where both and- and or-parallelism are exploited
[Costa et al., 1991Db].

The next figure illustrates the several strategies for exploring parallelism

in logic programming;:

‘And-Parallelism Dependent

Independent é

Qr-Parallelism

<t

Hybrid Solutions

I
i

Message-Passing

S

mE—— Guards and Data Flow |
synchronization

Figure 3.3.1: Strategies for exploiting parallelism in logic programming.

Although implicit parallelism is appealing because the sequential program-
ming model is retained, providing the ability to parallelize legacy code, there is a
limit on how much parallelism can be found, and current techniques only work

on certain kinds of programs.

19

Implicit parallelism can be applied in many cases, but current techniques
can’t achieve maximum parallel potential for all problems. This seems an oppor-
tunity to further explore explicit parallelism and increase the range of problems

that can be solved using parallel logic programming.

Since explicit and implicit approaches are complementary they can appear
together in a single programming language. Such hybrid approach is exemplified,
for instance, by the &-Prolog system [Hermenegildo and Greene, 1991].

3.3.1 Message Passing Libraries

One of the basic methods of explicit parallelism is the use of message
passing libraries. These libraries manage transfer of data between instances of a
parallel program running (usually) on multiple processors in a parallel computing

architecture.

The Message Passing Interface (MPI) is the de facto standard® for computer
program communication in High Performance Computing (HPC) environments.
There are many implementations of the MPI standard, created by different groups
in industry, academia, and government labs. MPI allows for the coordination of
a program running as multiple processes in a distributed memory environment,

yet it is flexible enough to be used in a shared memory system as well.

Recently, a merge between three well-known MPI implementations re-
sulted in Open MPI [Gabriel et al., 2004]. These implementations are FI-MPI
[Fagg et al., 2003] from the University of Tennessee, LA-MPI [Graham et al., 2003]
from Los Alamos National Laboratory and LAM/MPI [Squyres and Lumsdaine,

!The MPI standard is comprised of 2 documents: MPI-1 (published in 1994) and MPI-2 (pub-
lished in 1996). MPI-2 is, for the most part, additions and extensions to the original MPI-1
specification. The MPI-1 and MPI-2 documents can be downloaded from the official MPI Forum
web site: http://www.mpi-forum.org/.

20

2003] from Indiana University. The PACX-MPI team at the University of Stuttgart
is also collaborating as part of the Open MPI as well as major companies like
Cisco Systems, IBM and Sun Microsystems. Each of the MPI implementations
mentioned earlier excelled in one or more areas and the Open MPI effort ef-
fectively contains the union of features from each of the previous MPI projects
[Graham et al., 2006, Angskun et al., 2006a, Keller et al., 2006, Angskun et al.,
2006b, Hoefler et al., 2006].

3.4 Blocking and Non-Blocking Communication

The network communication between two computers can be implemented
by using blocking or non-blocking primitives. Blocking primitives, also called
synchronous, are those that do not return from the subroutine call until the opera-
tion has actually completed. Thus, it ensures that the relevant completion criteria

have been satisfied before the calling process is allowed to proceed.

With a blocking “send”, for example, the variables sent can safely be overwritten on
the sending process. With a blocking “receive”, the data has actually arrived and is

ready for use.

A non-blocking (or asynchronous) “send” or “receive” returns immedi-
ately, with no information about whether the completion criteria has been sat-
isfied. According to [Team RUNTIME, 2001], this has the “advantage that the
processor is free to do other things while the communication proceeds in the background.

Tests can be made later to check whether the operation has actually completed”.

21

For example, a non-blocking “send” returns immediately, although the operation will
not be complete until the reception of the message has been acknowledged. The
sending process can then do other useful work, testing later to see if the operation

is complete. Until then, however, it can not be assumed that the message has been

received or that the variables to be sent may be safely overwritten.

3.5 Problem Decomposition

An approach to design a parallel algorithm is to decompose the problem
into smaller tasks. These can then be assigned to processors which will work
simultaneously, with some coordination. This decomposition can be made focus-
ing on the problem domain or on the functions used to solve the problem. It is

important to distinguish between these two techniques.

In domain decomposition the program input is divided into smaller inputs
of approximately the same size and then mapped to different processors. Each
processor works only on the portion of the input that is assigned to it. Of course,

the processes may need to communicate in order to exchange data.

The domain decomposition strategy is usually not very efficient because
the data assigned to the different processes may require different lenghts of time
to process, making the performance of the program limited by the speed of the

slowest process.

In such cases, a more efficient strategy will be to use functional decom-
position or “task parallelism”. This approach consists of parallelizing what is
commonly called a task or a job, that can be identified as a piece of code that is

independent and that can be seen as a function, having an input, some processing

22

time working and an output. The tasks are assigned to the processors as they

become available, and processors that finish quickly are assigned more work.

In both scenarios it is also necessary to consider that an overhead in terms
of time exists when we are talking about parallel computations. This is due to

task coordination and can include factors such as:

e Task start-up time;
¢ Synchronizations;
e Data communications;

e Software overhead imposed by parallel compilers, libraries, tools, operating

system, etc;

e Task termination time.

On the conducted work, we try to have a small glance on the results that
can be achieved from exploring Logic programming with both these approaches.

3.6 PM2 - Parallel Multithreaded Machine

PM2 [Namyst and Méhaut, 1996] is a distributed multi-threading pro-
gramming environment designed to support irregular parallel applications on
distributed architectures. A problem/algorithm is considered to be irregular if it

involves pointers, such as in algorithms on trees or graphs.

For thread management it uses Marcel, a user-level multi-threading li-

brary with support for several different platforms. The communication between

23

threads is made using Madeleine, the communication library of PM2, that is avail-
able on top of various network hardware such as Myrinet, SCI, Ethernet or VIA
and runs on the following architectures: Linux/IA32, Linux/Alpha, Linux/Sparc,
Linux/PowerPC, Solaris/Sparc, Solaris/IA32, AIX/PowerPC, WindowsNT/IA32.

PM2 adheres to the SPMD (Single Program Multiple Data) programming
model, in a way very similar to the PVM [Sunderam, 1990] and MPI [Graham
et al., 2006] communication libraries. The user writes a single program text, a
copy of which is launched by a specific load command on each processing node
of the current configuration. Then, it is up to this common program text to
include branching so as to differentiate between the processing nodes, based on a

programming scheme exemplified by Program 1.

Program 1 Branching to differentiate between processing nodes in PM2.
if(pm2_self() == 0) { /* Do something. .. */ }
else { /* Do something else... */ }

This approach has the advantage of providing a single flow of control. At this
level of presentation, a processing node is simply a Unix process. The association
between processing nodes and physical nodes is made by the pm2conf command,
which defines a static configuration that will be used next time an execution is

requested.

3.7 Related Parallel Prolog Systems

Researchers in the field of logic programming have long realized the poten-
tial for the exploitation of parallelism present in the execution of logic programs
as can be witnessed by the significant number of systems that were implemented

with this goal in mind.

24

Examples of the multitude of such systems are Aurora [Lusk et al., 1988],
Muse [Ali and Karlsson, 1990], &-Prolog [Hermenegildo and Greene, 1991], DDAS
[Shen, 1992], Andorra-I [Costa et al., 1991a,b], Parlog [Clark and Gregory, 1986],
GHC [Ueda, 1985], KL/1 [Ueda and Chikayama, 1990], YapOr [Rocha et al., 1999]

to name a few.

In the context of the present work, particular focus is first taken on systems
that exploit explicit parallelism based on message passing and then on Prolog
systems that support multi-threading. We chose only a few systems that we think
are representative enough of the state-of-the-art in the context of parallel and

distributed logic programming.

3.7.1 Message Passing

Both Delta Prolog [Pereira et al., 1986] and CS-Prolog [Futo, 1993] present a
system where multiple Prolog engines are mapped to processes that are running
in parallel and communicate with each other via explicit message passing. These
implementations were the first systems that exploited explicit parallelism based

on message passing for Prolog.

PVM-Prolog [Marques and Cunha, 1996] introduced a programming inter-
face to the PVM system where multiple distributed Prolog processes cooperate
using a message passing model. This is very close to what is presented since PVM
is itself very similar to PM2, one fundamental difference being that PM2 can itself

sustain more than one entity of the application on each node.

25

3.7.2 Multi-threading

With respect to multi-threading, Prolog systems commonly offer imple-
mentations based on the POSIX threads (pthread) API [Butenhof, 1997]. This is
exemplified by Qu-Prolog [Clark et al., 2001], SICStus MT [Eskilson and Carlsson,
1998], IC-Prolog II [Chu, 1994], PMS-Prolog [Wise, 1993] and more recently by
SWI-Prolog [Wielemaker, 2003].

In these implementations each Prolog thread is normally a POSIX thread
running a Prolog engine and threads communicate among each other either by

using FIFO message queues or a blackboard system (an area of shared memory).

3.7.3 Assertions

Regarding assertions, for example in SWI-Prolog, according to [Wiele-
maker, 2003]: by default, all predicates, both static and dynamic, are shared between
all threads. Changes to static predicates only influence the test-edit-reload cycle.
As for dynamic predicates, a goal uses the predicate with the clause set as found
when the goal was started, regardless of whether clauses are asserted or retracted
by the calling thread or another thread ([Wielemaker, 2003]). Thread-local pred-
icates are dynamic predicates that have a different set of clauses in each thread.
Modifications to such predicates using assert/1 or retract/1 are only visible from
the thread that performs the modification (Wielemaker, 2003]).

3.7.4 Synchronisation

For synchronisation, in most cases, for example between threads in SWI-

Prolog, mutexes are used.

26

3.8 Summary

According to [Silberschatz et al., 2000], we saw that “a thread is a flow of
control within a process. A multithreaded process contains several different flows of
control within the same address space. The benefits of multithreading include increased
responsiveness to the user, resource sharing, economy, and the ability to take advantage

of multiprocessor architectures.”

Modern parallel computers use a mixed shared/distributed memory archi-
tecture. Each node consists of a group of 2 up to N processors connected via local

shared memory and in turn, those nodes are connected via a high-speed network.

PM2 is a distributed multithreaded programming environment, that ad-
heres to the SPMD (Single Program Multiple Data) programming model, in a way
very similar to the PVM and MPI communication libraries. The user writes a
single program text, a copy of which is launched by a specific command on each

node of the current configuration.

Most Prolog implementations offer libraries and modules to support basic
interaction with the underlying operating system, such as access to the file-system,

forking a process or TCP/IP communication.

Although these libraries could be used to implement a distributed multi-
threading Prolog system, they usually offer low-level routines that are difficult to
work with to support important aspects of parallel and distributed programming,
such as portability and fault-tolerance.

These aspects are supported by distributed programming environments
like PVM and PM2, that already account for such problems but rarely offer access
to Prolog.

An integration between Prolog and PM2 will allow programmers to exploit

27

parallelism and develop distributed multi-threaded Prolog applications.

28

Chapter 4

PM2-Prolog

PM2-Prolog is a system that allows the development of distributed multi-
threaded Prolog applications, using GNU Prolog and PM2.

Since PM2 programs are developed in C and GNU Prolog is a Prolog
engine and compiler, it was necessary to estabilish a model for connecting the

two programming environments.

The approach used doesn’t involve modifications in GNU Prolog neither
modifications in PM2. Instead, it relies on:

e anew program (Tabard'), written in C with the PM2 libraries, that manages
distributed instances of gprolog engines, and that is transparent for the

end-user.

e anew Prolog library (pm2prolog-lib), implemented partly in C and partly in
Prolog, which allows the development of distributed multithreaded Prolog
applications.

!Literally, a tabard is a short coat, that in the late middle ages was worn by knights over their
armour. This fits nicely as a name because Tabard will allow “wearing” a Prolog program over
PM2 (the armour).

29

When using a PM2-Prolog program we first generate the binary that results
from the compilation of our Prolog program linked with Tabard, the libraries of
PM2 and the libraries of GNU Prolog. To ease this compilation task there is a
Makefile available in Appendix A.

Before compiling there is a configuration that specifies the list of machines
on which the application is going to run. That configurations maps one or more
processing nodes or virtual processors (VPs) to each machine. While it may seem
common sense practice to use one virtual processor per physical node, nothing in

PM2-Prolog requires such association, as we will see in detail later.

Then, the binary is executed via the PM2 command pm2load, e.g.:

$ pm2load helloworld
Hello World

This command starts the following execution model:

1. The binary is copied to all the machines. The main() function of Tabard is
called on every VP.

2. In VP 0 (master) a gprolog engine is created calling Start_Prolog(), that will
start executing the linked Prolog code.

3. In the other VPs (workers) a pthread in C is created and stands awaiting
messages. This is done via a call to a blocking read Madeleine function.

4. In the master, now in the Prolog thread, a predicate is called to send a mes-
sage to every worker, ordering the starting of a Prolog thread by calling
Start_Prolog().

5. The workers receive that message, initiate a gprolog engine and the new
Prolog thread stands awaiting more messages to come by calling a blocking
read pm2prolog-lib predicate. At this time, there are two threads awaiting

messages, one in C and another in Prolog, for each worker.

30

10.
11.

. In the master, work is distributed throughout the workers through message-

passing.

. The workers receive tasks which they execute locally. As soon as they finish,

they send their results back to the master and return to their prior state,

awaiting for messages.

. The master assembles the work results by reading as many messages as the

number of previously sent messages.

. The master redistributes work again (5.) or orders the workers to finish their

execution.
The workers terminate.

The master reiniciates the workers (4.) or terminates itself.

Some of the aspects described in the above model are transparent for the

end-user and some require explicit use or the program may not work correctly in
the distributed environment.

Figure 4.0.1: PM2-Prolog copies the program into each configured host and executes.

A general picture of the execution model as seen by the end-user, indepen-

dently of the Prolog program itself, is given in above figure.

31

W 3 O U W=

e el
SN U WD LN = OO

4.1 Threads in PM2-Prolog

A thread is most commonly described as a flow of execution. A computer
program has commonly only one flow of execution, that goes from its first in-
struction to the last, not necessarily in sequential order. In Program 2 we can see
an example of a Prolog program that counts the occurrences of a number in a list.

This program, as most computer programs, has only one flow of execution.

Program 2 A Prolog program to count the occurrences of a number in a list.

:— initialization(init).

init:— n_occurs(2, [23, 35, 2, 6, 43, 2, 9], O),
write(O),nl,halt.

% n_occurs(+X, +List, ~N)
n_occurs(X, L, N):— n_occurs(X, L, 0, N).

n_occurs(-, [], Acc, Acc):— L.
n_occurs(X, [Y[Ys], Acc, N):—
X\=Y,
n_occurs(X, Ys, Acc, N).

n_occurs(X, [X|Xs], Acc, N):—
Accl is Acc + 1,
n_occurs(X, Xs, Accl, N).

If we were to execute Program 2 in a parallel computer following the SPMD
paradigm, the init predicate, where the program starts, would be called on all
computers or processing nodes thus originating N equal threads of execution
running concurrently. The program would still have a single flow of control but
now that flow would be executed once in each node. The list could then be splitted
across the processing node which would work with a smaller search-space than

before.

In PM2-Prolog each machine in the configuration will have a C thread
(listener) and a Prolog thread, for each VP. The purpose of the C thread is to

control the associated gprolog engine that runs in the Prolog thread, in terms of

32

creation, termination, monitoring, etc.

Since GNU Prolog doesn’t support multi-threading, PM2-Prolog novelty
is that it allows to control more than one gprolog thread in the same machine

without introducing changes in GNU Prolog itself.

Also, with this approach, we transparently support all predicates of the
GNU Prolog libraries, which would not happen if we were to modify the gprolog
engine to support multi-threading in which case many predicates would require

modifications.

In summary, we achieve a multi-threading that is very appellative from a
technical point of view but that for each Prolog thread has an attached C thread.
However, once GNU Prolog introduces support for multi-threading it is trivial
to change to an architecture where there is only one C thread by machine that
controls N gprolog threads.

4.1.1 Task-Farming in PM2-Prolog

Branching is crucial in PM2-Prolog since it allows to differentiate between
the different threads and execute different things in each one to our benefit. The
case described earlier, in which we have a master thread, that distributes tasks to
be done by the workers is known as task farming and is a commonly used way of
parallelizing applications. Also, as described earlier, the communication between

master and workers occurs by message-passing, as illustrated on the figure 4.1.1.

The master thread and the workers execute in a VP and what happens
inside each VP deserves a closer look. A VP is a Unix process that receives a
unique rank number.

This rank is an unsigned int between 0 and pm2_max_rank/1, the configu-

33

Figure 4.1.1: Task farming strategy to parallelize a program.

ration size. A VP can learn about its own rank by calling pm2_self/1.

4.1.2 Listener Thread

Processing nodes are able to execute code and simultaneously check if any
messages arrives. The listener thread receives commands or orders in form of
messages that can result in different actions being carried out on a specific VP,

such as creating another thread or execute specific code.

Two important messages were specified and implemented: 1) create a
Prolog thread and 2) terminate the listener thread. All other messages that arrive
at a VP will be interpreted not as commands, but as common messages that must
be delivered to the running Prolog thread inside that VP. A mechanism of quoting
to enable passing messages equivalent to these command is not yet implemented,

but is being thought of.

As can be observed on the above figure, the listener thread and the Prolog
thread communicate using a shared data structure. The listener delivers messages

by writing them to a message queue and the Prolog thread accesses them by reading

34

B
[t]

C Thread Listener Prolog Thread

write_message_queue () thread_send_message/2

Start_Prolog() thread get message/2

Stop_Prolog() pm2_self/1

RECEIVE

SOCKET

Figure 4.1.2: Inside a processing node or virtual processor.

in First In, First Out (LIFO) order from that structure. The message queues provide
a means for threads to wait for data without using the CPU. Other means to do
this, like checking via a polling loop, would cause busy-waiting, that generally
should be avoided.

The listener thread receives messages from a socket and the Prolog thread

sends messages via its listener “support” thread.

The Prolog thread can also write to its message queue in the special case

where the destination VP is the same as the sender.

35

4.2 Communication Scheme

In terms of communication, the Madeleine layer [Aumage, 2002] provides
an API that is similar to POSIX socket. Around this API we’ve implemented
primitives for sending and receiving Prolog terms over the network. As with
Madeleine, it is also not possible in PM2-Prolog to know the source address when
a message is received. Complementary, we observe that most applications don’t
have this requirement. That doesn’t mean we will only communicate between

master and workers, because we can configure any host which is network acces-

sible.

To implement the routines we needed to be able to convert a Prolog term
into a C string and also be capable of doing the opposite process. This is required

since the Madeleine routines receive a (char *) buffer as an argument.

The approach used consists in transforming the term to a character code
list by using the built-in gprolog predicate writeq-to_codes/2. This is similar to
write/2 except that characters are not written into a text-stream but are collected

as a character code list which is then unified with the first argument.

By using the foreign type term a C string will be ready to be sent. On the
reception side, once the string is read we use Mk_Codes() to convert it again to
a character code list and read_term_from codes/3 to transform it back into the

original Prolog term.

Threads living on distinct nodes may not directly interact together unless
by message-passing. When this happens the listener thread receives the message

and is responsible for delivering it to the correct local thread.

36

4.3 Thread Management

Prolog threads are created by calling marcel_create(), that is part of the
Marcel [Namyst and Méhaut, 1995] library . In terms of managing threads what
Marcel offers to the programmer is similar to pthreads, and so in terms of structure
the resulting thread can be considered as identical to a regular pthread. The thread
starts by executing the function given as argument to marcel_create(). In this
case, this is Start_Prolog(), which initializes and starts the Prolog engine.

The mutexes provided by the Marcel API are used to make the operations
on the message queue thread-safe. Their behaviour is also similar to the ones
offered by the pthread APL

One thing that also needs to be guaranteed in the message queues is that
no initial read is made before write. For that purpose another mutex has been

used, as follows:

1. The mutex is initialized and a lock is made.

2. Some VP send a message. The listener thread receives it, writes it to the
message queue and an unlock is made.

3. Since an unlock has been made, the Prolog thread will now acquire the lock
and retrieve the message from the queue. Finally, a lock is made and we go

back to step 1, starting over again when a new message arrives.

4.4 Programming Model

When developing a PM2-Prolog program, three aspects were taken into

account:
1. The SPMD (Single Program Multiple Data) programming model.

37

W NN LN =

O e T S

2. The task-farming model.

3. The message-passing model.

The user writes a single program text, a copy of which is launched by
a specific load command on each VP. At this point the programmer typically
includes branching to differentiate between the different VP and execute different
things in each one. One predicate that is included with PM2-Prolog that can help
distinguish if we are in the master node (rank equal to zero) or in another node
is pm2_is_master/0. The following program introduces the use of this and some

other predicates introduced by PM2-Prolog’s APL

Program 3 Program to identify the Master and Worker threads.

= include(lib).
— initialization(init).

% thread rank = 0

injt:—
pm2_is_master, |
pm2_max_rank(MaxRank),
start_prolog_workers(MaxRank),

write('Master thread’),nl,
pm2_self(Rank),
write(’My rank is '),write(Rank),nl,

stop_prolog_workers(MaxRank),
finish_listeners.

% thread rank != 0

init:—
write(’Worker thread.’),nl,
pm2_self(Rank),
write('My rank is ’),write(Rank),nl.

The predicate pm2_max_rank/ 1 unifies MaxRank with the highest rank of the
configuration. pm2_self/1 unifies the rank of the current VP.

The second concern has to do with the task-farming model. Let’s continue

with Program 2 and now consider a predicate that can be used for distributing

38

O ® NN U W=

=
N = o

tasks by the workers. We assume that we want to look up the number of occur-
rences of a number on a set of lists. We send the list and the number to look up

over the network and propose the following program:

Program 4 Scheduling work to be done by the workers.

% all work scheduled(L):— empty(L).
send_worker_job([],-,-).

% round-robin the workers

send_worker_job(L, Element, 0):-
pm2_max_rank(MaxRank), % obtain the rank of the hightest worker
send_worker_job(L, Element, MaxRank). % start again

send_worker_job([L|Ls], Element, Rank):—
thread_send_message(vid(Rank,0), query(Element,L)),
NextRank is Rank — 1,
send_worker_job(Ls, Element, NextRank).

We loop through the workers and when we reach rank zero we call

pm2_max.rank/1and start over, in a round-robin scheme. The predicate thread_send_message/2

is also used here, which first argument is a compound term named vid indicating

the destination rank and the thread id inside that rank.

The first argument is a list of the existing worker ranks, the second is the
element for which the program will trigger a message if it finds it, and the third

is the current rank of the iterative process.

4.4.1 Dealing with Message-Passing

Here we briefly analyse, in terms of Prolog, the impact of doing computa-

tions based on a message-passing model on program development.

A computation in Prolog is always a process of production of bindings,

known as unification.

39

This unification consists in binding a variable to a value, the scope of
which is local to the Prolog process and not visible or accessible to the outside.
The binding is lost when the variable is referred in a remote node. Via message-
passing, we propose recovering the binding of a variable by reading it from
another message that the remote node should sent. As an example, consider the

Prolog predicate in Program 5 to be in single-threaded mode.

Program 5 A query call that would presumably unify the variable X.
% pred(+A, +B, -O)
pred([1,2], [[2,2], [3,2]], X).

The same query, in a multi-threaded application with message-passing,

would have to look as Program 6.

Program 6 Master side.
thread_send_message(worker_id, pred([1,2], [[2,2], [3,2]11)),
thread_get_message(X).

And in the worker thread side as Program 7.

Program 7 Worker side.
thread_get_message(Pred),

(do processing)
thread_send_message(master, Result).

An example Makefile that can be used for compiling such a program can
be found in Appendix A.

4.5 API

We now present the PM2-Prolog prototype APIL Extending PM2-Prolog is
similar to extending any GNU Prolog program. New Prolog predicates or new C

40

functions can be added using the foreign interface.

4.5.1 PM2 Facilities

i pm?2_self(-Rank)

Unifies with the rank number of the processing node, a unique integer number

assigned to each machine.

' pm2_is_master/0

Will succeed when the rank where it is being called is zero, usually the thread that
distributed work.

' pm2_max._rank(-Rank)

Unifies with the highest rank number of the configuration.

[finish_listeners/0

Terminates the listeners threads in each VP. Called upon termination.

4.5.2 Creating and destroying Prolog threads

start_prolog_workers(+HighestRank)

Start the Prolog thread in each VP.

stop-prolog.workers(+HighestRank)

41

Stop the Prolog thread in each VP.

4.5.3 Thread Communication

Fthread_send_message(+ThreudId, +Term)

Send a message to the thread Threadld with content Term. This predicate is non-
blocking, meaning it will return immediately after being called. Also, a variable
looses any binding it might have when sent to another thread.

Since each thread has by default its own message queue the other threads
will be unaffected by this call.

Threadld is a compound term of the form vid(Rank, Id).

thread._get_message(-Term)

Fetches a message from the message queue of the current thread. This predicate
is based on a blocking read, meaning the execution will block, if necessary, on
this thread until a message can be retrieved. After being retrieved, the message is

deleted from the message queue.

read _results(-Number)

Calls thread_get_message/1 a Number of times.

4.54 ISO Compatibility

Timely fulfilling modern software requirements is only possible through

the extensive use of libraries. Asaresult, modern programmers spend a significant

42

portion of their time creating and using libraries.

The quality and broadness of the accompanying libraries of a particular
programming language become an important part on its success, sometimes even

more than the language intrinsic characteristics.

For this reason, is it important that broad sharing of these libraries between
implementations exists, and that is only possible if ISO Prolog standards are

defined and known by current Prolog programmers.

For Prolog systems wishing to implement multi-threading support predi-
cates, there is a draft technical recommendation (DTR) for Prolog multi-threading
support [Moura, 2007].

Compatability with the DTR should be reached when the following modi-

fications are made:

e Rename pm2_self(-Rank) to thread_self(-Rank);
e Implement thread_create(@term, -thread, @options);

e Modify start_prolog.workers(+Number) in such a way that calling it is
equivalent to calling thread create(@term, -thread, @options) several
times;

o Implement an alias that associates a message-queue with a distributed
thread identifier.

e Modify thread_send message/2 in order to allow receiving a message-

queue alias instead of a distributed thread identifier.

43

O O NN W N -

[T S S
L NN WN -

Program 8 PM2-Prolog example: Send a message to each worker thread and read
each reply.

:~ initialization(init).
:— include(’1ib"). % include the pm2 interface lib

% will run on thread with rank 0
init:—
pm2_is_master,!,
pm2_max_rank(MaxRank), % unify with the highest rank

start_prolog_workers(MaxRank), % Start_Prolog on each node

test_prolog_workers(MaxRank), % send a msg to each node
read._test(MaxRank), % read the response

finish_listeners.
% will run on thread with rank not 0

init:—
worker_work.

4.6 PMZ2-Prolog Users Guide

We can observe in the above example the generic structure of a PM2-Prolog
program. The execution starts by calling the init/0 predicate, as indicated by the

initialization/1 directive.

The predicate is called on all nodes and with pm2_is master/0 (line 6,
Program 8) we distinguish what is executed in the master thread and what is

worker code.

Right after this predicate and following the code that is executed on the
thread with rank 0, pm2_max_rank/1 (line 7, Program 8) is used to obtain in runtime
the number of workers present in the configuration. This is useful for sending a

message to each worker in a round-robin scheme, for example.

start_prolog-workers/1 will create a new Prolog thread on each worker.

This is done by sending a message to each remote listener thread that will order

44

Gl W N e

Ul W N =

the creation of a new pthread that will call Start_Prology().

For sake of simplicity we have encapsulated the logic behind sending a
message to each worker in the predicate test_prolog workers. The code for this

predicate is in Program 9.

Program 9 test_prolog_workers predicate.

test_prolog_workers(0):— 1.
test_prolog.-workers(VP):—-
thread _send_message(vid(VP,0), hello),
VP1 is VP - 1,
test_prolog_workers(VP1).

The program argument is the rank of the highest worker rank, as obtained
by calling pm2_max_rank/l. We send a message to each worker by decrementing

this number until we reach zero (the master rank) on which we stop.

The read_test/l is then executed to read the workers response. It consists
of the same logic we saw in Program 9 but for reading, i.e. we read from each
worker by reading first from the highest rank and then decrementing the rank

until we reach the master rank.

Program 10 read_test predicate.

read_test(0):— 1.

read_test(VP):—
thread_get_message(X),
VP1 is VP - 1,
read_test(VP1).

Theworker_work/01is the predicate called on each worker thread. It consists
of a blocking thread_get_message/l predicate that will await for a message, process
it, and send back the result back to the master thread. Our processing consists on
calling mytestgoal/2, a fictional predicate as an example, with the first argument
unified to the received message and with a second argument that can be unified

or not according to the message.

45

O 0 NN G BN =

juny
(=]

Program 11 worker_work predicate.

worker_work:—
pm2_self(Rank),
thread_get_message(Term),
l, mytestgoal(Term, X),
write('Worker '),write(Rank),write(’ > '),
write(Term), write(’,’), write(X), nl,
thread_send_message(vid(0,0), X),
worker_work.

mytestgoal(hello, ok).

finish_listeners/0 will, also by sending a message, order the termination of
the Prolog threads.

4.6.1 Compiling a PM2-Prolog Program

Before compiling a program we include the PM2-Prolog library by using

the directive include, such as:
;- include(pm2prolog).

This directive assumes the presence of the file pm2prolog.pl on the current
directory.

Then, we compile the Prolog program into a object file by using the GNU
Prolog compiler gplc.

The result object file is then used on another compilation command, this
time by issuing a gcc compiler command, in which we link the PM2-Prolog library,
GNU Prolog and the PM2 libraries with our program.

The arguments for such operation must specify the static flag. This makes
sure that the resulting program binary is a stand-alone that can be safely deployed

46

throughout the machines on the network. It must also assure that both the PM2
libraries and the gprolog libraries will be linked together in order to allow the
program to access PM2 functions and gprolog predicates.

An generic example Makefile that can be used to compile a PM2-Prolog
program can be found in Appendix A. The relevant part of such file however is

presented below:

Program 12 Example usage of gcc(1) to compile a PM2-Prolog program.
tabard: gprolog-pm2.o tabard.o $(OBJECT_PL)
gcc -static -o tabard
$(PLL)/obj_begin.o
$+
-L$(PLL)
-1bips_fd -lengine_£fd -lbips_pl
$(PLL) /obj_end.o
$(LIBS)
-lengine_pl -llinedit -1lm

4.6.2 Configuring and Running

The compiled version of our program is automatically placed into the
private build directory of the user. The final step before execution is to specify the
list of hostnames on which the application is going to run. This is done via the

pm2conf command.

For example, if the current machine is called ravel, and two neighboring
ones are called debussy and faure, we can configure our application to run on

the three hosts by executing:

ravel% pm2conf ravel debussy faure

The current PM2 configuration contains 3 host(s):

47

0: ravel
1: debussy

2: faure

Each processing node taking part of a given execution receives its own
unique rank number. In this example, PM2 will consider that processing node 0
is a process run by ravel, node 1 by debussy and VP 2 by faure.

Loading and running the program is done by calling pm21oad. For example,
if Program 11 resulting binary would be called "hello’, then the loading would be

done in the following way:

ravel% pm2load hello
Worker 1 -> hello
Worker ® -> ok
Worker 2 -> hello

Worker ® -> ok

We can see that our program generates four messages. The first one is the
expected 'hello” message comming from debussy. The second one is the reply
the processing node 0 received from one of nodes (we don’t know which in this
example), the third is the "hello’ comming from faure and the last one another
reply that node 0 received. The order of these messages is irregular between

different executions since there isn’t any mechanism of synchronization in use.

Behind this simple logic there is a number of internal operations that are
spawned and that take care of listening the network and answering to requests

that are being made by the PM2-Prolog program.

The Unix standard input/output streams for example, are protected by a

48

lower code abstraction (at the PM2 layer) against race conditions that could occur

from the multi-threading paradigm.

From [Team RUNTIME, 2001] we read that: “The processing node with rank
0 has a particular status because it is the only one which inputfoutput streams are linked
to the terminal from which the application was launched. [..] As a consequence, only the
main node of an application can access its standard input stream”, for example, using

argument_list/1 and argument._counter/2.

While it may seem common sense practice to use exactly one virtual node
per physical node, nothing in PM2-Prolog requires such association. For exam-
ple, a valid configuration in which two virtual nodes per physical node exist is

presented below:

ravel% pm2conf ravel ravel debussy debussy faure faure

The current PM2 configuration contains 6 host(s):

8: ravel
1: ravel
2: debussy
3: debussy
4: faure
5: faure

In this example, each hostname will host two VPs. All processes may even
be started on the same machine. Also, there is no reason why this machine should
be the one which we are logged in. Any machine on the configured network can

be used.

49

4.7 PVM-Prolog vs PM2-Prolog

In this section we compare, in terms of usage, PVM-Prolog and PM2-Prolog.
PVM [Sunderam, 1990] is a framework for parallel and distributed computing

widely disseminated in the academic community.

Both PVM-Prolog and PM2-Prolog are tools, in the form of a code library,
that help in the integration of Prolog with distributed and parallel system. Both
approaches are of pragmatic character and have in mind the reach of a functional

prototype rather than a fully complete system.

We begin by describing some key PVM-Prolog predicates and concepts
that will be used later on the examples.

PVM-Prolog processes correspond to PVM tasks. The unit of parallelism
in PVM is a task (often but not always a Unix process), an independent sequential

thread of control that alternates between communication and computation.

PVM task identifiers are used to identify PVM-Prolog processes, as atom
names. The predicate that allows a PVM task to determine its own unique PVM
task identifier is:

pvm_mytid(-tid)

Additionally if the process is not already a PVM task, it becomes so. An-
other important predicate is pum_spawn, that allows for the dynamic creation of

new PVM-Prolog tasks.

pvm_spawn(+progname, +goal, +opt list, +where, +ntasks, -tid_list)

50

In general, ntasks are created to solve the given goal in the presence of the
specified program. progname is the name of the file containing the Prolog program

and opt_list and where are PVM specific.

This predicate will spawn a PVM task for the execution of an instance of
the Prolog engine (NanoProlog). The specified Prolog file will then be consulted
and the specified top goal activated. The newly created process is completely
detached from its parent. It is up to the user to control all intended interactions

between father and child, e.g. to gather solutions.

For communication, PVM-Prolog offers the pvm_send predicate, that allows
for sending messages to another task, while pvm_mcast allows multicasting of

messages, by sending the same message to several recipients, that are identified
by tid_list.

The API for these predicates follows:

pvm._send(+tid, +msgtag, +term)

pvm_mcast(+tid_list, +msgtag, +term)

4.7.1 Master/Worker Logic

PM2-Prolog has many parallels with PYM-Prolog. Both are designed pri-
marily as an interface that allows for the development of parallel and distributed
multi-threaded applications in Prolog. One fundamental difference is that with
PVM-Prolog N tasks are spawned to execute on a virtual single large parallel com-

puter. With PM2-Prolog the number of threads for each machine is controlled.

51

NN O N

W NN Ul LN

This is especially useful for taking advantage of SMP systems, where we can, for
example, assign two threads for a dual processor machine or four threads to a

host with four processors.

Master

Let us continue by translating some PVM-Prolog code into PM2-Prolog.

The following predicate is for a simple prime number generator program:

Program 13 Example usage of PVM-Prolog.

init:—
pvm_mytid(Rank),
pvm_spawn(examplefile, worker_work, [], [], NWorkers, Workersld),
make_first_primes(FirstPrimes),
pvm_mcast(WorkersID, 1, FirstPrimes),
read_results(NWorkers),
pvm_exit.

The equivalent in PM2-Prolog would be the program:

Program 14 Example usage of PM2-Prolog.

init:—
pm2_is_master,
pm2_self(Rank),
pm2_max_rank(NWorkers),
start_prolog_workers(NWorkers),
make_first_primes(FirstPrimes),
send_workers_loop(NWorkers, FirstPrimes),
read _results(NWorkers),
finish_listeners.

worker_work.

In PVM-Prolog we begin by initializing PVM, creating the workers and also
initialize them. In PM2-Prolog we start by checking if the program is running on
the master rank or on a worker by calling pm2_is_master. On the node with rank

52

zero this predicate will succeed. On the other nodes, the predicate worker_work
will be called.

On the master, by calling pm2_max_rank the program will instantiate NWork-
ers with the number of workers present in the configuration. This is relevant for

most predicates as it can be used, for example, to loop through each worker.

We see that PM2-Prolog formulation doesn’t require specification on the
number of threads that are to be created. Such configuration is done outside via
the pm2conf command-line tool. One advantage of this approach is that it allows
for control on how many threads are created on each computer. The drawback is
that specification cannot be changed in run-time. Another advantage that could
be argued is that configuration changes do not require program re-compilation.

Worker

In PVM-Prolog the worker starts by initializing the PVM environment, and
proceeds to do a repeat-fail loop, waiting for work to do:

Program 15 Worker code in PVM-Prolog.

worker:—

pvm_setopt(route,routeDirect),

pvm_parent(PTID),

pvm_mytid(MTID),

pvm_recv(PTID, 1, FirstPrimes),

repeat,
pvm_send(PTID, 1, more(MTID)),
pvm_recv(PTID, 1, Order),
worker_do(Order, FirstPrimes PTID),

fail.

In PM2-Prolog, the logic behind the worker code consists in having a call
to thread_get_message which will perform a blocking read and never fail. The

following program is the worker code equivalent in PM2-Prolog:

53

U W=

Program 16 Worker code in PM2-Prolog.

worker_work:—
thread_get_message(Term),
|, call_primes(Term, X),
thread_send_message(vid(0,0), X),
worker_work.

Once a message has arrived, thread_get_message returns and call_primes is
called. After the result is unified with X it is send via a message to the master and

this process is repeated for each message that arrives.

4.8 Summary

PM2-Prolog follows the Single Program Multiple Data programming model,
that it inherits from the PM2 environment. The same program is executed in every
node and actions are taking accordingly to the unique rank number that identifies
each node. Commonly, the node with rank 0 distributes work by the nodes with
higher ranks, in a task-farming scheme.

The creation of Prolog threads as well as the communication is totally based
on explicit primitives. This means everything related to the parallelization is to
be controlled by the programmer. This allows to have control over the parallel
execution and to prevent as much as possible less-than-optimal parallel efficiency

on programs.

54

Chapter 5

Performance Evaluation

5.1 Evaluation Model

To assess the suitability of PM2-Prolog for a particular purpose, many users

will consider it’s performance as the most important and indeed critical feature.

The environment on which PM2-Prolog can be used can widely vary. It
can be a cluster of networked workstations or a set of workstations wide-spread
throughout the Internet. As a matter of fact, these workstations need only to be
running Linux and have ssh/rsh access, given that the machines used are of the

same architecture.

Our study focuses on a cluster of SMP systems and the speedup that can
be obtained from problems that consist of a large task and that can be split into
subtasks distributed over a pool of threads.

The guiding principle in reporting performance measurements is repro-
ducibility. A valid exercise of this type must allow others to repeat the benchmark
and achieve similar results. We include information about both the hardware and

55

software environments used, and describe the studied problems and the execution

model for each one.

By conducting the benchmark in this way we feel that the results, good
or bad, are credible and valid as a basis for studying the applicability of running
multiple Prolog engines in a distributed environment.

5.2 Measuring Performance

First of all, we have to define “performance”. What interests us here is
the elapsed real (wall-clock) time used by the process. It represents the total time
needed to complete a task, including disk accesses, I/O activity, operating system
overhead - everything. We obtain the wall-clock time with the Unix time(1)
command (not the shell built-in time but the one normally found in /usr/bin/time)
and with the format set to elapsed time only, specified with the parameter -f

%E, e.g..
/usr/bin/time -f%E 1s

This time will be composed by the initialization time of the program (To)
plus the time the program will spend actually doing some processing (T).

The initialization time is not constant. It grows along with the number of
workers, while the processing time will decrease until it reaches a point where it
is less than the initialization time and by then it no longer compensates to have

more workers on the problem.

In order to compare the real processing time between configurations with
different number of workers, the initialization time must be calculated and then

subtracted from the obtained elapsed time.

56

The initialization time (T)) is given by the elapsed time obtained for what is
called the empty problem, which consists of no more than a program that initializes

the system and exits.

Having these measurements we calculate the speedup (S) using the for-

mula:

T, - T1(0)

5= TT0)

where T; is the elapsed time obtained with M + 1 worker, T1(0) the elapsed
time obtained with M + 1 worker for the “empty” problem, T the elapsed time
obtained with M + N workers and T(0) the elapsed time obtained with M + N

workers for the “empty” problem.

5.2.1 Hardware Environment

The hardware used consisted of 7 units of the machine shown below:

Table 5.2.1: Hardware Environment (x7)

CPU Intel(R) Pentium(R) 4 CPU 2.80GHz each
Hyper-Threading Enabled

Cache size per CPU 512 Kb

FPU Yes, integrated

Memory 512 Mg

Filesystem IDE disk shared via NFS

Filesystem type Ext2

Network TCP/IP over Ethernet

Network interfaces RealTek RTL8139 Fast Ethernet
Background load average | Minimum or none

Note that a Pentium 4 with Hyper-Threading enabled is treated by the

57

operating system as two processors. This means we have a maximum of 14

processors to work with.

5.2.2 Software Environment

We use a suite of three classic literature problems plus a real-world applica-
tion to measure the speedup that can be obtained in each one by using PM2-Prolog.

The software environment that serves as a basis for the measurement is described

below:
Table 5.2.2: Software Environment
Operating System Debian GNU/Linux kernel 2.6.17.1 SMP support
Prolog Compiler GNU Prolog 1.2.18 Debian Version
Prolog Compiler options | —with-c-flags=-static —disable-regs
C compiler gcc2.95.4

5.3 Benchmark Programs

5.3.1 Parallel Matrix Multiplication

A fundamental numerical problem is the multiplication of two matrices.
We use a simple O(N?) algorithm to compute C = AB, where A, B, and C are NxN
matrices. The algorithm follows directly from the definition of matrix multiplica-
tion. To compute C;jj, we compute the dot product of the i-th row in A with the

jth column in B.

Hence we order each worker to compute C;; and send the result back to the

master where the final matrix is assembled.

58

@ 9N W=

= e
N = O W

The matrix lines are represented by Prolog lists and the columns are ob-
tained using the nth/2 predicate. Of course, better algorithms exist for matrix
multiplication, for example Strassen’s algorithm, but our interest here is not to
work smarter (e.g. with better algorithms) but to work harder, i.e. adding more
processing capacity. We conducted tests with matrices of several sizes but the

presented results refer to the multiplication of a 64x64 matrix executed fifty times.

Program 17 Matrix Multiplication: Rows are distributed for processing through
the workers.

mult([], -, 0, -):= L

mult(Rows, Matrix, N, 0):—
pm2_max_rank(MaxRank),
|, mult{(Rows, Matrix, N, MaxRank).

mult([Row|Rows], Matrix, N, Rank):—
length(Row,NumRows),
thread _send_message(vid(Rank,0), query(N,Row,Matrix,NumRows)),
NiisN -1,
Rankl is Rank - 1,
mult(Rows, Matrix, N1, Rank1).

5.3.2 Parallel N-Queens Problem

The N queens puzzle is a well studied toy program in computer science
used mainly to study algorithms and perform benchmarks. It consists in finding
all the solutions for the placement of N queens on an NxN chess board. The only
condition to abide is that no two queens attack themselves. What this means is

that no queen can share a row, a column, or a diagonal with any other queen.

The most straightforward way of solving this problem in Prolog is by using
constraint logic programming or by using a backtracking algorithm.

Though simple, this is a computationally intensive process. What we

present here is a parallel version of N-Queens using the task-farm paradigm. Task-

59

W oo N U=

farming is the most simple and commonly used way of parallelizing applications.
A master is set up, which takes care of creating tasks and distributing them among
workers. The workers perform the tasks and send the results back to the master,
which reassembles them. For simplifying the task, in this case only the solutions
are counted for each problem size. This is largely based on [Marques, 2003].

Parallelizing the algorithm is straightforward. In this case, a job consists
in a valid placement of queens up until a certain column. A result consists in
the number of solutions found for that particular job. A worker must find all the

solutions for that board prefix, then send the number back to the master.

Program 18 Worker code example for finding all the solutions for the placement
of N queens on a NxN chess board.

worker_work:—
thread_get_message(Termo),
calc_solutions(Termo, X),
thread_send_message(vid(0,0), X),
worker_work.

calc_solutions(q(N, List), NumSolutions):-
findall(L, solution_queens(List, N, L), G),
length(G, NumSolutions).

5.3.3 Parallel Number of Occurrences

Consider the program presented in section 3.1 but now for running on
a parallel computer. We've seen that such program, to count the number of

occurrences of a number in a list of numbers, is rather simple in Prolog.

In the parallel version, the program will now find all occurrences of a
certain integer by dividing the list for processing by the available workers and
doing a local search. Then, on the master, the number of occurrences found is

assembled.

60

=

O O W NN W N

The conducted tests refer to a parallel search on a list of 10000 elements

executed one hundred times in each worker:

Program 19 Parallel search executed one hundred times in each worker.

count(q(X,List), 0):—
repeat(100, number_of_occurences(X, List, _)).

repeat(0):~,fail.
repeat(-).
repeat(N):— N1 is N-1, repeat(N1).

repeat(N, G):-
repeat(N), G, fail.
repeat(-, -).

This could also be done by sending a hundred messages to the worker but
that would not generate the CPU intensive work as this approach.

5.3.4 Case Study: Speedup on a Real-World Application

So far, we have only considered synthetic benchmarks. That means we
have only considered artificial programs that try to match the characteristics of
large programs. Although they are fine for testing, real benchmarks can only be
obtained from testing real-world applications.

This section describes the results of distributing OpenArp [Aires et al.,
2004]. OpenArp is a tool for linguists and computer scientists interested in natu-
ral language processing (NLP) and related areas that implements the Centering
theory for enhanced pronominal anaphora resolution in Portuguese language
documents. An anaphor in a text is an entity that refers to another entity (an-

tecedent).

The main algorithm in OpenArp relies on searching a space of possible

general pronoun candidates for the one that scores best with respect to several

61

constraints, e.g. proximity of the pronoun to the anaphor and the current subject.

Since the algorithm is idealized to run as a series of sequencial steps, we
had to overcome this fact. The approach used consists in doing a paragraph

marking on the input texts.

The search-space of the algorithm was then changed to treat each paragraph
as the complete text that is being targeted for anaphora resolution, the drawback
being an anaphor that occurs at the beginning of a paragraph will never be

resolved to a candidate that occurs in the previous paragraph.

Since different paragraphs usually deal with distinct subjects we argue that
this kind of separation will allow to distribute the anaphora resolution process
without interfering with the foundations of the algorithm.

Indeed we observed that the difference between the original OpenArp
implementation and the newly created distributed version is only about less 6%

accurate, in a test set consisting of a total of 313 anaphora.

5.4 Benchmark Results

In this section we present the results obtained for each problem. The tasks

were carried out using 2, 6 and 12 CPUs. The values are averaged over 6 runs.

5.4.1 Parallel Matrix Multiplication

In the matrix multiply program the system obtained a speedup of 2.92 times
with 6 CPUs and of 4.71 times with 12 CPUs, comparing to the same program

running in a single processor.

62

Table 5.4.1: Obtained times for 64x64 matrix multiplication executed fifty times

Workers | CPUs | Elapsed Time | Speedup
1 2 01:09.7s 1.00
3 6 00:23.9s 2.92
6 12 00:14.8s 4.71

5.4.2 Parallel N-Queens

In the N-Queens program a speedup of 2.98 times with 6 CPUs and 4.78
times with 12 CPUs was obtained.

Table 5.4.2: Obtained elapsed time for the parallel nqueens problem

Workers | CPUs | Elapsed Time | Speedup
1 2 03:23.2s 1.00
3 6 01:08.1s 2.98
6 12 00:42.5s 4.78

5.4.3 Parallel Number of Occurrences

In the parallel array search program a speedup of 3 times with 6 CPUs and
5.20 with 12 CPUs was obtained.

Table 5.4.3: Obtained elapsed time for the parallel number of occurrences problem

Workers | CPUs | Elapsed Time | Speedup
1 2 03:23.2s 1.00
3 6 01:08.1s 3.00
6 12 00:42.5s 5.20

63

5.4.4 Parallel Anaphora Resolution

In the parallel anaphora resolution program a speedup of 2.24 times with

6 CPUs and 2.50 times with 12 CPUs was obtained.

Table 5.4.4: Obtained elapsed time for parallel anaphora resolution

Workers | CPUs | Elapsed Time | Speedup
1 2 00:05.0s 1.00
3 6 00:02.2s 224
6 12 00:02.0s 2.50
5.5 Summary

——&— matrix

—#— par noccur
par anafora

~—— par nqueens

Figure 5.5.1: Speedup with an increasing number of workers defined as elapsed time using
one worker divided by elapsed time using N workers.

Quantifying the obtained speedup is important but very dependent on the

64

problem we are dealing with and on its degree of parallelization. By measuring
the speedup we can verify if the system scales.

Looking at Figure 4.5.1 we observe that the speedup is almost linear for
the first three examples. That shows that the system scales without problems, at

least until the considered number of workers.

Since the cluster used in our benchmarking exercise is relatively small (7
nodes) we can’t always observe the point of speedup convergence for all the tested
programs, but in the case of the anaphora resolution system we can observe that
the speedup is unlikely to reach more than 3 times, independent of the number

of workers used.

If more machines were added to the cluster, it is believed that the speedup
would also converge for the other three examples to a value where it no longer
compensates to have more CPUs for the problem, because the initialization time
surpasses the processing time that the task requires. It depends on the problem

when this occurs.

Another issue that should be taken into account is the correctness of the
results. Whathappened while distributing OpenArp, in which we chose to modify
the search-space of the algorithm in order to distribute the problem, affecting
herewith the correctness of the results, will probably happen with other real-world
applications. If this separation affects somehow the algorithm of the application,
by e.g. modifying the search-space, the accuracy of the system will also be
affected. Being so, the accuracy of the results must be assessed in order to verify

if the obtained speedup compensates the loss.

In summary, the results show the model is valid and can obtain good

performance gains, even when the number of distributed machines is low.

65

Chapter 6

Conclusions

A system that allows the development of distributed multi-threaded ap-
plications in GNU Prolog is now developed.

The system works by executing in each processor a copy of the same
program, which is capable of determining it’s identity and run different actions

accordingly.

The applications can then be submitted for distributed parallel processing
using Prolog predicates, via a developed abstraction of MPI functions. Included
in this abstraction is the mechanism for remote Prolog job submission. Work is
distributed to processors in form of messages, that are received and processed.

The results are then sent back or forwarded to other processors.

The processors run inference engines (provers) on native pre-emptive
POSIX threads. Each processor has only one thread, but in a computer N proces-

sors (virtual or real) can co-exist.

The abstraction is developed on top of the PM2 programming environ-

ment and is primarly composed in two parts: thread management and thread

66

communication.

The Prolog implementation used is GNU Prolog. We've chosen GNU
Prolog due to the relatively small stand-alone binaries it produces. The main
drawback related with this choice was that gprolog doesn’t support local multi-
threading (in a shared memory space). For that reason, in each listener thread it
is only possible to create one attached thread. However, since the same machine
can hold multiple listener threads, it becomes possible to run N local threads in

each processor.

The developed system is at a prototype state. It will need further de-
velopment and testing. However, we decided to conduct tests to evaluate the
preliminary performance of our system. We used three classic literature prob-
lems plus a real-world application and measured the obtained speedup in each
one using one worker (sequential version), three workers and six workers. The

programs used were:

Parallel matrix (64x64) multiplication;

Parallel N-Queens problem;

Parallel array search;

Parallel Pronominal Anaphora Resolution;

In the matrix multiply program the system obtained a speedup of 2.92 times
with 6 CPUs and of 4.71 times with 12 CPUs, comparing to the same program

running in a single processor.

In the N-Queens program a speedup of 2.98 times with 6 CPUs and 4.78
times with 12 CPUs was achieved.

67

In the parallel array search program the speedup reached 3 times with 6
CPUs and 5.20 with 12 CPUs.

In the parallel anaphora resolution program the speedup reached 2.24 times
with 6 CPUs and 2.50 times with 12 CPUs.

In summary, the results show the model is valid and can obtain good

performance gains, even when the number of distributed machines is low.

The conducted tests obtained an almost linear speedup on the first three
problems. On a more real-world application, OpenArp, we obtained speedup
but relatively less comparing with the other tested programs. Our results also
showed how the accuracy of an application might be affected by distributing it's
algorithm. In OpenArp this happened because we modified the search-space of
the algorithm instead of using a parallel algorithm for anaphora resolution, if
such algorithm is even possible. The case has been made to show that if a parallel
algorithm isn’t possible, then accuracy might be sacrified in favor of a speedup in

execution time.

We noticed that concurrent Prolog programs perform very good and we
feel encouraged to test bigger configurations. Performance, however, degrades
quickly when using predicates that require synchronization or that make intensive
use of the network. A solution for this issue might reside in the duplication of
what is going to be passed over the network and send only a reference over
the network. This might not be possible to execute in several scenarios, such as

problems where the messages are created at runtime.

Other issues that are associated with the current implementation include:

e Many situations, if not handled carefully, can lead to deadlock, e.g. a thread

not receiving the terminate message, due to an error, will cause the main

thread to deadlock.

68

e Theads have to be terminated explicitly. It would increase performance if
the threads terminated as soon as no more jobs are available. This would

release CPU for other threads.

While working towards improving our proposal, solving these issues, we

also want to pursuit several traits. These are:

e Extend the API with introspection and monitoring predicates. That will

permit programmers to control better the running distributed program.

e Test the system with bigger configurations, namely with GRID, and more
powerful applications.

e Use distributed multi-threading to build and control intelligent agents ca-
pable of taking specific actions.

e Test the combination of GNU Prolog with OpenMPL

e Work closely with Prolog developers extending the Prolog multi-threading
support ISO standard to account for distributed multi-threading.

e Implement an abstraction for distributed shared-memory system in Prolog
using MPL.

In a non-distributed multi-threaded environment, powerful applications
are limited by the number of threads that can effectively run concurrently.

In a distributed multi-threaded environment resources are pooled and a
scheduler sets the rules for routing the jobs to help optimize resources automati-

cally, for accelerated results and help reducing processing time.

Prolog can play a fundamental part in the next generation of applications

that will exploit multi-core architectures and bring concurrency to the masses. It

69

will permit on many cases programs to have a declarative, logic interpretation
and will allow for the programmer to omit most control, helping the expression
of complex applications and algorithms. The developed system is a tool to help

in this process.

70

Bibliography

Ana Aires, Jorge Coelho, Sandra Collovini, Paulo Quaresma, and Renata Vieira.

Avaliagio de Centering em Resolugio Pronominal da Lingua Portuguesa. 2004.

Khayri A. M. Ali and Roland Karlsson. The Muse Or-parallel Prolog model and its
performance. MIT Press, Cambridge, MA, USA, 1990. ISBN 0-262-54058-4.

Thara Angskun, Graham E. Fagg, George Bosilca, Jelena Pjesivac-Grbovic, and
Jack J. Dongarra. Self-Healing Network for Scalable Fault Tolerant Runtime Envi-
ronments. Springer-Verlag, Innsbruck, Austria, September 2006a.

Thara Angskun, Graham E. Fagg, George Bosilca, Jelena Pjesivac-Grbovic, and
Jack J. Dongarra. Scalable Fault Tolerant Protocol for Parallel Runtime Environ-
ments. Lecture Notes in Computer Science. Springer-Verlag, Bonn, Germany,

September 2006b.

Olivier Aumage. Madeleine : une interface de communication performante et portable
pour exploiter les interconnexions hétérogénes de grappes. Thése de doctorat,
spécialité informatique, Ecole normale supérieure de Lyon, 46, allée d'Italie,
69364 Lyon cedex 07, France, September 2002. 154 pages.

David R. Butenhof. Programming with POSIX threads. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1997. ISBN 0-201-63392-2.

M. Calejo. InterProlog, a declarative Java-Prolog interface. in Procs. Logic Program-

71

ming for Artificial Intelligence and Information Systems (thematic workshop
of the 10th Portuguese Conference on Artificial Intelligence), Porto, 2001.

D. Chu. I.C. Prolog II: A Multi-Threaded Prolog System. Kluwer, Dordrecht, 1994.

Keith Clark and Steve Gregory. PARLOG: parallel programming in logic, volume 8.
ACM Press, New York, NY, USA, 1986.

Keith L. Clark, Peter J. Robinson, and Richard Hagen. Multi-threading and Message

Communication in Qu-Prolog, volume 1. 2001.

Alain Colmerauer and Philippe Roussel. The birth of Prolog. ACM Press, New
York, NY, USA, 1996. ISBN 0-201-89502-1.

Jon Cook. P#: Using Prolog within the NET Framework. 2001.

Vitor Santos Costa, David H. D. Warren, and Rong Yang. The Andorra-I Preproces-
sor: Supporting Full Prolog on the Basic Andorra Model. 1991a.

Vitor Santos Costa, David H. D. Warren, and Rong Yang. The Andorra-I Engine: A
Parallel Implementation of the Basic Andorra Model. 1991b.

Daniel Diaz and Philippe Codognet. The GNU Prolog systems and its implementation.
In ACM Symposium on Applied Computing, Como, Italy, 2000.

Kevin Dowd. High performance computing. O’'Reilly & Associates, Inc., Sebastopol,
CA, USA, 1993. ISBN 1-56592-032-5.

Jesper Eskilson and Mats Carlsson. SICStus MT — A Multithreaded Execution
Environment for SICStus Prolog, volume 1490. 1998.

Graham E. Fagg, Edgar Gabriel, Zizhon Chen, Thara Angskun, George Bosilca,
Antonin Bukovsky, and Jack J. Dongarra. Fault Tolerant Communication Library
and Applications for High Performance Computing. 2003.

72

Ivan Futo. Prolog with communicating processes: from T-Prolog to CSR-Prolog. MIT
Press, Cambridge, MA, USA, 1993. ISBN 0-262-73105-3.

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew
Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timo-
thy S. Woodall. Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation. Budapest, Hungary, September 2004.

Richard L. Graham, Sung-Eun Choi, David J. Daniel, Nehal N. Desai, Ronald G.
Minnich, Craig E. Rasmussen, L. Dean Risinger, and Mitchel W. Sukalski. A
network-failure-tolerant message-passing system for terascale clusters, volume 31.
Kluwer Academic Publishers, Norwell, MA, USA, 2003.

Richard L. Graham, Galen M. Shipman, Brian W. Barrett, Ralph H. Castain, George
Bosilca, and Andrew Lumsdaine. Open MPI: A High-Performance, Heterogeneous
MPI. Barcelona, Spain, September 2006.

Gopal Gupta, Enrico Pontelli, Khayri A. M. Ali, Mats Carlsson, and Manuel V.
Hermenegildo. Parallel Execution of Prolog Programs: a Survey, volume 23. 2001.

Manuel V. Hermenegildo and K. J. Greene. The &-Prolog System: Exploiting Inde-
pendent And-Parallelism., volume 9. 1991.

T. Hoefler, P. Gottschling, W. Rehm, and A. Lumsdaine. Optimizing a Conjugate
Gradient Solver with Non-Blocking Collective Operations. Lecture Notes in Com-

puter Science. Springer-Verlag, Bonn, Germany, September 2006.

P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. TreadMarks: Distributed
Shared Memory on Standard Workstations and Operating Systems. 1994.

Rainer Keller, George Bosilca, Graham Fagg, Michael Resch, and Jack J. Dongarra.
Implementation and Usage of the PERUSE-Interface in Open MPI. Lecture Notes in

Computer Science. Springer-Verlag, Bonn, Germany, September 2006.

73

E. Lusk, R. Butler, T. Disz, R. Olson, R. Overbeek, R. Stevens, D. H.D. Warren,
A. Calderwood, P. Szeredi, S. Haridi, P. Brand, M. Carlsson, A. Ciepielewski,
and B. Hausman. The Aurora or-parallel Prolog system, volume 7. Ohmsha, Tokyo,
Japan, Japan, 1988.

Paulo Marques. Task Farming & The Message Passing Interface, volume 28. Dr.
Dobbs Journal, September 2003.

R. Marques and J. Cunha. PVM-Prolog: A Prolog interface to PVM. 1996.

John McCarthy. Programs with Common Sense. Her Majesty’s Stationary Office,
London, 1959.

Paulo Moura. ISO/IEC DTR 13211-5:2007 Prolog Multi-Threading Support. 2007.

Paulo Moura. Logtalk development: Porting Prolog programs to Logtalk. 2006. URL
http://logtalking.blogspot.com.

Raymond Namyst and Jean-Frangois Méhaut. Parallel Computing: State-of-the-Art
and Perspectives. Proceedings of the Intl. Conference ParCo '95, Ghent, Belgium, 19~
22 September 1995, volume 11 of Advances in Parallel Computing, chapter PM?%:
Parallel Multithreaded Machine. A Computing Environment for Distributed
Architectures, pages 279-285. Elsevier, February 1996.

Raymond Namyst and Jean-Frangois Méhaut. Marcel : Une bibliotheque de processus
légers. LIFL, Univ. Sciences et Techn. Lille, 1995.

Luis Moniz Pereira, Luis Monteiro, Jose Cunha, and Joaquim N Aparicio. Delta
Prolog: a distributed backtracking extension with events. Springer-Verlag New York,
Inc., New York, NY, USA, 1986. ISBN 0-387-16492-8.

Jim Plank and Rich Wolski. C560 Lecture mnotes - Dining Philoso-
phers. URL http://www.cs.utk.edu/~p1ank/p1ank/c1asses/cs560/56@/
notes/Dphil/lecture.html.

74

Ricardo Rocha, Fernando M. A. Silva, and Vitor Santos Costa. YapOr: an Or-Parallel
Prolog System Based on Environment Copying. 1999.

Kish Shen. Exploiting Dependent And-Parallelism in Prolog: The Dynamic Dependent
And-Parallel Scheme (DDAS). 1992.

Abraham Silberschatz, Peter Galvin, and Greg Gagne. Applied Operating System
Concepts — 1st ed. John Wiley & Sons, 2000.

Jeffrey M. Squyres and Andrew Lumsdaine. A Component Architecture for
LAM/MPI. Number 2840 in Lecture Notes in Computer Science. Springer-
Verlag, Venice, Italy, September / October 2003.

V.S. Sunderam. PVM: a framework for parallel distributed computing, volume 2. John
Wiley & Sons, Chichester, West Sussix, 1990.

LaBRI Team RUNTIME. Getting Started with PM2, 2001.
Kazunori Ueda. Guarded Horn Clauses. 1985.

Kazunori Ueda and Takashi Chikayama. Design of the Kernel Language for the
Parallel Inference Machine., volume 33. 1990.

Jan Wielemaker. Native Preemptive Threads in SWI-Prolog. Springer Verlag, Berlin,
Germany, december 2003. LNCS 2916.

Jan Wielemaker. Swi-prolog reference manual, 1997.
Jan Wielmaker. A C++ Interface to SWI-Prolog. 2000.

Michael J. Wise. Experience with PMS-Prolog: a distributed, coarse-grain-parallel
Prolog with processes, modules and streams, volume 23. John Wiley & Sons, Inc.,
New York, NY, USA, 1993.

75

Appendices

76

10
11
12
13
14
15
16
17
18
19
20
21

Appendix A

PM2-Prolog Example Makefile

OBJECT_PL=intarray.o

CFLAGS= —C -static $(shell pm2—config ——cflags | tr * * *\n’ | awk '{printf " -C %s", $$1}’)

LIBS= $(shell pm2—config ——libs | tr * ' '\n’ | awk '{printf " -L %s", $$1}')
LIBS= $(shell pm2—config —-libs)
CCFLAGS= $(shell pm2—config ——cflags)
LDFLAGS= —-L —static $(shell pm2—config ——libs)
prolog libs
PLL=/home/nm/extended_stack_gprolog/gprolog—1.2.16/lib
gec-2.95
= —C ~I/usr/lib/gcc-lib/i486—linux—gnu/2.95.4/include

all: tabard

gprolog—pm2.0: gprolog—-pm2.c
gplc —c $(L) $(CFLAGS) gprolog—pm2.c

tabard.o: tabard.c
gplc —c $(L) $(CFLAGS) tabard.c

%.0: %.pl

24

26
27
28
29
30
31
32
33

35

36

37

39

gple —c $+

tabard: gprolog—pm2.0 tabard.o $(OBJECT_PL)

clean:

gec —static —o tabard
$(PLL)/obj_begin.o
$+
—L$(PLL)
—Ibips_fd —lengine_fd —Ibips_pl
$(PLL)/obj_end.o
$(LIBS)
—lengine_pl -llinedit ~Im
mv tabard /home/nm/build/$(PM2_FLAVOR)/examples/bin/

P et

m —f *.0 ¥ tabard

@pm2load tabard

78

W N

L - T - - I - A L

10
11
12
13
14
15
16
17
18

Appendix B

SWI-Prolog Multi-thread Example:
Dining Philosophers

%

% Dining Philosophers in Prolog

% Based on:

% http//www .cs.utk.edu/"plank/plank/classes/cs560/560/notes/Dphil/lecture.html
%

%

% chopstick<->atom correspondece

% (so that a named mutex is created later)
%

chopstick_id(1, chopstick1).

chopstick_id(2, chopstick2).

chopstick_id(3, chopstick3).

chopstick.id(4, chopstick4).

chopstick_id(5, chopstick5).

%
% chopstick(+Philosopher_Id, +Chopstick_Left_Id, +Chopstick_Right_Id)

79

19
20
21

24

26
27
28
29
30
31
32
33

35
36
37

% Positions of philosophers and chopsticks
%

chopstick(1, 5, 1).

chopstick(2, 1, 2).

chopstick(3, 3, 2).

chopstick(4, 4, 3).

chopstick(5, 5, 4).

%

% init(+Number)

% Number — run for Number times

%

init(Number):—
mutex_create(chopstick1),
mutex_create(chopstick2),
mutex_create(chopstick3),
mutex_create(chopstick4),
mutex_create(chopstick5),
thread._create(run(1, 5, 0, Number), A, []),
thread_create(run(2, 5, 0, Number), B, []),
thread_create(run(3, 5, 0, Number), C, []),
thread _create(run(4, 5, 0, Number), D, []),
thread_create(run(5, 5, 0, Number), E, []),
thread_join(A,),
thread-join(B, _),
thread_join(C, _),
thread_join(D, -),
thread_join(E, -).

%

% pickup(+Philosopher, —Secs)

% Philosopher = philosopher id

% Secs = number of seconds blocked
%

80

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

76

78

79

80

81

82

85

87

pickup(Philosopher, Secs):—
% TO = time just before the block started
my_get_time(MO0,S0),

% get the chopstick at its left and right first
chopstick(Philosopher, LeftStickld, RightStickld),
chopstick_id(LeftStickld, LeftStick),
chopstick_id(RightStickld, RightStick),

% pickup left and then right chopstick
mutex_lock(LeftStick),
mutex_lock(RightStick),

% sleep(2), % test with fixed blocktime

% T = time just after the block ended
my_get_time(M,S),
Secs is ((M*60+S) — (M0*60+S0)).

%

% putdown(+Philosopher)

%

putdown(Philosopher):—
chopstick(Philosopher, LeftStickld, RightStickld),
chopstick_id(LeftStickld, LeftStick),
chopstick_id(RightStickld, RightStick),

% putdown right and then left chopstick
mutex_unlock(RightStick),
mutex_unlock(LeftStick).

%

% my_get_time(—Minutes, —Seconds)
%

my_get_time(Minutes,Seconds):—

81

89 get_time(Time),

90 convert_time(Time,.,_,_,_,Minutes,Seconds,_).
91

92 %

93 % MAIN

94 %

95

9 % The philosophers basically go through the following steps.
97 %

98 % while(1) {

99 % think for a random number of seconds

100 % pickup(p);

101 % eat for a random number of seconds

102 % putdown(p);

103 % }

104 %

105

106 %

107 % run(+Philosopher, +MaxSleepTime, +Blocktime, +Counter)
108 %

109 % List — a list containing the philosophers id

110 % Max_Sec_Time — max sleep time

111 % Blocktime — accumulator for block time

112 % Counter — number of times to run this goal

13 %

114

115 run(Philosopher, ., Acc_Blocktime, 0):— |,

116 write(Philosopher),write(’\t’),

117 write{(Acc_Blocktime),nl,

118 flush_output.

119

120 run(Philosopher, Max_Sec_Time, Acc_Blocktime, Count):— |,
121 /* First the philosopher thinks for a random number of seconds %/
122 think(Philosopher, Max_Sec_Time),

123

82

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

158

/¥ Now, the philosopher wakes up and wants to eat. He calls pickup
to pick up the chopsticks ¥/
pickup(Philosopher, Secs),

% Accumulate blocktime
% write(’'Debug: ’),write(Philosopher),write(’ Acc = '),
% write(Acc_Blocktime),write(’, Secs = ’),write(Secs),
Acc_Blocktimel is (Acc_Blocktime + Secs),
% write(’, Blocktime = ’), write(Acc_Blocktimel),nl,
% flush_output,

/* When pickup returns, the philosopher can eat for a random number of
seconds %/

eat(Philosopher, Max_Sec_Time),

/¥ Finally, the philosopher is done eating, and calls putdown to
put down the chopsticks */
putdown(Philosopher),

Countl is Count - 1,

|, run(Philosopher, Max_Sec_Time, Acc_Blocktimel, Countl).

%
% THINK & EAT
%

% think(+Philosopher, +Max_Sec_Time})

% eat(+Philosopher, +Max_Sec_Time)

%

% Calculate a random number between 0 and Max_Sec_Time and then sleep
% for that time.

%

think(Philosopher, Max_Sec_Time):—

83

159 random(1, Max_Sec_Time, Sleep_Time),
160 write('Philosopher °’),

161 write(Philosopher),

162 write(’ thinking for '),

163 write(Sleep_Time),

164 write(’ seconds.’),nl,

165 flush_output,

166 sleep(Sleep_Time),

167 write('Philosopher '), write(Philosopher),
168 write(’ no longer thinking - calling pickup’),nl,
169 flush_output.

170

171 eat(Philosopher, Max_Sec_Time):—

172 random(1, Max_Sec_Time, Sleep_Time),
173 write('Philosopher '),

174 write(Philosopher),

175 write(’ eating for '),

176 write(Sleep_Time),write(’ seconds.’),nl,
177 flush_output,

178 sleep(Sleep-Time),

179 write(’Philosopher ’'),write(Philosopher),
180 write(’ no longer eating -- calling putdown’),nl,
181 flush_output.

182

183

84

[y

NNl s W N

0

10
11
12
13
14
15
16
17
18
19
20

21

Appendix C

Parallel Matrix Multiplication

:— initialization(init}.

% include the pm2 interface lib
i~ include(’1ib’).

rows(64).
cols(X):— rows(X).

determine(Rows, Rows):—
argument_counter(2),
argument_list(Args),
append([RowsString|.}, [], Args),
write_to_chars(Chars, RowsString),

number_chars(Rows, Chars).

determine(Rows, Cols):—
rows(Rows),
cols(Cols),

write(’ Going for default row number of '),write(Rows),write(’.'),nl

% thread 0

85

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

52
53

55
56

init:i—
pm2_is_master,!,
pm2_max_rank(MaxRank),
pm2_config_size(ConfigSize),

% read number of columns from console
% or go with the default value

determine(Rows, Cols),

% Start_Prolog(0, 0) on each node
start_prolog_workers(MaxRank),

fill_matrix(Matrix1, Rows, Cols),
fill_matrix(Matrix2, Rows, Cols),

% give workers work
mult(Matrix1, Matrix2, Rows, MaxRank),

read _results(Rows),

stop_prolog_workers(MaxRank),

finish_listeners.
% thread |= 0
init:—

worker_work.
init.
worker_work:—
I, thread_get_message_loop,

worker_work.

worker_work:—
write(’worker_work falhou’),nl,l fail.

86

57
58
59

61

62

X

67

69

70

N

73
74

76

78

80

81

82
83

87

89
20
91

% tirar todas as mensagens da queue
thread get_message_loop:—
thread_get_message(Termo),
|, do_query(Termo, X),
thread_send_message(vid(0,0), X),

thread _get_message_loop.

% For NxN matrix will have to read N lines
read_results(0):—!.
read_results(X):—

thread._get_message(R),

Xlis X -1,

|, read_results(X1).

read_results_loop:—
thread_get_message(Result),
|, read_results_loop.

do_query(query(NumberOfRow,Row ,Matrix, NumRows), (NumberOfRow,NL)):~
repeat(50, multiply_row_per_matrix(Row, Matrix, 1, NumRows, -)),
multiply_row_per_matrix(Row, Matrix, 1, NumRows, NL).

repeat(0):-1,fail.
repeat(_).
repeat(N):— N1 is N-1, repeat(N1).

repeat(N, G):—-
repeat(N), G, fail.
repeat(-, -).

%

% multiply_matrix(+Matrix1, +Matrix2, +NumRows, —Result)

%

% for each row in Matrix1 call multiply_row_per_col for all the

87

92
93

95
96
97

98

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

% columns in Matrix2
%
mult([], _, 0, _):— |. % N messages were sent for a NxN matrix

% round-roubin the machines
mult(L, M, N, 0):—
pm2_max_rank(MaxRank),
!, mult(L, M, N, MaxRank).

mult([Row|Rows], Matrix, N, Rank):-
length(Row,NumRows),
thread_send_message(vid(Rank,0), query(N,Row,Matrix, NumRows)),
Nlis N -1,
Rankl is Rank — 1,
mult(Rows, Matrix, N1, Rank1).

% the maximum number when generating the matrix content.

maximum(7).

%

% multiply_row_per_matrix(+Row, +Matrix, +NumCol, +NumRows, —Result)
%

% multiplies a line of the first matrix per all the columns of the

% second and obtains the first line of the solution matrix.

%

multiply_row_per_matrix(-, -, N, M, [[)i- N > M, |

multiply_row_per_matrix(Row, Matrix, NumCol, NumRows, [RowCol|Res]):~
col_items(Matrix, NumCol, Col),
multiply_row_per_col(Row, Col, RowCol),
NumColl is NumCol + 1,
multiply_row_per_matrix(Row, Matrix, NumColl, NumRows, Res).

88

127 %

128 % multiply_row_per_col(+Row, +Col, —Result)

129 %

130 % multiply a row (list) per a column (list) like this:
131 % Elem*Elem + Elem*Elem + .. + Elem"Elem

132 %

133 multiply_row_per_col(Row, Col, Res):-

13¢ multiply_row_per_col(Row, Col, 0, Res).

135

136 multiply_row_per_col({], [], V, V):— L

137 multiply_row_per_col([First|Rest], [Second|SecRest], Acc, Res):—
138 Accl is (Acc + (First*Second)),

139 multiply_row_per_col(Rest, SecRest, Accl, Res).
140

141 %

142 % col_items(+Matrix, +NumCol, —Col)

143 %

144 % given a matrix unify Col with a list of all the elements in that
145 % col on the matrix.

146 %

147 col.items([}, -, [D:— |

148 col_items([First|Rest], NumCol, [X|Col]):~

149 nth(NumCol, First, X),

150 col_items(Rest, NumCol, Col).

151

152 %

153 % fill_matrix(—Matrix, +Rows, +Cols)

154 %

155 % given N and M return a list of lists (matrix) filled randomly.
156 %

157 fill_matrix([], 0, -):— L

158 fill_matrix([First|Rest], Rows, Cols):—

159 fill_row(First, Cols),

160 Rowsl is Rows — 1,

161 fill_matrix(Rest, Rowsl, Cols).

89

162

163 %

164 % fill_row(-List, +N)

165 %

166 % Given N unifies List with a list of length N filled randomly.
167 %

168 fill_row([], 0):— L.

169 fill_row([First|Rest], Cols):—
170 maximum(Max),

171 random(2, Max, First),
172 Colsl is Cols — 1,

173 fill_row(Rest, Colsl).

174

90

NN Aok W

®

10
11
12
13
14
15
16
17
18
19
20
21

Appendix D

Parallel N-Queens

:— initialization(init).

% include the pm2 interface lib
i— include(’1ib’).

size(8).

determine(Size):—
argument_counter(2),
argument_list(Args),
append([SizeString|_], [], Args),
write_to_chars(Chars, SizeString),

number_chars(Size, Chars).

determine(Size):—

size(Size).

% thread 0

init:—-
pm2_is_master,!,
pm2_max_rank(MaxRank),

91

23 determine(N),

24

25 % Start_Prolog(0, 0) on each node
26 start_prolog-workers(MaxRank),

28 column(N, I),

29 findall(ParcialSolution, mkmaxlist(I, N, ParcialSolution), G),
30 length(G, GL),

31

32 send_job_worker(G, GL, N, MaxRank),

33 read_results(GL, NumSolutions),

34 write(NumSolutions),nl,

36 stop_prolog-workers(MaxRank),
38 finish_listeners.

40 % thread 1= 0
41 init:i—

worker_work.
worker_work:—

2
43
44
45 |, thread_get_message_loop,
46 worker_work.

47

48 thread_get_message_loop:—

49 thread_get_message(Termo),

50 |, do_query(Termo, X), |,

51 thread_send_message(vid(0,0), X),
52 thread_get_message_loop.

55 read_results(X, N):—
56 read_results(X, 0, N).

92

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
20
91

read_results(0, N, N):—I.
read_results(X, Acc, N):—
thread_get_message(Msg),
Msg == 1,
Accl is Acc + 1,
Xlis X -1,
|, read_results(X1, Accl, N).

read.results(X, Acc, N):-
Xlis X -1,
|, read_results(X1, Acc, N).

do_query(q(N, List), NumSolutions):~
findall(L, solution_queens(List, N, L), G),
length(G, NumSolutions).

send_job_worker([], 0, -, _):— L

send_job_worker(L, C, N, 0):-
pm2_max_rank(MaxRank),
|, send_job_worker(L, C, N, MaxRank).

send_job_worker([H|Tail], Counter, N, Rank):—-
thread_send_message(vid(Rank,0), q(N, H)),
Counterl is Counter — 1,
NextRank is Rank - 1,
send_job_worker(Tail, Counterl, N, NextRank).

column(N, X):—
Xis N - 4.
go(N):—

93

92 findall(Y, teste(N, Y), G),

93 length(G, GL),

94 write(N),write(’ : ’),write(GL),write(' total solutions.’),nl fail.
95

96

97 % solution_queens(+ParcialSolution, —Solution)

98 solution_queens([], -, -):— fail.

99 solution_queens(L, N, PossibleSolution):—

100 column(N, I),

101 MissingQueens is N — I,

102 mkemptylist(MissingQueens, EL),

103 append(L, EL, NL),

104

105 mkmaxlist(MissingQueens, N, PossibleParcialSolution),
106

107 cross_lists(NL, PossibleParcialSolution, PossibleSolution),
108 queens(N, PossibleSolution).

109

110 cross_lists([], -, [D):=!.

111 cross.lists{_, [], [D:-!.

112 cross_lists([X|Xs], [YIYs], [YIR]):—

113 var(X),

114 nonvar(Y),

115 cross_lists(Xs, Ys, R).

116 cross_lists([X[Xs], [Y|Ys], [XIR]):—

117 nonvar(X),

118 cross_lists(Xs, [Y[Ys], R).

119
120

121 mkmaxlist(S, N, [XR]):-
12 S$>0,

123 for(X, 1, N),

124 SlisS -1,

125 mkmaxlist(S1, N, R).
126 mkmaxlist(0, -, []).

94

127

128 mkemptylist(N, [-[R]):—

129 N>0,

130 Mis N -1,

131 |, mkemptylist(M, R).

132 mkemptylist(-, []).

133

134

135 % queens(+BoardSize, —ResultBoard)
136 queens(N, Qs):—

137 range(1,N,Ns),

138 permutation(Ns,Qs),

139 safe(Qs).

140

141 safe([Q|Qs]):— safe(Qs), \+ attack(Q,Qs).
142 safe([]).

143

144 attack(X,Xs):— attack(X,1,Xs).

145 attack(X,N,[Yl]):—- Xis Y + N.

146 attack(X,N,[Y]-]):— Xis Y - N.

147 attack(X,N,[-[Ys]):— N1 is N + 1, attack(X,N1,Ys).

148

149

150 range(N,N,[N]):— L.

151

152 range(M,N,[M|Ns}):—
153 M < N,

154 M1 is M+1,

155 range(M1,N,Ns).

95

12
13
14
15
16
17
18
19
20
21

Appendix E

Parallel Number of Occurrences

:~ initialization(init).

% include the pm2 interface lib
:— include(’1ib’).

size(8).

determine(Size):—
argument_counter(2),
argument._list(Args),
append([SizeString|-], [], Args),
write_to_chars(Chars, SizeString),

number_chars(Size, Chars).

determine(Size):—
size(Size),

write(’ Searching for '),write(Size),write(’ . '),nl.

% thread O
init:—

pm2_is_master,},

96

24

26
27
28
29
30
31
32
33

35
36
37

38

55
56

pm2_max_rank(MaxRank),

determine(El),

% Start_Prolog(0, 0) on each node
start_prolog_workers(MaxRank),

see(’ /home/nm/devel /tabard-0.1/input.txt’),
read_chunk(El, 1000, MaxRank, NumberSentMessages),
read_results(NumberSentMessages, Num),

write(Num),nl, % number of total occurrences

stop_prolog_workers(MaxRank),

finish_listeners.
% thread = 0
init:—

worker_work.

worker_work:—

thread _get_message(Termo),
|, do_query(Termo, X),
thread _send_message(vid(0,0), X),

worker_work.

read_results(X, N):—

read_results(X, 0, N).

read_results(0, N, N):-!.
read_results(X, Acc, N):—

thread_get_message(Msg),
Accl is Acc + Msg,

Xlis X -1,

|, read_results(X1, Accl, N).

97

57
58
59
60
61
62

67

69
70
71

73
74

76

78
79

81
82
83

86

87

89
20
91

do_query(q(X,List), 0):-

repeat(100, number_of_occurences(X, List, _)).

repeat(0):—!,fail.
repeat(-).
repeat(N):— N1 is N-1, repeat(N1).

repeat(N, G):-
repeat(N), G, fail.
repeat(-, -).

number_of_occurences(X, L, N):—

number_of_occurences(X, L, 0, N).

number_of_occurences(_, [], Acc, Acc):~L.
number_of_occurences(X, [Y[Ys], Acc, N):—
X\=Y,

number_of_occurences(X, Ys, Acc, N).

number._of_occurences(X, [X[Xs], Acc, N):—
Accl is Acc + 1,

number_of_occurences(X, Xs, Accl, N).

read_chunk(El, ChunkSize, Rank, N):—
read_chunk(El, ChunkSize, Rank, 0, N).

read_chunk(El, ChunkSize, 0, Acc, N):—
pm2_max_rank(MaxRank),

I, read_chunk(El, ChunkSize, MaxRank, Acc, N).

98

92

93 % read_chunk(+ChunkSize) reads ChunkSize numbers from input to a list
94 read_chunk(El, ChunkSize, Rank, Acc, N):—

95 read_lista(ChunkSize, ChunkList),

9 length(ChunkList, ChunkSize),

97 ChunkList \= [],

98 thread_send_message(vid(Rank, 0), q(El, ChunkList)),
99 NextRank is Rank — 1,

100 Accl is Acc + 1,

101 read_chunk(El, ChunkSize, NextRank, Accl, N).
102

103 read_chunk(_, _, -, N, N).

104

105 read_lista(N, {X|R]):—

106 N >0,

107 read-token(X),

108 integer(X),

109 read_token(.),

110 Nlis N -1,

111 read_lista(N1, R).

112 read_lista(_, []).

99

