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Abstract

High-speed networks and rapidly improving microprocessor performance
make networks of workstations an increasingly appealing vehicle for par-
allel computing. No special hardware is required to use this solution as a
parallel computer, and the resulting system can be easily maintained, ex-
tended and upgraded. Constraint programming is a programming paradigm
where relations between variables can be stated in the form of constraints.
Constraints differ from the common primitives of other programming lan-
guages in that they do not specify a step or sequence of steps to execute but
rather the properties of a solution to be found. Constraint programming
libraries are useful as they do not require the developers to acquire skills
for a new language, providing instead declarative programming tools for use
within conventional systems. Distributed Shared Memory presents itself as
a tool for parallel application in which individual shared data items can be
accessed directly. In systems that support Distributed Shared Memory, data
moves between main memories of different nodes. The Distributed Shared
Memory spares the programmer the concerns of message passing, where he
would have to put allot of effort to control the distributed system behavior.
We propose an architecture aimed for Distributed Constraint Programming
Solving that relies on propagation and local search over a CC-NUMA dis-
tributed environment using Distributed Shared Memory.
The main objectives of this thesis can be summarized as:

e Develop a Constraint Solving System, based on the AJACS [3] system,
in the C language, the native language of the experimented Parallel
library - PM2 [4];

e Adapt, experiment and evaluate the developed constraint solving sys-
tem distributed suitability by using DSM-PM2 [1] over a CC-NUMA
architecture distributed environment;

Keywords: Distributed, Constraint Programming, Parallel, Distributed Shared
Memory, PM2, AJACS



Sumario

Titulo: Adequacdo da biblioteca PM2-DSM para Pro-
gramacao por Restrigoes Distribuidas.
As Redes de alta velocidade e o melhoramento rapido da performance dos
micro-processadores fazem das redes de computadores um veiculo apela-
tivo para computagao paralela. Nao é preciso hardware especial para usar
computadores paralelos e o sistema resultante é extensivel e facilmente al-
terdvel. A programacio por restricées é um paradigma de programagao
em que as relagGes entre as varidveis pode ser representada por restricces.
As restrigoes diferem das primitivas comuns das outras linguagens de pro-
gramacio porque, ao contrario destas, ndo especifica uma sequéncia de pas-
sos a executar mas antes a definicao das propriedades para encontrar as
solucées de um problema especifico. As bibliotecas de programacao por re-
stricoes sao 1iteis visto elas ndo requerem que os programadores tenham que
aprender novos skills para uma nova linguagem mas antes proporcionam fer-
ramentas de programacao declarativa para uso em sistemas convencionais. A
tecnologia de Meméria Partilhada Distribuida (Distributed Shared Memory)
apresenta-se como uma ferramenta para uso em aplicagoes distribuidas em
que a informacao individual partilhada pode ser acedida directamente. Nos
sistemas que suportam esta tecnologia os dados movem-se entre as memdrias
principais dos diversos nés de um cluster. Esta tecnologia poupa o pro-
gramador as preocupagoes de passagem de mensagens onde ele teria que
ter muito trabalho de controlo do comportamento do sistema distribuido.
Propomos uma arquitectura orientada para a distribuicio de Programagao
por Restricoes que tenha os mecanismos da propagagao e da procura lo-
cal como base sobre um ambiente CC-NUMA distribuido usando meméria
partilhada, distribuida.
Os principais objectivos desta dissertacao podem ser sumarizados em:
e Desenvolver um sistema resolvedor de restrigaes, baseado no sistema
AJACS [3], usando a linguagem ’C’, linguagem nativa da biblioteca de
desenvolvimento paralelo experimentada: o PM2 [4].

e Adaptar, experimentar e avaliar a adequacao deste sistema, resolvedor
de restrigoes usando DSM-PM2 [1] a um ambiente distribuido assente
numa arquitectura CC-NUMA;
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Chapter 1

Introduction and Motivation

On this chapter the main context, basis and goals of this thesis study are
presented to the reader.

1.1 Introduction

High-speed networks and rapidly improving microprocessor performance
make networks of workstations an increasingly appealing vehicle for par-
allel computing. No special hardware is required to use this solution as a
parallel computer, and the resulting system can be easily maintained, ex-
tended and upgraded. In terms of performance, improvements in processor
speed and network bandwidth and latency allow networked workstations to
deliver performance approaching or exceeding supercomputer performance
for an increasing class of applications.

1.2 Constraint Programming

Constraint programming is a programming paradigm where relations be-
tween variables can be stated in the form of constraints. Constraints differ
from the common primitives of other programming languages in that they do
not specify a step or sequence of steps to execute but rather the properties
of a solution to be found. The constraints used in constraint programming
are of various kinds: those used in constraint satisfaction problems, those
solved by the simplex algorithm, and others. Constraints are usually em-
bedded within a programming language or provided via separate software
libraries.

Constraint programming began with constraint logic programming, which
embeds constraints into a logic program. This variant of logic programming
is due to Jaffar and Lassez, who extended in 1987 a specific class of con-
straints that were introduced in Prolog II [31]. The first implementations
of constraint logic programming were Prolog III [32], CLP(R) [33], and
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CHIP [34]. Several constraint logic programming interpreters exist today,
for example GNU Prolog [35].

Other than logic programming, constraints can be mixed with functional
programming, term rewriting, and imperative languages. Constraints in
functional programming are implemented in the multi-paradigm program-
ming language Oz [5). Constraints are embedded in an imperative language
in Kaleidoscope. However, constraints are implemented in imperative lan-
guages mostly via constraint solving toolkits, which are separate libraries
for an existing imperative language. ILOG Solver [36] is an example of such
a constraint programming library for C+-+.

Constraint programming libraries are useful when building applications
developed mostly in mainstream programming languages: they do not re-
quire the developers to acquire skills for a new language, providing instead
declarative programming tools for use within conventional systems.

1.3 Distributed Shared Memory

Distributed Shared Memory presents itself as a tool for parallel application
or a group of applications in which individual shared data items can be
accessed directly. In systems that support Distributed Shared Memory, data
moves between main memories of different nodes (as illustrated by figure
1.1). Each node can own data stored in the shared address space, and the
ownership can change when data moves from one node to another. When a
process accesses data in the shared address space, a mapping manager maps
the shared memory address to the physical memory. The mapping manager
is a layer of software implemented either in the operating system kernel or
as a runtime library routine. Note: Most of the content discussed in this
section stems from a survey of publicly available materials, which are duly
identified.

Proc1 Proc2 Proc3 T ProcN
I Mem1 MemJ | Mem3 e MemN
-8 P |
Network
Shared Memory

------------------------------------------------------------------

Figure 1.1: DSM Concept
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The Distributed Shared Memory spares the programmer the concerns of
message passing, where he would have to put allot of effort to control the
distributed system behavior. The goal is to provide him the abstraction of
shared memory. Shared memory provides the fastest possible communica-
tion, hence the greatest opportunity for concurrent execution.

1.3.1 DSM Design
The main problems that the DSM approach has to address are:

o The mapping of a logically shared address space onto the physically
distributed memory modules;

e how to locate and access the needed data item(s);

e how to perserve the coherent view of the overall shared address space.

To responde to these problems we refer to the following text, that sintethizes
the main considerations when designing DSM systems.

1 The crucial objective of solving those problems is the minimiza-
tion of the average access time to the shared data. Having this goal in
mind, two strategies for distribution of shared data are most frequently
applied: replication and migration. Replication allows that multiple
copies of the same data item reside in different local memories, in order
to increase the parallelism in accessing logically shared data. Migra-
tion implies a single copy of data item which has to be moved to the
accessing site, counting on the locality of reference in parallel applica-
tions. Besides that, systems with distributed shared memory have to
deal with the consistency problem, when replicated copies of the same
data exist. In order to preserve the coherent view of shared address
space, according to the strict consistency semantics, a read operation
must return the most recently written value. Therefore, when one of
multiple copies of data is written, the others become stale, and have to
be invalidated or updated, depending on the applied coherence policy.
Although the strict coherence semantics provides the most natural view
of shared address space, various weaker forms of memory consistency
can be applied in order to reduce latency.

As a consequence of applied strategies and distribution of shared
address space across different memories, on some memory reference
data item and its copies have to be located and managed according
to a mechanism which is appropriate for such architecture. The solu-
tions to the problems above are incorporated into the DSM algorithm,
which can be implemented at the hardware and/or software level. Im-
plementation level of & DSM mechanism is regarded as the basic design
decision, since it profoundly affects system performance. The other
important issues include: structure and granularity of shared data,
memory consistency model that determines allowable memory access
orderings and coherence policy (invalidate or update).

!From http://galeb.etf.bg.ac.yu/ vm/tutorial/multi/dsm/introduction/introduction.html
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1.3.2 DSM Algorithms

The performance of a DSM system is dependent on the coupling between the
applied DSM algorithm and the access patterns generated by the application.
One of the possible classifications of DSM algorithms distinguishes between

2 (...)SRSW (Single Reader / Single Writer), MRSW (Multiple
Reader / Single Writer), and MRMW (Multiple Reader / Multiple
Writer). SRSW algorithms prohibit replication, and migration can
be allowed if the distribution of shared address space over distributed
memories is not static. MRSW algorithms are most often encoun-
tered in DSM systems. Based on a realistic assumption that the read
operation is generally more frequent than the write operation, they
allow multiple read-only copies of data items, in order to decrease read
latency. Finally, the MRMW algorithms allow the existence of mul-
tiple copies of data items, even while being written to, but in some
case, depending on the consistency semantics, write operations must
be globally sequenced.

The algorithms to be described below 2 are categorized by whether they
migrate and / or replicate data. Two of the algorithms (central-server algo-
rithm and migration algorithm) migrate data to the site where it is accessed
in an attempt to exploit local data accesses decreasing the number of remote
accesses, thus avoiding communication overhead. The two other algorithms
(Read-Replication algorithm and Full-Replication algorithm) replicate data
so that multiple read accesses can take place at the same time using local
accesses.

Central-server Algorithm

In the Central-Server Algorithm, a central-server maintains all the
shared data. It services the read requests from other nodes or clients by
returning the data items to them. It updates the data on write requests
by clients and returns acknowledgment messages. A timeout can be
employed to resend the requests in case of failed acknowledgments. Du-
plicate write requests can be detected by associating sequence numbers
with write requests. A failure condition is returned to the application
trying to access shared data after several retransmissions without a
response.

Although, the central-server algorithm is simple to implement, the
central-server can become & bottleneck. To overcome this problem,
shared data can be distributed among several servers. In such a case,
clients must be able to locate the appropriate server for every data
access. Multicasting data access requests is undesirable as it does not
reduce the load at the servers compared to the central-server scheme.
A better way to distribute data is to partition the shared data by
address and use a mapping function to locate the appropriate server.

2From http://galeb.etf.bg.ac.yu/ vin/tutorial/multi/dsm/introduction/introduction.htm]
3%rom http://www.niksula.cs.hut.fi/projects/ohtdsm/documents/kirjtutk/cmodels.html

13



Migration Algorithm

In the Migration Algorithm, the data is shipped to the location of
the data access request allowing subsequent accesses to the data to be
performed locally. The migration algorithm allows only one node to
access a shared data at a time. This is a single reader / single writer
protocol, since only the threads executing on one host can read or write
a piven data item at any time.

Typically, the whole page or block containing the data item mi-
grates instead of an individual item requested. This algorithm takes
advantage of the locality of reference exhibited by programs by amor-
tizing the cost of migration over multiple accesses to the migrated
data. However, this approach is susceptible to thrashing, where pages
frequently migrate between nodes while servicing only a few requests.

The migration algorithm provides an opportunity to integrate DSM
with the virtual memory provided by the operating system running at
individual nodes. When the page size used by DSM is a multiple of the
virtual memory page size, a locally held shared memory page can be
mapped to an application’s virtual address space and accessed using
normal machine instructions. On a memory access fault, if the memory
address maps to a remote page, a fault-handler will migrate the page
before mapping it to the process’s address space. Upon migrating,
the page is removed from all the address spaces it was mapped to at
the previous node. Note that several processes can share a page at a
node. To locate a data block, the migration algorithm can make use
of a server that keeps track of the location of pages, or through hints
maintained at nodes. These hints direct the search for a page toward
the node currently holding the page. Alternatively, a query can be
broadcasted to locate a page.

Read-Replication Algorithm

One disadvantage of the migration algorithm is that only the threads
on one host can access data contained in the same block at any given
time. Replication can reduce the average cost of read operations, since
it allows read operations to be simultaneously executed locally (with
no communication overhead) at multiple hosts. However, some of the
write operations may become more expensive, since the replicas may
have to be invalidated or updated to maintain consistency. Neverthe-
less, if the ratio of reads over writes is large, the extra expense for the
write operations may be more than offset by the lower average cost of
the read operations.

Replication can be naturally added to the migration algorithm by
allowing either one site a read/write copy of a particular block or mul-
tiple sites read-only copies of that block. This type of replication is
referred to as multiple readers / single writer replication.

For a read operation on a data item in a block that is currently not
local, it is necessary to communicate with remote sites to first acquire
a read-only copy of that block and to change to read only the access
rights to any writable copy if necessary before the read operation can
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complete. For a write operation to data in a block that is either not
local or for which the local host has no write permission, all copies of
the same block held at other sites must be invalidated before the write
can proceed. The read-replication algorithm is consistent because a
read access always returns the value of the most recent write to the
same location.

In the read replication algorithm, DSM must keep track of the
location of all the copies of data blocks. One way to do this is to have
the owner node of a data block keep track of all the nodes that have a
copy of the data block. Alternatively, a distributed linked list may be
used to keep track of all the nodes that have a copy of the data block.

Full-Replication algorithm

The full replication algorithm is an extension of the read replication
algorithm. It allows multiple nodes to have both read and write access
to shared data blocks (the multiple readers / multiple writer protocol).
Because many nodes can write shared data concurrently, the access to
shared data must be controlled to maintain its consistency.

One possible way to keep the replicated data consistent is to glob-
ally sequence the write operations. A simple strategy based on se-
quencing uses a single global sequencer which is a process executing
on a host participating in DSM. When a process attempts a write to
shared memory, the intended modification is sent to the sequencer.
This sequencer assigns the next sequence number to the modification
with this sequence number to all sites. Each site processes broadcast
write operations in sequence number order. When a modification ar-
rives at a site, the sequence number is verified as the next expected
one. If a gap in the sequence numbers is detected, either a modification
was missed or a modification was received out of order, in which case a
retransmission of the modification message is requested. In effect, this
strategy implements a negative acknowledgment protocol.

1.3.3 Consistency Models

DSM systems, as we have seen, rely on replicating shared data items for
allowing concurrent access at many nodes in order to improve performance.
However, the concurrent accesses need to be carefully controlled, so that
memory accesses may be executed in the order that which the programmer
expects. In other words, the memory is coherent if the value returned by a
read operation is always the value that the programmer would expect, that
a read operation returns the value stored by the most recent write operation.
Thus, to maintain the coherence of shared data, a mechanism to control and
synchronize the accesses is necessary.

The term consistency is used to refer to a specific kind of coherence. The

most natural semantics for memory coherence is strict consistency, defined
as:
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4 “Strict consistency requires the ability to determine the latest
write, which in turn implies a total ordering of requests. The total
ordering of requests leads to inefficiency due to more data movement
and synchronization requirements than what a program may really call
for.”

To counter this problem, DSM systems attempt to improve the perfor-
mance by providing relaxed coherence semantics. Next follows several forms
of memory coherence 4 (strict consistency, causal consistency, PRAM consis-
tency & processor consistency, weak consistency, release consistency, entry
consistency and scope consistency).

Strict Consistency

The most stringent consistency model is called strict consistency. It is
defined by the following condition: Any read to a memory location X
returns the value stored by the most recent write operation to X.

This definition implicitly assumes the existence of absolute global
time so that the determination of ” most recent” is unambiguous. Unipro-
cessors have traditionally observed strict consistency.

In summary, when memory is strictly consistent, all writes are in-
stantaneously visible to all processes and an absolute global time order
is maintained. If a memory location is changed, all subsequent reads
from that location see the new value, no matter how scon after the
change the reads are done and no matter which processes are doing
the reading and where they are located. Similarly, if a read is done, it
gets the current value, no matter how quickly the next write is done.

Causal Consistency

The causal consistency model represents a weakening of sequential con-
sistency in that it makes a distinction between events that are poten-
tially causally related and those that are not. Suppose that process P1
writes a variable X. Then P2 reads X and writes Y. Here the reading
of X and the writing of Y are potentially causally related because
the computation of Y may have depended on the value of X read by
P2 (i.e., the value written by P1 ). For a memory to be considered
causally consistent, it is necessary that the memory obey the following
condition: “Writes that are potentially causally related must be seen
by all processes in the same order. Concurrent writes may be seen in
a different order on different machines”.

PRAM Consistency & Processor Consistency

In causal consistency, it is permitted that concurrent writes be seen
in a different order on different machines, although causally related
ones must be seen in the same order by all machines. The next step
in relaxing memory is to drop the latter requirement. Doing so gives

“From http://www.niksula.cs.hut.fi/projects/ohtdsm/documents/kirjtutk /cmodels.html
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PRAM consistency, which is subject to the condition of all writes being
done done by a single process are received by all other processes in the
order in which they were issued, but writes from different processes
may be seen in a different order by different processes.

Weak Consistency

Although PRAM consistency and processor consistency can give bet-
ter performance than the stronger models, they are still unnecessarily
restrictive for many applications because they require that writes orig-
inating in a single process be seen everywhere in order. Not all appli-
cations require even seeing all writes, let alone seeing them in order.
Considering the case of a process inside a critical section reading and
writing some variables in a tight loop. Even though other processes
are not supposed to touch the variables until the first process has left
its critical section, the memory has no way of knowing when a process
is in a critical section and when it is not, so it has to propagate all
writes to all memories in the usual way.

Weak consistency, has three properties:

1. Accesses to critical (synchronization) variables are sequentially
consistent.

2. No access to a synchronization variable is allowed to be performed
until all previous writes have completed everywhere.

3. No data access (read or write) is allowed to be performed un-
til all previous accesses to synchronization variables have been
performed.

Release Consistency

Weak consistency has the problem that when a synchronization vari-
able is accessed, the memory does not know whether this is being
done because the process is finished writing the shared variables or
about to start reading them. Consequently, it must take the actions
required in both cases, namely making sure that all locally initiated
writes have been completed, as well as gathering in all writes from other
machines. If the memory could tell the difference between entering a
critical region and leaving one, a more efficient implementation might
be possible. To provide this information, two kinds of synchronization
variables or operations are needed instead of one.

Release consistency provides these two kinds. Acquire accesses
are used to tell the memory system that a critical region is about
to be entered. Release accesses say that a critical region has just
been exited. These accesses can be implemented either as ordinary
operations on special variables or as special operations.

Lazy Release Consistency: LRC is a refinement of RC that
allows consistency action to be postponed until a synchronization vari-
able released in a subsequent operation is acquired by another proces-
sor. Even then, the shared writes are made visible only to the acquir-
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ing processor. Synchronization transfers in an LRC system, therefore,
involve only the synchronizing processors. This reduction in synchro-
nization traffic can result in a significant decrease in the total amount
of system communication, and a consequent increase in overall perfor-
mance.

Entry Consistency

Another consistency model that has been designed to be used with
critical sections is entry consistency. Like release consistency, it re-
quires the programmer to use acquire and release at the start and end
of each critical section, respectively. However, unlike release consis-
tency, entry consistency requires each ordinary shared variable to be
associated with some synchronization variable such as a lock or bar-
rier. If it is desired that elements of an array be accessed independently
in parallel, then different array elements must be associated with dif-
ferent locks. When an acquire is done on a synchronization variable,
only those ordinary shared variables guarded by that synchronization
variable are made consistent. Entry consistency differs from lazy re-
lease consistency in that the latter does not associate shared variables
with locks or barriers and at acquire time has to determine empirically
which variables it needs.

Formally, a memory exhibits entry consistency if it meets all the fol-
lowing conditions:

1. An acquire access of a synchronization variable is not allowed to
perform with respect to a process until all updates to the guarded
shared data have been performed with respect to that process.

2. Before an exclusive mode access to a synchronization variable by
a process is allowed to perform with respect to that process, no
other process may hold the synchronization variable, not even in
nonexclusive mode.

3. After an exclusive mode access to a synchronization variable has
been performed, any other process next nonexclusive mode access
to that synchronization variable may not be performed until it
has performed with respect to that variable’s owner.

Scope Consistency °

Scope Consistency was developed by the University of Princeton in
1996. In ScC, the concept of scope is defined as all the critical sec-
tions. This means the locks define the scopes implicitly, making the
concept easy to understand. A scope is said to be opened at an ac-
quire, and closed at a release. ScC is defined as: When o processor
Q opens a scope previously closed by another processor P, P propagates
the updates made within the same scope to Q. As ScC propagates less

5From http://www.srg.csis.hku.hk/srg/html/jump.htm
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amount of data, the efficiency increases. And the updates not propa-
gated are usually not needed, since it is usual practice for all accesses
of the same shared variable to be guarded by the same lock.

Summary

o Strict: Absolute time ordering of all shared accesses matters.

e Causal: All processes see all causally-related shared accesses in the
same order.

o PRAM: All processes see writes from each processor in the order they
were issued. Writes from different processors may not always be in the
same order.

e Weak: Shared data can only be counted on to be consistent after
synchronization is done.

o Release: Shared data are made consistent when a critical region is
exited.

e Entry: Entry consistency improves lazy release consistency in that the
latter does not associate shared variables with locks or barriers and at
acquire time has to determine empirically which variables it needs.

e Scope: Locks define the scopes implicitly. It propagates less amount
of data / the efficiency increases.

1.3.4 Coherence Protocol Policy

After a write operation, the subjacent replicated piece of data becomes out-
of-date and must be refreshed across all replicated sites. Two strategies can
be used to achieve this: write invalidate or write update.

Write Invalidate ¢

This protocol is commonly implemented in the form of multiple-reader-
single-writer sharing. At any time, a data item may either be:

o accessed in read-only mode by one or more processes;
e read and written by a single process.

An item that is currently accessed in read-only mode can be copied
indefinitely to other processes. When a process attempts to write to
it, a multicast message is sent to all other copies to invalidate them,
and this is acknowledged before the write can take place; the other
processes are thereby prevented from reading stale data. Any pro-
cesses attempting to access the data item are blocked if a writer exists.

SFrom http://www.cs.gmu.edu/cne/modules/dsm/purple/wrsnval.html
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Eventually, control is transferred from the writing process and other
accesses may take place once the update has been sent. The effect is to
process all accesses to the item on a first~come-first-served basis. This
scheme achieves sequential consistency.

Write Update 7

In the write update protocol, the updates made by a process are made
locally and multicast to all other replica managers possessing a copy
of the data item, which immediately modify the data read by local
processes. Processes read the local copies of data items, without the
need for communication. In addition to allowing multiple readers,
several processes may write the same data item at the same time; this
is known as multiple-reader-multiple-writer sharing.

Reads are cheap in the write-update option. However, ordered
multicast protocols are relatively expensive to implement in software.

Eager VS Lazy protocols

In an eager protocol, modifications to shared data are made visible globally
at the time of a release. With a lazy protocol, the propagation of modifica-
tions is postponed until the time of the acquire. At this time, the acquiring
processor determines which modifications it needs to see. Both eager and
lazy approaches can be applied to invalidate or update protocols. Lazy pro-
tocols are ideally suited for situations where communication has a high cost
per message, because they send messages only when absolutely necessary,
often resulting in far fewer messages overall.

1.3.5 Other Design Issues

Besides the important decisions on choosing the DSM algorithm (that can
be implemented on HW and/or SW), the best suited memory consistency
model that determines allowable memory access orderings or coherence pol-
icy (invalidate or update), other important issues like: structure and gran-
ularity of shared data or page replacement are also crucial 8.

Granularity

Granularity refers to the size of the shared memory unit. A page
size of that is a multiple of the size provided by the underlying hard-
ware or the memory management system allows for the integration
of DSM and the memory management systems. By integrating DSM
with the underlying memory management system, a DSM system can
take advantage of the built in protection mechanism to detect incoher-
ent memory references, and use built in fault handlers to prevent and
recover from inappropriate references.

"From http:/ /www.niksula.cs.hut.fi/projects/ohtdsm/documents/kirjtutk /cmodels.html
8From http://www.cs.gmu.edu/cne/modules/dsim/green /design.html
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A large page size for the shared memory unit will take advantage of
the locality of reference exhibited by processes. By transferring large
pages, less overhead is incurred due to page size, but there is greater
chance for contention to access a page by many processes. Smaller page
sizes are less apt to cause contention as they reduce the likelihood of
false sharing.

False sharing of a page occurs when two different data items, not
shared but accessed by two different processes, are allocated to a sin-
gle page. So the protocols that adapt to a granularity size that is
appropriate to the sharing pattern will perform better than those pro-
tocols that make use of a static granularity size. False sharing results
when the system can not distinguish between accesses to logically dis-
tinct pieces of data. False sharing occurs because the system tracks
accesses at a granularity larger than the size of individual shared data
items. Conventional protocols typically require processes to gain sole
access to a page before it can be modified. Therefore, false sharing
can lead to situations where multiple processes contest ownership of a
page, even though the processes are modifying entirely disjoint sets of
data.

Page Replacement

A memory management system has to address the issue of page replace-
ment because the size of physical memory is limited. In DSM systems
that support data movement, traditional methods such as least re-
cently used (LRU) cannot be used directly. Data may be accessed in
different modes such as shared, private, read-only, writable, etc.,
in DSM systems. To avoid degradation in the system performance, a
page replacement policy would have to take the page access modes
into consideration. For instance, private pages may be replaced before
shared pages, as shared pages would have to be moved over the net-
work, possibly to their owner. Read-only pages can simply be deleted
as their owners will have a copy. Thus the LRU policy with classes
is one possible strategy to handle page replacement. Once a page is
selected for replacement, the DSM system must ensure that the page
is not lost forever. One option is to swap the page onto disk memory.
However, if the page is a replica and is not owned by the node, it can
be sent to the owner node.

1.4 Distributed Constraint Programming using DSM

On of the inherent characteristics of Constraint Programming aims on solv-
ing problems that may have huge search spaces and as so often are very time
consuming tasks. The natural choice is to try to paralelize the search space
over different CPUs (as illustrated in figure 1.2) in using some paralelization
technique, being one specific example the distribution of work over different
independent nodes over some network.
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Paralelization does not come without cost as applications have to be
designed specifically for that purpose which means that some decisions have
to be made before-hand such as:

e The feasability to partition the work to be distributed over different
nodes;

e The needed synchronization, from the problem itself, shall be reduced
to a minimum to not generate too much communication between the
distributed nodes;

e Some paralelization model needs to be designed, supported by the use
of some specific paralelization libraries (MPI [37] alike or other) to
assure a proper distributed computation.

CP Problem Space

‘ E | 4 1
- Network

Figure 1.2: DCP using DSM Concept

As information must transit between the different nodes DSM comes as
a natural hypothesis choice to ease the burden caused by the last identified
need, from the items listed above.

The communication abstraction, that DSM sells to offer, is most apealing
since theoretically it would eliminate the need for the programmer to waist
energy on message passing management and data consistency across memory
allocated on each node and allow him to concentrate / focus attention on
the distribution model design and on the CSP distributed feasability itself.

1.5 Objectives

This thesis presents an adaptation of the AJACS [3] system to the 'C’ lan-
guage and an adequancy study of this constraint solving system to a dis-
tributed environment using distributed shared memory, hereby its proposed
to:
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e Develop a Constraint Solving System in the ’C’ language, the native
language of the experimented Parallel library - PM2 [4] (to be detailed
further ahead on this thesis report);

e Adapt and Experiment the ’C’ Constraint Solving System to a CC-
NUMA architecture (refer to section 2.1 for details) distributed envi-
ronment using DSM-PM2 {1];

e Evaluate the DSM-PM2 adequacy for distributed constraint program-
ming by testing different distributed approaches and at the same time
trying to obtain run-time performance speedups.

The work performed in this thesis will be presented in 7th International
Colloquium on Implementation of Constraint and Logic Programming Sys-
tems [48].

1.6 RoadMap to this Thesis

The reminder chapters of this thesis report have the following presentation:

e On Chapters 2 and 3 is presented a State of the Art summary on
the two involved technologies under subject analysis of this thesis: -
Distributed Shared Memory (chapter 2) and Distributed Constraint
Programming (chapter 3);

e On Chapter 4 the AJACS/C constraint library is described, including
it’s implementation details. The adopted Distribution Models pro-
posed for experimentation are also explained;

e Chapter 5 deals with examples and interpretation of results;

e Chapter 6 presents conclusions and future lines of work.
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State of the Art: Distributed
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Chapter 2

State of the Art -
Distributed Shared Memory

This chapter will present the reader a survey on the currently available DSM
technology.

2.1 The CC-NUMA Architecture

The cluster configuration used by this thesis report study is based on a CC-

NUMA model. Next follows a definition of the CC-NUMA architecture as
1

for a comparison with other model architectures ~.

The term CC-NUMA stands for Cache-Coherent Non Uniform
Memory Access. In the CC-NUMA model, the system runs one op-
erating system and shows only a single memory image to the user
eventhough the memory is physically distributed over the processors.
Since processors can access their own memory much faster than that
of other processors, memory access is non uniform (NUMA). In this
architecture the contents of the various processor caches should be co-
herent requiring extra hardware and a cache coherency protocol. A
NUMA computer fulfilling these requirements is called a CC-NUMA
machine. Refer to figure 1.1.

Comparing a CC-NUMA computer to MPP (Massively Parallel
Processing) / cluster-based systems and SMP (Symmetric Multi Pro-
cessing)/PVP (Parallel Vector Processing) systems shows that CC-
NUMA machines can be regarded as an attempt to get the best out of
both worlds.

SMP/PVP computers have multiple processors using the same mem-
ory which makes it easy to parallelize a code on loop level using com-
piler options and/or directives. However, due to the fact that proces-
sors have to perform data exchange with their memory over the same

!From http://www.sara.nl/userinfo/reservoir/ccnuma/index.html
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bus having only a limited bandwidth, these systems will only scale to
10s of processors.

MPP /cluster-based systems do not have this drawback. The nodes
in MPP/cluster-based machines have their own private memory and
therefore each node possesses only a part of the data. Such machines
will scale upto a very large number of processors if the computation
to communication ratio of the program is high. The programming
model for these computers is based on message passing and processors
explicitly have to perform the communication with other processors
by sending and receiving data. Programs have to take care of data
distribution over the processors and have to be adapted for explicit
communication. This implies that programs developed for single pro-
cessor and PVP/SMP machines cannot be applied to these machines
straight away. A substantial amount of redesigning and reprogram-
ming of these codes is necessary.

CC-NUMA machines combine the benefits of MPP /cluster-based
systems and SMP/PVP machines. The fact that CC-NUMA ma-
chines behave like shared memory computers from a user point of
view simplifies the porting of programs developed for single proces-
sor or SMP/PVP machines. Moreover, CC-NUMA computers allow
for loop-level parallelization by means of compiler options or compiler
directives similar to SMP/PVP systems. The good scalability proper-
ties are inheritted from MPP/cluster-based systems since memory is
distributed over the nodes.

2.2 DSM on Hardware / Software

DSM solutions come in two main flavors: Software and Hardware based. Hy-
brid so21utions propose to be the third choice. These solutions are described
below “.

Software support for DSM is generally more flexible and conve-
nient for experiments than hardware implementations, but in many
cases can not compete with the hardware level DSM in performance.
Nevertheless, majority of DSM systems described in the open literature
were based on software mechanisms, since networks of workstations are
getting more popular and powerful. Therefore, the use of DSM concept
seems to be an appropriate and relatively low-cost solution for their use
as parallel computers. Ideas and concepts that originally appeared in
software-oriented systems often migrated to the hardware implemen-
tations. Software-based DSM mechanisms can be implemented on the
level of programming language, since the compiler can detect shared
accesses and insert calls to synchronization and coherence routines into
executable code.

Hardware approach has two very important advantages: complete
transparency to the programmer, and generally better performance

2From http://galeb.etf.bg.ac.yu/ vim/tutorial /multi/dsm/introduction/introduction.html
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than other approaches. Since hardware implementations typically use
a smaller unit of sharing (e.g., cache block), they are less suscepti-
ble to false sharing and thrashing effects. Hardware implementations
are particularly superior for applications that have high level of fine-
grain sharing. Hardware solutions are classified into three groups:
CC-NUMA (Cache Coherent Non-Uniform Memory Architecture),
COMA (Cache-Only Memory Architecture), and RMS (Reflective
Memory System) architectures. In CC-NUMA systems, as explained
in section 2.1, parts of shared address space are statically distributed
among the local memories in the clusters of processors, where the im-
proved locality of accesses is expected. In the COMA architectures,
the distribution of data is dynamically adaptable to the application be-
havior, so the parts of overall workspace can freely migrate according
to its usage. In reflective memory architectures, all write operations to
the globally shared regions are immediately followed with updates of
all other copies of the same data item. Hardware-oriented DSM mech-
anism appears to be very promising DSM approach, due to its superior
performance and the transparency it offers to the programmer. It is
expected to be more frequently used in the future.

Hybrid solutions may be in order to achieve the speed and trans-
parency of hardware schemes, as well as the flexibility and sophistica-
tion of software solutions. Designers sometimes choose to implement a
suitable combination of hardware and software methods. Some level of
software support can be found even in the entirely hardware solutions,
with a goal to better suit to the application behavior. As none of the
design choices in the world of DSM has been proven to be absolutely
superior, it seems that the integration of various approaches will be
intensively pursued in future by system architects, in their strive to
gain better performance.

2.3 DSM Systems

In this section several DSM systems are presented. Different types of systems
are introduced and several of their main features are exposed and compared.

2.3.1 Page-Based DSM

The idea behind this type of DSM system is to emulate the cache of a
multiprocessor by making use of the memory management unit (MMU) and
the operating system software. In this DSM system, the address space is
divided into chunks. These chunks are distributed over all the processors
in the system. When a processor references an address that is not local
(available in that node), a trap occurs, and the DSM software fetches (gets)
the chunk containing the address and restarts the faulting instruction, which
now completes successfully. Further characteristics of this type of DSM
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system are presented below. 3

Replication

One improvement to the basic system that can improve performance
considerably is to replicate chunks that are read only, read-only con-
stants, or other read-only data structures. However, if a replicated
chunk is suddenly modified, inconsistent copies are in existence. The
inconsistency is prevented by using some consistency protocols.

Finding the Owner

The simplest solution for finding the owner is by doing a broadcast,
asking for the owner of the specified page to respond. An optimization
is not just to ask who the owner is, but also to tell whether the sender
wants to read or write and say whether it needs a copy of the page.
The owner can then send a single message transferring ownership and
the page is well, if needed.

Finding the Copies

Another important detail is how all the copies are found when they
must be invalidated. Again, two possibilities present themselves. The
first is to broadcast a message giving the page number and ask all
processors holding the page to invalidate it. This approach works only
if broadcast messages are totally reliable and can never be lost.

The second possibility is to have the owner or page manager main-
tain a list or copyset telling which processors hold which pages. When
a page must be invalidated, the old owner, new owner, or page man-
ager sends a message to each processor holding the page and waits for
an acknowledgment. When each message has been acknowledged, the
invalidation is complete.

Page Replacement

As in any system using virtual memory, it can happen that a page
is needed but that there is no free page frame in memory to hold it.
When this situation occurs, a page must be evicted from memory to
make room for the needed page. Two subproblems immediately arise:
which page to evict and where to put it.

2.3.2 Shared Variable DSM

Page-based DSM takes a normal linear address space and allows pages to
migrate dynamically over the network. Another, more structured approach,
is to share only a determined set of variables and data structures that are
needed by more than one process. This way, the problem changes from

3From http://cs.gmu.edu/cne/modules/dsm/yellow/page.dsm.html
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how to do paging over the network to how to maintain a potentially repli-
cated, distributed data base consisting of the set of shared variables. More
considerations and an example below 4.

Different techniques are applicable here, and these often lead to
major performance improvements. Using shared variables that are in-
dividually managed also provides considerable opportunity to eliminate
false sharing. If it is possible to update one variable without affecting
other variables, then the physical layout of the variables on the pages is
less important. One of the most important examples of such a system
is Munin [9].

2.3.3 Object-Based DSM

In an object-based distributed shared memory, processes on multi-
ple machines (as figure 2.1 illustrates) share an abstract space filled with
shared objects. The location and management of the objects is handled au-
tomatically by the system. This model is more abstract and differs to the
page-based DSM systems, in which the former provides, in contrast, a raw
linear memory of bytes from 0 to some maximum. In object-based DSM any
process can invoke any object’s methods, regardless of where the process and
object are located. The operating system and runtime system have the task
to make the act of invoking work no matter where the processes and the
objects are located. An Object-Based DSM feature is that processes cannot
directly access the internal state of any of the shared objects, so various opti-
mizations are claimed as possible where not possible with page-based DSM.
For example, since access to the internal state is strictly controlled, it may
be possible to relax the memory consistency protocols. Further detail on
Object-Based DSM characteristics as for its advantages and disadvantages
are described below °.

Once a decision has been made to structure a shared memory as a
collection of separate objects instead of as a linear address space, there
are many other choices to be made. Probably the most important
issue is whether objects should be replicated or not. If replication
is not used, all accesses to an object go through the one and only
copy, which is simple, but may lead to poor performance. By allowing
objects to migrate from machine to machine, as needed, it may be
possible to reduce the performance loss by moving objects to where
they are needed.

On the other hand, if objects are replicated, what should be done
when one copy is updated? One approach is to invalidate all the other
copies so that only the up to date copy remains. Additional copies can
be created later, on demand, as needed. An alternative choice is not to
invalidate the copies, but to update them. Shared-variable DSM also

“From http://cs.gmu.edu/cne/modules/dsm/yellow/shared dsm.html
5From http://cs.gmu.edu/cne/modules/dsm/yellow/object_dsm.html
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Figure 2.1: Object Based DSM

has this choice, but for page-based DSM, invalidation is the only fea-
sible choice. Similarly, object-based DSM, like shared-variable DSM,
eliminates most false sharing.

Object-based DSM has three advantages over the other methods:
1. It is more modular than the other techniques.

2. The implementation is more flexible because accesses are con-

trolled.
3. Synchronization and access can be integrated together cleanly.

Object-based DSM also has disadvantages. For one thing, it
cannot be used to run old ”dusty deck” multiprocessor programs that
assume the existence of a shared linear address space that every process
can read and write at random.

A second potential disadvantage is that since all accesses to shared
objects must be done by invoking the objects’ methods, extra overhead
is incurred that is not present with shared pages that can be accessed
directly.

2.3.4 DSM Systems Overview

Next a set of tables illustrates a set of DSM systems classified as Software,
Hardware or Hybrid (Hardware / Software) 6.

From http://galeb.etf.bg.ac.yu / vm/tutorial/multi/dsm /introduction /introduction.html
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DSM Software Systems

Name Type of | Type Consistency|| Granularity| Coherence
Imple- of Model unit policy
menta- Algo-
tion rithm

IVY [7] || user-level || MSRW || sequential 1Kb invalidate
library +
OS mod-
ification

Mermaid || user-level | MSRW || sequential 1Kb, 8Kb invalidate

8] library +
OS mod-
ifications

Munin runtime type- weak release || variable size | type-

[9] system + || specific objects specific
linker + || (SRSW, (delayed
library + || MRSW, update,
prepro- M:RMWJ invalidate)
cessor -+
OS mod-
ifications

Midway || runtime MRMW [ entry, 4Kb update

[10] system + release,
compiler processor

Tread user-level || MRMW (| lazy release [ 4Kb update, in-

Marks validate

[11]

Blizzard || user-level || MRSW [ sequential 32-128b invalidate

[12] + 0S
kernel
modifica-
tion

Mirage | OS ker- | MRSW [ sequential 512b invalidate

[13] nel

Clouds OS, out | MRSW [ inconsistent, || 8Kb discard

[14] of kernel sequential segment

when
unlocked
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Name Type of jj Type Consistency]| Granularityl Coherence
Imple- of Model unit policy
menta- Algo-
tion rithm

Linda Language || MRSW | sequential variable (tu- || implem.

[15] ple size) dependent

Orca Language || MRSW | synchro de- || shared data || update

[16] pendent object size

DSM- runtime type- sequential, 4kb invalidate

PM2 system + || specific || eager re-

[1] library (MRSW,| lease, java

MRMWX| consistency

DSM Hardware Systems
Name| Cluster || Net Type Consist || Granular| Coherence

Conf work of Model unit policy

algo-
rithm

Memne} single token MRSW || sequential || 32b invalidate
[17] pro- ring

Cessor,

Memnet

device
Dash [ SGI mesh MRSW || release 16b invalidate
[18] 4D/340

(4 PEs,

2-L

caches),

loc.

mem.
SCI arbitrary || arbitrary MRSW |}l sequential || 16b invalidate
19 1
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Namej Cluster || Net Type || Consist || Granular| Coherence

Conf work of Model unit policy

algo-
rithm

KSR1 || 64-bit ring- MRSW | sequential || 128b invalidate
[20] custom [ based

PE, I4+D || hierar-

caches, chy

32M

loc.mem.
DDM §j 4 bus- MRSW || sequential || 16b invalidate
[21] MC88110d] based

2 caches, || hierar-

8-32M chy

local

memory
Merlin || 40-MIPS || mesh MRMW]| processor [| 8b update
[22] Com-

puter
RMS { 1-4 pro- || RM MRMW]|| processor || 4b update
[23] cessors, || bus

caches,

256M

local

memory
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DSM Hybrid Systems

Name Cluster Type Consist. | Granular| Coherence
Conf + || of algo- || Model unit pol
Network rithm

PLUS M88000, 32K || MRMW || processor || 4Kb update

[24] cache, 8-32M
local memory,
mesh

Galacticall 4 M88110s, | MRMW | multiple || 8Kb update /

[25] 2-L  caches invalidate
256M  local
memory,
mesh

Alewife [ Sparcle MRSW || sequential | 16b invalidate

[26] PE, 64K
cache, 4M
local mem,

CMMU,

mesh
FLASH | MIPS T5, | MRSW || release 128b invalidate
[27] I+D caches,

MAGIC

contoller,

mesh

Typhoon [ SuperSPARC, || MRSW | custom 32b invalidate

[28] 2-L  caches, custom
NP controller

Hybrid || FLASH-like MRSW || release variable invalidate

DSM

[29]

SHRIMP|l 16 Pentium || MRMW (| AURC, 4Kb update /

[30] PC  nodes, scope invalidate
Intel Paragon
routing net-
work

DSM Systems Consistency Models Comparison

DSM performance is always the major concern. The DSM system, IVY [7],
uses SC but performance is poor due to excessive data communication in
the network. This major performance bottleneck is relieved by later sys-
tems, which use other relaxed models to improve efficiency. For example,
Munin [9] made use of the weak Eager Release Consistency (ERC) model.
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TreadMarks [11] went a step further, using the weaker Lazy Release Con-
sistency (LRC). The relatively good efficiency and simple programming in-
terface helps TreadMarks remain as the most popular DSM system. On
the other hand, Midway [10] adopted an even weaker model called Entry
Consistency (EC), but it requires programs to insert explicit statements to
state which variables should be guarded by a certain synchronization vari-
able. This makes the programming effort more tedious. Scope Consistency
claims to be weaker than LRC, approaching the efficiency of EC. As the
programming interface is exactly the same as that used by LRC, good pro-
grammability can be ensured.

2.4 DSM-PM2: An Overview

2.4.1 The PM2 runtime system

PM2 (Parallel Multithreaded Machine) [4] is a multithreaded environment
for distributed architectures. It provides a POSIX like interface to cre-
ate, manipulate and synchronize lightweight threads in user space, in a dis-
tributed environment. Its basic mechanism for internode interaction is the
Remote Procedure Call (RPC).

7 Using RPCs, the PM2 threads can invoke the remote execution
of userdefined services. Such invocations can either be handled by a
preexisting thread, or they can involve the creation of a new thread.
While threads running on the same node can freely share data, PM2
threads running on distan nodes may only interact through RPC. This
mechanism can be used either to send/retrieve information to/from the
remote node, or to have some remote action executed. The minimal
latency of a RPC is 6 micro sec over SISCI/SCI [44] and 8 micro sec
over BIP [46]/Myrinet [43] on our local Linux clusters.
PM2 includes two main components. For multithreading, it uses Mar-
cel, an efficient, userlevel, POSIXlike thread package. To ensure net-
work portability, PM2 uses an efficient communication library called
Madeleine [6], which was ported across a wide range of communication
interfaces, including highperformance ones such as BIP [46], SISCI [44],
VIA [45), as well as more traditional ones such as TCP, and MPI [37].
An interesting feature of PM2 is its thread migration mechanism that
allows threads to be transparently and preemptively moved from one
node to another during their execution. Such a functionality is typi-
cally useful to implement generic policies for dynamic load balancing,
independently of the applications: the load of each processing node can
be evaluated according to some measure, and balanced using preemp-
tive migration. The key feature enablin preemptiveness is the isoad-
dress approach to dynamic allocation featured by PM2. The isomalloc

TFrom DSM-PM2: A portable implementation platform for multithreaded DSM con-
sistency protocols - Gabriel Antoniu and Luc Bougé.
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allocation routine guarantees that the range of virtual addresses allo-
cated by a thread on a node will be left free on any other node. Thus,
threads can be safely migrated across nodes: their stacks and their
dynamically allocated data are just copied on the destination node at
the same virtual address as on the o iginal node. This guarantees the
validity of all pointers without any further restriction {3]. Migrating a
thread with a minimal stack and no attached data, takes 62 micro sec
over SISCI/SCI [44] and 75 micro ses over BIP [46]/Myrinet {43] on
our local Linux clusters.

2.4.2 DSM-PM2: The illusion of common address space

DSM-PMZ2|1] provides the illusion of a common address space shared by all
PM?2 threads irrespective of their location and thus implements the concept
page-based Distributed Shared Memory on top of the distributed architec-
ture of PM2. But DSM-PM2 is not only a DSM layer for PM2, its goal
is to provide a portable implementation platform for multithreaded DSM
consistency protocols (see figure 2.2).

7 Given that all DSM communication primitives have been imple-
mented using PM2’s RPC mechanism based on Madeleine [6], DSM-
PM2 inherits PM2’s wide network portability. However, the most im-
portant feature of DSM-PM2 is it customizability: actually, the main
design goal was to provide support for implementing, tuning and com-
paring several consistency models, and alternative protocols for a given
consistency model. As a starting remark, we can notice that all DSM
systems share a number of common features. Every DSM system,
aimed for instance at illustrating a new version of some protocol, has
to implement again a number of core functionalities.

It is therefore interesting to ask: What are the features that need to
be present in any DSM system? And then: What are the features that
are specific to a particular DSM system? By answering these questions,
we become able to build a system where the core mechanisms shared
by the existing DSM systems are provided as a generic, common layer,
on top of which specific protocols can be easily built. In our study, we
limit ourselves to page-based DSM systems.

Access detection

Most DSM systems use page faults to detect accesses to shared data,
in order to carry out actions necessary to guarantee consistency. The
generic core should provide routines to detect page faults, to extract
information related to each fault (address, fanlt type, etc.) and to
associate protocolspecific consistency actions to a pagefault event.
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Page manager

Pagebased DSM systems use a page table which stores information
about the shared pages. Each memory page is handled individually.
Some information fields are common to virtually all protocols: local
access rights, current owner, etc. Other fields may be specific to some
protocol. The generic core should provide the page table structure and
a basic set of functions to manipulate page entries. Also, the page table
structure should be designed so that new information fields could be
added, as needed by the protocols of interest.

DSM communication

We can notice that the known DSM protocols use a limited set of
communication routines, like sending a page request, sending a page,
sending diffs (for some protocols implementing weak consistency mod-
els, like release consistency). Such a set of routines should also be part
of the generic core.

Synchronization and consistency

Weaker consistency models, like release, entry, or scope consistency
require that consistency actions be taken at synchronization points. In
order to support these models, the generic core should provide synchro-
nization objects (locks, barriers, etc.) and enable consistency actions
to be associated to synchronization events.

Thread-safety

Modern environments for parallel programming use multithreading.
All the data structures and management routines provided by the
generic core should be threadsafe: multiple concurrent threads should
be able to safely call these routines.

2.5 Conclusion

After this DSM overview survey is little to say that alot of effort has already
been done on trying to find the best solutions for the several DSM imple-
mentation problems. Both software and hardware research fronts thrive
searching for these best options and try to improve and prove themselves as
the path to follow. Maybe the final solution will be something in between
as a hybrid solution. Difficultly there will be consensus in what system,
algorithm, coherence protocol or consistency model is better suited for each
and every problem because each one requires a different approach.

Distributed Shared Memory presents itself as a good technological answer to
the crescent demanding world of intensive distributed computation. Present
research as proven this technology valid and useful as it aims to make the life
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Figure 2.2: Overview of the DSM-PM2 Software Architecture

of programmers easier. The next step will be to try to leverage and assess an
acceptable cost / efficiency tradeoff and finally consolidate this knowledge
and try to come up with standards and proposals for real commercial future
DSM systems.
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Chapter 3

State of the Art -
Distributed Constraint
Programming

This chapter will present the reader a representative survey on the currently
available DCP technology.

3.1 Distributed Constraint Programming - from
GC to Distributed AJACS

3.1.1 GC Concept

The GC [39] (Generic Constraint) is a constraint propagation system, with
three different implementations of finite variables domains (FD, FDD and
FDIU). It is a system that uses the OO approach implemented in Java. The
constraint propagation and variables domains are explained at the applica-
tion and implementation level and some examples from the litterature are
presented in order to clarify the construction of applications with GC.

Finite Domains

The GC (as for AJACS) will implement its contraint system over Finite
Domains. A finite domain is a finite set of non-negative integers. A notation
for a finite domain can be “n,...,m”.

Variables

The domain of a variable is the set of values that it can assume. GC imple-
ments three distinct classes of variables over finite domains.
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e FD (Finite Domain) variables: These are represented by a single pos-
itive numbers interval. Variables with this kind of representation are
caracterized by the manipulation of the maximum and minimum val-
ues of its interval.

e FDD variables: These are FD variables where no longer the interval
extremes are manipulated but where all values of the domain between
its extremes) are considered.

e FDIU variables: They are also FD variables but where the values of
the domain are unions of intervals.

Over these variable concept GC implements all basic operations like
checking of the domain is empty or singleton do copies of variables, get the
first/last element, to know which is the next element, construct singleton
domains etc.

Constraints

Constraints are in the core of GC in the end its what it is all about. A
constraint is a relation between variables. The inclusion of a new constraint
in the system will create new dependencies in the variable(s) that interveen
in that restriction. The imposition of a constraint will frequently narrow the
variables domain. Once that happens all the dependent variable’s domains
will be analyzed and updated too, if necessary. In GC, constraints are
classes that follow an inheritance hierarchy. New constraints subclasses can
be added with the definition of appropriate localUpdate(n), method. The
localUpdate method is responsible for the actualization of the nth variable
domain for that constraint.

Iterators and Strategies

Propagation by it self cannot construct the solutions of a constraint problem.
There is the need to walk through the range of possibilities. The idea behind
Iterators is to reduce variables to single value instantiations. By “iterating”
through the variables and combining this with the propagation mechanism
its then possible to obtain the solution(s) of the problem. The Iterators
are associated with a specific search strategy. This can be “depth-first”,
“left-right”, “breadth-first”, “first-fail”.

Propagation

Propagation is the mechanism that allows the validation of the constraints
after some change, or reduction, on the system variables has occurred. These
changes will occur by the iteration of variables. Jointly with the GC Iterators
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these are the building blocks for finding the solutions of a finite domain
constraint system

The root of the constraint class hierarchy defines the localUpdate(n)
method, which is responsible for the propagation mechanism and is triggered
by the installation of the constraint. If there is a change in the correspond-
ing domain, all the constraints involving that variable will be re-evaluated,
until a fixpoint is reached, i.e. no more changes exist, so this method will be
repeatedly invoked until the provoked changes produce additional changes.

Example

N Queens

e The problem: Lay down N queens on a N x N chess-board so that
there is no couple of queens threatening each other.

e The variables: We have N variables that take values from 1 to N. For
instance, to N = 4, the solution [3,1,4,2] means that, in row 1 the
queen must be placed at column 3, in row 2 the queen must be placed
at column 1, and so on.

e The constraints: To avoid the queens from threatening each other we
will implement a constraint. If Ci and Cj are queens placed in columns
i and j respectively, to avoid them to attack each other we must have

C; #C
Vi>i§ C;# Cigoi
Cj # Ciegi-i)

The constraint NoAttack, for 2 variables, implements this restrictions.

public class NoAttack extends gc.fdiu.VV.Constraint{
private int c;
public NoAttack(Variable VX, Variable VY, int V) {
super (VX,VY) ;
c=V;
};
public void localUpdate(int n) {
int m=1-n;
if (env[m].ground ()) {
envfn].clear (envim].min);
env[n].clear (envim].min + c¢);

41



env[n].clear (env[m].min - c);

}
env[n] .updateMinMax ();

Since this constraint is for two variables, a method to apply it at all
variables in the list of queens, is required. Next an example piece of code
that defines a new constraint NoAttack with its corresponding localUpdate
method. Note: envf] is an array of variables that make part of that con-
straint, in this case (NoAttack) there are two (the two queens).

static void safe (Variable queen[], int n) {
for (int i=0; i<n; ++i)
for (int j=i+1; j<n; ++j)
new NoAttack(queen[i], queen[jl, j-i).tell();
}

3.1.2 AJACS Concept

The AJACS [3] (Another Java Constraint Programming System) is a toolkit
for Concurrent Constraint programming implemented in the Java language.
It comes as a successor of the Constraint Programming also in Java in that
it represents an attempt to deal with some of GC [39] inadequacies in terms
of performance whilst providing a setting which is adequate to express prob-
lems in a way that can be easily solved in a parallel execution environment,
as provided by a concurrent programming setting,.

As said before the AJACS implementation (figure 3.1) is founded on
similar concepts as in its precusor GC refined now with the introduction of a
“Store” structure that represents the set of values as in a state snapshot, and
a “Problem” structure that holds the initial store as also all the constraints
static information (e.g. information about which constraints are associated
to each variable).

Values

In AJACS one “value” represents a subset of its variable domain. One value
is considered basic (ground) when it contains a singleton value.

Variables

There is no explicit concept of “variable” in AJACS. It is an abstract nota-
tion to represent the set of values located in the same index in some store.
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Stores

A Store is an indexed collection of values. The objective behind it is to create
successive similar states (in respect to the number of contained values) in
which the values associated to some index represent a variable domain. This
is why there is no explicit representation of Variable in AJACS since it is
obtained by the concept of Store.

Constraints

Constraints in AJACS follow the same principle as in GC, they are the rela-
tions between variables in a problem. AJACS constraints are the mechanism
reponsible for the propagation of results to the other variables of the state.

Problem

The Problem defines the set of variables with its associated initial domain,
i.e. a state. Morever it holds the set of constraints over those same vari-
ables. The objective behind the fomulation of a Problem is to determine its
solutions, i.e. the basic values for all the variables that are consistent with
the imposed constraints.

Search & Strategy

The order by which the variables are instatiated defines a different solution
space configuration. The AJACS Search is a repetitive procedure upon the
problem possibilitie space until a solution is found. The search procedure
may rely upon a given search strategy. The strategy is applied on a given
state (store) to specify its next state. Part of this strategy is to decide
which of the non ground variables (the ones that are not singletons), will be
selected; and for the chosen variable the way in which the domain reduction
will be performed. Normally this is accomplished by the determination of
the variable single value.

Example
Note: Example taken from AJACS [3] for illustration purposes.
We will give an example of how to work with the AJACS classes system,

with the classical N-Queens. Consider N=4, for simplicity. We have 4
Values: u0, ul, u2 and u3, defined by:

u0 = ul = u2 = u3 = new Value(1,4).

We must implement a constraint, lets call it NoAttack. NoAttack is a sub-
class of Constraint, and assures that two queens do not threatening each
other. The problem, and its initial store is defined by:

43




p = new Problem([u0,ul,u2,u3]).

In order to update the the lists C and Cv, we add the constraints to the
problem.

for (i=0; i<=2; ++i)
for (j=i+1; j<=3; ++j)
p.add (new NoAttack (i,j))

Let C1 be the constraint NoAttack(0,1), C2 be the constraint NoAttack(0,2),
etc. Cl.env=[0,1], C2.env=[0,2], etc. Adding the constraints to the problem
turns List C into C1, C2, C3, C4, C5, C6 and List Cv into Cv = Cv0=(C1,0),
(C2,0), (C3,0), Cvl=(C1,1), (C4,0), (C5,0), Cv2=(C2,1), (C4,1), C6,0),
Cv3=(C3,1), (C5,1), (C6,1).

Now we could apply a search, lets define it:

s = new Search(p, st=mew StratFirst()).

The solution is given by s.solution(). Figure 3.2 shows the sequence of stores
generated by solution.

Problem
+init8tores Bt?re = mull Value
+C: Constraint
+Cv: ConstVar(] [) :ﬂ g:
rada( Int): void 7
4 (s:8tore,i: ) : Status
ConstVar
i3 v [ Fddvalue | [ FdiuValue |
[telem: Bitset | |+elem: Domain |
Constraint
+env: integer (] |
tupdate{s:Staore,i:integer) : Status
Status
+failed: boolean = false
tehanged: Value - new Value()
Store
StatusFailed [Fvar: int = -1
+failed: boolean = true +U: Value(]
———————— : Store = nil
[+setVar{i:int) : void
+setvalue(i:int,v:Value) : vold
+setBncestor (s:Stare) : vo:
Search
+p: Problem
+68t: Strategy |
+golution(): store
i Strategy
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+selectVar () : int
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Figure 3.1: All Classes of AJACS
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Figure 3.2: DFS search applied to 4-Queens problem

3.1.3 AJACS over Hyperion for Distributed Execution
The Hyperion System

Hyperion [2] is a Java system that aims for Java compilation to native code
with a run-time library that executes Java threads in a distributed-memory
environment. This allows a Java programmer to view a cluster of proces-
sors as executing a single Java virtual machine. The separate processors
are simply resources for executing Java threads with true parallelism, and
the run-time system provides the illusion of a shared memory on top of the
private memories of the processors. The environment is available on top of
several UNIX systems and can use a large variety of communication inter-
faces thanks to the high portability of its run-time system. Hyperion [2]
was developed at the University of New Hampshire and comprises a Java-
bytecode-to-C translator and a run-time library for the distributed execution
of Java threads. Hyperion has been built using the PM2 distributed, multi-
threaded run-time system from the cole Normale Suprieure de Lyon [12]. As
well as providing lightweight threads and efficient inter-node communication,
PM2 provides the generic distributed-shared-memory layer, DSM-PM2 [1].
Another important advantage of PM2 is its high portability on several UNIX
platforms and on a large variety of communication interfaces and protocols
(BIP [46], SCI [44], VIA [45], MPI [37], TCP). Thanks to this feature, Java
programs compiled by Hyperion can be executed with true parallelism in all
these environments.
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AJACS over Hyperion

The idea behind this other project (AJACS over Hyperion) was to implement
and evaluate the AJACS |[3] system over the Hyperion solution. For details
refer to AJACS [3].

3.2 Other DCP Systems

3.2.1 DisChoco: A Platform for distributed constraint pro-
gramming

DisChoco [40] is a Java library built on top of the Choco Java open-source
solver. Communication is performed via the simple agent communication
infrastructure (SACI) if the agents are implemented on distant machines.
Otherwise (simulation) the communication is performed via a local commu-
nication simulator. The implementation of DisChoco was made to offer a
modular software architecture which accepts extensions easily. DisChoco
can be used for simulation of a multiagents environment on a single Java
virtual machine, or performed in an environment physically distributed for
a realistic use. Each agent in the environment is executed asynchronously
in a separate execution thread, and communicates with its peers through
message exchange. DisChoco takes into account an agent with a complex
local problem, message loss, message corruption, and message delay.

3.2.2 The Mozart Programming System

The Mozart system [5] provides state-of-the-art support in two areas: open

distributed computing and constraint-based inference. Mozart implements

Oz, a concurrent object-oriented language with dataflow synchronization.

Oz combines concurrent and distributed programming with logical constraint-
based inference, making it a unique choice for developing multi-agent sys-

tems. Mozart is an ideal platform for both general-purpose distributed ap-

plications as well as for hard problems requiring sophisticated optimization

and inferencing abilities.

Constraint Programming

Oz is a powerful constraint language with logic variables, finite domains,
finite sets, rational trees and record constraints. The system is competi-
tive in performance with state-of-the-art commercial solutions, but is much
more expressive and flexible, providing first-class computation spaces, pro-
grammable search strategies, a GUI for the interactive exploration of search
trees, parallel search engines exploiting computer networks, and a program-
ming interface to implement new and efficient constraint systems.
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Open Distributed Computing

The Mozart system [5] is an ideal platform for open distributed comput-
ing: it makes the network completely transparent. The illusion of a com-
mon store is extended across multiple sites and automatically supported by
very efficient protocols. In addition, full control is retained over network
communication patterns, permitting very efficient use of network resources.
Furthermore, reliable, fault tolerant applications can easily be developed.

3.2.3 Disolver: The Distributed Constraint Solver

Disolver [38] is a constraint-based optimization engine. It relies on an ex-
tended Constraint Programming paradigm which seamlessly integrates
local search. It is especially designed to run on multi-core, parallel and
distributed architectures and comes out as a C++ library.

Disolver is the first suite devoted to combinatorial problem solving in
distributed and Grid-like infrastructures. It initially came out as a research
tool. However, it was also used to solve large industrial problems. So far, it
has been used to address the following problems,

e resource allocation,

e publishing,

e-contracts negotiation,

scheduling,

distributed scheduling,

configuration,
e model-checking,
e capacity planning,

e packing.

Therefore, it claims to be robust enough to tackle very large problems
(involving tens of thousands constraints over thousands of variables).
For the Disolver general architecture refer to figure 3.3.

3.2.4 Alice System

Alice ML [41] is a functional programming language based on Standard
ML, extended with rich support for concurrent, distributed, and constraint
programming. Alice ML extends Standard ML with several new features:
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e Futures: laziness and light-weight concurrency with implicit data-
flow synchronisation;

e Higher-order modules: higher-order functors and abstract signa-
tures;

e Packages: integrating static with dynamic typing and first class mod-
ules;

e Pickling: higher-order type-safe, generic platform-independent per-
sistence;

e Components: platform-independence and type-safe dynamic import
export of modules;

e Distribution: type-safe cross-platform remote functions and network
mobility;

o Constraints: solving combinatorical problems using constraint prop-
agation and programmable search.

The Alice [41] System is a rich open-source programming system featur-
ing the following tools:
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e Virtual machine: a portable VM with support for just-in-time com-
pilation;

Interactive system: an interpreter-like interactive toplevel with easy
graphical interface;

Batch compiler: separate compilation;
e Static linker: type-safe bundling of components;

e Inspector: a tool for interactively inspecting data structures;

Explorer: a tool for interactively investigating search problems;

Gtk+: a binding for the Gnome toolkit GUI library;

SQL: a library for accessing SQL databases;

e XML: a simple library for parsing XML documents .

Distribution Concept in Alice

Alice also provides high-level means for processes at different sites to com-
municate directly.

Tickets The first mechanism that allows sites to establish peer-to-peer
connections is offer and take. A process can create a package and make
it available to other processes. Offering a package opens a communication
port and returns an URI for that port. The URI is called a ticket. A ticket
can be transferred to other sites, say by email or through some web docu-
ment. Other sites can then obtain the available package using the ticket. Of
course, the exporting site may also obtain it itself. In general, take estab-
lishes a connection to the communication port denoted by the ticket, and
retrieves the offered package. Transfer of the package is defined by the pick-
ling/unpickling semantics, i.e. the whole closure of the package is transferred
to the client, including any code representing embedded functions.

Proxies Tickets are intended merely as a means to establish an initial
connection between sites. All subsequent communication should be dealt
with by the functions in the offered package. Alice provides a very simple
feature to enable this idiom: proxies. A proxy is basically an RPC stub, a
mobile reference to a stationary function that can be used in place of the
function it references.

The library function

Remote.proxy : (’a -> ’b) -> (’a -> ’b)
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creates a proxy for an arbitrary function:

fun £fib (0 | 1) = 1
| £fib n = fib (n-1) + £ib (n-2)
val fib : int -> int = _fn
val £fib’ = Remote.proxy fib
val £ib’ : int -> int = _fn

The resulting function has the same type as the function it references.
When it is applied, all arguments are forwarded to the original function, and
the result is transferred back:

£fib’ 20
val it : int = 10946

Pickling a proxy does only pickle the respective reference and not the
referenced function. When the proxy is transferred to a different site (e.g. by
offering it as part of a package) and then applied at that site, all arguments
will be automatically transferred to the site hosting the referenced function,
the result will be computed there, and finally transferred back to the client
site. That is, applying a proxy is practically a remote procedure call (RPC).
Transfer is again defined by pickling semantics.
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Chapter 4

AJACS/C Description -
Distributed Patterns and
Implementation

This chapter will describe the AJACS/C Constraint Solver to the reader.
First present its scope and model, later on how it may be integrated with
the DSM-PM2 library [1] and finally present the implementation details as
a more in-depth look of the AJACS/C architecture.

4.1 AJACS/C Model Description

Due to its organization AJACS/C (as AJACS [3] is) produces independent
states as result of state expansion. Independent in the sense that each store
(plus the constraint problem containing the constraints them selfs) carries
all the information necessary to be considered a possible solution for a given
problem. This state independence will be the basis for a distributed con-
cept to take shape since in theory it shall be possible to parallelize constraint
problem solving by spreading each produced state among several processing
units without too much foreseen interaction. This way all processing nodes
should be able to 'walk’ through the problem space with the minimal knowl-
edge or awareness of each other.

The minimal information each processing node requires, for its state
iteration and propagation, is to know:

e Where to look at for new states to search;

o Where to store the expanded potential solutions, i.e. the states that
resulted from a successful propagation;
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e where and how to signal the eventual found solutions to a problem
master controller.

It is foreseen to be relatively easy to experiment DCP over DSM-PM2
on a ’native’ way, i.e., using a direct approach where the C language is to be
used for implementation. In result the AJACS/C inherits the basic AJACS
Model and implements it in the C language environment.

4.1.1 AJACS/C Static Model

As said before the AJACS/C constraint solver, to be developed fully in the
C language, inherits most of its model carachteristics from the AJACS [3]
system, that was implemented in Java. Please refer to AJACS (3| for full
details on the AJACS model or refer to figure 3.1 (All Classes of AJACS)
for a brief picture of the AJACS classes.

The first challenge was then to sucessufuly implement / port the AJACS
model to the C environment. To accomplish this most of the AJACS ob-
ject characteristics were ported directly, when possible to C data structures,
namely to structs.

See in figure 4.1 a representation of the AJACS/C static structure final
look.

All the information regarding a certain Constraint Program, involved
constraints, number of variables necessary to map the particular problem as
for its initial state, has its heart in the Problem structure.

The Problem is the static core of a given constraint system and is the
essencial part of the constraint problem initialization. It contains informa-
tion regarding:

o “sInit”: The initial state of the problem (the initial store with the
first set of values for each variable);

e “Constraints List”: The list of all the problem constraints;

o “List of Constraints per var”: A special list of constraints that
holds “meta-information” regarding which constraints are associated
to each variables.

This last item is very useful to know at any time exactly which is the
list of constraints associated to each variable of the problem. This is crutial
information to know at propagation time where all constraints, associated
to some variable which its domain value has been changed, needs to be
satisfied.
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If the Problem structure is the “heart” of the constraint problem the
Constraint structure is the “brain”.

The Constraint contains static information regarding all the relations
between the variables. The Constraint Def holds the definition of the con-
straint namely its name and the associated update function. The Update
Function is called during propagation and contains the list of steps necessary
to update the constraint’s involved variables domains.

Finally the Store structure holds information regarding the current state
of the variables domains, represented by ¥FDD Values. An FDD Value
represents a finite domain associated to some variable. sInit is the specific
store that holds the initial state of the problem.

4.1.2 AJACS/C Dynamic Model

In the last section the AJACS/C static structure was presented. That rep-
resents the information necessary to caracterise a problem, in other words
all the building blocks necessary to identify one problem as specific. By
knowing the “Problem” one application understands what the problem is
but still is not sufficient to know how to solve it.

For solving a constraint problem the application still needs to know:

1. How to select and expand new states (stores) from the initial state?

2. How to search over the expanded problem space (Depth-First search,
Breadth-First search, other, ...) and recognize the problem solution(s)?

For 1) the answer is that the constraint solver application needs to im-
plement some Strategy to know how to split some state into its child states
(being those potential solutions for the problem). The Strategy structure
contains information on how to select and split one store in other poten-
tial solution stores. The adopted mechanism in AJACS/C is to reduce one
variable, on the currently iterated store, turning it into a ground value (sin-
gleton). Due to this value domain reduction, the application will then trigger
the problem propagation so that all the other variables may be updated
according to the introduced change.

For 2) the constraint solver application needs to implement some Search
mechanism to garantee a successful, efficient and full iteration on all the
potential problem space. The Search procedure will implement some al-
gorithm search and in conjunction with the Strategy walk through all the
problem space and find all the possible solutions (if any). AJACS/C cur-
rently implements the DFS search mechanism by using a stack (LIFQ) for
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storing all the splitted states. Stores are evaluated one by one from the top
of the stack and any splitted states stored also at top of the stack.

Figure 4.2 illustrates the AJACS/C Dynamic Model. Roughly speaking
the Problem injects all the necessary constraint static information. The
Search supplies the search algorithm (AJACS/C uses DFS by default but
others could be used). Stores S12 and S133 (in blue) are identified as
problem solutions which means that all the contained variable values are
ground - all variables have been instantiated with some value.
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Figure 4.2: AJACS/C Dynamic Model
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4.1.3 AJACS/C Extensability

With this model AJACS/C is extensible in the way that new constraints can
easily be added to the system. To define a new constraint the programmer
just needs to define the associated Update Function with the intended
constraint effect.

To note also that the AJACS/C dynamic properties are also extensi-
ble in what the Search and Strategy is concerned. The programmer is al-
lowed to switch or add alternatives, for instance propose new search methods
with specific objectives or propose different store split strategies in order to
change how the constraint solver behaviour works.

4.2 Distributed Sharing Patterns with AJACS/C
and DSM-PM2

AJACS/C implementation allows it for distribution, due to the store inde-
pendence feature. The next step was the integration with the DSM-PM2 [1]
module (see figure 4.3) for a real distributed example. For this the focus
now turned to the PM2 and DSM-PM2 offered capabilities. The objective is
the implementation of DSM-PM2 application examples that may sucessfully
integrate and run AJACS/C problems.

DS1-PIs2 4 N
DSH prolocol policy
f ) AJACS/C
DSH prolocol lib
DS page manage [ DSM comm
L — I\
[ PI2 T
(_Thread subsystem) { Comm. subsystem

Figure 4.3: DSM-PM2 AJACS/C Architecture

With the AJACS/C DSM-PM2 integration in mind two distribution pat-
terns were designed for experimentation:

1. Centralized Distribution Pattern

2. Local Distribution Pattern
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4.2.1 Centralized Distribution Pattern

This Pattern designates one cluster node has the master node and the re-
maining as the worker nodes (different nodes meaning different machines
in the PM2 configured cluster). The master and worker profiles are trig-
gered/enrolled at run-time execution where the first configured cluster node
will assume a master profile and the remaining the worker profile (see figure
4.4).

The idea behind the master profile is for it to maintain a central DSM
structure (hereby the pattern name) that holds all the current, still to be
investigated, problem states. All nodes have write and read access to this
central structure. Every worker will be allowed to get stores (new jobs)
and put stores (the resulting state produts of the last iteration and prop-
agation).

Worker 2 Worker N

( ' Ethemet {

Master Node
Figure 4.4: Centralized DSM structure Architecture

For a more complete and efficient approach the designed pattern will
make sure that after the initialization phase, compreending the central data
structure creation and remote execution of all the threads on all nodes,
the node that took the master profile will spawn an additional local thread
to endorse the worker profile, this way all machines/nodes will behave as
workers after the initial initialization step has been performed.

This way the centralized DSM data-structure, resident in the Mas-
ter Node, will be the data communication link between all the nodes, the
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DSM-PM2 coherence protocol will abstract the user to the synchronization
overhead management of the shared structure and assure the correct access
and behaviour from all threads in all nodes in a safe and coherent manner.

See figure 4.5 for the Master centralized pattern pseudocode:

init_states = search_initial_states(sInit);
dsm_list.put(init_states);
FOR i =1T0n

Worker[i] = new RemoteWorker{(dsm_list);
Worker[0] = new LocalWorker(dsm_list);
WHILE < not_all_finish() > DO

wait();
printSolutions();

Figure 4.5: Centralized Distribution Pattern - Master Algorithm

See figure 4.6 for the Worker centralized pattern pseudocode:

WHILE < dsm_list not empty > DO
j = dsm_list.get();
L = search_solutions(j);
FOREACH 1 in L DO
IF <1 is solution>
THEN print_solution(l);
ELSE dsm_list.put(j);

Figure 4.6: Centralized Distribution Pattern - Worker Algorithm

This distribution pattern itends to verify what is the application be-
haviour (DSM-PM2 with AJACS/C) when the problem space is shared in
real-time by all working nodes during the search execution. This model is
more simple and easier to implement but more communication between the
nodes is expected. Results will be evaluated in chapter 5 of this thesis.

4.2.2 Local Distributed Pattern

In this distribution model all workers have a dedicated DSM local data
structure to manage its share of the new states expansion, so every worker
gets and puts jobs directly from/into its local data stucture (see figure 4.7).

On execution start the initial state is spawned and the result child stores
are distributed among all the workers (including the one that initilized the
search) on a round-robin fashion. After this point all workers start their
search independently.
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Figure 4.7: Local DSM structure Architecture

See figure 4.8 for the Master node local pattern pseudocode:

init_states = search_initial_states(sInit);
LET w = 0;
FOREACH k in initial_states

Worker[w] .local_dsm_list.put();

w = (w + 1) % number_nodes;

Figure 4.8: Local Distribution Pattern - Master Algorithm

When the worker nodes have their share of the problem space inside its
DSM local structure, each node will start the search independently from
each other. All solutions are signaled by each worker node when found.

See figure 4.9 for the Worker node local pattern pseudocode:

This distribution pattern itends to verify what is the DSM-PM2 AJACS/C
application behaviour when the problem space is equaly, or similarly equaly,
distributed among the DSM structures of all the nodes before the actual
start of the search execution. This model is closer to a full parallelization
mechanism, less simple to implement because each node must manage its
DSM local data structure but in the other hand little communication is
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WHILE < local_dsm_list is not empty >
nextS = local_dsm_list.get();
L = search_solutions();
FOREACH k in L DO
IF < k is solution >
THEN printSolution(k);
ELSE local_dsm_list.put(k);

Figure 4.9: Local Distribution Pattern - Worker Algorithm

to be expected between the network nodes. Examples and results will be
evaluated in section 5 of this thesis.

4.3 AJACS/C Implementation Details - API

This section will present the AJACS/C implementation details. The idea is
to present an inner look (and evidence) on the developed constraint solver
(AJACS/C) and can be of more interest to the hardcore reader. The general
reader may skip this section.

4.3.1 bittarr.h
Functions Overview
e ba_init();
e ba_new();
e ba_copy();
e ba_assign();
e ba_value();
e ba_toggle();
e ba_all assign();
e ba_ul2b();
e ba_count();
e ba_intersection();

e ba_union();
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ba_diff();

ba_complement () ;

Structs & Variables

typedef struct

{

elem_t size; bit *vector;

} BitVector;

ba_init

Declaration:
elem_t ba_init(void);

/*

*/

PRE: Must be called before use of any other ba_ functions.
Should only be called once.

POST: Returns the number of values that can be stored in one
of type ‘bit’. If <limits.h> does not define CHAR_BIT’ then
the module global variable ‘BITS_SZ’ has been set to the
appropriate value.

ba_new

Declaration:

bit *ba_new(const elem_t nelems);

/%

PURPOSE: dynamically allocate space for an array of ‘nelems’
bits and initalize the bits to all be zero.

PRE: nelems is the number of Boolean values required in an
array

POST: either a pointer to amn initialized (all zero) array of
bit OR space was not available and NULL was returned

NOTE: calloc() guarantees that the space has been initialized
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to O.
Used by: ba_ul2b(), ba_intersection() and ba_union().
*/

ba_copy

Declaration:

void ba_copy(bit dst[], const bit src[], const elem_t size);

/%
PRE: ‘dst’ has been initialized to hold ‘size’ elements.
‘src’ is the array of bit to be copied to ‘dst’.
POST: ‘dst’ is identical to the first ‘size’ bits of ‘src’.
’src’ is unchanged.
Used by: ba_union()
*/

Assigning and Retrieving Values

ba_assign

Declaration:
void ba_assign(bit arr{], elem_t elem, const bool value);

/%
PURPOSE: set or clear the bit in position ‘elem’ of the
array ‘arr’
PRE: arrl[elem] is to be set (assigned to 1) if value
is TRUE, otherwise it is to be cleared (assigned to 0).
POST: PRE fulfilled. All other bits unchanged.
SEE ALSO: ba_all_assign()
Used by: ba_ul2b()

*/
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ba_value

Declaration:

bool ba_value(const bit arr[], const elem_t elem);

/*
PRE: arr must have at least elem elements
POST: The value of the ‘elem’th element of arr has been
returned (as though ‘arr’ was just a 1-dimensional array
of bit)
Used by: ba_b2str() and ba_count()

%/

ba_toggle

Declaration:

void ba_toggle(bit arr[], const elem_t elem);

/*
PRE: arr must have at least elem elements
POST: The value of the ‘elem’th element of arr has been
flipped, i.e. if it was 1 it is O; if it was 0 it is 1.
SEE ALSO: ba_complement ()

*/

ba_all_assign

Declaration:

void ba_all_assign(bit arr[], const elem_t lsize, const
bool value);

/%
PRE: arr has been initialized to have *exactly* size
elements.
POST: All ‘size’ elements of arr have been set to ‘value’.
The array is in canonical form, i.e. trailing elements
are all 0.



NOTE: The array allocated by ba_new() has all elements O
and is therefore in canonical form.
SEE ALSO: ba_assign()
Used by: ba_ul2b()
*/

ba_ul2b

Declaration:

bit *ba_ul2b(unsigned long num, bit *arr, elem_t *gize);

/*

PRE: Either
‘arr’ points to space allocated to hold enough

‘bit’s to represent ‘num’ (namely the ceiling of the base
2 logarithm of ‘num’). ‘size’ points to the number of bit
to use. OR ‘arr’ is NULL and the caller is requesting that
enough space be allocated to hold the representation before
the translation is made. ‘size’ points to space allocated
to hold the count of the number of bit needed for the
conversion (enough for MAXLONG).
POST: A pointer to a right-aligned array of bits
representing the unsigned value num has been returned and
‘gsize’ points to the number of ‘bit’s needed to hold the
value. OR the request to allocate space for such an array
could not be granted

NOTES: - The first argument is unsigned.
- It is bad to pass a ‘size’ that is too small to
hold the bit array representation of ‘num’ [K&R II, p.100].
- Should the ‘size’ be the maximum size (if size > 0)
even if more bits are needed? The user can always use a
filter composed of all 1s (see ba_all_assign()) intersected
with result (see ba_intersection()).

*/

ba_b2str

Declaration:

char * ba_b2str(const bit arr[], const elem_t size,
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char * dest);

/*
PRE: ‘arr’ is a bit array with at least ‘size’ elements.
Either ‘dest’ points to enough allocated space to hold
fsize’ + 1 characters or ‘dest’ is NULL and such space
is to be dynmamically allocated.
POST: Either ‘dest’ points to a null-terminated string
that contains a character representation of the first
‘gize’ elements of the bit array ‘arr’; OR ‘dest’ is
NULL and a request to dynamically allocate memory for a
string to hold a character representation of ‘arr’ was
not be granted.
Used by: ba_print()

*/

ba_print
Declaration:

bool ba_print(const bit arr[], const elem_t size, FILE * dest) ;

Mathematical Applications

ba_count

Declaration:

unsigned long ba_count(const bit arr[], const elem_t size);

/%
PRE: C‘arr’ is an allocated bit array with at least ‘size’
elements
POST: The number of 1 bits in the first ‘size’ elements of
‘arr’ have been returned.
NOTE: if arr is not in canonical form, i.e. if some unused
bits are 1, then an unexpected value may be returned.

*/
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ba_intersection
Declaration:

bool ba_intersection(bit first[], bit second[], bit * result[],
const elem_t size_first, const elem_t size_second);

/*

PRE: ‘first’ is a bit array of at least ‘size_first’ elements.
‘second’ is a bit array of at least ‘size_second’ elements.
‘result’ points to enough space to hold the as many elements as the
smallest of ‘size_first’ and ‘size_second’; OR ‘result’ points to
NULL and such space is to be dynamically allocated.

POST: TRUE has been returned and ‘result’ points to a bit array
containing the intersection of the two arrays up to the smallest of
the two sizes; OR FALSE has been returned and ‘result’ pointed to
NULL (a request was made to allocate enough memory to store the
intersection) but the required memory could not be obtained.

NOTE: This runs faster if the ‘first’ array is not smaller than
‘second’.

*/

ba_union
Declaration:

bool ba_union(bit first[], bit second[], bit * result[], const elem_t
size_first, const elem_t size_second);

/*
PRE: ‘first’ is a bit array of at least ‘size_first’ elements.
‘second’ is a bit array of at least ‘size_second’ elements. ‘result’
points to enough space to hold the as many elements as the largest
of ‘size_first’ and ‘size_second’; OR ‘result’ points to NULL and
such space is to be dynamically allocated.
POST: TRUE has been returned and ‘result’ points to a bit array
containing the union of the two arrays (up to the size of the largest
of the two sizes); OR FALSE has been returned and ‘result’ pointed
to NULL (a request was made to allocate enough memory to store the
union) but the required memory could not be obtained.
NOTE: This runs faster if the ‘first’ array is not smaller than
‘second’.

*/
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ba_diff

Declaration:

bool ba_diff(bit first[], bit second[], bit * result[],

/*

const elem_t size_first, const elem_t size_second);

PRE: f‘first’ is a bit array of at least ‘size_first’ elements.
‘second’ is a bit array of at least ‘size_second’ elements. ‘diff’
points to emough space to hold the as many elements as the largest
of ‘size_first’ and ‘size_second’; OR ‘diff’ points to NULL and
such space is to be dynamically allocated.

POST: TRUE has been returned and ‘diff’ points to a bit array
containing the union of the two arrays (up to the size of the largest
of the two sizes); OR FALSE has been returned and ‘result’ pointed
to NULL (a request was made to allocate enough memory to store the
result) but the required memory could not be obtained.

NOTE: This runs faster if the ‘first’ array is not smaller than
‘second’.

ba_complement

Declaration:

void ba_complement(bit arr[]l, comst elem_t 1size);

/%

*/

PRE: ‘arr’ is a bit array composed of *exactly* ‘size’
elements.

POST: A1l the bits in ‘arr’ have been flipped and ‘arr’ is
in canonical form.

SEE ALSO: ba_toggle()

ba_dotprod

Declaration:
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Declaration:

unsigned long ba_dotprod(const bit first[], const bit second[],
const elem_t size_first,
const elem_t size_second);

/%
PRE: ‘first’ is an array of at least ‘size_first’ bits.
‘second’ is an array of at least ‘size_second’ bits.
POST: The scalar product of the two vectors represented by the
first ‘size_first’ elements of ‘first’ and the first ‘size_second’
elements of ‘second’ have been returned.

*/

4.3.2 constraints.h
Functions Overview
e eq_update();
e le_update();
e 1t_update();

noattack_update();

alldifferent_update();

e create_constraint_X_Y();

Structs & Variables

typedef struct {
ConstraintDef *constr;
int env[6];

} Constraint;

typedef struct {
char* name;
int (*update) );
int nargs;

} ConstraintDef;

ConstraintDef *constraintDefs;
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eq_update

Declaration:

int eq_update(int env[], int nargs, Store* s, int i);

/%

*/

X=Y
Variable (i) changed, update (store) according to constraint (=)

PRE:

‘env’ is the constraint enviromment; ’nargs’ is the size of the
environment; ’store’ is the store that holds the values; ’i’ the
changed variable

POST: store with updated values.

NOTE: The bittarr.h intersection() function is used.

USED BY: updateAll()

le_update

Declaration:

/*

*/

int le_update(int env[], int nargs, Store* s, int i);

X<=Y
Variable (i) changed, update (store) according to constraint (<=)

PRE:

’env’ is the constraint environment; ’nargs’ is the size of the
environment; ’store’ is the store that holds the values; ’i’ the
changed variable

POST: store with updated values.

USED BY: updateAll()

It_update

Declaration:
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int 1t_update(int env[], int nargs, Store* s, int i);

/*
X<yY
Variable (i) changed, update (store) according to comstraint (<)

PRE:

‘env’ is the constraint enviromment; ’nargs’ is the size of the
environment; ’store’ is the store that holds the values; ’i’ the
changed variable

POST: store with updated values.

USED BY: updateAll()

noattack_update

Declaration:
int noattack_update(int env[], int nargs, Storex s, int i);

/x*
X no attack Y (Queens example Constraint)
Variable (i) changed, update (store) according to constraint

PRE:
’env’ is the constraint environment; ’nargs’ is the size of the
environment; ’store’ is the store that holds the values; ’i’ the
changed variable
POST: store with updated values.
USED BY: updateAll()

*/

alldifferent_update

Declaration:
int alldifferent_update(int env[], int nargs, Store* s, int i);

/*
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*/

X != Y (n-Fractions example Constraint)
Variable (i) changed, update (store) according to constraint

PRE:

’env’ is the constraint enviromment; ‘’nargs’ is the size of the
environment; ’store’ is the store that holds the values; ’i’ the
changed variable

POST: store with updated values.

USED BY: updatedll()

create_constraint_X_Y()

Declaration:

create_constraint_X_Y(int c_idx, char* name,

/*

*/

int X_pos, int Y_pos, void* func);

Creates a X<->Y Cconstraint (e.g. X = Y, X no attack Y, ...)

PRE:

c_idx is the constraint definition identifier

name is the constraint name

X_pos defines of X is left or right side of the constraint
Y_pos same as for X_pos

func is the update function pointer

POST: store with updated values.

USED BY: constraint application

4.3.3 fdd_value.h

TFunctions Overview

eq_update();
le_update();
1t_update();
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ground() ;

e empty(v);

e equal();

e nth();

o first();

e last();

e next();

e get();

e cardinality();
e clear_fromto();
e clear();

e set();

e copy_new();

e new_value_single();
e new_value();

e invalid();

e printValue();

e new_IntArray();

Structs & Variables

typedef struct {
size_ y size;
bit* vector;

} BitVector;

typedef struct {
size_y size;
int* arr;

} IntArray;
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typedef struct {
int min;
int max;
BitVector bv;
} fdd_value;

typedef struct {
int min;
int max;
int size;

} pm2_£fdd_value;

ground

Declaration:

bool ground(fdd_value* v);

A value is ground if it contains a single element.
Returns true if ground, false otherwise.

empty

Declaration:

bool empty(fdd_valuex v);

A value is empty if it contains no elements.
Returns true if empty, false otherwise.

equal
Declaration:

bool equal (fdd_value* vi, fdd_value* v2);

Two values are considered equal if they contain the exact same elements.
Returns true if equal, false otherwise.
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nth
Declaration:

int nth(fdd_value*, int x); // nth element

Returns the values nth element.

first
Declaration:

int first(fdd_value* v); // first element

Returns the values first element

last
Declaration:

int last(fdd_value* v); // last element

Returns the value’s last element

next
Declaration:

int next(fdd_value* v, int e); // next element

Returns the values element sequentially after e.
Returns -1 if e is the last element.

get
Declaration:

bool get(fdd_value* v, int i);

Checks if the i element position is set.
Returns true if i is set, false otherwise.
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cardinality
Declaration:

int cardinality(fdd_value* v);

Returns the cardinality (number of values) of the fdd_value

clear_fromto
Declaration:

void clear_fromto(fdd_value* v, int i, int k);

Clears (unsets) all elements in the value from position i to k
(inclusive).

clear
Declaration:

void clear(fdd_value* v, int i); // clear bitset value

Clears (unsets) the values element position i.

set
Declaration:

void set(fdd_value* v, int e); // set bitset value

Sets the values element position e.

copy.new
Declaration:

fdd_value* copy_new(fdd_value* v);

Clones a value.
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new_value single

Declaration:

fdd_value* new_value_single(int e);

Creates a singleton value.

new_value

fdd_value* new_value(int min, int max);

Creates a new value.

invalid
bool invalid(fdd_value* v);

A value is considered invalid if its maximum is equal to its minimum
both equal to -1.

printValue
void printValue(fdd_value* v);

Prints a value on screen.
Uses ba_b2str().

new_IntArray

IntArray* new_IntArray(int size);

Creates a new IntArray structure array.
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4.3.4 problem.h

Functions Overview
e updateAll();
e new_problem() ;
e add_constraint();

e add_Cv();

Structs & Variables

typedef struct {

Store* sInit; // initial store
int nC; // # constraints
Constraint* C; // list of constraints
int nCv; // size of store
Constraint¥** Cv; // list of constraints per variable
} Problem;
updateAll
Declaration:

int updateAll(Problem* P, Store* s, int i);

Function called to start each propagation run. Updates the stores
values according to every constraint.

new_problem
Declaration:
Problem* new_problem(Store* s, int n_constraints);

Create, allocate memory for, a new Problem. The problem size is

established by the size of its store and by the number of involved
constraints.

Returns a pointer to a Problem.
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add_constraint

Declaration:

void add_constraint(Problem* P, int var, Comstraint* c,
IntArray* cVx);

Adds a Constraint to the Problem, i.e., includes the constraint
pointer to the constraints list. Fills up the Constraints list with
the constraints environment.

add_Cv

Declaration:

void add_Cv(Problem* P, int var, Constraint* c);
Adds/Associates the constraint given by "c" to the variable given by " var"

4.3.5 search.h

Functions Overview

e backtrack();
e new_search();
e search_solution();

e search_solution_no_backtrack();

Structs & Variables

typedef struct {

int index; // current valuelindex]
int solutions; // number of solutions
} Search;
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backtrack
Declaration:
void backtrack(Strategy* St, Search* Sr);

Backtracks for more solutions, i.e., gets back up on the search
tree (to the ancestor node) and tries a different element (index) .

Special Note: The backtrack feature was implemented as in the
original AJACS model but can be considered an optional feature
since AJACS/C may work without its implementation.

For not using backtracing mechanism AJACS/C proposes the alternative
function: search_solution_no_backtrack()

new_search
Declaration:

Search* new_search(int index);

Creates and initializes a new Search.

search_solution
Declaration:

void search_solution(Problem* P, Strategy* St, Searchx* Sr);

Find the Problem solutions. Takes the Problem P, implements the
Strategy St.

search_solution,opackirack
Declaration:

void search_solution(Problem* P, Strategy* St, Search* Sr);

Find the Problem solutions without using backtracking.
Takes the Problem P, implements the Strategy St.

Note: Uses a stack to hold the stores as they are evaluated
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4.3.6 store.h
Functions Overview

e nvars();

e getValue();

e setValue();

e nextStore();

e printStore();

e printStore2();

e new_store();

e copyStore();

e copyStore2();

e store_2_pm2Store();

e pm2Store_2_store();

Structs & Variables

typedef struct Store Store;

struct Store {

Store* ancestor; // ancestor store (state)
int var; // active var
int nvars; // number of variables (lines)
f£dd_value *theValues[0]; // the values
};
typedef struct {
int var; // active var
int nvars; // number of variables (lines)
pm2_fdd_value theValues[12]; // the values
} pm2_Store;
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nvars
Declaration:

int nvars(Store* s);

Returns the number of vars of Store s.

getValue
Declaration:

void getValue(Storex s, int i);

Gets a value from Store s at position i.

setValue
Declaration:

void setValue(Store* s, int k, fdd_value* v);

Sets a value in Store s at position k.

nextStore
Declaration:

Store* nextStore(Strategy* St);

Creates, and returns, a new Store cloned from the one hold by the
Strategy St.

printStore
Declaration:

void printStore(Store* s);

Prints a store from a Store pointer on screen.
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printStore2
Declaration:

void printStore2(Store s);

Prints a store from a Store variable on screen.

new._store
Declaration:

Store* new_store(int size);

Creates a new Store pointer.

copyStore
Declaration:

Store* copyStore(Store* old_s);

Clones and returns a Store pointer from old_s Store pointer.

copyStore2
Declaration:

Store* copyStore2(Store old_s);

Clones and returns a Store variable from old_s Store variable.

store_2_pm2Store
Declaration:

pm2_Store store_2_pm2Store(Store* s);

Transforms an AJACS/C Store into a PM2 Store.

Note: A PM2 Store is an fdd_value, i.e., with bitset different from bi
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pm2Store_2_store
Declaration:
Store* pm2Store_2_store(pm2_Store pm2_s);

Transforms a PM2 Store into an AJACS/C Store.
Note: A PM2 Store is an fdd_values, i.e., with bitset different from b itarr.

4.3.7 strategy.h

Functions Overview
e selectVar();
e selectValue();

e new_strategy();

Structs & Variables

typedef struct {
Store* store; // initial store
} Strategy;

selectVar
Declaration:
int selectVar(Store* s);

Selects the next non-ground variable to initiate the next split and
propagation run.

selectValue
Declaration:
fdd_value* selectValue(int var, Store* s, int index);
Selects and returns the stores value corresponding to the index nth

position in the form of a singleton value. This value represents the
next basic option for propagation and a possible next solution.
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newtrategy

Declaration:

Strategy* new_strategy(Store* s);

Creates and returns a new Strategy. In the beginning the Strategy
holds the Store s.
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Part IV

Examples and Results:
Distributed AJACS/C with
DSM-PM2 benchmarking
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Chapter 5

Examples and Interpretation
of Results

The PM2 (Parallel Multi-Threaded Machine){4], introduced on early chap-
ters, is a low level generic runtime system which integrates multithreading
management (Marcel) and a high performance multi-cluster communication
library Madeleine [6].

PM2 incorporates a DSM module (DSM-PM2) {1] that claims to be
ready to provide the developer the ability to build programs that take full
advantage of the DSM concept.

The design and final use of the DSM library is highly dependent on the
selected consistency model. For this DSM-PM2 offers the possibility to use
four different built-in consistency models:

o LI HUDAK, a sequential consistency protocol;

e Migrate Thread, a peculiar protocol in which threads are moved when
they need some data that is outside its node scope;

e ERC, an eager release consistency protocol;
e HBRC [47], an Home Based Release Consistency protocol.

The main objective of this chapter is to integrate and experiment AJACS/C
with DSM-PM2 with a set of chosen examples. Through this next chapter
we explain how DSM-PM2 is configured, what will our cluster architecture
be like and finally a set of designed examples for experimentation are intro-
duced, its sampling figures presented as for interpretation of this results.
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5.1 PM2 Configuration

The PM2 library [4] is still on its early beta releases. The release used for
this thesis study was the: pm2-2005-03-16 ! - “pm2-2005-03-16.tar.gz”.

The PM2 library allows a wide range of configuration aspects to be set
up. Among others the user is allowed to:

o Choose and configure its favorite PM2 communication library from the
ones available: these are the Madeleine libraries (currently between
an experimentation range from madl, med2, mad3 and madi;

Configure the thread handling library - this is the marcel library;
Configure the DSM library;

Configure the network characteristics (TCP, UDP, VIA [45], others
)

Configure the debug information;

o Configure other basic pm2 characteristics.

The PM2 setup used for running the examples was:
(as result of pm2-config-flavor ~text — option 4) — flavor pm2)

Module pm2 with options: opt build_static
Module dsm with options: opt build_static
Module marcel with options: opt build_static mono
smp_shared_queue marcel_main
Module mad3 with options: opt build_static tcp
Module tbx with options: opt build_static
Module ntbx with options: opt build_static
Module init with options: opt build_static

With “opt” meaning “optimized”. To note that we configured the madeleine
3 [6] library, the one that comes by default on this PM2 release. To note

also that we configured TCP for network protocol transport layer. UDP,

as an alternative, could not be set up on this PM2 release.

5.2 Cluster Configuration

Our cluster comfiguration (see figure 5.1) is composed of 4 Intel Pentium
4 CPU 2.80GHz nodes with 512Kb cache and 256MB RAM interconnected
through Fast-Ethernet.

'"Download at: http://gforge.inria.fr/projects/pm2/
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Cluster
characteristics:

4 Nodes
{kx1, foc2, k3, kxd)

4 - 2.80 Ghz
512kb cache
256MB RAM
Fast Ethermet

Figure 5.1: Experimenting Cluster Configuration

To configure PM2 with the chosen cluster setup the user just needs to
invoke the pm2conf command. As an example, running the command:
pm2conf kxl kz2 kz3 kxj will setup all the cluster available machines to run
the DSM-PM2 example.

5.3 How to create a DSM-PM2 AJACS/C Exam-
ple

When creating an example for this thesis study the programmer is in fact
creating a DSM-PM2 application artifact that makes use of the AJACS/C
library API (detailed in section 4.3).

For doing this the programmer first creates a PM2 example application,
using the PM2 library (including the DSM-PM2 features). Next picks from
one of the two distribution models described in section 4.2. Finally he writes
the DSM-PM2 AJACS/C application using the AJACS/C API, just making
sure to link the AJACS/C library on the application build process.

Figure 5.2 illustrates this process:

To run a DSM-PM2 AJACS/C application the user just needs to run
the program as other regular PM2 example, by invoking the pm2load com-
mand.

The compiler used to build the example applications was the GNU Com-
piler v3.2.3
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Figure 5.2: Building a DSM-PM2 AJACS/C application

5.4 Queens Example

5.4.1 Specification

The queens puzzle is the problem of putting 'n’ chess queens on an NxN
chessboard such that none of them is able to capture any other using the
standard chess queen’s moves. The colour of the queens is meaningless
in this puzzle, and any queen is assumed to be able to attack any other.
Thus, a solution requires that no two queens share the same row, column,
or diagonal.

5.4.2 Problem Description

On this problem one “queen” position on the chess board maps directly to
one Variable, so the Store structure will hold as many variables as the
number of queens specified.

As for Constraints, and as for specification, the relation between the
queens (variables) will be such that on a given solution no queen can “at-
tack” another queen. The constraint “noattack” is then designed as relation
between two queens. In a given problem there will exist the following num-
ber of “noattack” constraints:

constr(0) =

90



1
constr(n-1) + (n-1)

constr(1)
constr(n)

For the specific example of four Queens there will exist 6 corresponding
constraints (figure 5.3). Note: The noattack constraint is bi-directional, e.g.
for constraint 1 no attack 2 Queen 1 does not attack 2 and neither Queen
2 attacks 1. What happens is that during propagation (where one variable
domain is reduced), all the constraints where that variable was defined are
activated that is why does not matter the direction of the constraint and S0
there is no need to define the inverse constraint, that is 2 noattack 1 is
unnecessary.

Constraints

@ 1 noattack 2

noaltack 3
@ 1 noattack 4
@ 2 noattack 3
| 2 noaltack 4

3 noaltack 4

1 noattack 2

1 noattack 3

( 1 ) 1 noaltack 4

82 2 npaltack 3
2 noaltack 4

( 2 ) 3 noattack 4

Figure 5.3: Queens example

ho

In the example of figure 5.3, the Store S1 succeeds all the constraints
of the problem which means it may be considered a valid store to split and
continue the search. In this trivial specific case S1 is at the same time a
valid propagated store and a solution. S2 violates two constraints and as so
will be discarded from the problem space.

Search, in AJACS/C PM2 and for the Queens example, will be the
successive handling of available stores (spawing from initial store) using a
DFS (Depth-first search) / LIFO approach. After the split of some store
the child stores are included at the top of the stores stack. Note: LIFO
was the chosen approach but FIFO / Breadth-First search could also be
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used. LIFO was prefered due to the fact that we are doing, in any case, full
tree traversing, i.e. looking for all possible solutions for a problem. LIFO
is better suited as we may be insterested in searching for a first solution
quickly.

In each search step the adopted Strategy is to look for the first non-
ground variable available on current store (using a top-down look-up). That
variable is chosen to be the next to be iterated and reduced, that is, all sin-
gleton values of that variable are successevily tested, triggering propagation
on the rest of the store. If propagation is deamed successful the resulting
store will be added to the search list for further search steps.

The search & strategy steps are repeated until there are no more stores
available to iterate on.

In the case of the Queens example, the Problem solutions will be the
collection of stores that contain only ground (singleton) values, so where all
variables are instatiated with single values. These remaning stores are the
ones that survived all the iterations and propagations and so that satisfy
the “noattack” constraints, where in the end no queen can attack another.

5.4.3 Interpretation of Results

The elapsed time, of the examples execution run-time, is measured on the
problem inner search computation, right after the distributed program starts
performing its search function until there is no more problem space to eval-
uate and all found solutions are shown to the user. All PM2 and Problem
application initialization, including PM2 cluster setup overhead and Prob-
lem initialization setup, times are excluded from the timming results below.

When running the distributed application time sampling is organized in
the following:

e T1: One-node cluster configuration {kx1} time

e T2: Two-node cluster configuration {kx1, kx2} time

e T3: Three-node cluster configuration {kx1, kx2, kx3} time

e T4: Four-node cluster configuration {kx1, kx2, kx3, kx4} time

Speedup is defined as the execution run-time gain ratio of some cluster
configuration in relation to the trivial configuration: single node execution.

Speedup = T1 / Ti;

Centralized Distributed Pattern

Queens 5, 6 and 7 were tested using the Centralized distribution strategy.
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Queens - Centralized Strategy (Time sampling)
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T1 T2 T3 T4
Queens 5 0,201 0,348 1,541 1,580
Queens 6 0,203 0,383 2617 3,583
Queens 7 0,216 3,059 12,500 12,500

Cluster Configuration

Figure 5.4: Queens Centralized strategy time results
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As the results show (refer to figure 5.4) the Queens example runs slower,
taking more time to find the problem solutions, when more nodes are made
available for the distributed computation. Queens 8, 9, 10 and 11 examples
are not shown in this graphical example results but they proved to con-
sume exponential execution run-time. If we compare the Queens 7 example
from the Centralized and Local patterns the results are conclusively different
as with a full configured cluster (all 4 nodes) the centralized pattern took
around 12,5 seconds to finish against the 0.485 seconds of the local pattern.

—e— Queens 5
—=— Queens 6
Queens 7

Queens - Centralized Strategy (Speedups)
1.2
1.0
0.8
o
=
b 06
L3
oo
w
04
0,2
0,0
T T2 T3 T4
Queens 5 1,0 0,578 0,130 0,127
Queens 6 1.0 0,530 0,078 0,057
Queens 7 1,0 0,071 0,017 0,000
Cluster Configuration

Figure 5.5: Queens Centralized strategy speedup results

As expected, from the obtained run-time results, speedups are negative
using the centralized distribution strategy for the Queens example (refer to

figure 5.5).
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A major DSM-PM2 sychronization overhead may be a possible explana-
tion for the poor results of the centralized model as the single distributed
DSM data structure, that is shared by all nodes, may be the cause for such
unefficient results.

Internal debug testing demonstrated that the control access of the dif-
ferent nodes to the centralized DSM data structure proved to be extremely
time consuming which raises the possibility of a DSM synchronization /
coherence protocol bottleneck.

As a preliminary conclusion the Centralized Distribution pattern seams
not to be an efficient approach for AJACS/C Constraint Programming
distribution using DSM-PM2.

Local Distributed Pattern

The Queens 5 to 11 examples were tested using the Local Distribution strat-
egy.

As the results show (see figure 5.6) only examples Q10 and Q11 prove to
be efficient when using several nodes for its computation. Examples Q5 to
Q9 do not benefit from using more than one node on its computation and
even take more time to finish.

Speedups are then only achieved on examples Q10 and Q11 with the
later being the only example where linear speedups are achieved (see figure
5.7).

To note on this local distribution pattern that in spite Q5 to Q9 aparent
lack of performance when using more nodes for the example computation,
the obtained results are not exponentially bad as in the centralized distri-
bution pattern, in fact they are very similar (from T1 to T4).

If we add to this observation the fact that Q10 starts to have perfor-
mance improvement, judging at least for the cluster configuration T2 and
T3 speedups, and that Q11 proved to be very efficient when using all 4
nodes we may conclude that the Queens distributed example starts to be
efficient upon certain point threshold. These observations suggest that when
the computational workload starts to be considerably representative the dis-
tributed examples start to perform well and speedups became possible. The
apparent lack of performance for cases Q5 to Q9 suggest that these exam-
ples were too sparse and with lack of computational representativity to be
considered valid examples.

From the observations above, and as preliminary conclusion, the Local
Distribution Pattern seems to be adequate to the DSM-PM2 AJACS/C
implementation.
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Figure 5.6: Queens Local strategy time results




Speedup
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Cluster Configuration

Figure 5.7: Queens Local strategy speedup results
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5.4.4 Conclusions

The Queens example show that speedups are possible using the Local Dis-
tribution strategy. The example proved not to be suited for the centralized
strategy where no meaningful results were achieved, or better no speedup
was found.

One probable reason for this example inadequacy for the centralized
strategy is that the central DSM structure synchronization and DSM-PM2
communication overhead masks any potential distribution gain. By con-
stantly interacting with the DSM centralized structure for getting and stor-
ing “jobs” the nodes force a huge (constant) synchronization of this DSM
structure. Any gain obtained by distributing “work” between nodes is
quickly absorbed by the inherent synchronization and communication over-
head.

The lack of visibility on how the DSM data structure is partitioned
among the different nodes (by DSM-PM2) and which parts of this structure
are in fact invalidated when new stores are written to this centralized struc-
ture was a major difficulty and incertainty factor on the experimentation.

By the contrary the example is found to be adequate for the Local distri-
bution pattern strategy as the search space computation was splitted across
nodes on a somewhat efficient way, assuring that the computational repre-
sentativity of the example is sufficiently high enough speedups are possible
and mask any DSM-PM2 syncronization and communication overhead.

5.5 n-Fractions Example

5.5.1 Specification
Original Specification

The original n-Fractions puzzle [42] is specified as follows. Find 9 distinct
non-zero digits that satisfy:

where BC is shorthand for 10B+C, EF for 10E+F and HI for 10H+1I.

n-Fractions Specification

A simple generalization is as follows. Find 3n non-zero digits satisfying:
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i=1...n Ji%i
where:
Yizi
is shorthand for:
10y; + 2;

and the number of occurrences of each digit in 1..9 is between 1 and ceil(n/3).
Since each fraction is at most 1/99, this family of problems has solutions
for at most n < 99. An interesting problem would be to find the greatest n
such that at least one solution exists. A further generalisation might specify
that the fractions sum to ceil(n/3).

5.5.2 Problem Description

On this problem one letter of the n-fractions correspond directly to one
Variable, so the Store structure will hold as many variables as n_fract *
3 the number of fractions times 3 (the number of variables in each fraction).

As for Constraints, and as for specification, the only given relation
between the variables, and candidate to be a constraint, is the fact that
the occurrences of each digit in [1..9] is between 1 and ceil(n/3), specifically
for n=2 and n=3 no variable is allowed to have repeated values from other
variables. The constraint “alldifferent” is then allowed as relation between
two variables (see figure 5.8). In a given problem there will exist the following
number of “alldifferent” constraints:

constr(0) = 0
constr(1) =1
constr(n) = constr(n-1) + n-1

From the example illustrated in 5.8 one can conclude that the fact of the
resulting store is ground, which means all its variables are ground (with a
single value), does not necessarily mean that the store is a solution of the
n-Fractions problem, against what happened for the Queens example, where
all the resulting ground stores would necessarily be problem solutions. An
extra step, after successful propagation of a potential store will be neces-
sary. The store must suffer a final validation, in this case the n-Fraction
specification rule itself (see Problem Specification above 5.5.1).

Search / Strategy will be the same as for the Queens example. In the
case of the n-Fractions example, the Problem solutions will be, as described
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above, the collection of stores that contain only ground (singleton) values
and that additionaly satisfy the main problem “contraint”, that all fractions
sum up exactly 1.

5.5.3 Interpretation of Results
Centralized Distributed Pattern

Tests were performed using this strategy for the n-Fractions example but no
meaningful results were obtained. As for the Queens example all tests took
more run-time when using more than one node for the program execution
and as so no speedups were achieved for n-Fractions example using the
Centralized distribution strategy.

The same interpretation of results and preliminary conclusions on the
centralized distribution model obtained from the Queens example should
apply also to the n-Fraction example.

Local Distributed Pattern

The n-Fractions (n=2) example was tested using the Local distribution pat-
tern strategy.

The results show (figure 5.9) that the application proved to be more
run-time efficient when using more nodes on its execution.

Significant speedups were achieved using this strategy (see to figure 5.10).

5.5.4 Conclusions

The n-Fractions example show, as for the queens example, that speedups
are possible using the Local Distribution strategy.

The example proved not to be suited at all for the centralized strategy
where no meaningful results were achieved, or better no speedup was found
possible. One probable reason for this example inadequacy for the central-
ized strategy is the fact that the constraint being applied does not reduce
the problem space very efficiently or fast enough and as so the problem tends
to generate and iterate on a huge number of candidate state solutions till
very late on the problem. This huge number of candidate stores creates an
heavy bottleneck on the DSM structure synchronization and destroys any
hope of obtaining speedups.

By the contrary the example is found to be well suited for the Local
distribution strategy as this heavy computation (due to the huge number of
search space) can be distributed across nodes on a very efficient way, efficient
enough to obtain speedups over DSM-PM2 syncronization and communica-
tion overhead.
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Part V

Conclusion and Future:
AJACS/C with DSM-PM2
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Chapter 6

Conclusions and Future
Work

This chapter will present this thesis study conclusions to the reader as for
certainties and possibilities for future work.

6.1 Work performed on this thesis

One of the accomplished objectives of this thesis was the development of a
Constraint Solver in the C language and its experimentation on a distributed
environment. This Constraint Solver is AJACS/C. The distribution envi-
ronment consisted of a total of 4 workstation nodes connected through Eth-
ernet. The Memory architecture follows a CC-NUMA approach, described
in section 2.1 of this thesis.

6.1.1 AJACS/C Development

AJACS/C takes its base from the AJACS system [3] and the main motiva-
tion was to port this system to the C language for a smooth integration with
the elected Parallelization library for experimentation: PM2 [4](Parallel
Multi-Threaded Machine). This integration allowed the development of dis-
tributed PM2 applications using the AJACS/C engine. It is now possible
to design and experiment distributed constraint problems using PM2 and
AJACS/C.

6.1.2 DSM-PM2 AJACS/C Integration

Parallelization is achieved by using PM2 but PM2 offers even more. PM2
contains a special module called DSM-PM2 that offers DSM abstraction ca-
pabilities. With DSM-PM2 is now possible to develop distributed constraint
problems using AJACS/C with real distributed shared memory abstraction

to the programmer.

105



6.1.3 Distribution Models Design

For distributing a certain constraint problem, developed by AJACS/C, the
programmer needs not only to design a DSM-PM2 program.
To allow a controlled distribution two distributed models were designed:

e The Centralized Distribution Model;
e The Local Distribution Model.

The Centralized Distribution Model implements a pure DSM sys-
tem where 2all the information is stored on a single structure that is shared
(made visible) to all the cluster nodes. Each node job will be to negociate
with this centralied data structure for retrieving and adding jobs (problem
stores). This model is simple to implement where only a single data struc-
ture is created (using the DSM-PM2 primitives). All nodes share the same
parallel code and data structures and all will work until there are no more
jobs to process.

The Local Distribution Model is less bold but more pragmatic than
the Centralized model. In this model each node possesses one DSM data
structure that only each can interact with. This gives complete indepen-
dence to the nodes as they do not need to “communicate” with the other
nodes during the parallel computation. The initial state is spawned and its
childs distributed across the different nodes. From that point forward each
node will live alone with its piece of workload.

6.1.4 AJACS/C with DSM-PM2 Experimentation

To experiment AJACS/C and DSM-PM2 with real representative cases two
examples were implemented:

o The classic Queens example;
e The n-Fractions example.

The Queens example gives alot of choices to the experimentation cam-
paign and it maps perfectly to the AJACS/C. Every variable is a Queen
and the constraints space is reduced to only a single constraint: “noattack”
where no queen is allowed to attack another. This problem is also very
flexible as we are allowed to experiment Queens for N variables. In the
experimentation campaign we used from Queens 5 to 11.

The Queens example was tested using both the Centralized and Lo-
cal Distribution models. The experimentation conclusions can be found on
chapter 5 and later on this chapter.
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For the sake of experiment representativity another example was imple-
mented: the n-Fraction example. This example implements the “alldiffer-
ent” constraint and was also tested using both distribution models. Conclu-
sions for the n-Fraction example can also be found on chapter 5 and later
on this chapter.

6.2 Conclusions

AJACS/C is now a newly available Constraint Solver. Fully developed in
the C language it inherits the AJACS [3] main characteristics. AJACS/C
main feature is the ability to perform constraint solving without the need
to use the backtracking mechanism. Stores are spawned and stored, after a
successful propagation, in some data structure (queue or stack). The pro-
grammer is allowed to search over the problem space using its favorite or
costumized search technique which makes AJACS/C highly extensible and
meodifiable.

AJACS/C was successfuly integrated with the PM2[4] library (de-
veloped in C), specially with the DSM-PM2 module [1], that offers the dis-
tributed shared memory feature to PM2 and AJACS/C. With this inte-
gration made possible the programmer is now allowed to design AJACS/C
Distributed Constraint Solving programs using the DSM-PM2 mechanism.

The AJACS/C DSM-PM2 integration was evaluated by experimenting two
examples with two distinct distribution models. Judging from both exam-
ples, Queens and n-Fraction, experimentation campaigns, it is concluded
that DSM-PM2 is adequate for parallelizing AJACS/C programs
using the DSM paradigm. However the experimentation results indicate
that the extent of this success, that can be measured by effective speedups,
is highly dependent on the distributed model choice.

Distribution models that rely on centralized DSM structures tend to gen-
erate huge run-time overhead which seams to indicate that the DSM-PM2
does not handle well when is subject to high synchronization and node inter-
communication need. The way how DSM-PM2 performs the DSM structure
partitioning split through all the cluster nodes is not obvious nor trivial
which made hard to know exactly which parts of the structure were associ-
ated to some node. This does not necessarily mean that DSM-PM2 is not
correctly implemented nor that it may be still imature. The version used
for experimentation was “pm2-2005-01-16”. More recent versions were made
available since then. Experimenting new versions of DSM-PM2 may be the
subject of further work out of scope of this thesis.
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On ther other hand the DSM-PM2 behaves flawlessly, not surpris-
ingly though, when a des-centralized model is used. In this sort of
models there is full parallelization of the problem space and little or no inter-
node communication is expected so it is natural that they behave better.

This indicates that better results are to be expected, from AJACS/C DSM-
PM2 integration, if the programmer decides to do full parallelization of the
Constraint Problem, that is to spread the problem workload, through the
different nodes beforehand.

AJACS/C DSM-PM2 integration is a reality with effective results, as real
speedups were obtained, but the DSM-PM2 module did not deliver flaw-
less results, at least with the distributed models that were implemented.

Further work is possible in order to explore and further assess this, or
other DSM library adequacy to the Constraint Programming paradigm. The
next chapter will present future work possibilities.

6.3 Future Work

e Evolve AJACS/C for more CSP examples: AJACS/C has still only
two examples (if we exclude some more trivial cases): - Queens and
n-Fraction. More examples will turn the AJACS/C Constraint Solver
richer in both examples and features (as new types of problems and
constraints would necessarily be developed).

e Continue benchmarking new releases of DSM-PM2 with AJACS/C:
This thesis evaluated the “pm2-2005-03-16”" release. New releases are
available that may prove more efficient.

e Design and Experiment new distribution models: Two distribution
models were developed: Centralized and Local Distribution Models.
New models with additional features like heuristics and load-balancing
techniques may improve even further the AJACS/C DSM-PM2 results.
An “Hybrid” model that could take benefict from both models would
be possibly the ideal scenario. As the centralized model originates huge
overhead we could use a Local model instead but to avoid doing wrong
distribution of work through the nodes, on tipical Local distribution,
some feedback loop mechanism could be implemented to avoid the
situation where some node(s) may be stopped and others still running
with still alot of work to be perfomed. A possible title for this new
mode could be: “Hybrid Model: Local Distribution Strategy with
Load Balancing Feedback”

e A line of work is under way to allow mixing the single-Cell solver
with other instances thereof is another line which are being followed:
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there are dual-Cell blade systems which provide shared memory (al-
beit NUMA). These provide one first level of distribution outside a
single Cell processor and represent a shared memory layer similar to
the original AJACS organization: stores (or problems, as per AJACS
terminology) may be shared among different processors. A further
distribution layer can be obtained when we consider a network of such
blades, falling back onto the AJACS/C model. In short, the port of
AJACS to C, based on PM2-DSM, be it the one based on the Cell
processor or otherwise, is undergoing active development and more
signficant experimental results are expected soon. For details refer to
paper titled: “Design for a Parallel and Distributed Hybrid Constraint
Programming Library” [48].
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