
Departamento de Informática

DSM-PM2 Adequacy for Distributed Constraint
Programming

LuÍs Pedro Parreira Galito Pimenta Almas
(luis.almas @deimos. com.pt)

Supervisor: Salvador Abreü (universidade de liVora, DI)

Évora

2007

Departa,mento de lnformática

DSM-PM2 Adequacy for Distributed Constraint
Programming

Luís Pedro Parreira Galito Pimenta Almas
(luis. atmas@deimm.com.pt)

/tv +3[
Supervisor: Salvador Abreu (Universidade de Évora, DI)

Evora

2007

Abstract

High-speed networks and rapidly improving microprocmsor performance
make networks of workstations an increasingly appealing vehicle for par-
allel computing. No speial hardware is required to use this solution as a
parallel computer, and the rmulting system can be easily maintained, or-
tended and upgraded. Constraint progra.mming is a progremming pa,radigm
where relations between variables can be stated in the form of constraints.
Constraints differ from the common primitives of other programming lan-
guages in that they do not specify a step or sequence of steps to execute but
rather the propeúies of a solution to be found. Constraint progra,mming
Iibraries are usefirl as they do not require the developers to acquire skills
for a new language, proúding instead declarative programming tools for use

within conventional systems. Distributed Shared Memory presents itself as
a tool for parallel appücation in whiú individual shared data iterns can be
accessed directly. In systems that support Distributed Shared Memory, data
moves between main memories of different nodes. The Distributed Sha,red

Memory spares the progrnmmer the concerns of message passing, where he
would have to put allot ofefiort to control the distributed system behavior.
We propose an architecture aimd for Distributed Constraint Progra.mming
Solving that relies on propagation and local search over a CGNUMA dis-
tributed environment using Distributed Shared Memory.

The main objective of this thesis can be s rmrnarized as:

o Develop a Constraint Solving System, based on the AJACS [3] system,
in the C language, the native language of the orperimented Parallel
Iibrary - PM2 [];

e Adapt, orperiment and emluate the developed constraint solving sys-
tem distributed suitabiüty by using DSM-PM2 [1] over a CC-NIIMA
architecture distributed environmentl

Keywords: Distributed, Constraint Progra.mming, Parallel, Distributed Shared
Memory, PM2, AJACS

2

Sumrírio

Título: Adequação da biblioteca PM2-DSM para Pro-
gra,maçã,o por Restrições Distribúdas.
Âs Redes de alta velocidade e o melhora,mento rápido da performance dos

microprocessadores Ías'em das rdes de computadores um veículo apela-
tivo para computação pa,ralela. Não é preciso hardware especial para usar

computadore paralelos e o sistema reultante é ortensível e facilmente al-
terável. A progra,mação por restrições é um paradigma de progra,mação

em que a.s relações entre as rmriáveis pode ser rqrresentada por retrições.
Âs restrições diferem das primitivas comuus das outras liuguagens de pro
gra,neação porque, ao contrário destas, não specifica uma sequência de pas'
sos a executa,r mas antes a defini$o das propriedades para encontrar as

soluções de um problema específico. As bibliotecas de progra,mação por re-

strições são úteis visto elas não requerem que «xt progra,madores tenha,m que

aprender novos s&nlls para uma nova linguagem mas antes proporcionam fer-
ra,mentas de progra,mação declaratirra para uso em sistemas convencionais. A
tecnologia de Memória Partilhada Distribuída (Distributed Shared Memory)
apresenta-se como urra fera,menta para uso em aplicaçõe distribúdas em
que a informa4âo indiúdual partilhs-da pode ser amdida directs.mente. Nm
sistemas que suporta,m esta tecnologia os dados movem-ae entre as memórias
principais dos diversm nos de um cluster. Esüa tecnologia poupa o pr«>

gra,mador às preocupações de passage,m de mensagens onde ele teria que

ter múto trabalho de controlo do comporta,tnento do sistema distribúdo.
Propomoc nma arquitectura orientada para a distribuido de Progra,mação
por Restrições que tenha os mecanismos da propagação e da procura lo-
cal como base sobre um a,mbiente CGNUMA disbribuído usando memória
par:tilhada distribuída.

Os principais objectivos desta dissertação podem ser sumarizados em:

o Deenvolver um sistemâ, resolvedor de restriçõs, baseado no sistema
AJACS [3], usando a linguagem 'C', linguagem nativa da bibüoteca de

deenvolvimento paralelo oçeimentada: o PM2 [4].

o Adaptar, e»cperimentar e awliar a adequação dete sistema rmolvedor
de restrições usando DSM-PM2 [1] a um ambiente distribuído assente
mrma arqútectura CGNIIMA;

3

Acknowledgements

Thanks to my fa,mily and Fátima for all the support; to my Supervisor

Salvador Abreu for all the attention and availability provided; to Deimos

Engenharia for all the cooperation and understanding.

4

Contents

I lntroduction

1 Introduction and Motivation
1.1 l-ntroduction .

L.2 Constraint Progra.mming. . . .

l-.3 Distributd Shaxd Memory . .

1.3.1 DSM Desigp
1.3.2 DSM Algorithms

I
10
10

10

L1

L2

13

15

19

20
2L

22
23

24

26
25

26
27
27
28

29
30
35
35

36
37

39

39

L.4
1.5

1.6

1.3.3 Cousistency Models
1.3.4 Coherence Protocol Policy
1.3.5 Other Desrgn Issues
Distributed Constraint Progra.mming using DSM
Objectives
RoadMap to this Thesis

II State of the Art

2 State of the Art - Distributed Shared Memory
2.1 The CC-NIIMA Architecture
2.2 DSM on Hardware / Softwa,re . .

2.3 DSM Systems

2.4

2.5

2.3.L PageBased DSM
2.3.2 Shared Variable DSM
2.3.3 Object-Based DSM
2.3.4 DSM Systems Overview
DSM-PM2: An Overview
2.4.1 The PM2 runtime system
2.4.2 DSM-PM2: The illusion of common address space
Conclusion

3 State of the Art - Distributed Constralnt Programming
3.1 Distributed Constraint Progra.mming - from GC to Distributed

AJACS

5

3.1.1 GC Concept
3.L.2 AJACS Concept

3.2
3.1.3 AJACS over l{yperion for Distributed E:recution . . .

Other DCP Systems

3.2.1 DisChoco: A Platform for distributed constraint pro
gramming

3.2.2 The Mozart Progre.mming System
3.2.3 Disolver: The Distributed Constraint Solver

3.2.4 Alice System

III Description

4 AJACS/C Description - Distributed Patterns and Imple-
menüation
4.L ÀJACS/C Model Dmcription

A.L.L AJACS/C Static Model
4.L.2 AJACS/C Dyna.mis Model
4.1.3 AJACS/C Extensability . . .

Distributed Sharing Patterns with AJACS/C and DSM-PM2
4.2.L Çsahalized Distribution Pattern
4.2.2 Local Distributd Pattern
AJACS/C Tmplementation Details - API
4.3.L bittarr.h
4.3.2 constraints.h
4.3.3 fdd-value.h
4.3.4 problem.h .

4-3.5 search.h . .

4.3.6 store.h .

4.3.7 strategr.h .

fV Interpretation of Results

5 Examples and Interpretation of Reults
5.1 PM2 Configuration .

5.2 Cluster Configuration
5.3 How to create a DSM-PM2 AJACS/C Exa,mple . .

5.4 Queens Exa,mple
5.4.L SpeciÊcation
5.4.2 Problem Description
5.4.3 Interpretation of Reults . .

5.4.4 Conclusions
5.5 n-Fbactions Exa,mple

4.2

4.3

39
42

45
46

46
46
47

47

51

52
52
53
ao
57
57
58

59
6L
61

69
72

78

79
81

84

86

87
88
88
89
90
90
90
92
98
98

6

5.5.1
5.5.2
5.5.3
5.5.4

Specification
Problem Description . .

Interpretation of Results
Conclusions

98
99

101

101

to4

L05
105
105
105

106
106
L07
108

V Conclusion

6 Conclusions and tr\rture \il'ork
6.1 Work performed on this thesis . . .

6.1.1 AJACS/C Development . .

6.L.2 DSM-PM2 AJACS/C Integration . . .

6.1.3 Distribution Models Design
6.1.4 AJACS/C with DSM-PM2 E:rperimentation

6.2 Conclusions
6.3 F\rture Work

7

List of Figures

3.1

3.2
3.3

1.1 DSM Concept
L.2 DCP using DSM Concept

2.1. Object Based DSM .

2.2 Overview of the DSM-PM2 Software Architecture

L1

22

30
38

M
45
48

u
56
57
58
59
59
60
60
61

4.'1, AJACS/C Static Model
4.2 AJACS/C D;rnamic Model
4.3 DSM-PM2 AJACS/C Architecture . . .

4.4 Centralized DSM structure Architecture
4.5 Centra.lized Distribution Pattern - Master Algorithm
4.6 Centraliz6{ Distribution Pattern - W'orker A§orithm
4.7 Local DSM structure Architecture
4.8 Local Distribution Pattern - Master Agorithm
4.9 Local Distribution Pattern - Worker Algorithm .

5.1 E»rperimenting Chrster Configuration . .

5.2 Buitding a DSM-PM2 AJACS/C application. . .

5.3 Queens ora,mple

All Classm of AJACS
DFS searú applied to 4Queens problem
Disolver General Arúitecture

Queens Centralized stratery time rmults
Queens Centralized strategy speedup reults .

Quens Local strategr time reults
Quens Local stratery speedup reults
n-Fbaction (n:2) example
n-Flacti,ons (n:2) Local strategr time results
n-Flactions (n:2) Local strategr spedup results

5.4
b.b
5.6
o,t
5.8
5.9

5.10

89
90
9L

93
94
96
97

L00
L02
103

8

Part I

Introduction: Constraint
Programming and

Distributed Shared Memory

I

Chapter 1

Introduction and Motivation

On this chapter the mai'' context, basis and goals of this theis study a,re

prmented to the reader.

1.1 Introduction

High-speed networks and rapidly improving microprocessor performance
ma,ke networks of workstations an increasingly appeeling vehicle for par-
allel computing. No special hardwa,re is required to use this solution as a

pa,rallel computer, and the resulting system can be easily maintained, ex-

tended and upgraded. In terms of performance, improrrements in procmsor
speed and network bandwidth and latency allow networked workstations to
deliver performance approaching or exceding supercomputer performance

for an incr€a.sing class of applications.

L.2 Constraint Programming

Constraint progra.mming is a progra,mming paradigm where relations be'
tween rmriablm can be stated in the form of constraints. Constraints difier
from the comr'.on primitive of other progre.mming ianguages in that they do
not specify a step or sequenoe ofsteps to execute but rather the propeúies
of a solution to be found. The constraints used in constraint progra,mming

are of various kinds: those used in constraint satisfaction problems, those
solved by the simplor algorithm, and others. Constraints are usually em-

bedded within a progra.mming language or provided via separate software
libraris.

Constraint progra,mming began with constraint logic progra,mming, which
embeds constraints into a logic program. This variant of logic progra.rnming

is due to Ja,ffar and Lassez, who ortended in 19E7 a specific class of con-

straints that were introduced in Prolog II [31]. the first implementations
of constraint logic progra,mming were Prolog III [32], CLP(R) [33], and

10

CHIP [34]. Several constraint logic progra.mming interpreters exist today,

for exa,mple GNU Prolog [35].
Other than logic prograrnming, constraints can be mixed with firnctional

progra,mming, term rewritinB, and imperatine languago. Constraints in
functional progra,mming are implemented in the multi-paradigm program-

ming language Oz [5]. Constraints a,re embeddd in an ir"perative language

in Kaleidoscope. However, constraints are implemented in imperative lan-

guag6 mostly via constraint solving toolkits, which are separate libraries

for an oristing imperative language. ILOG Solver [36] is an exa,mple of zuch

a constraint progra.mming library for C**.
constraint progrnmming librarie are usefrd when building applications

developed mostly in mainstrea,m progra.mming languagm: they do not re'
quire the developers to acquire skills for a new language, providing instead

declaratine programming tools for use within connentional systems.

1.3 Distributed Shared MemorY

Distributed Shared Memory presents itself as a tool for parallel application

or a group of applications in whiú indiüdual shared data items can be

accesed directly. In systems that support Distributed Shared Memory, data

moves between main memories of different nodes (as illustrated by figure

1.1). Each node can own data stored in the shared address space, and the

ownership can change when data moves from one node to another. When a

process accesses data in the shared address sPâGr a mapping manager maps

the shared memory addrms to the physical memory. The mapping manager

is a layer of software implemented either in the operating system kernel or
as a nrntime übrary routine. Note: Most of the content discussed in this
section stems from a survey of publicly available materials, which are duly
identified.

ttt

aal

thqred liemory

Netüork

Figure L.1: DSM Concept

ProcllProcl Prcr;í2 PÍoc3

tüemNlloml i[em2 Men3

LL

The Distributed Shaned Memory spar6 the progremmer the concerns of
message passing, where he would have to put allot of effoÉ to control the
distributed system behavior. The goal is to proüde him the abstraction of
shared memory. Shared memory provide the fastet pmsible commurrica-
tion, hene the greatet opporttrnity for concurent exqution.

1.3.L DSM Design

The mein problems that the DSM approach has to addrms are:

o The mapping of a logically shared address space onto the physically
disüributed memory modulm;

o how to locate and acces the neded data item(s);

o how to perserve the coherent view of the overall shared addrms space.

To responde to thme problems we refer to the following text, that sintethizes
the main considerations when designing DSM systems.

1 The crucial objective of solving those problems is the minimiza-
tion of the a,verâ,ge access time to the shared data. Having this gost in
mind, f,s76 strategies for distribution of shared data a,re most frequently
applied: replication and migration. Replication allows that multiple
copies of the same data item reside in different local memoúes, in order
to increase the parallelism in accessing logicaly shared data. Migra-
1i611 imFlie a single copy of data item which has to be moved to the
accessing site, counting on the locality ofreference in parallel applica.
tions. Beide that, systems with distributed shared memory have to
deal with the cousistency problem, when replicated copies of the sa.me

data exist. In order to preserve the coherent view of shared address
space, according to the strict consistency semantics, a read operation
must return the most recently written value. Therefore, when one of
multiple copies of data is written, the others become stale, and harrc to
be invalidated or updated, depending on the applied coherence policy.
Although the strict coherence semantics proüde the most natural view
of shared address space, various weaker forms of memory consisteucy
can be applied in order to reduce latency.

As a consequence ofapplied strategie and distribution ofshared
address space acrosst difierent memories, on some memory reference
data item and its copies have to be located and managd acreording
to a mechanism which is appropriate for suú architecture. The solu-
tions to the problems úove are incorporated into the DSM algorithm,
which can [s implemented at the hardware and/or software level. Im-
plementation level of a DSM mechanism is regarded as the basic desrsn
decision, since it profoundly affects system performance. The other
imporüant issues include: structure and gra,nularity of shard data,
memory consistency model that determines allowable memory acoeÉxs

orderings and coherence policy (inrmlidate or update).

rftm mtp:/Tgaleb.etf.bg.ac.yu/ vm/tutorial/mufti/dsm/introduction/introduction.html

12

L.3.2 DSM Algorithrns
The performance of a DSM system is dependent on the coupling between the
applied DSM algorithm and the access patterns generatd by the application.
One of the pmsible classifications of DSM algorithms distinguishes between

2 (...)SR.SW (Sinsle Reader / Single \jlrlriter), MRS\M (Multiple
Reader / Single lüriter), and MRIVIW (Multiple Reader / Multiple
Writer). SRSW algorithms prohibit replication, and migration can

be allowed if the distribution of shared addrws space over distributed
memories is uot static. MRSW algorithrns are most often encoun-

tered in DSM systems. Based on a realistic assumption that the read
operation is generally more frequent than the write operation, they
allow multiple read-only copies of data items, in order to decrease read
latency. Finally, the MRMW alg;orithms allow the o<istence of mul-
tiple opies of data items, even while being written to, but in some

case, depending on the consistency semaatics, write operations must
be globally sequeucd.

The algorithms to be dmcribed belos, 3 are categorized by whether they
migrate and / or replicate data. Two of the algorithms (central-server alge
rithrn and migration algorithrn) migrate data to the site where it is accesed
in an attempt to oçloit local data ac:cffircs decreasi.g the number of remote
acces,ses, thls avoirting communication overhead. The two other algorithms
(Read-Replication algorithm and F\rll-Replication algorithm) replicate data
so that multiple read accesm can take place at the same time using local
acce§s6.

Central-server Algorithm
In the Central-§erver Âlgorithm, a central-server maintains all the
shared data. It services the read requests from other nodes or clients by
returning the data items to them. It updates the data on write requests
by clients and returns ad<nourledgment message§. A timeout can be
employed to resend the requets in ca.se of faild acknowledgments. Du-
plicate write requests can be detected by associating sequence numbers
with write requests. A failure condition is returned to the application
trying to access shared data a,fter several retransmissions without a
respo[8e.

Although, the central-server atgorithm is simple fe implement, the
central-server can become a bottleneck. To overcome this problem,
shared data can be distributd among several server§. In suú e, case,

clients must be able to locate the appropriate server for wery data
acc€§sl. Multicasting data access requeots is und€sirable as it does not
reduce the load at the servers compared to the central-sen/er súeme.
A better way to distribute data is to partition the shard data by
address and use a mapping function to locate the appropriate senrer.

2Flom http://galeb.etf.bg.ac.yu/ vm/tutorial/multi/dsm/introduction/introduction.html
sFlom http://www.niksulâ"cs.hut.fi/projets/ohtdsm/documents/ldrjtutk/cmodels.html

L3

Migration Algorithrn
In the Migratiou Algorithm, the data is shipped to the location of
the data access requeot alowing subsequent accasen to the data to be
performed locally. The migratiou algorithm allows only one node to
acceas & shared data at a time. This is a single reader / single writer
protocol, since only the threads executing on one hwt can read or write
a given data item at any time.

Typically, the whole page or block containing the data item mi-
grates instead of an individual item requestd. This algorithm ta,k6
advantage of the locality of reference CIüibited by progra,ms by a,mor-

tizing the cost of migration over multiple acce§se§ to the migrated
data. Ilowever, this approach is susceptible to thrashing, where pages

frequently migrate between nodes while servicing only a few requests.

The migration algorithm proüde an opportunity to integrate DSM
with the virtual memory provided by the operating system running at
individuat nodes. When the page size used by DSM i8 a multiple of the
virtual memory page size, a locally held shared memory page can be

mapped to an application's viúual address space and accesed using
normal machine instructions. On a memory acces fault, if the memory
address maps to a remote page, a fault-handler will migrate the page

before mapping it to the procees's address space. Upon migrating,
the page is removed from all the addrqs spacs it was mapped to at
the previous node. Note that severa,l processes can sha.re a page at a
node. Tlo locate a data block, the migration algorithm can make use

of a server that keps track of the location of page, or through hints
maintained at node. Thee hints direct the search for a page toward
the node currently holding the page. Alternatively, a query can be
broadcasted to locate a page.

Read-Replication Algorithm
One djsadvantage of the migration algorithm is that only the threads
on one host can access data contained in the same block at any given

time. Replication can reduce the average cost ofread operations, since

it allos/s read operations to be simultaneously exeutd locally (with
no communication overhead) at multiple hosts. Floyrever, some of the
write operations may become more eKpensive, eince the replicas may
have to be iwalidated or updated to maintain consistency. Neverthe
less, if the ratio of reads over writes is large, the extra elçense for the
write operations may be more than oftet by the lower average cct of
the read operations.

Replicatiou can be naturally added to the migration algorithm by
alowing either one site a read/write copy of a particula,r block or mul-
tiple sites rmd-only copies of that block. This type of replication is

referrd to as multiple readers / single writer replication.
For a read operatiou on a data item in a bloc,k that is currently not

local, it ie necessary to communicate with remote sitee to first acquire
a read-only copy of that block and to change to red only the acces
rights to any writable copy if necessary before the read operation can

t4

complete. Fbr a write operation to data in a block that is either not
local or for whiú the local host has no write permission, all copie of
the sa,me block held at other sites must be invalidated before the write
can proceed. The read-replication algorithm is consistent because a
read access always returns the nalue of the most recent write to the
same location.

In the read replication algorithm, DSM must keep track of the
location of all the copies of data blod«s. One way to do this is to have
the orrner node of a data block keep track of all the nodes that have a
copy of the data block. Alternatively, a distributd linked list may be
used to keep track of all the nodes that have a copy of the data block.

Ftrll-R eplication algorithrn

The firll replication algorithm is an extension of the read replication
algorithm. It allows multiple nodes to have both read and write access

to shared data blocks (the multiple readers / multiple writer protocol).
Because many node can write shared data concurrently, the accms to
shared data must be controlled to maintain its consisteucy.

One possible way to keep the repücated data consistent is to glob-
ally sequence the write operations. A simple stratery based on se
quencing rures a single global sequencer whicà is a proc€§s executing
on a host particrpating in DSM. When a procms attempts a write to
úared memory, the intended modification is sent to the sequencer.
This squencer assigrs the uo<t squence number to the modification
with this sequence number to all site. Each site processes broadcast
write operations in sequence number order. When a modification ar-
rives at a site, the sequence numb€r is verifid as the nexb orpectd
one. If a gap in the s4uence numbers is detected, either a modification
was missed or a modiEcation was received out of order, in which case a
retransmiesion of the modiÊcation mmage is requested. In effect, this
strategr implements a negative ad«nowledgment protocol.

L.3.3 Consistency Models

DSM systems, as we have sen, rely on replicating shared data items for
allowing concurrent aosess at ma,ny nodes in order to improve performance.
Ilowever, the concurrent acoesseÊ need to be carefully controlled, so that
memory accessm may be excuted in the order that which the progre.mmel
expects. In other words, the memory is coherent if the nalue returned by a
read operation is always the value that the programmer would elqret, that
a read operation retunrs the value stored by the most recent write operation.
Thus, to mainte.in the coherence of shared data, a mehanism to control and
synchronize the accssm is neesary

The term consistency is used to refer to a specific kind of coherence. The
most natural semantics for memory coherence is shrict consistenry, defined
as:

L5

4 "Strict consistency requires the abiüty to determine the latest
write, which in turu implie a total ordering of requwts. The total
ordering of requests leads to inefficiency due to more data movement
and synúronization rquirements than what a program may really call
for.'

Tio counter this problem, DSM systems attempt to improve the perfor-
mance by proüding relaxed coherence semantics. Next follows several forms
of memory coherence a (strict consistency, causal consistency, PRAM consir
tency & proceffior consistency, weak consistency, release consistency, entry
consistency and scope consistency).

Strict Consistency

The most stringent consistency model is called strict consistency. It is
defined by the following condition: Any read to a memory location X
returns the rmlue stored by the most recent rrrite operation to X.

This deúnition implicitly assumes the e»ristence of absolute global
time so that the determination of "mmt recent' is unambiguous. Unipro-
cesors have traditioually observed strict consistency.

In s'mmarJr, when memory is strictly consistent, all write are in-
stantaneously visible to all processe and an absolute global time order
is maintained. If a memory location is changed, all subsequent reads
from that location see the uew nalue, no matter how soon after the
change the reads are done and no matter which processe are doing
the reading and where they are located. §irnilsrly, if a read is done, it
gets the curent value, uo matter how qúckly the next write is done.

Causal Consistency

The causal consistency model repreoents a weakening of sequential con-
sistency in that it makes a distinction between events that are poten-
tially causally related and those that are not. Suppose that proces Pl
writes a variable X. Then P2 reads X and writes Y. Here the reading
of X and the writing of Y are potentially causally related because
the computation of Y may have on the'ualue of X read by
P2 (i.e., the value written by P1). Fbr a memory to be considered
causally consistent, it is uecesary that the Irremory obey the following
condition: "Writes that are potentially causally relatd must be seen
by all processes in the sa,me order. Concurrent writes may be seen in
a different order on difterent rnachinesl.

PRAM Consistency & Processor Consistency

In causal consistency, it is permitted that concument writes be seen
in a difierent order on different machin€a, although causally related
ones must be sen in the sa,me order by s,ll rnae.hines. The next step
in rela:<ing memory is to drop the latter requirement. Doing so give

aFlom http://www.nikuls-cs.hut.fi/projects/ohtdsm/documents/kirjtutk/cmodel§.html

Í"6

PRAM consistency, whiú is subi@t to the condition of all writes being

done doue by a single proc€$t are received by all other proceses in the
order in which they were issued, but writes from different proc€ses

may be seen in a difierent order by difierent proaeÉ§es-

\Àfeak Consistency

Although PRÂM consistency and procesor consistency can give bet-
ter performance than the stronger models, they are still unnecesarily
restrictive for many applications becauee they require that writes orig-
inating in a single proc€É§s be seen enerywhere in order. Not all appli-
cations require eveu seei4g all writes, let alone seeing them in order.

Considering the case of a process inside a qriticat section reading and
writing some vrariables in a tight loop. Even though other processes

are not supposed to touch the rmriableo until the first procss has left
its critical section, the memory has no way of knowing when a proces§

is in a criticat sectiou and when it is not, so it has to propagate all
writes to all memories in the usual way.

\üeak consistency, has three propertim:

L. Accesse to critical (synchronization) variable are sequentially
consistent.

2. No acces to a synchronization variable is allowed to be performed

until all previous writes have completed eveqrwhere.

3. No data arces (read or write) is allowed to be performed un-
til all previous acsesses to synchmuization variables have been
performed.

Release Consistency

Weak consistency has the problem that when a synchronization vari-
able is accesed, the memory does not knovr whether this i§ being
done because the process is finich€d writing the úared variables or
about to start reding them. Consquently, it must take the actions
requird in both cases, namely making sure that all locally initiated
writes have been completed, a.s well a.s gathering in all writes from other
machines. If the memory coúd tell the difierence between entering a
criticat region and leaving one, a more efficient implementation might
be pesible. Tb provide this information, two kinds of synchronization
variable or openations are needd instead of one'

Relea,se consistency provide these two kinds. Acquire acce§s€El

are used to tell the memory system that a critical region is about
üo be entered. Release acc€Ésea say that a critical region has just
been e»rited. These accsses can be implemented either as ordinary
operations on special variables or as special operations.

Lazy Release Consistencly: LRC is a r€finement of RC that
allows consistency action to be pmtponed until a synchronization rnri-
able released in a subsequent operatiou is acquired by another proc6-
sor. Even theu, the shared write are made visible only to the acquir-

17

ing procesor. Synchronization tra,nsfers in an LRC qrstem, therefore,
invohre only the proceÉ!§om. This reduction in synchro-
nization traffic can result in a signifi6s1 decrease in the total a'mount

of system communication, and a consquent incre"se in overall perfor-

Inance.

Entry Consistency

Another consistency model that has been desigued to be usd with
critical sections is entry consistency. Like release consistency, it re
quire the prograrnmer to use acquire and release at the start and end

of each critical sectiou, respectively. However, unlike release consis-

tency, entry consistency require each ordinary shared rnriable to be

associated with some synchronization rmriable suú as a lock or bar-
rier. If it is desired that elements of an a,rray be accessed independently
in parallel, then different array elements must be asociated úth dif-
ferent locks. When an acquire is done on a synchronization variable,
only those ordinary shared variable Cuaded by that synchronization
variable are made corsisüent. Entry consistency differs from laay re
lease consistency in that the latter does not associate shared variables
with lod<s or barriers and at acquire time has to determine empirically
which variable it needs.

Formallg a memory exhibits entry consistency if it meets a,ll the fol-
lowing conütions:

1. An acquire access ofa sJrnchronization variable is uot allowed to
perform with rmpect to a process until all updates to the guarded
shared data have been performed with repect to that process.

2. Before an exclwive mode access to a qmchronization mriable by
a procss is allovrcd to perform with respect to that proc6s, no
other process may hold the synúronization variable, not even in
nonorclusive mode.

3. After an exclusive mode access to a synúronization variable has
been performed, a,uy other prrocer next nonexclusive mode access

to that syne.hronization variable may not be performed until it
has performed with respwt to that variable's o\rner.

Scope Consistency 5

Scope Consistency was deneloped by the University of Princetou in
1996. In ScC, the concept of scope is d€úned as all the critical sec-

tions. This means the lod«s define the soopes implicitly, rne.king the
concept easy to understand. A scope is said to be opened at an ac-
quire, and closed at a releasê. ScC is d€fined as:. When, a Wessor
Q opens a sape prcvi,otnly closedfu another pnaccssor P, P propagates
the upil,ates made wàthi,n the same sape to 8. As ScC prolmgate les

sFlom http://wwwsrg.csi§.bku.bk/srg/htmlÂump.htm

18

emount of data, the efficiency increases. Ând the updates not propa-
gatd are usually not nedd, since it is usual practice for all acree
of the sa,me shared nariable to be gua,rded by the sa,me lock.

Summar5r

o Strict: Absolute time ordering of all shared acceses matters.

. Causa} All processes see all causally-related sha,red acceses in the
sa,me order.

o PRAM: All processm see writm from each prooessor in the order they
were issued. Writes from different processors may not always be in the
sa,me order.

o Weak Shared data can only be counted on to be consistent after
synchronization is done.

o Release: Shared data are made consistent when a critical region is
erdted.

o Entry: Entry consistency laay release consistency in that the
latter does not associate shared variables with locJrs or barriers and at
acquire time has to determine empirically which rmriablm it needs.

o Scope: Loeks define the scopm implicitly. It propaga,tes less a,mognt
of data / the efficiency increases.

1.3.4 Coherence Protocol Policy

After a write operation, the subjacent replicated piece of data becomes out-
of-date and must be refreshed acros all replicated sites. Two strategim can
be used to achieve this: write invalidate or write update.

'lMrite Invalidate 6

This protocol is commonly implemented in the form of multi,ple-rco,ilr-
si,ngle-uni,tr sh,aring. At any time, a data item may either be:

o accesed in read-only mode by one or more prooesÍH;

o read and vrritten by a single pFocexl.

An item that is currently accqsd in read-only mode can be copied
indefinitely to other pn oe§eeãr. When a proceÍs attempts to write to
it, a multicast meosage is sent to all other copien to inralidate them,
and this is arJ<nowledged before the write can ta,ke place; the other
process€Ér are thereby prevented from reading stale data. Any pro-
cessee attempting to acces the data item are blocked if a writer errists.

6F!om http://www.cs.gmu.edu/cne/modules/dm/purple/wre na ol.html

19

Eventually, control is transfered hom the writing proc€§Íl and other
aoceses may take place one the update has been sent. The effect is to
process atl acces§€s to the item on a first-comefirst-s€rved basis. This
scheme achievee sequential consistency.

\lV'rite Update 7

In the write update protocol, the update made by a proc€§s are made
locally and multicast to all other replica mâ.nâ.gers possessing e copy
of the data item, whiú immediately modiÍy the data read by local
processes. Processe read the local copie of data items, without the
need for communication. In addition to allowing multiple readers,
several prooesses may write the sa,me data item at the sa,rne time; this
is knourn as multiplereader-multiplewriter sharing.

Reads are cheap in the writeupdate option. However, ordered
multicast protocols a.re relatively erpensive to implement in software.

Eager VS Lazy protocols
In an eager protocol, msdiffcafisns to shared data are made visible globally
at the time of a release. With a laay protocol, the propagation of modifica-
tions is postponed until the time of the acquire. At this time, the acquiring
processor determines whiú modifications it needs to see. Both eager and
laay approache cân be applied to invalidate or update protocols. La,zy pro-
tocols are ideally suited for situations where communication has a high cost
per message, because they send messages only when absolutely necesârJr,
often rmulting in far fewer meffiages overall.

L.3.5 Other Design Issues

Besidm the important decisions on úoosing the DSM algorithm (that can
be implemented on IfW and/or SW), the bst suited memory consistency
model that determinm allowable memory acc6s orderings or coherence pol-
icy (invalidate or update), other impoúant issues like: structure and gran-
ularity of shard data or page replacement are also crucial 8.

Granularity
Granularity refers to the size of the shared mernory unit. A page
size of that is a multiple of the size proüded by the underlying hard-
ware or the memory managemeut system allovrs for the integration
of DSM and the memory mens.gement systems. By integrating DSM
with the underlying memory rnenagement system, a DSM system can
take advantage of the built in protection mechanism to detect incoher-
ent memory reference, and use built iu fault handlers to prevent and
recover from inappropriate references.

Tllom http://www.niksuls"c§.hut.fi/projects/ohtdsm/documents/tirjtutk/cmodels.html
I fmm Uttp:77www.cs.gmu.du/cne/modules/dsm/gren/design.html

20

A large page size for the shared memory unit will ta,ke advantage of
the locatity of reference eúibited by processes- By transferrhg lsrge
page, lw overhead is incurred due to page size, but there is greater

úanee for contention to access a page by many processea. Smaller page

sizes are less apt to cause contention as they reduce the likelihood of
false sharing.

False sharing of a page occtrs when two difierent data items, not

shaxd but accesed by two different pnoceÁ§€s, are allocatd to a sin-
gle page. So the protocols that adapt to a granularity size that is

appropriate to the sharing pattern will perform better than those pre
tocols that make use of a static granularity size. False sharing reults
wheu the system can not distinguish between acoeÉ§6 to logically di§-

tinct piece of data. False sha,ring occurs because the system tracks

accesses at a granularity larger than the size of indiúdual shared data
items. Conveutional protocols typically require proces€§ to gain sole

access to a page before it can be modified. Therefore, fal§e úaring
can lead to situations where multiple procwes contest ownership of a
page, even though the processes are modifying eutirely disjoint sets of
data.

Page Replacement

A memory management system has to addres the issue of page replace'
ment because the size of physical memory is limited. In DSM systems

that support data movement, traditional methods such as least re'
cently used (LRU) cannot be usd directly. Data may be accesed in
different modes such a,s shared, prirrate, read-only, writable, etc-,
in DSM systems. To avoid degradation in the system performance, a
page replacement policy would have to take the Page acces§ modes
into consideration. For instance, prinate pa,ges may be replaced before
shared pages, a.s shared pages would have to be moved over the uet-
work, possibly to their owner. Read-only pag6 can simply be deleted
as their ovruers will have a copy. Thus the LRU policy with classes

is oue poosible stratery to handle page replacement. Once a page is
selected for replacement, the DSM system must ensure that the page

is not lost forever. One option is to swap the page onto disk memory.
IIowever, if the page is a replica and is uot owned by the node, it can
be sent to the owner node.

L.4 Distributed Constraint Programming using DSM

On of the inherent characteristics of Constraint Progre.mming aims on solv-

ing problems that may have huge smrch spacs and as so often are very time
consuming tasks. The natural choice is to try to paralelize the search space

over different CPUs (as ilhrstrated in figure 1.2) in using some paralelization
tec,hnique, being one specific erra,mple the distübution of work over different
independent node over some network.

2l

Paralelization does not come without cost as applications have to be

designed specifically for that purpose which meaffi that some decisions have

to be made beforehand such a.s:

o The feasabiüty to partition the work to be distributed over different
nodes;

o The needed synchronization, from the problem itself, shall be reduced

to a minimum to not generate too much communication between the

distributed nodes;

o Some paralelization model needs to be designed, suppoúed by the use

of some specific paralelizatinn libraries (MPI [3I alike or other) to
&ssure a proper distributed computation.

CP ProDLm §pâc.

il.ürcrlí
thrrrd memory

Figure 1.2: DCP using DSM Concept

As information must tra,nsit between the different nodes DSM comes a^s

a natural hypothesis choice to ea.se the burdeu caused by the last identified
need, from the items listed above.

The communication abstraction, that DSM sells to offer, is most apealing
since theoretically it would eliminate the need for the programmer to waist
enersr on mmsage passing management and data consistency acrosÉi memory
allocated on each node and allow him to concentrate / focus attention on
the distribution model design and on the CSP distributed feasability itself.

1.5 Objectives

This thesis presents an adaptation of the AJACS [3] system to the 'C' lan-
guage and an adequancy study of this constraint solving system to a dis-

tributed enüronment using distributed shared memory, hereby its proposed

to:

ProcllProq2 Prcc3Procl

lLmLI.mt Xrml t.m3

22

o Develop a Constraint Solving System in the 'C' language, the native

language of the oçerimented Parallel library - PM2 [4] (to be detailed

further ahead on this the§is repoú);

o Adapt and E:rperiment the 'C' Constraint Solving System to a CC-

NUMÂ arúitecture (refer to section 2.1 for details) distributd envi-

ronment using DSM-PM2 [1];

o Ermluate the DSM-PM2 adequacy for distributed constraint prograrn-
ming by testing differert distributed approaches and at the sa,me time
trying to obtain run-time performance speedups.

The work performed in this th6is will be preented in 7th International
colloquium on Implementation of constraint and Logic Progra.mming sys-

tems [48].

1.6 RoadMap to this Thesis

The reminder chapters of this theis report have the following prmentation:

o On Chaptens 2 and 3 is presented a State of the árú summary on
the two involved technologie under zubject analysis of this thesis: -
Distributed Shared Memory (úapter 2) and Distributed Constraint
Progra.mming (chapter 3) ;

o On Chnpter 4 the AJACS/C constraint library is described, including
it's implementation details. The adopted Distribution Models pro
posed for orperimentation are also explained;

o Chapter 5 deats with orample and interpretation of rmults;

o Chapter 6 preents conclusions and future linm of work.

23

Part II

State of the Art: Distributed
Shared Memory and

Distributed Constraint
Programmittg

24

Chapter 2

State of the Art -
Distributed Shared Memory

This chapter will present the reader a survey on the currently available DSM
technolory.

2.L The CC-NUMA Architecture

The chrster configuration used by this thesis report study is based on a CG
NUMA model. Next follovrs a definition of the CGNUMA architecture as

for a comparison with other model architetures 1.

The term CC-N[MA stands for Caúe-Coherent Non Uniform
Memory Acqs. In the CGNT MÂ model, the system nrns one oP
erating system and shorrs only a single memory image to the user
eventhough the memory is physically distributed over the proc€ssors.

Since processors ca;n acffis their orrn memory much faster than that
of other processors, memory accw is non uniform (NUMA). In thi§
architecture the contents ofthe various procqnor caches should be co-
herent rquirins extra hardware and a cache coherency protocol. A
NIIMÂ compute fumlling these requirements is called a CGNUMA
machine. Refer to figure 1.1.

Comparing a CGNUMA computer to MPP (Massively Parallel
Procasing) / cluster-basd systems and SMP (Symmetric Multi Prq
casing)/PVP (Parallel Vestor Procesi.g) systems shows that CG
Nt MA machine ca,n be as an attempt to get the bwt out of
both worlds.

SMP/PVP computers have multiple procmors using the sa,me mem-
ory whiú ma.kes it easy to parallelize a code on loop level using com-
piler options and/or directive. Ilowever, due to the fact that proce.
sors have to perform data exchange with their memory over the sa,me

I ftm nttp:7/www.sara-nl/userinfo/reservoir/muma/index.hhl

25

bus having only a limited bandwidth, these systeus will ouly scale to
10s of procesors.

MPP/chrster-based systems do not have this drawback. The node
in MPP/cluster-basd machines hane their own prirate memory and

therefore each node possesses only a part of the data. Such maúines
will scale upto a very large number of processors if the computation
to commuuication ratio of the prograrn i§ high. The progrsmrning

model for these computers is based on me§a'ge pa,sing and procesors
expücitly have to perform the communication with other procesors

by sending and receiving data- Progra,ms have to take care of data

distribution over the proc€§sors and have to be adapted for orplicit
mmmunication. This implies that progra.ms developed for single pre
cessor and PVP/SMP machines cannot be applied to thee machine
straight away. A substantial a,mount of redesiping and reprogra,m-
ming of these code is necesary.

CGNT MA machines combine the benefits of MPP/cluster-based
systems and SMP/PVP mac'hines. The fact that CGNUMA ma-

chine behave like shared memory computers from a user point of
view simpliEes the porting of progrotttc developd for single proces-

sor or SMP/PVP ma,chines. Moreover, CGNTIMA computers allow
for looplevel parallelization by means of compiler options or compiler
directive similar to SMP/PVP systeme. The good scalability proper-

ties are inheritted from MPP/cluster-based systems since memory is
distributed over the node.

2.2 DSM on Hard$rare / Software

DSM solutions come in two main flavors: Software and Ilardware based- Hy-
brid solutions propose to be the third choice. Thme solutions are decribed
below 2.

Software support for DSM is generally more florible and conve
nient for orperiments than hardware implementations, but in many
cases can not compete with the hardware level DSM in performaace.
Neverthelm, majority of DSM systems decriM in the open literature
were based on eoftwane meúanisms, since networks of workstations axe

getting more popular and poweúil. Therefore, the use of DSM oncept
seems to be an appropriate and relatively low-cost solution for their use

as pa,rallel computers. Ideas and concepts that originally appeared in
softwareoriented systems often migrated to the hardware irnplemen-
tations. Software-based DSM mechanisms can be implemented on the
level of progra,mmiDg language, since the compiler can detect sha,red

acce§ets and insert calls to synchronization and coherence routine into
executable code.

Hardware approach has two very impoúant advantages: complete
transparency to the progra.mmer, and generally better performance

2Womhittp:/
/galeb.etf.bg.ac.yu/ m/tutorial/mufti/dsm/introduction/introduction.html

26

than other approa,che. Since hardware implementations typically use

a smaller unit of sharing (e.g., cache block), they are less suscepti-

ble to false úaring and thrashing effects. Hardware implemeatations
are particularly superior for applications that have high level of fine
grain sharing. Eardware solutions are da,sifred into three groups:

CC-NUMA (Cache Coherent Non-Uniform Memory Are,hitecture),
COMA (CacheOnly Memory Architecture), and R.ÜIS (Reflective

Memory System) architectures. In CGNT MA qrstems, as explained
in sestion 2.1, parts of shared addrw spa'ce are statically distributed
among the local memorie in the clusters of procensors, where the im-
proved locality of acmses is CIrpected. In the COMA architectures,
the dishibution of data is dyna,mically adaptable to the application be
havior, so the parts of overall worksparc can freely migra,te according
to its usage. In reflective memory architectures, all write opeations to
the globally shared regions are immdiately followed with update of
all other copies of the same data item. Hardwareoriented DSM meú-
gnism appreats to be very promising DSM approach, due to its superior
performance and the transparency it offers to the progra,mmen- It is
e:rpectd to be more frequently usd in the future.

f{ybrid solutions may be in order to a,chieve the speed and trans
par€rxcy of hardware sche.mes, as well as the flerribility and sophistica.
tion of softwaÍe solutions. Deigners sometimes choce to implement a
suitable ombinatiou of hardware and software methods. Some level of
software support can be found even in the entirely hardware solutions,
with a goal to better suit to the application behaüor. As none of the
deign choices in the world of DSM has been proven to be absolutely
superior, it seems that the integration of various approarJreo will be
intensively pursued in future by system architects, in their strive to
gain better performane.

2.3 DSM Systems

In this section several DSM systems axe presented. Different §pe of systems

are introduced and several of their main features are o<posed and compared.

2.3.L PageBased DSM

The idea behind this type of DSM system is to emulate the cache of a
multiprocessor by making us€ of the rnenxüry rno,no,genxent unit (MMU) arrd

the operating system software. In this DSM system, the addrm space is

divided into chunks. Thme chunks are distributed over arll the proceÉ;sors

in the system. When a pÍocessor references an address that is not local
(available in that node), a trap occure, and the DSM software fetches (gets)

the chunk ssnfaining the address and rmüarts the faulting instruction, which
now complete succmsfirlly. F\rrther characteristics of this type of DSM

27

system are presentd below. 3

Replication
Oue improvement to the basic system that can improve performance

considerably is to replicate úunks that a,re read only, read-only con-

stants, or other read-only data struçturen. However, if a replicated
chunk is suddemly modified, inconsist€nt copies are in existence- The
inconsistency is preventd by using some consistency protocols.

Findine the Owner

The simplest solution for finding the orrner is by doing a broadcast,

aski.g for the owner of the sp€cified page to respond. An optimization
is not just to ask who the owner is, but also to tell whether the sender

wants to reed or write and say whether it needs a copy of the page.

The owaer can then send a single me+sage transferring ournership and

the page is well, if needed.

Finding the Copies

Another important detail is how all the copie are found when they
must be iilralidated. Agaitr, two possibiütie present themselves. The
first is to broadcast a meÍsage giving the page numb€r and ask all
procffiors [elding the page to inmlidate it. This worls only
if broadcast messa,ges are totally reüable and can never be lost.

The second possibility is to have the owner or page manager main-
tain a list or copyset telling which procesors hold whiú pages. When
a, page must be iwalidated, the old owner, ners owner, or page man-
ager sends a mesage to each proce§or holding the page and waits for
an acknowledgment. When each mesage ha-s been acloowledged' the
invalidation is complete.

Page Replacement

As in any system using virtual memory, it can happeu that a page

is needed but that there is no free page fra,me in memory to hold it.
Wheu this situa,tion occur§, e page must be evictd from memory to
make room for the needed page. Two subproblems immediately arise:

which page to eüct and where to put it.

2.3.2 Shared \Iariable DSM

Pagebased DSM takm a normal linear address space ând allows pag6 to
migrate dyna,mically oner the netwoÍk. Another, mor€ structured approaeh,

is to share only a determined set of variablm and data structurm that are

nedd by more than one procffi. This way, the problem cha.ngm from

sfUm mtp:77cs.gmr"edu/cne/moduleo/dm/yellow/Pg" a*.ht-l

28

hovr to do paging over the network to hou, to majntain a potentially repli-

cated, distributed data base consisting of the set of shard rmriables. More

considerations and an example below a.

Difierent techniques are applicable here, and these often lead to
major performance improvements. using shared variables that are in-

dividually managed also provides considerable opportunity to eliminate
false úaring. If it i§ possible to update one rmriable without a,ffecting

other variables, then the physical layout ofthe variables on the pag6 i§

le*s important. One of the most important exa,mple of suú a system

is Muni,n 191-

2.3.3 Obiect-Basd DSM

In an objwt-based distributed shared memory, proce§sB on multi-
ple machines (as figure 2.1 iltustrate) share an abstract space filled with
shared objects. The location and ma.nagement of the objects is handled au-

tomatically by the system. This model is more abstract and differs to the

Wge-basd, DSM sgstems, in whie,h the former provide, in contrast, a raqr

linear memory of bytes from 0 to some maximum. In object-based DSM any

procms can invoke any obj@t's methods, regardlffi of where the procss and

object are located. The operating system and runtime system have the task

to make the act of invoki.g work no matter where the procms and the

objects are located. An Object-Based DSM feature is that processe cannot

dirmtly acc€Éls the internal state of any of the shaxed objets, so various opti-
mizations are claimed as possible where not pmsible with pagebased DSM.

For example, sfutce accffii to the internal state is strictly controlled, it may

be possible to relax the memory consistency protocols. F\rrther detail on

Object-Basd DSM characteristis as for its advantagm and disadrrantagm

are described below 5.

Once a decision ha-q been made to structure a shared memory a§ a

collection of separate objects iu§üead of as a linear address space, there

are man1r other choice to be made. Probably the most important
issue i8 whether objects should be replicated or not. If replication
is not used, all accesses to an object go through the one and only
copy, which is simple, but may lead to poor performance. By ailowing

objects to migrate from ma,chine to machine, a.e neded, it may be

possible to reduce the performane,e loss by moving objects to where

they are needed.

On the other hand, if objects are replicated, what should be doue

when one copy is updated? One approach is to i$xalidate all the other

copie so that only the up to date copy remains- Additional copies can

be created later, on demaud, as needed. An alternative choice is uot to
invalidate the copies, but to update them. Shared-variable DSM âJ§o

at'rom futp, / /cs.gmu.edu/cne/modulee/dsm/yello/úared-tlm.html6ftm mtp:7/cs.gmu"edu/cne/modules/dm/yello{objsgt íl§m-html

29

Obiect Obiect
Space

<- Process

ln Object-based D§ttl, processes
communicate by invoking methods
on shared objects

Figure 2.1: Object Based DSM

has this choice, but for page-based DSM, invalidation is the only fea-
sible choice. Similarly, object-based DSM, like shared-variable DSM,
eliminates most false sharing.

Object-based DSM has three adyantâges over the other methods:

1. It is more modular than the other techniques.

2. The implementation is more fledble because accesses are con-
trolled.

3. Synchronization and access can be integrated together cleanly.

Object-based DSM also has disadvantages. Fbr one thing, it
cannot be used to run old "dusty deck" multiprocessor programs that
assume the existence of a shared linear address space that every process
can read and write at random.

A second potential disadvantage is that since all &ccesses to shared
objects must be done by invoking the objects, methods, extra overhead.
is incurred that is not present with shared pages that can be accessed.
directly.

2.3.4 DSM Systems Overview

Next a set of tables illustrates a set of DSM systems classified as Sofbware,
Hardware or Hybrid (Hardware / Software) 6.

6Flom http://galeb.etf.bg.ac.yu/ vm/tutorial/multi/dsm/introduction/introduction.html

@/
@@

@ @@

d @@

@@

30

DSM Software S5rsterns

Name f4re of
lrnFle-
menta-
tion

ftpe
of
Algo
rithrn

Consistencli
Model

Granularity
unit

Coherence
policy

r\rY [4 user-level
library *
OS mod-
ifica,tion

MSRW sequential lKb invaJidate

Mermaid

t8I

user-level
Iibrary *
OS mod-
ifications

MSRW sequential LKb, gKb invalidate

Mudn
lel

runtime
system *
linker +
Iibrary *
preprG
oessor +
OS mod-
ifications

type-
specific
(sRsw,
MRSW,
MRMWI

weak release variable size
objects

type
specific
(delayed
update,
invalidate)

Midway
[10]

runtime
system f
ç6rnpiler

MRIVTW entry,
release,
proce§sor

AKb update

Tfead
Marks

[111

user-Ievel MRMW Iazy release 4Kb update, in-
validate

Blüzard
ÍL2l

user-level
+os
kernel
modifica-
tion

MRSW sequential 32-t28b invalidate

Mirage

[131

OS
nel

ker- MRSW sequential 512b invalidate

Clouds

[14]

OS, out
of kernel

MRSW inconsistent,
sequential

8Kb discard
segment
when
unlocked

31

Nerne Ilpe of
Trnple.
menta-
tion

rlpe
of
Algo
rithrn

Consistencl
Model

Granularity
unit

Coherencr
policy

Linda
[15]

Language MRSw' sequential variable (tu-
ple size)

imFlem.
dependent

Orca

[16]

Language MRSW synchro de-
pendent

shared data
object size

update

DSM.
PM2

tll

runtime
system *
library

type-
spwific
(MRSW
MR]VTW

sequential,
eager re
Iease, jana
consistency

4kb invalidate

DSM Hardware Systerns

Name Cluster
Conf

Net
work

§pe
of
algo
rithrn

Consist
Model

Granular
unit

Coherence
policy

Memnr

[1I
single
pro-
oessor,

Memnet
device

token
rrng

MRSW sequential 32b invalidate

Dash

[18]

SGI
4D/340
(4 PEs,
2-L
caúes),
Ioc.
mem.

mmh MRSW release L6b invalidate

SCI

[1e]

arbitrary arbitraq MRSW sequential 16b invalidate

32

Name Cluster
Conf

Net
work

Tlpe
of
algo
rithrn

Consist
Model

Granular
unit

Coherence
poücy

KSRl
[20]

6+bit
custom
PE, I+D
cachm,
32M
loc.mem.

rmg-
based
hiera,r-
chy

MRSW sequential t28b invalidate

DDM
ÍzLl

4
MC88r.r.CI
2 caches,
&32M
local
memory

bus-
based
hierar-
chy

MRSW sequential r.6b invalidate

Merlin

l22l

4O-MIPS
Com-
puter

mesh MRMW proce§§or 8b update

RMS

1231

1-4 pro
ces§or§,

cachm,
256M
local
memory

RM
bus

MRMW proc6s()r 4b update

33

DSM Hybrid Systerns

DSM Systems Corslstency Models Comparison

DSM performance is always the major concern. The DSM system, IÍfY [4,
use SC but performance is poor due to excmine data communication in
the network. This major performance bottleneck is relievd by later sys.
1eme,, which use other relaxed models to improve efficiency. For ora,rnple,
Munin [9] made use of the weak Eager Release Consistency (ERC) model.

Name Cluster
Conf +
Network

Type
ofalgo-
rithrn

Consist.
Model

Granular
unit

Coherence
pol

PLUS

I24l

M88000, 32K
cache, &32M
localmemory,
mmh

MRIVTW prooeffior 4Kb update

Galactica

[25]

4 M88LL0s,
2-L caches
256M local
memory,
mesh

MRJ\[14I multiple 8Kb update /
invalidate

Alewife

[261

Sparcle
PE, 64IK
cache, 4M
Iocal mem,
CMMU,
meh

MRSW sequential 16b invalidate

FLASH

124

MIPS T5,
I+D caches,
MAGIC
contoller,
mmh

MRSW release 128b invalidate

Typhoon
[28]

SuperSPARC,
2-L caches,
NP controller

MRSW custom 32b invalidate
custom

Ilybrid
DSM
[2el

FLASH-like MRSW release variable invalidate

SHRIMP
t30l

16 Pentium
PC nodes,
Intel Paragon
routrng net-
work

MRJVIW AURC,
scope

4Kb update I
invalidate

34

TheadMarks [11] went a step fuúher, using the weaker Lazy Release con-

sistency (tRC). The relative§ good efficiency and simple progra,mming in-

terface Uàb" 'ituadlVtarks remain as the most popular DSM system. On

the other hand, Midway p0] adopted a.n even weaker model caJled Entry

Consistency (EC), but it require progra,m§ to insert orplicit statements to

state which nariablm should be guarded by a certain synchronization vari-

able. This makes the progra,mming effort more tedious. scope consistency

claims to be weaker tnan mc, approarhing the efficiency of EC. As the

progra.mrning interface is enactly the sa,rne as that used by LRC, good pro
ga.mmability can be ensured.

2.4

2.4.L

DSM-PM2: An Overview

PM2 (Pa,rallel Multithreaded Machine) [4] is a multithreaded environment

for distributed architectures. It proüdes a POSD(like interface to cre'

ate, manipulate and synchronüe lightweight threads in user spaoe' in a dis-

tributed environment. Its basic mechanism for internode interaction is the

Remote Procedure CaIl (RPC).

7 Usiog RPC', the PM2 threads can inrrcke the remote execution

of userdefined s€rvice§. such invocations ca,n either be handled by a
prexisting thread, or they can involve the creation of a new thfeed.

While threads running on the sa,me node can freely share data, PM2

thrcads running on distâa node may only interact through RPc. This

mechanism can be used either to send/retrieve information to/from the

remote node, or to have some remote action executed' The rninimal

latency of a RPc is 6 micro sec over SISCI/Sq [AA] *d 8 micro sec

over BIP [46]/Myrinet [43] on our local Limrx clusters'
plvtz includes t\pp rneirçp6ponents. Fbr multithreadiug, it uses Mar-

cel, cn efficient, userlwel, POSDGke thread pad<age' To ensure net-

work portability, PM2 use an efficienrt communication library cattd
Madeleine [6], which was ported across a wide range of communication

interfiace, including highperformane one such as BIP [46], SISCI [34!,

VIA [45], as well as mõte traditional one euú as TCR and MPI [3fl'
an intereeti"g frature of PM2 is its thread migratiou meúanism that
allows thread§ to be transparently and preemptively moved from one

uode to another duriug their executiou. such a functionality is typi-
catly useful tre implement generic poücie for dyna,mic load balancing'

indàpendentty of the applications: the load of each procensing node can

be evaluated according to some mea§ure, and balancd using preemp

tive migration. The by feature enablin preemptineness is the isoad-

dreos alproach to dyna,mic allocation f€atuÍed by PM2. The isomalloc

The PM2 runtime system

?Flom DSM-PM2: A porteble implementation platform for multithreaded DSM con-

sistency protocots - Gabriel Antoniu and Luc Bougé'

35

allocation routine guarantees that the range of virtual addresse allo-

cated by a thread on a node will be left free ou any other node' Thus,

threads can be sa,fely migrated across uodes: their stad§ and their
dyna,mically allocated data are iust copied on the destination node at
túe same virtual addres as on the o ighal node. This guarantee the
validity of all pointers without any further restriction [3]. Migrating a
thÍead with a minirnal stack aad no attached data, ta,ke 62 micro sec

over SISCI/SCIlál and 75 micro ses oner BIP [46]/Mvn""t [43] on

our local Linux clusterB.

2.4.2 DSM-PM2: The illusion of cornrnon addÍe§s space

DSM-PM2[l] providm the illusion of a comnon address space shared by all
PM2 threads irrespective of their location and thus implements the concept

page.based Distributed Shared Memory on top of the distributed architec-

ture of PM2. But DSM-PM2 is not only a DSM la1'er for PM2, its goal

is to provide a portable implementation platform for multitbreaded DSM

consistency protocols (see figure 2.2).

? Given that all DSM communication primitive have been imple'

mentd using PM2's RPC mehanism basd on Madeleine [6], DSM-
PM2 inherits PM2's wide network poúability. Ilowever, the mqst im-
portant feature of DSM-PM2 is it customizabüty: actually, the main
deign goal was to proüde support for implementing, tuning and com-

parins several consistency models, aud alteraative protocols for a given

cousistency model. As a starting remark, we can notice that all DSM
systems share a number of common features. Every DSM qrstem,

aimed for instance at illustrating a uew versiou of some protocol, ha,s

fq implement again e, number of mre functionalitie-

It is therefore intereting to ask: What are the features that need to
be preent in any DSM system? And then: What are the features that
are specific to a particular DSM sysüem? By answering these questions,

we become able to build a system where the core mechanisms shard
by the erdsting DSM systems are provided as a generic, common layer,
on top of which specific protocols can be easily built. In our study, we

limit ourselve to page.based DSM systems.

Access detection

Most DSM systems use pege faults to detect accsses to shared data,
in order to carry out actions nec€ssary to guarantee consistency. The
generic core should provide routine to detect page faults, to extract
information related to each fault (address, fault type, etc.) and to
asociate protocolspeific consistency actions to a pagefault event.

36

Page manager

Pagebased DSM systems use a pa.ge table which stores inforEation

abãut the shared pages. Each uremory page iB hardled individually.

some information fields are oorrmon to virbually all protocols: local

acces rights, current owner, etc. Other fields may be speifrc to some

protocollThe generic core should provide the page table structure and

ã b*i" set of frEctions to manipulate page entries. Also, the page table

structure úould be desigDed so that nery information fields could be

added, as needed by the protocols of interest.

DSM communication

we can notice that the known DSM protocols use a limited set of
communication routines, like seuding a page requmt, sending e PaEe,

seuding difis (for some protocols implementing weak consi§tency mod-

eb, ükã rebase consistency). Suú a set ofroutine should atso be part

of the generic core.

Synchronization and consistency

Weaker consistency models, Iike release, entry, or scope consisteucy

require that consistency actions be ta,ken at synchrouization points. In
oráer to support these model§, the generic core should proüde synúre
nization objets (locks, barriers, etc.) and enable consistency actions

to be associatd to synchronization events.

Thread-safety

Modern environments for parallel progra,mming use multithrea'ding'

All the data structures and management routinee provided by the
generic core should be threadsâ,fe: multiple concurrent thleads should

be able to safely call these routinee.

2.6 Conclusion

After this DSM overview survey is little to say that alot of efiort has already

been done on trying to find the b6t solution§ for the Eeveral DSM imple''

mentation problems. Both sofbware and hardware research fronts tbrive

searching for thme best options and try to improve and prove themselve as

the path to follow. Maybe the final solution will be sometÀing in between

as a hybrid solution. Difficultly there will be consensu§ in what qrstem,

atgorithm, coherence protocol or consistency model is bette'r suited for eaú
and every problem because each one requires a difierent

Distributed Shared Memory preselrts itself as a good technological answer to

the crecent demanding world of intensive distributed computation. Preent

research a^s proven this tetrnology vatid and r:sefirl as it, ajms to malce the life

37

IEt.tsPITz

E?I proocd poliry

IISl,l pdmt B

tlSH pagr mryEr Eiltroomm

PIE
Tlueodsrúeydem

RTz

Gouruu suboyslert

Figue 2.2: Overview of the DSM-PM2 Software Architecture

of progra.mmers easier. The next step will be to try to lenerage and assess an

acceptable cÉt / efficienry tradeoff and finally consoüdate this knowledge

and try to come up with standards and proposals for real commercial future

DSM systems.

38

Chapter 3

State of the Art -
Distributed Constraint
Prograrnming

This chapter will present the reader a reprmentative surrrey on the currently

available DCP t«:-hnolory.

3.1 Distributed Constraint Programming - from
GC to Distributed AJACS

3.L.L GC ConcePt

The GC [39] (Generic Constraint) is a constraint propagation system, with

three differerú implementations of finite variables domains (FD, FDD and

FDIU). It is a system that usm the oo approach implemented in JaYa. The

constraint propagation and variable domajns are oçlained at the applica'

tion and implementation level and some exa,mples from the litterature are

prmented in order to clarify the construction of applications with GC.

Finite Domains

The GC (as for AJACS) will implement its contraint system over Finite

Domains. d finifs domain is a finite set of non-negative integers. A notation

for a finite domain can be 'b,.'.,m'.

Variable

The domain of a nariable is the set of values that it carl assume. ÇQ imple'

ments three distinct classes of variables over finite domains'

39

. FD (Finite Domain) va,riables: These are represented by a gingle pos.
itive mrmbers interval. variables with this kind of reprmentation are
caracterized by the me.nipulation of the maximum and minimrrm nal-
ues of its interval.

o FDD variable: These are FD variable where no ronger the interval
e»rtreme gx's manipulated but where all yalue of the domain between
its extremes) are considered.

o FDru variables: They are arso FD va,riable but where the varues of
the domain are unions of intervals.

over these variable concept GC implements all basic operations like
úeking of the domain is empty or singleton do copies of rmriables, get the
fiEt/last element, to know which is the next element, consüruct singleton
domains g1s.

Constraints

constraints are in the core of GC in the end its what it is aII about. A
constraint is a relation between variables. The inclusion of a new constraint
in the system will create new dependencim in the variable(s) that interveen
in that retriction. The imposition of a constraint will frquently narrow the
variable domain. once that happens atl the dependent variable,s dsm.ains
will be analyzed and updated too, if nffiâry. In GC, constraints are
classes that follow an inheritance hierarchy. New constraints subclasses can
be added with the definition of appropriate localUpdate(n), melhod. The
lou,lupd,ate method is responsible for the actua.rization of the nth variable
dsmnin for that constraint.

Iterators and Strategies

Propagation by it self cannot construct the solutions of a constraint problem.
There is the need to walk through the range of possibilitie. The idea behind
Iterators is to reduce rrariables to single value iustantiations. By ,,iteratin§,
through the rmriables and combining this with the propagation meha.nism
its then possible to obtain the solution(s) of the problem. The Iterators
are associated with a specific search strategr- I'his ca.n be "depth-frst",
1eft-right",'treadth-first",,tmt-failr.

Propagation

Propagation is the mechs.nism that allows the ralidation of the constraints
a,fter some change, or reduction, on the system variable has occurred. These
change will occur by the iteration of wriable. Jointly with the GC Iterators

40

these are the building bloeks for finding the solutions of a finite domain

constraiot system
The root of the constraint class hierarchy define lhe locolupilate(n)

method, which is responsible for the propagation mechanism and is triggered

by the installation of the constraint. If there is a úange in the correspond-

ing domain, all the constraints iwotving that variable will be reermluated,

until a fi:rpoint is reached, i.e. no poss changes orist, so this method will be

repeatdly invoked until the provoked change produce additional changm.

Example

N Queens

o The problem: Lay down N queens on a N x N úess-board so that
there is no couple of quens threatening each other.

o The va,riablm: We have N variables that take values from I- to N. For

instance, to N : 4, the solution 13,1,4127 mean§ that, in row l- the
queen must be placed at column 3, in row 2 the queen must be placed

at column 1, and so on.

o The constraints: To avoid the queens from threatening each other we

will implement a constraint. If Ci and Cj are queens placed in columns

i and j repmtively to avoid them to attack each other we must have

vj>i
Ci*Ct
ci * c,*u-»

Çi f Ct-6-a

The constraint NoAttack, for 2 variable, implements this rmtrictions.

public class NoAttack extends gc.fdiu.W.Coastraintt
private int c;
pub3.ic NoAttack(Variable ltl, Variable VY, int V) {

super(W,VY);
c=V;

);
public void localUpdate(iat n) t

int m=l-n;
if (env[n].ground O) t

envlnl . clear (env[n] .nin) ;
envln] . clear (eav[u] .nin + c) ;

4L

snv[a].clear (env[n].nin - c);
)
envln] .updateMinl{ax O ;

Since this constraint is for two variablm, a method to apply it at all
variables in the list of queens, is required. Next an exa,mple pirce of code

that defines a new constraiú NoAttack with its correponding localUpdate
method. Note: enaf] is an a,rray of rrariable that make part of that con-
straint, in this case (NoAttack) there are two (the two queens).

static void safe (Variable qrreen[1, int n) {
for (int i=O; i<n; **i)

for (int j=i+l; j<n; +j)
ner NoAttack(gueenlil, queen[j], j-i).tellO ;

)

3.1.2 AJACS Concept

The AJACS [3] (Another Jara Constraint Progrnmming System) is a toolkit
for Concurrent Constrâ,int progra.mrning implemented in the Jarm language.
It comes as a sucoessor of the Constraint Progra,mming also in Java in that
it reprments an attempt to deal with some of GC [39] inadequacies in terms
of performance whilst a setting which is adequate to orprms prob
lems in a way that cs.n be easily solvd in a parallel exeution envilonment,
as provided by a concurrent progra.mming setting.

As said before the AJACS implementation (figure 3.1) is founded on
similar concepts as in its precusnr GC refined now with the introducüion of a
uStore" structure that reprments the set of valum as in a state snapshot, and
a "Problem" structure that holds the initial store as also all the constraints
static information (e.g. information about whiú constraints are associated
to each variable).

Value

In AJACS one talue" repreents a subset of its variable domain. One value
is considerd basic (ground) when if sonfains a singleton value.

Variables

There is no explicit concept of "rmriable" in AJACS. It is an abstract nota-
tion to represent the set of values located in the sa,me index in some store.

)
)

42

Storcs

A Store is an indexed collection of values. The objective behind it is to create
sucrwive similar states (in respect to the number of ontained values) in
which the valum associated to some index represent a variable domain. This
is why there is no orplicit representation of variable in AJACS since it is
obtaind by the concept of Store.

Constraints

Corstraints in AJAcs follo*' the same principle as in GC, they are the rela-
tior:s betwen wriables in a problem. AJACS constraints are the mecha.nism
reponsible for the propagation of results to the other variable of the state.

Problem

The Problem defines the set of rmriables with its associated initiat d66.ein,
i.e. a state. Morever it holds the set of constraints over those sam.e vari-
ables. The objective behiud the fomulation of a Problem is to determine its
solutions, i.e. the basic value for a,ll the variablm that are consistent with
trfis imposed constraints.

Search & Stratery

The order by whiú the rmriable are instatiated defines a different solution
space configuration. The AJAcs Search is a repetitive procedure upon the
problem possibilitie space until a solution is found. The search procedure
may rely upon à given serú strategr. The stratery is applid on a given
state (store) to specify its next state. Part of this strategy is to decide
which of the non ground variablm (the ones that a,re not singletons), will be
selected; and for the chosen variable the way in which the domein reduction
will be performd. Normally this is accomplishd by the determination of
the variable single value.

B1çarnple

Note: F»ra,mple taken from AJACS [3] for ilhrstration purp6e§.

we will give an ora,mple of how to work with the AJACS classes system,
with the classical N-Quens. Consider N:4, for simplicity. We have 4
Values: u0, u1, u2 and u3, defined by:

u0 = u1 = u2 = uB = nes Val_ue(l,4).
'we must implement a constraint, lets call it NoAttacla NoAttack is a sub
class of Constraint, and asure that two queens do not 6folsafsning each
other. 1}e problem, and its initiat store is defined by:

43

p = nê1; Problem([u0,ul ,u2,u3]) .

In order to update the the lists C and Cv, we add the constraints to the
problem.

for (i=0; i<=2; +i)
for (j=i+l; J<=3; +rJ)

p.add (nes NoAttack (i,j))

Let Cl be the constraint NoÀttack(0,1), C2 be the constraint NoAttac;k(0,2),
sfs. Çl.sav-[0,L], C2.env:[0,2], 6fs. ddding the constraints to the problem
tn:rrs List C into CL, C2, C3, C4, C5, C6 and List Cv into Cv : Crr0:(C1,0),
(C2,0), (C3,0), Cv1:(C1,1), (C4,0), (C5,0), Cv2:(C2,1), (C4,1), C6,0),
Cv3:(C3,1), (C5,1,), (C6,1).

Nosr we could apply a search, lets define it:

I = treur Search(p, st=,nêw StratFirst0).

The solution is given by s.solution$. Figue 3.2 shows the sequence of stores
generatd by solution.

Fieure 3.L: All Classe of AJACS

Corúaffi

o

61d

S@rd,
FIrr EÜ@

44

o 1

Ír,{l Ír,u tr,u
Í1,{l 13,.1 t3,3I
Í1,aI
Ír,4I 12,31

11,1I

ar,r,
12.27

o

12,2t

Ía,41

11,1I

t3,31

slol
otu
sÍ2,

UÍ3I

Figue 3.2: DFS search applied to AQueens problem

3.1.3 AJACS over HJru)erion for Distributed Execution

The H5perion S5rstem

Hnrerion [2] is a Java system that aims for Java compilation to native code
with a run-time library that executm Java threads in a distributed-memory
environment. This allows a Java prograrnmer to view a cluster of proces-
sorÍi as executing a single Jaya virtual machine. The separate procesors
are simply resources for executing Java threads with true parallelism, and
the run-time system provide the illusion of a shared memory on top of the
private memories of the prooes§iors. The environment is available on top of
several IrND(systems and can use a large variety of communication inter-
f6ses ffoa.nks to the high portability of its run-time system. Hyperion [2]
was developed at the University of New Ha,mpshire and comprise a Java-
byüecodetoC tra.nslatorr and a run-time übrary for the distributed execution
of Jara threads. Hyperion has been built using the PM2 distributed, multi-
threaded run-time system from the cole Normale Suprieure de Lyon [12]. As
well as providing lightweight threads and efficient inter-node communication,
PM2 provides the generic distributed-shared-memory layer, DSM-PM2 [1].
Another important advantage of PM2 is its high portability on several t ND(
platforms and on a large variety of communication interfaces and protocols
(BIP [46], SCI [44], VIA [45], MPI [34, TCP). Thanke to this feature, Java
programs compiled by Hyperion can be ormuted with true parallelism in all
thme environments.

45

3.2

3.2.L

AJACS over ll5perion

The idea behind this other project (AJACS over H;tperion) was to implement

and evaluate the AJACS [3] system over the Hyperion solution. Fbr details
refer to ÀJACS [3].

Other DCP Systems

DisChoco: A Platform for distributed constraint pre
gramming

DisChoco [40] i" a Java library built on top of the Choco Java open-source
solver. Communication is performed via the simple agent communication
infrastructure (SACI) if the agents are implemented on distant machines.
Otherwise (simulation) the communication is performed via a local coÍnmu-
nication simulator. The implementation of DisChoco was made to offer a
modular sofbware architecture which accepts extensions easily. DisChoco
can be used for simulation of a multiagents environment on a single Java
virtual machine, or perfiormd in an environment physically distributd for
s rcalistic use. Eaú agent in the environment is oreuted asynúronously
in a separate execution tbread, and communicate with its pers tbrough
message exchange. DisChoco takes into account an agent with a complex
local problem, message loss, mmage cornrption, and mmsage delay.

3.2.2 The Mozart Prograrnrning System

The Mozart system [5] provides state-of-theart support in two areas: open
distributed computing and constraint-based inference. Mozart implements
Oz, a concurrent object-oriented language with data,flow synchronization.
Oz combine concurrent and distributed pro$a,mming with logicel constraint-
based inference, making it a unique choice for developing multi-agent sys-

tems. Mozart is an ideal platform for both general-purpme distributed ae
plications as well as for hard problems requiring sophisticated optimization
and inferencing abilitie.

Constraint Programming

Oz is a powerful constraint with logic variables, fi1if,s flsmsins,
finite sets, rational trm and record constraints. The ffiem is competi-
tive in performance with stateof-the'art commercial solutions, but is much
more ortrrresive and floriblel proüding first-class computation spaces, pro
ge.mmalls search strategie, a GIII for the interactive exploration of search
tree, parallel seârch engines oçloiting computer networks, and a progra,m-
ming inte,rfa,ce to implement new and efficient constraint s1ntems.

46

Open Distributed ComPuting

The Mozart system [5] is an ideal ptatform for open distributed comput-

ing: it makm the network complete§ tranqrarent. The ilhrsion of a com-

mon store is extended across multiple sites and automatically suppoúed by

very efficient protocols. In addition, firll control is retained over network

communication patterns, permitting very e.fficient use of network re§ources.

F\:rthermore, reliable, fault tolerant applications can easily be developed.

3.2.3 Disolver: The Distributed Constraint Solver

Disolrrcr [38] i" a constraint-based optimization engine. It relies or â.n ex-

tended constralnt Programming paradigm which sm,mlesly integratm
local search. It is mpecially dmigned to run on multi-core, parallel and
distributed architecture and come out as a C++ library.

Disolver is the first suite devoted to combinatorial problem solving in
distributed and Grid-like infrastructurm. It initialty ca,me out as a research

tool. Ifowener, it was also used to solve large industrial problems. So far, it
has ben used to addres the following problems'

. re60urce allocation,

o publishing,

o econtracts negotiation,

o scheduling,

o disüributed scheduling,

o configuration,

o model-checking,

o caPacitY Pla.nning,

o packing.

Therefore, it claims to be robust enough to tackle very large problems

(involving tens of thousands constraints over thousands of variables).
For the Disolver general arúitecture refer to figure 3.3.

3.2.4 Alice System

Alice ML [4U i" a functional progra,mming language based on Standard
ML, extended with rich suppoú for conclrrent, distributed, and constraint
progra.mming. Alicr ML extends Standard ML with several new featurm:

47

Appllcaton

TíÉbasd
SÊãctr

Local s€actr

S€CU€Íffal S6ch

CúpoEliva
FrãnffiDri

Dlstbuted
ssadr

karlÊl
S@.rr

Gllh§
GÍts

Disolver
MPI

ç++ld

Figure 3.3: Disolver General Architrcture

o trtrtures: laziness and light-weight concurrency with implicit data-
flow qnrúronisation;

o Higher-order modules: higher-order íunctors and abstract signa-

tures;

o Packages: integrating static with dyna,rnic typins and first clas mod-
ules;

o Pickl i ng: higher-order type-safe, generic platform-independent per-
sistencel

o Components: platform-independence and typesafe dynarnic import
orport of modules;

o Distribution: typesa,fe cross-platform remote fiructions and network
mobility;

o Constraints: solving combinatorical problems using constraint prop
agâ,tion and progra.mmable searú.

The Alice [41] System is a rich open-source progra,mming system featur-
ing the following tools:

48

o Virtual machine: a poúable VM with support for just-in-time com-
pilation;

o Interactive sSrstem: an interpreter-like interactive toplevel with easy

graphical interface;

o Batch compiler: separate 6pmpilation;

o Static linker: type-safe bundling of comtrronentsl

o Inspector: a tool for interactively inspecting data structurml

o Explorer: a tool for interactively investigating search problems;

o Gtk*: a binding for the Gnome toolkit GUI library;

o SQL: a library for accesing SQL databases;

o XML: a simple library for parsing XML documents .

Distribution Concept in Alice

Alice also proüdes high-level means for processes at different sites to com-
municate directly.

Tidsets The first mechanism that allours sites to stablish peer-to-peer
connections is ofier and take. A process can crea,te a parJoge and make
it arrailable to other processes. Offering a padrage opens a communication
port and returns an URI for that port. The LIRI is ca[ed a ticket. A ticket
can be transfemed to other site, say by email or through some web docu-
ment. Other sites can then obtain the available padsage using the ticket. Of
course, the e:çorting site may also obtain it itself. In general, toke exitan-.

lishes a connetion to the communication port denoted by the ticket, and
retrievm the offered pado,ge. Tbansfer of the pad«age is defined by the pick-
ling/""pi"Lli"g semantics, i.e. the whole closure of the padrage is transferred
to the client, including any code reprsenting embedded functions.

Proxie Tickets are intended merely as a means to stablish an initial
connection between sites. All subsequent communication should be dealt
with by the firnctions in the offered paclo,ge. Alice provides ê very simple
feature to enable this idiom: pronies. A pro:ry is basically an RPC stub, a
mobile reference to a stationary function that can be used in place of the
function it references.

The library firnction

Renote.proxy : ('a -> 'b) -) ('a -> 'b)

49

creates a proxy for an arbitrary firnction:

fnnfib(0I1)=1
I fiU n = fib (n_1) + fib (n_2)

val fib : int -> int = -fa
va1 fib' = Remote.proxy fib
val fib' : iat -) int = -fn

The reulting function has the sa.rne type as the function it references.

When it is applid, all arguments a,re forwarded to the original function, and
the reult is transferred back:

fib, 20
val it : int = 10946

Pickling a pro)ry does only pickle the rmpectine reference and not the
referenced firnction. When the pro:ry is tra,nsfened to a diffenent site (e.9. by
ofiering it as part of a padrage) and then applied at that site, all arguments
will be automatically transferred to the site hosting the referenced firnction,
the result will be computed there, 61d finally transferred back to the client
site. That is, applying a pror,cy is practically a remote procedure call (RPC).
Ttansfer is agaio defined by pickling semantics.

50

Part III

Description: Distributed
Constraint Solver -

AJACS /C

51

Chapter 4

AJACS /C Description r
Distributed Patterns and
Implementation

This chapter will describe the AJACS/C Constraint Solver to the reader.
First preent its scope and model, later on how it may be integrated with
the DSM-PM2 library [1] and finally present the implementation dsf,s'ils as

a more in-depth look of the AJACS/C architecture.

4.L AJACS/C Model Description

Due to its organization AJACS/C (* ÀJACS [3] is) produce independent
states as reult of state expansion. Indepeudent in the sense that each store
(plus the constraint problem conta.ining the constraints them selfr) carries
all the information necessary to be considered a possible solution for a given
problem. This state independence will be the basis for a distributed con-
cept to take shape since in theory it shall be posible to parallelize constraint
problem solving by spreading each produced state â,mong several procesing
units without too much foresen interaction. This way all procmsing nodm
should be able to 'walk' through the problem space with the minimal knowl-
edge or av/a,reness of eaú other.

The minimal information each processing node requires, for its state
iteration and propagation, is to know:

o Where to look at for new state to search;

o Where to store the orpanded potential solutions, i.e. the states that
resulted from a successfirl propagation;

52

. where and how to signal the eventual found solutions to a problem

master controller.

It is foreseen to be relatively easy to orperiment DCP orrcr DSM-PM2
on a'native'way, i.e., using a direct approaú where the C language is to be

used for implementation. In result the AJACS/C inherits the basic AJACS
Model and implements it in the C language envirorment.

4.1.L AJACS/C Static Model

As said before the AJACS/C constraint solver, to be developed fully in the
C language, inherits most of its model carachteristics from the AJACS [3]
system, that was implemented in Jana. Please refer to AJACS [3] for firll
details on the AJACS model or refer to figure 3.1 (AX Classes of AJACS)
for a brief picture of the AJACS classes.

The first challenge was then to srcessufirly implement / pott the AJACS
model to the C environment. Tio accomplish this most of the AJACS ob
ject characteristics were ported directly, when possible to C data structures,
na,mely to stru,cts.

See in figure 4.1 a repreentation of the AJACS/C static structure final
look.

AII the information regarding a, 6srta-in Constraint Progra,m, involved
constraints, number of variable ne,oessa,ry to map the particular problem as

for its initial state, has its heart in the Prcblcrn structtue.

The Problem is the static core of a given constraint system and is the
msencial part of the constraint problem initialization. It contains informa-
tion regarding:

o rslnit': The initial state of the problem (tne initiat store with the
frst set ofvalues for each rmriable);

o «Constraints Listt': The list of all the problem constraints;

o "List of Constraints per rrar': A speial list of constraints that
holds'tneta-information" regarding which constraints are associated
to eaú variable.

This last item is very usefirl to kuow at any time exactly which is the
list of constraints asociated to each rmriable of the problem. This is crutiaJ
information to know at propagation time where all constraints, associated
to some variable which its domain value has been changed, neds to be

satisfied.

53

ÍtEVolm

SÍORE {dnn)

PROBLEII val§ [wíl Iwil

&tre(Bha,

CôGdrÍ6 Lbl GOÍ{EÍRÂIilT FDDVdüô

CarBtdrlÍbÍ lOl VBltnBo

líl Vslú6í

I 2 I Vdua2

INl VdüeN

LEtdCdtstt. dwí l0l GsEüehlí

ll I CoÍEtBlÍüz

[0] Eni

INI EtrNl2l cdlflm!ü3

[1] Vú2-61§üti$t ÍNl CGiahiN

COI{STRÂ!}|TDat
Í21 Vaí3_6rsrUst

Cmsf-Nare

NI VsIN_s§rlis tlpddeFlmdbi

Figure 4.1: AJACS/C Static Model

54

If the Problem structure is the 'hea.rt' of the constraint problem the
Consbti,nt structure is the "brain".

The Constraint contains static information rqarding all the reiations
between the nariablm. The Constmi,nt Delholds the definition of the con-

straint namely its na,me and the associated update function. The Upd'ate

frrncti,oniscalled during propagation zsd ssafejns the list of steps nec*sary
to update the constraint's involved variables domains.

Finally the Store structure holds information regarding the current state
of the rrariable domains, repreented by FDD Values. A-u FDD Value
represents a finite domain associated to some rmriable. slni,t is the specific
store that holds the initial state of the problem.

4.1.2 AJACS/C Dynamic Model

In the last section the AJACS/C static structure was presented. That rep
reents the information necessar;r to caracterise a problem, in other words

all the building blocks necessary to identifr one problem as specific. By
knoning the "Problem" one appücation understands what the problem is
but still is not sufficient to know how to solve it.

For solving a constraint problem the application still needs to know:

L. How to select and expand new states (stores) from the initial state?

2. How to search over the e:rpanded problem space (Depth-First search,

Breadth-First sea,rch, other, ...) ,,nd recognize the problem solution(s)?

For L) the answer is that the constraint solver appücation needs to im-
plement some Strategg to know how to split some state into its child states
(being those potential solutions for the problem). The Stratery structure
cpaf,a.ins information on how to select and split one store in other poten-
tial solution stores. The adopted mechanism in AJACS/C is to reduce one
variable, on the currently iterated store, turning it into a ground value (siu-
gleton). Due to this value domain reduction, the application will then trigger
the problem propagation so that all the other nariable may be updatd
266pxding to the introducd change.

Fbr 2) the constraint solver application needs to implement wme Senrch
meúanism to garantee a zuccesfirl, efficient and firll iteration on all the
potential problem space. The Search procedure will implement some al-
gorithm search and in coqjunction with the Stmtegy walk through all the
problem space and find atl the possible solutions (if ully). AJACS/C cur-
rently implements the DFS sarch mechenism by using a stack (LIFO) for

oa

storing all the splitted state. Store are evaluated one by one from the top
ofthe stack and any splitted states stored also at top ofthe stack.

Figure 4.2 illustratm the AJACS/C Dyna,mic Model. Roughly spea.king

the Problem injects all the nffiary constrairt static information. The
Search supplies the searú algorithm (AJACS/C uses DFS by default but
others could be used). Storm S12 and 5133 (in blue) are identified as

problem solutions which mea;ns that all the contained rmriable values are
ground - all rariablm hane ben instantiatd with some value.

s2 s3

s0

31

sí1 st2 s't3

32

{1, ?, ..., n}

{t,2,, ., n}

sí31

Figure 4.2: AJACS/C Dynamic Model

S1tli, (§oluton)

BFS DFS

§iEARCH

SelEts
SIRÀIEGV

CisfisffiiB

PROBI.EI'

í, 2, ..-. n)

(r.2...., m)

(1.2. .,., n) {r,2. n) {1, 2. n)

2, m) 2. ..., ml 11 ,2. ..., nl

h {1,2, , ,, r}

2,.,.,m)

{t. a ..., n) {1,2, ..., n} kí

2,...,m' , e -.., rn) hl

56

4.L.3 AJACS/C Extensabiüty

With this model ÀJACS/C is errtensible in the way that new constraints ca,n

easily be added to the system. To define a new constraiut the progra,mmer
just needs to define the asociated Update F\mction with the intended
constraint etrect.

To note also that the ÀJÀCS/C dynalnic properties are also e»rtensi-

ble in what the Search and. Shategg is concerned. The progra,mmer is al-
lowd to switch or add alternatines, for instance propme new search methods
with specific objective or propose different store split strategies in order to
change how the constraint solver behaviour works.

4.2 Distributed Sharing Patterns with AJACS/C
AÍId DSM-PM2

AJACS/C implementation allows it for distribution, due to the store inde
pendence feature. The next step was the integration with the DSM-PM2 [1]
module (see figure 4.3) for a real distributed exa,mple. For this the focus
now turned to the PM2 and DSM-PM2 ofiered capabüties. The objective is
tr[s implementation of DSM-PM2 appücation ena,mples that may sucmsfirlly
integrate and run AJACS/C problems.

E§il-Ptt2

IEll pralcot polby

Étr potrd lü

tl§il pEge msn€e, IISUcomm

PIE
Tlnedsrüaydem

EE
Gomrrsubyslen

Figu:e 4.3: DSM-PM2 AJACS/C Architecture

With the AJACS/C DSM-PM2 integration in mind two distribution pat-
terns were deigned for orperimentation:

1. Centralizd Distribution Pattern

2. Local Distribution Pattern

AJACS'G

57

4.2.1 Centralized Distribution Pattern

This Pattern deignats one cluster node has the master node and the re
mpining as the worker nodes (different nodes meaning difierent machine
in the PM2 configured cluster). The master and worker profile are trig-
gered/enrolled at nrn-time e:reortion where the first configured cluster node
will assume a master profile and the rema,ining the worker profile (see figure
4.4).

The idea búind the masüer profile is for it f,6 maintsin a central DSM
structure (hereby the pattern na,me) that holds all the cunent, still to be
invmtigatd, problem states. All nodes have write and read acffi to this
central structure. Every worker will be allowed to get stores (new jobs)
and put store (the resulting state produts of the la.st iteration and prop
agation).

Worker I Worker 2 Worker N

ltl|aster Node

Figure 4.4: Centralizd DSM structure Architecture

For a more complete and efficient approach the deigned pattem will
make sure that a,fter the initialization phase, compreending the central data
structure creation and remote enecution of all the threads on all nodes,
the node that took the master profile will spawn an additional local thread
to endorse the worker profile, this way all rnaeJrines/node will behave as
workers a,fter the initial initia.lization step has been performed.

This way the centralized DSM data-structure, reident in the Mas-
ter Node, will be the data communicatiea link beúween all the nodes, the

Ethennet

58

DSM-PM2 coherence protocol will abstract the user to the synchronization
overhead management of the shared structure and asure the correct acoeÉis

and behaviour from all threads in all nodes in a safe and coherent mâ.nner.

See figure 4.5 for the Master centralized pattem pseudocode:

init-states = search-initial-states (slnit) ;
dsn-list . put (init_states) ;

FORi=1T0n
I{orkerli] E DeE Renotel{orker(dsn-list) ;

tlorker[O] = neg tocallíorker(dsn-list) ;
IIEILE (not_aIl_finisho > D0

yaftO;
printSolutions O ;

Figure 4.5: Centra.li"ed Distribution Pattern - Master Algorithm

See figure 4.6 for the Worker centralüed pattern peudocode:

!üHILE < dstr-Iist not enpty > D0
j = dsn-list.getO;
L = search-solutions(j) ;

F0REACEIinLD0
IF <1 is solutton)
THB{ print-eolution(1) ;

ELSE dsn_list.put(j);

Figure 4.6: Centre.lized Distribution Pattern - Worker Algorithm

This distribution pattern itends to verify what is the application be
haüour (DSM-PM2 with AJACS/C) when the problem space is shared in
real-time by all working node during the search ocecution. This model is
more simple and easier to implement but more communication betwen the
nodes is e»çected. Reults will be evaluated in chapter 5 of this theis.

4.2.2 Local Distributed Pattern

In this distribution model all workens have a dedicated DSM local data
structure to ynanage its share of the new state orlransion, so errery worker
gets and puts jobs directty from/into its local data sbucture (see figure 4.7).

On execution start the initial state is spawned and the reult child stores
are distributed a,rnong all the workerr (including the one that initilized the
search) on a round-robin fashion. After this point all workers start their
search independently.

59

Dgilr
1

m-M
!t

Elhernet

2

Worker 1 Worker 3

Worker 2

Figure 4.7: Locd, DSM structure Architecture

See figure 4.8 for the Master node local pattern pseudocode:

init-states = search-initial-statEs (slnit) ;

tEfr=0;
F0REACU k in initial-states

tsorker [s] . loca1-dsn-list.put O ;
g' = (u, + 1) % number_nodes;

Figure 4.8: Local Distribution Pattern - Master A§orithm

When the worker nodm have their share of the problem space inside its
DSM local structure, ea,eÀ node will start the search independently from
eaú other. AII solutions a16 signaled by each worker node when found.

See figure 4.9 for the \[orker node local pattern psandocode:

This distribution pattera itends to verify what is the DSM-PM2 AJACS/C
application behaviour when the problem space is equaly, or similarly equaly,
distributed among the DSM structure of all the nodes before the actual
start of the sea,rch execution. This model is closer to a full parallelization
mchanism, les simple to implement beause each node pust mp.nage its
DSM local data structure but in the other hand little communication is

N

60

IIHILE < local--den-list is not enPty >
nextS = local-dsn-list.getO ;

L = eearch-solutionso;
FOREÂCUkinLD0

IF < k is soLution >

THEN printSol-ution (k) ;
ELSE local-dsn-liEt.put (k) ;

END

Figure 4.9: Local Distribution Pattern - W'orker Algorithm

to be orpected between the network node. Exa,mples and results will be
evaluated in section 5 ofthis thesis.

4.3 AJACS/C Implementation Details - API
This section will present the AJACS/C implementation details. The idea is
to preent an inner look (and eúdence) on the developed constraint solver
(AJACS/C) and can be of more interest to the hardcore reader. The general

reader may skip this section.

4.3.L bittar.h
f\rnctions Overview

o ba_initO;

o ba-neso;

o ba_copyO;

o ba_assiguo;

o ba_valueo:

o ba_toggleO;

o ba_all_assigao;

o ba_u12bO;

o ba_countO;

o ba-i-ntersectiono;

o ba_unionO;

6L

o ba-diff0;

o ba-conplenento;

Structs & Variables

typedef struct
t

elem-t size; bit {.vector;
) BltVector;

bainit
Declaration:

elem-t ba-init(void);

/*

*/

PRE: Must be called before use of any other ba_ functions.
Should only be caIled once.
P0ST: Returns the nunber of values that can be stored in one
of type 'bit'. If <linits.h) doss not define CIIAR_BIT, then
the nodule global variable 'BITS-SZ' has been sêt to the
appropriate va1ue.

banew

Decla,ration:

bit *ba nen(const elern-t nelenE);

/tr
PURF0SE: dyaanically allocate apace for an array of 'nE1ems,
bitE and iaitalize the bits to al-I be zero.
PRE: nelens is the number of Boolean values required, in an
array
P0ST: either a poi-uter to a.n initializEd (a11 zero) array of
bit 0R space ras not availabl-e and NULL uas retuxaed
NOTE: caltoco gua:rarxtees that the space has been initialized

62

to O.

Used by: ba-u12bo, ba-intersectiono and ba-uniono
*/

ba-copy

Declaration:

void ba-copy(bit dst[], const bit src[], const elen-t size);

/*
PRE: 'dst' has been initialized to hold 'size' elements.
'src' is the array of bit to be copied to (det'.
P0ST: 'dst'is identical to the first csize'bits of'src'.
'src' is unchanged.
Used by: ba-uniono

tr/

Assigaing and Retrieving Va1ues

$a assigrr

Declaration:

void ba-assigu(bit arr[], elem-t e1en, coDst bool value);

/*
PIIRPOSE: set or clear the bit in position 'êleu' of the
array tarr'
PRE: arr[elen] is to be set (assigned to 1) if value
is TRIIE, otherrise it is to be cleared (assigned to 0).
POST: PRE fulfilled. Â1I other O1a" rrsqhanged.
SEE ALSO: ba-alI-assigpo
Used by: ba-u12bo

*/

63

ba-'nalue

Declaration;

bool- ba-vaIue(const bit arr[], con§t elem-t elern);

/*
PRE: arr lnust have at least elem elements
POST: Tlre value of the 'elen'th elsnent of arr has been
returned (as though 'arr' sas just a 1-di.nensional. array
of bit)
Used by: ba-b2etro and ba-counto

*/

ba-toggle

Declaration:

void ba-toggle(bit arr[], const elen-t elen);

/*
PRE: arr must have at least elem elements
P0ST: l]re value of the 'e1en'th elenent of arr has been
flipped, i.e. if it was 1 it is 0; if it was 0 it is 1.
SEE AL§i0: ba-conplenento

*r/

ba-ptljssflgn

Declaration:

/*

void ba-a11-assign(bit arr[], const elen-t Isize, const
booL value);

PRE: arr has been initÍalized to have *exactly* size
elemeats.
P0ST: All 'size' elements of arr have been set to 'value'.
Ihe array is in canonicaL form, i.e. trailing elements
are aIL 0.

M

N0TE: the array allocated by ba-newo nas all- elenents 0
and is therefore in canonical fotm.
SEE ÂIli0: ba-assigno
Used by: ba-u12bo

*/

ba-ul2b

Declaration:

bit 'rba-u12b(unsigned long nun, bit *arr, elen-t r'size);

/*
PRE: Either

'arr' points to §pace allocated to hold enough

'bit's to represent 'num' (namely the ceili'g of the base

2 logarithn of (num'). 's!ze' points to the number of bit
to use. 0R 'arr' is NILL and the caller i's requesting that
enough space be aLlocated to hold the rePrêsentatioa before
the translation is made. 'síze' points to space allocated
to hold the count of the number of bit needed for the
conversion (enough for I{AXL0NG).

POST: Â pointer to a right-aligned array of bits
representing the unsigned value num has been returned and

'síze' points to the number of 'bit's needed to hold the
value. 0R the requeat to aflocate spaco for such atr array
could not be granted

N0TES: - The first argunent is unsigued.
- It is bad to Pass a 'sizê' that is too enall to

hold the bit array rePre§êntation of 'nun' [K&R II, p.1001.
- Should the 'size' be thE naximum size (if size > 0)

even if nore bitE are needed? Tlre user can always usê a
filter conposed of alL 1s (seE ba-a11-assiglO) intersected
with result (Eee ba-interEectiouO).

*/

ba-b2str

Decla,ration:

charr ba_b2str(const bit arr[], const elen-t size,

65

chart dest);

/*
PRE: íarr' is a bit array with at least '*ize' elemente.
Either 'dest' poi-nts to enong! allocated sPace to hold
'síze, + 1 characters or 'dêst' is NUIL and such sPace

is to be dynarnically allocated.
P0ST: Either 'dest' points to a null--terainated string
that contai-ns a character representation of the first
'sízet elements of the bit array tarr'; 0R tdeet' is
NUIJ and a rsquest to dy:nanically allocate Eêmory for a

string to hold a character rePreserxtation of 'arr' sas

aot be granted.
Used by: ba-printo

*/

ba-print

Declaration:

bool ba-print(const bit arr[], const elen-t size, FILE * dest);

Mathenatical Applications

ba-count

Declaration:

nnsigned Long ba-count(const bit arr[], const elen-t eíze)i

/*
PRE: íarr' Ls an allocated bit array Íith at Least 'Éíze'
elenents
POST: The number oÍ 1 bits in the first tsize' elenents of
'ar' have been returned.
N0TE: if arr is not in canonical form, i.e. if some rmuged

bits are 1, then arr rmexpected vaLue nay be retuzaed.
*/

66

baintersection

Declaration:

bool ba-intersection(bit firet[], tit second[, bit * result[],
const el-em-t size-first, const elem-t size-second);

/*
PRE: (first' is a bit array of at least 'size-first' elements.

'second' is a bit array of at least 'size-second' elenents.
'regult' points to enough sPace to hold the as nany eleneatE as the
snallest of ísize-firet' and 'size-second'; 0R 'result' poi[ts to

NUIL and such space is to be dyaanically al-Located.
P0ST: TRIIE has been retumed and 'result' points to a bit array
containing the intersection of the turo arrays uP to the snallest of
the tno sizes; 0R FALSE has been returaed and 'result' pointed to
NIIIÍ (a request was made to allocate enough nenory to store the
intersection) but the reqtrired menory could not be obtained.
NOTE: This runs faster if the 'first' array is not srnaller than
(gecond'.

*/

ba-union

Declaration:

bool ba-union(bit first[], Uit second[], bit * result[], const elen-t
size-first, const elem-t size-second) ;

/*
PRE: 'first' is a bit array of at least 'size-first' elenents.
(second' is a bit ariray of at least tsize-second' elernents. tresuLt'
points to enough space to hold the as nany elenents as the largest
of 'size-first' and 'Eize-second'; 0R 'resuLt' points to NIILL and

such space is to be dynanicalLy al.located.
P0ST: TRIIE has been retuzaed and 'result' points to a bit array
containing the unioa of the two arrays (up to the size of the largest
of the two slzes); 0R FAtSiE has been returaed and 'result' pointed
to NULL (a request was nade to allocate enoug! meuory to storê the
union) but the required nenory could not be obtained.
N01E: this runs faster if the 'first' array is not smaller than
'sêcoud'.

*/

67

ba-diff

Declaration:

bool ba-diff(bÍt first[, bit second[], bit * result[],
const elsn_t size_first, const elem_t size_second);

/*
PRE: 'first' is a bit array of at least (size-first, erements.
'second' is a bit array of at least .size_second, elements. .d.iff,
poiats to enough apace to hold the as nany erements as thê rargest
of ísize-first, and 'size-Eecondr; OR .diff, points to MILL and
such space is to be dlmanically allocated.
P0ST: TRIIE has been returned and .diff, points to a bit array
containing the union of the two arrays (up to the size of the largest
of the two sizes); 0B FALSE has been returned and ,result, pointed
to NIILL (a request was made to allocate enough Eemory to store the
result) but the required Bstnory could not be obtaiaed..
I{OTE: This runs faEter if the 'first, array is not snaller tha-ntsecond'.

*/

ba-complement

Declaration:

void ba-conplenent(bit arr[], const elem_t lsize);

/*
PRE: 'aÍT'
elements.
P0ST: ALl the bits in .arr, have been flipped aad .arr, is
in canoaical fo:rm.
SEE ALSO: ba_toggleo

is a bit aliray composed of *exact}X* .size,

*/

ba-dotprod

Declaration:

68

Declaration:
r:nsigned long ba-dotprod(const bit first[], const bit secondü,

const elen_t eize_first,
consü elem-t size-second);

PRE: 'first' is an array of at least 'size_first, bits.
ísecond' is a.D array of at leaet 'si.ze_second, bite.
P0ST: The scalar product of the tuo vectors represented by the
first 'size-first' elements of 'first, and the flrEt 'size_second,
elements of tsecond' have been returaed.

*/

4.3.2 constraints.h

F\rnctions Overview

o eq_updateO;

o le_updateO;

o lt_updateo;

o noattack_updateo;

o alldifferent_updateO ;

. create_constraj:nt_X_Yo ;

Structs & Variables

typedef struct {
ConstraintDef *constr ;

int eav[6];
) Constraint;

typedef etnrct {
char* naEê;
int (rupdate) O;
Ínt nargs;

] ConstraintDef;

ConstraintDef *constraintDefs ;

/*

69

eq-updat€

Decla,ration:

int eq-update(int env[], int nargs, Store'r s, int i);

/tr
I=Y
Variable (i) changed, update (store) according to constraint (=)

PRE:

'eav' is the constraint environment; 'nargs' is the size of the
environment; 'store' is the store that holds the valuee; 'i' the
ç5anged variable
P0ST: store with updated values.
N0TE: The bittarr.h intersectionO firnction is used.
USH) BY: updateÂlIo

*/

le-update

Declaration:

int le-update(int env[], int aargs, Store* s, int i);

/*
X(=Y
Variable (i) ch"',ged, update (store) accordirg to constraint (<=)

PRE:

'snv' is the constraint environrnent; 'nargs' is the size of the
envirornent; 'storê' is the storê that holds the values; 'i' the
6[anged variable
POST: store with updated values.
USED BY: updateAllo

*/

It-update

Declaration:

70

int lt-update(int env[, iat nargs, Store* s, int i);

/*
x<Y
Variable (i) changed, update (store) according to constraint (<)

PRE:

'env' is the constraint enviro$nênt; 'nargs' is the size of the
environnent; 'store' is the store that holds the values; 'i' the
g5anged variable
POST: store uith updated values.
USED BY: updateAllo

*/

noattack-update

Declaration:

int noattack-update(int env[, int nargs, Storê{. s, int i);

/*
X no attack Y (Queens example Constraint)
Variable (i) chânged, update (store) according to constraiDt

PRE:

'env' is the constra:int environnent; 'nargs' is the size of the
enviroament; 'store' is the store that holds the values; 'i' the
s[anged variable
POST: storê rith updated values.
USED BY: updateAllo

*/

alldifferent-update

Declaration:

int altdifferent-update(int env[], int nargs, Store* s, int i);

/*

7L

X != Y (n-Fractions example Constraint)
Variable (i) changed, update (store) according to constraint

PRE:

'Erxv' is the constraint environment; 'nargs' is the size of the
environment; 'store' ls the store that holds the valuesf i' the
6[anged variable
POST: stors uith updated values.
usH) BY: updateAllo

*/

create-constraint-X-Y0

Decla,ration:

create-constraint-X-Y(int c-idx, char* naae,
int Í-pos, int Y-pos, void* func);

/*
Creates a X<->Y Cconstraint (e.g. X = Y, X no attack Y, ...)

PRE:

c-idx is the constraint defiaition identifier
nane is the constraint nane
X-pos defines of Í is left or right side of the constralnt
Y-pos same a§t for X-pos
func is the update function pointer
POST: ators vith updated values.
IISED BY: constraint application

*/

4.3.3 fdd-value.h

Í\rnctions Overview

o eq-updateO;

o Le-updateO;

o Lt-updateO;

72

o grourdo;

. enPty(v);

. equalo;

. nrho;

. firsto;
o lasto;
o nerto;

o get0;

o cardinality0;

o clear-frontoO;

o clearo;

o seto;

o copy-nevO;

o new-value-singleO;

o new-val-ue0;

o invalido;

o printValueo;

o new-IntÂrrayO;

Structs & Variables

typedef struct {
size-y sÍze;
bit{. vector;

) Bitvector;

typedef struct t
size-y size;
int* arr;

) IntÂrray;

73

tytrledef stmct t
int nin;
iat nax;
Bitvector bv;

) fdd-value;

typedef stnrct {
int Ei-n;
int nax;
int size;

) pn2-fdd-va1ue;

ground

Declaration:

bool ground(fdd-va1ue* v) ;

A value is gror:nd if it contains a single elenent.
Returns true if ground, false otherrise.

empw

Declaration:

bool enpty(fdd-va1ue* v) ;

A value is ênpty if it contains no elenents.
Returas true if enptlr falee othersise.

equal

Declaration:

bool equal(fdd-va1ue* v1, fdd-valuer. v2);

Two valueE are considered equal if they contai[the exact sane elements
Returns true if egual, false otherrise.

74

nth

Declaration:

int nth(fdd-value*, int x) i // n,th element

REturns the values nth element.

ffrst

Decla,ration:

lnt first(fdd-va1ue* v) ; ll Íirst element

Returas the values first elenent

last

Declaration:

int last(fdd-va1ue* v) ; // l.ast element

Retum.s the value's last elenent

next

Decla.ration:

int nerE(fdd-va1ue* v, int e); // rert, element

Returas the values element sequentially after e.
Returns -1 if e is the last elenent.

get

Declaration:

bool get(fdd-value* v, int i);

Glrecks if thê i elenent position is set.
Returns true if i is set, false othenrise.

75

cardinality

Declaration:

int cardinality(fdd-value* v) ;

Returns the cardi.nality (nunber of values) of thê fdd-value

clear-fromto

Declaration:

void clear-fronto(fdd-vaLue,i v, int i, int k);

Clears (nnsets) al-l elernents in the value fron position i to k
(inclusive).

clear

Declaratiou:

void clear(fdd_va1ue* v, int í); // clear bitset value

Clears (unsets) the values element position i.

set

Declaration:

void set(fdd-va1ue* v, int e); // set bltset value

Sets the values element position e.

copyJrew

Declaration:

fdd-value* copy-neu(fdd-va1ue* v) ;

Clones a value.

76

new-value-single

Declaration:

fdd-vaIue* nes-va1ue-sÍngle(int e) ;

Creates a singl_eton value.

new-value

fdd-vaIue* new-value(i.nt min, int nax);

Creates a nsw value.

invalid

bool invalid(fdd-value* v) ;

A value is considered invalid if its naximun is equal to its minimun

both equal to -1.

printValue

void printValue(fdd-vaIue* v) ;

Prints a value on screen.
Uees ba-b2strO.

newJntAray

IntArray'r nes-IntArray(int size) ;

Creates a new IntArray strlcture array.

77

4.3.4 problem.h

E\rnctions Overview

o updateAllo;

o ner-probteno;

o add-constrainto;

o add-Cvo;

Structs & Variables

typedef struct {
Store* slnit;
int nC;
Constraintt C;

int nCv;
Constrairt*** Cv;

) Problen;

// ír,ii"ial gtore
// * corstraiats
//],ist of constraints
// síze of store
// tist of constraints Pêr variable

updateAll

Declaration:

int updateAll(Problen* P, Store* s, int i);

Function called to start each propagatloa run. Updates the storeE
values according to êvêry constraint.

new-problem

Declaration:

Probl-en* new-problen(Storer, s, int n-constraints) ;

Create, alLocate menory for, a new Problen. lte problen eize is
estabLished by the size of its Etore and by the number of involved
constraints.
ReturDs a pointer to a Problem.

78

add-constraint

Declaration:

void add-constraint(ProbLen* P, int var, Constraint* c,
IntÂrraY't' cVx);

Adds a Constraint to the Problem, i.e., includes the constraint
pointer to the constraints list. Fills up the Constralnts list sith
the conetraints environment.

add-Cv

Declaration:

void add-Cv(Probl-em* P, irt var, Constraint* c);

Adds./Âssociates the constraint given by "cn to the va:ciable given by " var't

4.3.5 search.h

Flrnctions Overview

o backtrackO;

o nes-searcho;

o seaxch-solutionO;

o search-solutioa-no-backtrack O ;

Structs & Variables

typedef struct {
int index; // ourrerrt value[index]
iat solutiorrgi // number of solutione

) Search;

79

baclrtrack

Declaration:

void backtrack(Stratêgft St, Searchx Sr)i

Backtracks for nore solutions, i.e., gets back up on the search

tree (to the ancestor aode) and tries a different element (index) '

special Note: The backtrack featrtre was implenented as in the
original AJÂCS nodel but can be cousidered an oPtional feature
since AJACS/C nay work sithout ito inplenentation.

For not using backtracing mechanisn AJÀCS/C Proposês the alteraative
f unct ion : search-solutiou-no-backtrack ()

uew-search

Declaration:

Search* nes-search(int index) ;

Creates and initializes a new Search.

search-solution

Declaration:

void search-eolution(Probl-en* P, Strateg]Í* St, Search* Sr);

Find the Problen solutione. Takee the Problen P, inplernents the
Strategy St.

searchsolut ion* opclçtr oclç

Declaration:

void search-solution(Problemr, P, Strategy* St, Searchx Sr);

Find the Problen solutions sithout using backtracking
Tales the Problen P, implments the Strategy St.

Note: Uses a stack to hoLd the stores as they are evaluated

80

4.3.6 store.h

F\rnctions Overview

o nvarso;

o getValueo;

o setValueo;

o nerüStoreo;

o printStoreo;

o printstore2O;

o new-storeO;

o copyStore0;

o copyStore2O;

o store-2-pn2StoreO;

o pn2Store-2-storeo;

Structs & Variable.s

typedef struct Store Store;

struct Store {
Store* ancestor; // atcestor store (state)
i-nt var; // active var
int nvars; // lrrurbq of variables (lines)
fdd-va1ue ,rthevaLuêsl}l; // the values

);

typedef stmct {
int var; // active t*
int nvars; // rrumber of variables (lines)
pn2-fdd-vaIue theValues[l2] ; // tle valuee

) pn2-Store;

8L

nvars

Declaration:

int nvars(Store* s);

Retrrns the number of vars of Store s.

getValue

Declaration:

void getValue(Store* s, int i);

Gets a value fron Store s at position Í.

setValue

Declaration:

void setValue(Store* s, int k, fdd-value* v);

Sets a value iu Store s at Position k.

nextStore

Declaration:

Store* nertStore(Strategy,r §1) ;

Creates, and retums, a ne$ Store cloned fron the one hold by the
Strategy St.

printStore

Declaration:

void printStore(Store* s) ;

Prints a store fron a Store pointer on screen

82

printStore2

Declaration:

void priatStore2(Store s) ;

Prints a store from a Store variable on scrêen.

new-store

Decla,ration:

Store'F aes_store(int size) ;

Creates a nêu Store Pointar.

copyStore

Declaration:

Storer. copyStore(Store* old_s) ;

Cloaes and retutas a Store pointer from old-s Store Pointer.

copyStore2

Declaration:

Store* copyStore2(Store old-s) ;

CIonEs aad retur:as a Store variable fron old-s Store variable.

store-2-pm2Store

Declaration:

pn2-Store store-2-pn2Store(Store* s) ;

Transforns an AJÂC§/C Store into a PM2 Store.
Note: A PM2 Store is an fdd-vaIue, i.e., w'ith bitset differeut fron bi tarr.

83

pm2Store-z-store

Declaration:

Store* pm2Store-2-store(pn2-Store pn2-s) ;

Transforms a PIí2 Store into an AJACS/C Store.
Note: A P!í2 Store is an fdd-values, i.e., with bitsêt different from b itarr.

4.3.7 strategr.h

tr\ractions Overview

o selectVaro;

o seLectValueO;

o nes_strategyo;

Structs & Variables

typedef struct {
Store* store;

) Strategy;
/ / jrrítíú. store

selectVar

Declaration:

int EelectVar(Store* s) ;

Selects the next non-grormd variabLe to initiate the nert split and
propagation run.

selectValue

Declaration:

fdd-value{, selectVal-ue(int var, Store,r s, int index);

selects and retums the stores value corresponding to the index nth
position in the form of a gingleton vaIue. Thie value represents the
nert baEic option for propagation and a possibl-e next solution.

84

tewstro'tegy

Delaration:

StrategXr* neu-strategy(Store* s) ;

Creates and retu:ras a nes Strategy. In the beginning the Strategy
holde the Store s.

85

Part IV

Examples and Results:
Distributed AJACS /C with
DSM-PM2 benchmarking

86

Chapter 5

Examples and lnterpretation
of Results

The PM2 (Parallel Multi-Threaded Machine)[], introduced on early chap
ters, is a low level generic runtime system which integrate multithreading
management (Marcel) and a high performance multi-cluster communication
library Madeleine [6].

PM2 incorporate a DSM module (DSM-PM2) [1] that claims to be
ready to proüde the developer the ability to build progra,ms that take firll
advantage of the DSM concept.

The design snd final use of the DSM library i" highly dependent on the
selected consistenry model- For this DSM-PM2 ofiers the possibility to use
four different built-in consistency models:

o LLIilIDAK, a sequential consistency protocol;

o Migrate Thread, a peculiar protocol in which threads are moved when
they need some data that is outside its node scope;

o ERC, an eager release consistency protocol;

o IIBRC [47], an llome Based Release Consistency protocol.

The main objective of this chapter is to iúegrate and eurperiment AJACS/C
with DSM-PM2 s,ith a set of chosen example. Tbrough this next chapter
we erçlain how DSM-PM2 is configured, what will our cluster architecture
be like and finally a set of deigped ora,mples for e,:rperimentation are intre
duced, its sa,mpling figure presented as for interpretation of 'rris results.

87

5.L PM2 Configuration

The PM2 library [4] is still on its early beta releases. The release used for
this thesis study was the: pm2-200&'0}L6 1 - amZ-ZO0L0&16.tar.gz".

The PM2 library allows a wide range of configuration aspects to be set
up. Among others the user is allowed to:

o Choose and configure its favorite PM2 communication library from the
ones available: thee are the Madeleine librarie (currently between
an experimentation range from mad,l, mad,Z, mad,S and, rnaü;

o Configure the tbread he.nrlling library - this is the marcel library;

o Configure the DSM übrary;

o Configure the network úaracteristic (TCP, IIDP, VIA [45], others
...) ;

o Configure the debug information;

o Configure other basic pm2 characteristics.

The PM2 setup used for running the exa,mplm was:
(as result of pm2-config-flavor -text - option 4) - flavor pm2)

Module pn2 rith options: opt build-static
Module dsn with options: opt build-static
Module marcel with options: opt build-static nono

Module nad3 uith optio",, ili-;1ili1;3lill ;arcel-nain
Modul-e tbx with options: opt build_static
Module ntbx uith options: opt build-static
Module init sith options: opt build_static

With "opt" meaniug "optimized"- Tonotethat we configr:red the madeleine
3 [6] library, the one that come by default on this PM2 release. To note
also that we configured TCP for network protocol transport layer. IJDP,
as an alternative, could not be set up on this PM2 release.

6.2 Cluster Configuration

Our cluster comfiguration (see figure 5.1) is composed of 4 Intel Pentium
4 CPU 2.80GHz nodes with 512Kb cache and 256M8 RAM interconnected
through Fast-Ethernet.

lDownload at: http://gforge.inria-fr/projwre/pm2/

88

CItrter
GhaÍacl,Erisücs:

.l NEdÊ§

{kxI, [r#" hí3, kr4]

P4'-2.80 Ghz
5í2kb EBEhÊ
25S||)iE RAht
Fast Elhormgl

Ethernet

k,(4kx2

Figure 5.1: F»çerimenting Cluster Configuration

To corfgure PM2 with the chmen cluster setup the user just needs to
invoke the pm2conf co-mand. As an exa,mple, running the command:
pmàcunf bl ln? k3 b4 v'rdl setup all the cluster available machine to run
the DSM-PM2 exa,mple.

5.3 How to create a DSM-PM2 ÂJACS/C Exam-
ple

When creating an exa,mple for this thesis study the progra.mmer is in fact
creating a DSM-PM2 application artifact that makes use of the AJACS/C
library API (detaild in section 4.3).

For doing this the programmer first creates a PM2 orample application,
using the PM2library (including the DSM-PM2 featurs). Next pidrs from
one of the two distribution models described in section 4.2. Finally he writes
the DSM-PM2 AJACSIC application using the AJACS/C API, just m,ki.g
sure to link the AJACS/C library on the application build process.

Figure 5.2 illustrate this process:

To run a DSM-PM2 AJACS/C application the user just needs to run
the progra,m as other regular PM2 exa,rnple, by invoking the pm2load com-
mand.

The compiler used to build the 6sçe.mple appücations was the GNU Com-
piler v3.2.3

89

PüJIE tilbmry
PME-BI5M ,Elsirlbuüon

Modail

A-IAEBíC
Pnil2"DSÊl
A.NAGB'E

Êpplirruümn Exumflirb,trr

Program I Frtobl,Em

Figure 5.2: Building a DSM-PM2 AJACS/C application

5.4 Queens Example

5.4.L Specification

The queens pluzzle is the problem of putting 'n' ch6s queens on an NxN
chmsboard such that none of them is able to capture any other using the
standard chess queen's mov6. The colour of the queens is mea.ningless
in this prz,zte, and any quen is asumed to be able to attark any other.
Thus, a solution require that no two queens share the saure ronr, column,
or diagoual.

6.4.2 Problem Description

On this problem one "queen" position on the chess board maps directly to
one Variable, so the Store structure will hold as many wriable as the
number of queens specified.

As for Constraints, and as for specification, the relation between the
queen§ (va,riable) will be such that on a given solution no queen ca.n 'at-
tadf another qu@n. The constraint 'hoattaclÍ is then deigned as relation
betwen two queens. In a given problem there will orist the following mrm-
ber of 'hoattack' constraints:

conEtr(O) = 0

BGtr Eompiler

90

constr(l) = 1

constr(n) = constr(n-l) + (n-1)

For the specific example of four eueens there will exist 6 corresponding
constraints (fis,r" 5.3). Note: Tt,e noattack constraint is bi-directional, e.g.
for constraint 1 no attack 2 Queen 1 does not attack 2 and neither eueen
2 attacks 1. what happens is that during propagation (where one variable
domain is reduced), all the constraints where that variable was d.efined are
activated that is why does not matter the direction of the constraint and so
there is no need to define the inverse constraint, that is 2 noattack 1 is
unnecessary.

Cçnahainta

1 rfr;lltnfk ?
1 rc;.rltauh 3
', .:O{1lti}Çk 4

S1
2.lnilltnch J
2':ualtack.l

3 ,ruirl[;rc[i .{

S2
I

I t
4

2

1 .:lc;ltack !
1 ,10i'lltÍiÉH 3
i rua tlauk .1

2 -ro.rltnr:k 3
í,::r.rirl[il;k 4

3 floflttÊck 4

Figure 5.3: Queens example

In the example of figure 5.3, the store sl succeeds all the constraints
of the problem which means it may be considered a valid store to split and
continue the searú- In this trivial specific case s1 is at the same time a
valid propagated store and a solution. s2 violates two constraints and as so
will be discarded from the problem space.

Search, in AJACS/C pM2 and for the eueens example, will be the
successive handling of available stores (spawing from initial store) using a
DFS (Depth-first search) / LrFo approach. After the split of some store
the child stores are included at the top of the stores stack. Note: LIFO
was the chosen approach but FIFO / Breadth-First search could also be

3

I

I

2

6or

2 norc

91

used. LIFO was preferd due to the fact that we are doing, in any case, full
tree traversing, i.e. looking for all possible solutions for a problem. LIFO
is better suited as we may be insterested in searching for a first solution
quickly.

In each search step the adopted Strategy is to look for the first non-
ground variable available on current store (using a topdown look-up). That
variable is chosen to be the next to be iterated and reduced, that is, all sin-
gleton values of that variable are successevily tested, triggering propagation
on the rest of the store. If propagation is deamed successfuI the resulting
store will be added to the search list for further search steps.

The search & strategy steps are repeated until there axe no more stores
available to iterate on.

In the case of the Queens example, the Problem solutions will be the
collection ofstores that contain only ground (singleton) values, so where all
variables are instatiated with single values. These remaning stores are the
ones that survived all the iterations and propagations and so that satisfy
the "noattack" constraints, where in the end no queen can attack another.

5.4.3 Interpretation of Results

The elapsed time, of the examples execution run-time, is measured on the
problem inner search computation, right after the distributed program starts
performing its search function until there is no more problem space to eval-
uate and all found solutions are shown to the user. All PM2 and Problem
application initialization, including PM2 cluster setup overhead and Prob-
lem initialization setup, times are excluded from the timming results below.

When running the distributed application time sampling is organized in
the following:

o T1: One-node cluster configuration {kxl} time

o T2: Twonode cluster configuration {kxl, kx2} time

o T3: Three.node cluster configuration {kxl, kx2, kx3} time

o T4: Four-node cluster configuration {kx1, kx2, kx3, lor4} time

Speedup is defined as the execution mn-time gain ratio of some cluster
configuration in relation to the trivial configuration: single node execution.

SPeeduP:T1 /Ti;

Centralized Distributed Pattern

Queens 5, 6 and 7 were tested using the Centralized distribution stratery

92

--*- Queens ?

---+- oueens
Queens

Qurmr . CrnrrelErd Striltrf filnr mnptry)

T1 T2 T3 T4

Queens 5 o,201 CI,348 1.ítl 1.580

Oueens 6 0.203 0,38Í' 2,617 3,583

Sueem 7 o.216 3.ÍI59 12.500 í2.500

12,OOO

Í0,000

+út
J)

a
É
t-

2,000

Clu$rl Corúlur.üon

t4,m0

B,Ít00

6,000

4,000

0.000

Figur,e 5.4: Queens Centralized strategr time results

93

As the results show (refer to figure 5.4) the Queens example runs slower,
taking more time to find the problem solutions, when more nodes are made
available for the distributed computation. Queens 8, 9, 10 and 11 examples
axe not shown in this graphical example results but they proved to con-
sume exponential execution run-time. If we compare the Queens 7 example
from the Centralized and Local patterns the results are conclusively different
as with a full configured cluster (all 4 nodes) the centralized pattern took
around 12,5 seconds to finish against the 0.485 seconds ofthe local pattern.

Figure 5.5: Queens Centralized strategy speedup results

As expected, from the obtained run-time results, speedups are negative
using the centralized distribution strategy for the Queens example (refer to
figure 5.5).

T,I Í2 T3 T4

Oueens 5 1,0 0,578 0,130 oj27
Queens 6 1,0 0,ã30 0,078 0,057

7 1,0 1 0,017 0,000

Oueens - Ccntrallzed Strategqy {Speedups}

o.
=Ea
o
o.o

't,2

1.0

0,8

0,6

BA

o,2

0,0

---r- Oueens 5

+ Queens 6

Queens 7

Clustêr ConfiguÍation

94

A major DSM-PM2 sychronization overhead may be a possible explana-
tion for the poor results of the centralized model as the single distributed
DSM data structure, that is shared by ali nodes, may be the cause for such
unefficient results.

fnternal debug testing demonstrated that the control access of the dif-
ferent nodes to the centralized DSM data structure proved to be extremely
time consuming which raises the possibility of a DSM synchronization /
coherence protocol bottleneck.

As a preliminary conclusion the Centralized Distribution pattern seams
not to be a;r effi.cient approach for AJACS/C Constraint Programming
distribution using DSM-PM2.

Local Distributed Pattern

The Queens 5 to 11 examples were tested using the Local Distribution strat-
egy.

As the results show (see figure 5.6) only examFles Q10 and Qll prove to
be efficient when using several nodes for its computation. Exa.mples Q5 to
Q9 do not benefit from using more than one node on its computation and
even take more time to finish.

Speedups are then only achieved on examples Q10 and Q11 with the
Later being the only exa,rnple where linear speedups are achieved (see figure
5.7).

To note on this local distribution pattern that in spite Q5 to Q9 aparent
lack of performance when using more nodes for the example computation,
the obtained results are not exponentially bad as in the centralized distri-
bution pattern, in fact they are very similar (from T1 to T4).

If we add to this observation the fact that Q10 starts to have perfor-
mance improvement, judging at least for the cluster configuration T2 and
T3 speedups, and that Q11 proved to be very efficient when using all 4
nodes we may conclude that the Queens distributed example starts to be
efficient upon certain point threshold. These observations suggest that when
the computational workload starts to be considerably representative the dis-
tributed examples start to perform well and speedups became possible. The
apparent lack of performance for cases Q5 to Q9 suggest that these exam-
ples were too sparse and with lack of computational representativity to be
considered valid examples.

Flom the observations above, and as preliminary conclusion, the Local
Distribution Pattern seems to be adequate to the DSM-PM2 AJACS/C
implementation.

95

Clueens 5

Oueens 6

Queem 7

Queens I
Clueens I
Oueens 10

Oueens Í1

Tí T2 T3 T4

t!,397Oueem 5 o,o12 0.05í 0,2m

Clueens 6 o,o12 o,062 E,2av 0í76
Aueens 7 0,012 0.063 o,242 0íe,
Clueens I o,921 0.077 o,267 0,621

Oueens I 0,099 0.Í30 0,316 8,421

Oueem í0 0,410 0.trt2 o,273 0.376

ClLEem íl 2.ÍI30 t.0st 0.842 0.f,E

Qurom -Locrl 8lffirgy-Tfn ..mpblg

1,ã00
IDta
a
E
F 1,000

Cllltrr GonílurÍlon

2.ã00

2,000

0,600

0.000

Figure 5.6: Queens Local strategr time results

96

-{- clueerxl 5
+ Oueeng 6

---r- Clueens 7

+ QueenSB
+ oueens I
+ Queens 10

* Queens'lÍ

T'l T2 T3 T4

Queens 5 1,0 0.197 0.058 0.030

í,0Oueens 6 0.í94 0.ÍI59 0.026

Queens 7 1,0 0.190 0.ít43 0.025

Q[Eem I Í.0 o,273 0.079 0,034

Oueens I 1.0 o,762 0,313 0.235

Oueeno l0 1.0 't.3ã8 1,ffi) i.ost
1.0Oueeír3 l1 1.862 2,*2 2,522

Qurnr - LocJ Sürirgy - Sp..dry

3,0

2,5

t,â

t,0

0,5

0,0

Glurür CoilüÍ.üon

2,8

ê
=!têa

Figure 5.7: Queens Local strategr speedup rreults

97

5.4.4 Conclusions

The Queens example show that speedups a^re possible using the Local Dis-
tribution strategy. The example proved not to be suited for the centralized
strategy where no meaningfuI results were achieved, or better no speedup

was found.

One probable reason for this example inadequacy for the centralized
strategy is that the central DSM structure synchronization and DSM-PM2
communication overhead masks any potential distribution gain. By con-

sta^ntly interacting with the DSM centralized structure for getting and stor-
ing 'tobs" the nodes force a huge (constant) synchronization of this DSM
structure. Any gain obtained by distributing "work" between nodes is

quickly absorbed by the inherent synchronization and communication over-
head.

The lack of visibility on how the DSM data structure is partitioned
a'nong the different nodes (by DSM-PM2) aad whiú parts of this structure
are in fact invalidated when new stores are written to this centralized struc-
ture was a major difficulty and incertainty factor on the experimentation.

By the contrary the example is found to be adequate for the Local distri-
bution pattern strategy as the search space computation was splitted across

nodes on a somewhat efficient way, assuring that the computational repre'
sentatiúty of the exa,mple is sufficiently high enough speedups are possible

and mask any DSM-PM2 syncronization and communication overhead.

5.5 n-Flactions Example

5.5.1 Specification

Original Specification

The original n-Flactions pr:r;zle [42] is specified as follows. Find 9 distinct
non-zero digits that satisfy:

ADGr r
-1BC,EF,HI

where BC is shorthand for 108+C, EF for 10E+F a^nd HI for 10H*I.

n-Flactions Specification

A simple generalization is as follows. Find 3n non-zero digits satisfying:

98

»
i:\...n

t'í

Utzt

where:

uàzi

is shorthand for:
Loat * z'i

and the number of occurrences of each digit in 1..9 is between 1 and ceil(n/S).
Since each fraction is at most 1/99, this family of problems has solutions
for at most n (99. An interesting problem would be to find the greatest n
such that at least one solution exists. A further generalisation might specify
that the fractions sum to ceil(n/S).

5.6.2 Problem Description

On this problem one letter of the n-fractions correspond directly to one
Variable, so the Store structure will hold as many variables as n-fract *
3 the number of fractions times 3 (the number of variables in each fraction).

As for Constraints, and as for specification, the only given relation
between the variables, and candidate to be a constraint, is the fact that
the occurrences of each digit in [1..9] is between 1 and ceil(n/3), specifrcally
for n:2 and n:3 no variable is allowed to have repeated values from other
variables. The constraint "alldifferent" is then allowed as relation between
two variables (see figrre 5.8). In a given problem there will exist the following
mrrnber of "alldifferent" constraints:

constr(O) = 0
constr(1) = 1

constr(n) = constr(n-1) + n-1

Flom the example illustrated in 5.8 one can conclude that the fact of the
resulting store is ground, which means all its va.riables are ground (with a
single value), does not necessarily mean that the store is a solution of the
n-Flactions problem, against what happened for the Queens example, where
all the resulting ground stores would necessarily be problem solutions. An
extra step, after successful propagation of a potential store will be neces-

sary. The store must suffer a final validation, in this case the n-Flaction
specification rrle itself (see Problem Specification above 5.5.1).

Search / Strategy will be the same as for the Queens example. In the
case of the n-Flactions example, the Problem solutions will be, as described

99

T

,(

x

T

x

x

IrIIII

IIIIIIIIITITrrrIrIrI

IrÀ

a

c

D

E

F

rttt58rs0

rlt{5GrG0

GOlEEâI,ilS

À *lldilí*B1l E C EIIíilÍ*'É',rl D
A ullJiÍlerunl G C a'k:iíY,cr*'rl ,]
A irlkhffÉÍcnl Ê C;:!CÍ+ncnt l-

À Ê.rldilíBBtl E
Àu lurffererrt Í ü u'luiÍr,etert 3

:l ÀlÉ.{rmllt l:

B slt:IiÍÍtreril C
I uliJiÍtwunl D E uluilr,e,'erl:-
H ãlliÍfiÊ!}r'rl ts

B a tc,ííÊrÉnt F OrrT if tucçe+d*r

CüÉuâlÊ1,

Â

a

c

D

E

?

Ê r.lcilÍe'ttt B
Â illtírííírÊ-:rr L;
Â allírltÉrF.1l I)
.À rlluiffr'r'rt E
It;iÉ far+.rt I

I irlHiÍír$$rl C
B irllírÍ[r:rrml D
B ÉJlciltÊiF,lt E

E u:ÉlT+tant F

C tllJi]Ít,'t:il El

C nlcrÉ,cÍ§rl i:
il nl Í: f BÍ,ini 'É

ü ;: lcrÊ,crcll f.
i) A: Êl'Êí*ni F

t ;: lrríf*r<rql F

Or,ly if srccerds:

Solution ?

Solution ?

Figure 5.8: n-Flaction (n:2) example

15 ox

r6
-+ -- .1
34 t9

x

x

x

x

x
x

15 ox

Íl ?g

0u
-r-- .1

100

above, the collection of stores that contain only ground (singleton) values
and that additionaly satisfy the main problem "contraint", that all fractions
sum up exactly 1.

5.5.3 Interpretation of Results

Centralized Distributed Pattern

Tests were performed using this strategy for the n-Fbactions example but no
meaningful results were obtained. As for the Queens example all tests took
more run-time when using more than one node for the program execution
and as so no speedups were achieved for n-Flactions example using the
Centralized distribution strateg"y.

The same interpretation of results and preliminary conclusions on the
centralized distribution model obtained from the Queens example should
apply also to the n-Flaction example.

Local Distributed Pattern

The n-FYactions (n:2) example was tested using the Local distribution pat-
tern strategy.

The results show (figure 5.9) that the application proved to be more
run-time efrcient when using more nodes on its execution.

Significant speedups were achieved using this strategy (see to figrrre 5.10).

5.5.4 Conclusions

The n-Flactions example show, as for the queens example, that speedups
are possible using the Local Distribution strategy.

The example proved not to be suited at all for the centralized strategy
where no meaningful results were achieved, or better no speedup was found
possible. One probable reason for this example inadequacy for the central-
ized stratery is the fact that the constraint being applied does not reduce
the problem spa,ce very efficiently or fast enough and as so the problem tends
to generate and iterate on a huge number of candidate state solutions till
very late on the problem. This huge number of candidate stores creates an
heavy bottleneck on the DSM structure synchronization and destroys any
hope of obtaining speedups.

By the contrary the example is found to be well suited for the Local
distribution strategy as this heavy computation (due to the huge number of
search space) can be distributed acro.ss nodes on a very efficient way, efficient
enough to obtain speedups over DSM*PM2 sSrncronization and communica-
tion overhead.

"fr.
,.,i..iI t liÍ.d' rÉ l'»

":,t>'i
-q

ii

101

+FFrections

nfrrctlom - Locel Strrtley (Tlmr senpllng)

0ru

0,7m

0.Em

0.ffi

0.Im

0.ntr

sfr
0,1m

0ru
T3 T/tT1 T2

0.lm 0# 0,ffinFraclions (lrâ 0Fm

úo
.D
oc
1-

Clurtar Confgurailon

Figure 5.9: n-Flactions (n:2) Local stratery time results

102

+§-FÍaciions

2p

íp
1F

I ,/t

12

1p

0"8

0.5

0í
B2

0,0 TI T1T1 T2

1.8131F6'f 1.8131pDFractions (ÍFzl

nfrectlonl - Local §treüqf (§pccdup)

ê
?oôê
an

Chfrr Confrguratlon

Figure 5.10: n-Fhactions (n=2) Local stratery speedup results

103

Part V

Conclusion and Future:
AJACS /C with DSM-PM2

104

Chapter 6

Conclusions and Future
Work

This chapter will present this thesis study conclusions to the reader as for
certainties and posibilities for future work.

6.1 Work performed on this thesis

One of the accomplished objectives of this theis was the development of a
Constraint Solver in the C language and its experimentation on a distributed
environment. This Constraint Solver is AJACS/C. The distribution enü-
ronment consisted ofa total of4 workstation nodes connectd through Eth-
ernet. The Memory architecture follows a CGNUMA approach, dmcribed
in section 2.L of. this theis.

6.1.1 AJACS/C Development

ÀJACS/C takm its base from the AJACS system [3] ,od the main motim,-
tion was to port this system to the C language for a smooth integration with
the elected Parallelization library for experimentation: PMz [4](Parallel
Multi-Thrcaded Machine). This integration allowed the derrclopment of dir
tributed PM2 applications using the AJACS/C engine. It is now possible
to design and oçeriment distributed constraint problems using PM2 and
AJACS/C.

6.L.2 DSM-PM2 AJACS/C Integration

Parallelization is achieved by using PM2 but PM2 ofiers even more. PM2
contains a special module called DSM-PM2 that offers DSM abstraction câr
pabilitim. With DSM-PM2 is now possible to develop distributed constraint
problems tuing AJACS/C with real distributed sha,red memory abstraction
to the programmer.

105

6.L.3 Distribution Models Design

For distributing a certain constraint problem, developed by AJACS/C, the
progrâ.mmer neds not only to deign a DSM-PM2 program.

To allow a controlled distribution two distributed models were deigned:

o The Centralized Distúbution Model;

o The Local Distribution Model.

The Centralized Distribution Model implements a pure DSM sys-

tem where all the information is stored on a single structure that is shared
(made visible) to all the cluster nodes. Each node job will be to negociate
with this centralied data structure for retrieving and adding jobs (problem
store). This model is simple to implement where only a single data struc-
ture is created (using the DSM-PM2 primitives). All nodm share the sa.me

parallel code and data structure and all will work until there a,re no more
jobs to prooeÊs.

The Local Distribution Model is less bold but more pragmatic than
the Centralized model. In this model each node possffircs one DSM data
structue that only each can interact with. This gives complete indepen-
dence to the nodes as they do not need to "communicate'' with the other
node during the parallel computation. The initial state is spawned and its
childs distributed acro§s the different node. Ftom that point forward each
node will live alone with its piece of workload.

6.1..4 AJACS/C with DSM-PM2 E:qrerimentation

To orperiment AJACS/C and DSM-PM2 with real representative casm two
sgrs implemented:

o The classic Queens example;

o The n-Flactions example.

The Queens ora,mple givm alot of c.hoices to the orperimentation cam-
pa.ign and it maps perfectly to the AJACS/C. Etrery variable is a Queen
and the constraints space is reduced to only a single constraint: úhoattack,

where no queen is allowed to attack another. This problem is also very
flexible as we are allowed to erçeriment Queens for N variables. In the
orperimentation campaign we used from Queens 5 to 1L.

The Queens exa,mple was tested using both the Centralized and Lo
cal Distribution models. The oçerimeutation conclusiors can be found on
chapter 5 and later 6a fhis chapter.

106

For the sake of ocperiment reprmentativity another ora,rnple was imple-
mented: the n-Flaction example. This exa,mple implements the "alldiffer-
ent' constraint and was aJso t6ted using both distribution models. Conclu-
sions for the n-Flaction exa,mple can also be found on chapter 5 and later
on this chapter.

6.2 Conclusions

AJACS/C is now a newly available Constraint Solver. F\rlly developed in
the C language it inherits the ÀJACS [3] r',ain characteristics. AJACS/C
main feature is the ability to perform constraint solving without the ned
to use the backtracking mehanism. Store are spawned and stored, after a
succmsful propagation, in some data structure (queue or stack). The pro
grarrmer is allowed to search over the problem space using its favorite or
sosfrmiz{ seare,h technique which makc AJÀCS/C hishly extensible and
modifiable.

AJÂCS/C was successfrrly integrated with the PM2[a] übrary (de
veloped ün C), specially with the DSM-PM2 module [U, that offers the dis-
tributed shared memory feature to PM2 and AJACS/C. With this inte'
gration made possible the prograrnmer is now allowed to design AJACS/C
Distributed Constraint Solving programs using the DSM-PM2 6sc[a.nism.

The AJACS/C DSM-PM2 integration wa.s evaluated by oçerimenting two
with two distinct distribution models. Judgrng from both exarn-

ples, Queens and n-Fbaction, experimentation campaigns, it is concluded
that DSM-PM2 is adequate for parallelizing AJACS/C prograrns
using the DSM paradigm. Ilowever the ocperimentation reults indicate
that the extent of this success, that can be measured by efiective speedups,
is highly dependent on the distributed model choice.

Distribution models that rely 6n cgaf,lalized DSM structure tend to gen-
erate huge run-time onerhead whiú seams to indicate that the DSM-PM2
doe not handle well when is subject to high synchronization and node inter-
communication ned. The way how DSM-PM2 performs the DSM structure
partitioning split through all the cluster node is not obüous nor triüal
which made hard to know exactly which parts of the structure weÍe associ-
ated to some node. This does not necessarily mean that DSM-PM2 is not
correctly implementd nor that it may be sti[imature. The version used
for experimentation wa,s 'bmà200L0l-16". More reent versions were made
available since then. E:rperimenting new versions of DSM-PM2 may be the
subject of firrther work out of scope of this thmis.

ro7

On ther other hand the DSM-PM2 behave flawlessly, not surpris'
insly though, when a des.centralized model is u§ed. In this sort of
models there is firlt parallelization of the problem space and little or no inter-
node ommunication is errpectd so it is natural that they behane better.

This indicates that better rmults are to be oçecbed, from AJÂCS/C DSM-
PM2 integration, if the progra.mmer decids to do firll parallelization of the
Constraint Problem, that is to spread the problem workload, through the
different nodes beforehand.

AJACS/C DSM-PM2 integration is a reality with effective reults, as real
speedups were obtaind, but the DSM-PM2 module did not deliver flaw-

less results, at least with the distributed models that were implemented.
F\rrther work is posible in order to e»rplore and firrther assffi this, or

other DSM library adequacy to the Constraint Progrnmming paradigm. The

next chapter will present future work possibilities.

6.3 Future Work

o Evolve AJACS/C for more CSP exa,mple: AJACS/C has still only
two examplm (if we exclude some more triviat cases): - Queens and

n-Flaction. More exa,mplm will turn the ÀJACS/C Constraint Solver

richer in both and features (as new types of problems and
constraints would necessarily be developed).

o Continue benchmarking new releases of DSM-PM2 with AJACS/C:
This thesis emJuated the '!m2-200L03-16' release. New releases are

arailable that may prove more efficient.

o Design and E:rperiment new distribution models: Two distribution
models were developed: Centralized and Local Distribution Models.
New models with additional feature like heuristics and load-balancing
techniques may improve even further the AJÀCS/C DSM-PM2 rer:lts.
An "Hybrid" model that could take benefict from both models would
be possibly the ideal scenario. As the centralized model originate huge

overhead we could use a Local model instead but to avoid doing wrong
distribution of work through the nodes, on tipical Local distribution,
some feedback loop me,hanism could be implemented to avoid the
situation where some node(s) -ry be stopped and others stitl running
with still alot of work to be perfomed. A possible title for this new

mode could be: "Hybrid Model: Local Distribution Strategr with
Load Balancing Fdback"

o A line of work is under way to allow mixing the singleCell solver

with othen instancm therof is another line which are being foüovred:

108

there are duat-Cell blade systems which provide shard memory (al-

beit NIIMA). Th* provide one first level of distribution outside a

single Cell prooesor and repreeent a shared memory la1'er similar to
the originat AJACS organüation: stores (or problemsr I Ptr AJACS
terminology) -ty be shared among difierent procef§ors- A firrther
distribution layer can be obtained when we cousider a network of suú
blade, fatliry back onto the AJACS/C model. In short, the port of
AJACS to C, based on PM2-DSM, be it the one basd on the Cell
prooessor or otherwise, is undergoing active development and more

signficant orperimental reults are expected soon. For details refer to
paper titled: "Desrgn for a Parallel and Disüributed Ilybrid Constraint
Progra.rnming Library" [48].

109

Bibliography

[1] Gabriel Ântoniu and Luc Bougé. DSM-PM2: Â portable implementa'
tion platform for multithreaded DSM consistency protocols. In Pmc.
6th Intemtati,onol, Worlcshop on Hi,gh-Leael Parallel Programmi,ng Mod,-

els and Supporii,ae Emi,rvnmmts (HIPS '01), volume 2026 of Lect.
Notes i,n Comp. Sciencn, pages 55-70, San Flancisco, April 2001. Ileld
in conjunction with IPDPS 2001. IEEE TCPR Springer-Verlag.

[2] Gabriel Antoniu, Luc Bougé, Philip Hatcher, Mark MacBeth, Keith
McGuigan, and Raymond Namyst. The Hyperion system: Compiling
multithreaded Java bytecode for distributed execution. Pamllel Com-
puti,ng, 27 :L279-1297, October 2001.

[3] Lígra Fereira and Salvador Âbreu. Design for AJÂCS, yet another
Jana Constraint Progrnrnming fra,mework. Elsani,er Electroni,c Notes i,n

Theoreti,col Computer Sc'i,en re, 48, 200L.

[4] Raymond Na,myst and Jean-Flanois l\{haut. PM2: Parallel multi-
threaded machine. a computing environment for distributed architec-
tures. Ín Pamllel Computi,ng (Par0o '95), pages 279-285. Elsevier
Science Publishers, September 1995.

[5] Peter Van Roy and Seif HaÍidi. Mozart: A programrning system for
agent applications. In Intqnati,onal Workshop on Distri,butel, and In-
temet Pmgm,rnmi,ng ui.th Logi,c and, Consfuai,nt Languages, November
1999. Part of International Conference on Logic Progra,mming (ICLP
ee).

[6] Oliúer Aumage. Heterogeneous multi-cluster networking with the
Madeleine III communication library. Ín Proc. 16th Intl. Pamllel
and Distri,buted, Processi,ng Sgmposi,um, 1 lth Heterogeneous Computi,ng
Wtrlcshry (HCW 2002), Fbrt Lauderdale, April2002. Ileld in conjunc-
tion with IPDPS 2002. L2 pagm. Extended procdings in electrouic
form only.

Í1 K.Li. Irry A shared virtual memory system for parallel computing. In
Proc. of the 1988 Intl Cant. an Pamllel Proe,ssing (ICPP&9), aolume

110

/d Fort Lauderdale, April 2(X)2. Ileld in conjr:nction with IPDPS 2002.

rrclume II, page 94101, August 1988.

[8] S. Zhou, M. Stumm, K. Li, and D.Wortman. Heterogeneous distributed
shared memory. Tn IEEE Tfu,ns. on Pamllel anil Distri,buted' Sgsterns,

3 (5) : 540554, Septernber 1 992.

[9] J.K. Bennett, J.B. Carter, and W. Zwaenepoel. Munin: Distributed
shared memory based on type-specific memory coherence. Ín Proceed'-

i,ngs of the Se,c,ond, ACM SIGPLAN Sgmposi,wn on Principles and Prac-
ti,ce of Pamllel Progmrnming (PPoPP). pp. f68-176, Mar. 1990.

[10] B. N. Bershad, M. J. Zekauskas and W. A. Sawdon. The Midway
Distributed Shared Memory System. In Prcc. of the 38th IEEE Int'l
Computw Confercnce. p.528537, Feb 1993.

[11] P. Keleher, S. Dwarkadm, A.L. Cox, and W. Zwaenepoel. Distributed
shared memory on standard workstations and operating systems. In
Proc. of the Wi,nter 1994 USENIX Conferene,e. pages LL5L31, January
L994.

[12] S. K. Reinhardt, J. R. Larus, and D. A. Wood. Tempmt and Typhoon:
User-level shared memory. In Proc. of the 21th Annual Intl Symp. on

Conyú,er Archi,tecture (ISCALD. pages 325337, April 1994.

[13] B. Fleisú and G. Popek Mirage: A Coherent Distributed Shared Mem-
ory Design

[14] P. Dasgupta, R.C. Chen, S. Menon, M. Pearson, R. Ananthâ'na,rayana,n,

U. Râmachandran, M. Aha,mad, R. LeBlanc Jr., W. Applebe, J.M.
BemabeuAuban, P.W. Hutto, M.Y.A. Khalidi, and C.J.Wileknloh. The
deign 2sd implementation of the Clouds distributed operating system.

Ín Cornpu,ti,ng Systerns Journol, 9, Wi'nter 1990.

[15] G. Schoi"as Issue on the Tmplementation of PrOgramming SYstem
for DistriButed Applications: A Fle Linda Implementation for Unix
Networks ftp://nic.tunet .fr,/ ph /wtx/parallet/POSYBL.TAR.Z

[16] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: A language for
parallel progra,mming of distributed systems. Ia. IEEE fra,nsact'i,or» on

Softwarc Engi,neerông. page 190-205, Marú 1992.

[14 Deh, G. S. and Farber MemNet: An E:rperiment on Fligh-Speed Mem-
ory Mapped Network Interface. In Technicol Rqort 85-11-IR, Dqt. of
Electri,eal Engi,ne.eri,ng, Uni,uersi'ty of Delaware, 1 986..

[L8] Lenoski, D. E. et al. Desrgn of the Stanford DASH multiprocesor.
Ín Techni,cd, Report CSL-TR-89-103, Cornputer Systems Labomtory,
Stanforil Uni,aersi,ty, Dewmber 1989.

r.1L

[19] H. Hellwaguer and À. Reinefeld, editors. SCL Scalable Coherent In-
terface. In Archi,techtre, and Software fm Hi'ghPufurman'e Compute

Austers. volume l7M of. LNCS StateofüheArt Survey. Springer Verlag,

Oct. 1999. ISBN 3M0666966.

[20] Burkhardt, H. et aJ. Overview of the KSR1 Computer System. In
Techni,col Rqort, K S R- T R- I 20 20 0 1, K en'ilall S quarc Res e,arch, Febru,-

ary 1992.

[21] IIAGERSTEN, E. et. al. DDM A Caúe-Only Memory Architecture.
In Computer, VoL 25, N 9, Septerrnbq' 1992. pp.4L54

[22] MAPLES, C. & WTTTIE, L. Merlin: A Superglue for Multicomputer
Systems. In Compcon 90. IEEE Compater Soci'ety Prz,ss, Los Alamitos,
1990. pp. T.}.BL

[23] LUCCI, S. et. al. ReflecüiveMemory Multiprocessors. In Prcc. 28th

IEEE/ACM Hawai,i, Intl Conf. Sgstems Si,ences. IEEE Compu,ter Soci,-

ety Press, Los Alamitos, 1995. pp. 8S'94

[24] Bisiani R., Ravishankar, M. PLUS: A Distributed Shared-Memory Sys-

tem In Prcceed,i,ng of the l7the Annual Internati,onol Syrnposium on

Computer Arc.hi,tedue. Vol. L8, No. 2, May 1990, pp. LL|L24.

[25] A.W. Wilson Jr., R.P. LaRowe Jr., J. Teller Hardware Assist for
DSM In Proceeili,ngs ol the 13th Internati,onol Confervnr.e on Distributeil
Computi,ng Systems, May 1993. pp.3l4-324.

[26] D. Chaiken, J. Kubiatowiu, Ã.Agarwal SoftwareExtended Coherent

Shared Memory: Performance and Cost Ín Proceeili,ngs of the 21th An-
nual Intemati,onal Symposium on Computer Archi,tecture, Apri,l 1991.

pp.314312.

Í2\ J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Ghara-
chorloo, J. Chapin, D. Ns.ka.hira, J. Baxter, M. Horowitz, A. Gupta,
M. Rosenblum, J. Hennesy The Stanford FLASH Multiprocessor In
Prue:l,i,ngs of the 21th Annual Internati,m,al Sgm,posi'um on Computer
Archi.te,cture, Apri,l 1 994. pp. 302-3L3

[28] S. K. Reinhardt, R.W.Pfile, and D. A. lüood. Decoupled Ilardware
Support for Distributed Shared Memory. In Prcc. of the 23ú Annuol
Internati,onal Sgmposi,wn on Computer Archi,tedure. pag6 34-43, May
1996

[29] Wolfgang Karl and Martin Schdz Hybrid-DSM: An efficient altema'
tive to pure software DSM systems on NUMA architectures.In In Pro-
edti,ngs of the Znd Intemati,onol, Worl*hop on Software D,SM. (held
together with ICS 2000), May 2000.

LL2

[30] M. Blumrich, IL Alpert, Y. Chen, D. Clark, S. Da'mianalos, C' Dub
nicki, E. Felten, L.Iftode, K. Li, M. Martonosi, and R. Shillner' Design

choices in the SHRIMP System: An Empiricat study. In.In Proeced-

i,ngs of the 25th Internatianol symposi,um on computer Arc,fui,tectwe

ISCA-\í, Barrelona, SPai,n, MaY 1998.

[31] A. Colmerauer Prolog II Reference Manual and Thoretical Model In
Intemal Report, GraupelA, U Ais-Marsei,lle (Oct 1982).

[32] A. CoLnerauer Prolog, with unification replaced by constraint resolu-

tion. An Introduction to Prolog III. BYTE 12(9):177-182 (Aug 1987)

Aix-Marseille, ca 1984.

[33] N.Fleintze et d.. The CLP(R) progr'.'-er's manual IBM T' J' Watmn

Research Center, L992.

[34] Wougang Karl and Maxtin schulz constraint satisfaction in Logic Pro-
gra,mming. In MIT Prcss, 1989.

[35] Daniel Diaa The GNU Prolog web site, http://gnu-prolog.inria.fr/

[36] nog(c) The ILOG web site, http://www.ilog.com

[37] MPI: A Message.Passing Interface standard. Ín The Internat'i,onal Jaur-

nal of Supercornpu,ter Appli,c.ati,ons and, Hi,gh Perforrnance Comput'i'ng,

8, 1994. Ín Tuhni'cal report, 1995. http://uturu-mpi,-tonnn-org.

[38] Youssefh. Disolver: The Distributed constraint solver. website:

http: //researú.microsoft .com/ %7Eyouseft /DisolverWeb/Disolver. html

[3g] salvador Abreu. GC: A Constraint Solver in Java. It Prcceeili,ngs of
the ESSLLI'96 Workshop on Progtnmmi,ng Language Implernenatati,on,

Pm,gue, Czech Republi'c, 1996.

[40] R. Zivan and A. Meisels. Message delay and discsp search algorithms.

Ia Joum,al, po,pr i'n Ann. of Math E ÁL vol. 46, PP, 41F-439, April
2006

[41] Christian Mller Run-Time Byte Code Compilation, optimization, and

Interpretation for Alice Diplomarbeit, 2006 Leif Kornstaedt Alice in
the Land of Oz. It Prcceeili'ngs of the Fi,rst Worlcshop on Multi'-language

Infrasfru,cture anil Intercpm,bi'li,tg (B A B E L), 20 0 1 -

[42] Brúim Hnich, Ian Miguel, Ian P. Gent, Toby WaJ§h website:

http: / /www.csplib.org/

[43] N.J. Boden, D. Cohen, R.E. Felderman, A.E.Kulawik, C.L. Seitz, J.N.

Seizoüc, and W. Su. Myrinet: A Gigabit-per-Scond Local-Area Net-
work. In IEEE Miuo, 15(1):29-96, Febru,ary 1995.

LL3

[44] M. Eberl, H. Hellwagner, M. Schulz and B. Hedand. SISCI: Im-
plementing a Standard Software Irfrastructure on an SCI Ctus
ter. Ín Praceedi,ngs of the Fi'rst, Gennan Worlcshop on Aus-
ter Computi,ng, Chenmi,tz, Germany, Nouernber, 1997. website:

http : //citeeer. ist.psu.du/eberl9Tsisci.html

[45] D. Dunning, G. Regnier, G. McAlpine, D. Ca,meron, B. Shubeú, F.
Berry, A.M. Merritt, E. Grorke, and C. Dodd. The Virtual Interface
Architecture. In IEEE M'icm, pages 66-75, MarApr 1998.

[46] L. Prylli and B. Touranúeau BIP: A New Protocol Designed for lligh
Performance Neturorking on Myrinet. Tn Rolim [25], w, 472485.

[47] Gabriel Antoniu and Luc Boug Tmplementing multithreaded protocols

forrelease consistency on top of the generic DSM-PM2 platform. In
In Proreed,i,ngs of the Intemational Worlcshop on Cluster Compl'ti'ng
(IWCC|[), uolume 2926 oiLNCS, pages 182191, Mangal'ia, Raman'i,a,

August 2001..

[48] tuís ALnas, Rui Machado and Salvador Abreu. Design for a Parallel
and Distributed Ilybrid Constraint Progra.mming Library. In' Solaad'u'

Abreu and, Vi,tor Santos Costa, procned,i,ngs of the Tth Intemati,onal Col-
loEfi,urn on Implernentati,on of Constrai,nt and, Logi,c Programmi,ng Sys-

tems. Uni,uersid,aile da Porto, Portugd,, 2007.

tLA

