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ABSTRACT

Systems of linear equations, called flexible systems, with coefficients having uncertain-
ties of type o (.) or O (.) are studied from the point of view of nonstandard analysis. Then
uncertainties of the afore-mentioned kind will be given in the form of so-called neutrices,
for instance the set of all infinitesimals. In some cases an exact solution of a flexible
system may not exist. In this work conditions are presented that guarantee the existence
of an admissible solution, in terms of inclusion, and also conditions that guarantee the
existence of a maximal solution. These conditions concern restrictions on the size of the
uncertainties appearing in the matrix of coefficients and in the constant term vector of the
system. Applying Cramer’s rule under these conditions, one obtains, at least, an admis-
sible solution of the system. In the case a maximal solution is produced by Cramer’s rule,

one proves that it is the same solution produced by Gauss-Jordan elimination.

KEYWORDS: Cramer’s rule, Gauss-Jordan elimination, neutrices, external num-

bers, nonstandard analysis.
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Algebra linear nao standard e gestao de incertezas

RESUMO

Neste trabalho consideramos sistemas de equacoes lineares flexiveis, sistemas de equagoes
lineares cujos coeficientes tém incertezas de tipo o (.) ou O (.). Este tipo de incertezas ird
ser analisado, & luz da andlise nao standard, como conjuntos de infinitesimais conhecidos
como neutrizes. Em sistemas de equagoes lineares flexiveis nem sempre existe uma solugao
exata. No entanto, neste trabalho apresentam-se condigoes que garantem a existéncia de
pelo menos uma solugao admissivel, no sentido de inclusao, e as condigoes que garantem a
existéncia de solucao maximal nesse tipo de sistemas. Tais condi¢oes sao restrigoes acerca
da ordem de grandeza do tipo de incertezas existentes, tanto na matriz dos coeficientes
do sistema como na respetiva matriz dos termos independentes. Utilizando a regra de
Cramer sob essas condigoes é possivel produzir, pelo menos, uma solu¢ao admissivel do
sistema. No caso em que se garante a obtencao da solucao maximal do sistema pela re-
gra de Cramer, prova-se que essa solugao corresponde a solugao obtida pelo método de

eliminacao de Gauss.

PALAVRAS-CHAVE: Regra de Cramer, método de eliminacao de Gauss, neutrizes,

nimeros externos, analise nao standard.
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Chapter 1

Introduction

All measurements of physical quantities are subject to uncertainties for it is never
possible to measure anything exactly. One may try to make the error as small as possible
but the error is always there and to draw valid conclusions the error must be dealt with

properly. Bad things can happen if error analysis is ignored.

Montparnasse, Paris, 1895.



Introduction

In classical mathematics does not exist a very highly developed algebra of propagation
of errors. One drawback of the functional o(.) and O (.) calculus [4] is the absence of
total ordering which leads to some complexity in calculus. In interval calculus [8], error
operations are well defined but at a certain point the error bounds are so large that they no
longer have practical value. In statistics [11], confidence intervals are used to find proba-
bilistic upper bounds of the errors, but so many times they are too far from the real size
of the actual errors. In numerical analysis [20][17][9], the solution of a practical problem
is produced by numerical methods which many times depend on functional analysis, that
by their nature are not so obviously implemented in actual computing with numbers. In
computation one of the important problems is the existence of some mismatch between the
theoretical calculation with real numbers and the practical calculation with computerized

numbers.

Let us illustrate the latter with the search for valid solutions of a practical problem
of computation with matrices, which is one of the main objectives of numerical analysis
[21][3] and is related to the principal topic of this study. In the formulation of a computed
problem and its solution it is essential to estimate the effect of the various errors induced

by the following considerations:

1. The coefficients of a given matrix may have been determined directly from phy-
sical measurements and therefore the represented matrix is an approximation of the

matrix which corresponds to the exact measurements.



2. The coefficients of a given matrix may be defined exactly by mathematical formulae
but if any of those coefficients is irrational or too large to fit in the floating-point
system of the computer, once more we have to work with an approximation of the

exact matrix.

3. Even if the matrix implemented in the computer is exact, the same may not be true
for the computed solutions because some operations increase the number of digits in

such an amount that the floating-point system stars to round off, producing errors.

By the previous considerations there is a need for some error analysis concerning a
substantial amount of algebraic properties. An approach within nonstandard analysis
may reach this goal for we can model errors by infinitesimals, which are numbers, so
there is no need to work with functions. Within the infinitesimals we may distinguish
various convex groups, called meutrices, that correspond to different sizes of errors. The
term neutrices is borrowed from Van der Corput [5] who had also in mind an efficient
theory of neglecting, partly realized, where the neutrices are certain groups of functions.
The fact that all neutrices are sets of numbers instead of sets of functions leads to more
powerful algebraic properties. Also the neutrices of numbers are totally ordered. External
numbers are the sum of a neutrix and a real (nonstandard) number. The algebraic laws of
external numbers are completely characterized [15][6]. In a sense, within this approach we
work directly with the order of magnitude of errors leading to substantial efficiency and

simplifications in calculations.

The aim of this work is to find conditions that guarantee the existence of a maximal
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solution, in terms of inclusion, for systems of linear equations with external numbers. The

kind of systems under consideration will be called flexible systems of linear equations.

We will show that the maximal solution of a non-singular non-homogeneous flexible
system of linear equations is, like in usual linear algebra, given by Cramer’s rule, with
some restrictions induced by the size of the uncertainties of the system. If not all of those
restrictions are satisfied, it is still possible, in some cases, to produce an admissible solution
by adapting Cramer’s rule. When fitting Cramer’s rule to a flexible system, the condition
that the determinant of the matrix of coefficients is non-zero is substituted by a condition
stating that the determinant of the matrix should not be too small. As we will see this

can be concretized in terms of the so-called absorbers of neutrices.

We relate this theoretical result on the maximal solution produced by Cramer’s rule
to the procedure of Gauss-Jordan elimination, which is the basis of numerical methods
on solving systems of linear equations. In fact, we formulate conditions such that both

methods lead to the same solution.

This thesis has the following structure. In Chapter 2 we recall the notions of neutrix
and external number, their operations and some useful properties. In Chapter 3 we define
flexible systems of linear equations and introduce the notions of admissible, maximal and
exact solutions. In Chapter 4 we present the conditions upon the size of the uncertainties
appearing in a flexible system of linear equations that guarantee that a maximal solution
is produced by Cramer’s rule. We also investigate appropriate adaptations under weaker
conditions so that an admissible solution is given. We illustrate Cramer’s rule and its

weakenings by some examples. In Chapter 5 we define appropriate Gauss-operations



and the notion of Gauss-solution and show that, under suitable conditions, the maximal
solution given by Cramer’s rule and the set of all Gauss-solutions are identical. The 2
by 2 case was already published in [12] but, as we will see, the general case is much more
involved due to the presence of minors. The results and proofs will also be illustrated by
concrete cases.

For a review of Cramer’s rule we refer to [19], [10] and [2]. For a review of Gauss-Jordan
elimination we refer to [17] and [18].

To indicate strict set identity we will use the symbol "=". The symbol "C" represents

inclusion. Strict inclusion is denoted by "C".
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Chapter 2

Neutrices and External numbers

The setting of this thesis is the axiomatic nonstandard analysis 1.ST as presented by
Nelson in [16]. A recent introduction to IST is contained in [7]. We use freely external
sets where we follow the approach HST' as indicated in [13]; this is an extension of an
essential part of IST. For a thorough introduction to external numbers with proofs we
refer to [14] and [15].

We recall that within 7.57T the nonstandard numbers are already present in the standard
set R. Infinitesimal numbers (or infinitesimals) are real numbers that are smaller, in
absolute value, than any positive standard real number. Infinitely large numbers are
reciprocals of infinitesimals, i.e. real numbers larger than any standard real number.
Limited numbers are real numbers which are not infinitely large and appreciable numbers
are limited numbers which are not infinitesimals. The external set of all infinitesimal
numbers is denoted by @, the external set of all limited numbers is denoted by £, the
external set of all positive appreciable numbers is denoted by @ and the external set of all
positive infinitely large numbers by go.

A neutriz is an additive convex subgroup of R. Except for {0} and R, all neutrices are

7



8 Neutrices and External numbers

external sets. The most common neutrices are @ and £. All other neutrices contain £
or are contained in @. Let € be a positive infinitesimal. Examples of neutrices contained
in @ are £, €Q, £59(O, numbers smaller than any standard power of ¢, and £e_%, the
numbers which are exponential small with respect to e. Examples of neutrices that contain
£ are wt, w® and w?£, where w is an infinitely large number. It is clear that £, w£
and £ are isomorphic groups and also that ©, w® and €@ are isomorphic. However it
can be shown [1] that the neutrices £, @, £ e® and £Le ¢ are not isomorphic by internal
isomorphism. The external class of all neutrices is denoted by N. Neutrices are totally
ordered by inclusion. Addition and multiplication on N are defined by the Minkowski

operations as it follows:

A+B={a+b]|(a,b) € Ax B}

and

AB ={ab| (a,b) € A x B},

for A,B e N.

The sum of two neutrices is the largest one for inclusion.
Proposition 2.1 If A,B € N, then A+ B = max (A, B).
Neutrices are invariant under multiplication by appreciable numbers.

Proposition 2.2 If A € N, then £QA = A.

An external number is the algebraic sum of a real number and a neutrix. The external

class of all external numbers is denoted by E. If a e R and A € N, thena=a+ A€ E



and A is called the neutriz part of «, being denoted as N (a); N («) is unique but a is
not because for all ¢ € o, a = ¢+ N (). We then say that c is a representative of .
Clearly, neutrices are external numbers such that the representative may be chosen equal
to 0. All classical real numbers are external numbers with the neutrix part equal to {0}.
An external number « is called zeroless, if 0 ¢ . Let a = a + A be zeroless. Then its
relative uncertainty R (a) is defined by the neutrix A/a. Notice that A/a = A/«, hence
R («) is independent of the choice of a; also R (o) C @ (see Lemmas 2.5 and 2.6).

Let « =a+ A and 8 = b+ B be two external numbers. Then o and (8 are either disjoint

or one contains the other, indeed
anB=0vpaCaVacaps. (2.1)

Addition, subtraction, multiplication and division of a with § are given by Minkowski

operations. One shows that

a+pf = a+b+max(A,B);
a—p = a—b+max (A, B);
af = ab+ max(aB,bA, AB)

= ab+ max (aB,bA) if a or (3 is zeroless;

a 1 af

% , =2 with 3 zeroless.

The relation a < S if and only if Vo € ady € f(x <y) is a relation of total or-

der compatible with addition and multiplication. Observe that with this rule, one has

« if A<«

0 < @ < £. The absolute value of « is then defined by |a| = { o i a<cd”
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The next tables present the principal rules of external calculus used in this thesis:

tlo|Q@| £ X |o|Q]| £
o|lo|@] L Q|||
@l@|@]|f Q@Qlo|@| £
£l L£| £ £ Llo|L£| L

In practice, calculations with external numbers tend to be rather straightforward as it will
be illustrated by the following examples.

Let € be a positive infinitesimal. Then

64+0)+(—2+e£)=6-2)+(@+ef) =4+ ©;

64+ 2)(—24+¢c£) = 6(-2)+(—2) @ +6eL + ekt

= —1240+4+eL+e0=-12+ ©;

6+0 6 1+0/6 1+0

24k | -2 1+e£)/2 :(_3)1+5£

= (-3)(1+2)(1+ef)=-3+0.

However, multiplication of external numbers is not fully distributive, for instance

e=0(14+e-1)Cco(l+e)—0-1=0+0=0.

Yet distributivity can be entirely characterized [6]. Let @« = a + A, 8 and ~ be external
numbers, where a € R and A is a neutrix. Important cases where distributivity is verified
are

a(B+7) =aB + ay (2.2)
and

(a+ A)B = afB + AB. (2.3)
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Also subdistributivity always holds, this means that a(8 + v) C af + avy; the property

follows from the well-known property of subdistributivity of interval calculus.

Definition 2.3 Let A be a neutrix and a be an external number. We say that « is an

absorber of A if A C A.

Example 2.4 According to Proposition 2.2, appreciable numbers are not absorbers. So
an absorber must be an infinitesimal. Let £ be a positive infinitesimal. Then ¢ is an
absorber of @ because e C ©@. However, not necessarily all infinitesimals are absorbers

of a given neutrix, for instance s,fs_gb = £5_do.

We now show some simple results about calculation properties of external numbers

that will be used in the next chapters.

Lemma 2.5 Let @« = a+ A be a zeroless external number. Then its relative uncertainty
R(a) = A/a satisfies

C Q.

SR

Proof. Since a = a + A is zeroless, one has 0 ¢ « and so |a|] > A. Hence % < 1 and
SO % C @ because there is no neutrix strictly included in £ and which strictly contains

@. |

Lemma 2.6 Let A be a neutriz and 8 = b+ B be a zeroless external number. Then

4 =4 and AB = Ab.

Proof. Since B C b® by Lemma 2.5, AB C ©bA C bA. Hence 4 = 044

=

b1 = 4 and AB = (0+ A) (b+ B) = max (bA, AB) = Ab. [
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Lemma 2.7 Let a € R, A€ N and n € N be standard. If |a| > A, then
N ((a+A)") =a" A

Proof. Since |a| > A, by Lemma 2.6, we have (a + A)> = (a + A) (a + A) = a®> + aA. So
(a+A)? =(a+A) (a+A)? = (a+ A) (a? + aA) = a® + a®A. Using external induction,
we conclude that

(a+A)"=a"+a" A
Hence N ((a+ A)") = a" L A. [ |
Lemma 2.8 Let @« = a+ A be a zeroless external number. Then
anoa=0.

Proof. Because « is zeroless, 0 ¢ o and @a = @a, with |a| > A. Yet 0 € ©a C @ and so
@a € . On the other hand, a € a but a ¢ @a = @a. So o € @a. Hence a and @« are

disjoint by (2.1). [ |



Chapter 3

Flexible systems of linear

equations

In this chapter we introduce some notations and define the flexible systems and some

related notions.

Notation 3.1 Let m,n € N be standard. For 1 <7 <m,1 < j < n, let a5 = a;; + A4y,

with a;; € R and A;; € N. We denote

1. A= [oyj;], an m x n matrix

2. a= max T
1<jsn

3. @ = max |a]
1<i<m
1<j<n

4. A= max A;j

1<i<m
1<j<n

In particular, for a column vector B =

[B,], with 8; = b; + B; € E for 1 <

1<i<n

denote 3 = max |B,], b= max |b;|, B = max B; and B = min B;.

\'L\ YA

1<i<

13

1< n, we



14 Flexible systems of linear equations

Definition 3.2 Let n € N be standard. Let A = [a;;] be an n X n matrix, with a;; € E

for all i,5 € {1,...,n}. We call determinant of A to the external number given by

il o Qg

detA=| i i |= Y smn(o)au

anl e [a 775 oc€Sn

where S, denote the set of all permutations of the set {1,...,n} and 0 = (p1,...,pn) € Sp.

We observe that not all equations with external numbers can be solved in terms of
equalities. For instance, no external number, or even set of external numbers, satisfies
the equation ®¢ = £ since one should have £ C £ and £ = @ C £. So we will study

inclusions instead of equalities.

Definition 3.3 Let m,n € N be standard and o;; = a;; + A4i5,8; = b + B;,

§j:mj—|—Xj6Ef0r1<i<m,1<j<n. We call

anéy+ o ta+ o 0 tawf, S5
amiéy+ o +0‘mj§j+ o Famné, C By
a flexible system of linear equations.

Definition 3.4 Let n € N be standard. Let A = [oy;] be an n x n matrix, with
a;j = a;; + Aj; € E, and let B = [§;] be a column vector, with 3; = b; + B; € E for

alli,7 € {1,...,n}.

1. A is called a non-singular matriz if A = det A is zeroless.

2. B is called an upper zeroless vector if 3 is zeroless.
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Definition 3.5 Let n € N be standard and o«;; = ai; + Aij, 8, = b + B;,
§; = xj+X; € Efor all i,j € {1,...,n}. Consider the square flexible system of li-

near equations

ané i+ - to+ 0 taw, S5
: : : o (3.1)
an1€1+ t +anj€j+ e +ann£n C ﬁn

with matrix representation given by AX C B. If A is a non-singular matrix, the system is
called non-singular. If B is an upper zeroless vector, the system is called non-homogeneous.
Moreover, if 1 is a representative of @, A is called a reduced matriz and we speak about
a reduced system. If external numbers £,...,&, can actually be found to satisfy (3.1),
the column vector (&5,...,&,)" is called an admissible solution of AX C B. A solution
€= (&,...,&,)7 of the system (3.1) is mazimal if no (external) set n D & satisfies this
flexible system. If &;,...,¢&,, satisfy the system (3.1) with equalities, the column vector

(&1,...,6,)7 is called the ezact solution of AX C B.
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Chapter 4

Cramer’s rule

Not all non-singular non-homogeneous flexible systems of linear equations can be re-
solved by Cramer’s rule. We need to control the uncertainties of the system in order to
guarantee that Cramer’s rule produces a valid solution and, if necessary, to make some
adaptations. The matrix A of coefficients has to be more precise, in a sense, than the
constant term vector B. The general theorem presented in this chapter shows that, under
certain conditions upon the size of the uncertainties appearing in a non-singular non-
homogeneous flexible system of linear equations, it is possible to guarantee the existence
of a maximal solution by Cramer’s rule. Even when not all of those conditions are satis-
fied it is still possible, in some cases, to obtain an admissible solution given by adapting
Cramer’s rule, where we neglect some uncertainties of the system.

From now on we will simply call a non-singular non-homogeneous flexible system of li-
near equations flexible system and a reduced non-singular non-homogeneous flexible system
of linear equations reduced flexible system.

We start by defining the kind of precision needed in order to control the uncertainties

appearing in a flexible system.

17



18 Cramer’s rule

Definition 4.1 Let n € N be standard. Let A = [a;] be a non-singular matrix, with

nxn

a;j = aij + Aij € B, and B = [§,],,,,; be an upper zeroless vector, with 5; = b; + B; € E
for 1 <14,5 <n.

We define the relative uncertainty of A by
R(A) =Aa"1 /A.
We define the relative precision of B by
P (B)=B/p.

Remark 4.2 If A = [a], with o = a + A zeroless, the relative uncertainty of A reduces
to A/a, the relative uncertainty of the external number det A = .. In general R (A) gives
an upper bound of the relative uncertainty of det A. Note that if @ C @ we simply have

R(A)=4/A.

Notation 4.3 Let n € N be standard. Let A = [oy;] be an n x n matrix, with
a;j = a;j + Ajj € E, and B = [,] be a column vector, with 5; = b; + B; € E, for

1 <4,7 <n. We denote

ailr ot Oq(i-1) B1 a1i+1) - Cin
Mj: . . .
nl o Q(io1) Bpo Qi) ccr O
11 o O(-1) by ai+1) 0 Qn ]
M; (6) = A
ant 0 Queie1y bno Qngry o Qe
air - aygeny bioaigeny o ain |
M] (a,b): . . .
Gnl =t Gn(j-1) bn Gpgi1) o Gnn ]
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4.1 Existence of admissible and maximal solution

We now present the Main Theorem that states all the needed conditions to guarantee
that Cramer’s rule produces a maximal solution. Even when not all of those conditions
are satisfied it is still possible, in some cases, to obtain an admissible solution by adapting

Cramer’s rule.

Theorem 4.4 (Main Theorem) Let n € N be standard. Let A = [a ;] be a non-singular
matriz, with a;; = a;j + Ajj € B and A = det A = d+ D, and let B = [3;] be an upper
zeroless vector, with B, = b; + B; € E for 1 < 4,5 < n. Consider the flexible system

AX C B where X = [§;], with &, = x; + X; € B for alli € {1,...,n}.
1. If R(A) C P(B), then
det M; (b)
d

X — :
det M., (b)
d

s an admissible solution of AXCB.

2. If R(A) C P(B) and A is not an absorber of B, then
det M (b)
A
X — :
det M, (b)
A

s an admissible solution of AXCHB.

3. If R(A) C P(B), A is not an absorber of B and B = B, then
det M1
A

X — :
det My,
A

is an admissible and maximal solution of AXCB.
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T
We will call <detAMl s eees detﬁ/l") the Cramer-solution of the flexible system (3.1).

So Part 3 of Theorem 4.4 states conditions guaranteeing that the Cramer-solution

maximally satisfies (3.1).

Under the weaker conditions of Part 2, one is forced to substitute the constant term
vector B by a representative, the uncertainties occurring in B possibly being too large.
If only the condition on the relative precision R(A) C P (B) is known to hold, also the

determinant A must be substituted by a representative.

The condition that A should not be so small as to be an absorber of B may be seen,
in a sense, as a generalization of the usual condition on non-singularity of determinant of

the matrix of coefficients, i.e. that this determinant should be non-zero.

The condition that all the uncertainties of B should be equal is not usually satisfied,
but if the flexible system does not verify the condition N (5;) = B, for all i € {1,...,n},
one may solve the flexible system, now with B = féliiélnBi instead of the N (3;). If for this
new system we have R (A) C P (B) and also that A is not an absorber of B, by Cramer’s

rule one obtains the maximal solution of the modified flexible system. Clearly this is an

admissible solution of the original system.

We show now some examples which illustrate the role of the conditions presented in

Theorem 4.4.

The first two examples show that not all flexible systems can be resolved by Cramer’s

rule and also illustrate the importance of the condition on precision in a flexible system.
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Example 4.5 Let € be a positive infinitesimal. Consider the following non-homogeneous
flexible system of linear equations

{ (B4+e0)6+(-1+0)6 Cl4ef
2+el)&+(1+e0)& Cel.

_y:
2e+y =20

_1
Yy=—x

The matrix representation of the system is given by AX = B, with

_ & _[3+e0 -1+0 [ 1+es
X‘[Q A= 24+ef 14+€0 b= e |

A real part of this system is given by { i which has the exact solution

3+e0 —-14+0© L C ..
We have A = det A = 9ref 14e0 | = 5 + @, which is zeroless. So the initial

system is non-singular. When we apply Cramer’s rule, we get

l+ef —-14+0
et 14+e0 _1+5£_1

&1 = A =510 =< +0
3+ec0 14+ef
24¢ek ef ‘ —2+¢ek 2

b = A “S5+0 579

However, this is not a valid solution because

(B+e0)§+(-14+0)& = (3+€0) <;+®> +(-14+0) <—§+®>

= 1+0D>1+ef
and

2+e£)§+(1+e0)& = (2+¢ef) <;+®> + (1 +¢€0) <—§+®> =@ Dek.

In fact, using representatives, it is easy to show that this system does not have solutions

at all.
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Notice that R(A) = Aa/A = $2 = @ and P(B) = B /B = ££; = e£. So
R(A) € P (B) and Theorem 4.4 cannot be applied, although A is not an absorber of B,

since AB=c£ =B,and B=B =¢£.

Example 4.6 Let ¢ be a positive infinitesimal. Consider the following flexible system:

{ 3, +(—14+e0)é Cl+ekl
26, +& C el

Its matrix representation is given by AX = B, where

1€ |3 —1+e0 | 1+4ef
AETE FR N

3 —-14+¢e0
2 1

(i) R(A) =0 Cef = P (B), (ii) A is not an absorber of B since AB = ¢£ = B and (iii)

We have A = e, B=¢c£ and A = det A = ‘ ‘ = 5+ e® zeroless. Also
B = ¢£ = B. Hence all the conditions of Part 3 of Theorem 4.4 are satisfied. Applying

Cramer’s rule we get

l1+ef —-14+e0
el 1 1+ef 1

S A 5370 57°t
‘ 3 1+ef ‘
2 et —24+¢ef 2

& A 5+ eQ 5te

When testing the validity of this solution, we have indeed that

3£1+(—1+6®)£2=3<;+s£> + (=14 €0) <—§+5£> =1+ef

and

2€1+§2:2<;+€£> + <_§+5£> =cdf.
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Notice that this system has the same real part as the previous system, to which

Cramer’s rule could not be applied.

The following example also satisfies the conditions of Part 3 of Theorem 4.4, which

guarantee the validity of the solution produced by Cramer’s rule.

Example 4.7 Let € be a positive infinitesimal. Consider the following flexible system

(14+e20) &+ &+ (1+3£) G Cl+eo
(2+3£)& + (-1+£%0)& — 63 C e
(e+e%0) & +&+(2+%0) & C1+c0.

Here the matrix representation is given by AX = B, with

3 1+&%0 1 1+e3¢ 1+e0
X=|6& |, A= 2+3L —-1+20 -1 , B = £Q
&g e+e%0 1 2+ %0 1+¢e0
One has
1+£%0 1 14 3£
A=detA=|2+&3L —-1+20 -1 = -3+2pea.
£+ &30 1 2+ €20

Also R(A) = Aa?/A = 4. = %0, P(B) = B/B = % = 2 and

AB = 0 = So (i) R(A) € P(B), (ii) A is not an absorber of B and

f

(iii) B = B = e®. When we apply Cramer’s rule, we get

1+eo 1 1+e3£
eo -1+ -1
1+e0 1 2420 -1t 1
G = A ~3vo 3 ¢
1+e20 t4e0 1+63£
24 €3£ EQ -1
e+’ 14e0 2+e%0| 2-24c0 4 2
2 = A T 3+e0 3 3 °¢
1+¢%0 1 140
2+e£ —-1+e%0 €0
e+e30 1 1+¢e0 2_2+e0 2 2
& = =< ——Z++c0

A —3+e20 3¢ 3
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When testing the validity, we find that (£, s, 53)T satisfies the equations. Indeed

(1+%0) & + &+ (1+°£) &

= (1+¢%0) R +(1+£%£) )
B 3e 3k 3 3 3 e

(2+%£) &+ (-1+%0) & — &
= (2+4£%%£) <31€+5®) + (-1+£%0) (348—§+a®) — <—328+§+a®) =eQ
(e+e%0) &+ &+ (2+%0) &

= (e+£%0) i)+ (L2210 + (2+£°0) 2 4lieo)=1+c0
3e 3 3 3 3 '

The next example refers to Part 2 of Theorem 4.4.

Example 4.8 Let € be a positive infinitesimal. Consider the following flexible system:

3, +(-1+e0)&C1+0
2§1+§2§8£.

Its matrix representation is given by AX = B, where
_| & 3 —-1+4e0 (140
x_[& A= |8 e o 1o

3 —1+4+¢€e0
2 1

is zeroless. One has R (A) =e@ C ef = P(B) and A is not an absorber of B. However

We have A = ¢ and B = ££. The determinant A = det A = ‘ ‘ =5H+eQ

B =¢c£ # @ = B. So this system satisfies only the conditions of Part 2 of Theorem 4.4.

Cramer’s rule yields

1+ —-14¢0
et 1 1+0 1

S A “5te0 57°¢
‘ 3 1+0 '
2 et 240 2

& = = =—:+0

A  54e® 5
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This is not a valid solution. Indeed

2 2
2§1+§2=5+®+<—5+®) =@ Dekf.

If we ignore the uncertainties of the constant term vector in det M; and det Ms, by

Part 2 of Theorem 4.4, Cramer’s rule produces an admissible solution:

1 —-14+c0
R
v A “5te0 5 °¢
31
’2 0' 9
4 A 5+eo 5 1°°

When testing the validity of this solution, we have indeed that

3 2
3x—|—(—1—|—€®)y=g+a®+g+€®:1+€®§1+®

and

2 2
2$+y:5+5@—5+6®:5®§5£.

In the last example we may apply only Part 1 of Theorem 4.4.

Example 4.9 Let ¢ be a positive infinitesimal. Consider the following flexible system:

3,4+ (-14+%0) &, C1+0
2e1 +e&y Cel.

Here the matrix representation is given by AX = B, with

[¢ [ 3 -1+¢%0 [1+0
R b R |

_ 2
We have A = 20 and B = ¢£. The determinant A = det A = ’ 3 1+e0 ’ =

2e €
5¢ + 3@ is infinitesimal, yet zeroless. It holds that R (A) = c@ C e£ = P (B) but A is
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an absorber of B because AB = ¢2£ C e£ = B. So this system satisfies the condition of

Part 1 of Theorem 4.4. By applying Cramer’s rule we get

‘ 140 —-1+4+¢£20 ’

ek € ed
p— pr— pr— £
& A 5¢ + &30
‘ 3 140 ‘
2¢  ef ed
pr— pr— pr— £
& A 5¢ + &30

These results are clearly not valid, because
3+ (-1+%0) & =3L+ (-1+%0) £=£D 1+ 0.

Observe that the results produced by Cramer’s rule are not even zeroless though the
determinant is zeroless and the constant term vector is upper zeroless.

If we ignore the uncertainties of the constant term vector and the uncertainty of A, by
the application of Part 1 of Theorem 4.4, the solution produced by Cramer’s rule is now

admissible. One has

‘1 —1+52@’

0 15 € 1

& = q 55
3 1

¢ — 2 0] 2 2

2 - d T B 5

When testing the validity of this solution, we have indeed that

3+ (-1+%0) & = (-1+ef0)=1+f0Ccl+0

ol w
SN

and

2 2
2€€1+€£2:§—§:0C€£.
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4.2 Proof of a Cramer’s rule with external numbers

We present now some preliminary results and some Lemmas that will be used in the
proof of Theorem 4.4.
Below some useful upper bounds with respect to matrices and determinants will be

derived.

Remark 4.10 Let A = [o;;] be a reduced non-singular matrix, with a;; = a;; + Ai; € E
for 1 <4,j <nand A = det A. Since A is zeroless, one has @ C 1 + @ by Lemma 2.5.

Consequently A;; C @ for all 4,5 € {1,...,n}, hence A C ©.

Lemma 4.11 Let n € N be standard. Let A = [a;j] be a reduced non-singular matriz,

with a;; = a;; + Aiy €E for 1 <i,j5 <n and A =det A=d+ D. Then
D= N (A) CA.

Proof. Let S, denote the set of all permutations of the set {1,...,n}and o = (p1,...,pn) €
Sn. Let v, = (aip, +A1p,) - -+ - (@np,, + Anp, ). Because @ = 1, by Remark 4.10, one
has |agy, | < @ = 1 and Ay, € A C @ for all k € {1,...,n}. So, by Lemma 2.7,
N(7,) SN ((1+4)") =4

Now,

air + A - aip + A
A = : : :ngn(a)’ya

ap1 +Ap1 0 pn + Ann 7E€Sn

= Z sgn (U) (alpl Ceet Opp, N (’70)) )
O'GSTL
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with sgn (o) € {—1,1}. Then

N(A)= > N(y,) Cnld=A4 |
gES,

Lemma 4.12 Let n € N be standard. Let A = [a;j] be a reduced non-singular matriz

nxn

with ai; = aj+ Ay € E and B = [3;] be an upper zeroless vector with B; = b;+ B; € E,

nx1

for1<i,5 <n. Then, forall j € {1,...,n}
1. det M; < 2n!B.
2. N (det M; (b)) C b.A and N (det M;) C b.A+ B.

Proof. Let S, be the set of all permutations of {1,2,...,n} and ¢ = (p1,...,pn) a

permutation of S,,. We have (3 zeroless and, for 1 < j < n,

ail o Qq(i-1) b1 ai+1) 0 Qn
M; = . . . .
Qnl - Qp(j-1) B, QnG+1) " CQnn
Let v, = aip, -+ - QG 1)py 1 (it Dpyar " Qnp, and i(= i) be such that sgn (o) 7,03, is

one of the terms of det M;. Because @ = 1, by Remark 4.10, it holds that @ C 1 4+ © and
AC®. So |y, <av <1+ 0.

1. One has

det M; = > sgn(0)7,6, < Y 11,6 <nl(1+2)B < 2nlf.

O'ESn UESTL

2. By Lemma 2.7, N (v,) C N ((1 —i—Z)n_l) = A. Then, for 1 <j<n

N (det M; (b)) = N (Z sgn (o) 70bi> = > N(y,b)
oESH oES,

= Z biN (v,) € n'b.A =b.A.
O’GSn
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Also, for 1 <j<n

N(det/\/lj) = N (Z Sgn ’70/61> ZN ’70[3

oESy €Sy

= D W NB)+ BN (v,) € D vl B+biN (v,)

O'ESn O'ESn
nl (B+bA) =B

N

=B+0b.A. ]

Lemma 4.13 Let n € N be standard. Let A = [a;j] be a reduced non-singular matriz,
with a;j = a;j + Ajj € B and A = det A = d+ D, and let B = [8;] be an upper zeroless
vector, with B; = b; + B; € B, for 1 < 4,57 < n. Consider the reduced flexible system
AX C B. Assume that X = [fj], with §; = zj + X; € B for all j € {1,...,n}, is an

admissible solution, and R (A) C P (B). Then
1. Az C (A/A) B C B, withT = max |x;|.
2. If N (fj) C B forallje{l,...,n}, one has, for alli € {1,...,n},
zn:aijfj C N (B)-
j=1

Proof. 1. Because A is a non-singular matrix, A is zeroless. So d # 0. Moreover, since

A is a reduced matrix, @ = 1 and so R(A) = A/A.
det M (a,b)
d

By Cramer’s rule : is the only solution of the classical linear system
det My, (a,b)
d

PY = C, where P = [a;;],,, is a real matrix and Y = [z;],,; and C = [b;] ., are real

column vectors, with i,j € {1,...,n}.

So T — det./\/l;C a,b)

‘ for some k € {1,...,n}. By Part 1 of Lemma 4.12 we have in
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particular that det My, (a,b) < 2n!b < 2n!B3. Then using Lemma 2.6,

y Zdet./\/tk (a,b) c
Hence A% C (E/A) B C B.

2. Suppose that N (§j) C Bforall j € {1,...,n}. Then, using Lemma 2.6 and Part

1, one has for all ¢ € {1,...,n}

N Zaijgj = ZN (Oéijgj) = Z(aijN (f;) + &N (i)
i=1 =

Hence N (Zai]f]) C N (B;), forallie{l,...,n}. |
j=1

We are now able to present the proof of the Theorem 4.4, starting with the case of

reduced flexible systems.

Proof of Theorem 4.4. We assume first that @ = 1. Because A is a non-singular matrix,

A =det A =d+ D is zeroless. So d # 0 and + = CH% = é + d%' Hence, by Lemma 2.6
1 D D
N|l—)==5=—=. .
(3)-7-= (D

For all 4,5 € {1,...,n}, let = [z;] be a solution of the system Zn | Qi) = b;. Then
]:
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by distributivity regarding multiplication by real numbers [6] and Part 1 of Lemma 4.13

a1+ F iy, = (ain + Ain) z1+ -+ (ain + Ain) Tn
= (anm1+ -+ ainvy) + (Aawr + -+ Aipy)

C bi+ATCb;+BCb+ B;=p;.

To complete the proof consider now the neutricial part of the system AX C B.

1. By Part 2 of Lemma 4.12, Lemma 2.6 and Part 1 of Lemma 4.13, for all

je{l,..,n}
det M (b 1 b.A -
So N (&) = N(%j(b)) C Bforall j € {1,...,n}. Hence X = [%j(w}l<.< is a
IIN
solution of AXCB by Part 2 of Lemma 4.13.
2. Suppose that A is not an absorber of B. So B C AB and we have
B/ACB. (4.3)

Then using Lemma 2.6 and formula (4.1), for all j € {1,...,n}

N(&) = N (W) = %N(det/\/lj (b)) + det M; (b) - N (i)

_ ézv (det M; (b)) + det M; (b) -

N (dew;j <b>> LG

SISLels

Using formula (4.2), Part 1 of Lemma 4.12 and Lemma 4.11 one derives

(A/A)B
—x

A
Z—E-ﬁ-

det M, (b) det M (b) D QH!B
N < ] > + A A C B+ N
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Moreover, by Part 1 of Lemma 4.13 and formula (4.3)
CB/ACB. (4.4)

Hence for all j € {1,...,n}

Therefore Part 2 of Lemma 4.13 implies that X = [%ﬂb)] is a solution of AXCB.
1<jsn

3. Suppose now that A is not an absorber of B and that B = B. Then using Lemma

4.12 and formula (4.1), for all j € {1,...,n}

N() = N <detAMj> = %N(deth) +det M; - N (i)

N

+ (A +B) + BN (i) - L (6A+B)+F 0

By Lemmas 2.6 and 4.11 and formula (4.3)

L (BA+B)+ Ty CH(A/A) +B/A+ 2 (A/8) C (A/8)F+B++ (A/A)F.

e \

It follows from Part 1 of Lemma 4.13 and formula (4.4) that (A/A)3 C B and
1 (A/A)BCB. So
N (&) € B. (4.5)

det M

Hence X = { A is a solution of AXCB by Part 2 of Lemma 4.13.

Léj@z
As for the general case, let @ be arbitrary. Because A = [«;] is a non-singular matrix,
A = det A is zeroless. So d # 0 and @ # 0. Consider the n x n matrix A" = [oy;,/a] =

[cij + Ci;] and the column vector B’ = [3;,/a]. Then A’ is a non-singular matrix and B’

is an upper zeroless vector, with ¢ = max lcijl = 1. So A/'X C B’ is a reduced flexible
Z7j\
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system with the same solutions as the system AX C B. One has

(A a)e!

R(A) = 300 =Aa" /A= R(A) € P(B) = (B/P) (a/a) = P (B).
Hence X = [%] Lejen [%} Ljen satisfies the equation A’X C B’. Then X

satisfies also the equation AXCB.
Finally we prove that X is maximal. Indeed, let £,...,§, be such that (&, ...,fn)T
satisfies (3.1), and x; € £ ;j for 1 < j < n. Then for every choice of representatives a;; € ;;

with 1 < 7,7 < n there exist by € (4,..., by € 3,, such that

a1+ - Faipx, =b1
aAn1T1+ -+ FapnTn = bn
Put
air -+ Qln
d = det
an1 - Gnn
Then z; = Mjc(la’b) IS detAMj for 1 < j < mn. Hence §; C detAMj for 1 < j < n and so

X is maximal. |
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Chapter 5

Gauss-Jordan elimination

Theorem 4.4 yields closed form formulae for column vectors of external numbers sa-
tisfying the flexible system (3.1) by inclusion. In this chapter we study their relation with
solutions obtained by Gauss-Jordan elimination, which are of more practical interest.

The solution of flexible systems by the operations of Gauss-Jordan elimination corres-
ponds to multiplication by certain matrices. Sum and product of matrices will be defined
pointwise.

Indeed, let A = [ayl,..,., B = [5ij]m><n and C = hjk]nx;;’ where m,n,p € N,

1<i<m,1<j<n,1<k<pand oy, ﬂij,vjk are all external numbers. Then

A+ B = [Oéij +BU]

mxXn

and

1<jsn mxp

One difficulty to overcome is the fact that multiplication of matrices with external
numbers is not fully distributive and associative. These are consequences of the fact that

multiplication of external numbers is not fully distributive. For an example, let A D {0}

35
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be a neutrix. Then

(3]0 AR A]-[0 ] =0
NS R VIR M

Still, monotony for inclusion is preserved in the following way. Let v;; € E for

and

1<4,7<2andlet U,V,X,Y e N withU C X and V CY. Then

Y11 V12 U]C[’Yu 712}[)(} 5.1
[721 722][‘/ L Y1 V22 Y (5.1)
Indeed
[’Yu ’712][[]] _ [’YuU‘f"leV]
Y21 V22 Vv V21U + 722V
|:'711X+712Y]:|:711 ’712}[)(}
Y91 X + VoY Yo1 V22 Y

We use the property of subdistributivity of interval calculus in the next proposition
on matrix calculation with differences. We consider the general case, for the proof is

straightforward.

Proposition 5.1 Let n € N be standard and let oi;j,3;,§; € E for all i,5 € {1,...,n}.

Assume
a11 A1n 51 61
) ) : c :
(67751 Apn fn ﬁn
Let B; = N (B;) for alli € {1,...,n}. Let z;,y; € ; and u; = x; —y; for 1 <i < n. Then

the column vector (uy, ..., un)” satisfies

a11 Q1n (5] B1

N
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Proof. It follows from subdistributivity that for 1 <7 < n

apur + A @ity = i (T — Y1) + o+ Qi (Tn — Yn)

N

Qi1T1 — QY1 + -+ QnTn — QinYn
= ap®1+ -+ QpTn — (@Y + -+ QinYn)

C B;—08,=B8. u
5.1 (Gauss-operations

For the solution of flexible systems by Gauss-Jordan elimination we will consider
operations with matrices which contain only real entries. Then, taking profit of (2.2),
distributivity holds to a large extent, which leads to some convenient simplifications. In
a sense this may be compared with the usual numerical procedure, where matrices with
entries, say, in floating-point are nullified using numbers of less complexity, i.e. truncated
rational numbers.

It is to be expected that full nullification of a flexible system cannot be realized and
that instead of zeros we will obtain neutrices. So instead of nullification we speak about
neutrification. The Gauss-Jordan operations will be represented by matrices whose entries
will neutrify step by step each column of the matrix of coefficients except its diagonal
elements; the diagonal elements will be external numbers that may be written as the sum
of 1 and a neutrix. This procedure corresponds to the classic Gauss-Jordan elimination
method.

First we need to prove some useful properties concerning the minors of the matrix of

coeflicients of a flexible system. Below we will maintain the notations of Notation 3.1.
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Notation 5.2 Let n € N be standard and k € {1,...,n —1}. Let A = [ay;] be an n x n

matrix, with a;; = a;; + A;; € B, for 1 < 4,5 < n. We denote

1. [4]

iy oy, @S the (n — k) x (n — k) matrix formed by removing from .4 the rows

i1,...,4 and the columns ji,...,j, where 1 < 43 < -+ < 4 < n and

IL<ji <o <Jgpsm

2. M, .iy jij, = det [A] as the (iy---ig,j1---jr) k" minor of A;

i1 0g,J10 Tk

3. Myy.wip ji-j, @S & representative of M; ..i, i ...j, -

For matrices with external numbers the Laplace expansion becomes an inclusion.

Lemma 5.3 Let n € N be standard. Let A = [a;j] be an n X n matriz, with a;; € E for

1<4,j<n, and A =det A. Then, for all j € {1,...,n},
(=" My + -+ (=) oMy C A

Proof. Let S, denote the set of all permutations of the set {1,..,n} and

o = (p1,...,Pn) € Sp. Suppose first that j = 1. By subdistributivity, one has

a1t My — oo Maq + -+ (=1)" " oy My, 4

= a7 g sgn (o) augpy - -+ - - Qnp, + -+ Q1 E sgn (o) agp, -+ - An—1)pn_1
ocESh o€S,
p1=1 pn=1
- § sgn (o) gy, =+ Qnp, +++ + E ,sgn (o) arpy oo A(n—1)p,—1 ¥nl
O—GSTL UESn
P1:1 pn=1
o110 Qg
= E sgn (o) Quip, = -+ - Qyp,, = det . : = A.
7E€Sn Qp1 - Onpp

The proof is the same for j € {2,...,n}. |
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Corollary 5.4 Letn € N be standard. Let A = [oy;] be an n x n matriz, with a;; € B for

1<14,j<n, and A =det A. Any expansion of A in cofactors is contained in A.

We now prove some useful properties of the minors of the matrix of coefficients of
reduced systems.
The next Lemmas show that, in the case of a reduced matrix of coefficients, its minors

have the same order of magnitude as the determinant.

Lemma 5.5 Let n € N be standard. Let A = [oy;] be a reduced non-singular matriz

nxn

with aj; € B, for 1 <i,j5 <n, and A =det A. Then, for all j € {1,...,n},
‘Mi7j| > QA
for some i € {1,...,n}.

Proof. By Lemma 5.3, one has 0411M1,1 — 0421M271... + (—1)n+1 Oman,l C A. Also
laij| <14 @ for all 4,5 € {1,...,n}.
Suppose that M;; C @A for all i € {1,...,n}. Then also a;1M;1 C (1+ )0 A = 0A

for all i € {1,...,n}. So
oMy — oMo + -+ + (=)™t aniMp1 C QA,

which is absurd by Lemma 2.8 because A is zeroless. Hence |M;;1| > @A for some
ie{l,..,n}.

The proof is the same for j € {2,...,n}. |
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Lemma 5.6 Let n € N be standard. Let A = [oy;] be a reduced matriz with o;; € E,

nxn

for 1 <i,j<n, and A =det A. Then, |A| <n!+1 and, for alli,j € {1,...,n},

IM; ;| < (n— 1)l +1.

Proof. Let S, denote the set of all permutations of the set {1,..,n} and

o= (p1,...,pn) € Sp. Since A is a reduced matrix, |a;;| < 1+ @ for all 4,5 € {1,...,n}. So

Al = D sen(o)aiy, - U | < D loapy| - |, |
€S ogE€Sy
< ) (1+o)"=n(l+0)=n+o.
UES’n

Hence |A| < n!'+ 1. In the same way one proves that for all 7,5 € {1,...,n}

Mij|<(n-D+o<@m-1'+1. =

Corollary 5.7 Letn € N be standard. Let A = |oy;] be a reduced matric with o;; € E,

nxn

for1<i,5 <n, and A =det A. Then for alli,j € {1,...,n},

|M; ;| € [@]A], @]

In fact, the same lower and upper bounds are hold for the k' minors. The upper
bound is obvious and is a consequence of the next Lemma. The proof of the lower bound
needs more care due to the specific properties of external Gauss-Jordan elimination and

will be postponed to Theorem 5.30.
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Lemma 5.8 Letn € N be standard and k € {1,...,n —1}. Let A= |ayj], ., be a reduced

matriz with oy; € B, for 1 <i,j <n. Then, for all i1,... i, j1,...,Jk € {1,...,n} such

that iy < --- < and j1 < -+ < ji,

’Mil"'ik,jl'"jk‘ < (n — k)‘ + 1.

Proof. The proof is similar to the proof of Lemma 5.6. |

Remark 5.9 Let n € N be standard and a5, 8;,§; € E for 1 <1,j < n. Let a;; € aj, for
all i,5 € {1,...,n}. Consider the flexible system (3.1) with matrix representation given
by AX C B. Unless otherwise said, we will assume that the system is reduced and that
all the conditions of Part 3 of Theorem 4.4 are satisfied which here correspond to:

(i) N (B;) =B, foralli € {1,...,n};
(ii) A = det A is not an absorber of B;
(iii) A /A C B/B.

Moreover, we will write the first entry aq; in the form of a1 =1+ A1 = @.

Notation 5.10 Consider the flexible system (3.1). Let k € {1,...,n — 1}. We denote

1. My

My, vy c10cp, fOr sOme 71, ..., 15, ¢c1,..., ¢ € {2,...,n} such that

|My| = max  [M;
2<i1 <+ <@g <N
2<G1 < <GS

1"'ik:j1"'jk| ;

2. my as a representative of My;

3. A=det A=d+ N (A), for some d € A.
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Remark 5.11 From now on we will assume that M, = My —g41)-n,(n—k+1)-.n for all
k € {1,...,n—1}. This is without loss of generality for we can make row changes
and/or column changes in the system (3.1) so that My = M,,,,, My = M —1yn,(n—1)ns - - -5
M,_1 = Ms...(n—1)n,2--(n—1)n- Indeed, for row and/or column changes, condition (i) stays
the same; also conditions (ii) and (iii) remain true for A will possibly only change its sign.
So we can always obtain an equivalent system of system (3.1) which still verifies conditions

(i), (ii) and (iii) and also My = M(,_g+1)n, (n—kt1)-n for all k€ {1,...,n —1}.

1 a2 -+ ay

ope . . -~ a1 a2 -+ (2n
Definition 5.12 Consider the flexible system (3.1). Let A = . . ] . be

an1 Gp2 - Qpp

a matrix whose entries a;; are representatives of the entries «;; of the matrix A, where

i, € {1,...,n}. For every p € {1,...,2n — 1} we define matrices G, such that

—a91 1 --- 0
gl = . . . . ’
_anl 0 e 1
[ 1 0 0 -+ 0]
0 1/mp—2 0 --- 0
Go=|0 0 1 0|,
|0 0 0 1|
[ 1 —ai2 o --- 0 i
0 1 0 0
gg — 0 —MmM24...n,3--.n 1 --- 0 ,

—_

| 0 —M3...(n—1),3-n
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10 0 0
1 0 - 0
Ga= 1|0 0 muy—p/mp=3 --- 0
0 0 0 R |
i 1 0 m3...n’14...n/mn_2 0 i
0 1 —m3.n24n,/Mp_2 0
0 0 1 0
g5 = 0 0 —m35...ny4...n/mn_2 0 )
L 0 0 —m3...(n_1)74...n/mn,2 -1 1
(1.0 0 0 0]
010 0 0
0 0 1 0 0
9=10 0 0 Tn—3,/ Tin—i 0"
10 0 0 0 e 1]
[ 1 0 0 —m4...n,15...n/mn_3 0 i
01 0 mMman2s.n/Mp—3 0
0 0 1 —m4..,n,35...n/mn_3 0
G-=10 00 1 0 ’ 7
0 0 0 —m46...n75...n/mn_3 0
L 0 00 —m4...(n,1),5.,.n/mn_3 cee 1 i
10 --- 0 0
01 --- 0 0
g2n72 = . )
0 0 1 0
0 0 0 mi/d
(1.0 - 0 (=1D)""'mu,mr ]
1 - 0 (=1)"Pmys/ M1
Gon-1= | 1 : :
00 -+ 1 (=1 mpp/ /1
00 --- 0 1 i
We write G[.] to indicate the repeated multiplication of matrices

Gon—1(Gon—2(---G3(G2(G1 [.]))--+))-
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The above matrices correspond to the Gauss-Jordan elimination operations for the

matrix A. Indeed Qﬁ = [,,. For the seek of clarity we present explicit calculations in the

special case where A is an 3 x 3 matrix.

By Remark 5.11 one has my = m3 3. Also

m33a13 — aigmge = (a2 — aziai2) aiz — a2 (a3 — ag1a13)

= (22013 — G12023 = —MN31

and clearly in the last step of Gauss-Jordan elimination we obtain the determinant

So

m33Mma2 — M2 3M32 = d.

— G5 (04(9% (92 (914))))

= Gs

= Gs

= Gs

= Gs

= Gs

G4

G4

G4

a3
a23
ass

13
3,2
2,2

= I3.

1 0 0 1 a2
Gz | G2 —ag1 1 0 az G2
—azg1 0 1 asy as2
1 0 0 1 a19 a
g3 0 1/my O 0 m33 m
0 0 1 0 mas3 M
[1 —a;2 O 1 a2 a13
0 1 0 0 1 M372/W1
| 0 —ma3 1 0 mags ma2
[1 0 a3 —aiamge/ M1
01 m32,/ My
| 0 0 mao —mo3m3a2,/ /My
0 0 i 1 0 —m3,1/m71
1 0 0 1 m372/m71
0 misd| |00 d/my
msi/mi | [ 1 0 —mg1/ /M
—mg32,/ My 0 1 mgo/m1
1 Jloo 1
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1 app - oy
. Q21 Qo3 - Qop . .
In general, with A = . . ) . a reduced matrix, the matrix G; cor-
apl Qp2 -+ Opp

responds to the neutrification of the first column of A except its first position, the matrix
G- places a nearly unit entry in the second position of the second column of A, the matrix
Gs corresponds to the neutrification of the second column of A except its second position,
the matrix G4 places a nearly unit entry in the third position of the third column of A,
the matrix Gs corresponds to the neutrification of the third column of A except its third
position, and so on until the matrix G, o places a nearly unit entry in the last position
of the last column of A and the matrix Go,_1 neutrifies the last column of A except its
last position. So the even matrices reduce the rows and the odd matrices neutrify the
corresponding columns. Observe that if p = 25 — 1, the entries of the column j of the
matrix G, are of alternate sign above the principal diagonal and of negative sign bellow
the principal diagonal. Working with a matrix of representatives ﬁ, we illustrate this
phenomenon with the matrix Gy. We start with the minors below the principal diagonal.

The minor mye...n 5..n €quals the determinant of

1 a2 a13 ay

7= | 92 a2 ax ax
asy a2 asz asq

asy as2 as3 as4

The operations of Gi, Go, G3, G4, G5 and Gg transform the matrix 7 into the matrix

which is of the form

1 0 0 t14

, 0 1 0 tog
T = 0 0 1 t34
0 0 0 ty

The determinant of 7 is modified by the matrices Go and G4. Indeed, Go corresponds
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to a multiplication of mu4¢...n.5... by 1,/ mMp—3. Then G4 corresponds to a multiplication of

M46...n,5-n DY (1/ Mp—2) (Mn—2,/Mp—3) = 1,/Myu—_3. Observe that Gs does not have an

impact on the matrix 7 and consequently not on its determinant. Hence

taa = det T = (1/mn,3) det7T = m46~~-n,5~~n/mn73-

The matrix G nullifies 44 with the pivot-entry at the position 4,4 which, due to the
previous operations, has been turned into 1. For this reason the entry 5,4 of the matrix
Gr must be equal to —mye...n 5....,” M —3.

In the same manner we obtain that, for ¢ € {6,...,n}, the entries 4,4 of the matrix
Gr must be equal to —mys...(i—1)(i+1).-n,5.-.n/Tn—3, in particular, always have a negative
sign.

Now we consider the minors above the principal diagonal. The minor my4..., 35..., equals
the determinant of

1 a2 au

U= a1 azx axu
a3r as2 as4

The operations of Gi, Go, G3, G4, G5 and Gg transform the matrix I into the matrix

which is of the form

1 0 uis
Z/l/ = 01 u23
0 0 uss

The determinant of I/ is modified by the matrices Go and G4. As above, Go corres-

ponds to a multiplication of my4...n 35.., by 1,/M,—2, G4 corresponds to a multiplication

of my...n35..n by (1/ Mpn—2) (Mn—2,/Mn—3) = 1,/M,—3 and Gg does not have an impact.
Hence

U3z = detu’ == (1/mn,3) detUd = m4...n,35..4n/mn,3.
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The matrix G7 nullifies ugs with the pivot-entry 1 at the position 4,4, so the entry 3,4
of the matrix G7 must be equal to —my...p, 35...,/ M —3.
To explain the change of sign for the entry 2,4 we note that we have to deal with the

matrix
1 a3 aus

V=|axn a aan |,
asl as3 a4
which is transformed into
1 0 V13
V/ = 0 0 V23
01 V33
Observe that
1 0 V13
detV = —det | 0 1 V33 | = —U23.
0 0 V23

As above, we argue that we have to nullify with m4...,, 25...n,/ M, —3 but now with opposite
sign.

For the entry 1,4 we have two row changes and so we do not have a change of sign.
Thus the parity of such row changes explains the change of signs in the entries of column
J above the principal diagonal of the odd matrices Go;_1.

Notice that to the lack of associativity, in general, G does not correspond to the multi-
plication of matrices and so it should be treated as an operator. Also by (2.3) distributivity
holds with respect to expressions of the form a + A, with a € R and A € N. Hence the

operator G is distributive in the following sense:

1+ A <o a1 + Ain
g : :
an1 + A, oo apn + Ann
A o 5.2
—g| ¢ .t |+g]| -

Gn1 - QOnn A - Apn
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With the operator G we do not achieve a complete inverse for the matrix A but still
we obtain an approximate inverse admitting at most infinitesimal errors. Indeed, as it will

be shown in the next section (Proposition 5.32),

All c Aln Q - ©
O T N (5-3)
Anl - Ann Q - Q
Hence, by (5.2), one has
14+A11 -+ o1 1+ - %)
G : Lo le] . (5:4)

5.2 Gauss-solution

In this section we present a general theorem that guarantees that the maximal solution
produced by Cramer ’s rule applied to a n by n flexible system satisfying the conditions

of Part 3 of Theorem 4.4 is the same solution produced by Gauss-Jordan elimination.

Definition 5.13 Let (21,...,2,) € R". We call (z1,...,2,)" a Gauss-solution of the
flexible system (3.1), with matrix representation given by AX C B, if for all choices of

representatives of «;j, for 1 < 4,5 < n, and corresponding matrices one has

1
(GA) | :+ | €gB.
Tn

Theorem 5.14 The Cramer-solution of the flexible system (3.1) equals the external set

of all Gauss-solutions.
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The proof of this theorem will be given for a reduced system. If the system is not
reduced, we can always divide all coefficients of matrix A by its pivot and obtain thereby
an equivalent system of (3.1) which is reduced and still verifies all the conditions of Part

3 of Theorem 4.4.

We recall that, although the condition that N (5;) = B, for all i € {1,...,n}, is not
many times satisfied by a flexible system, one may solve the flexible system, now with
B = 1r<nz‘i£nBi instead of the N (5;). If for this new system we have R (A) C P (B) and
also that A is not an absorber of B, both by Cramer’s rule and Gauss-Jordan elimination,

one obtains the maximal solution of the modified flexible system which is an admissible

solution of the original system.

We start with an example given by a 3 x 3 system.

Example 5.15 Consider the flexible system of Example 4.7 of previous Chapter 4:

(1+e20)&+&+ (1+38) G Cl+eo
(2+3£)& + (-1+%0) & — €63 Ce0
(e+e%0) & +&+ (2+%0) & C 140,

where ¢ is a positive infinitesimal. Let A be its matrix of coefficients and B the constant
term vector. One has already seen that A = det A = —3 + 20 is zeroless and that this
system satisfies all of the conditions of Part 3 of Theorem 4.4. When applying Gauss-

Jordan elimination, we get
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1+¢%0 1 1+e3£ | l4eo
AB = | 2+4&£ -1+ -1 | €0
e+e30 1 2+e20 | 1+eo
— 1+¢%0 1 1+e3£ | l4eo
Ly —2Ly 0  -3+0 -3+e£ | -2+c0
L3 —¢ely 30 l—-e 2-c+£%0 | £Q
1+ %0 1 1+e3¢ | %4—6@
1y 20 14+%0 1+e3£ | £+¢€0
372 30 l—-¢ 2—-ec+¢c%0 | EQ
Ly — Lo 1+l o 8L | £+e0
— 20 1+e%0 1+e3£ | £+4¢e0
L3 —(1—¢)Ls 20 g0 1+¢%0 | 2-2+c0
1+e20 €20 eL | + +eQ
- 20 1+’ €0 2% 4o
Ly Ly € € € | —5+5+e¢

20 o 1+ | 2-2+c0
_ A/|B/7

with A" C I3 + [0] 3x3- S0 the solution produced by Gauss-Jordan elimination is

£ + +e@
X=|& |=| -2+4+e0
&3 2-24¢0

As shown on Example 4.7, this solution is exactly the same one obtained when applying

Cramer’s rule.

The next example, which is a 4 x 4 system, illustrates how the higher order minors of

the matrix of coefficients intervene in the Gauss-Jordan elimination process.

Example 5.16 Let ¢ be a positive infinitesimal. Consider the following flexible system:

2+ (2+%0) &+ 3+ &= —24¢£
6 +26+(1+e0)i3+ 8§ =L
§1—E&te0g=—-1+eL
(I1+e£)é+E&=4+¢<L.
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First we reduce the flexible system dividing all the coefficients of the system by its

pivot which is 2. We then obtain the equivalent reduced flexible system

Let

511+ (1 +€2®)1§2 + 385+ %154 = —1+ef
—56+ &+ (5+e0) &+ 58, =L
31— g€ Te0& =5 +el
(A4+eL)é+ 38 =2+¢L.

1 1+£o 3
1 1 1
_ —15 1 §+1€® 3
3 0 -3 (%) ’
1 1
L §+5£ 5 0 0
[ &, —1+4+ef
& el
p— B:
§3 ’ —%‘i‘&f
L €4 2+eL

Then the determinant A = det A is zeroless. Indeed, one verifies that A = 1% +ek.

AlsoR(A)=A/A=¢c£,P(B)=B /B =cLand AB =ec£ = B. Hence R(A) C P (B),

A is not an absorber of B and B = B = £, so all the conditions of Part 3 of Theorem

4.4 are satisfied.

One has

1 1+ €20
Magza = | 1 1 ‘ =ck,
5 +E£ 5
1 1420 1
Moy 34 = ‘ 1 0 ‘ =3 + 20,
2

1 1+4£%0 3
M34734 = ‘ 1 1 ‘ = 5 +52®7
2
1+ €20 1
M. = 2 =&,
34,14 ‘ 1 %—i—e@ @
1 1 3
M3y24 = 2 = - +¢€0,
34,24 ’ -1 14ie0 ' 4
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1 1+e%0 4 3
M374— —% 1 %4‘6@ ——§+5£,
1 1
1+e%0 3 3
M471: 1 %—i—é@ % =€,
0 —% e
1 1
FURV N B
M472_ -3 §+€® 3 = - +e0Q,
I T
2 2
1 1+ 3
M4,3_ _% 1 % :5®)
1
5 0 5%
1 1+&0 % 3
M474: —% 1 %4‘6@ =——4+€c0
1 0 _1 4
2 2
We may choose
mg = m *§
2 T M3z = o,
_ 3
m = = —_——
1 my4 4’
i= 2
16
Using the Gauss-operations defined in 5.12, one has GA = G7 (Gg (... (G1A) - -+ )), with
1 0 00 1 0 0 0]
—az1 1 0 0 $ 100
g1 = = 1 )
—az; 0 0 O -5 0 10
—az1 0 0 1 -3 0 0 1
1 0 0 0] 1 0 0 0]
g, — |0 /M 001 |0 200
1o 0o 10| |00 10]"
0 0 0 1] |0 0 0 1]
1 —a;p 0 0] [1 -1 0 0
o — 0 1 o0 |0 1 00
5710 —mogza 1 O| |0 L 1 0]
0 —mag3s 0 1 | |0 0 01
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10 0 0 10 0 0
Go— |01 0 o |01 0 0
Y7100 masm O] |00 =2 0|
0 0 0 1 00 0 1
1 0 m34714/m72 0 1 0 0 O
G — | 0 1 —masae/mz 0 |01 -10
0 0 -—mgqg/ /My 1 00 % 1
100 0 100 0
Ge— |0 10 0 o100
1001 o “loo1 0 |’
00 0 mi/d 000 —4
1 0 0 —my1/m1 100 0
G — |0 L0 mapsmn | )0 10 -3
71001 —muzsmi | |00 1 0
000 1 000 1
So
1 1+%0 1 é
0 3 2 3 3
Gi1A = 21+62® 4+§® 1 ;
0 —§+5® 12 _1+5®
1 1
ef £2Q i -1
1 1+ L 3
_| 0 1+ j+e0
GG A) =1 —3+ef0 -2 —j+4e0 |’
ed 20 —% —i
1 20 5] 0
|0 1+20 Ll+eo 4
G3 (G2 (G1A)) = 0 0 —-Li+e0 0 |
ef 20 —i —i
1 20 EQ 0
_| 0 1+&%0 j+e0 3
g4 (g3 (g2 (glA))) - 0 52@ 14+ 0 ’
ed 20 —% —%

Gs(Ga(...(GLA)---)) =
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1 €20 €D 0
0 1+c%0 e $+e0
0 20 1+c0 EQ ’

ef €20 e 14€0
1 20 EQ 0
ef 1420 €0 5%
gA = - I4 + [®]4><4 :

0 20 1+e0 €0
et 20 eQ 1+e0

On the other hand,

[ —14+cef ] [ —1+elf ]
£ —i+4ef
8 = G| |a| T || |=9 ||| Ly
2
| 2+ef ] | S4eL
[ —14cef ] _—%+5£_
1
—3tedL —3+ef
— 3 —
= G Gs f =07 ... | Ga _§+€£
S+ef ] | S+eL
—%—f—é‘f —%—i—ef
—3tef —5 +ed
— 3 — 2
= G7|Y |G Uyer =07 | Y Uy ep
S+tek BteL
[ —%—i—sf -2 +ef
_ g —5+el | _ %+5£
- I thes | T S+es
| - +eL —Htef
So
2
—3+ef
ﬁ—i—aﬁ
X = $
§+E£
—%+5£

represents the external set of all Gauss-solutions. By Theorem 5.14, it matches the Cramer-

solution.



5.8  Proof of a Gauss-Jordan elimination theorem withexternal numbers 55

5.3 Proof of a Gauss-Jordan elimination theorem with
external numbers

First we prove Theorem 5.14 in the case of a 2 by 2 reduced system. This case serves
as a guide for the general case for it avoids some of its complications due to the presence

of minors of higher order.

5.3.1 The case of 2 by 2 matrices

Definition 5.17 Let «i2, 21, a22,081,09,&1,69 € E. Let a2 € aj2,a21 € a9 and
ags € age. Consider the reduced non-singular non-homogeneous flexible system of linear

equations

{(1+A11)£1 + by S5 (5.5)
a1&y + a2y C . .

Let d = ass — ag1a12, then d # 0. The matrices G1, Go and Gs take the form

e[ Ly 2o

—a91 1

(@]
Ql— O
| I
Q
w
| — |
O =
|
—
=
¥
—_

with G [.] equal to the repeated multiplication of matrices G3(G2(Gi - [.])).

1 a2

Observe that, with A = [
a1 a2

] , the matrix G; corresponds to the subtraction of
a9 times the first row of the second row of A, the matrix Go divides the second row of G1.A
by d and the matrix Gs subtracts the second row ajo times of the first row of Go(G1.A).
These are the appropriate Gauss-Jordan elimination operations for the matrix A, indeed

—anl 1

GA = Iy with G3 (G2 - G1) = % [ aza  —ai12 }
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Let (z,y) € R2. We recall that (z,y)” is a Gauss-solution of (5.5) if for all choices of

representatives of o, o1, aiog and corresponding matrices one has

(¢l DIv]eeli]

We will assume that N (8;) = N (83) = B. In case A is not an absorber of B and

1+ An
as1

51
B2

12
Q22

A/A C B/, every element of the solution given by Cramer’s rule is a Gauss-solution
and vice-versa. This will be shown in the remaining part of this section. We start with
some useful properties of multiplication of matrices.

As already observed, because the matrices G, Go and G3 contain only real numbers,

by (2.3) distributivity holds with respect to expressions of the form a+ A, with a € R and

o[ el ] rel Az
Qa9 a1 a2 .

Lemma 5.18 Consider the reduced non-singular non-homogeneous flexible system (5.5).

A e N. Hence

1+ An
as1

A12

All
{ P (5.6)

Az

Assume that A is not an absorber of B. Let a1o € aq2,a21 € o1 and ase € aoe. Then

1. B=BA = B/A.

g.g[g]—[g].

3. If A/AC B/fB one has

[An Alz]C[B/ﬁ B/B |

A1 A | — | B/B B/B |
and

Al Agp B B ]

el ) p]esn]
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Proof. 1. Because (5.5) is a reduced non-singular flexible system,
0<|Al <240 < 3.

Moreover, A is not an absorber of B. So
BCABC3B=05.

Hence B = BA. Moreover B,/A = (BA)/A = B(A/A) = B, since A/AC 1+ @.

2. Firstly, since |az21| < 1, one has

5] = e 3] ()
“ Nonin] =[5 ]

Secondly, by Part 1,

Thirdly, since |ai2| < 1,

wl5] = [0 ][]

Hence

B B B
s[5]=o(e(az])-15]
3. If A/A C B/B, by Part 1 one has A C B/B. Then, because for all

i,j € {1,2}, A;; C A C B /3, using formula (5.1) and Part 2, one obtains, whenever



58 Gauss-Jordan elimination

b is a representative of

g[All AIQ] - g_B/B B/ﬁ]

Axr Ago | B/B B/B
_g[B B 1B B
-~ 7|B/b B/b| b | B B

1[B Bl [B/B B/B
b | B B]_[B/ﬁ B/B]'

Moreover, also using Lemma 2.5 and Part 2,

Cla mDz] < [55 23] [5]
< [ 2][5]
< |5]-sla]

We also need a property on the order of magnitude of the entries of a matrix with respect

to its determinant.

Lemma 5.19 Let A = { 311 312 ] be the matriz of coefficients of the reduced non-
21 022

singular flexible system (5.5) and A = det A. Then |a12| > OA or |ag| > QA.

Proof. One has A = ajjage — ajaagr, with || < 14+ @ for all 4,5 € {1,2}. Suppose

that 12 € @A and ags € @A. Then
ajjaee C (1+40) 0 A =0A

and

appan; C (14 0)A =0A.

So A C @A, which is absurd because A is zeroless. Hence |a12| > OA or |ag| > 0A. R
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The next two propositions yield a lower bound on the uncertainty of Cramer-solutions

and an upper bound on the uncertainty of Gauss-solutions.

Proposition 5.20 Consider the reduced flexible system (5.5). Assume that A is not an

absorber of B and that A/A\ C B/. Then

det/\/l1 . detMQ
v () ()

Proof. By formula (4.5), N (%) C Band N (

) C B. On the other hand one

has

a2B + a12B

N

(a2e B + b1 Agg + BAgs) + (a12B + by A12 + BA12)

bi + B a2+ A2
= N [ det = N (det .
<e [b2+B a22+z422}) (det M)

By Lemma 5.19, |aj2| > @A or |ag1| > @A. So azs = c1d, with |c1] > @, or aj2 = cad,
with |co] > @. Using Part 1 of Lemma 5.18, we find agB = ¢1dB = ¢1B 2 B or

a12B = c2dB = ¢3B O B. Therefore B C a2 B + a12B C N (det M1). Hence

EC N (det M) cN det M, .
A~ A -

Again by Part 1 of Lemma 5.18 one has B = %. So BC N (%) and we conclude
that N (44011) — .

The proof is the same for N (%) = B. |

Proposition 5.21 Consider the reduced non-singular non-homogeneous flexible system of
linear equations (5.5). Assume that A is not an absorber of B and that A//\ C B,/p.
Let x1,,22y1,y2 € R such that (:I:l,xg)T and (yl,yg)T are Gauss-solutions of (5.5). Let

uy =21 —y1 and uo = x9 — y2. Then uy € B and us € B.
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Proof. Let ajs € 132,091 € ao1 and a9y € aige. Then

1+ An i u1 B
- ) 5.7
el D ln]els] e
for, using Part 2 of Lemma 5.18,
el D]
Q21 Q22 U2
el mDm]-Era 2D
Q21 @22 T2 Q21 Q22 Y2

b+ B by + B
< g[b +B]_g[b2+3]

- of o[ o[ ] 3
SHRHES!

1+An o U1 Uy © © (4
C . 5.8
el mDlnlelnl-l2alfn] oo
Indeed, by distributivity, Part 3 of Lemma 5.18 and Lemma 2.5
<g [ 1—|—A11 Q12 }) [ uy ]
022 U2
e (a] bl D]
az? Ag1 Ag U
B
g

N

Also

(¢
c [m]+[24 o2 n]
< [m]+[22][n)

Assume (u1,uz) € R? such that (ug,us)? satisfies

MR ] (5.9
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Then

-

uz + Qu1 + Quge C B.

Suppose first that max (|ui], |uz|) = |u1]. So u1 +@ui + Qua = u1 +Quy = (1 + @) uy.

If uy ¢ B, also ui1/2 ¢ B. Hence |u1 + Qui + Qug| > |u1]| /2 ¢ B, which contradicts

the first equation of system (5.10). Therefore u; € B and also ug € B. The case that

max (Juz, |uz|) = |uz| is analogous. Hence all solutions (u1,u2)? of (5.9) satisfy u; € B

and uz € B. By (5.8) all solutions of (5.7) satisfy (5.9). Hence all solutions of (5.7) satisfy
u1 € B and uy € B. [ |

By Part 3 of Theorem 4.4, if A is not an absorber of B and A /A C B3, a Cramer-

solution of the system (5.5) is a maximal solution. We show now that under these condi-

tions any element of this solution is a Gauss-solution.

Theorem 5.22 Assume that A is not an absorber of B and that A/AN C B/fB. Let

T
(z,y)" € (%, %) . Then (x,y)" is a Gauss-solution of (5.5).

Proof. Let aj2 € aja,a21 € ag; and agy € agy. Choose by € 5 and b € 5 and let
b= max(!bl\ s ’bQ’) Put d1 = b1a22 — b2a12, d2 = bz — b1a21 and d = ago — 12021 . One has
|d1| S 3b and |d2| S 3b.

dy
We assume first that [ Zj ] = [ jz ] Then
d
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Indeed, using Lemma 5.18, one obtains that

(o[ 2 22]) |

N

B/b B/b][x] §m+§y
B/b B/b y | 7T+ Ty
d d; b b
Bt <[k
vdtEd vdtTa

2] =[5]-¢]5]

2 B B

< 8
[E—'

Then it follows by distributivity that

(o[ r e[y

Hence (z,y)"

Finally, let [

N

(0] e
|

zzzD[iHQ{izi )M

wol5]=e[nin]-o[2]

is an admissable solution of (5.5).

xl
Yy }

det My
A

€ det Mo
A

be arbitrary. By Proposition 5.20 one has

N <det./\/11> - N (det/\/l2> - B

A A

[ } € } [ } . Then by distributivity and Lemma 5.18

<g{1+z411

N

N

N

(9]
By
91 5,
8,
91 5,
-
915, |

1+ A

|+
|+] 5

+o| g

)]

D]l ) 5]
o[ Lo D8]+ (o] 4n 42 ])[ 4]
|+4] 5]
|+s[5]=5[%]
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Hence (z', ') is also an admissable solution of (5.5). To complete the proof that (a/,y’)T
is a Gauss-solution, we observe that the previous calculations do not depend on the choice
of representatives, except for the entry 1,1, where we made the particular choice of the a
representative 1. Here the 2 by 2 case does not lead to a particular simplification, and we
refer to the final part of the proof of the general case (Theorem 5.36) W

Next theorem is a converse to Theorem 5.22. Under the usual conditions, a Gauss-

solution must be an element of the Cramer-solution.

Theorem 5.23 Assume that A is not an absorber of B and that A/A C B/f. Let

(z,y)" be a Gauss-solution of (5.5). Then (z,y)” satisfies (5.5), in fact

( )T c det My det Mo\ 7T

X .

7y A ) A

Proof. Let ai2 € aj2,a91 € ag1 and agy € aga. Choose by € 5, and b € 5 and let

b= max(]bl\ , |b2’) Put di = b1ass — bsaq2, do = by —bias; and d = ase — ajoaor. It follows
d’ d

T
from Theorem 5.22 that (z,y)? = (d—l d—Q) is a Gauss-solution, and it clearly satisfies

(5.5). Let (2/,9')T be an arbitrary Gauss-solution of (5.5). By Propositions 5.21 and 5.20

it holds that z’ € %1 +B= % and ¢y € %2 +B= detAMZ. Then it follows from Part 3
of Theorem 4.4 that (z,y)” satisfies (5.5). [ |

We end the 2 by 2 case with the next theorem.

Theorem 5.24 Assume that A\ is not an absorber of B and that A/ C B,/ 3. Then the
Cramer-solution of the reduced flexible system (5.5) equals the external set of all Gauss-

solutions.
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T
Proof. By Theorem 5.22 and 5.23 it holds that (de%AMl, %) is equal to the external

set of all Gauss-solutions. [ |

5.3.2 The case of n by n matrices

We will assume that system (3.1) is reduced. If the system is not reduced, we start by
dividing all coefficients of matrix A by some "largest" representative @ of the entries of A.
We obtain thereby an equivalent system of (3.1) which is reduced and still verifies all the

conditions of Part 3 of Theorem 4.4, as it was shown in the proof of Theorem 4.4.

Remark 5.25 Since system (3.1) is non-homogeneous, one has B,/3 C @ by Lemma 2.5.

So condition (iii) implies that A/A C @. Hence A C QA.

The general case needs some estimations about the order of magnitude of the deter-
minant of the matrix of coeflicients and its minors. We start by showing a useful relation

between A and the determinant of the matrix obtained by adding ¢ times the t** row to

the k' row of A, where k # t.

Proposition 5.26 Let n € N be standard, ¢ € R, with |c| < 1, and k,t € {1,...,n} with

k#t. Let A = [ayj], ., be a reduced non-singular matriz, with c;; € B and A = det A,

and let A" = [o/ } such that
nxn

ij
o — aij  iFk
t Qjj + Ccouj i =k

and A" =det A, for 1 <1i,5 <n. Then

A'C(1+0)A.
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Proof. One has

a1

(6731

a1 + cop

Qnl

qln

(8770

Qfp + COlp

Qnn

Let S,, denote the set of all permutations of the set {1,...,n} and o = (p1,...,pn) € Sn.

So, using subdistributivity,

/ —_—
A = E sgN (0) Qipy + vov v Qupy + oo (Qpy, + CQpy) < oo Qi
O'ESn
- E SEN (0) Qipy * wov* Qg * oo Qg+ oon* O, +
oESy
c g SEN (0) ipy * vov* Quppy * oo Qg * oo Q-
O'ESTL
NOW Quip; * oo s Qtpy * oo Q.+ ooe = Qippy = QU * oo * Qg+ oov = Qg+ ..+ Oy, and they appear

with opposite signs in the sum of permutations. So

E SEN (0) Qipy * wv s Oty * oo Qppy + eoe = Qi = N (Qipy = oov s Qg+ oo Qg = oo = Qi) -

O’ESTL

Since |a;;] < 1+ @ and N (a;5) € A4, by Lemma 2.7,

N (Q1p; * oo Qtpy * v Qtpy * on O, ) © N ((1 —I—Z)n) = A.
Hence, by Remark 5.25,

A" C A4 N (qapy < oee s Qupy * o= Qg+ eee Q)

C A+cACA+0A=(14+0)A. [ ]
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Proposition 5.27 Let n € N be standard. Let A = [aj] be a reduced non-singular

nxn

matriz, with a;; € B, ajg =1+ Ajq and A =det A. Let A' = |:O[;ji| be such that
nxn

o — Qi i=1
4 i —airony L1 #£ L

and A" =det A, for 1 <i,5 <n. Then

A1 = det [A']Ll C A

Proof. Put
1+ An 12 e Q1n
o A21 Mg...mg,..n R M3~~~n,2-~(n71)
Ay M1y zem My...(n-1),2-(n—1)
and
M3 n,3--n Ms. n,2-++(n—1)
n o _
(AT, = : :
My . n-1)3-m ° Ma(n-1)2-(n-1)

By Remark 5.25, for all i € {2,...,n},
Al = max (Aig, in A1) €A C 0A C 0.
By Lemma 5.8, for 2 < i1 < -+ <ip9 <N, 2<j1 < - < Jjn2 <N,
Miy iy jiojnz < |Mn—a| <2+ 1=3.
Let A’ = det A’. Since any expansion of A’ in cofactors is contained in A’, one has
(14 An)det [A], | + Ay det [A]

ok Ay det [A] L C A,

2,1 n,1

where, for all i € {2,...,n},

det [A], )| < (n = )1 (1+ 0) [Mma" " < (- 1)3" 2 € @
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Hence

Ay =

N

det [A/]l’l
(1+ App) det [A'], | + Ay det [AT], | + -+ Al det [A], |

A [

Lemma 5.28 Consider the flexible system (3.1). Then for all k € {1,...,n— 1},

Proof. Let k € {1,...

N (M) C A.
,n — 1} be arbitrary. One has, for 1 <1i,7 <n —k,

['A](n7k+1)-~n,(nfk+1)~-~n = [aij](n—k)x(n—k) :

Also |ai;] < 1+ @ and N (a;5) € A for all 4,5 € {1,...,n}. Let S,_j denote the set of

all permutations of the set {1,...,n—k} and 0 = (p1,...,Pn—k) € Sn—k. Then, using

Lemma 2.7,

N (M)

= N (Mg_ps1)en,(n—k+1)-n)
= N <det (n—k+1)- n(n—k-i—l)mn)
— N Sgn alpl T a(n*k)pnfk
a'ESn k
—\n—k

=Y N e ) € X N (A

. c€SH—k
- Y A-(m-kEA-4 =

O'eSn—k

Since system (3.1) is reduced and non-singular, the next estimation on the order of

magnitude of real part of the determinant of the matrix of coefficients is straightforward.
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Lemma 5.29 Consider the flexible system (3.1). Then
OA < |d| < £.

Proof. Since A = det A =d+ N (A) is zeroless, one has |d| > OA.
On the other hand, because A is a reduced matrix, o =  max laij| <1+ ©. Let Sy
SVA

denote the set of all permutations of the set {1,...,n} and 0 = (p1,...,pn) € Sp. Hence

A = detA= Z sgn (o) aip, -+ - Qp,, < Z sgn (o) aip, - - Qnp,,
O'ESn Uesn

<Y Jaup | Janp, | < Y@ <nl(1+0) < 20l € Q.
o€Sn g€ESy

So |d| < £. |
In fact, the maximum of all minors of the matrix of coefficients have the same upper

and lower bound.

Theorem 5.30 Consider the flexible system (3.1). Then, for all k € {1,...,n— 1},
A < |mg| < £.

Proof. We will use external induction, starting with the smallest minors. By Remark
5.11 one has M,,_1 = Ma..., 2., = a11 = 1 4+ Aq1, where Ayq C AC oA by Remark 5.25.
So |my,—1| = 1 and therefore

QA < |mp—1| < £.

We treat separately the cases of the (n — 2)™ and (n — 3)"™ minors. The case of the

(n— 3)th minor suggest how to treat the general case.
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Let
1 0 0
, —an1 1 - 0
A =GA= . . A
—ap1 O 1
Hence A’ is of the form
a1 Q12 o Qg
A= Qg Qhy g,
a;’bl O‘;ﬂ O‘;’m

where, for all i € {2,...,n},
oy = max (Aj, a;1411) € A C 0A

and, for all 4,7 € {2,...,n},
|| < [Mz].

Suppose that |[m,—3| € @A. One has N (Mn_g) C A C @A by Lemma 5.28. So

M, 5 =m,—3+ N (M,—2) € @A which implies that, for all i,5 € {2,...,n},

Let S, be the set of all permutations of {1,...,n} and ¢ = (p1,...,pn) & permutation

of S,,. Then
A =det A = Z sgn (0) aip, iy, -+ Ay, © QA
oESy
By Proposition 5.26,
AN C(1+0)A.

So A’ € AN @A, which is absurd by Lemma 2.8 because A is zeroless. Therefore

[Mn—2| > OA.



70 Gauss-Jordan elimination

Moreover, ‘Mn_g‘ < 2l+1 =3 € @ by Lemma 5.8. Hence |m,_—2| < £ and one

concludes that

A < |3 < £ (5.11)

Now let

A" = [93]171 <[g2]1,1 [-’4,]1,1)

1 0 0 1/ Mn— 0 0
—M24...n.3--.n 1 0 0 1
- o . . (A,
—mg...(n_1)73...n 0 1 0 0 1

/

By Remark 5.11, one has M, _o = Ms..p 3., = ahy. By (5.11) one has 2‘,22 = Ab,.

22

Then we obtain that A” is a (n — 1) x (n — 1) matrix of the form

! / —_— / —_—
" " "
I Q39 33 T A3y )
.A = . ’
" " "
) Q3 e Cnn

here, for all i € {3,...,n},
aly = max (A;2, o/iQA'm) CACOA

and, for all 4,7 € {3,...,n},

o] < [¥os]

Suppose that |m,—3| € @A. By Lemma 5.28 one has N (Mn,g) C A C @A. Then

M, s=m,_3+N (Mn,g) C @A and one concludes that, for all 4,5 € {3,...,n},

o C OA.
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Let Ay = det [-’4/]1,1 and A” = det A”. One has A; C A’ by Proposition 5.27,
det [93]1’1 = 1 and det [Qg]L1 = 1/m,—3. Let S,,_1 be the set of all permutations of

{2,...,n} and 0 = (p2,...,pn) € Sp—1. So, by (5.11),

A" = (1,/My ) Z sgn (o) algmozgm . -agpn
oESH_1

- %( A2 C .

N

Also, using Proposition 5.26 and (5.11),

A" = (L/mny2) A € (1/ My —3) A

C (1+0)(1/m,2)ACa.

So A” C N @ = () which is absurd. Therefore [m,—3| > OA.
On the other hand, |Mn,3} < 3!41=7¢€ @by Lemma 5.8. Hence |[m,,—3| < £ which
implies that

QA < |mn_3| < £.

Finally, let k € {1,...,n — 1} be arbitrary. Assume that A*~1 Ak = det AK-1)

and Ap_1 = det [.A(k_l)} 11 are defined. By Proposition 5.27 one has Ag_; C A*=1) - Also

1

by the induction hypothesis

OA < |my—x| < £. (5.12)
Let
1 0o --- 0 LMy 0 -~ 0
40 — —Mp(k42)m,(k+1)-n L o 0 0 1 - 0 [A(k_l)]
. . . . . L1

Mo (n—1),(k+1)n 0 - 1 0 o --- 1
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By Remark 5.11, one has M, = M1y, (kt1)n = a,(!z b, By (5.12) one has
A=V

gy = A,(Ck b, By analogy, A®) is a (n — k4 1) x (n — k + 1) matrix of the form

Ak

[ 1 —|—(:)l(k 2 a,glzl%g))l)/mnk e a,g’; t)/mn
Ak — X (k+1)k Y1) (k1) Yk+1)n )
NG (k) ‘ )
L Cnk an(k—i—l) T Qnn i

here, for all i € {k+1,...,n},

off) = max (Al afTV ATV ) cAC oA

and, for all 4,5 € {k+1,...,n}

agc)‘ < ‘Mnfkfl} .

Suppose that |m,_r_1| € @A. One has N (Mn—k—l) C A C @A by Lemma 5.28 and

$0 My_j—1 =My_p—1+ N (M,__1) C @A. Hence, for all 4,5 € {k+1,...,n},
oz(]?)g@A.

v

Let A®) = det A®). Let S, be the set of all permutations of {k,...,n} and

o= (pk,---,pn) a permutation S, . Then
k—1 k
AR = (1 mny) Z sgn (o )a,gpk )agkll)pkﬂ . -.ag;)n
O'GSnfk
Q@ n—k
Cc — C Q.
SN (@A) " C o
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Also, by Proposition 5.26 and (5.12),
AW = (L mmg) Mg € (L) AR
C (L Tng) (L Tn—g—1) A"
g (1/mn7k) e (1/mn—2) A1
Q@

C 190+09) g
So A®) C on [@, (1+0) %] = (), which is absurd. Hence [m,—;_1| > @A.
Moreover, by Lemma 5.8 one has ‘Mn_k_1| < (k+1)!'+1 € @. Therefore

[T —r—1| < £ and so

QA < |mn—k—1| < L.

Using external induction one concludes that, for all k € {1,...,n — 1},
QA < |mg| < £. [ |
Lemma 5.31 Consider the flexible system (3.1). Then
1. B= BA =B/A.
2 (") B=Band (TE2) B=B for 1<k <n-2

Proof. 1. By Lemma 5.29

0 <Al < £.

Moreover, A is not an absorber of B. So

BCABC £B=B.
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Hence

B = BA.

On the other hand, since A/A C 1+ @,
B/A = (BA)/A=B(A/A) =B.
2. By the previous Part 1 and Theorem 5.30 one has

mi B
<dl>B:|ml|A:ml|Bg£BgB.

Also, [m1], |d| € [@A, @] by Lemma 5.29 and Theorem 5.30. So |ZL| > @A and, as a
consequence of Part 1,

B:@B:@ABQ(”;)B.

Hence

Moreover, again by Theorem 5.30, one has |mgi1]|, |mi| € [QA,Q] for 1 <k <n—2.

So

@ Q@

@Aé‘ < = ,
Al @A~ A

k+1
mg
which implies

QAB C (m’““> Bcal.
L A

By Part 1, one has B = BA = B/A. Also @B = B. Hence
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and one concludes that, for all k € {1,...,n — 2},

<mk+1> B—=RB n
mg

In the remaining part of this section it will be shown that every element of the solution
given by Cramer’s rule is a Gauss-solution and vice-versa. We start with some useful

properties of multiplication of matrices.

Proposition 5.32 Consider the flexible system (3.1). Let a;; € aj foralli,j € {1,...,n}.

Then
[ B B
LGl |=]:
i B B
[ A - A
2.6 + .+ | S [B/B,..,-
Anl Ann
A - A B B
sG] D lcg]

Proof. 1. Firstly, since |a;1] < 1 for all i € {2,...,n}, one has

B 1 0 --- 0 B B B
—a21 1 --- 0 B ang—i—B B

gl - . . . . . - . - .
—ap1 0 --- 1 B an1 B+ B B

Also, by Theorem 5.30 and Lemma 5.31,

B 1 0 - 0 B B
g . 0 l/mn_g -0 B B/mn_g B
2 : == . . . . . . .

B 0 0 e 1 B B B
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For2<ip<---<ipo<nand 2<j; <+ <jJp_2 <nonehas M., o j1jns| <

|mn—2| < £ by Theorem 5.30. Also |a12] < 1 and so

1 —a12 0 0 B
B 0 1 0 0 B
g3 — 0 —1M24...n,3--n 1 0 B
B : : :
L 0 —M3...(n—1),3--n 0 1 1L B ]
B + algB i [ B i
B B
— B+ m24...n,3...nB _ B
L B+ m2...(n,1)73_._nB i L B ]
Using Part 2 of Lemma 5.31 one has
1 0 0 . 01 B
B 01 0 0 B
B : : :
| 0 0 0 11| B ]
B i [ B ]
B B
— | M2/ Mp=3)B | = | B
-~ B - - B -

Again by Theorem 5.30,

and

for2<ii< - <ipo<nandl

|mi1"'in72ajl"'jn72} < |mn*2| < £7

M0y _3. 41| < T3] < £.

[Mn—2| > OA.

S < <UJn-2<m,



5.8  Proof of a Gauss-Jordan elimination theorem withexternal numbers 77

Also & = B by Part 1 of Lemma 5.31. So

i 1 0 mg...n’14..,n/mn72 0 B
B 01 —m3...n724...n/mn_2 0 B
' 0 0 1 o||B
s : = 0 0 —m35...n74...n/mn_2 0 B
B Lo . .
L 00 —mg...(n_1)74...n/mn_2 1 1L B i
[ B + (mg,..n714...n/mn_2> B ] [ BT
B+ (m3~-n,24~--n/mn72) B B
B B
= B+ (m35...n74...n/mn,2) B = | B
L B+ (m3...(n_1)74...n/mn72) B i L B ]

Applying the same techniques to the subsequent matrices one concludes that

B B B

Gl | =G%ma1]|"G3[G|0| : =1 :
B B B

2. This part is a clear generalization of the 2 by 2 case. Since A /A C B3, by Part

1 of Lemma 5.31 one has A C B/3. So, for all i,5 € {1,...,n},
A;j CACB/B.

Using formula (5.1) and Part 1, one obtains, whenever b is a representative of /3,

Ay e Ay B/B --- B/p B/b -+ B/b
g ST cg : : =g : :
Ay - Apn B/B B/B B/b --- B/b

. B --- B ) B -.- B

= gg A i

B .- B B --- B

B/b --- B/D B/B --- B/B

B‘/b B./b B/B B/B
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3. Using Part 2, Lemma 2.5 and Part 1 we obtain

Ay - A, B [ B/b --- B/b B
gl : TR : - : D :
Ayl - Apn B | B/b - B/b B
[ © % B
C :
| © %, B
[ B B
c |1 =G u
| B B

We are now able to justify formula (5.3). Notice that B,/b C @ by Lemma 2.5. So

Part 2 of Lemma 5.32 implies that
All Aln Q - @
A o AL o o
The next two propositions yield a lower bound on the uncertainty of Cramer-solutions

and an upper bound on the uncertainty of Gauss-solutions.

Proposition 5.33 Consider the flexible system (3.1). Then, for all j € {1,...,n},

det M _
()

Proof. Let j € {1,...,n} be arbitrary. By formula (4.5)

det M
V()
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On the other hand, by Lemma 5.5 one has |M;;| > @A for some i € {1,...,n}, with A

zeroless . So B C M;;B. Therefore

B C My;B+---+M;;B+---+ M,;B
I+An - ooy Wi +B aggpy 0 ag

N | det

N

Onl T Qp(i-1) b, + B Qn(j+1) " Onn

= N (det/\/lj) .

By Part 1 of Lemma 5.31 one has B = g. So

B N(det/\/lj) N(det/\/lj) 1
= — C C .. _
B N A C A +det M; - N A
B det M,
- N( : ) .

Combining, we conclude that N (detAM : ) = B. [

Clearly, any number u € R that verifies u + @u C B should satisfy v € B. The next

lemma generalizes this property to higher dimensions.

Lemma 5.34 Let B be a neutriz and (uy,. .., u,) € R™ such that (uy,...,u,)? satisfies

uy Q@ - © uy B
S I IR 2 N (5.13)
Then, for alli € {1,...,n}
u; € B.
Proof. Let (ug,...,u,) € R such that (u,...,u,)" satisfies (5.13). Then
up +Quy + - +Qu, C B
(5.14)

Uy + QUi + -+ + Qu,, C B.
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Suppose first that max |u;| = |ui|. So
1<i<n
U+ Quy + -+ Qup = up + Quy = (1 4+ Q) ug.

Suppose that u; ¢ B. Then also %5 ¢ B. Hence

||

lur + Quy - - - + Qup| > 5

¢ B,

which contradicts the first equation of system (5.14). Therefore u; € B which implies that

also u; € B for 2 <7< n.

The cases where max |u;| = |up| for 2 < p < n are analogous. Hence all solutions
<i<n

It

(u1,...,un)T of (5.13) satisfy u; € B for all i € {1,...,n}. [ |

Proposition 5.35 Consider the flexible system (3.1). Let z; ,y; € R for alli e {1,...,n}

such that (x1, . .. ,xn)T and (yi, . .. ,yn)T are Gauss-solutions of (3.1). Let u; = x; —y; for

alli € {1,...,n}. Then, for 1 <i<mn,
u; € B.

Proof. Again we follow the steps of the 2 by 2 case as a generalization. Let a;; € ay; for

all 4,5 € {1,...,n}. Then

14+A411 -+ ain Ul B

N

, (5.15)

Qnl st Qpp Un, B
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for (x1,... ,xn)T and (yi,... ,yn)T are Gauss-solutions and, using Part 1 of Proposition
5.32,
[ 1+ A o oan |\ [ w ]
g .
| Gnl Tt Qnp | | Un |
[ 1+ A o oan |\ [ @1 ] 1+ A1 -+ Y1
| Onl Tt Opp | | Tn | Qnl o Opp Yn
[ b1+ B by + B
c g : -G :
b, + B b, + B
[ by B b1 B
=G| |+G| |-G + |-G :
b, B b B
B B B
B B B
Also
1+A11 o Op Ui u1 o - 0 (41
g : I : - S e i IR co| . (5.16)
Onl st Opp Unp, Unp, 0 0 Unp,

Indeed, by distributivity, Part 2 of Lemma 5.32 and Lemma 2.5
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[ 1+ A - o, Uy
G )
| am C Uy |
1 - a, uy A - A, U1
= g +19 :
| an1 Ann Up, | At Ann Up,
[w | [B/B -+ B/B uy |
- N : : :
| un | | B/B -~ B/B Up |
[ up ] [0 -+ © u1
- N Bl .o :
| un | o -0 U

By (5.16) all solutions of (5.15) satisfy (5.13). So, by Lemma 5.34, all solutions of

(5.15) satisfy u; € B for all i € {1,...,n}. [ |

By Part 3 of Theorem 4.4, if A is not an absorber of B and A /A C B3, a Cramer-
solution of the system (3.1) is a maximal solution. We show now that under these condi-

tions any element of this solution is a Gauss-solution.

T
Theorem 5.36 Let (x4, ... ,mn)T € (detAMl Yooy detAM"> . Then (z1,... ,xn)T is a Gauss-

solution of (3.1).

Proof. Let a;; € o for all i,j € {1,...,n}. Choose b; € §; for all i € {1,...,n} and let

b= max (|b;|). Put, for all j € {1,...,n},

1<i<n

L agoy bioaigry oo ain
d; = det S

a1 **r Ap-1) bn Guyr) ccc A3
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Because |a;;| < 1+ @ for all 4,5 € {1,...,n}, one has |d;| < (n —1)!+ @) for all

je{l,...,n}. So, for all j € {1,...,n},

d;B C bB. (5.17)
1 ] 4 I a
We assume first that = | : |, where d=det : . Then
Tn | d# anl Ann
1 ain | T T 4 b
gl : : | =1, | : | =g
an1 Ann | In In dc? bn,

By Part 2 of Proposition 5

Aln

.32 and formula (5.17), one has

z1

Tn

B/b

N

N

T

B/b | | xn
+ B, ]
—I—%xn
Bdn T
Tod
+ 5

Bb B

T3d d

Bb B

T3d d

Also by Part 1 of Lemma 5.31 and Part 1 of Proposition 5.32,

B

A

Dl - -

B B
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Hence

A - A x1 B
gl ol Cgl o, (5.18)

Then it follows by distributivity that

[ 14+ A1 - am Ty |
G :
| am o am |
[ 1 an, x1 App - Ay 1
= (9 :+ . o
a4 o anm o Ayl - Apn T,
by B b+ B By
S G| |+G| =6 : =G| :
b, B b + B B,
Hence (z1,...,2,)" is an admissible solution of (3.1).
" det M,
Let : € : be arbitrary.
wl Lo

By Proposition 5.33 one has N <%) =Bforallpe{1,...,n}. So

Y1 x1 B

Yn Tn B
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Then, by distributivity and Proposition 5.32,

N

N

N

Hence (y1,..-,Yn

Finally, we prove that (y1, ..

[ 14+ A

)T

q1n

Q1n

Qnnp,

Gnl

Aln

+G

B

Y1

Yn

x1

51

1+ A

Qnl

+G

is an admissible solution of (3.1).

-;yn

)T

+G

A1n B
Qnn B
B
B

is a Gauss-solution. For this must now choose an

arbitrary a1; € aj1. Then a;; = 1+ € with € € Aj;. So, by distributivity, formula (5.18)

and Part 3 of Lemma 5.32,
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[ 1+e+An - am (1
G : ) : )
i Qni o Qg Un
[ 1+ A - o 71 e .- 0 n
- |g . ) ) 4 lgl : :
| an Qnn Un 0 0 Un
B1 A o Ay x1
C gl | +|9 C Tl :
8, Ay - Apn T,
A1 An B
+19 :
An1 Ann B
8, B B
c g +G| | +¢§
| Bn B B
[ 61+ B B1
=g : =g n
| B+ B B

Next theorem is a converse to Theorem 5.36. Under the usual conditions, a Gauss-

solution must be an element of the Cramer-solution.

Theorem 5.37 Let (z1,...,2,)" be a Gauss-solution of (3.1). Then (x1,...,2,)" satis-

T
fies (3.1), in fact (:vl,...,wn)T € (detAA/ll,...,detA/‘A")

Proof. Let a;; € oy; for all 4,5 € {1,...,n}. Let b; € 3, for all i € {1,...,n} and let

b = max (|b;]).

1<i<n
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Put, for all j € {1,...,n},

I agoy boagyy o am
dj = det| . : : : S
[ an1 o ang-1) bn Gngirr) 0 G
(1 a1n
d = det :
G

d d. T . .
T —") is a Gauss-solution,

It follows from Theorem 5.36 that (z1,...,2,)" = ( yeeey 3

and it clearly satisfies (3.1).

Let (y1,...,9yn)! be an arbitrary Gauss-solution of (3.1). By Propositions 5.35 and

5.33 it holds that, for all i € {1,...,n},

'€%+B—detMi
Y=g N

Then it follows from Part 3 of Theorem 4.4 that (1, .. .,yn)" also satisfies (3.1). [

T
Proof of Theorem 5.14 By Theorem 5.36 and 5.37 it holds that (detAMl ey de%\/t")

is equal to the external set of all Gauss-solutions. |

This final theorem implies that the external set of all Gauss-solutions, being equal to
the Cramer-solution, by Part 3 of Theorem 4.4, also constitutes an admissible and maximal

solution of the reduced flexible system (3.1).
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