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RESUMO 

 

“Identificação de fatores determinantes que influenciam o 

atropelamento de serpentes no sul de Portugal” 

 

O impacto das rodovias é bastante marcado ao nível da fauna vertebrada 

terrestre, sendo comum encontrar serpentes atropeladas. Com base num registo 

diário de 2 anos analisaram-se padrões espaciais no atropelamento de serpentes em 

quatro troços de estradas ao longo de 50.6 km. Os dados de atropelamento foram 

analisados ao nível da comunidade de serpentes e das espécies principais. O maior 

atropelamento da comunidade de serpentes e de Rhinechis scalaris ficou assim 

associado a maior cobertura de Montado, enquanto a cobertura arbustiva foi então 

associada a uma menor probabilidade de atropelamentos. A rugosidade do terreno e 

os terrenos agrícolas revelaram-se também importantes no padrão de atropelamento 

até valores intermédios. Hemorrhois hippocrepis estava fortemente ligada às áreas 

influenciadas pelas atividades humanas, enquanto que Natrix maura atropeladas 

foram associadas à proximidade de charcos. Além disso, evidenciou-se um maior risco 

de atropelamento em estradas nacionais do que em estradas municipais. Assim, 

demonstrou-se a importância de considerar elementos paisagísticos para melhor 

compreender o atropelamento de serpentes. 

 

Palavras -chave: Colubridae, serpentes, padrão espacial de atropelamento, 

Inferência multimodelo, Alentejo 
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ABSTRACT 

 

“Identifying key factors that impact snake roadkill in southern Portugal” 

 

The impact of roads is a serious issue among terrestrial vertebrate fauna, in fact 

snakes are frequently found dead on roads. To analyse snake roadkill spatial patterns, 

roadkill data was collected over a 2 year period from 4 road stretches that are 50.6 km 

long. The data was analysed at the snake community and species level. Snake 

community and Rhinechis scalaris roadkill were associated to Montado cover, while 

shrub cover lowered the chance of roadkill. Terrain roughness and agricultural land 

were also an important roadkill feature occurring up to intermediate levels. Increased 

Hemorrhois hippocrepis roadkill was highly associated to human influenced areas, 

while Natrix maura roadkill was strongly linked to the proximity of water sources. The 

risk of snake roadkill was higher in national roads than in municipal roads. In brief, 

taking into account landscape factors seems to be an important step to improve our 

understanding on snake roadkill. 

Keywords: Colubridae, serpents, roadkill spatial pattern, multimodel inference, 

Alentejo 
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FORWARD 

This dissertation text is mostly set as a scientific paper in order to facilitate its final 

publication as soon as possible after the public defence of this thesis. Despite leaving 

some paragraphs in the text as explanatory views, I found it important for a better 

judgment in terms of the dissertation. However, the final text and figures aiming the 

future article may be a bit more succinct for editorial reasons. Nevertheless, I am the 

main author of the following text for all purposes. 

 

INTRODUCTION 

Impacts of Roads on Fauna 

Roads are an important physical structure that provide connections between 

populated areas and are often considered an essential infrastructure to improve the 

development and productivity of a region (Coffin 2007). However, with the increased 

development of road networks in the last century, environmental impacts on fauna have 

been a growing issue in recent years (Bekker 2003; Coffin 2007). 

The impacts of roads on fauna start with the construction phase and continue to 

disrupt the natural environment with its daily use. Besides road location determining the 

magnitude to which wildlife will be exposed, it also influences surroundings up to 100 -

800 m beyond the road’s edges (Andrews, Gibbons & Jochimsen 2006; 2008). As a result, 

direct impacts usually consist of wildlife vehicle collisions, while indirect impacts range 

from habitat loss, habitat fragmentation and degradation to behavioural change of 

wildlife (Brito & Álvares 2004; Spellerberg 1998; Underhill & Arnold 2000). 

Furthermore, animals may avoid roads, in which case a barrier effect is created 

(Andrews, Gibbons & Jochimsen 2006; van Langevelde, Dooremelan & Jaarsma 2009). If a 

road creates an impermeable barrier to animal movement then demography, population 

structure and genetic diversity may be modified (Brito & Álvares 2004). Even if roads do 

not pose a barrier, populations may still be at risk if a significant proportion is killed by 

roads and not compensated by higher birth rates (Gomes et al. 2009). 
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Factors Influencing Snake Roadkill 

The extent to which roads impact snake populations is still poorly understood. One 

of the main reasons for this omission is due to the cryptic nature of these species, along 

with the failure to have a standard fauna sampling method that can adequately detect 

them (Dorcas & Willson 2009; Mcdonald 2012). Despite the sampling issues, it is clear 

that roadkill is affecting several snake species (Colino-Rabanal & Lizana 2012). In North 

America, roadkill studies have already demonstrated considerable damage to snake 

populations (Jochimsen 2006; Rosen & Lowe 1994). Also, a long term study about 

population viability on a snake species concluded that road mortality of more than 3 adult 

females per year was enough to increase the extinction probability to >90% (Row, Blouin -

Demers & Weatherhead 2007). Lastly, results from another study suggested that 

populations of large snake species are reduced by 50% or more up to a distance of 450 m 

from roads with moderate use (Rudolph et al. 1999). 

Understanding the impacts of roadkill in snake populations is essential for their 

conservation, as snakes play an important ecological role both as predators and prey in 

different ecosystems (Pragatheesh & Rajvanshi 2013). Snakes have several ecological 

traits that increase their probability of suffering a vehicle collision mentioned in the 

literature (Colino-Rabanal & Lizana 2012). Since snakes have a long life span and mature 

slowly, they usually present a low reproductive rate and show a natural low adult 

mortality. These traits add up to a number of characteristics that make snake mortality in 

roads an increased risk for populations (Hartmann, Hartmann & Martins 2011) and 

altogether make population dynamics extremely vulnerable to adult mortality 

(MacKinnon, Moore & Brooks 2005). The snake’s ability to cross a road can also be 

influenced by speed and defensive behaviours which are features that greatly vary from 

species to species. Also, matters can be aggravated when human and animal activities 

overlap as some snakes show a crepuscular behaviour during parts of the year that may 

match with rush -hour traffics (Andrews, Gibbons & Jochimsen 2006). Furthermore, 

although some snakes flee from danger as an initial response, others immobilize 

themselves hindering their chance to cross the road safely (Andrews, Gibbons & 

Jochimsen 2006). Nevertheless, research has shown that snakes tend to cross roads 

perpendicularly taking the shortest possible route (Andrews & Gibbons 2005; Shine et al. 
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2004), thus probably bettering their chances to cross successfully. In addition, snakes may 

use roads for their thermoregulation needs, favouring paved roads for its suitable heating 

surface (e.g. tigmotactism) and therefore increasing their vulnerability to roadkill 

(Andrews, Gibbons & Jochimsen 2006; Brito & Álvares 2004). This behaviour is particularly 

noticeable in the ladder snake that often takes advantage of the warm surface roads 

provide at night (Pleguezuelos 2009b). Also an important element for snake roadkill to 

occur is snakes’ movement patterns. These patterns are mainly driven by snakes’ 

breeding or migration periods or can simply refer to attending their basic needs (e.g. prey 

searching) and highlight the dispersive nature and temporal trends of snake species 

(Bonnet, Naulleau & Shine 1999; Brito & Álvares 2004; Jochimsen 2006). For example, the 

male Montpellier snake is more likely to be found dead on roads in the mating season 

due to their greater mobility in this season (Pleguezuelos 2009a). In autumn, juveniles 

after birth also have a higher probability of being run over when they start dispersing 

(Pleguezuelos 2009a). 

Reports about snake mortality in roads go far back as the fifties (e.g. Campbell 1953; 

Hellman & Tellford 1956). However, investigation on why roadkill occurs has only started 

in recent years (Colino-Rabanal & Lizana 2012). Even with an increasing number of 

published articles arising, only a few are related to snake mortality in roads. Indeed, most 

published papers on the subject are from North American studies (Andrews & Gibbons 

2005; Clark et al. 2010; Enge & Wood 2002; Gibson & Merkle 2004; Jochimsen 2006; Roe, 

Gibson & Kingsbury 2006; Row, Blouin -Demers & Weatherhead 2007; Rudolph et al. 

1999; Shine et al. 2004), with only a few papers being published elsewhere (Bonnet, 

Naulleau & Shine 1999; Ciesiołkiewicz, Orłowski & Elżanowski 2006; Hartmann, Hartmann 

& Martins 2011; Pragatheesh & Rajvanshi 2013). In Portugal, one paper has been 

published by Brito & Álvares 2004 identifying viper roadkill patterns (age, sex and 

seasonal activity). 

These studies have generally investigated temporal patterns and snake behaviours 

in roads, while only a few investigated the influence of spatial patterns (Enge & Wood 

2002; MacKinnon, Moore & Brooks 2005; Pragatheesh & Rajvanshi 2013). Spatial patterns 

regarding habitat characteristics influencing wildlife movement may have an important 
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role in identifying major roadkill spots (Clevenger, Chruszcz & Gunson 2003; Forman & 

Alexander 1998). 

Investigating the spatial patterns of snakes should give an important contribution 

towards understanding the role of spatial features in snake road mortality. After all, 

snakes in Portugal are no exception to the impact of roads as roadkill is one of the major 

threats for this group (Loureiro et al. 2010). In Portugal, more than 30% of recently 

registered specimens of R. scalaris were found dead on roads (Pleguezuelos 2009b). 

 

Objectives 

Since one knows that snakes are being killed in roads and that they play an 

important role in the ecosystem, it is essential to understand roads impacts in snake 

populations. Thus, the main objective of this study is to understand the influence of 

spatial factors in snake roadkill and therefore to determine the patterns and importance 

of environmental factors. The specific objectives are: to describe the ecology and biology 

of snakes in the study area linked to roadkill; identify the spatial factors that could be 

influencing roadkill in snakes; describe the spatial patterns of factors influencing roadkill. 

Looking ahead, the results of this study should help recognize landscape’s key 

factors linked to snake roadkill and may be used in future studies, improving road 

management practices or mitigation planning. 

MATERIAL & METHODS 

Study Area 

This study was conducted in the southern part of Portugal, in the Alentejo Central 

region (NUT III), comprising the municipalities of Évora and Montemor -o -Novo. The 

study area includes consecutive stretches of four roads along 50.6 km that, altogether, 

draw an irregular square: two national roads (N114 and N4) and two municipal roads 

(M370 and M529) – see Figure 1. Also, the highway (A6) is located nearby the N114 

road. 
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FIGURE 2 – LANDSCAPE SURROUNDING SURVEYED ROADS (ADAPTED FROM “MOVE” PROJECT). 

 

Alentejo Central’s main landscape has been the so -called “Montado”. It consists 

mainly of an agrosilvopastoral ecosystem, mostly composed by cork (Quercus suber) or 

holm oak trees (Q. rotundifolia), shaping as a savanna like land cover pattern that is 

known for its cork production, as well as for its multiple supplementary productions 

that supports a diversity of ecosystems and biodiversity (Correia, Ribeiro & Sá -Sousa 

2011; Godinho, Santos & Sá -Sousa 2011). 

Being a type of Mediterranean region, the Alentejo Central’s climate has broad 

thermal ranges and quite different seasons with the hot dry season averaging 20 to 23 

ºC and low rainfall (June to October) and the cool wet season averaging 10 to 15ºC 

with rainfall superior to 80mm (Galantinho & Mira 2008). 
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Snakes in Portugal 

According to Carrascal & Salvador (2009) and the updated IUCN (2013), there are 

ten species of snakes distributed in Portugal: two vipers (Viperidae), two Natricidae, 

one Psammophiidae and five Colubridae. Among them, a total of seven species occur 

in southern Portugal (Table 1; Figure 2). These are mostly distributed through Western 

Europe and North Africa, generally occupying Mediterranean environments. 

Table 1 summarizes some snake features (taken elsewhere from Carrascal & 

Salvador 2009 and Loureiro et al. 2010) that may influence road crossing. Different 

characteristics may have rather different impacts in the snake’s vulnerability to 

roadkill. For example, in the Iberian Peninsula some snake species have an active 

foraging behaviour during the day period that may make them more vulnerable to 

roadkill (Malkmus 2004; Pleguezuelos 2009; Salvador & Pleguezuelos 2002). 

 

Roadkill Surveys 

The road circuit (Figure 1) was surveyed daily from 16 of March 2010 to 15 March 

2012, often in the morning. These roads differ in their features, mainly in their traffic 

flow. In brief, the national roads have a medium/high traffic (<10000 vehicles/day), 

while more local roads have a low traffic (<4000 vehicles/day, EP 2005). Snake roadkill 

was surveyed by car at a low speed (15 - 20km/h) in both road directions. 

A global positioning system (GPS) was used to set the geographic coordinates of 

each snake carcass found on the pavement. Species name, age and sex were also 

recorded on the spot whenever possible. Finally, carcasses were removed from the 

road, avoiding double counting. Figure 3 shows the number of recorded snakes killed 

in roads during the course of the survey. 
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FIGURE 2 – PHOTOGRAPHS OF THE SNAKE SPECIES FOUND IN SOUTHERN PORTUGAL. 

©©©    AAA...    SSSaaalllvvvaaadddooorrr...    

Natrix maura 

Hemorrhois hippocrepis  

©©©   JJJ...    MMM...   PPPllleeeggguuueeezzzuuueeelllooosss...    

Malpolon monspessulanus 

Coronella girondica  

Macroprodonton brevis  Rhinechis scalaris  
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FIGURE 3 - STUDY AREA WITH A 1000m BUFFER DISTANCE AROUND THE SURVEYED ROADS (ADAPTED 

FROM “MOVE” PROJECT) AND SNAKE ROADKILL NUMBER. 

 

Statistical Analysis 

To investigate the importance of spatial factors and find patterns and magnitudes 

of parameters influencing roadkill, Generalized Linear Models (GLM) were built using a 

Poisson error distribution with a log link function. Models developed were used for 

model selection and multimodel inference (MMI) within an information theoretic 

approach.
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TABLE 1 – SEVERAL SNAKE FEATURES THAT MAY INFLUENCE ROADKILL IN SOUTHERN PORTUGAL. 

a -IUCN Red List of Threatened Species (IUCN 2013); b -Enciclopedia virtual de los vertebrados españoles (Carrascal & Salvador 

2009); c
 
-Exception in southwest Iberian Peninsula, it is generally nocturnal; 

d
Atlas dos Anfíbios e Répteis de Portugal (Loureiro et 

al. 2010); 
e
 mean snout -vent length (SVL), except for C. girondica and N. natrix. 

Scientific Name 
a
 English 

a
 & 

Portuguese 
d
 

Main Prey 
b
 Biotope 

b 

(study area) 
Abundance 

a 
Size 

b 

SVL 
e
 

(mm) 

Foraging 
Mode 

b
 

Activity 
b
 Home 

Range 
b 
(ha)

 

Seasonal 
Activity 

b
 

Colubridae          

Coronella 

girondica 
Southern 
Smooth 
Snake 

Cobra lisa 
bordalesa 

Lizards 
Arthropods 

Grassland 
Open woodlands 
Orchards 

Plantations 
Rocky areas 
Scrubland 

Uncommon 496 
(total 
length) 

Active Crepuscular  
Nocturnal 

NA Mar -Nov 

Hemorrhois 

hippocrepis  

Horseshoe 

Whip Snake 
Cobra de 

ferradura 

Mammals 

Reptiles  

Agricultural land 

Open spaces 
Riparian galleries 

Scrubland (low cover) 

Rocky areas or human 
structures  

Common  891 Active  Diurnal 

Crepuscular 
Nocturnal 

(summer) 

NA   

Macroprotodon  

brevis 

False Smooth 

Snake 

Cobra de 
capuz 

Reptiles Mediterranean 

forests (e.g. Oak and 

pine) 
Pastureland (near 

water) 
Riparian galleries 

Scrublands 

Uncommon 286 Sit and 

wait 

Nocturnal NA Mar -Nov 

Rhinechis scalaris Ladder Snake 

Cobra de 
escada 

Endothermic 

vertebrates 

Agricultural land 

Oak woodlands and 
scrubland (field 
edges) 
Overgrown areas 

Riparian galleries 
Stone walls and ruins 

Abundant 720 Active Diurnal
c 

Crepuscular 
Nocturnal 
(summer) 

0.32 -

4.87 

Apr -Oct 

Natricidae          

Natrix  

maura 
Viperine 
Snake 
Cobra de 
água viperina 

Fish 
Amphibians 

Ponds (in meadows 
and open woodland) 
Streams 

Abundant 770 Sit and 
wait 

Diurnal 0.7 -
5.8 

Mar -Oct 

Natrix  

natrix 
Grass Snake 
Cobra de 

água de colar 

Amphibians Dense scrubland 
Grassland 

Oak and mixed 
forests (field edges) 

Riparian galleries 

Abundant 
(rare in 

southern 
Portugal) 

152 -900 
(min -

max) 

Active Diurnal NA Mar -Nov 

Psammophiidae          

Malpolon 

monspessulanus 

Montpellier 

Snake 
Cobra rateira 

Mammals 

Reptiles 

Agricultural land 

Open oak woodland 
Open spaces (e.g. 

grassland, meadows) 
Riparian galleries 
Ruins, parks, dumps 
Scrubland (low cover) 

Common 723 Active Diurnal 0.39 -

5.41 

Feb -Nov 
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Response and Explanatory Variables 

Several explanatory variables were analysed so as to understand the spatial 

behaviour of snakes that leads to crossing a road in a specific area. Variables including 

topographical (altitude and roughness), road type, land cover and landscape metrics 

variables were used for this purpose. 

Thus, road lines were extracted from a digital aerial photo (source: Bing Maps 

aerial imagery web mapping service). For analytical purpose the selected roads were 

divided either in 250 or 500m segments. Each road segment had a centroid attributed 

that contained the roadkill numbers for every recorded snake species. These 

constituted the response variables. Despite initially dividing roads in 250 segments, 

these were not used because too many zeros were present in the species data. After 

extracting the response variables from the centroids in the 500m segmented roads, 

three snake species (e.g. C. girondica, M. brevis and N. natrix) were excluded from 

further analyses of individual species for not having enough data to be included in the 

statistical analysis. Besides the remaining four (snake) response variables, a fifth 

variable was created accounting for the snake community in the study area (but 

aquatic species were excluded). 

I used digital layers with landscape classification available from previous studies 

included in the “MOVE” project. Before extracting the environmental variables, an 

optimum spatial scale had to be selected for this study area. To our knowledge, there 

is no study yet focusing on buffers in a roadkill framework for snakes. That being the 

case, we extracted variables at three spatial extents 250m, 500m and 1000m (Langen 

2009) in order to select the most suited spatial scale for this study. 

The altitude variables were gathered from the SRTM 90m digital elevation 

database v4.1 (Jarvis et al. 2008). In addition to extracting the “Mean Altitude”, a 

“Roughness Index” was created based on the standard deviation of the elevation. 

Roughness index variables have already been used in other wildlife studies (Rood, 

Ganie & Nijman 2010), including snakes (Fitzgerald et al. 2005). 
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Land uses were reclassified into eight main groups: “Agricultural Land” including 

olive groves, vineyards, exotic plantations (e.g. eucalyptus) and other types of 

cropland, “Montado“ with oak tree cover >10%, “Open Montado” with oak tree cover 

<10%, “Open Area”, mostly comprised of fallow land and meadows, “Shrub Area” 

including all land use types covered with shrubs (e.g. Montado with shrubs), “Water 

Source” with permanent ponds, “Riparian Gallery” and “Human Influenced Area” 

comprising cities, villages and also areas with some human influence such as 

farmhouses. 

Landscape metrics that could have biological meaning were extracted, namely: 

“Distance to Riparian Gallery”, a land use reported to have implications in some snake 

species roadkill (Pleguezuelos 2009b; Santos 2009) and “Distance to Water Source” 

which could be important for the aquatic snake species as it strongly depends on 

water. Distances were measured from each centroid to the nearest land cover feature 

without a spatial extent limit. Other landscape metrics that could describe snake 

habitat use included either fragmentation or field edges, more specifically in 

agricultural land (Pleguezuelos 2009b). For this purpose we extracted an “Agricultural 

Mean Patch Edge” variable. 

All variables were obtained using ArcGIS 10.1 software (ESRI 2012). Altitude 

variables were extracted with the help of a modified version of the script “ACCRU 

tools” (Nielsen 2010) allowing its use in a more recent version of ArcGIS. This tool 

easily enabled calculations for overlapping buffers. The “Agricultural Mean Patch 

Edge” variable was extracted with the aid of the Patch analyst 5.1 extension for ArcGIS 

(Rempel, Kaukinen & Carr 2012). 

 

Model Development and Selection 

Generalized linear models with all variable combinations were built using a 

Poisson error distribution, with a log link function, which is the recommended 

distribution used for count data (Burnham & Anderson 2002; Zurr, Ieno & Smith 2007). 
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An ‘all possible combinations’ approach seemed more adequate as knowledge of 

the influence of spatial factors in snake roadkill is scarce, not allowing the construction 

of adequate a priori models at this stage. Hence, modelling was used as a tool to 

explore spatial factors influencing roadkill rather than to predict roadkill locations 

(Arnold 2010; Burnham & Anderson 2002). 

Modelling procedures were used within information -theoretic framework. This 

approach is advantageous because it allows (Burnham & Anderson 2002): 

1- the simultaneous comparison of the relative importance of multiple 

environmental factors; 

2- to account for model selection uncertainty, drawing better inferences 

because parameter estimates are calculated with more precision and less bias 

through model averaging. 

Regarding the criteria to validate the selection of models, among the Ecology 

forums are controversial debates focused on elucidating the pros and cons of using 

either the p -value or the Akaike Information Criterion (AIC), and the proper use of 

these two statistics in model selection. Lavine (2014) actually summarizes the common 

ground around these criteria: 

 p -values, confidence intervals, and AIC are statistics based on the same 

statistical information; 

 these statistics are descriptive and they should not be used as formal 

quantification of evidence; 

 we should abandon the binary (accept/reject) declarations, whether it is 

based on p -values or AIC; 

 we should be careful when interpreting a p -value or AIC as strength of 

evidence (the same p -value, say 0.01, in two problems may represent 

very different strength); 
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 above all, we should interpret the model based on plots and checks of 

assumption compliance. 

But Burnham & Anderson (2014) vehemently rejected the defence of p -values 

and insisted that we should use AIC when choosing among multiple alternative 

models. They dismissed hypothesis testing as the 20th century statistical science, and 

proclaimed the use of AIC as the 21st century statistical science. 

I am not able to discuss further with refined arguments the statistical ground 

bases around that controversy. Here I use the AIC as the appealing criteria for 

ecologists as one works with complex systems, though the correct model is often 

elusive. Thus, my model selection criteria was based in the Akaike Information 

Criterion adjusted to small sample sizes (AICc), which is mostly used when number of 

parameters exceeds n/40 (where n is sample size; Burnham & Anderson 2002; Johnson 

& Omland 2004). 

Throughout the study, modelling procedures used one of the two model 

selection criteria, the ∆AICc or the AICc weights (wi). While the ∆AICc compares each 

model with the best model (model with the lowest AICc), 

∆i AICc= AICci - AICcmin, 

, therefore being useful in ranking models, the wi quantifies the likelihood of each 

model being the best model, 

 

, given the set of models (being K the set of models, Burnham & Anderson 2002). 

Collinearity amongst explanatory variables may be problematic because it can 

lead to parameter bias and difficulties in determining true relationships (Dormann et 

al. 2013; Freckleton 2011; Grueber et al. 2011). Hence, prior to model development, 

collinearity between explanatory variables was checked using Spearman’s rank 

correlation. If variables were correlated (r>0.7) one of them was removed from 

analysis (Dormann et al. 2013; Zurr, Ieno & Smith 2007). “Mean Altitude” and 
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“Roughness Index” and also “Agricultural Land” and “Agriculture Mean Patch Edge” 

were strongly correlated so “Mean Altitude” and “Agriculture Mean Patch Edge” were 

discarded from further analysis. Twelve environmental variables remained containing 

land cover, landscape metrics and terrain features (Table 3). 

It was not feasible to use all of the remaining environmental variables, as it 

would produce a huge number of models (2k, k being the number of parameters). 

Therefore, after a careful review of the existing literature previously summarized in 

this study (Table 1; Fitzgerald et al. 2005; Pleguezuelos 2009b; Santos 2009), 

environmental variables that were perceived as less important snakes’ ecological 

requirements for snake community and chosen individual snake species were 

removed. Steps taken in model development, selection and multimodel inference 

were summarized in Table 2 and further explained below. 

TABLE 2 - SEQUENTIAL MAIN STEPS APPLIED IN MODEL DEVELOPMENT, SELECTION AND MULTIMODEL INFERENCE 

WHETHER FOR THE FOUR INDIVIDUAL SPECIES (R. scalaris, M. monspessulanus, N. maura, H. 

hippocrepis) OR FOR THE SNAKE COMMUNITY RESPONSE VARIABLES. 

1 Build 3 global models for each response variable representing the spatial extents to be 

examined; 

2 Detect and add the autocovariate terms to global models with spatial autocorrelation; 

3 Find curvilinear relationships between response and explanatory variable and add corresponding 

quadratic term to the global models; 

4 Compare final global models of 3 spatial extents and select the ones within a ∆AICc of 2 units; 

5 Use the 5 final global models to build models with all possible combinations of variables; 

6 Calculate AICc, ∆AICc, wi and rank models; 

7 Build model subsets by selecting models with a ∆AICc<6; 

8 Employ model averaging to model subsets; 

9 Recalculate wi for models in the selected subsets; 

10 Calculate the parameters variable relative importance in each model subset. 

 

Spatial autocorrelation is a known issue in studies involving ecological data. Not 

dealing with spatial autocorrelation does in fact impact coefficient and inference 

results of statistical analysis (De Frutos, Olea & Vera 2007; Dormann 2007; Keitt et al. 

2002). To address this issue, a Moran’s I analysis was performed to assess if spatial 

autocorrelation was present in the species data. If spatial autocorrelation was 
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detected, an autocovariate term was created for the corresponding response variable 

and forced into the model development phase (Augustin, Mugglestone & Buckland 

1996). Both the Moran’s I and the autocovariate term were calculated through the 

“spdep” package for R v.3.0.2 software (Bivand 2014). 

The relationship between response and environmental variables was checked 

comparing models. For each variable, a linear, a quadratic and a null model (including 

the autocovariate term when appropriate) were built and compared using the AICc 

weights as the model selection criteria. The shape of the fitted curves was visually 

checked (Pita, Mira & Beja 2013). Prior to exploring the curvilinear relationships, 

explanatory variables were centred and standardized. Centring controlled for 

collinearity problems that could arise with the use of quadratic terms and 

standardizing helped in the interpretation of upcoming results that included variables 

with different scales (Grueber et al. 2011). A spatial scale was selected by constructing 

global models only including variables of each spatial extent (250m, 500m and 1000m), 

besides the variables without spatial limit. Only models within an AICc of 2 units from 

the most supported model (lowest AICc) were selected (Burnham & Anderson 2002). 

Model fit was confirmed by checking the final global models overdispersion for 

each response variable using the variance inflation factor (VIF), which should be lower 

than 2 (Burnham & Anderson 2002; Zurr, Ieno & Smith 2007). Variables in the final 

global models were the starting basis to develop models with all possible combinations 

of variables. When quadratic terms were present, the variable’s linear and quadratic 

terms were always added simultaneously. 

All models built were ranked from lowest to highest ∆ AICc and a cutting point of 

∆AICc=6 was used as a confidence set to assure that only models with the most 

supported evidence were selected (Grueber et al. 2011, Richards 2005, Richards 2008). 

Model development and selection was performed with the help of the “MuMIn” 

package for R v.3.0.2 software (Barton 2013; R Core Team 2013). 
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Multimodel Inference 

Multimodel inference (MMI) is increasingly favoured over using only a single best 

model because inferences drawn from one best model can be relatively poor 

(Burnham & Anderson 2002). In this study, multimodel inference was used for model 

averaging and to assess the relative importance of variables. Thus, model averaging 

allowed investigating the direction and magnitude of effect size (Burnham & Anderson 

2002) of multiple landscape features in snake roadkill. This technique calculates model 

averaged parameter estimates and corresponding unconditional standard errors for 

the chosen subset of models with suitable measures of precision (Burnham & 

Anderson 2002). 

The variable relative importance (VRI) is calculated by summing the wi over all 

models in the subset which include the given variable. The larger the VRI the more 

important is the variable relative to other variables and can therefore be ranked by 

importance (Burnham & Anderson 2002). For this purpose, the wi of each response 

variable was calculated for all the selected subset of models. Since a variable relative 

importance (VRI) value of 0.40 or above has been suggested to have a good chance of 

indicating that a given variable has influence in the process at study (Converse, Block & 

White 2006), I chose to use this minimum value to select parameters most relevant to 

snake roadkill in this study. Model averaging was performed with the “MuMIn” 

package for R v.3.0.2 software (R Core Team 2013, Barton 2013) and variable relative 

importance was calculated using Microsoft Office Excel 2010. 



17 
 

TABLE 3- DESCRIPTION OF THE EXPLANATORY VARIABLES USED IN MODEL SELECTION AND MULTIMODEL 

INFERENCE. 

Name Code Description (Unit) 
Buffer 
Distance (m) 

Mean  ± SE Range 

Agricultural 
Land 

AGR 

Total area of crops and plantations 
(e.g. eucalyptus plantation, olive 
grove, vineyard) per road segment 
(ha) 

250 
500 
1000 

3.2 
8.2 
20.6 

± 5.7 
± 12.6 
± 21.5 

0 - 22 
0 - 52 
0 - 75 

Human 
Influenced Area 

HUM 
Total areas with higher human 
influence (e.g. city, village, 
farmhouse) per road segment (ha) 

250 
500 
1000 

0.8 
2.0 
6.0 

± 2.3 
± 5.0 
± 14.7 

0 - 15 
0 - 35 
0 - 100 

Montado MONT 
Total area of Montado with oak 
tree cover >10% per road segment 
(ha) 

250 
500 
1000 

13.2 
39.0 
128.4 

± 12.5 
± 32.6 
± 87.6 

0 - 45 
0 - 128 
0 - 378 

Open Area OPA 
Total area of pastureland, 
meadows and grasslands per road 
segment (ha) 

250 
500 
1000 

19.6 
56.1 
179.8 

± 14.2 
± 36.1 
± 96.2 

0 - 27 
0 - 66 
0 - 166 

Open Montado OMONT 
Total area of Montado with oak 
tree cover <10% per road segment 
(ha) 

250 
500 
1000 

5.0 
13.6 
42.7 

± 6.4 
± 13.9 
± 33.8 

0 - 27 
0 - 66 
0 - 166 

Riparian Gallery RIP 
Total area of riparian gallery per 
road segment (ha) 

250 
500 
1000 

0.3 
0.9 
3.5 

± 0.6 
± 1.4 
± 3.7 

0 - 3 
0 - 7 
0 - 15 

Shrub Area SHR 
Total area of shrubs per road 
segment (ha) 

250 
500 
1000 

1.9 
6.9 
27.7 

± 4.3 
± 11.7 
± 34.6 

0 - 21 
0 - 56 
0 - 147 

Water Source WS 
Total area of permanent ponds per 
road segment (ha) 

250 
500 
1000 

0.1 
0.6 
2.5 

± 0.3 
± 1.5 
± 3.3 

0 - 2 
0 - 9 
0 - 17 

Roughness 
Index 

RI 
Terrain mean roughness per road 
segment 

250 
500 
1000 

6.4 
9.5 
14.3 

± 2.2 
± 3.2 
± 5.6 

2 - 15 
3 - 17 
5 - 32 

Distance to 
Water Source 

DWS 
Distance to the nearest water 
source (m) 

 - 493.5 ± 276.8 
28 - 
1298 

Distance to 
Riparian Gallery 

DRIP 
Distance to the nearest stream 
with riparian gallery (m) 

 - 795.2 ± 509.7 
20 - 
2007 

Road Type ROAD 
ROADA - National road 
ROADB - Municipal road 

 -  -   - 

Autocovariate 
Term 

ATC  -  -  -   - 
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RESULTS 

A total of 574 snakes comprising seven different species were killed in 2 years. 

Most snake roadkill data belonged to R. scalaris (n=281, 49%)) followed by M. 

monspessulanus (n=158; 27.5%) accounting for 76.5% of the recorded data (Table 4). 

TABLE 4 – SNAKE ROADKILL COUNT FOR FOUR ROADS SURVEYED IN THE STUDY AREA FROM 16 OF MARCH 2010 

TO 15 OF MARCH 2012. 

Snake species N4 N114 M370 M529 
Snake 
total % total  

Species not identified 6 11 0 0 17 3 

Colubridae       

Hemorrhois hippocrepis 21 13 2 3 39 6.8 

Coronella girondica 6 4 3 1 14 2.4 

Macroprotodon brevis 3 7 4 4 18 3.1 

Rhinechis scalaris 95 134 32 20 281 49 

Natricidae       

Natrix maura 13 27 4 2 46 8 

Natrix natrix 0 1 0 0 1 0.2 

Psammophiidae       

Malpolon monspessulanus 50 74 17 17 158 27.5 

Road total 194 271 62 47 574 100 

 

Spatial autocorrelation was detected in the snake community, R. scalaris and H. 

hippocrepis response variables (Table 5). Environmental variables with a curvilinear 

relationship were also found (Table A1). 

TABLE 5 - MORAN’S I, Z AND P VALUES FOR THE SNAKE COMMUNITY AND INDIVIDUAL SPECIES
1. 

Response variable Moran’s I Z p -value 

Snake community 0.327 3.399 <0.001 

H. hippocrepis 0.282 3.297 <0.001 

R. scalaris 0.255 2.690 <0.001 

N. maura 0.095 1.231 0.109 

M. monspessulanus 0.041 0.516 0.303 

1 -Significant Z and p values are in bold. 

Models with a 1000 m spatial scale were selected for the snake community, H. 

hippocrepis and R. scalaris, with the exception of N. maura and M. monspessulanus, 

with a 250 m and 500 m spatial extent, respectively (Table 6). 
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TABLE 6 - BUFFER SIZE FOR THE SNAKE COMMUNITY AND INDIVIDUAL SPECIES. 

Response variable Buffer Distance (m) 

Snake community 1000 

H. hippocrepis 1000 

R. scalaris 1000 

N. maura 250 

M. monspessulanus 500 

 

The selected buffers’ quadratic terms had a strong support of evidence towards 

selecting the quadratic models, with the exception of Riparian Gallery for R. scalaris 

and Open Area for N. maura and H. hippocrepis that had less obvious relationships 

(Table A1 in the final Appendices). Five final global models were obtained after 

selecting the models with most supported spatial extent variables (Table 7). 

TABLE 7 - FINAL GLOBAL MODELS FOR THE SNAKE COMMUNITY AND RESPONSE VARIABLES OF FOUR SPECIES. 

Response variable Global model VIF 

Snake community 
SNK~AGR+AGR

2
+MONT+OMONT+OPA+HUM+SHR+RIP+ 

+RI+RI
2
+DRIP+ROAD+ATC 

1.52 

H. hippocrepis 
HH~AGR+OPA+OPA

2
+SHR+RIP+HUM+HUM

2
+RI+DRIP+DRIP

2
+ 

+ROAD+ATC 
1.77 

R. scalaris 
RS~AGR+AGR2+MONT+OMONT+SHR+RIP+RIP2+RI+RI2+DRIP+ 
+ROAD+ATC 

1.51 

N. maura 
NM~OMONT+OPA+OPA

2
+WS+WS

2
+RIP+RI+RI

2
+DWS+DRIP+ 

+ROAD 
1.63 

M. monspessulanus MM~AGR+OMONT+OPA+SHR+RIP+HUM+RI+RI
2
+DRIP+ROAD 1.12 

 

Snake community had 119 models selected for MMI (Table B1). Only the Distance 

to Riparian Gallery (DRIP) had relatively less support compared to all the other 

environmental variables. The Roughness Index (RI) was humped shaped (unimodal), 

having most impact in roadkill at intermediate levels and Agricultural Land (AGR) was 

mostly composed of a right sided curve, having relatively high roadkill impact up to 

intermediate levels (Figure 3). Also, Montado (MONT), Riparian Gallery (RIP) and 

Human Influenced Area (HUM) parameters were positively associated to roadkill. In 

contrast, Shrub (SHR), Road Type (ROAD), Open Area (OPA) and Open Montado 

(OMONT) were negatively associated to roadkill (Table 8). 
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TABLE 8 - MODEL AVERAGING AND VARIABLE RELATIVE IMPORTANCE (VRI) RESULTS FOR THE SNAKE 

COMMUNITY
1. 

Explanatory Variable Estimate Unconditional SE VRI% 

RI
2
 

RI 
─ 0.114 

0.236 
0.044 
0.077 

99 

MONT  0.191 0.452 79 

SHR ─ 0.269 0.180 79 

ROAD ─ 0.338 0.156 76 

OPA ─ 0.095 0.562 68 

RIP  0.103 0.061 56 

HUM  0.092 0.083 55 

AGR
2 

AGR 
─ 0.125 

0.020 
0.065 
0.163 

53 

OMONT ─ 0.198 0.195 52 

DRIP ─ 0.015 0.062 23 

(Intercept)  1.887 0.154  - 

(ATC) ─ 0.010 0.020  - 

1 -VRI most influential factors are in bold. 

 

a) b) 

 

FIGURE 4 – SNAKE COMMUNITY RELATIONSHIPS BETWEEN ROADKILL OCURRENCE AND a) ROUGHNESS INDEX OR 

b) AGRICULTURAL LAND. 

 

The horseshoe whip snake H. hippocrepis had 66 models selected (Table B2). 

Human influenced areas were highly influential followed by the Distance to Riparian 

Gallery. Human influenced areas had a noticeable positive association in roadkill and 

distance to riparian galleries had the most negative impact at intermediate distances. 

The Roughness Index had some relative importance and was negatively associated to 

roadkill. Several other variables had a low relative importance (ROAD, AGR, OPA, SHR 

and RIP) and were marginally negatively associated to roadkill, except for Shrub and 

Riparian gallery that had a marginal positive association (Table 9). 
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TABLE 9 - MODEL AVERAGING AND VARIABLE RELATIVE IMPORTANCE RESULTS FOR THE HORSESHOE WHIP SNAKE 

Hemorrhois hippocrepis
1. 

Explanatory Variable Estimate Unconditional SE VRI 

HUM
2 

HUM 
─ 0.103 

1.153 
0.063 
0.336 

100 

DRIP2 

DRIP 
─ 0.607 

0.050 
0.281 
0.294 

78 

RI ─ 0.313 0.262 38 

ROAD ─ 0.636 0.566 34 

OPA
2 

OPA 
 
─ 

0.048 
0.407 

0.215 
0.248 

24 

AGR ─ 0.173 0.274 21 

SHR  0.101 0.222 19 

RIP  0.091 0.235 18 

(Intercept) ─ 0.692 0.374  - 

(ATC) ─ 0.269 0.194  - 

1 - VRI most influential factors are in bold. 

 

a) b) 

 

FIGURE 5 – H. hippocrepis RELATIONSHIPS BETWEEN ROADKILL OCURRENCE AND a) HUMAN INFLUENCED 

AREA OR b) DISTANCE TO RIPARIAN GALLERY. 

 

Twenty seven models were selected to analyse the environmental variables that 

influence the ladder snake R. scalaris (Table B3). Shrub, Road Type and Open Montado 

were negatively associated to roadkill, as opposed to the Montado variable that was 

positively associated. The Roughness Index and Agricultural Land were positively 

associated to roadkill up to intermediate levels, with a negative association after this 

threshold (Figure 4). The least important variables were the Distance to Riparian 

gallery and Riparian Gallery variables (Table 11). 
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TABLE 10 - MODEL AVERAGING AND VARIABLE RELATIVE IMPORTANCE RESULTS FOR THE LADDER SNAKE 

Rhinechis scalaris
1. 

Explanatory Variable Estimate Unconditional SE VRI% 

SHR ─ 0.318 0.096 100 

MONT  0.311 0.077 100 

RI
2 

RI 
─ 0.102 

0.293 
0.059 
0.102 

91 

AGR
2 

AGR 
─ 0.231 

0.150 
0.091 
0.122 

85 

ROAD ─ 0.405 0.204 69 

OMONT ─ 0.147 0.090 52 

DRIP  0.051 0.070 24 

RIP
2 

RIP 
 
─ 

0.105 
0.077 

0.065 
0.104 

23 

(Intercept)  1.364 0.185  - 

(ATC) ─ 0.040 0.040  - 

1 -VRI most influential factors are in bold. 

 

a) b) 

 

FIGURE 6 – R. scalaris RELATIONSHIPS BETWEEN ROADKILL OCURRENCE AND a) ROUGHNESS INDEX OR b) 

AGRICULTURAL LAND. 

 

Model selection for the viperine snake N. maura resulted in 60 models (Table 

B4). Two highly influential variables were found, the Distance to Water Source (DWS) 

and Water Source (WS). Water source distance to roads was negatively associated to 

roadkill, as well as water source. In the first case, roadkill probability decreased as a 

water source became more distant from the road and in the second case the 

probability of a roadkill declined with increasing amount of water source (Figure 5). 

Open Montado, Open Area and Road Type were negatively associated to roadkill and 

still had a medium level influence in roadkill. The Roughness Index, Distance to 
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Riparian Gallery and Riparian Gallery showed a slight negative association to roadkill 

even though they were considered to have relatively low importance in the model set 

considered (Table 10). 

TABLE 11 - MODEL AVERAGING AND VARIABLE RELATIVE IMPORTANCE RESULTS FOR THE VIPERINE SNAKE Natrix 

maura
1. 

Explanatory Variable Estimate Unconditional SE VRI 

DWS ─ 0.768 0.268 100 

WS
2 

WS 
 
─ 

0.164 
0.559 

0.073 
0.382 

100 

OMONT ─ 0.425 0.257 63 

OPA
2 

OPA 
 
─ 

0.370 
0.326 

0.229 
0.193 

47 

ROAD ─ 0.616 0.471 45 

RI
2 

RI
 

─ 
─ 

0.091 
0.320 

0.187 
0.220 

33 

DRIP ─ 0.140 0.181 29 

RIP ─ 0.080 0.200 25 

(Intercept) ─ 1.439 0.379  - 

1 -VRI most influential factors are in bold. 

a) b) 

 

FIGURE 7 – N. maura RELATIONSHIPS BETWEEN ROADKILL OCURRENCE AND a) WATER SOURCE OR b) OPEN 

AREA. 

 

A great number of models were generated for the rat snake M. 

monspessulanus showing some model uncertainty (Table B5). M. monspessulanus 

didn’t have strongly influential landscape variables related to area amount or distance. 

However, the Roughness Index was considered an important variable with a hump 

shaped curve, leading to increased roadkill up to intermediate levels (Figure 6). Road 
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Type was also an important variable and was negatively associated to roadkill (Table 

12). 

TABLE 12 - MODEL AVERAGING AND VARIABLE RELATIVE IMPORTANCE RESULTS FOR THE RAT SNAKE Malpolon 

monspessulanus
1. 

Explanatory Variable Estimate Unconditional SE VRI% 

ROAD ─ 0.446 0.222 81 

RI2 

RI 
─ 0.122 

0.260 
0.074 
0.107 

81 

AGR ─ 0.108 0.091 38 

DRIP ─ 0.091 0.088 33 

SHR ─ 0.100 0.099 33 

OMONT  0.093 0.094 30 

HUM  0.069 0.073 29 

RIP  0.004 0.091 20 

OPA  0.001 0.102 20 

(Intercept)  0.620 0.112  - 

1 -VRI most influential factors are in bold. 

 

 

FIGURE 8 - M. monspessulanus RELATIONSHIP BETWEEN ROADKILL OCURRENCE AND ROUGHNESS INDEX. 
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DISCUSSION 

Habitats influencing the movement of wildlife have been pointed as an influential 

characteristic for several vertebrates in determining roadkill locations (Clevenger, 

Chruszcz & Gunson 2003; Forman & Alexander 1998). And so the main objective of this 

study was to find connections and associated patterns between snake road crossing 

and snake habitat features in the roads surroundings that could influence roadkill 

events. For this purpose, landscape variables usually associated to snakes were used, 

plus a roughness index and a road type variable. 

Since roadkill was recorded daily, one can expect that the endurance of snake 

carcasses on the pavement wasn’t much influenced whether by scavenging or by tire 

removing in the road, which most likely varies across regions and habitats (Degregorio 

et al. 2011; Santos, Carvalho & Mira 2011). Indeed, Santos, Carvalho & Mira (2011) 

found that the persistence of snake carcasses in their study was around one day. 

Most snake roadkill in the study area belonged to R. scalaris and M. 

monspessulanus, which are both considered to be abundant species (Loureiro et al. 

2010; Malkmus 2004; Salvador & Pleguezuelos 2002). These snakes have a diurnal 

activity and are active feeders, increasing their chance to encounter vehicles as these 

are more frequent during the day. Moreover, small mammals are often relatively 

abundant in road verges which may attract snakes searching for prey (Ruiz-Capillas, 

Mata & Malo 2013), also in the study area (Sabino-Marques & Mira 2011). Snakes with 

the least records were C. girondica, M. brevis and N. natrix. The first two species are 

nocturnal with relatively low abundances in Southern Portugal (Malkmus 2004), which 

may explain their low roadkill numbers. Finally, N. natrix is a rare species in its 

southern distribution limits, possibly due to the suboptimal habitat characteristics 

(Santos et al. 2002), so it can be expected for roadkill counts to be scarce. 

In general terms, habitat cover was an important factor influencing snake 

community roadkill, although results may be biased towards the most abundant 

species in the data set. Montado, riparian galleries and human influenced area cover 

were linked to a higher probability of roadkill while shrubs, open areas and open 

Montado cover were linked to a lower probability of roadkill in the snake community. 
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The Montado was the most important habitat cover influencing roadkill occurrence in 

snake community and second most important for R. scalaris. Even though other 

habitat types are important for snakes, a study has shown that oak woodland can be a 

crucial feature for Mediterranean snake communities and are often used in the hot 

and dry summer to avoid high temperatures (Filippi & Luiselli 2006). Also, the 

Montado’s inherent diversity comprised of a mosaic of open area and woodland with 

different tree density provides a structurally complex habitat most favoured by 

Mediterranean snake communities (Luiselli & Filippi 2006). 

Snake community results also showed that riparian galleries cover and distance 

had a medium relative importance, whereas individual species showed that other 

environmental factors are relatively more important. Riparian galleries have been 

considered an habitat used by many snake species in the study area (Feriche 2009; 

Pleguezuelos & Brito 2008; Pleguezuelos 2009a; Pleguezuelos 2009b) and have already 

been suggested as the main cause in roadkill events of some of these species 

(Pleguezuelos 2009b, Santos 2009). Nevertheless, one suspects that perhaps other 

features associated to riparian galleries may be more important than cover or distance 

alone. Riparian galleries are usually long and thin and consequently have an extensive 

interface with adjacent habitats. The structural complexity that riparian galleries and 

their surroundings offer could be more meaningful than the riparian gallery alone, for 

example. In spite of most individual species showing a relative weak importance 

compared to other factors, the snake H. hippocrepis was an exception showing a 

higher roadkill probability at medium distances of riparian galleries, around 800 m. 

The increase in human influenced cover increased roadkill probability for snake 

community and highly increased the chances of a roadkill happening for H. hippocrepis. 

Human influenced areas may be used by some snake species (R. scalaris, M. 

monspessulanus), but to a lesser extent compared with H. hippocrepis which adapts 

well to these environments (Feriche 2009). It seems that to a certain degree snakes 

have commensal liaisons with man activities, particularly with activities that directly 

favour rodent commensal populations (Malkmus 2004; Salvador & Pleguezuelos 2002). 

This may explain why this factor could be crucial in determining roadkill impact. As for 

H. hippocrepis, this species prefers rocky areas, so it uses human constructions as a 
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substitute and may even be encountered in more urban environments (Feriche 2009). 

Due to such a strong dependency on human structures, the expansion of human 

development and roads may greatly increase H. hippocrepis roadkill numbers, which is 

considered the most anthropophylic snake in the Iberian Peninsula (Salvador & 

Pleguezuelos 2002). 

Conversely, agricultural land had medium importance in snake community 

roadkill, slightly increasing roadkill probability up to 20 ha of cover and greatly 

decreasing after this threshold. Agricultural land may offer favourable prey availability 

which explains why snakes may be killed while foraging for food in these areas. Results 

were similar for R. scalaris showing a slightly higher turning point at 25 ha of cover. In 

Portugal, R. scalaris is well adapted to traditional agricultural areas (with a mosaic 

pattern) where it can easily find places to hide and hunt animals, such as small 

mammals (Pleguezuelos 2009b). On the other hand, areas with intensified agriculture 

may be avoided because they are overly simplified and use too many pesticides. 

In general terms, snake community had a lower probability of roadkill if the cover 

of open areas and open Montado was higher in the study area. A similar relationship 

was also shown for R. scalaris in open Montado. Even though open spaces may be 

attractive for basking, an increased extent of these areas may endanger snakes 

survival. Without the presence of hiding features snakes may be exposed to a greater 

risk of predation (e.g. birds of prey) and tend to avoid open terrain (Andrews, Gibbons 

& Jochimsen 2006). Open Montado as characterized in this study was composed of 

sparsely dispersed oak trees with less than 10% tree cover probably offering similar 

conditions of those present in open spaces. 

Similarly, shrubs were also considered an important factor with a higher cover 

leading to lower roadkill for snake community and R. scalaris. Another study also 

found that snake mortality rate was lower in shrub habitat (Pragatheesh & Rajvanshi 

2013). Perhaps the increase of shrub cover may lead to a structurally simplified habitat 

which can be considered unsuitable habitat for snakes. Actually, a Mediterranean 

snake species elsewhere was mostly associated to bushes when interspaced with open 
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grassy fields (Capula et al. 1997), so a similar behaviour could be expected from other 

Mediterranean snakes. 

Indeed, the majority of terrestrial snake species (H. hippocrepis, M. 

monspessulanus and R. scalaris) have a generalist behaviour occupying a wide variety 

of niches (Malkmus 2004, Salvador & Pleguezuelos 2002). I suggest that the weak 

relationship that M. monspessulanus had with landscape factors may be due to being 

the most generalist species within the snake community. Fortunately, because of its 

huge plasticity and annual rising temperatures, it is less likely that roadkill is having a 

negative impact in its populations. Actually, an article has even mentioned an increase 

in populations for the studied area, as opposed to other snakes (Segura et al. 2007). 

We should expect the same trend for R. scalaris, however roadkill numbers in Portugal 

are very high and it is already suspected that population numbers are declining 

(Pleguezuelos 2009b). Consequently, roads are considered one of the biggest threats 

for this species. 

Despite M. monspessulanus roadkill not showing influential landscapes, the 

roughness index was highly influential in determining roadkill. Likewise, snake 

community and terrestrial snakes studied were all associated to a roughness index 

with relatively high importance. Roadkill for snake community, R. scalaris and M. 

monspessulanus was higher at medium levels of roughness and, in the case of H. 

hippocrepis, roadkill probability decreased as terrain got rougher. Taking into account 

topographic features such as the roughness index or even other related features, as for 

instance slope or mean altitude, may be an important addition in finding spatial 

patterns that lead to snake roadkill, even more so for habitat generalist species. 

Other parameters such as water source cover and distance were considered 

crucial factors in determining N. maura roadkill. Natrix maura is an aquatic species that 

is strongly dependent on aquatic features (Malkmus 2004, Santos 2009). Findings in 

our study verify this strong dependency, as N. maura roadkill showed a strong link to 

water source distance and cover. Here, this species may have no links to terrestrial 

habitats due to its aquatic habits and is quite adaptable too any kind of water source. 

It has even been seen in water sources altered by agricultural activities (Santos 2009), 
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even though mass population declines have been reported for polluted aquatic 

sources (Santos 2008).  

Roads in the study area differ mostly because of their traffic volume. The national 

roads reach up to 10000 vehicles per day compared to municipal roads that have less 

than 4000 vehicles per day. We found that snakes mortality was higher in national 

roads than in municipal roads. Other studies have already discovered that snake 

roadkill is closely linked to traffic volumes (Colino-Rabanal & Lizana 2012; Pragatheesh 

& Rajvanshi 2013; Szerlag & McRobert 2006) adding support to our results. There are 

several reasons to why snake roadkill can be influenced by traffic patterns. Snake’s 

movement is slower in smoother road surfaces compared to other surfaces (Bonnet, 

Naulleau & Shine 1999; Roe, Gibson & Kingsbury 2006). Also, drivers have been 

reported to intentionally kill snakes due to aversion to them (Andrews, Gibbons & 

Jochimsen 2006; Row, Blouin-Demers & Weatherhead 2007). In Portugal, that is a 

common human behaviour. 

This study has shown that landscape features can be used to identify spatial 

patterns in roadkill events. Another study involving snake spatial patterns in roadkill 

also showed this relationship (Pragatheesh & Rajvanshi 2013). More importantly, 

landscapes influencing roadkill differed from species to species revealing the 

importance of considering individual species in these studies. In brief, all the individual 

species seem to have distinctive landscape features that could certainly be influencing 

roadkill. To begin with, H. hippocrepis roadkill was higher with the increase of human 

influenced areas, then R. scalaris had a higher roadkill chance in landscapes that can 

be structurally more complex such as the Montado and possible traditional agricultural 

land, N. maura roadkill also was mostly associated to aquatic features and finally M. 

monspessulanus roadkill was mostly influenced by terrain roughness and had a general 

weak relationship with other landscape factors. 

In the meantime, knowledge about the relationship between habitat and snake 

road mortality has a long way to go. Models can still include other variables that may 

improve our understanding on how habitat surroundings influence roadkill. For 

example, habitat selection in snakes is strongly correlated to prey’s resource 
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distribution (Luiselli & Filippi 2006). Also, some habitat characteristics such as rocky 

areas or shrub height were not incorporated in this study, possibly missing important 

snake habitat requirements. 

Finally, models could also take into account snakes’ ecological differences such as 

age, sex or seasonal activity that can present shifts in habitat spatial use (Luiselli & 

Filippi 2006). Studies have already shown population declines in several snake species 

(Reading et al. 2010) and even for some snake species in the Iberian Peninsula, 

including Portugal (Pleguezuelos & Brito 2008; Santos 2008). Also, roads have been 

pointed as one of the main sources of mortality for several snake species in Portugal. 

Identifying major roadkill areas and related landscape features is an essential step to 

incorporate adequate management measures into road planning and mitigation 

implementation. 

 

CONCLUDING REMARKS 

This study revealed that roadkill events can be influenced by landscape factors. 

Individual species data showed that most important landscape features requirements 

were quite different between them, so important information could be missed when 

modelling snake species altogether. 

If roadkill was more prominent in snake species that forage actively and have a 

diurnal behaviour, which agrees with another study (Bonnet et al. 1999), than it is still 

unclear how spatial patterns influence some of the less common snake species. 

Studying influences at the landscape level has shown important relationships with 

snake roadkill, but site specific characteristics may also have an important input in 

roadkill events. Variables selected at a finer scale may improve our knowledge about 

the role of habitat features in roadkill events. For example, spiny shrubs have been 

associated to the presence of snakes in the Mediterranean region as they function as a 

source of prey while also protecting against predators (Luiselli & Filippi 2006). Also, the 

height of shrubs or rocky features may be an important factor in determining habitat 

use, as H. hippocrepis and M. monspessulanus are found in areas with shrubs of low 
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height (Feriche 2009; Pleguezuelos 2009a). Similarly, it may also be appropriate to take 

into account age or sex differences. For example, juveniles’ dispersion may show 

irregular patterns which may confound results when age differences are not taken into 

consideration. 

A single scale approach was adopted in this study. But it is possible that some 

variables become more important at other scales (Graf et al. 2005), a multiscale 

approach can help understand if these differences are pertinent in snake roadkill 

studies. Moreover, model selection and multimodel inference are limited by the model 

set considered (Burnham & Anderson 2002). Problems go from the limited number of 

variables that can be included in models due to statistical issues and software 

limitations, to collinearity issues mostly between area and fragmentation variables. 

This is apparent when model development involves small data sets and generalist 

species that usually have several habitat preferences. Also, because interactions are 

considered extra parameters in model procedures, important relationships may have 

been missed. For example, N. maura models could have had the inclusion of 

interaction terms between water sources and terrestrial landscapes in order to better 

understand the importance of these landscapes, as these only have meaning if a water 

source is present. 

Although model selection and multimodel inference with an information 

theoretic approach posed some difficulties, the possibility of examining several 

competing hypotheses simultaneously to identify the best set of models through AIC 

proved advantageous over traditional null hypothesis testing. 
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APPENDIX A – ENVIRONMENTAL VARIABLES RESPONSE CURVES FOR SNAKE 

COMMUNITY AND INDIVIDUAL SPECIES RESPONSE VARIABLES. 

 

TABLE A1 - AKAIKE WEIGHTS (WI) OF UNIVARIATE MODELS USED TO EXPLORE ALTERNATIVE RESPONSE CURVES IN 

SNAKE COMMUNITY AND FOR EACH SNAKE SPECIES (ENVIRONMENTAL VARIABLES OF EACH BUFFER AND 

LANDSCAPE METRICS WITHOUT A BUFFER LIMIT). 

Snake Community 

Land Cover 
Buffer Distance 

 
250m 

 
500m 

 
1000m

*
 

Explanatory 
Variables 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

AGR 0.35 0.14 0.52 (∩) 0.35 0.15 0.50 (∩) 0.30 0.14 0.55 (∩) 
MONT 0.05 0.71 (+) 0.25 0.01 0.72 (+) 0.26 0.02 0.65 (+) 0.33 
OMONT 0.50 0.34 (─) 0.16 0.21 0.46 (─) 0.33 0.14 0.64 (─) 0.22 
OPA 0.31 0.48 (─) 0.22 0.27 0.54 (─) 0.19 0.18 0.53 (─) 0.29 
SHR 0.63 0.25 (─) 0.12 0.43 0.22 0.35 (∩) 0.35 0.37 (─) 0.28 
RIP 0.42 0.16 0.42 (∩) 0.67 0.23 (+) 0.10 0.52 0.31 (+) 0.17 
HUM 0.68 0.24 (+) 0.08 0.66 0.25 (+) 0.09 0.52 0.36 (+) 0.13 
RI 0.01 0.01 0.97 (∩) 0.01 0.11 0.88 (∩) 0.10 0.07 0.83 (∩) 

Landscape Metrics 
Explanatory 
Variables 

Null Model Linear Model Quadratic Model 

DRIP 0.34 0.47 (─) 0.18 

 
 

Hemorrhois hippocrepis 

Land Cover 
Buffer Distance 

 
250m 

 
500m 

 
1000m

*
 

Explanatory 
Variables 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

AGR 0.49 0.30 (+) 0.21 0.57 0.32(+) 0.11 0.09 0.68 (+) 0.23 
OPA 0.64 0.22 (+) 0.14 0.54 0.21 0.25(∩) 0.50 0.25 0.25 (∩) 
SHR 0.63 0.28 (+) 0.10 0.67 0.24(+) 0.08 0.50 0.35 (─) 0.16 
RIP 0.01 0.55 (+) 0.44 0.03 0.64(+) 0.33 0.01 0.73 (+) 0.26 
HUM 0.03 0.01 0.96 (∩) 0.00 0.01 0.99(∩) 0.00 0.13 0.87 (∩) 
RI 0.32 0.51 (+) 0.17 0.35 0.38(+) 0.27 0.53 0.30 (─) 0.17 

Landscape Metrics 
Explanatory 
Variables 

Null Model Linear Model Quadratic Model 

DRIP 0.12 0.21 0.67 (∩) 
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(A1 continued) 

Rhicnechis scalaris 

Land Cover 
Buffer Distance 

 
250m 

 
500m 

 
1000m

*
 

Explanatory 
Variables 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

AGR 0.28 0.10 0.63(∩) 0,18 0.07 0.75(∩) 0.12 0.04 0.84 (∩) 
MONT 0.02 0.65(+) 0.32 0,01 0.66(+) 0.33 0.00 0.50 (+) 0.49 
OMONT 0.36 0.28 0.36(∩) 0,08 0.48(─) 0.43 0.32 0.50 (─) 0.18 
SHR 0.45 0.14 0.40(∩) 0,19 0.16 0.65(∩) 0.29 0.40 (─) 0.31 
RIP 0.63 0.26(─) 0.11 0,62 0.28(─) 0.10 0.57 0.20 0.23 (∩) 
RI 0.00 0.00 0.99(∩) 0,03 0.15 0.82(∩) 0.25 0.18 0.57 (∩) 

Landscape Metrics 
Explanatory 
Variables 

Null Model Linear Model Quadratic Model 

DRIP 0.59 0.26 (─) 0.16 

 
 

Natrix maura 

Land Cover 
Buffer Distance 

 
250m

*
 

 
500m 

 
1000m 

Explanatory 
Variables 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

OMONT 0.03 0.67 (─) 0.29 0.05 0.71 (─) 0.25 0.14 0.62 (─) 0.24 
OPA 0.40 0.29 0.31 (∩) 0.65 0.24 (+) 0.12 0.63 0.26 (─) 0.12 
RIP 0.60 0.27 (─) 0.13 0.17 0.50 (─) 0.33 0.54 0.33 (+) 0.13 
WS 0.00 0.27 0.73 (∩) 0.06 0.16 0.78 (∩) 0.58 0.21 (─) 0.21 
RI 0.21 0.28 0.51 (∩) 0.46 0.22 0.32 (∩) 0.19 0.08 0.73 (∩) 

Landscape Metrics 
Explanatory 
Variables 

Null Model Linear Model Quadratic Model 

DWS 0.00 0.73 (─) 0.27 
DRIP 0.62 0.26 (─) 0.12 

 
 

Malpolon monspessulanus 

Land Cover 
Buffer 

 
250m 

 
500m* 

 
1000m 

Explanatory 
Variables 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

Null 
Model 

Linear 
Model 

Quadratic 
Model 

AGR 0.55 0.23(─) 0.22 0.62 0.25 (─) 0.13 0.33 0.30 0.37(∩) 
OMONT 0.63 0.23(─) 0.14 0.68 0.24 (+) 0.09 0.38 0.46(─) 0.16 
OPA 0.60 0.29(─) 0.10 0.58 0.30 (─) 0.12 0.65 0.26(─) 0.09 
SHR 0.66 0.25(─) 0.09 0.64 0.26 (─) 0.10 0.57 0.30(─) 0.13 
RIP 0.58 0.21(+) 0.20 0.59 0.26 (+) 0.15 0.08 0.68(+) 0.24 
HUM 0.40 0.27 0.33(∩) 0.59 0.26 (+) 0.15 0.24 0.51(+) 0.25 
RI 0.32 0.39(+) 0.29 0.05 0.30 0.65 (∩) 0.13 0.18 0.70(∩) 

Landscape Metrics 
Explanatory 
Variables 

Null Model Linear Model Quadratic Model 

DRIP 0.39 0.39 (─) 0.22 
 
NOTES: Types of association are presented as: (+) positive, (─) negative and (∩) unimodal;* quadratic terms used in 
final global models. 



44 
 

APPENDIX B – MODELS, RANKING AND CALCULATIONS OF MODELS GENERATED AFTER 

MODEL SELECTION. 

 

TABLE B1 - MODELS SELECTED FOR THE SNAKE COMMUNITY WITH A ∆AICC<6 AND EXPLAINED DEVIANCE (D2), 

AICC AND ∆AICC VALUES. 

Rank Models D2 AICc ∆AICc 

1 SNK~OPA+MONT+RIP+HUM+ROAD+RI+sqRI+ATC 0.35 507 0.00 
2 SNK~OMONT+OPA+RIP+SHR+AGR+RI+sqAGR+sqRI+ATC 0.35 508 0.58 
3 SNK~MONT+RIP+SHR+ROAD+RI+sqRI+ATC 0.33 508 0.83 
4 SNK~OMONT+OPA+MONT+SHR+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 508 0.84 
5 SNK~OMONT+OPA+RIP+SHR+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 508 1.03 
6 SNK~OPA+MONT+RIP+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 508 1.04 
7 SNK~OMONT+MONT+RIP+SHR+ROAD+RI+sqRI+ATC 0.34 508 1.13 
8 SNK~MONT+SHR+HUM+ROAD+RI+sqRI+ATC 0.33 508 1.24 
9 SNK~OPA+MONT+RIP+SHR+HUM+ROAD+RI+sqRI+ATC 0.35 509 1.31 
10 SNK~OMONT+OPA+MONT+SHR+AGR+RI+sqAGR+sqRI+ATC 0.35 509 1.46 
11 SNK~MONT+SHR+ROAD+RI+sqRI+ATC 0.32 509 1.48 
12 SNK~OPA+MONT+RIP+HUM+AGR+RI+sqAGR+sqRI+ATC 0.35 509 1.71 
13 SNK~OMONT+OPA+SHR+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 509 1.72 
14 SNK~OMONT+OPA+SHR+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 509 1.72 
15 SNK~MONT+RIP+SHR+HUM+ROAD+RI+sqRI+ATC 0.34 509 1.75 
16 SNK~OMONT+OPA+MONT+RIP+HUM+ROAD+RI+sqRI+ATC 0.35 509 1.78 
17 SNK~OPA+MONT+SHR+HUM+ROAD+RI+sqRI+ATC 0.34 509 1.84 
18 SNK~OPA+MONT+HUM+ROAD+RI+sqRI+ATC 0.33 509 1.87 
19 SNK~OMONT+OPA+MONT+RIP+SHR+AGR+RI+sqAGR+sqRI+ATC 0.36 509 2.00 
20 SNK~OPA+MONT+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 509 2.24 
21 SNK~OMONT+MONT+SHR+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 509 2.27 
22 SNK~OMONT+OPA+RIP+SHR+HUM+AGR+RI+sqAGR+sqRI+ATC 0.36 510 2.40 
23 SNK~OMONT+OPA+MONT+RIP+SHR+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.37 510 2.42 
24 SNK~OPA+MONT+RIP+HUM+DRIP+ROAD+RI+sqRI+ATC 0.35 510 2.46 
25 SNK~OMONT+MONT+SHR+ROAD+RI+sqRI+ATC 0.33 510 2.47 
26 SNK~OMONT+OPA+RIP+SHR+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.37 510 2.49 
27 SNK~OPA+MONT+RIP+SHR+ROAD+RI+sqRI+ATC 0.34 510 2.49 
28 SNK~OMONT+MONT+RIP+SHR+HUM+ROAD+RI+sqRI+ATC 0.35 510 2.53 
29 SNK~MONT+SHR+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.34 510 2.56 
30 SNK~OMONT+MONT+SHR+HUM+ROAD+RI+sqRI+ATC 0.33 510 2.58 
31 SNK~MONT+SHR+DRIP+ROAD+RI+sqRI+ATC 0.32 510 2.61 
32 SNK~OMONT+MONT+RIP+SHR+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.37 510 2.67 
33 SNK~OMONT+OPA+SHR+ROAD+RI+sqRI+ATC 0.32 510 2.70 
34 SNK~OMONT+OPA+MONT+SHR+HUM+AGR+RI+sqAGR+sqRI+ATC 0.35 510 2.71 
35 SNK~OMONT+MONT+RIP+SHR+HUM+AGR+RI+sqAGR+sqRI+ATC 0.35 510 2.92 
36 SNK~OMONT+OPA+MONT+HUM+ROAD+RI+sqRI+ATC 0.33 510 2.95 
37 SNK~OMONT+MONT+RIP+SHR+AGR+RI+sqAGR+sqRI+ATC 0.34 510 2.99 
38 SNK~OMONT+OPA+RIP+SHR+DRIP+AGR+RI+sqAGR+sqRI+ATC 0.35 510 3.01 
39 SNK~OPA+MONT+RIP+SHR+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 510 3.06 
40 SNK~OPA+MONT+SHR+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 510 3.12 
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(B1 continued) 

41 SNK~OMONT+MONT+RIP+SHR+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 510 3.13 
42 SNK~OMONT+OPA+SHR+AGR+RI+sqAGR+sqRI+ATC 0.33 510 3.14 
43 SNK~MONT+SHR+HUM+DRIP+ROAD+RI+sqRI+ATC 0.33 510 3.15 
44 SNK~OPA+MONT+HUM+DRIP+ROAD+RI+sqRI+ATC 0.33 510 3.20 
45 SNK~MONT+RIP+SHR+DRIP+ROAD+RI+sqRI+ATC 0.33 510 3.22 
46 SNK~OMONT+OPA+MONT+SHR+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 510 3.24 
47 SNK~OMONT+MONT+RIP+SHR+RI+sqRI+ATC 0.32 510 3.27 
48 SNK~OMONT+MONT+SHR+DRIP+ROAD+RI+sqRI+ATC 0.33 510 3.28 
49 SNK~OMONT+OPA+MONT+RIP+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 511 3.31 
50 SNK~OMONT+OPA+MONT+SHR+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 511 3.40 
51 SNK~OMONT+OPA+SHR+HUM+AGR+RI+sqAGR+sqRI+ATC 0.34 511 3.42 
52 SNK~OMONT+OPA+SHR+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 511 3.49 
53 SNK~OMONT+MONT+RIP+SHR+DRIP+ROAD+RI+sqRI+ATC 0.34 511 3.55 
54 SNK~OPA+MONT+RIP+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 511 3.57 
55 SNK~OMONT+OPA+RIP+SHR+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 511 3.59 
56 SNK~OMONT+OPA+MONT+RIP+SHR+ROAD+RI+sqRI+ATC 0.34 511 3.60 
57 SNK~OPA+MONT+SHR+HUM+DRIP+ROAD+RI+sqRI+ATC 0.34 511 3.61 
58 SNK~OMONT+OPA+RIP+SHR+ROAD+RI+sqRI+ATC 0.33 511 3.64 
59 SNK~MONT+RIP+SHR+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 511 3.68 
60 SNK~OPA+MONT+SHR+ROAD+RI+sqRI+ATC 0.32 511 3.76 
61 SNK~OMONT+OPA+MONT+RIP+SHR+HUM+ROAD+RI+sqRI+ATC 0.35 511 3.83 
62 SNK~OPA+MONT+RIP+ROAD+RI+sqRI+ATC 0.32 511 3.83 
63 SNK~OPA+MONT+RIP+SHR+HUM+DRIP+ROAD+RI+sqRI+ATC 0.35 511 3.83 
64 SNK~OMONT+OPA+MONT+SHR+DRIP+AGR+RI+sqAGR+sqRI+ATC 0.35 511 3.96 
65 SNK~OMONT+OPA+SHR+DRIP+ROAD+RI+sqRI+ATC 0.33 511 3.98 
66 SNK~OPA+MONT+RIP+SHR+HUM+AGR+RI+sqAGR+sqRI+ATC 0.35 511 4.03 
67 SNK~OMONT+OPA+MONT+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 511 4.06 
68 SNK~OPA+MONT+RIP+HUM+DRIP+AGR+RI+sqAGR+sqRI+ATC 0.35 511 4.07 
69 SNK~OPA+MONT+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 511 4.11 
70 SNK~OMONT+OPA+SHR+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 511 4.13 
71 SNK~MONT+RIP+SHR+HUM+DRIP+ROAD+RI+sqRI+ATC 0.34 511 4.22 
72 SNK~OMONT+OPA+MONT+RIP+HUM+AGR+RI+sqAGR+sqRI+ATC 0.35 511 4.23 
73 SNK~OMONT+MONT+SHR+HUM+DRIP+ROAD+RI+sqRI+ATC 0.34 511 4.27 
74 SNK~OMONT+OPA+MONT+RIP+HUM+DRIP+ROAD+RI+sqRI+ATC 0.35 511 4.28 
75 SNK~OMONT+OPA+RIP+SHR+RI+sqRI+ATC 0.32 511 4.28 
76 SNK~OMONT+OPA+MONT+SHR+HUM+ROAD+RI+sqRI+ATC 0.34 512 4.31 
77 SNK~OMONT+OPA+MONT+RIP+SHR+DRIP+AGR+RI+sqAGR+sqRI+ATC 0.36 512 4.34 
78 SNK~MONT+RIP+SHR+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.34 512 4.37 
79 SNK~OMONT+OPA+MONT+RIP+SHR+HUM+AGR+RI+sqAGR+sqRI+ATC 0.36 512 4.39 
80 SNK~OMONT+MONT+SHR+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.34 512 4.47 
81 SNK~OMONT+OPA+MONT+SHR+ROAD+RI+sqRI+ATC 0.33 512 4.51 
82 SNK~OMONT+MONT+SHR+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 512 4.60 
83 SNK~OMONT+MONT+SHR+HUM+AGR+RI+sqAGR+sqRI+ATC 0.34 512 4.61 
84 SNK~OMONT+OPA+MONT+HUM+DRIP+ROAD+RI+sqRI+ATC 0.34 512 4.67 
85 SNK~OMONT+MONT+RIP+SHR+HUM+RI+sqRI+ATC 0.33 512 4.68 
86 SNK~MONT+SHR+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.33 512 4.70 
87 SNK~OMONT+OPA+SHR+DRIP+AGR+RI+sqAGR+sqRI+ATC 0.34 512 4.71 
88 SNK~OPA+MONT+SHR+DRIP+ROAD+RI+sqRI+ATC 0.33 512 4.74 
89 SNK~OMONT+OPA+RIP+SHR+HUM+DRIP+AGR+RI+sqAGR+sqRI+ATC 0.36 512 4.76 
90 SNK~OPA+MONT+RIP+SHR+DRIP+ROAD+RI+sqRI+ATC 0.34 512 4.92 
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(B1 continued) 

91 SNK~OMONT+OPA+MONT+RIP+SHR+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.37 512 4.95 
92 SNK~MONT+SHR+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 512 4.97 
93 SNK~OPA+SHR+ROAD+RI+sqRI+ATC 0.31 512 5.01 
94 SNK~OMONT+OPA+SHR+HUM+ROAD+RI+sqRI+ATC 0.32 512 5.02 
95 SNK~OMONT+OPA+RIP+SHR+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.37 512 5.03 
96 SNK~OMONT+MONT+RIP+SHR+HUM+DRIP+ROAD+RI+sqRI+ATC 0.35 512 5.05 
97 SNK~OMONT+OPA+MONT+RIP+SHR+HUM+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.37 512 5.06 
98 SNK~OMONT+OPA+MONT+SHR+AGR+sqAGR+ATC 0.31 512 5.07 
99 SNK~OMONT+OPA+MONT+RIP+SHR+RI+sqRI+ATC 0.32 512 5.19 
100 SNK~OMONT+MONT+RIP+SHR+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.37 512 5.22 
101 SNK~OMONT+OPA+MONT+SHR+HUM+DRIP+AGR+RI+sqAGR+sqRI+ATC 0.35 513 5.29 
102 SNK~OMONT+MONT+RIP+SHR+HUM+DRIP+AGR+RI+sqAGR+sqRI+ATC 0.35 513 5.31 
103 SNK~OPA+MONT+SHR+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 513 5.37 
104 SNK~OMONT+OPA+RIP+SHR+AGR+sqAGR+ATC 0.31 513 5.44 
105 SNK~OMONT+OPA+MONT+SHR+HUM+AGR+sqAGR+ATC 0.32 513 5.49 
106 SNK~OMONT+MONT+RIP+SHR+DRIP+AGR+RI+sqAGR+sqRI+ATC 0.34 513 5.51 
107 SNK~OMONT+OPA+MONT+SHR+ROAD+AGR+sqAGR+ATC 0.32 513 5.57 
108 SNK~OPA+MONT+HUM+AGR+RI+sqAGR+sqRI+ATC 0.32 513 5.57 
109 SNK~OMONT+OPA+MONT+SHR+DRIP+ROAD+RI+sqRI+ATC 0.33 513 5.59 
110 SNK~OMONT+MONT+SHR+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.34 513 5.62 
111 SNK~OPA+MONT+RIP+SHR+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 513 5.63 
112 SNK~OMONT+OPA+SHR+HUM+DRIP+AGR+RI+sqAGR+sqRI+ATC 0.34 513 5.67 
113 SNK~OMONT+MONT+RIP+SHR+DRIP+RI+sqRI+ATC 0.32 513 5.68 
114 SNK~OMONT+MONT+RIP+SHR+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.35 513 5.70 
115 SNK~OMONT+OPA+MONT+RIP+SHR+AGR+sqAGR+ATC 0.32 513 5.77 
116 SNK~OMONT+OPA+RIP+SHR+DRIP+ROAD+RI+sqRI+ATC 0.33 513 5.86 
117 SNK~OMONT+OPA+MONT+SHR+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 513 5.88 
118 SNK~OMONT+OPA+MONT+RIP+HUM+DRIP+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.36 513 5.89 
119 SNK~OMONT+OPA+SHR+RI+sqRI+ATC 0.30 513 5.90 
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TABLE B2 - MODELS SELECTED FOR THE HORSE WHIP SNAKE Hemorrhois hippocrepis WITH A ∆AICC<6 AND 

EXPLAINED DEVIANCE (D2), AICC AND ∆AICC VALUES. 

Rank Models D2 AICc ∆AICc 

1 HH~HUM+DRIP+sqHUM+sqDRIP+ATC 0.37 145 0.00 
2 HH~RI+HUM+DRIP+sqHUM+sqDRIP+ATC 0.38 146 1.12 
3 HH~ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.38 146 1.24 
4 HH~RI+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.40 146 1.45 
5 HH~AGR+HUM+DRIP+sqHUM+sqDRIP+ATC 0.37 147 2.14 
6 HH~SHR+HUM+DRIP+sqHUM+sqDRIP+ATC 0.37 147 2.14 
7 HH~HUM+sqHUM+ATC 0.32 147 2.20 
8 HH~RIP+HUM+DRIP+sqHUM+sqDRIP+ATC 0.37 147 2.26 
9 HH~OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.39 147 2.39 
10 HH~RI+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.41 148 2.84 
11 HH~AGR+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.39 148 2.84 
12 HH~SHR+RI+HUM+DRIP+sqHUM+sqDRIP+ATC 0.39 148 2.85 
13 HH~SHR+RI+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.41 148 2.97 
14 HH~OPA+HUM+sqOPA+sqHUM+ATC 0.35 148 3.01 
15 HH~AGR+RI+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.41 148 3.05 
16 HH~AGR+RI+HUM+DRIP+sqHUM+sqDRIP+ATC 0.38 148 3.39 
17 HH~RIP+RI+HUM+DRIP+sqHUM+sqDRIP+ATC 0.38 148 3.40 
18 HH~SHR+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.38 148 3.41 
19 HH~RI+OPA+HUM+sqOPA+sqHUM+ATC 0.36 148 3.47 
20 HH~ROAD+HUM+sqHUM+ATC 0.32 148 3.50 
21 HH~RIP+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.38 149 3.61 
22 HH~RI+HUM+sqHUM+ATC 0.32 149 3.76 
23 HH~RIP+RI+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.40 149 3.87 
24 HH~RIP+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.40 149 3.92 
25 HH~AGR+HUM+sqHUM+ATC 0.32 149 4.03 
26 HH~ROAD+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.40 149 4.12 
27 HH~RI+ROAD+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.42 149 4.22 
28 HH~RIP+RI+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.42 149 4.28 
29 HH~AGR+SHR+HUM+DRIP+sqHUM+sqDRIP+ATC 0.38 149 4.30 
30 HH~SHR+HUM+sqHUM+ATC 0.32 149 4.32 
31 HH~RIP+HUM+sqHUM+ATC 0.32 149 4.35 
32 HH~AGR+SHR+RI+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.42 149 4.39 
33 HH~AGR+RIP+HUM+DRIP+sqHUM+sqDRIP+ATC 0.38 149 4.41 
34 HH~RIP+SHR+HUM+DRIP+sqHUM+sqDRIP+ATC 0.38 149 4.41 
35 HH~AGR+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.40 149 4.41 
36 HH~RI+ROAD+HUM+sqHUM+ATC 0.33 150 4.52 
37 HH~RIP+OPA+HUM+sqOPA+sqHUM+ATC 0.35 150 4.55 
38 HH~SHR+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.39 150 4.70 
39 HH~ROAD+OPA+HUM+sqOPA+sqHUM+ATC 0.35 150 4.71 
40 HH~AGR+ROAD+HUM+sqHUM+ATC 0.33 150 4.80 
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(B2 continued) 

41 HH~SHR+OPA+HUM+sqOPA+sqHUM+ATC 0.35 150 4.87 
42 HH~AGR+OPA+HUM+sqOPA+sqHUM+ATC 0.35 150 4.88 
43 HH~RIP+RI+OPA+HUM+sqOPA+sqHUM+ATC 0.37 150 4.90 
44 HH~AGR+SHR+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.39 150 4.97 
45 HH~RI+ROAD+OPA+HUM+sqOPA+sqHUM+ATC 0.37 150 4.99 
46 HH~AGR+RI+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.41 150 5.04 
47 HH~RIP+SHR+RI+HUM+DRIP+sqHUM+sqDRIP+ATC 0.39 150 5.11 
48 HH~AGR+SHR+RI+HUM+DRIP+sqHUM+sqDRIP+ATC 0.39 150 5.15 
49 HH~AGR+RIP+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.39 150 5.24 
50 HH~SHR+RI+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.41 150 5.30 
51 HH~RIP+SHR+RI+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.41 150 5.43 
52 HH~AGR+RIP+RI+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.41 150 5.49 
53 HH~AGR+RI+OPA+HUM+sqOPA+sqHUM+ATC 0.37 151 5.55 
54 HH~SHR+RI+HUM+sqHUM+ATC 0.32 151 5.61 
55 HH~AGR+ROAD+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.41 151 5.63 
56 HH~SHR+ROAD+HUM+sqHUM+ATC 0.32 151 5.67 
57 HH~AGR+RIP+RI+HUM+DRIP+sqHUM+sqDRIP+ATC 0.39 151 5.69 
58 HH~AGR+RI+HUM+sqHUM+ATC 0.32 151 5.73 
59 HH~AGR+RIP+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.41 151 5.74 
60 HH~RIP+ROAD+HUM+sqHUM+ATC 0.32 151 5.76 
61 HH~SHR+RI+OPA+HUM+sqOPA+sqHUM+ATC 0.36 151 5.77 
62 HH~RIP+SHR+ROAD+HUM+DRIP+sqHUM+sqDRIP+ATC 0.38 151 5.82 
63 HH~AGR+RI+ROAD+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.43 151 5.83 
64 HH~AGR+RI+ROAD+HUM+sqHUM+ATC 0.34 151 5.89 
65 HH~RIP+RI+HUM+sqHUM+ATC 0.32 151 5.90 
66 HH~RIP+ROAD+OPA+HUM+DRIP+sqOPA+sqHUM+sqDRIP+ATC 0.40 151 5.99 

 



49 
 

TABLE B3 - MODELS SELECTED FOR THE LADDER SNAKE Rhinechis scalaris WITH A ∆AICC<6 AND EXPLAINED 

DEVIANCE (D2), AICC AND ∆AICC VALUES. 

Rank Models D2 AICc ∆AICc 

1 RS~SHR+MONT+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.31 415 0.00 
2 RS~OMONT+SHR+MONT+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.32 415 0.00 
3 RS~OMONT+SHR+MONT+AGR+RI+sqAGR+sqRI+ATC 0.31 415 0.04 
4 RS~SHR+MONT+ROAD+RI+sqRI+ATC 0.29 416 1.30 
5 RS~SHR+MONT+DRIPCS+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.32 416 1.60 
6 RS~SHR+MONT+ROAD+RIP+AGR+RI+sqRIP+sqAGR+sqRI+ATC 0.33 417 1.80 
7 RS~OMONT+SHR+MONT+DRIPCS+ROAD+AGR+RI+sqAGR+sqRI+ATC 0.33 417 1.84 
8 RS~OMONT+SHR+MONT+DRIPCS+AGR+RI+sqAGR+sqRI+ATC 0.31 417 2.04 
9 RS~OMONT+SHR+MONT+RIP+AGR+RI+sqRIP+sqAGR+sqRI+ATC 0.32 417 2.45 
10 RS~OMONT+SHR+MONT+ROAD+RIP+AGR+RI+sqRIP+sqAGR+sqRI+ATC 0.34 417 2.46 
11 RS~SHR+MONT+AGR+RI+sqAGR+sqRI+ATC 0.29 418 2.87 
12 RS~OMONT+SHR+MONT+ROAD+RI+sqRI+ATC 0.29 418 3.19 
13 RS~SHR+MONT+DRIPCS+ROAD+RI+sqRI+ATC 0.29 418 3.22 
14 RS~OMONT+SHR+MONT+ROAD+AGR+sqAGR+ATC 0.28 419 3.79 
15 RS~OMONT+SHR+MONT+AGR+sqAGR+ATC 0.27 419 4.01 
16 RS~SHR+MONT+DRIPCS+ROAD+RIP+AGR+RI+sqRIP+sqAGR+sqRI+ATC 0.33 419 4.22 
17 RS~OMONT+SHR+MONT+DRIPCS+RIP+AGR+RI+sqRIP+sqAGR+sqRI+ATC 0.33 419 4.52 
18 RS~OMONT+SHR+MONT+ROAD+RIP+AGR+sqRIP+sqAGR+ATC 0.30 419 4.59 
19 RS~SHR+MONT+RIP+AGR+RI+sqRIP+sqAGR+sqRI+ATC 0.30 419 4.61 
20 RS~SHR+MONT+ROAD+AGR+sqAGR+ATC 0.27 420 4.62 
21 RS~SHR+MONT+DRIPCS+AGR+RI+sqAGR+sqRI+ATC 0.29 420 4.69 
22 RS~SHR+MONT+ROAD+RIP+AGR+sqRIP+sqAGR+ATC 0.29 420 4.83 
23 RS~OMONT+SHR+MONT+RIP+AGR+sqRIP+sqAGR+ATC 0.29 420 4.83 
24 RS~OMONT+SHR+MONT+DRIPCS+ROAD+RIP+AGR+RI+sqRIP+sqAGR+sqRI+ATC 0.34 420 4.84 
25 RS~SHR+MONT+ROAD+RIP+RI+sqRIP+sqRI+ATC 0.29 420 4.85 
26 RS~OMONT+SHR+MONT+DRIPCS+ROAD+RI+sqRI+ATC 0.29 420 5.24 
27 RS~SHR+MONT+ROAD+ATC 0.24 421 5.65 
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TABLE B4 - MODELS SELECTED FOR THE VIPERINE SNAKE Natrix maura WITH A ∆AICC<6 AND EXPLAINED 

DEVIANCE (D2), AICC AND ∆AICC VALUES. 

Rank Models D2 AICc ∆AICc 

1 NM~OMONT+DWS+OPA+WS+sqOPA+sqWS 0.35 170 0.00 
2 NM~OMONT+DWS+WS+sqWS 0.31 170 0.24 
3 NM~OMONT+DWS+ROAD+OPA+WS+sqOPA+sqWS 0.36 171 0.75 
4 NM~OMONT+DWS+ROAD+WS+sqWS 0.32 171 0.84 
5 NM~OMONT+DWS+OPA+RI+WS+sqOPA+sqRI+sqWS 0.37 171 0.91 
6 NM~DWS+WS+sqWS 0.29 171 1.16 
7 NM~DWS+ROAD+WS+sqWS 0.31 171 1.32 
8 NM~OMONT+DRIP+DWS+WS+sqWS 0.32 172 1.65 
9 NM~OMONT+DRIP+DWS+OPA+WS+sqOPA+sqWS 0.35 172 1.70 
10 NM~OMONT+DWS+ROAD+OPA+RI+WS+sqOPA+sqRI+sqWS 0.39 172 1.71 
11 NM~DWS+ROAD+OPA+WS+sqOPA+sqWS 0.33 172 1.87 
12 NM~OMONT+DWS+RI+WS+sqRI+sqWS 0.33 172 1.89 
13 NM~OMONT+DWS+ROAD+RI+WS+sqRI+sqWS 0.35 172 2.02 
14 NM~DWS+ROAD+RI+WS+sqRI+sqWS 0.33 172 2.04 
15 NM~DWS+OPA+WS+sqOPA+sqWS 0.32 172 2.06 
16 NM~OMONT+RIP+DWS+WS+sqWS 0.31 172 2.34 
17 NM~OMONT+RIP+DWS+OPA+WS+sqOPA+sqWS 0.35 172 2.36 
18 NM~OMONT+DRIP+DWS+ROAD+OPA+WS+sqOPA+sqWS 0.36 173 2.48 
19 NM~OMONT+DRIP+DWS+ROAD+WS+sqWS 0.33 173 2.56 
20 NM~DRIP+DWS+WS+sqWS 0.30 173 2.59 
21 NM~DWS+RI+WS+sqRI+sqWS 0.31 173 2.60 
22 NM~OMONT+RIP+DWS+ROAD+WS+sqWS 0.33 173 2.86 
23 NM~DRIP+DWS+ROAD+WS+sqWS 0.31 173 3.02 
24 NM~DWS+ROAD+OPA+RI+WS+sqOPA+sqRI+sqWS 0.36 173 3.02 
25 NM~OMONT+RIP+DRIP+DWS+WS+sqWS 0.32 173 3.10 
26 NM~OMONT+RIP+DWS+ROAD+OPA+WS+sqOPA+sqWS 0.36 173 3.17 
27 NM~RIP+DWS+WS+sqWS 0.29 173 3.20 
28 NM~RIP+DWS+ROAD+WS+sqWS 0.31 173 3.24 
29 NM~DRIP+DWS+ROAD+OPA+WS+sqOPA+sqWS 0.34 173 3.29 
30 NM~OMONT+DRIP+DWS+OPA+RI+WS+sqOPA+sqRI+sqWS 0.37 173 3.30 
31 NM~OMONT+RIP+DWS+OPA+RI+WS+sqOPA+sqRI+sqWS 0.37 173 3.37 
32 NM~DWS+OPA+RI+WS+sqOPA+sqRI+sqWS 0.34 173 3.44 
33 NM~DRIP+DWS+OPA+WS+sqOPA+sqWS 0.32 174 3.54 
34 NM~OMONT+DRIP+DWS+RI+WS+sqRI+sqWS 0.34 174 3.86 
35 NM~OMONT+RIP+DRIP+DWS+ROAD+WS+sqWS 0.34 174 3.87 
36 NM~RIP+DRIP+DWS+WS+sqWS 0.30 174 3.93 
37 NM~OMONT+RIP+DRIP+DWS+OPA+WS+sqOPA+sqWS 0.35 174 3.98 
38 NM~RIP+DWS+ROAD+RI+WS+sqRI+sqWS 0.34 174 3.99 
39 NM~OMONT+RIP+DWS+RI+WS+sqRI+sqWS 0.33 174 4.13 
40 NM~RIP+DRIP+DWS+ROAD+WS+sqWS 0.32 174 4.14 
41 NM~OMONT+DRIP+DWS+ROAD+OPA+RI+WS+sqOPA+sqRI+sqWS 0.39 174 4.17 
42 NM~OMONT+RIP+DWS+ROAD+RI+WS+sqRI+sqWS 0.35 174 4.20 
43 NM~DRIP+DWS+ROAD+RI+WS+sqRI+sqWS 0.33 174 4.23 
44 NM~OMONT+RIP+DWS+ROAD+OPA+RI+WS+sqOPA+sqRI+sqWS 0.39 174 4.23 
45 NM~RIP+DWS+ROAD+OPA+WS+sqOPA+sqWS 0.33 174 4.23 
46 NM~OMONT+DRIP+DWS+ROAD+RI+WS+sqRI+sqWS 0.35 174 4.27 
47 NM~RIP+DWS+OPA+WS+sqOPA+sqWS 0.32 174 4.38 
48 NM~DRIP+DWS+RI+WS+sqRI+sqWS 0.31 175 4.51 
49 NM~RIP+DWS+RI+WS+sqRI+sqWS 0.31 175 4.69 
50 NM~OMONT+RIP+DRIP+DWS+ROAD+OPA+WS+sqOPA+sqWS 0.36 175 4.77 
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51 NM~DRIP+DWS+ROAD+OPA+RI+WS+sqOPA+sqRI+sqWS 0.36 175 5.23 
52 NM~RIP+DRIP+DWS+ROAD+OPA+WS+sqOPA+sqWS 0.34 175 5.41 
53 NM~RIP+DWS+ROAD+OPA+RI+WS+sqOPA+sqRI+sqWS 0.36 175 5.43 
54 NM~DRIP+DWS+OPA+RI+WS+sqOPA+sqRI+sqWS 0.34 176 5.60 
55 NM~RIP+DRIP+DWS+ROAD+RI+WS+sqRI+sqWS 0.34 176 5.64 
56 NM~RIP+DRIP+DWS+OPA+WS+sqOPA+sqWS 0.32 176 5.69 
57 NM~OMONT+RIP+DRIP+DWS+RI+WS+sqRI+sqWS 0.34 176 5.69 
58 NM~OMONT+RIP+DRIP+DWS+OPA+RI+WS+sqOPA+sqRI+sqWS 0.38 176 5.76 
59 NM~RIP+DWS+OPA+RI+WS+sqOPA+sqRI+sqWS 0.34 176 5.81 
60 NM~OMONT+DWS+ROAD+OPA+RI+sqOPA+sqRI 0.32 176 5.94 
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TABLE B5 - MODELS SELECTED FOR THE RAT SNAKE Malpolon monspessulanus WITH A ∆AICC<6 AND 

EXPLAINED DEVIANCE (D2), AICC AND ∆AICC VALUES. 

Rank Models D2 AICc ∆AICc 

1 MM~ROAD+RI+sqRI 0.08 343 0.00 
2 MM~AGR+ROAD+RI+sqRI 0.09 343 0.45 
3 MM~DRIP+ROAD+RI+sqRI 0.09 343 0.84 
4 MM~OMONT+ROAD+RI+sqRI 0.09 343 0.95 
5 MM~SHR+ROAD+RI+sqRI 0.09 344 1.07 
6 MM~AGR+SHR+ROAD+RI+sqRI 0.10 344 1.15 
7 MM~HUM+ROAD+RI+sqRI 0.08 344 1.27 
8 MM~AGR+DRIP+ROAD+RI+sqRI 0.10 344 1.56 
9 MM~AGR+HUM+ROAD+RI+sqRI 0.10 344 1.67 
10 MM~OMONT+SHR+ROAD+RI+sqRI 0.10 344 1.75 
11 MM~OMONT+AGR+ROAD+RI+sqRI 0.09 344 1.86 
12 MM~ROAD 0.04 344 1.90 
13 MM~RI+sqRI 0.06 344 1.91 
14 MM~OMONT+DRIP+ROAD+RI+sqRI 0.09 345 2.01 
15 MM~SHR+RI+sqRI 0.07 345 2.10 
16 MM~RIP+ROAD+RI+sqRI 0.08 345 2.12 
17 MM~OMONT+HUM+ROAD+RI+sqRI 0.09 345 2.15 
18 MM~OPA+ROAD+RI+sqRI 0.08 345 2.19 
19 MM~AGR+ROAD 0.05 345 2.23 
20 MM~HUM+RI+sqRI 0.07 345 2.28 
21 MM~SHR+DRIP+ROAD+RI+sqRI 0.09 345 2.28 
22 MM~DRIP+RI+sqRI 0.07 345 2.33 
23 MM~OMONT+AGR+SHR+ROAD+RI+sqRI 0.11 345 2.37 
24 MM~AGR+RIP+ROAD+RI+sqRI 0.09 345 2.56 
25 MM~DRIP+ROAD 0.05 345 2.57 
26 MM~HUM+DRIP+ROAD+RI+sqRI 0.09 345 2.65 
27 MM~OPA+AGR+ROAD+RI+sqRI 0.09 345 2.66 
28 MM~AGR+SHR+DRIP+ROAD+RI+sqRI 0.10 345 2.70 
29 MM~SHR+HUM+ROAD+RI+sqRI 0.09 345 2.75 
30 MM~OMONT+ROAD 0.05 345 2.84 
31 MM~AGR+SHR+HUM+ROAD+RI+sqRI 0.10 345 2.85 
32 MM~OMONT+OPA+ROAD+RI+sqRI 0.09 345 2.92 
33 MM~OPA+DRIP+ROAD+RI+sqRI 0.09 345 2.99 
34 MM~RIP+DRIP+ROAD+RI+sqRI 0.09 346 3.03 
35 MM~OMONT+AGR+HUM+ROAD+RI+sqRI 0.10 346 3.06 
36 MM~SHR+DRIP+RI+sqRI 0.07 346 3.07 
37 MM~OMONT+AGR+DRIP+ROAD+RI+sqRI 0.10 346 3.10 
38 MM~OPA+SHR+ROAD+RI+sqRI 0.09 346 3.13 
39 MM~AGR+DRIP+ROAD 0.06 346 3.14 
40 MM~OMONT+RIP+ROAD+RI+sqRI 0.09 346 3.19 
41 MM~SHR+HUM+RI+sqRI 0.07 346 3.23 
42 MM~OMONT+SHR+DRIP+ROAD+RI+sqRI 0.10 346 3.23 
43 MM~OPA+AGR+SHR+ROAD+RI+sqRI 0.10 346 3.24 
44 MM~AGR+HUM+DRIP+ROAD+RI+sqRI 0.10 346 3.30 
45 MM~RIP+SHR+ROAD+RI+sqRI 0.09 346 3.32 
46 MM~HUM+ROAD 0.05 346 3.34 
47 MM~OMONT+SHR+HUM+ROAD+RI+sqRI 0.10 346 3.40 
48 MM~AGR+SHR+RI+sqRI 0.07 346 3.42 
49 MM~AGR+RIP+SHR+ROAD+RI+sqRI 0.10 346 3.43 
50 MM~RIP+HUM+ROAD+RI+sqRI 0.09 346 3.47 
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51 MM~HUM+DRIP+RI+sqRI 0.07 346 3.50 
52 MM~RIP+RI+sqRI 0.06 346 3.53 
53 MM~OPA+HUM+ROAD+RI+sqRI 0.08 346 3.53 
54 MM~AGR+RI+sqRI 0.06 346 3.57 
55 MM~AGR+HUM+ROAD 0.06 346 3.60 
56 MM~OMONT+AGR+ROAD 0.06 346 3.62 
57 MM~OPA+ROAD 0.04 346 3.70 
58 MM~OPA+AGR+DRIP+ROAD+RI+sqRI 0.10 346 3.73 
59 MM~OMONT+HUM+DRIP+ROAD+RI+sqRI 0.10 346 3.76 
60 MM~OMONT+DRIP+ROAD 0.06 346 3.76 
61 MM~AGR+HUM+RI+sqRI 0.07 346 3.81 
62 MM~OMONT+OPA+DRIP+ROAD+RI+sqRI 0.10 346 3.84 
63 MM~AGR+RIP+DRIP+ROAD+RI+sqRI 0.10 346 3.85 
64 MM~OMONT+OPA+AGR+ROAD+RI+sqRI 0.10 346 3.89 
65 MM~SHR+ROAD 0.04 346 3.92 
66 MM~OPA+SHR+RI+sqRI 0.07 346 3.95 
67 MM~AGR+RIP+HUM+ROAD+RI+sqRI 0.10 346 3.95 
68 MM~OPA+AGR+HUM+ROAD+RI+sqRI 0.10 346 3.97 
69 MM~RIP+ROAD 0.04 347 4.00 
70 MM~OMONT+RI+sqRI 0.06 347 4.01 
71 MM~OPA+RI+sqRI 0.06 347 4.05 
72 MM~OMONT+OPA+SHR+ROAD+RI+sqRI 0.10 347 4.05 
73 MM~OMONT+RIP+SHR+ROAD+RI+sqRI 0.10 347 4.06 
74 MM~OMONT+AGR+SHR+DRIP+ROAD+RI+sqRI 0.11 347 4.08 
75 MM~OMONT+AGR+SHR+HUM+ROAD+RI+sqRI 0.11 347 4.08 
76 MM~OMONT+AGR+RIP+ROAD+RI+sqRI 0.10 347 4.11 
77 MM~RIP+SHR+RI+sqRI 0.07 347 4.11 
78 MM~OMONT+HUM+ROAD 0.05 347 4.13 
79 MM~OPA+AGR+ROAD 0.05 347 4.13 
80 MM~OMONT+SHR+RI+sqRI 0.07 347 4.14 
81 MM~AGR+SHR+ROAD 0.05 347 4.16 
82 MM~AGR+DRIP+RI+sqRI 0.07 347 4.16 
83 MM~OMONT+RIP+DRIP+ROAD+RI+sqRI 0.09 347 4.17 
84 MM~OMONT+RIP+HUM+ROAD+RI+sqRI 0.09 347 4.23 
85 MM~OMONT+OPA+HUM+ROAD+RI+sqRI 0.09 347 4.25 
86 MM~OMONT+HUM+RI+sqRI 0.07 347 4.30 
87 MM~SHR+HUM+DRIP+ROAD+RI+sqRI 0.09 347 4.32 
88 MM~AGR+RIP+ROAD 0.05 347 4.34 
89 MM~OPA+RIP+ROAD+RI+sqRI 0.08 347 4.36 
90 MM~OPA+DRIP+RI+sqRI 0.07 347 4.39 
91 MM~RIP+SHR+DRIP+ROAD+RI+sqRI 0.09 347 4.45 
92 MM~HUM+DRIP+ROAD 0.05 347 4.48 
93 MM~OPA+HUM+RI+sqRI 0.07 347 4.49 
94 MM~RIP+HUM+RI+sqRI 0.07 347 4.49 
95 MM~AGR+SHR+HUM+RI+sqRI 0.08 347 4.50 
96 MM~RIP+DRIP+ROAD 0.05 347 4.50 
97 MM~OMONT+DRIP+RI+sqRI 0.07 347 4.50 
98 MM~RIP+HUM+DRIP+ROAD+RI+sqRI 0.09 347 4.50 
99 MM~RIP+DRIP+RI+sqRI 0.07 347 4.53 
100 MM~OPA+SHR+DRIP+ROAD+RI+sqRI 0.09 347 4.56 
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101 MM~OPA+DRIP+ROAD 0.05 347 4.62 
102 MM~AGR+SHR+DRIP+RI+sqRI 0.08 347 4.64 
103 MM~OMONT+AGR+DRIP+ROAD 0.06 347 4.69 
104 MM~SHR+HUM+DRIP+RI+sqRI 0.08 347 4.70 
105 MM~SHR+DRIP+ROAD 0.05 347 4.70 
106 MM~OMONT+OPA+AGR+SHR+ROAD+RI+sqRI 0.11 347 4.71 
107 MM~AGR+SHR+HUM+DRIP+ROAD+RI+sqRI 0.11 347 4.72 
108 MM~OMONT+AGR+RIP+SHR+ROAD+RI+sqRI 0.11 347 4.73 
109 MM~OMONT+SHR+ROAD 0.05 347 4.76 
110 MM~OMONT+AGR+HUM+DRIP+ROAD+RI+sqRI 0.10 347 4.82 
111 MM~OPA+AGR+RIP+ROAD+RI+sqRI 0.09 347 4.83 
112 MM~OPA+SHR+HUM+ROAD+RI+sqRI 0.09 347 4.86 
113 MM~OMONT+AGR+HUM+ROAD 0.06 347 4.89 
114 MM~OPA+HUM+DRIP+ROAD 0.09 347 4.91 
115 MM~RIP+SHR+HUM+ROAD+RI+sqRI 0.09 347 4.95 
116 MM~OMONT+OPA+ROAD 0.05 347 4.96 
117 MM~AGR+HUM+DRIP+ROAD 0.06 347 4.99 
118 MM~OPA+AGR+SHR+HUM+ROAD+RI+sqRI 0.10 348 5.00 
119 MM~OPA+AGR+SHR+DRIP+ROAD+RI+sqRI 0.10 348 5.00 
120 MM~AGR+RIP+SHR+DRIP+ROAD+RI+sqRI 0.10 348 5.01 
121 MM~OMONT+OPA+AGR+DRIP+ROAD+RI+sqRI 0.10 348 5.01 
122 MM~OMONT+RIP+ROAD 0.05 348 5.01 
123 MM~OPA+HUM+ROAD 0.05 348 5.01 
124 MM~AGR+RIP+RI+sqRI 0.06 348 5.10 
125 MM~OPA+SHR+HUM+RI+sqRI 0.08 348 5.13 
126 MM~AGR+RIP+SHR+HUM+ROAD+RI+sqRI 0.10 348 5.15 
127 MM~OPA+RIP+DRIP+ROAD+RI+sqRI 0.09 348 5.20 
128 MM~OMONT+SHR+HUM+RI+sqRI 0.07 348 5.20 
129 MM~OMONT+SHR+DRIP+RI+sqRI 0.07 348 5.20 
130 MM~AGR+HUM+DRIP+RI+sqRI 0.07 348 5.21 
131 MM~OMONT+OPA+RIP+ROAD+RI+sqRI 0.09 348 5.22 
132 MM~OMONT+OPA+AGR+HUM+ROAD+RI+sqRI 0.10 348 5.22 
133 MM~AGR+SHR+DRIP+ROAD 0.06 348 5.23 
134 MM~OPA+SHR+DRIP+RI+sqRI 0.07 348 5.23 
135 MM~AGR+RIP+DRIP+ROAD 0.06 348 5.24 
136 MM~OMONT+SHR+HUM+DRIP+ROAD+RI+sqRI 0.10 348 5.24 
137 MM~OPA+AGR+DRIP+ROAD 0.06 348 5.25 
138 MM~OMONT+AGR+RIP+HUM+ROAD+RI+sqRI 0.10 348 5.27 
139 MM~OPA+AGR+SHR+RI+sqRI 0.07 348 5.29 
140 MM~OMONT+RIP+SHR+DRIP+ROAD+RI+sqRI 0.10 348 5.31 
141 MM~RIP+SHR+DRIP+RI+sqRI 0.07 348 5.33 
142 MM~AGR+RIP+HUM+DRIP+ROAD+RI+sqRI 0.10 348 5.34 
143 MM~OMONT+RIP+HUM+DRIP+ROAD+RI+sqRI 0.10 348 5.34 
144 MM~OPA+SHR+ROAD 0.05 348 5.36 
145 MM~OPA+AGR+HUM+ROAD 0.06 348 5.38 
146 MM~RIP+HUM+ROAD 0.05 348 5.39 
147 MM~OMONT+AGR+RIP+DRIP+ROAD+RI+sqRI 0.10 348 5.39 
148 MM~AGR+RIP+SHR+RI+sqRI 0.07 348 5.40 
149 MM~OMONT+RIP+SHR+HUM+ROAD+RI+sqRI 0.10 348 5.43 
150 MM~OPA+RIP+SHR+ROAD+RI+sqRI 0.09 348 5.43 
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151 MM~OMONT+AGR+SHR+ROAD 0.06 348 5.46 
152 MM~SHR+HUM+ROAD 0.05 348 5.48 
153 MM~RIP+SHR+HUM+RI+sqRI 0.07 348 5.48 
154 MM~OMONT+HUM+DRIP+ROAD 0.06 348 5.57 
155 MM~OMONT+OPA+SHR+DRIP+ROAD+RI+sqRI 0.10 348 5.57 
156 MM~OPA+AGR+SHR+ROAD 0.06 348 5.58 
157 MM~OPA+AGR+RIP+SHR+ROAD+RI+sqRI 0.10 348 5.58 
158 MM~RIP+HUM+DRIP+RI+sqRI 0.07 348 5.58 
159 MM~OPA+AGR+HUM+DRIP+ROAD+RI+sqRI 0.10 348 5.60 
160 MM~OMONT+RIP+DRIP+ROAD 0.06 348 5.60 
161 MM~OMONT+HUM+DRIP+RI+sqRI 0.07 348 5.62 
162 MM~OMONT+AGR+SHR+RI+sqRI 0.07 348 5.65 
163 MM~OMONT+RIP+RI+sqRI 0.06 348 5.68 
164 MM~AGR+SHR+HUM+ROAD 0.06 348 5.70 
165 MM~OPA+HUM+DRIP+RI+sqRI 0.07 348 5.71 
166 MM~OPA+RIP+RI+sqRI 0.06 348 5.72 
167 MM~OPA+AGR+RI+sqRI 0.06 348 5.73 
168 MM~AGR+RIP+HUM+ROAD 0.06 348 5.74 
169 MM~OMONT+OPA+HUM+DRIP+ROAD+RI+sqRI 0.10 348 5.75 
170 MM~OMONT+OPA+SHR+HUM+ROAD+RI+sqRI 0.10 348 5.77 
171 MM~OMONT+OPA+AGR+ROAD 0.06 348 5.78 
172 MM~OMONT+AGR+RI+sqRI 0.06 348 5.78 
173 MM~OPA+RIP+HUM+ROAD+RI+sqRI 0.09 348 5.78 
174 MM~OMONT+AGR+RIP+ROAD 0.06 348 5.82 
175 MM~OPA+RIP+ROAD 0.04 348 5.83 
176 MM~OMONT+SHR+DRIP+ROAD 0.06 348 5.85 
177 MM~OMONT+OPA+RIP+DRIP+ROAD+RI+sqRI 0.10 348 5.91 
178 MM~OMONT+RIP+HUM+ROAD 0.06 348 5.97 
179 MM~OMONT+OPA+DRIP+ROAD 0.06 348 5.98 
180 MM~RIP+HUM+DRIP+ROAD 0.06 349 5.99 

 


