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Abstract
Using a singular perturbation approximation, a nonlinear state-space model of HIV-1 infection, having as state variables the number of healthy and

infected CD4+T cells and the number of virion particles, is simplified and used to design a control law. The control law comprises an inner block that

performs feedback linearizing of the virus dynamics and an outer block implementing an LQ regulator that drives the number of virion particles to a

number below the specification. A sensitivity analysis of the resulting law is performed with respect to the model parameter to the infection rate,

showing that the controlled system remains stable in the presence of significant changes of this parameter with respect to the nominal value.
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1. Introduction

Strategies for counteracting HIV infection designed using

control methods are receiving an increased attention. Detailed

studies that combine modelling analysis with clinical results

show that the initial infection phase may be represented using

simple nonlinear state models [1]. This fact boosted the

production of an increasing number of papers where therapy

strategies are derived from control principles. Examples

include nonlinear control based on Lyapunov methods and

on the use of decomposition in strict feedback form with

backstepping [2], state drive using bang–bang control [3],

adaptive control [4], optimal control [5], predictive control [6]

as well as model based feedback [7]. In [8] various methods

based on time-delay feedback control are shown, via Lyapunov

function methods, to stabilize an HIV-1 model similar to the

one considered in the present paper. In [9] a HIV-1 infection

control strategy based on nonlinear geometric control (feed-

back linearization) is developed.
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A straightforward approach to the design of a controller to

regulate the state of a nonlinear system consists in obtaining an

approximate linear model around the equilibrium point

considered using Taylor series approximations and then to

design a state feedback controller that drives the state increments

with respect to the equilibrium to zero. Although simple, this

method has the drawback of requiring that the initial conditions

are close to the equilibrium for the approximation to be valid,

being difficult to establish stability results. Furthermore, if the

linearized system is not controllable, it may not be possible to

design adequately the state feedback. This is the case of the

model of HIV-1 infection considered hereafter around the

equilibrium corresponding to an healthy person. If this approach

is followed, the linearization must then be performed around the

equilibrium point corresponding to infection and the state

feedback controller should thus drive the state away from it [10],

with the risk of becoming unstable due to the neglected higher

order terms of the model.

Opposite to this approach, feedback linearization [11] aims

at exactly cancelling the nonlinearities using a nonlinear static

feedback. This results in a transformed model that is exactly

linear in a region around the equilibrium point to which a linear

regulator may then be applied. In this region, that is usually

larger than the one resulting from Taylor approximation

methods, stability of the closed loop is ensured.
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Fig. 1. Time response to an infection without medication.

Table 1

Model parameters

Parameter Value Units

d 0.02 s�1

k 100 s�1

s 10 mm�3 s�1

b 2:4� 10�5 mm3 s�1

m 0.24 s�1

c 2.4 s�1
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This paper proposes a strategy that combines model

reduction using a simple singular perturbation approximation,

feedback linearization and LQ regulation based on state

feedback. As mentioned above, feedback linearization methods

for designing HIV-1 therapy have also been considered in [9].

However, while in [9] the manipulated variable is assumed to

enter linearly in the model, in this paper, the dependence on

control is nonlinear, requiring a more complicated algebra, but

representing in a more accurate way the effect of anti-retroviral

drugs. Furthermore, in this paper, a stability robustness study is

performed with respect to model parameter variation. Due to

the wide variability of the dynamics associated to different

patients the capacity of a controller to stabilize models that are

different from the nominal one is quite important.

It should be remarked that the present paper, as well as the

references quoted above, forms just one step towards the

application of control techniques to the design of HIV-1

infection therapy. Indeed, in the actual clinical practice, the

drugs currently used for treatment of HIV-1 infection are

neither continuously infused nor is the virus concentration

measured in permanence. The sampling of the controllers

designed is therefore required, a subject that deserves attention

on its own from the point of view of systems and control.

The paper is organized as follows. After this introduction,

the reduced complexity model is derived in Section 2. Section 3

characterizes reduced model properties, viz. equilibrium

points and controllability. As part of the discussion made

on controllability, it is shown that the model draws to the

conclusion that an infection can never be completely elimi-

nated. Section 4 presents feedback linearization and Section 5

the control strategy. Section 6 draws conclusions. The math-

ematical details of the transformations involved in feedback

linearization are presented in Appendices A and B as well as the

proof of an equivalence result of the weights when LQ control is

combined with feedback linearization.

2. HIV-1 dynamic model

The model used to describe the HIV-1 infection [10] is a

deterministic one-compartment model with the following three

state variables:

x1 Concentration of healthy cells:
x2 Concentration of infected cells:
x3 Concentration of virionsðfree virus particlesÞ:

The equations connecting these variables read as follows:

ẋ1 ¼ s� dx1 � ð1� u1Þbx1x3; ẋ2 ¼ ð1� u1Þbx1x3 � mx2;

ẋ3 ¼ ð1� u2Þkx2 � cx3: (1)

In the first equation, s represents the production rate of healthy

cells, the coefficient d the natural death of the cells and b the

infection rate coefficient. The infection rate of healthy cells is

proportional to the product of healthy cells x1 and free virus x3.

This process can be influenced by drugs (Reverse Transcriptase

Inhibitors—RTI) that reduce the virus performance. This influ-

ence is represented by the manipulated variable u1, in which
u1 ¼ 0 corresponds to absence of drug and u1 ¼ 1 to a drug

efficiency in preventing infection of 100%. Actually, with the

available drugs, the efficiency is below 100%, and u1 is

constrained to the interval ½0; umax � with umax < 1. The second

equation comprises two terms that represent, respectively, the

transition of healthy cells to infected cells and the death of

infected cells, with m the death coefficient.

An infected cell liberates free virus. This process is

represented in the third equation, where the first term represents

the liberation of virus by infected cells and the second the

‘‘death’’ of free virus with c the corresponding coefficient. The

manipulated variable u2 represents the action of drugs (Protease

Inhibitors—PI) that prevent infected cells to produce freevirions.

Fig. 1 shows the transient time response to an HIV-1

infection. The parameters used [10] are the ones of Table 1. The

initial conditions correspond to an healthy person infected with

a virus concentration of 1 copy per mm3.

As can be seen, during an initial phase of the illness, lasting

for about 30 days, the concentration of infected cells and free

virus in the body is very small. After this period, a fast growth

of the concentration of virus and infected cells is noticed,

together with a major decrease of healthy CD4+T cells. After 6

months the infection stabilizes, and its kept in an approximated

steady state for a period lasting between 2 and 10 years. After

this period, through a mechanism not modelled in (1), the

number of healthy CD4+T cells is drastically reduced and the

patient develops AIDS.



Fig. 2. State trajectories, starting from different initial conditions.
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Fig. 2 shows some state trajectories obtained with different

initial infection conditions. Although not all the initial

conditions correspond to realistic infections, this plot provides

insight into the type of dynamic behavior of (1). It is seen that

the trajectories approach fast a plane before converging in spiral

to an equilibrium point. This observation reveals the existence

of two time scales for the system states, one fast and one slow,

and suggests the use of singular perturbation methods. After the

extinction of the fast transient, the variables x2 and x3 become

approximately proportional. Fig. 3 shows the relation x2=x3,

where it is apparent that, after a transient lasting about 2 or 3

days, the quotient of these variables is close to 0.024 with an

initial small deviation.

2.1. Reduced dynamic model

By looking at the third state equation in x3 it is seen that this

defines a stable linear system with input x2 and time constant

tv ¼ 1=c� 0:42 days. The equilibrium corresponds to the

situation in that ẋ3 ¼ 0, implying

x3 ¼ ð1� u2Þ
k

c
x2 (2)
Fig. 3. Time evolution of the relation x2=x3.
Since the equation for x3 is stable and converges fast to

the equilibrium, the controller does not need to control this

state explicitly and the model may be reduced to second

order.

Replacing (2) in the state model (1), and assuming just

one manipulated variable, yields the reduced second order

model:

ẋ1 ¼ s� dx1 � ð1� uÞbk

c
x1x2;

ẋ2 ¼ ð1� uÞbk

c
x1x2 � mx2: (3)

3. Model properties

3.1. Equilibrium points

The analysis of equilibrium points and corresponding

stability properties of the full model (1) has been performed

in [10]. The reduced model is considered hereafter.

In the absence of therapy, u ¼ 0, the reduced model has as

equilibrium points the solutions of the algebraic equations

0 ¼ s� dx1 � ð1� uÞbk

c
x1x2 (4)

0 ¼ ð1� uÞbk

c
x1x2 � mx2 (5)

with respect to the state variables x1 and x2. These equilibrium

points are

x1 ¼
s

d
; x2 ¼ 0 (6)

corresponding to an healthy person, and

x1 ¼
mc

bkð1� uÞ ; x2 ¼
s

m
� dc

bkð1� uÞ (7)

corresponding to an infected individual.

The stability analysis of these equilibrium points is made by

computing the eigenvalues of the Jacobian matrix Ã ¼ @ f=@x,

given by

Ã ¼
�d � bk

c
x2 � bk

c
x2

bk

c
x2

bk

c
x1 � m

2
64

3
75

x¼xeq

(8)

By using the model parameters of Table 1, the results of

Table 2 are obtained. These results are similar to the ones

obtained for the full model, but in which the fast mode is

absent.

3.2. Controlability

The reduced nonlinear model (3), may also be written as

ẋ ¼ f ðxÞ þ gðxÞu (9)



Table 2

Stability of the equilibrium points of the reduced model

Equilibrium point [240.0000 21.6667]T

Eigenvalues �0:0208� 0:0690j

Stability Asymptotically stable

Equilibrium point [500.0000 0.0000]T

Eigenvalues �0:0200, 0.2600

Stability Unstable
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with the vector functions f and g defined as

f :¼
s� dx1 �

bk

c
x1x2

bk

c
x1x2 � mx2

2
64

3
75 (10)

g :¼ bk

c
x1x2

1

�1

� �
(11)

Model (9) may be linearized around an equilibrium point

ðx�1; x�2Þ yielding a linear model

˙̃x ¼ Ax̃þ Bu (12)

where x̃ is the increment of the state with respect to the

equilibrium. The corresponding controllability matrix is given

by

C ¼ ½B AB � ¼ bk

c
x1x2

1 �d � bk

c
ðx2 � x1Þ

�1
bk

c
ðx2 � x1Þ þ m

2
64

3
75 (13)

and it is seen that

rankðCÞ ¼
2 if d 6¼m; x1 6¼ 0; x2 6¼ 0

1 if d ¼ m; x1 6¼ 0; x2 6¼ 0

0 if x1 ¼ 0 or x2 ¼ 0

8<
: (14)

Since d 6¼m and x1 > 0, it is concluded that the controllability

matrix has rank 2 for x2 6¼ 0 (infected individual) and rank 0 for

x2 ¼ 0 (healthy individual).

When the linearized system is not controllable, it may still

be possible to control the nonlinear system. The controllability

analysis of a nonlinear system is much more complex than in

the linear case and, since there are no global results, the

controllability in the nonlinear case can only be studied locally.

The reachable set RVðx0; TÞ, with T finite, is defined as the set

of states x for which there is an admissible control input uðtÞ that

drives the state xðtÞ from the initial state xð0Þ ¼ x0 to the final

state xðTÞ ¼ x, satisfying simultaneously xðtÞ 2V ; t2 ½0; T�. It is

proved in [11] that if, for a given x0, the Lie Algebra Cðx0Þ
generates a space of dimension n then, in any neighborhood Vof

x0 and T > 0, the reachable set RV
T ðx0Þ ¼ [ t<T RVðx0; tÞ

contains a non-empty open subset of the state pace. In this

case the system is said to be locally reachable from x0.

In (14) it can be verified that for x2 6¼ 0 the local linearization

is controllable, and the doubt remains only on the situation in

which x2 ¼ 0. The following question may then be posed: Is

there any state x with x2 6¼ 0 such that the reachable set from

that state contains a final state with x2 ¼ 0? In clinical terms,
this question reads: Is it possible that an individual, once

infected, gets again rid of the infection? The answer to this

question is negative, as shown below.

Computing the Lie Algebra in all the points of the state space

with x2 6¼ 0 it is seen that the accessibility rank condition is 2 (it

is enough to verify that f ðxÞ and gðxÞ are linearly independent),

and hence this region is locally reachable. On the other way,

computing the Lie Algebra for the states x ¼ ðx1; 0Þ, and since,

for these states

f ðxÞ ¼ ½ 10� 0:02x1 0 �0 (15)

gðxÞ ¼ 0 (16)

all the Lie brackets of higher order vanish and the rank reach-

ability condition is 1. The nonlinear system is then locally non-

reachable in the region fxjx2 ¼ 0g, meaning that it is not

possible to pass an healthy individual to the state of being

infected by drug administration (a fact that is expected).

Much more interesting is to prove that there is not a

trajectory in the opposite sense. By considering the second state

equation in (3)

ẋ2 ¼ ð1� uÞ|fflfflffl{zfflfflffl}
> 0

bk

c|{z}
> 0

x1x2|{z}
� 0

�mx2 (17)

it is observed that, since the first term in the right-hand-side is

non-negative, then x2 never vanishes and, hence, it is never

possible to eliminate the infection.

4. Feedback linearization

System (3) is not linearizable by performing a state

transformation only. However, by the combined use of the

transformations

u ¼ aðxÞ þ bðxÞv (18)

z ¼ SðxÞ (19)

the following linear model is obtained

ż ¼ Azþ Bv (20)

with

A ¼ 0 1

0 0

� �
; B ¼ 0

1

� �
(21)

Fig. 4 shows a block diagram of these transformations. The

manipulated variable v in the transformed model is called

‘‘virtual’’ because it has only mathematical existence, in oppo-

sition to u, that has the physical meaning of being the drug

dosage actually applied to the patient. Eq. (18) allows to

compute the actual drug dose u such that between v and z

there is a linear relationship to which linear control techniques

may then be applied.



Fig. 4. Feedback linearization.
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In the case at hand, it is shown in Appendix A that the

transformations performing linearization are

bðxÞ ¼ c

bkx1x2ðm� dÞ (22)

aðxÞ ¼ �dsþ d2x1 þ m2x2 þ ðd � mÞðbk=cÞx1x2

ðd � mÞðbk=cÞx1x2

(23)

SðxÞ ¼ jðxÞ
s� dx1 � mx2

� �
(24)

with jðxÞ given by (47) in Appendix A. With these transforma-

tions, the system in a region of state space around the equilibrium

(7) is transformed exactly in the linear system (21). Fig. 5 shows

the response of the linearized system to a rectangular virtual input

(i.e. the input v before the transform). This simulation assumes

that all parameters are exactly known and the transform is applied

to the full model (1). Remark that the full model (1) is selected to

perform the simulation in order to test the validity of the

conclusions obtained with the reduced model.

It is remarked that, during the initial period, the signal vðtÞ is

negative and causes uðtÞ to saturate. For that reason, the

linearized system does not behave like a double integrator during

that interval of time. Indeed, with a good approximation, z2 is a
Fig. 5. Time response of the linearized system to a virtual rectangu
triangular signal corresponding to the integral of the square

signal v (that is squared) and z2 is made of parabolic segments,

corresponding to the integral of the triangular shaped z2.

5. HIV-1 viral load control

This section shows how to develop a control law for the

system linearized by feedback. This is done both under the

hypothesis of perfect (in the first stage) and partial knowledge

of the system parameters.

5.1. Control with known parameters

Assume that the concentration of infected cells x2 is to be

driven to a reference value r and kept there. At the equilibrium

defined by x2 ¼ r one has by equating the derivatives to zero in

(3)

ð1� uÞ ¼ mdc

bkðs� mrÞ (25)

and

x1 ¼
s� mr

d
(26)

In terms of the linearized system (that operates with trans-

formed variables) this results in the equilibrium point z ¼ SðxÞ,
i.e.:

z1

z2

� �
¼

s� mr

d
þr þ c

bk
ðd � mÞ � s

m
0

" #
¼: TðrÞ (27)

It is then possible to design a LQ controller, using the linearized

dynamics, that keeps the system at the desired reference value r.
lar system (virtual signal on the left, actual signal on the right).



Fig. 6. Changing the reference in the number of infected cells.
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The transformation TðrÞ allows to compute the equilibrium

point in terms of the variables ðz1; z2Þ. The controller is

designed by minimizing the quadratic cost:

J ¼
Z þ1

0

zTQzzþ rv2 dt (28)

where Qz and r adjust the contribution of the variables zðtÞ and

vðtÞ. Since these variables are virtual (corresponding to trans-

formed states) it is difficult to develop heuristic choices of their

values. Thus it was decided to adjust the weights Qx for the state

variables x and then compute the corresponding Qz. Using a
Fig. 7. Evolution of viral load.
linear approximation, it is shown in Appendix B that

Qz ¼
�

@S�1

@z

�T

Qx

�
@S�1

@z

�
(29)

With the following choice of the weights

Qx ¼
0:01 0

0 23

� �
; r ¼ 103 (30)

the results shown in Figs. 6 and 7 are obtained. These weights are

‘‘tuning knobs’’ that allow the designer to adjust the relative
Fig. 8. Selection of the weight r.



Fig. 9. Quasi-linearized system (remark that with D ¼ 0 the double integrator

is recovered).

Fig. 10. Root-locus of the poles of the closed loop system (with the LQ

regulator), as a function of the uncertainty D2 ½0; 2�.

Fig. 11. Control performance with uncertainty on the parame
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importance of the state variables and the drug usage. The

simulation has been performed using the full, third order, model.

Fig. 6 shows in the three left graphics the variables of the

linearized system (virtual input v and states z1; z2), and on the

three graphics of the right the actual variables (input u and

states x1; x2) with the above choice of weights. Fig. 7 shows the

concentration of free virus. Its value decays fast, such as the one

of infected cells, as shown in Fig. 6. The specification consists

in reducing the number of virus to 50 copies per mm3 in a

period of less then 50 days.

In order to provide an overall idea of the influence of r on

control performance, Fig. 8 plots

Ju :¼
Z 300

50

u2ðtÞ dt

and

Jvir :¼ g

Z 300

50

ðx3ðtÞ � rÞ2 dt; g ¼ 10�6; r ¼ 50

as a function of r. Decreasing r leads to a smaller viral load

integrated over time, but to bigger drug dose administration.

The choice r ¼ 10�3 was selected as a possible compromise.

5.2. Control with uncertain parameters

Consider now the problem of control design by feedback

linearization in the presence of structured uncertainty in the

model. Assume that there is multiplicative uncertainty in

parameter b, i.e., the actual system uses bð1þ DÞ, with D

unknown, while the linearization assumes the nominal model

(D ¼ 0). Thus, the actual model is described by the state
ter b (D ¼ 1, i.e., the true b is twice the nominal value).



Fig. 12. Control performance with uncertainty on the parameter b (D ¼ �0:5, i.e., the true b is half of the nominal value).
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equation

ẋ ¼ f ðx;DÞ þ gðx;DÞu (31)

while the linearization uses the nominal model given by

ẋ ¼ f ðx; 0Þ þ gðx; 0Þu (32)

By applying the feedback linearization transformations yielded

by the nominal model in the actual model, it is expected that the

final result is no longer exactly a double integrator. In this case

the following ‘‘quasi-linearized system’’ is obtained:

ż1 ¼ z2; ż2 ¼ vþ Dða0 þ a1z1 þ a2z2 þ vÞ (33)

where

a0 ¼
dmc

bk
� s; a1 ¼ dm; a2 ¼ d þ m (34)

Fig. 9 shows the structure of the system thereby obtained.

The additional term due to the uncertainty D does not change

the linear characteristic of the quasi-linearized system. There is

only a pole displacement, variation of the loop gain and an

additive disturbance at the input.

In closed-loop, and with the LQ regulator designed above

the closed loop poles are as in Fig. 10.

By applying standard root-locus methods, it is possible to

compute analytically that the closed-loop remains stable for

values of D2 � � 1; 1:93½. This ensures the robustness of the

controller design with respect to uncertainty on parameter b.

For the sake of illustration, Figs. 11 and 12 show simulations

with D ¼ 1 and D ¼ �0:5. These values for D have been

selected in the mid positive and negative range of D that ensure

stability.
Although the system remains stable under an error in

the nominal value for D, the final values reached are not

coincident with the reference. This is caused by two types of

factors:
1. T
he quasi-linearized system is no longer a double integrator.

In particular, as seen in the block diagram of Fig. 9, there is a

change in gain due to the cascaded block 1þ D, an additive

disturbance associated with Da0 is present and the poles are

shifted from the origin by the disturbance feedback terms

Da1 and Da1.
2. F
urthermore, the transform from the space ðx1; x2Þ to the

virtual space ðz1; z2Þ depends on the nominal value of b.

Hence, the virtual reference ‘‘seen’’ by the controller

becomes wrong.

6. Conclusion

The paper studies nonlinear control of HIV-1 infection.

Using a simple singular perturbation approximation, a reduced

model is first obtained and used to show that it is not possible to

completely eliminate the infection resorting only to the

available manipulated variable.

In order to constrain the infection level to be below a

specified level (50 virus copies/ mm3 in the plasma) a nonlinear

controller is proposed, comprising two nested loops. The inner

loop performs the exact feedback linearization of the system,

while the outer loop is a LQ regulator.

A sensitivity study of the effect of the variations of one of the

parameters has been performed, showing that the closed-loop

system remains stable within reasonably large bounds of

uncertainty.
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Appendix A. Feedback linearization

Consider the nonlinear system (9) that is assumed to be not

equivalent to a linear system, in the sense that there is no

diffeomorphism of the state that transforms it in a linear model.

Applying the transformation u ¼ aðxÞ þ bðxÞv to the input,

yields the state equation

ẋ ¼ f ðxÞ þ gðxÞðaðxÞ þ bðxÞvÞ

¼ ð f ðxÞ þ gðxÞaðxÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
f̃ðxÞ

þ gðxÞbðxÞ|fflfflfflfflffl{zfflfflfflfflffl}
g̃ðxÞ

v (35)

that may be written as the modified model

ẋ ¼ f̃ðxÞ þ g̃ðxÞv: (36)

If the modified model (36) is equivalent to a linear system, it is

then possible to obtain a linear system by the combined

application of the transforms (18), (19) yielding the linear

model (20) that relates v and z.

Not all nonlinear systems are linearizable using this

procedure (known as feedback linearization). In [11] it is

shown that the nonlinear system (9) with f ðx0Þ ¼ 0 and scalar

input u is feedback linearizable around the equilibrium x0 if and

only if the distributions Di defined by

Di ¼ spanfgðxÞ; ad f gðxÞ; . . . ; adi�1
f gðxÞg (37)

verify the two following conditions:

dim Dnðx0Þ ¼ n; (38)

Dn�1 is involutive around x0 (39)

In relation to the model (9) with f and g given by (10) and

(11), the first condition results in

dim D2ðxÞ ¼ rank ½ gðxÞ ad f gðxÞ �

¼ bk

c
x2 rank

x1 s� mx1

�x1 �sþ dx1

� �
¼ 2 for x1; x2 6¼ 0 and m 6¼ d: (40)

and hence dim D2ðx0Þ ¼ 2. The second condition is also ver-

ified because D1 ¼ spanfgðxÞg is involutive since

½g; g� ¼ 02D1. The model is therefore feedback linearizable.

Since the conditions on D� i are satisfied, there exists [11] a

function jðxÞ that verifies the following three conditions:

jðx0Þ ¼ 0 (41)

hdj; adk
f giðxÞ ¼ 0; k ¼ 0; 1; . . . ; n� 2 (42)

hdj; adn�1
f giðx0Þ 6¼ 0 (43)
In terms of jðxÞ, the linearizing transforms yielding (21)

around the equilibrium state x0 are given by [11]:

aðxÞ ¼ �ðLgLn�1
f jðxÞÞ�1

Ln
fjðxÞ (44)

bðxÞ ¼ ðLgLn�1
f jðxÞÞ�1

(45)

zi ¼ Li�1
f jðxÞ; i ¼ 1; 2; . . . ; n (46)

The function

jðxÞ ¼ x1 þ x2 �
mc

bk
� s

m
þ dc

bk
(47)

satisfies the three conditions, in particular
1. C
omputing jðxÞ at the equilibrium x0 given by point (7)

yields jðx0Þ ¼ 0;
2. h
dj; gi ¼ ð@jðxÞ=@xÞgðxÞ ¼ 0;
3. h
dj; ½ f ; g�i ¼ ð@jðxÞ=@xÞ½ f ; g� ¼ ðbk=cÞðd � mÞx1x2 6¼ 0,

para x ¼ x0.

Using jðxÞ as given by (47) and (44)–(46) yields the

transformations (22)–(24).

The expression (47) for jðxÞ is obtained by noting that

Condition 2 may be written as

@j
@x1

@j
@x2

� �
1

�1

� �
bk

c
x1x2 ¼ 0 (48)

and hence implies that jðxÞ satisfies the partial differential

equation

@j
@x1

¼ @j
@x2

(49)

whose solution is given by any differentiable function F of

argument x1 þ x2:

jðx1; x2Þ ¼ Fðx1 þ x2Þ (50)

The simplest choice that also satisfies Condition 1 is given by

(47).

Appendix B. Weight selection

Since x ¼ S�1ðzÞ, the corresponding in z to the quadratic

form in x is given by

ðx� x0ÞTQxðx� x0Þ

¼ ðS�1ðzÞ � S�1ðz0ÞÞ
T
QxðS�1ðzÞ � S�1ðz0ÞÞ (51)

that is not, in general, a quadratic form in z.

Using the linear approximation

S�1ðzÞ� S�1ðz0Þ þ
@S�1

@x

����
z0

ðz� z0Þ ¼ S�1ðz0Þ þ
1 1

�d �m

� �
z

(52)
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and replacing (52) in (51), it follows that

ðx� x0ÞTQxðx� x0Þ ¼ zT

�
@S�1

@z

�T

Qx

�
@S�1

@z

�
z (53)

and hence (29) follows.
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