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Abstract. This paper investigates connectivity in one-dimensional ad hoc networks by

means of the distribution of the minimum hop count between source and destination nodes.

We derive the exact probability distribution of the minimum hop count from the location

density of relay nodes in the multihop path selected with the Most Forward within Radius

(MFR) scheme. The probability that the source and destination nodes are connected (pro-

vided by Ghasemi and Nadser-Esfahani (2006)) can be obtained by summing the probability

masses for each possible value of the minimum hop count, which provides new insights to

the connectivity probability. Numerical results show the effect of the number of nodes and

the transmission range on the minimum hop count.

Keywords: Ad hoc network, one-dimensional, connectivity probability, Minimum Hop

count, Poisson randomization

1. Introduction

In an ad hoc multi-hop network, the functionality of the network critically depends on its

connectivity properties. These depend on the number of nodes, their transmission ranges, and

spatial distribution resulting from the mobility pattern. A common approach when evaluating

connectivity is to test if all adjacent nodes are within the transmission range from each other,

which implies that there exists some multihop path between any two nodes.

Several studies of connectivity between two nodes and for the entire network in one-

dimensional ad hoc networks have appeared in the literature. One of the first results for

the connectivity probability of a finite set of nodes uniformly distributed in a finite interval

was given by Desai and Manjunath (2002). Foh and Lee (2004) and Foh et al. (2005) de-

rived closed form approximation formulas for the connectivity between two nodes when relay

nodes are uniformly and non-uniformly distributed, respectively. Li et al. (2006) investigated

an empirical approach for the distribution of the maximum distance between adjacent nodes

assuming non-identically distributed locations. Ghasemi and Nader-Esfahani (2006) obtained
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the probability that the one-dimensional ad hoc network is composed of at most C clusters.

Other issues of interest are the number of nodes and the transmission range to ensure that

the network is connected (see, e.g., Santi and Blough (2003) and Bettstetter (2002)).

It is important to ensure that a source and a destination node are connected with a high

probability. In addition, it is of interest to be able to provide information on the length of

paths (number of hops) between the source and destination nodes. In this paper we derive

the distribution of the minimum hop count between a source and a destination node in a one

dimensional ad hoc network and show that it can be related with the connectivity probability.

This extends the existing results for the connectivity probability (derived in Gasemi and

Nader-Esfahani (2006) with a different approach) through its decomposition as the sum of the

probabilities for values of the minimum hop count.

We consider a one dimensional ad hoc network where the source and destination nodes are

located at the edge of the network and a fixed number of relay nodes are uniformly distributed

between them. This spatial distribution of nodes arises when nodes move according to a

Random Walk or a Random Direction mobility scheme over the region of interest (Camp,

Boleng and Davies (2002)). We derive an exact formula for the probability distribution of the

minimum hop count based on the location density of relay nodes in the multihop path selected

with the Most Forward within the Radius (MFR) scheme (Takagi and Kleinrock (1984)).

Starting from the source node, each successive relay node in the MFR path is selected so

that it provides the greatest forward progress toward the destination node within the fixed

transmission range. Therefore, the minimum hop count is given by the number of hops in the

MFR path.

The study of the distribution of the minimum hop count in a one-dimensional ad hoc

network (e.g., a vehicular ad hoc network built along a road in a city environment or an ad

hoc network along an attack route in battlefields) has also applications in other scenarios where

nodes are in a line. This is the case for dense two dimensional ad hoc networks where routes

are approximately straight line segments (Hyytia et al. (2005)). Hence, the transmission

between a source and a destination node constitutes a multihop path on the line.

This paper is organized as follows. Section 2 describes the considered ad hoc network. In

Section 3, a recursive formula is presented to compute the connectivity probability with the

minimum hop count. Section 4 provides an alternative way to derive the probability presented
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in Section 3 using a randomization method. In Section 5 we present some numerical results

and, finally, we state some conclusions in Section 6.

2. Model description

We consider a multihop ad hoc network with a source node, a destination node, and N relay

nodes between them. Let Xi, i = 1, 2, . . . , N , denote the location of relay node i, and X0 = 0

and XN+1 = L denote the location of the source and destination nodes, respectively. We

assume that {Xi}N
i=1 are independent and uniformly distributed random variables on (0, L)

and let X(i), i = 0, 1, . . . , N + 1, denote the location of the ith node from the origin, i.e.,

0 = X(0) < X(1) < . . . < X(N+1) = L.

Given a fixed transmission range 0 < R < L equal for all nodes, nodes i and j are connected

if |Xi − Xj | ≤ R. If the source and destination nodes are connected, i.e., X(i+1) − X(i) ≤ R,

i = 0, 1, . . . , N , the MFR multihop path is given by Y M = (Y1, Y2, . . . , YM ) where

Y1 = max{X(i) : X(i) ≤ R}, Y2 = max{X(i) : X(i) ≤ Y1 + R}, . . . ,

YM = max{X(i) : X(i) ≤ YM−1 + R}

with YM−1 + R < XN+1 ≤ YM + R (see Figure 1), and M is called the minimum hop count.

The minimum number of hops that may be needed to connect the source and destination

nodes is denoted by K = dL/Re-1. To simplify the exposition we define K zones between

the source and destination nodes denoted by Z1, Z2, . . . , ZK , with zone i starting at location

Z−i = L−R(K + 1− i) and ending at Z+
i = iR, with length Z = (K + 1)R−L. From Figure

1, the minimum hop count is K if there exist relay nodes in the zones Z1, . . . , ZK in such way

that

Z−1 < Y1 < Z+
1 , Z−2 < Y2 < Y1 + R, . . . , Z−K < YK < YK−1 + R.

On the other hand, the maximum number of hops that may be needed to connect the source

and destination nodes is 2K, which occurs if the zones Zi, i = 1, 2, . . . ,K, are empty, the first

relay node in the MFR multihop path is before Z−1 , and between each Z+
i and Z−i+1 there
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exists two relay nodes in the multihop path with the last relay node after Z+
K , such that

Y1 < Z−1 , Z+
1 < Y2 < Y1 + R < Y3 < Z−2 , Z+

2 < Y4 < Y3 + R < Y5 < Z−3 , . . . ,

Z+
K−1 < Y2K−2 < Y2K−3 + R < Y2K−1 < Z−K , Z+

K < Y2K < Y2K−1 + R.

-
--

� - � -� -
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Figure 1. Minimum hop count.

3. A recursive formula

In this section we derive a recursive formula to compute the probability distribution of the

minimum hop count.

The probability density of the location of the first hop in the MFR path being t and the

order of the associated relay node being i is

f (i)(t|N,R, L) =
i

L

(
N

i

) (
t

L

)i−1 (
1 − R

L

)N−i

, 0 < t ≤ R, i = 1, . . . , N.

This results from the marginal density location of X(i) (see, e.g., Kulkarni (1995, page 209,

Eq. (5.78))) taking into account that the last N − i ordered nodes have to be located on

(R, L). Given the location t of the first hop and the order i of the associated relay node, the

locations of the last N − i ordered relay nodes are independent and uniformly distributed on

(R, L).

In addition, the probability that the minimum hop count is m given that the location

and the order of the first hop are t and i, respectively, is equal to the probability that the

minimum hop count is m−1 between a pair of nodes located at the endpoints of interval [R,L]

where: the source is at R and has transmission range t; and, N − i relay nodes, each with

transmission range R, are uniformly distributed on (R,L). This fact can be used to derive

a recursive formula to compute the probability distribution of the minimum hop count, as it

will be explained.
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We let p(m|n, r, l) denote the probability that the minimum hop count is m when the

distance between the source and destination nodes is l, the transmission range of the source

is r, and there are n relay nodes, each with transmission range R, uniformly placed between

the source and destination nodes. Then,

p(m|n, r, l) =
∫ r
0

∑n
i=1 f (i)(t|n, r, l)p(m − 1|n − i, t + R − r, l − r)dt r < l, k ≤ m ≤ min(2k, n),

1 r ≥ l,m = 0,

0 otherwise,

(1)

where k = 1+b(l−r)/Rc, and the probability that the minimum hop count is m is then given

by p(m|N,R, L).

4. Poisson randomization

The recursive formula given by equation (1) suffers from combinatorial problems and its

computation is hard even for moderate values of m and n. In this section we show that the

use of Poisson randomization, an exact method originally proposed by Domb (1952), allows

for the derivation of an elegant formula without the mentioned drawbacks.

Our use of Poisson randomization consists in randomizing the distribution of relay nodes,

and as a consequence of the parameter N , by assuming that relay nodes are distributed on

(0, L) according to a Poisson process with a fixed rate, say λ. This assumption decouples

the relay nodes in the sense that the number of relay nodes located in disjoint intervals

are independent. Moreover, by conditioning on the number of nodes that lie on (0, L), the

assumption that the relay nodes are uniformly distributed on (0, L) pops up. As a result of

these facts, the probability that the minimum hop count (M) is equal to m can be explicity

derived with little effort. Moreover, by viewing it as an instance of the total probability law

formula in the form

P (M = m) =
∞∑

n=m

e−λL (λL)n

n!
P (M = m|N = n),

we can identify the probability that the minimum hop count is equal to m when the number

of relay nodes is n, P (M = m|N = n), n ∈ IN . It turns out that this leads to a more efficient
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way to compute the minimum hop count distribution for a fixed number of relay nodes than

the one described through (1).

The next result characterizes the exact probability distribution of the minimum hop count

given the number of relay nodes between the source and destination nodes, which is a conse-

quence of the successful use of Poisson randomization.

Theorem 1. Given that the relay nodes are uniformly distributed on (0, L), the probability

distribution of the minimum hop count is given by

P(M = m|N = n) =
∫

Sm

n!
(n − m)!Ln

(L − mR + ym)n−mdymdym−1 . . . dy1, (2)

with K ≤ m ≤ min(2K, n) and where, with y0 = 0 and ym+1 = L,

Sm = {(y1, y2, . . . , ym) ∈ (0, L)m : y1 < R, yj−2 + R < yj ≤ yj−1 + R, 2 ≤ j ≤ m + 1}.

Proof. We assume that the relay nodes are distributed on (0, L) according to a Poisson process

with rate λ. In this setting, the probability that the the minimum hop count is m is

P(M = m) =
∫

Sm

λe−λ(R−y1)
m−1∏
i=1

λe−λ(yi+R−yi+1)dymdym−1 . . . dy1. (3)

Multiplying equation (3) by eλL, we obtain

eλLP(M = m) = eλL

∫
Sm

λme−λ(mR−ym)dymdym−1 . . . dy1

=
∫

Sm

λm
∞∑

n=0

λn

n!
(L − mR + ym)ndymdym−1 . . . dy1

=
∞∑

n=m

(λL)n

n!
n!

(n − m)!Ln

∫
Sm

(L − mR + ym)n−mdymdym−1 . . . dy1

where the change between the sum and the integral follows by the dominated convergence

theorem. On the other hand, conditioning on the value of N , which is Poisson distributed

with mean λL, the total probability law produces

eλLP(M = m) =
∞∑

n=m

P(M = m|N = n)
(λL)n

n!
.

Since the coefficients of (λL)n/n! in the previous two expressions for eλLP(M = m) must

match, the result follows. �
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We remark that the integrand function in (2) is the probability density function of the

location of the relay nodes in the MFR path (Y M ). The next results show that, for some

values of M , there exists a closed form formula for the connectivity probability with the

minimum hop count.

Corollary 1. The probability that the minimum hop count is equal to K is given by

P(M = K|N = n) =
n∑

i=K

(
n

i

) (
Z

L

)i (
1 − Z

L

)n−i

(4)

for K = dL/Re − 1 ≤ n.

Proof. From Theorem 1, we have

P(M = K|N = n) =
n!

(n − K)!Ln

∫ Z+
1

Z−1

∫ y1+R

Z−2

. . .

∫ yK−1+R

Z−K

(L − KR + yK)n−KdyKdyK−1 . . . dy1

=
n!

(n − K)!Ln

∫ Z

0

∫ s1

0
. . .

∫ sK−1

0
(L − Z + sK)n−KdsKdsK−1 . . . ds1

by the change of variables si = yi − Z−i , i = 1, 2, . . . ,K. Using the Binomial theorem, the

results follows after some algebra. �

Equation (4) is the survival function at K of the binomial distribution with parameters

N and Z/L. Since a binomial random variable is stochastically increasing in the number of

trials, when the success probability is kept fixed, the probability that the minimum hop count

is equal to K is increasing in N .

The probability that the minimum hop count is K +1 can be obtained in a similar way but

now there exist other possible location zones for the hops. Closed form expressions for other

values of M are out of reach because of the complexity involved.

Corollary 2. The probability that the minimum hop count is equal to K + 1 is

P(M = K + 1|N = n) =
n∑

i=K+1

(
n

i

) (
L − R − Z

L

)n−i

K−1∑
j=0

(
i

j

) (
Z

L

)j (
R

L

)i−j

+
(

Z

L

)i−1 (
i(Z − KR) − Z

L

)
for K = dL/Re − 1 < n.
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Since the set of all locations of relay nodes where the source and destination nodes are

connected can be decomposed as the union of disjoint sets of the locations of nodes with

respect to the minimum number of hops necessary to connect the source and destination

nodes, the full connectivity probability is given by

Pc =
min(2K,n)∑

m=K

P(M = m|N = n).

5. Numerical results

In this section we evaluate the effect of the number of nodes and the transmission range

in the shape of the distribution of the minimum hop count. We scale all the parameters

with respect to the distance between the source and destination nodes by making L = 1.

Therefore, for 1/(k + 1) ≤ R < 1/k, k ∈ IN , we have that K = k and Z = (k + 1)R − 1,

so that 0 < Z < 1/k. The most interesting case is when K is small, since as the number of

hops increases a multihop path may break frequently due to mobility of nodes (Jiang and Rao

(2005)).

Figure 2 shows the connectivity probability and values of the probability function of the

minimum hop count between the source and destination nodes when R = 0.32 (K = 3,

Z = 0.28) for different values of N . The (full) connectivity probability is given by the sum

of the probabilities of the minimum hop count being 3, 4, and 5 or more (denoted by 5+)

that, as can be seen from the figure, is approximately equal to the probability of the minimum

hop count being 3 or 4. As expected, with the increase of the number of relay nodes, the

probability that the minimum hop count is 4 (i.e., K + 1) starts to decrease and goes to zero.

In Figure 3, we consider the connectivity probability and values of the probability function

of the minimum hop count between the source and destination nodes when R = 0.23 (K = 4,

Z = 0.15) for different values of N . Here, the connectivity probability is given by the sum

of the probabilities of the minimum hop count being 4, 5, 6, and 7 or more (denoted by 7+)

that, as can be seen from the figure, is approximately equal to the probability of the minimum

hop count being 4, 5, or 6. Moreover, the connectivity probability can be approximated by

the sum of the probabilities for the two lower values of M , 4 and 5, when the number of relay

nodes is large.
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As the length of the intersections zones (Z) decreases, due to the increase of K or by the

value of the transmission range (R), and gets close to zero, the connectivity probability in

more than K +1 hops stops being negligible. However, as the number of relay nodes increases

its probability starts to decrease and converges to zero.
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Figure 2. Probability function of the minimum hop count/connectivity prob-
ability (L = 1, R = 0.32).

In Figure 4, we depict both probabilities that the minimum hop count is equal to K and

K + 1, as a function of R, for N = 20. We can see that in this setting K takes values

2, 3, 4, and 5 in the interval of the transmission range. In an interval for R of the form

[1/(k +1), 1/k), the probability that the minimum hop count is K increases with R, since the

size of the intersection zones (Z) also increases as R increases.

6. Conclusion

We have derived the exact distribution of the minimum hop count between source and

destination nodes. This makes it possible to decompose the connectivity probability, derived

by Ghasemi and Nadser-Esfahani (2006), as the sum of the probability masses of the minimum

hop count at each of its possible values. Through numerical experiments we have shown that
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under some network conditions only the the first values of the minimum hop count have

contribution to the connectivity probability.
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