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Abstract Meloidogyne spp., commonly known as root-
knot nematodes (RKNs), are economically important plant

sedentary endoparasites that cause galls on susceptible

hosts. The Columbia root-knot nematode (CRKN), M.
chitwoodi, is a quarantine A2 type pest by the European and

Mediterranean Plant Protection Organization since 1998.

This nematode has been found associated with economi-
cally important crops such as potato and tomato, causing

severe damage and making the agricultural products unac-

ceptable for the fresh market and food processing. In vitro
co-culture of host and parasite offers an advantageous

experimental system for studying plant-RKN interactions.

The structure, growth and production of volatiles of Sola-
num tuberosum hairy roots (HR) and of S. tuberosum HR/

CRKN co-cultures were compared. HR were induced by

inoculation of aseptic potato tuber segments with Rhizo-
bium rhizogenes. Co-cultures were initiated by inoculating

HR with sterilized CRKN eggs. Infection with CRKN

induced the RKN symptomatology in the HR and several
nematode life stages were observed by light and scanning

electron microscopy. Potato HR and HR/CRKN co-cultures

exhibited similar growth patterns, evaluated by measuring
fresh and dry weight and by the dissimilation method.

Volatiles, isolated by distillation–extraction and analyzed

by gas chromatography (GC) and gas chromatography
coupled to mass spectrometry, revealed that palmitic acid

(37–52 %), n–pentadecanal (10–16 %) and linoleic acid

(2–16 %) were the main constitutive components of S. tu-
berosum HR, and of the HR/CRKN co-cultures (24–44,

8–22 and 4–18 %, respectively). S. tuberosum HR/CRKN

co-cultures can be considered a suitable biotechnological
tool to study RKN infection mechanism by mimicking what

occurs under field conditions.
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dt Doubling time
DW Dry weight

EPPO European and Mediterranean Plant

Protection Organization
FW Fresh weight

GC Gas chromatography

GC–MS Gas chromatography coupled to
Mass Spectrometry

HgCl2 Mercuric chloride

HR Hairy roots
J2 Nematode second-stage juveniles

LM Light microscopy

NaOCl Sodium hypochlorite
OsO4 Osmium tetroxide

PAS Periodic acid–Schiff’s reagent

RI Retention index
RKN Root-knot nematode

SEM Scanning electron microscopy

SH Schenk and Hildebrandt medium
t Trace

Introduction

The Columbia root-knot nematode (CRKN) Meloidogyne
chitwoodi Golden, O’Bannon, Santo and Finley 1980, is a

sedentary and obligate plant endoparasite, which was

described for the first time in the Pacific Northwest of the
USA and has been reported in Africa (South Africa),

Europe (Belgium, Germany, the Netherlands and Portugal)

and North and South America (Mexico and Argentina,
respectively) (Golden et al. 1980; da Conceição et al. 2009;

OEPP/EPPO 2009). This species is a quarantine A2 type

pest according to the European and Mediterranean Plant
Protection Organization since 1998 (EPPO 2012) and has

been found associated with economically important crops

such as potato (Solanum tuberosum L.) and tomato (S. ly-
copersicum L.), causing severe damage responsible for

heavy losses and/or unacceptable agricultural products for

the fresh market and food processing (Santo et al. 1980;
O’Bannon et al. 1982; Ferris et al. 1993; Perry et al. 2009).

These endoparasites mobilize the plant’s photosynthates

from shoots to roots and affect water and nutrient absorp-
tion and translocation by the roots to support their devel-

opment and reproduction. Root-knot nematode (RKN)

second-stage juveniles (J2), the infective stage, are attrac-
ted to a host plant, invade the root and move through the

apoplast to the zone of differentiation. There, they induce

the formation of giant cells (feeding site) and typical root
galls (Perry et al. 2009). During this process, most of the J2

become sedentary and enlarge, assuming a pear shape and

moult three times reaching the female adult stage and lay

eggs into a gelatinous matrix produced by rectal glands.

Males are vermiform and motile, leaving the roots, and are
less frequent. However, the proportion increases under

environmental stress conditions (Perry et al. 2009).

RKN pest management has been extensively docu-
mented (e.g., Griffin 1985; Chitwood 2002, 2003; Li et al.

2011; Andrés et al. 2012). Nevertheless, research on the

effect of nematicidal compounds is commonly performed
on the nematode species alone and rarely on the host-par-

asite system, not taking into account the cytotoxicity for
the plant host or the plant’s capability to metabolize or

biotransform the nematicidal active substances. When

studying complex in vivo organism–organism interactions,
analyzing just one of the partners gives only a partial view

of the existing relations. For this reason, the growth of

more than one organism or cell type in a combined culture
(in vitro co-cultures) has the advantage of simulating the

host-pathogen conditions and eliminating variables due to

the environmental in vivo conditions.
In vitro axenic culture of hairy roots (HR), or transgenic

roots, offers a suitable biotechnological model host system

for analysis of RKN infection, due to their genetic and
metabolomic stability as well as a rapid growth rate, com-

pared to conventional root cultures, and to being free of plant

growth regulators (Giri and Narasu 2000; Figueiredo et al.
2006). In vitro plant/nematode co-cultures have been com-

monly used since mid-1900’s to increase and maintain

nematodes and study plant/nematode interactions (Bonga
and Durzan 1982; Maheshwari 1991). In monoxenic co-

cultures of Meloidogyne spp., the host-pathogen system is

free from contaminants such as soil flora and fauna which
characterize the natural conditions (Bonga and Durzan 1982;

Mitkowski and Abawi 2002). Moreover, in a controlled

environment of an in vitro culture, single variables can be
manipulated and plant/nematode responses can be observed

directly, which is difficult under greenhouse or field condi-

tions. Furthermore, in vitro cultures have the advantage of
providing more biomass using fewer resources.

Although potato HR have been previously established

and used for metabolomic (Valancin et al. 2013) and
genetic transformation evaluation (Nagy et al. 2005), and

studies have addressed nematode effect on potato hairy

root cultures (Hansen et al. 1996; Wiśniewska et al. 2013),
no previous study established a S. tuberosum HR/M. chit-

woodi co-culture system, which requires regular subcul-

turing of the host/pathogen system.
Given that RKN quarantine species is a serious potato

pest (Mojtahedi et al. 1988; Perry et al. 2009) and there is

the need for a reliable host-pathogen system for phyto-
pathological research, e.g. phytonematicidal research, the

goals of this study were to: (a) establish S. tuberosum HR,

and S. tuberosum HR/M. chitwoodi co-cultures (S. tu-
berosum HR/CRKN co-cultures), (b) evaluate HR and the
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co-cultures structure and growth, (c) quantify the nema-

todes in in vitro co-cultures medium and (d) characterize
the constitutive and induced production of volatiles in the

two independent in vitro culture systems. The present study

proposes that the nematode life cycle in co-culture pro-
gresses in a similar way as under field conditions and that

the co-cultures are an adequate biotechnological tool to

study this pathology and to easily assess different approa-
ches viewing to understand and combat the CRKN infec-

tion mechanism.

Materials and methods

Establishment of Solanum tuberosum hairy root

cultures

Solanum tuberosum cv. Desiree tubers were obtained

locally, and prepared for inoculation using the methodol-
ogy adapted from Kumar and Forrest (1990). The tubers

were washed with commercial detergent (10 drops per

100 mL distilled water) and surface sterilized by immer-
sion in ethanol 96 % (Merck KGaA, Germany) for 10 min.

Under asepsis, the potatoes were subsequently rinsed three

times in 100 mL ultrapure sterile water, the peripheral
portion removed, approximately 2 cm inwards from the

surface, and the central piece divided into approx. 0.5 cm

thick segments.
HR were induced by inoculation of the aseptic potato

segments with R. rhizogenes A4 strain [according to new

taxononomic revisions (Bull et al. 2010), R. rhizogenes (Riker
et al. 1930). Young et al. (2001a) is the most recent synonym

of Agrobacterium rhizogenes (Riker et al. 1930) Conn 1942]

carrying the gus reporter gene co-integrated in the Ri plasmid
and driven by a double 35S promoter (A4pRiA4::70GUS),

using the methodology described by Santos et al. (1998). The

potato segments were wounded with a scalpel previously
dipped in an overnight grown R. rhizogenes suspension, to an

A600 = 0.6, and diluted 1:10 (v/v) in liquid Schenk and Hil-

debrandt (SH) medium (Schenk and Hildebrandt 1972) sup-
plemented with 30 g L-1 sucrose, pH = 5.6. After drying on

sterile filter paper, for 1 min, the segments were placed on SH

solid medium (8 g L-1 agar), and co-cultivated with the
bacteria for 3 days after which they were transferred to SH

solid medium supplemented with cefotaxime and carbeni-

cillin (150 lg mL-1 each), with both medium and antibiotics
renewed weekly, for over 3 months. S. tuberosum HR were

excised and used for propagation in antibiotic-free SH solid

medium. After ±3 months free from contaminations, HR
pieces were transferred to liquid SH medium without growth

regulators and antibiotic and maintained on orbital shakers

(80 rpm). Under a regular subculturing routine, a portion of
the root clump was aseptically removed and transferred

monthly to fresh culture medium. In every step the potato

cultures were maintained in darkness at 24 ± 1 "C. One-
year-old S. tuberosum HR were characterized by evaluation of

their structure, growth and production of volatiles compared

with potato HR/CRKN co-cultures.

Establishment of S. tuberosum HR/M. chitwoodi

co-cultures

Meloidogyne chitwoodi (CRKN) egg masses were hand-
picked from infected tomato plants as described by Vieira

dos Santos et al. (2013). The eggs were extracted with

0.52 % (v/v) sodium hypochlorite (NaOCl) solution
(Hussey and Barker 1973) and the debris removed with a

47 % (w/v) sucrose solution according to McClure et al.

(1973). Afterwards, the eggs were sterilized in a 0.05 % (v/v)
mercuric chloride (HgCl2) solution for 3 min, centrifuged

for 2 min at 500g, rinsed in sterile water and centrifuged

(four times), as above, to remove HgCl2 (adapted from
Kumar and Forrest 1990).

Solanum tuberosum HR/CRKN co-cultures were estab-

lished by adding 100–150 sterilized CRKN eggs to S. tu-
berosum HR cultures after 14 days of growth on solid SH

medium. Co-cultures were maintained in darkness at

24 ± 1 "C for over 2 months, to ensure the completion of
the nematode life cycle. Life cycle stages were identified

using an inverted microscope Diaphot, Nikon, Japan. Sub-

culturing of the co-cultures was performed every 4 weeks,
by aseptically transferring a portion of the root clump to

fresh solid SH medium, and maintained as described above.

After approx. 6 months, root clumps were transferred to
liquid SH medium and maintained in darkness at 24 ± 1 "C,

on an orbital shaker (80 rpm), with monthly subculturing by

refreshment of the culture medium over 3 months. Then, a
portion of the root clump was removed and transferred to

fresh liquid SH culture medium. The length of 30 ramdomly

selected HR/CRKN galls, J2, and males as well as the
length/width of 30 randomly selected HR/CRKN eggs and

adult females were measured using a stage micrometer

calibrated eyepiece reticle. Similar to S. tuberosum HR, one-
year-old S. tuberosum HR/CRKN co-cultures were charac-

terized by evaluation of their structure, growth and pro-

duction of volatiles. Besides this initial infection stage, no
further external nematodes were added to the co-culture,

given that it would influence the natural co-culture equi-

librium, which intends to mimic natural conditions.

Characterization of S. tuberosum HR and S. tuberosum

HR/CRKN co-culture structure

Solanum tuberosum HR and galls, from selected co-cul-

tures with at least one-year of in vitro culture, were col-
lected from solid SH medium, for scanning electron
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microscopy (SEM), and from liquid SH medium for light

microscopy (LM). S. tuberosum HR and galls were pre-
pared for SEM following the methodology described by

Figueiredo and Pais (1994). Samples were fixed with 1.5 %

(v/v) glutaraldehyde in 0.05 M sodium cacodylate buffer,
pH 7.0 for 45 min at room temperature. After 1–2 min

under vacuum (26 mm Hg, 3.46 kPA), the fixative was

substituted with 3 % glutaraldehyde in 0.1 M sodium
cacodylate buffer, pH 7.0 for 2 h at room temperature. The

material was rinsed thoroughly in the same buffer, post-
fixed with a 2 % osmium tetroxide aqueous solution

(OsO4) for 2 h at room temperature, dehydrated in a graded

acetone series and critical point dried in a Polaron E 3500.
Dried specimens were mounted on stubs, coated with gold

in a Polaron E 5350. Observations were carried out on a

JEOL T220 SEM (JEOL Ltd., Tokyo, Japan) at 15 kV.
For LM, galls excised from S. tuberosum HR/CRKN co-

cultures grown in liquid SH medium were fixed with glutar-

aldehyde 2.5 % (v/v) in 0.1 M sodium phosphate buffer, pH
7.2. Samples were kept in fixative under vacuum at room

temperature for 20 min, followed by 24–48 h at 4 "C. The

material was then washed in the fixative buffer, dehydrated in
a graded ethanol series, and embedded in Leica historesin#

according to Ascensão et al. (2005). Longitudinal and cross

sections (4 lm thick) were sequentially stained with periodic
acid–Schiff’s (PAS) reagent/Toluidine Blue O (Feder and

O’Brien 1968) for polysaccharides and general histology.

Observations were made under a Leica DM-2500 microscope
(Leica Microsystems CMS GmbH, Wetzlar. Germany). The

images were recorded digitally using a Leica DFC-420

camera (Leica Microsystems Ltd., Heerbrugg, Switzerland)
and the Leica Application Suite software (version 2.8.1).

Time-course characterization of S. tuberosum HR
and S. tuberosum HR/CRKN co-culture growth,

nematode population density and production

of volatiles

Erlenmeyer flasks with 100 mL SH medium were aseptically

inoculated with 1 g fresh weight (FW) of S. tuberosum HR or
S. tuberosum HR/CRKN kept under routine subculture, and

maintained as above. Growth, nematode population density in

the culture medium and production of volatiles were evalu-
ated at inoculation time (t0) and weekly for 7 weeks. Two

independent experiments were conducted separately, for each

in vitro culture, and two replicates of each flask were used in
each experiment. The data shown were calculated as mean

values of all experiments.

Growth of in vitro cultures

Solanum tuberosum HR and S. tuberosum HR/CRKN
co-cultures growth were evaluated by the dissimilation

method, a non-invasive method that relates growth with

energy-consumption of the cells (Schripsema et al. 1990),
and by measuring the FW and DW. FW determination was

performed after blotting the total HR cultures or HR/

CRKN co-culture clumps on filter paper to remove excess
culture medium. For dry weight (DW) calculation, samples

from the clumps were frozen for 24 h followed by freeze-

drying for 2 days, in an Alpha I-5 (Martin Christ GmbH,
Osterode, Germany) apparatus, at 0.1 mbar and -42 "C.

The total DW was based on the relation between FW and
DW determination after freeze-drying. Specific growth rate

(l) in wt L-1 day-1 and doubling time (dt) in days were

determined for FW and DW growth curves, between the
4th and 7th day, using the formulae according to Kondo

et al. (1989) and Mehrara et al. (2007): l = (logeX -

logeX0) / t; dt = (loge 2)/l, where X0 is the initial weight,
X is the final weight and t is the time between weighings.

The remaining S. tuberosum HR or S. tuberosum HR/

CRKN co-cultures were kept at -20 "C until volatiles
were extracted.

Nematode population density in co-cultures medium

Population of CRKN (J2 and males) in the liquid medium

was evaluated by sampling 100 lL aliquots of each culture
flask at each time-point. Three replicates of each flask were

used for counts. Number of dead and live nematodes was

recorded using an inverted microscope.

Isolation of volatiles from in vitro cultures

Constitutive volatiles as well as those induced by the

phytoparasite were isolated from the in vitro cultures by

distillation–extraction, for 3 h, using a Likens-Nickerson
type apparatus (Likens and Nickerson 1964). Distillation

was run at 3 mL min-1 rate, using in-lab distilled n-pen-

tane (50 mL) (Honeywell Riedel-de Haën, Hanover, Ger-
many) as organic solvent. The volatiles recovered in

distilled n-pentane were concentrated, at room temperature,

under reduced pressure on a rotary evaporator (Yamato,
Hitec RE-51). After collection in a vial, the volatiles were

concentrated to a minimum volume under nitrogen flux, at

room temperature. The volatile oils were stored at -20 "C
in the dark until analysis.

Analysis of volatiles from in vitro cultures

Volatiles were analyzed by gas chromatography (GC), for

component quantification, and GC coupled to mass spec-
trometry (GC–MS) for component identification. Gas

chromatographic analyses were performed using a Perkin

Elmer Autosystem XL gas chromatograph (Perkin Elmer,
Shelton, CT, USA) equipped with two flame ionization

Plant Cell Tiss Organ Cult

123



detectors (FIDs), a data handling system, and a vaporizing

injector port into which two columns of different polarities
were installed: a DB-1 fused-silica column

(30 m 9 0.25 mm i.d., film thickness 0.25 lm; J & W

Scientific Inc., Rancho Cordova, CA, USA) and a DB-
17HT fused-silica column (30 m 9 0.25 mm i.d., film

thickness 0.15 lm; J & W Scientific Inc., Rancho Cordova,

CA, USA). Oven temperature was programmed to increase
from 45 to 175 "C, at 3 "C/min increments, then up to

300 "C at 15 "C/min increments, and finally held isother-
mal for 10 min. Gas chromatographic settings were as

follows: injector and detectors temperatures, 280 and

300 "C, respectively; carrier gas, hydrogen, adjusted to a
linear velocity of 30 cm/s. The samples were injected using

a split sampling technique, ratio 1:50. The volume of

injection was 0.1 lL of a pentane-oil solution (1:1). The
percentage composition of the oils was computed by the

normalization method from the GC peak areas, calculated

as a mean value of two injections from each volatile oil,
without response factors.

The GC–MS unit consisted of a Perkin Elmer Auto-

system XL gas chromatograph, equipped with DB-1 fused-
silica column (30 m 9 0.25 mm i.d., film thickness

0.25 lm; J & W Scientific, Inc., Rancho Cordova, CA,

USA) interfaced with Perkin-Elmer Turbomass mass
spectrometer (software version 4.1, Perkin Elmer). GC–MS

settings were as follows: injector and oven temperatures

were as above; transfer line temperature, 280 "C; ion
source temperature, 220 "C; carrier gas, helium, adjusted to

a linear velocity of 30 cm/s; split ratio, 1:40; ionization

energy, 70 eV; scan range 40–300 lm; scan time, 1 s. The
identity of the components was assigned by comparison of

their retention indices relative to C8–C25 n alkane indices,

and GC–MS spectra from a laboratory made library based
upon the analyses of reference oils, laboratory-synthesized

components, and commercial available standards.

Results and discussion

Establishment of Solanum tuberosum hairy root

cultures

Solanum tuberosum HR were established on solid SH

medium (Schenk and Hildebrandt 1972), after inoculation

of aseptic potato segments with R. rhizogenes A4 strain.
Approximately 2 weeks after infection, numerous HR were

observed at the inoculation sites (Fig. 1a). Following

establishment of the HR in liquid medium without antibi-
otics and growth regulators (Fig. 1b), potato HR were

highly branched with the typical ‘‘rooty’’ phenotype

(Fig. 1c, d). Structure, growth and volatile analyses were

performed after approx. 12 months in culture with routine

subculture.

Establishment of S. tuberosum HR/CRKN co-cultures

Solanum tuberosum HR/CRKN co-cultures were obtained

by adding surface-sterilized nematode eggs to the HR

cultures grown on solid SH medium. The first J2 appeared
approximately 2 days after inoculation (DAI) and were

seen on the vicinity of the transgenic roots (Fig. 1e).
Within approximately 10 days, root tip enlargement was

observed and galls and immature females were observed 25

DAI (Fig. 1f, g). Adult females in the galls were detected
approximately 45 DAI followed by the production of the

gelatinous matrix and eggs (Fig. 1h).

This species is known to cause numerous small, pimple-
like, galls that are not always evident, without secondary

roots emerging from them. Symptoms caused by M. chit-

woodi vary according to host, nematode population density
and environmental conditions (Perry et al. 2009).

Characterization of S. tuberosum HR and S. tuberosum
HR/CRKN co-cultures

Structure of in vitro cultures

Hairy roots, grown on solid SH medium, showed the

characteristic anatomy of primary root growth structures—
a single-layered epidermis with a thin cuticle and numerous

lateral hairs, a cortex with few cell layers, an endodermis

and a pericycle surrounding the vascular cylinder (Fig. 1c,
d). This typical primary root structure has been commonly

reported for other HR, such as those of Pimpinella anisum

(Santos 1997), Levisticum officinale (Costa 2005) and
Anethum graveolens (Geraldes 2010). However, S. tu-

berosum HR, with an average diameter of 295 ± 22 lm,

differed from the previous examples by being slightly
thinner. According to Verdejo et al. (1988), who studied

the reproduction of M. javanica in several HR systems, thin

roots that grow at moderate rates into the agar and produce
many secondary roots could support high nematode

reproduction. Thus, S. tuberosum HR seemed to have

adequate characteristics for M. chitwoodi development and
reproduction.

In S. tuberosum HR/CRKN co-cultures, the HR diameter

did not show substantial differences (304 ± 38 lm) com-
pared with S. tuberosum HR (295 ± 22 lm), except where

root galls were formed (1375 ± 260 lm). The formation

of galls was more frequent in roots that grew inside the
agar than on the agar surface, suggesting that the location

of roots affected nematode penetration and reproduction. A

similar observation was made by Verdejo et al. (1988).
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Scanning electron micrographs (SEM) of co-culture root

galls showed CRKN adult pear-shaped females (Fig. 1i, j).
Morphometrics of CRKN adult females width/length

(313 ± 41/488 ± 33 lm), males length (950 ± 91 lm),

J2 length (336 ± 12 lm) and eggs width/length (33 ± 3/
88 ± 7 lm) were consistent with the original description

of Golden et al. (1980): adult female width/length

(344–518/430–740 lm); male length (887–1268 lm); J2
length (336–417 lm); egg width/length (40–46/

79–92 lm).

In response to signals from the infective stage, root cells
from vascular cylinder, adjacent to the head of the nematode,

redifferentiated into hypertrophied cells, giant cells (Fig. 2a–

d, asterisks). These specialized cells were easily distinguished
from their neighbouring cells by the increased volume, dense

cytoplasm, numerous nuclei and small vacuoles. Another
important characteristic feature of these metabolically active

cells was the development of cell wall ingrowths (Fig. 2b, c,

arrows). Giant cells are typical transfer cells that are involved
in rapid solute transport from the contiguous xylem elements

to the nematodes, supplying nutrients to nematode develop-

ment and reproduction (Berg and Taylor 2009). Mature
females secrete, at the posterior end, a material that stained

dark pink with Periodic acid-Schiff stain (PAS), revealing a

polysaccharide nature (Fig. 2e, f). This gelatinous matrix,
embedding the eggs layed by females, was usually deposited

on the surface of galled roots (Fig. 2g). The root-knot anat-

omy observed in this study was similar to that induced by
RKN described by Berg and Taylor (2009).

Although previous studies addressed the morphology

and anatomy of Meloidogyne genus infection and disease
progression, the novelty of the present work is that it

establishes and characterizes a plant/nematode co-culture

as a biotechnological testing system that is reproducible
and easy to use, as a tool to evaluate plant/nematode

interactions in an in vitro culture system that mimics what

occurs in natural conditions.

Growth of in vitro cultures

A 7 weeks’ time-course study was performed to assess

potato HR and S. tuberosum HR/CRKN co-culture growth,

in liquid SH medium, by measuring FW and DW and using

the dissimilation method. Compared to S. tuberosum HR

cultures, S. tuberosum HR/CRKN co-cultures showed
similar colour, as no browning was induced by the com-

bined growth with M. chitwoodi. Aditionally, S. tuberosum

HR growth was not influenced by the presence of the
nematode (Fig. 3a, b).

This resemblance in growth profile was supported by the

determination of specific growth rate and doubling time
based on FW and DW growth curves. Specific growth rates

(l) for S. tuberosum HR cultures and S. tuberosum HR/
CRKN co-cultures were 0.3 and 0.2 g FW L-1 day-1,

respectively, with doubling times (dt) of 2.6 and 3.0 days

on FW basis and 0.3 and 0.2 DW L-1 day-1 with dt of 2.5
and 3.5 days, on a DW basis. These values were within the

expected for HR cultures. Literature average growth rate

for HR ranged from 0.1 to 2.0 g W L-1 day-1 (Oksman-
Caldentey and Hiltunen 1996) and 1–11 days dt (Maldo-

nado-Mendoza et al. 1993; Dhakulkar et al. 2005), being

largely dependent on a high rate of linear extension, lateral
branching and secondary increase in root diameter (Fi-

gueiredo et al. 2006).

Notwithstanding small variations in growth, probably
due to variations in development stages of S. tuberosum

HR starting inoculum, the outline of the growth curves was

identical to those previously observed with Anethum
graveolens (Faria et al. 2009) or Levisticum officinale HR

(Nunes et al. 2009).

Potato HR growth seemed unaffected by the nematode
which may be due to the constant optimal temperature and

nutrient availability under in vitro culture conditions, and,

as reported by Perry et al. (2009), a plant may be infected
and still not show clear changes in growth and productivity.

Santo and O’Bannon (Santo and O’Bannon 1981) analysed

differences in root weight and RKN reproduction, at dif-
ferent temperatures, in S. tuberosum roots inoculated with

two starting inocula. At 25 "C, a tenfold increase in the

starting inoculum induced an almost threefold decrease in
root weight, and lead to the production of more CRKN

eggs. In future experiments using this biotechnological

model system, it would be advantageous to test different
CRKN inoculum levels in order to determine the influence

of this parameter on the co-cultures growth.

Nematode population density in co-culture medium

The number of M. chitwoodi motile forms (J2 and males)
in the medium was quantified at different time-points,

every week during 7 weeks, as an indicator of the nema-

tode population density. Twenty one days after inoculation,
the number of nematodes increased (±44 nema-

todes mL-1), concomitant with the progressive growth

deceleration of the co-culture, followed by a slight
decrease and then another increase (±77 nematodes mL-1)

b Fig. 1 Solanum tuberosum hairy (HR) roots and S. tuberosum HR/
Meloidogyne chitwoodi (CRKN) co-cultures. a, b S. tuberosum HR
cultures grown on solid and liquid Schenk and Hildebrandt (1972) SH
medium, respectively. c–j Light and scanning electron microscopy
micrographs of S. tuberosum HR (c, d) and S. tuberosum HR/CRKN
co-cultures, grown on solid SH medium (e–h, i, j). Note the primary
tissues of the root (c, d), the second-stage juvenile (e), females in
different developmental stages (f, g) and an adult female with egg
mass (h). Pear-shaped females with the head embedded in the
periphery of the vascular tissue and the female perineal ridge pattern
in i and j, respectively. Scale bars 1 cm (a, b), 100 lm (c–j)
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until the end of the sampling time-points, in the co-culture

stationary growth phase (Fig. 3a). The first peak may be

due to J2 hatching from eggs produced by females present
in the inoculated co-culture root clump (1st generation),

and the second peak to the second generation of nematodes

(Fig. 3a). Second generation of nematodes was originated
from co-culture new infections and the production of new

mature females, whose hatched juveniles contributed to the

second peak in the nematode number.

Continuous subculturing of these co-cultures in SH

medium reproduced the same growth pattern leading to an
equilibrium between nematode infection and development

and HR growth, making possible the maintenance of this

co-culture. Pak et al. (2009) analysed M. incognita infec-
tion and development in Cucumis melo HR grown in three

culture media and found that the greatest number of egg

masses were obtained on HR cultured in SH medium.
Culture medium appears to contribute to the success in the

establishment and maintenance of HR/nematode co-
cultures.

Production of volatiles during in vitro culture

Thirty one compounds were identified in the constitutive

volatiles isolated from S. tuberosum HR. The same com-
pounds were identified in the volatiles isolated from S.

tuberosum HR/CRKN co-cultures, maintained under the

same growth conditions. The detailed relative amounts of
the components identified in the volatiles, isolated from

potato in vitro cultures, are listed according to their elution

from a DB-1 column (Table 1). A limited number of
components, with relative amounts of 0.5–3 % each, could

not yet be identified. Together they justify the lower

identification attained at time 0 for HR/CRKN co-cultures
volatiles. Nevertheless, their relative importance decreases

during the time-course study of volatiles in these cultures.

Fatty acids (33–63 %) and the fraction designated by
others (23–39 %), since components were neither terpenes

nor C13 compounds, and which was mainly composed of

non-aromatic alcohols, saturated and unsaturated non-aro-
matic aldehydes and hydrocarbons, dominated both the

constitutive volatiles of the HR and those of the HR/CRKN

co-cultures (Table 1). Palmitic acid (37–52 % in the HR
and 24–44 % in the co-cultures), n-pentadecanal (6–16 %

in the HR and 8–22 % in the co-cultures) and linoleic acid

(2–16 % in the HR and 4–18 % in the co-cultures) domi-
nated S. tuberosum HR and S. tuberosum HR/CRKN vol-

atiles. Fatty acid abundance, mostly resulting from cell

membrane degradation, is common in constitutive volatile
profiles of HR (Faria et al. 2009; Nunes et al. 2009), as well

as in plants producing small amount of volatiles.

Although Komaraiah et al. (2003) reported enhanced
production of the stress related antimicrobial sesquiterpene

phytoalexins rishitin, lubimin, phytuberin and phytuberol,

extracted with organic solvents, from elicitor-treated HR
cultures of S. tuberosum, these compounds were not

detected in the present study. These results can be

explained by the different responses to elicitors or to
CRKN, or that, if produced, the compounds can undergo

glycosylation, as observed in L. officinale HR (Nunes et al.

2009), rendering them non-volatile and thus not directly
extractable by hydrodistillation.

b Fig. 2 Light micrographs of historesin galled root sections from S.
tuberosum HR/CRKN co-cultures in liquid Schenk and Hildebrandt
(1972) SH medium, stained with Periodic Acid–Schiff’s (PAS)/
Toluidine Blue O. a, b Females feeding on a group of prominent giant
cells (asterisks). Note in b the nematode head embedded in the
periphery of the vascular tissue (arrowheads) and the giant cell wall
ingrowths (arrows). c Detail of the giant cells with dense cytoplasm,
small vacuoles, numerous nuclei and cell wall ingrowths (arrows).
d Giant cells and interspersed vascular elements are apparent. e–
f Longitudinal and cross sections of mature females revealing a pink
PAS-positive exudate near their posterior ends. g Eggs embedding in
a polysaccharidic matrix are observed on the surface of galled roots.
Scale bars 100 lm
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Fig. 3 a Dissimilation growth curves of Solanum tuberosum hairy
roots (HR) (open square) and S. tuberosum HR/Meloidogyne
chitwoodi (CRKN) co-cultures (filled square), and number of
nematodes in the culture medium (filled triangle). b Fresh (square
symbols) and dry weight (triangle symbols) growth curves of S.
tuberosum HR and S. tuberosum HR/CRKN co-cultures. Fresh weight
growth curves: S. tuberosum HR (open square) and co-cultures (filled
square). Dry weight growth curves: S. tuberosum HR (open triangle)
and co-cultures (filled triangle)
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Table 1 Percentage composition of the volatiles isolated from Solanum tuberosum HR and S. tuberosum HR/CRKN co-cultures, at the different
time-points (t0, inoculation time)

Component RI S. tuberosum HR S. tuberosum HR/CRKN

Time (days) Time (days)

0 7 14 21 28 35 42 49 0 7 14 21 28 35 42 49

n-Hexanol 882 t 0.7 0.4 0.1 0.1 0.2 0.2 0.2 0.5 0.3 0.2 0.1 0.2 0.2 0.4 0.6

2-Pentyl furan 973 0.2 1.4 1.4 0.5 8.1 1.1 0.5 0.3 0.8 1.7 1.9 1.1 0.9 0.9 0.7 1.0

b-Myrcene 975 1.1 0.6 0.9 0.4 3.1 2.6 0.3 0.6 0.4 0.5 0.9 1.0 2.8 0.6 0.5 0.9

Benzyl alcohol 1000 4.2 4.4 4.9 2.8 6.9 4.3 5.4 5.4 3.3 6.0 4.7 5.7 4.6 5.6 7.4 3.0

Benzene acetaldehyde 1002 t t t t t t t t t t t t t t t t

n-Octanol 1045 0.3 0.1 0.4 0.1 0.1 0.2 0.2 0.4 0.3 0.1 0.1 0.2 0.1 0.6 0.3 0.2

o-Guaiacolg 1058 2.6 3.8 2.9 1.9 2.5 4.4 3.2 2.8 5.8 2.2 2.9 3.3 3.1 2.8 4.6 4.1

2-Methyl decane 1058 0.2 t 0.1 0.1 t t 0.1 0.1 t 0.3 t t t 0.1 t 0.5

Phenyl ethyl alcohol 1064 0.5 1.1 0.4 0.3 0.5 0.5 1.7 1.6 0.3 0.3 0.4 0.5 0.4 0.3 0.6 0.2

trans-Pinocarveol 1106 t 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.2 0.1 0.3 0.1 0.3

3-cis-Nonen-1-ol 1124 t 0.7 0.7 1.0 0.6 1.0 0.8 0.8 2.2 0.7 1.5 0.8 1.1 1.4 1.4 2.1

trans-Mentha-1(7),8-dien-
2-ol

1159 0.2 0.4 0.1 0.1 0.1 0.1 t t 0.2 0.1 0.3 0.1 0.1 0.1 0.1 0.3

2-trans, 4-trans-
Nonadienal

1184 0.4 0.7 0.2 0.3 0.1 0.2 0.1 0.2 0.4 0.2 0.3 0.3 0.2 0.1 0.1 0.3

Carvacrol 1286 1.7 1.3 1.1 0.9 0.6 1.6 1.6 1.6 2.2 2.2 0.9 1.6 1.7 1.8 2.2 2.7

n-Tetradecanal 1596 2.0 0.8 1.2 1.4 1.3 1.8 2.1 1.6 2.2 2.7 0.8 1.0 1.2 2.4 2.7 3.6

cis-Methyl
dehydrojasmonate

1640 0.1 0.4 0.2 0.1 t 0.1 0.1 t 0.1 t 0.2 1.1 t t 0.4 0.5

n-Pentadecanal 1688 11.0 5.6 9.7 12.0 9.8 15.2 16.2 13.7 11.4 8.5 7.6 8.2 9.6 17.0 15.6 21.7

Myristic acida 1723 0.1 2.6 0.6 0.6 0.6 0.9 1.0 1.0 0.6 1.9 0.5 1.0 0.8 0.7 0.6 1.1

Isopropyl decanoateg 1753 0.8 1.5 1.0 0.8 0.5 0.2 0.4 0.4 1.4 2.0 0.9 0.6 0.5 0.4 0.3 0.1

Pentadecanoic acidbg 1776 2.2 2.3 2.5 3.1 3.0 4.2 4.1 4.2 1.5 3.4 2.2 3.9 4.4 3.5 3.7 1.6

n-Hexadecanol 1821 0.3 5.8 0.3 0.2 0.2 0.1 0.2 0.2 0.2 2.4 0.3 0.1 0.2 0.2 0.3 0.2

n-Heptadecanal 1894 0.5 1.1 0.8 0.8 0.6 0.5 0.6 0.4 0.9 2.5 0.8 0.4 0.4 0.4 0.4 0.4

Palmitic acidc 1908 51.6 35.5 36.6 44.2 37.6 36.7 37.1 39.5 23.8 39.5 37.8 43.7 42.7 38.9 38.6 32.4

Heptadecanol allyl ether 1987 0.4 0.9 0.6 1.0 1.1 1.2 0.2 0.2 0.5 0.7 1.0 1.1 0.6 0.9 1.0 0.9

Margaric aciddg 2032 0.5 0.5 0.2 0.2 0.2 0.3 1.8 1.9 0.1 0.4 0.1 0.2 0.3 0.2 0.2 t

n-Octadecanol 2071 0.1 0.2 0.1 0.1 t t 0.1 0.1 t 0.3 0.1 t 0.1 0.7 t t

Phytol acetate 2047 t t t t t t t t t t t t t t t t

Linoleic acide 2125 1.7 9.9 16.1 12.4 6.9 6.5 7.4 8.4 6.3 11.5 18.1 10.1 8.0 6.5 3.7 5.7

Stearic acidf 2149 0.6 2.6 0.5 2.4 0.8 1.8 1.0 0.9 0.8 2.8 1.5 1.4 1.7 1.0 0.5 0.6

n-Eicosanal 2200 t 0.5 t 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1

n-Docosanal 2426 t 0.6 t 0.1 0.2 t t t t 0.3 t t t 0.3 t 0.1

% Identification 83.3 85.5 83.8 88.0 85.1 85.7 86.1 86.2 66.4 93.3 86.1 87.7 85.8 87.6 86.1 85.2

Grouped components

Monoterpene hydrocarbons 1.1 0.6 0.9 0.4 3.1 2.6 0.3 0.6 0.4 0.5 0.9 1.0 2.8 0.6 0.5 0.9

Oxygen-containing
monoterpenes

1.9 1.9 1.3 1.1 0.7 1.8 1.7 1.6 2.5 2.4 1.6 1.9 1.8 2.1 2.4 3.3

C13 compounds 0.1 0.1 0.2 0.1 t 0.1 0.1 t 0.1 t 0.2 1.1 t t 0.4 0.5

Fatty acids 56.7 53.3 56.5 62.8 49.0 50.2 52.3 55.8 33.1 59.5 60.1 60.3 57.9 50.8 47.2 41.4

Others 23.5 29.4 24.9 23.6 32.3 31.0 31.8 28.2 30.3 31.0 23.3 23.4 23.2 34.1 35.7 39.1

RI, Lab calculated retention index relative to C8–C25 n-alkanes on the DB-1 column; t, Trace (\0.05 %)
a Tetradecanoic acid, b Pentadecylic acid, c Hexadecanoic acid, d Heptadecanoic acid, e cis,cis,-9,12-Octadecadienoic acid, f Octadecanoic
acid
g Identification based on mass spectra only
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Other factors, such as increase in nematode load due to

prolonged period of culture might result in an altered
stress-induced volatile response. Nevertheless, it was not

the goal of this study to stress the HR/CRKN co-cultures

but, instead, to obtain an equilibrated in vitro co-culture
system where variations in volatiles can be easily detected,

e.g., after the external application of nematicidals.

To our knowledge, this is the first report on the effect of
M. chitwoodi infection on S. tuberosum HR production of

volatiles. In other studies, Desjardins et al. (1997) identi-
fied altered ratios of solavetivone versus total sesquiter-

penes in Globodera rostochiensis potato resistant

genotypes. Veech (1978) and Khoshkhoo et al. (1994)
related the resistance of cotton to M. incognita with

increased production of terpene aldehydes and according to

Edens et al. (1995), the resistance may be linked to the
host’s ability to perceive nematode infection, as resistant

Glycine max plants showed greater expression of genes

encoding enzymes from the phenylpropanoid pathway
(defense response enzymes) in response to RKN infection

while susceptible plants did not.

In conclusion, S. tuberosum HR cultures and S. tu-
berosum HR/CRKN co-cultures were successfully estab-

lished and their structure, growth and volatiles evaluated.

The presence of the phytoparasite was not detrimental as
both HR cultures and co-cultures showed similar growth

and volatile profiles. These results suggest that the estab-

lished in vitro co-cultures may be used to simulate the
CRKN in vivo infection mechanism, making them a suit-

able biotechnological tool to research the effect of RKN

nematotoxic compounds, while determining their effect on,
or the biotransformation capacity of the host plant.
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