Orbit representations from matrices

C. Correia Ramosa, Nuno Martinsb, Paulo R. Pintob,*

a Centro de Investigação em Matemática e Aplicações, Department of Mathematics, Universidade de Évora, R. Romão Ramalho, 59, 7000-671 Évora, Portugal
b Department of Mathematics, CAMGSD, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

\textbf{Abstract}

Each Markov interval map f naturally produces a transition 0–1 matrix of interval type (in every row, the entries equal to 1 should be consecutive). We show that any 0–1 matrix A can be transformed into an interval type matrix A_I, by a careful use of the state splitting. We then prove that A_I can be realized as a transition matrix of an interval map $f_{A_I, \lambda_{A_I}}$ arising from the Perron–Frobenius eigenvalue λ_{A_I} and eigenvector of A_I. Finally, we construct orbit representations associated with A from those of A_I arising from the dynamical system $([0, 1], f_{A_I, \lambda_{A_I}})$.

\textcopyright 2014 Elsevier Inc. All rights reserved.